
Cournot Competition and Green Innovation in a

Dynamic Oligopoly�

Guiomar Martín-Herrányand Santiago J. Rubioz

March 9, 2024

�A previous version of this paper was presented at the Second Workshop on Dynamic Games

and Applications 2023 (Paris). Guiomar Martín-Herrán gratefully acknowledges �nancial support

from the Spanish Ministry of Science and Innovation (AEI) under projects PID2020-112509GB-

I00 and TED2021-130390B-I00. Santiago J. Rubio gratefully acknowledges �nancial support from

MCIN/AEI/10.13039/501100011033/FEDER, UE, under project PID2022-136805OB-I00 and Valencian

Generality under project CIPROM 2022/029.
yDepartment of Applied Economics and IMUVa, University of Valladolid, Spain. email:

guiomar.martin-herran@uva.es. https://orcid.org/0000-0002-9161-2349
zCorresponding author: Department of Economic Analysis and ERI-CES, University of Valencia,

Spain. email: santiago.rubio@uv.es. https://orcid.org/0000-0002-2727-9756

1



Abstract

In this paper we analyze a dynamic Cournot oligopoly to study the relationship between

competition and green innovation. Firms face a tax on emissions and react to this tax

investing in an abatement technology. The tax is given by the feedback Stackelberg

equilibrium of a dynamic policy game between a regulator and a polluting oligopoly

where environmental damages depend on the pollution stock. For constant marginal

damages, we �nd that �rms�R&D investment increases monotonically with the number

of �rms in the industry because competition increases the tax. This e¤ect is explained

by the fact that the tax can be decomposed in two terms, one negative that re�ects the

divergence between the price and the marginal revenue because of the market power of

�rms, and another positive that re�ects the divergence between the social valuation of

the pollution stock and the private valuation. When the number of �rms in the industry

increases, the absolute value of the �rst term decreases and the tax increases leading

to more investment. Moreover, as in this case �rms increase their stock of abatement

capital, net emissions decrease and this causes a reduction of the pollution stock.

Keywords: oligopoly, homogeneous good, Cournot competition, green R&D, end-of-

the-pipe abatement technology, emission tax, di¤erential games

JEL Classi�cation System: H23, L12, L51, Q52, Q55
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1 Introduction

The e¤ects of competition on �rms� innovation is a classical issue in the literature on

industrial organization. It goes back to the indirect debate between Schumpeter (1942)

and Arrow (1962) focusing on the so-called Schumpeterian hypothesis: one should expect

to observe an inverse relationship between innovation and the intensity of competition,

because monopoly rents would vanish as competition becomes stronger. An hypothesis

discussed by Arrow (1962) who claims that a competitive �rm has a larger incentive to

innovate than a monopolist who could be interested in postponing the R&D investment

(a review of this literature can be found in Tirole (1988)). This debate received a new

impulse with the publication of a paper by Aghion et al. (2005) that based on a neo-

Schumpeterian endogenous growth model provides evidence of an inverted-U relationship

between aggregate R&D and the intensity of market competition using UK panel data.1

A more recent paper by Aghion et al. (2023) investigates the e¤ects of consumers�

environmental concerns and market competition on �rms�decision to innovate in clean

technologies. They �nd a signi�cant positive e¤ect of environmental concerns on the

probability for a �rm to innovate in the clean direction, a positive e¤ect that is larger the

higher the competition is.

Despite the abundant literature on this issue, only a few scholars and very recently

have been interested in the relationship between green innovation and the competitive

pressure. The list of papers addressing this issue consists of Feichtinger et al. (2016),

Lambertini et al. (2017), Menezes and Pereira (2017), and Dragone et al. (2022). Our aim

is to contribute to the literature with new insights analyzing this issue in the framework of

a dynamic Cournot oligopoly that produces an homogeneous good where �rms react to an

emission tax investing in green R&D that generates some spillovers.2 The tax is given by

1Hashmi (2013) revisits the inverted-U relationship by using US data �nding a mildly negative rela-

tionship between competition and innovation. An assessment of the lessons learnt from Schumpeterian

growth theory can be found in Aghion et al. (2013).
2An excellent review of the e¤ects of competition on innovation in the framework of the oligopoly

theory can be found in Vives (2008). Recently, Yanese and Long (2023) has revisited this issue using

a dynamic model of an industry consisting of a few large �rms and a fringe of small �rms that pro-
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the feedback Stackelberg equilibrium of a dynamic policy game between a regulator and a

polluting oligopoly where environmental damages depend on the stock of pollution. The

regulator playing as the leader chooses an emission tax to maximize net social welfare, and

the �rms acting as followers selects their R&D investment in an abatement technology

and output to maximize pro�ts. We compute the tax for a linear-state policy game.

Our �ndings show that �rms�R&D investment increases with the number of �rms in the

industry. This e¤ect operates through the positive in�uence that the tax has on R&D

investment.3 The tax leads �rms to invest in the abatement technology, but we �nd

that the tax increases with the number of �rms in the industry, the result is that more

competition translates into more R&D investment. This e¤ect is explained by the fact

that the optimal tax is the addition of a subsidy that corrects the divergence between

the price and the marginal revenue because of the market power of �rms, and a tax that

closes the divergence between the social valuation of the pollution stock and the private

valuation because of the negative externality. If the environmental damages are high

enough, the second component dominates the �rst one and the optimal policy consists

of taxing emissions.4 Thus, if the number of �rms in the industry increases, the market

power of �rms decreases and the absolute value of the �rst component of the tax also

decreases causing an increase in the tax and the corresponding increases in investment. In

our model, this e¤ect is independent of the degree of spillovers because the tax does not

duce horizontally di¤erentiated products, where each �rm�s marginal cost depends of a common pool

of knowledge that accumulates over time due to large �rms�investment. The authors �nd that for the

open-loop Nash equilibrium, the relationship between the number of large �rms and the steady-state

stock of knowledge capital has an inverted-U shape. However, this relationship does not necessarily

appear for the Markov-perfect Nash equilibria.
3Dijkstra and Gil-Moltó (2018) �nd for the case of a static Cournot oligopoly that the e¤ect of the

strictness of the environmental policy on green innovation is non-monotonic. Our results do not support

this conclusion, but it should be taken into account for assessing this divergence that we are considering

di¤erent types of innovation.
4Obviously, if damages are low the tax could become a subsidy and �rms would not invest in an

abatement technology. In this case, the more severe problem with the market allocation would be the

lack of competence and not the environmental problem. In this paper, we are interested in the cases

where emission taxation is justi�ed.
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depend on spillovers. In the model, spillovers are associated to the abatement capital so

that they do not a¤ect the decisions of �rms on output and R&D investment, but only to

the dynamics of the pollution stock. Moreover, as �rms increase their stock of abatement

capital, net emissions decrease and this causes a reduction of the pollution stock. Thus,

our �ndings go in the line of those obtained by Aghion et al. (2023) that supports the

idea that market competition promotes the adoption of cleaner technologies.

We also �nd that the steady state is a global asymptotically stable point so that the

regulated market converges asymptotically to the steady-state abatement capacity and

pollution stock from any initial conditions. In the paper, we focus on some particular

initial conditions that we consider the more interesting case. We assume that the initial

value of the abatement capacity is zero and that the initial pollution stock is higher than

the steady-state pollution stock. Assuming that the initial value of abatement capacity

is zero is consistent with the idea that �rms will only invest in R&D if a tax is set up

by the regulator. Thus, if the initial conditions re�ect the state of the market before

regulation it seems reasonable to assume that the initial abatement capacity is zero. On

the other hand, if the initial value of pollution stock were lower than the steady-state

pollution stock, regulations would lead to an increase in the pollution stock. We are

more interesting in the case where taxation reduces the pollution stock.5 For these initial

conditions, the abatement capacity increase monotonically. However, the pollution stock

could increase provided that the initial stock of pollution is not too large, but only during

an initial period of time. In the long run, the pollution stock will decrease.

Our research contributes to the literature of competition and innovation that has been

commented at the beginning of this section, and also to the literature on environmental

regulation of �rms with market power in a dynamic setting. The seminal paper of this

literature is Benchekroun and Long (1998). In this paper a subgame-perfect tax rule that

implements the e¢ cient outcome for a Cournot oligopoly is designed when environmental

damage is caused by a stock pollutant.6 Later contributions to this literature are Yanase

5Nevertheless, in Appendix C we completely characterize the dynamics of the model considering all

possible initial conditions with respect to the steady-state values.
6Benchekroun and Long (2002) focused on the case of a polluting monopoly. For this case, they show
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(2009), Benchekroun and Chaudhuri (2011), Feichtinger et al. (2016), Martín-Herrán and

Rubio (2018a, 2023) and Dragone et al. (2022).7 Benchekroun and Chaudhuri (2011)

show that the imposition of a tax that depends on the pollution stock can induce stable

cartelization in a polluting oligopoly as the one analyzed by Benchekroun and Long

(1998). Yanase (2009) was the �rst paper introducing abatement activities by �rms.

Abatement activities reduce emissions in each period of time, but �rms do not invest in

R&D. He examines a dynamic policy game between national governments that �x taxes

or standards in a model of international pollution control for duopolists that compete

myopically in quantities in a third country with product di¤erentiation.8 The same

approach is adopted by Martín-Herrán and Rubio (2018a, 2023) in their analysis of the

optimal environmental policy for the case of a polluting monopoly developed in Martín-

Herrán and Rubio (2018a), and for the case of an oligopoly addressed by Martín-Herrán

and Rubio (2023). In Feichtinger et al. (2016) �rms invest in productive capacity and

abate emissions with some spillovers in each period of time, but as in Yanase (2009), they

do not invest in R&D. In their model, the environmental regulator charges an emission

tax rate on the accumulated emissions of each �rm, and also �xes the price of the output

eliminating in this way the interdependence between �rms through their in�uence on

price. Finally, they assume that the optimal tax is the tax that maximizes the steady-

state level of social welfare and that the regulated price depends on the number of �rms

in the industry. Their results show that there exists a constellation of parameter values

that tax rules are not unique. Lambertini (2018) reviews the literature on dynamic polluting oligopolists.
7We could also include in this list the papers by Stimming (1999), Feenstra et al. (2001) and more

recently Walter (2018), but these papers consider a �ow pollutant and focus on the e¤ect of the environ-

mental policy on the accumulation of capital. Stimming (1999) and Feenstra et al. (2001) investigate

the e¤ects of taxes and standards on the accumulation of productive capital for the case of a duopoly,

whereas Walter (2018) studies the e¤ect of a tax on emissions over the investment in R&D also in a

duopolistic market. Xepapadeas (1992) and Kort (1996) also address these issues, but in their papers

the market structure where the polluting �rm operates is not clearly recognized.
8More recently, Yanase and Kamei (2022) study a two-country di¤erential game model of transbound-

ary pollution with international polluting oligopolies. The authors assume that governments use permits

to regulate pollution. They compare autarky and bilateral free trade and conclude that free trade is

better for the environment than autarky.
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wherein the aggregate abatement of the industry at steady state is non-monotonic in the

number of �rms, presenting in some case an inverted-U relationship. They claim that this

result is a consequence of some form of regulation, in their paper the regulation of the

price, that modi�es the aggregate behavior of the industry. Our analysis does not detect

this kind of relationship, but our model diverges from theirs in several aspects. We study

an oligopoly model where �rms invest in R&D, the price is endogenous and the tax is

charged on current emissions as in the seminal paper by Benchekroun and Long (1998).

Dragone et al. (2022) model presents the essential elements of Feichtinger et al. (2016)

model, but they do not include investment in productive capacity or price regulation,

although as in Feichtinger et al. (2016) tax is charged on accumulated emissions. Their

analysis also yields an inverted-U relationship between the aggregate abatement and the

intensity of competition, but they highlight the role of spillovers in abatement activities

to explain this result instead of the role of regulation as Feichtinger et al. (2016).

Finally, we would like to comment the papers by Menezes and Pereira (2017) and

Martín-Herrán and Rubio (2018b) where �rms invest in R&D. Menezes and Pereira (2017)

study the dynamic competition of a duopoly in supply schedules. The focus of the paper

is on the characterization of the optimal policy mix consisting of a tax on emissions

and a subsidy on investment costs. They �nd that an increase in the intensity of the

competition increases the tax and reduces the subsidy, but they do not address the e¤ect

on investment. Martín-Herrán and Rubio (2018b) analyze the second-best emission tax

for a polluting monopoly so that the issue studied in this paper is outside the scope of

their analysis.

The remainder of the paper is organized as follows. Section 2 presents the model of

a polluting oligopoly. Section 3 characterizes the feedback Stackelberg equilibrium. In

Section 4 the relationship between competition and green innovation is studied in the

framework of a linear-state dynamic game. Section 5 o¤ers some concluding remarks and

points out lines for future research.
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2 The Model

We consider a Cournot oligopoly that faces a market demand represented by the de-

creasing inverse demand function P (Q(t)) where Q(t) =
Pn

i=1 qi(t) is the output of the

industry at time t and n � 2 is the number of �rms. Firms produce a homogeneous good

using the same productive technology described by the cost function PC(qi(t)) = cqi(t):

The production process generates pollution emissions, but after an appropriate choice of

measurement units we can say that each unit of output generates one unit of pollution.

Emissions are subject to a per unit tax �(t): As a response to the tax, �rms can either

decrease their output or invest in R&D to reduce the emission per unit of output. We

assume that the �rm adopts an end-of-the-pipe abatement technology such that net emis-

sions are ei(t) = qi(t) � ai(Yi(t)); where ai(Yi(t)) is the abatement function and Yi(t) is

the e¤ective stock of R&D capital.9 Function ai(Yi(t)) satis�es the following properties:

ai(0) = 0; ai(Yi(t)) � qi; a0(Yi(t)) > 0 and a00i (Yi(t)) < 0 for all Yi(t) � 0: With positive

spillovers, if the �rms R&D capital stocks are y1(t); :::; yn(t), respectively, the �rm i�s

e¤ective stock of R&D capital is Yi(t) = yi(t) + �
Pn

j 6=i yj(t); where � 2 [0; 1] measures

the degree of spillovers. However, in this paper we adhere to the approach proposed

by D�Aspremont and Jacquemin (1988) for modelling innovation in a Cournot duopoly

assuming that ai(Yi(t)) is a linear function and that the decreasing returns of the abate-

ment function are captured by a strictly convex R&D cost function IC(wi(t)) where wi(t)

stands for the R&D investment. In fact, we rede�ne Yi(t) in terms of abated emissions

so that this variable can be also interpreted as the abatement capacity of the �rm and

net emissions can be written as follows ei(t) = qi(t) � yi(t) � �
Pn

j 6=i yj(t):
10 Thus, the

dynamics of the abatement capacity for each �rm is de�ned by the di¤erential equation

_yi(t) = wi(t)� �yyi(t); yi(0) = y0 � 0; i = 1; : : : ; n; (1)

9Notice that this type of abatement does not reduce the coe¢ cient gross emissions/output, but the

coe¢ cient net emissions/output, since ei(t)=qi(t) = 1� (ai(Yi(t))=qi(t)): Thus, for a given value of the

output, the higher the abatement, the lower the ratio ei(t)=qi(t).
10This approach was �rst adopted by Poyago-Theotoky (2007) in a static model, and more recently has

been used by Menezes and Pereira (2017) and Martín-Herrán and Rubio (2018b) in a dynamic context.
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where �y stands for the depreciation rate of the abatement capacity. The focus of the

paper is on a stock pollutant that evolves according to the following di¤erential equation

_x(t) =
nX
i=1

 
qi(t)� yi(t)� �

nX
j 6=i

yj(t)

!
� �xx(t); x(0) = x0 � 0; (2)

where x(t) stands for the pollution stock and �x > 0 for the decay rate of pollution stock.

Environmental damages are given by D(x(t)) with Dx > 0 and Dxx � 0:

The di¤erential equation describing the dynamics of the pollution stock can be equiv-

alently rewritten as follows

_x(t) =

nX
i=1

qi(t)� (1 + �(n� 1))
nX
i=1

yi(t)� �xx(t); x(0) = x0 � 0: (3)

The objective of �rms is to choose output and R&D investment in order to maximize

the discount present value of net pro�ts given by the following expression

max
qi(t);wi(t)

Z 1

0

e�rt fP (Q(t))qi(t)� cqi(t)� IC(wi(t))

��(t)
 
qi(t)� yi(t)� �

nX
j 6=i

yj(t)

!)
dt; (4)

subject to di¤erential Eqs. (1) and (3), initial conditions and the usual non-negativity

constraints where r is the time discount rate.

On the other hand, the regulator chooses the emission tax with the aim of maximiz-

ing net social welfare given by the sum of consumer surplus and �rms�net pro�ts plus

tax revenues minus environmental damages. As �rms�tax expenses and regulator tax

revenues cancel out, the dynamic optimization problem for the regulator can be written

as follows:

max
�(t)

Z 1

0

e�rt

(Z Q(t)

0

P (z(t))dz(t)� cQ(t)�
nX
i=1

IC(wi(t))�D(x(t))
)
dt: (5)

The regulator also solves this problem subject to di¤erential Eqs. (1) and (3), initial

conditions and the usual non-negativity constraints.

Thus, the optimal tax rate is de�ned by the solution to a dynamic policy game given

by (4) and (5) and di¤erential Eqs. (1) and (3).

9



3 The Feedback Stackelberg Equilibrium

In this paper, we are interested in characterizing a time-consistent tax. For this rea-

son, we assume that the regulator cannot commit in the long run to future taxes and

compute a subgame perfect Stackelberg equilibrium in Markov strategies using dynamic

programming. However, it is straightforward from expression (5) that if the regulator

cannot commit in the short run, its capacity for a¤ecting the �rms�decisions vanishes.

For this reason, we assume that in each period a three-stage game is played where �rstly

the regulator chooses the tax, in the second stage the �rms select the level of R&D in-

vestment and �nally decide the output to put in the market. Nevertheless, we consider

that �rms are forward looking players that are aware of the dynamic strategic interde-

pendence with the regulator, since they realize that their current decisions will in�uence

the regulator�s decisions because their current decisions on output and investment a¤ect

the dynamics of the pollution stock. In this case, the output selection must satisfy the

following Hamilton-Jacobi-Bellman (HJB) equation:11

rVi(x; �y) = max
qi

(
P (Q)qi � cqi � IC(wi)� �

 
qi � yi � �

nX
j 6=i

yj

!

+
@Vi
@x

 
nX
i=1

qi � (1 + �(n� 1))
nX
i=1

yi � �xx
!)

;

where �y = (y1; :::; yn) with i = 1; 2; :::; n and Vi(x; �y) stands for the maximum discounted

present value of net pro�ts for the current values of the pollution stock and abatement

capacities.

From the �rst-order condition (FOC) for the maximization of the right-hand side

(RHS) of the HJB equation, we obtain that

P 0(Q)qi + P (Q) = c+ � �
@Vi
@x
; (6)

where the left-hand side (LHS) represents the marginal revenue of the �rm and the RHS

the marginal costs. These costs are formed by the marginal cost of production, the tax

11Time argument will be eliminated when no confusion arises. As the dynamics of the abatement

capacity does not depend on output, we omit them from the HJB equation at this stage.
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and the �rm�s shadow price of the pollution stock. The latter is given by the reduction

in the discounted present value of the �rm�s net pro�ts because of the increase in the

pollution stock produced by the increase in production. Adding condition (6) for the

number of �rms we obtain an expression that implicitly de�nes the dependence of total

output with respect to the tax and state variables.

P 0(Q)

nX
i=1

qi + nP (Q) = n(c+ �)�
nX
i=1

@Vi
@x
;

P 0(Q)Q+ nP (Q) = n(c+ �)�
nX
i=1

@Vi
@x
: (7)

From this expression we have that

@Q

@�
=

n

P 00(Q)Q+ (n+ 1)P 0(Q)
; (8)

so that P 00 � 0 is a su¢ cient condition to obtain that an increase in the tax reduces the

output of the industry for given values of the state variables. Condition (7) implicitly

de�nes Q(� ; x; �y) so that using (6) we can write the �rms�output as a function of the tax

and state variables.

qi(� ; x; �y) =
1

P 0(Q(� ; x; �y))

�
c+ � � @Vi

@x
� P (Q(� ; x; �y))

�
: (9)

Once we recognize the dependence of the output with respect to the tax, we can calculate

the optimal tax as the solution to the following di¤erential game:

max
wi

Z 1

0

e�rt fP (Q(� ; x; �y))qi(� ; x; �y)� cqi(� ; x; �y)� IC(wi)

��
 
qi(� ; x; �y)� yi � �

nX
j 6=i

yj

!)
dt; (10)

max
�

Z 1

0

e�rt

(Z Q(�;x;�y)

0

P (z)dz � cQ(� ; x; �y)�
nX
i=1

IC(wi)�D(x)
)
dt; (11)

subject to di¤erential equations:

_x = Q(� ; x; �y)� (1 + �(n� 1))
nX
i=1

yi � �xx; x(0) = x0 � 0;

_yi = wi � �yyi; yi(0) = y0 � 0; i = 1; : : : ; n:
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Now, expression (11) clearly shows the dependence of net social welfare on the tax because

the regulator can in�uence the market equilibrium by imposing a tax on emissions.

Next, we derive the Markov perfect Nash equilibrium (MPNE) of the di¤erential

game de�ned by (10) and (11). Denoting by W (x; �y) the regulator�s value function, the

following HJB equation has to be satis�ed:

rW (x; �y) = max
�

(Z Q(�;x;�y)

0

P (z)dz � cQ(� ; x; �y)�
nX
i=1

IC(wi)�D(x)

+
@W

@x

 
Q(� ; x; �y)� (1 + �(n� 1))

nX
i=1

yi � �xx
!
+

nX
k=1

@W

@yk
(wk � �yyk)

)
: (12)

The FOC yields �
P (Q(� ; x; �y)� c+ @W

@x

�
@Q

@�
= 0:

As @Q=@� 6= 0; this condition requires that

P (Q(� ; x; �y) = c� @W
@x
: (13)

Thus, the price must be equal to marginal costs that now include the marginal cost of

production and the social shadow price of the pollution stock.

On the other hand, the optimal R&D investment must satisfy the following HJB

equation:

rVi(x; �y) = max
wi
fP (Q(� ; x; �y))qi(� ; x; �y)� cqi(� ; x; �y)� IC(wi)

��
 
qi(� ; x; �y)� yi � �

nX
j 6=i

yj

!

+
@Vi
@x

 
Q(� ; x; �y)� (1 + �(n� 1))

nX
i=1

yi � �xx
!
+

nX
k=1

@Vi
@yk

(wk � �yyk)
)
: (14)

As the output does not depend on the R&D investment, we obtain the following condition

for the maximization of the RHS of the HJB equation

IC 0(wi) =
@Vi
@yi
; i = 1; 2; : : : ; n: (15)

The LHS of the condition stands for marginal investment cost. The RHS stands for the

marginal bene�t that is de�ned by the increase in the discounted present value of net
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pro�ts coming from the increase in the abatement capacity. These two conditions (13)

and (15) implicitly de�nes the optimal feedback strategies for the tax and investment that

characterize the MPNE. At this point, we should point out that according to conditions

(13) and (15), the optimal tax does not depend on �rm�s investment and the optimal

investment does not depend either on the tax. This observation allows us to claim that

Proposition 1 The feedback Stackelberg equilibrium (FSE) of the di¤erential game de-

�ned by (10) and (11) coincides with the MPNE.

The FSE allows the leader to enjoy of a stagewise �rst-mover advantage that can be

interpreted as the ability to commit in the short run. In this case, backward induction

is applied to derive the equilibrium, substituting the follower�s reaction function in the

leader�s HJB equation, and computing the optimal strategy for the leader maximizing

the RHS of the equation. However, the reaction functions de�ned by conditions (13)

and (15) are orthogonal and, therefore, directly give the optimal strategies for the tax

and R&D investment. Thus, the backward induction procedure does not provide any

di¤erence with respect to the optimal strategies that are given by the MPNE regardless

of whether the regulator moves �rst or after �rms decide on investment. 12

From the previous proposition it is straightforward to conclude that

Corollary 1 The FSE when the regulator is the leader of the game is time consistent in

the short run and in the long run.

The short-run consistency occurs just because of the orthogonality of the reaction

functions de�ned by (13) and (15). Suppose the timing of the game is changed and the

regulator selects the tax after �rms have taken their decision on the R&D investment

level. But as the tax does not depend on the R&D investment, �rms cannot in�uence

the decision of the regulator even when they decide �rst and the result is that we would

obtain the same tax as when the regulator moves �rst. In the long run, the tax is also

time consistent because we compute a subgame perfect equilibrium in Markov strategies.

12In Rubio (2006) the conditions that explain this coincidence in economic applications of di¤erential

games are studied.
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Observe that when the regulator is the leader of the di¤erential game (10)-(11) is as

well the leader of the complete di¤erential game presented in the previous section and

consequently Corollary 1 also applies in this case.

Finally, we characterize the tax of the FSE. Using (7) and (13) we can derive the

following expression

� =
1

n

P

�
�
 
@W

@x
� 1

n

nX
i=1

@Vi
@x

!
; (16)

where � is the price elasticity of the demand curve. This tax corrects two market distor-

tions. One caused by the market power of �rms and the other by a negative externality.

The �rst term of the RHS of (16) corrects the �rst distortion and consequently is a sub-

sidy, the term is negative. As is well known we �nd that the lower the elasticity the higher

the subsidy. The second term, that is equal to the di¤erence between the social shadow

price of the pollution stock and the addition of the private shadow price of the pollution

stock, corrects the negative externality and is expected to be positive. Unfortunately, at

this point we cannot advance in the analysis of the tax terms and their signs without

giving more structure to our model because at this level of generality the shadow prices

of the pollution stock are given by unknown value function derivatives. For this reason,

in the next section, we investigate this issue addressing a linear-state policy game where

environmental damages are linear.

4 The Linear-State (LS) Policy Game

The LS di¤erential game we study in this section considers an oligopoly that faces a linear

(inverse) demand function given by P = a�Q with a > c; and operates with a quadratic

investment cost function IC(wi) = 
w2i =2 with 
 > 0: Moreover, the environmental

damages are given by the linear function D(x) = dx with d > 0:

For this speci�cation of the policy game, the FOC (6) reads

a�Q�i � 2qi = c+ � �
@Vi
@x
; i = 1; 2; :::; n;

where Q�i =
Pn

j 6=i qi and the LHS is the marginal revenue of the �rm for a linear demand

function. Using this condition we can write the aggregate and individual outputs as a
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function of the tax

Q(� ; x; �y) =
1

n+ 1

 
n(s� �) +

nX
i=1

@Vi
@x

!
;
@Q

@�
= � n

n+ 1
; (17)

qi(� ; x; �y) =
1

n+ 1

 
s� � �

nX
k=1

@Vk
@x

!
+
@Vi
@x
; (18)

where s = a� c:

On the other hand, FOC (13) yields

Q(� ; x; �y) = s+
@W

@x
; (19)

so that (17) and (19) allow us to derive the feedback strategy for the tax

�(x; �y) =
1

n

 
nX
i=1

@Vi
@x

� (n+ 1)@W
@x

� s
!
; (20)

and by substitution in (18) the feedback strategy for the �rms�output

qi(x; �y) =
1

n

 
s+

@W

@x
�

nX
k=1

@Vk
@x

!
+
@Vi
@x
: (21)

Finally, FOC (15) gives us directly the feedback strategy for the R&D investment

wi(x; �y) =
1




@Vi
@yi
: (22)

Now, for calculating the value functions we have to substitute the feedback strategies

in the HJB equations and solve them. Substituting the aggregate output and the in-

vestment in the regulator�s HJB equation and rearranging terms we obtain the following

partial di¤erential equation:

rW (x; �y) =
1

2

�
s+

@W

@x

�2
� 1

2


nX
i=1

�
@Vi
@yi

�2
� dx

�@W
@x

 
(1 + �(n� 1))

nX
i=1

yi + �xx

!
+

nX
k=1

@W

@yk

�
1




@Vk
@yk

� �yyk
�
: (23)

Now, substituting the aggregate and individual outputs, the tax and the investment in

the �rms�HJB equation yields the following di¤erential equation:

rVi(x; �y) = �
@W

@x

 
1

n

 
s+

@W

@x
�

nX
i=1

@Vi
@x

!
+
@Vi
@x

!
� 1

2


�
@Vi
@yi

�2
15



� 1
n

 
nX
i=1

@Vi
@x

� (n+ 1)@W
@x

� s
! 

1

n

 
s+

@W

@x
�

nX
i=1

@Vi
@x

!
+
@Vi
@x

� yi � �
nX
j 6=i

yj

!

+
@Vi
@x

 
s+

@W

@x
� (1 + �(n� 1))

nX
i=1

yi � �xx
!
+

nX
k=1

@Vi
@yk

�
1




@Vk
@yk

� �yyk
�
: (24)

For solving this pair of equations, we conjecture linear representations of the value

functions13

W (x; �y) = Awx+

nX
i=1

Biwyi + Cw; Vi(x; �y) = Aix+B
i
iyi +

nX
k 6=i

Bki yk + Ci; (25)

that gives @W=@x = Aw; @W=@yi = Biw; @Vi=@x = Ai; @Vi=@yi = Bii ; @Vi=@yk = Bki

with Aw; Biw; Ai; B
i
i and B

k
i unknowns to be calculated.

SubstitutingW; @W=@x ; @W=@yi and @Vi=@yi into Eq. (23) and Vi; @Vi=@x; @W=@x; @Vi=@yi

and @Vi=@yk into Eq. (24) and equalizing the coe¢ cients of variables x; yi and yk we

obtain a unique solution for the coe¢ cients of the values functions14

Aw = �
d

r + �x
; Biw =

d(1 + �(n� 1))
(r + �x)(r + �y)

;

Ai = 0; B
i
i =

(n+ 1)d� s(r + �x)
n(r + �x)(r + �y)

; Bki =
�((n+ 1)d� s(r + �x))
n(r + �x)(r + �y)

:

From this solution we can conclude that

Proposition 2 The optimal strategies for the production and R&D investment are

q�i =
1

n

�
s� d

r + �x

�
; w�i =

d(n+ 1)� s(r + �x)
n
(r + �x)(r + �y)

: (26)

The two variables satisfy the non-negativity constraint provided that

d 2
�
s(r + �x)

n+ 1
; s(r + �x)

�
: (27)

Observe that if d is large enough, it does not make sense to produce the good from an

economic perspective because the environmental damages are extremely huge. Instead,

if d is too low, it is not pro�table to invest in abatement capacity because the marginal

13Where the subscripts w and i stand for the regulator and �rms, respectively.
14Details for this calculation are given in Appendix A. We omit coe¢ cients Cw and Ci because they

do not a¤ect the results obtained in this section.
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bene�t of abatement capacity for �rms, @Vi=@yi = Bii ; is negative. Moreover, it is easy

to check that an increase in marginal damages decreases production and increases R&D

investment. On the other hand, we see that spillovers have no in�uence in the optimal

strategies of production and R&D investment. Spillovers a¤ect emissions and conse-

quently will in�uence the dynamics of the pollution stock as we will see below, but they

do not a¤ect the �rms�decisions on output and R&D investment. Notice that, although

@Vi=@yk = Bik depends on the degree of spillovers so that they will a¤ect the discount

present value of �rms�net pro�ts, the marginal bene�t of own abatement capacity given

by @Vi=@yi = Bii does not depend on � and consequently spillovers do no in�uence the

decision of �rms on R&D investment. Finally, we investigate the e¤ect of competition

on production and R&D investment. The e¤ect on output is clear, competition decrease

the production of �rms. However, the output of the industry is constant. This result

is explained by condition (13) that requires for the maximization of net social welfare

that the price be equal to the marginal cost of production plus the social shadow price of

the pollution stock, but as this is constant, the price of the good must be constant and

consequently the output of the industry. The e¤ect of competition on R&D investment is

not so obvious, but taking the derivative of w�i with respect to n we obtain the following

expression
@w�i
@n

=
s(r + �x)� d

n2
(r + �x)(r + �y)
; (28)

that is positive if condition (27) is satis�ed. We highlight this result with the following

proposition

Proposition 3 If the �rms invest in abatement capacity, the investment increases with

competition.

This result adheres to the hypothesis that competition promotes innovation, in our

model, green innovation. If more �rms compete in quantities in a polluting oligopoly the

result is that �rms end investing more in abatement capacity.

Finally, using (20) we calculate the emission tax.
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Proposition 4 The optimal emission tax is

� � = � 1
n

�
s� d

r + �x

�
+

d

r + �x
= �q�i �

@W

@x
; (29)

which is positive if condition (27) holds.

According to expression (16), the �rst term of the tax should be P=n�: It is easy to

check that if the demand function is Q = a � P; P=n� = �qi: The second term is the

di¤erence between the social shadow price of the pollution stock, �@W=@x = �Aw =

d=(r + �x), that is positive, and the average of the private shadow prices @Vi=@x = Ai,

that for constant marginal damages is zero. Thus, the second term is positive and the

sign of the tax depends on the severity of environmental damages. If these damages are

large enough as justify a positive R&D investment, the tax is positive and increasing

with marginal damages and competition. In any case, it should be highlighted that the

tax is lower than the social shadow price of the pollution stock, just because the tax also

corrects the distortion caused by the �rms�market power.

We would also like to point out that �rms do not associate any price to the pollution

stock what means that the optimal decision on output is given by the maximization of

current net pro�ts, i.e. by the static Cournot equilibrium. Thus, for constant marginal

damages the Stackelberg equilibrium can be also computed assuming that �rms myopi-

cally select the output level in the third stage and that they choose the investment in the

second stage for a given constant tax, and that �nally the regulator selects the optimal

level of the tax. According to this procedure the �rms�value functions are calculated

in the second stage assuming a constant tax rate. In this case, at the second stage the

optimal strategy of the investment depends explicitly on the tax. However, the same

value functions and strategies than those derived in this section are obtained once the

optimal tax is substituted in the optimal strategy of the investment calculated at the

second stage. In fact, using (29) we can retrieve the optimal strategy of the investment

depending on the tax substituting in (26). Notice that the tax can be rewritten as follows

� � =
(n+ 1)d� s(r + �x)

n(r + �x)
;
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so that (n+ 1)d� s(r+ �x) = � �n(r+ �x): The substituting the numerator of w�i in (26)

by � �n(r + �x) we obtain the optimal strategy of the investment depending on the tax:

w�i =
� �


(r + �y)
: (30)

Thus, the higher the tax, the higher the �rms�R&D investment and as the tax increases

with competition, we can conclude that more competition leads to more investment.

This expression clari�es that competition in�uences investment through the e¤ect that

competition has on the optimal tax.

We end the study of the policy game analyzing the dynamics of the state variables

that is given by the following system of di¤erential equations:

_x =
(r + �x)s� d
r + �x

� n(1 + �(n� 1))y � �xx; x(0) = x0 � 0; (31)

_y =
d(n+ 1)� s(r + �x)

n(r + �y)(r + �x)

� �yy; y(0) = y0 � 0: (32)

The steady state of the system is:

x�ss =
1

�x(r + �x)

�
(�y
(r + �y) + 1 + �(n� 1))(r + �x)s

�y
(r + �y)

�((1 + �(n� 1))(n+ 1) + �y
(r + �y))d
�y
(r + �y)

�
; (33)

y�ss =
d(n+ 1)� s(r + �x)
�yn
(r + �x)(r + �y)

; (34)

and for industry emissions

E�ss = Q
� � n (1 + �(n� 1)) y�ss = x�ss�x; (35)

where

Q� =
(r + �x)s� d
r + �x

:

The steady-state values are non-negative for values of d in the following interval

d 2
�
s(r + �x)

n+ 1
;
(�y
(r + �y) + 1 + �(n� 1))(r + �x)s
(1 + �(n� 1))(n+ 1) + �y
(r + �y)

�
; (36)

where the upper bound of this interval is lower than the upper bound of the interval in

(27).

19



It can be seen that the steady-state abatement capacity does not depend on spillovers.

However, it increases with the number of �rms in the industry. Notice that @y�ss=@n =

(1=�x)@w
�=@n and we have established the R&D investment increases with competition.

It is also straightforward from (35) that steady-state emissions decrease with the spillovers

and the number of �rms in the industry. Notice that gross emissions, that depends on

the industry output, are independent of the number of �rms and spillovers and that the

steady-state abatement capacity increases with competition. Thus an augmentation in

the degree of spillovers increases abatement and also an increase in competition, the result

is a decrease in net emissions, and consequently, a reduction in the steady-state pollution

stock.

Although our LS policy game yields constant values for the control variables, the

net emissions, the abatement capacity and the pollution stock evolve in time. In order

to know how these variables evolve over time and in particular, the type of stability of

its steady state, we evaluate the trace and determinant of the following 2 x 2 Jacobian

matrix:

J =

24 @ _x
@x

@ _x
@y

@ _y
@x

@ _y
@y

35 =
24 ��x �n(1 + �(n� 1))

0 ��y

35 :
The trace is �(J) = �(�x+�y) < 0 while the determinant is4(J) = �x�y > 0: Therefore,

the steady state equilibrium is a global asymptotically stable point and we can conclude

that

Proposition 5 The system of di¤erential equations for the stock of pollution and abate-

ment capacity has a unique positive steady state provided that the marginal damages d

belongs to the interior of interval (36). The steady state is a stable node and is globally

stable, i.e. the market converges asymptotically to the steady-state abatement capacity and

pollution stock from any initial condition. Moreover, an increase in competition increases

the steady-state abatement capacity and reduces the steady-state pollution stock.

Finally, we solve the system of di¤erential equation describing the dynamics of the

pollution stock and the abatement capital stock.
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The di¤erential equation of the abatement capital stock can be solved independently

of the equation of the pollution stock. The solution to equation (32) reads:

y(t) = y�ss
�
1� e��yt

�
+ y0e

��yt; (37)

where y�ss is the the steady-state value of the abatement capital stock given in (34).

The solution to equation (19) reads15:

� If �x 6= �y, then

x(t) = x�ss + (x0�x�ss) e��xt +
n (1+�(n�1)) (y�ss�y0)

�x��y
(e��yt � e��xt): (38)

� If �x = �y = �, then

x(t) = x�ss + (x0 � x�ss) e��t + n (1 + �(n� 1)) (y�ss � y0)te��t: (39)

where x�ss is the steady-state value of the pollution stock given in (33).

The dynamics of the abatement capacity depends on the initial value of this stock.

It increases (decreases) if the initial abatement capacity is lower (larger) than its steady

state value. However, the dynamics of the pollution stock is more complex and depends

not only on the initial value, but also on the relationship between the depreciation rate

of abatement capacity and the natural rate of decay of the pollution stock. In Appendix

C, the reader can be found a detailed analysis of the dynamics of the model. Here, we

focus on a particular case that we think that is the more interesting. First, we suppose

that the initial value of the abatement capacity is zero consistently with the idea that

�rms do not invest in R&D if no tax is applied on emissions. Second, we suppose that

the initial value of the pollution stock is larger than its steady-state value. If this is not

the case, the optimal policy will lead to an accumulation of emissions. A case that it does

not seem very interesting. For x0 > x�ss and y0 = 0; (38) for the general case �x 6= �y

simpli�es to yield

x(t) = x�ss + (x0�x�ss) e��xt +
n (1+�(n�1)) y�ss

�x��y
(e��yt � e��xt);

15The details of the computation are presented in Appendix B.
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and the �rst derivative with respect to time is

@x

@t
=

�
�(x0�x�ss) +

n (1+�(n�1)) y�ss
�x��y

�
�xe

��xt � n (1+�(n�1)) y
�
ss

�x��y
�ye

��yt; (40)

where the �rst term of the �rst parenthesis on the RHS is negative and the sign of the

other terms depends on the relationship between �x and �y: For �x > �y; x(t) will present

an extreme if the following condition is satis�ed

n (1+�(n�1)) y�ss
�x��y

�xe
��xt =

n (1+�(n�1)) y�ss
�x��y

�ye
��yt + (x0�x�ss)�xe��xt:

This condition can be rewritten as follows

n (1+�(n�1)) y�ss
�x��y

�x =
n (1+�(n�1)) y�ss

�x��y
�ye

(�x��y)t + (x0�x�ss)�x (41)

where the LHS is constant with respect to time and the RHS is a strictly convex increasing

function. Thus, if (41) has a solution it must be satis�ed that

n (1+�(n�1)) y�ss
�x��y

�x >
n (1+�(n�1)) y�ss

�x��y
�y + (x0�x�ss)�x;

i.e. the LHS of (41) must be higher than the value of the RHS for t = 0: This condition

requires that

x0 < x
�
ss +

1

�x
n (1+�(n�1)) y�ss;

that using (35) yields

x0 <
1

�x
Q� =

(r + �x)s� d
�x(r + �x)

: (42)

Thus, we can conclude that if this condition is satis�ed, the pollution stock increases

until it reaches a maximum for decreasing afterwards. On the contrary, if x0 is higher

than this upper bound, the pollution stock decreases for all t � 0: When �x < �y; there

could be a maximum too if the following condition is satis�ed for a �nite value of t:

�n (1+�(n�1)) y
�
ss

�x��y
�ye

��yt =

�
�(x0�x�ss) +

n (1+�(n�1)) y�ss
�x��y

�
�xe

��xt;

This condition can be rewritten as follows

�n (1+�(n�1)) y
�
ss

�x��y
�y =

�
x0�x�ss�

n (1+�(n�1)) y�ss
�x��y

�
�xe

(�y��x)t; (43)
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where the LHS is constant with respect to time and the RHS is a strictly convex increasing

function. Thus, if (43) has a solution it must be satis�ed that

�n (1+�(n�1)) y
�
ss

�x��y
�y >

�
x0�x�ss�

n (1+�(n�1)) y�ss
�x��y

�
�x;

i.e. the LHS of (41) must be higher than the value of the RHS for t = 0: From where, we

obtain the same condition that the one derived for �x > �y: Finally, we analyze the case

with �x = �y: If these two parameters are identical, the derivative of the pollution stock

with respect to time is

@x

@t
= (�� (x0 � x�ss) + n (1 + �(n� 1)) y�ss(1� �t))e��t;

where the �rst term between parenthesis is negative and the sign of the second term

depends on t: In this case, this derivative will be zero for a �nite time provided that

x0 < x
�
ss +

1

�
n (1+�(n�1)) y�ss;

that is the same condition obtained for the other two cases. All these results are summa-

rized in the following proposition:

Proposition 6 When x0 > x�ss and y0 = 0; the abatement capacity increases and the

pollution stock decreases if the initial stock of pollution is higher than the threshold value

de�ned by (42). However, when the initial pollution stock is lower, it �rst increases until

it reaches a maximum for decreasing afterwards.

This analysis shows that for the initial conditions we consider the reaction of �rms

to the tax is to build an abatement capacity that reduces industry emissions. However,

even if the initial values of the pollution stock is larger than the steady-state value the

stock of pollution could increase, but only during an initial period of time. In the long

run, the pollution stock will decrease.

Finally, we evaluate the e¤ect of spillovers and competition on the optimal temporal

paths of abatement capacity and pollution stock. As was established above spillovers do

not a¤ect the R&D investment and consequently they do not have any e¤ect on the op-

timal path of abatement capacity. However, we have seen that competition increases the
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steady-state abatement capacity so that according to (37) competition increases abate-

ment capacity at any time. The e¤ects on the pollution stock are not so straightforward

are the e¤ects on abatement capacity are. To evaluate these e¤ects we rewrite (38) as

follows

x(t) = x0e
��xt + x�ss(1� e��xt) +

n (1+�(n�1)) y�ss
�x��y

(e��yt � e��xt):

Now, using (35) we can eliminate x�ss

x(t) = x0e
��xt +

1

�x
(Q� � n (1 + �(n� 1)) y�ss)(1� e��xt)

+
n (1+�(n�1)) y�ss

�x��y
(e��yt � e��xt);

whereQ� does not depend on either � or n: Taking common factor, we obtain the following

expression for

x(t) = x0e
��xt +

1

�x
Q�(1� e��xt)

+n (1 + �(n� 1)) y�ss
�
e��yt � e��xt
�x��y

� 1

�x
(1� e��xt)

�
: (44)

Then, as @y�ss=@� = 0 and @y
�
ss=@n > 0; the signs of @x(t)=@� and @x(t)=@n will depend

on the sign of
e��yt � e��xt
�x��y

� 1

�x
(1� e��xt): (45)

In Appendix D it is showed that this expression is negative for all t > 0 and we can

conclude that @x(t)=@� and @x(t)=@n are negative for the general case �x 6= �y:

When �x = �y = �; for x0 > x�ss and y0 = 0; (39) simpli�es to yield

x(t) = x�ss + (x0 � x�ss) e��t + n (1 + �(n� 1)) y�sste��t:

Proceeding as in the general case, eliminating x�ss using (35), we have:

x(t) = x0e
��t +

1

�
Q�(1� e��t)� n(1 + �(n� 1))y�ss

�
t+

1

�

�
e��t;

and we obtain that also in case �x = �y = �, at any time, @x=@� and @x=@n are negative.

These results are summarized in the last proposition of the paper:
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Proposition 7 When x0 > x�ss and y0 = 0; the abatement capacity increases with com-

petition for all t > 0: However, the stock of pollution decreases. On the other hand, an

increase in the degree of spillover does not a¤ect the abatement capacity, but reduces the

pollution stock.

This proposition says us that the e¤ects that spillovers and competition have on the

steady-state values of the abatement capacity and pollution stock also apply at any time.

Thus, the model presents some general results on the e¤ects of spillovers and competition

on the state variables that are not constrained to the steady state values.

5 Conclusions

In this paper a dynamic Cournot oligopoly is used with the aim of studying the re-

lationship between competition and green innovation. The intensity of competition is

approached by the number of �rms in the industry. The �rms face a tax on emissions

and react to this tax investing in R&D to reduce the emissions per unit of output (green

innovation). R&D accumulates and determines the abatement capacity of �rms. The

optimal tax rate is given by the feedback Stackelberg equilibrium of a dynamic policy

game between a regulator and a polluting oligopoly for a stock pollutant. We compute

the tax for a linear-state policy game. Our analysis shows that �rms�R&D investment

increases with competition. This e¤ect occurs because the optimal tax increases with

competition. In a polluting oligopoly the tax is lower than the di¤erence between the

social shadow price of the pollution stock and its private shadow price because the tax

has to correct also the market distortion caused by the market power of the �rms. But

as the competition increases, this distortion weakens and the tax increases to re�ect the

di¤erence between the social shadow price of the pollution stock and its private shadow

price. Thus, more competition implies a higher abatement capacity, lower emissions and

�nally a lower pollution stock. This e¤ect does not depend on the degree of spillovers

since the tax does not depend on spillovers. In our model, spillovers are associated to

the abatement capital and consequently they do not a¤ect the decisions on output and

R&D investment, but only to the dynamics of the pollution stock. However, spillovers

25



reduce net emission and we �nd that the higher the spillovers, the lower the pollution

stock. Our model also shows that the steady state is a global asymptotically stable point

with a dynamics for the state variables that depends on the initial conditions. For the

abatement capacity we �nd that is monotonically increasing if it is assumed that its initial

value is zero. An assumption that seems consistent with the idea that �rms�only invest

in R&D if emissions are taxed. We also �nd that the pollution stock could increase even

if its initial value is higher than the steady-state pollution stock. Nevertheless, in the

long run, the pollution stock will decrease.

Our paper assumes that �rms adopt an end-of-the-pipe abatement technology that

yields a net emission function that is additively separable in production (gross emissions)

and abatement. This speci�cation facilities the analytical computation of the solutions,

but restricts the analysis to a particular form of green innovation. In order to extend

the analysis performed in this paper, we could consider that �rms invest in a cleaner

technology. This type of innovations can be modelled by a reduction of the technological

coe¢ cient emissions/production.16 Another feature of this paper is that environmental

policy is based on the use of only one policy instrument, the tax on emissions, when there

are several distortions that a¤ect the market allocation. There is a negative externality

due to pollution, but also a positive externality due to spillovers. Moreover, �rms have

market power. It could be very interesting to characterize the �rst-best policy based

on a combination of di¤erent policy instruments to assess how the environmental policy

could a¤ect the relationship between competition and green innovation. The recent paper

by Aghion et al. (2023) highlights the e¤ects of consumers�environmental concerns on

innovation, and also the paper by Langinier and Chaudhuri (2020) analyzes innovation

with green consumers. In this line, we could extend our dynamic model to incorporate

16Two recent papers addressing this issue are Walter (2018) and Langinier and Chaudhuri (2020). In

both papers, the R&D investment reduces the coe¢ cient emissions/production. Walter (2018) studies

in a dynamic setting the e¤ects of an emission tax on the coe¢ cient emissions/production depending on

the degree of cooperation when �rms invest in R&D. Langinier and Chaudhuri (2020) investigate in a

static setting the e¤ect of patent policies and emission taxes on green innovation, and on the emission

level in the presence of green consumers.
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the pollution stock to the utility function of consumers. In this case, the willingness

to pay for the good would depend on the level of the pollution stock and �rms would

have an incentive to invest in R&D even if no tax is charged on emissions. Finally, we

have concentrated on a model where the intensity of competition is given by the number

of �rms in the industry. Thus, it would be also interesting to look at an oligopoly with

product di¤erentiation to consider other types of intensity in competition as the variation

in the degree of product substitutability.

Appendix

A Calculating the Coe¢ cients of the Value Functions

Using the value functions

W (x; �y) = Awx+
nX
i=1

Biwyi + Cw; Vi(x; �y) = Aix+B
i
iyi +

nX
k 6=i

Bki yk + Ci;

we can rewrite the HJB equations (23) and (24) as follows

r

 
Awx+

nX
i=1

Biwyi + Cw

!
=
1

2
(s+ Aw)

2 � 1

2


nX
i=1

(Bii)
2 � dx

�Aw

 
(1 + �(n� 1))

nX
i=1

yi + �xx

!
+

nX
k=1

Bkw

�
1



Bkk � �yyk

�
; (46)

r

 
Aix+B

i
iyi +

nX
k 6=i

Bki yk + Ci

!
= �Aw

 
1

n

 
s+ Aw �

nX
i=1

Ai

!
+ Ai

!
� 1

2


�
Bii
�2

� 1
n

 
nX
i=1

Ai � (n+ 1)Aw � s
! 

1

n

 
s+ Aw �

nX
i=1

Ai

!
+ Ai � yi � �

nX
j 6=i

yj

!

+Ai

 
s+ Aw � (1 + �(n� 1))

nX
i=1

yi � �xx
!
+

nX
k=1

Bki

�
1



Bkk � �yyk

�
: (47)

At this point, we look for a symmetric solution taking into account that the cross e¤ects

of the y variables in the value function of �rms are not identical to the own e¤ects. Notice

that if we look at di¤erential equation (3) that describes the dynamics of the pollution

stock and the di¤erential equation showing the dynamics of the abatement capacity of
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each �rm, we see that the e¤ect of control variables of each �rm on the dynamics of the

state variables is completely symmetric for all �rms. However, from the expression of

�rm i�s current net pro�ts

�i = (a�Q)qi � cqi �



2
w2i � �

 
qi � yi � �

nX
j 6=i

yj

!

we realize that the e¤ect of yi is di¤erent from the e¤ect of yj with j 6= i:

Therefore, we cannot assume that the value functions of all �rms are identical, but

we can assume the following symmetric properties: Ai takes the same value for all �rms,

Bii also takes the same value for all �rms, and the same occurs for B
k
i : In this case, the

HJB equation (47) yields

r
�
Aix+B

i
iyi + (n� 1)Bki yk + Ci

�
= �Aw

�
1

n
(s+ Aw � nAi) + Ai

�
� 1

2


�
Bii
�2

� 1
n
(nAi � (n+ 1)Aw � s)

�
1

n
(s+ Aw � nAi) + Ai � yi � �(n� 1)yk

�
+Ai (s+ Aw � (1 + �(n� 1)) yi � (1 + �(n� 1)) yi � �xx)

+Bii

�
1



Bii � �yyi

�
+ (n� 1)Bki

�
1



Bkk � �yyk

�
: (48)

Now grouping the coe¢ cients of x; we obtain that (r + �)Aix = 0 which implies that

Ai = 0: This allows us to simplify the expression (48)

r
�
Biiyi + (n� 1)Bki yk + Ci

�
= �Aw

1

n
(s+ Aw)�

1

2


�
Bii
�2

+
1

n
((n+ 1)Aw + s)

�
1

n
(s+ Aw)� yi � �(n� 1)yk

�
+Bii

�
1



Bii � �yyi

�
+ (n� 1)Bki

�
1



Bkk � �yyk

�
: (49)

Grouping terms in yi gives

(rBii +
1

n
((n+ 1)Aw + s) +B

i
i�y)yi = 0;

that allows us to calculate

Bii = �
(n+ 1)Aw + s

n(r + �y)
: (50)
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Finally, grouping terms in yk gives

(n� 1)(rBki +
1

n
((n+ 1)Aw + s)� +B

k
i �y)yk = 0;

from where we obtain that Bki = �B
i
i :

Now, because of the symmetric role of all y variables in the regulator�s problem, and

focussing on symmetric solutions we assume that Biw are identical for all y variables, and

(46) simpli�es as follows

r
�
Awx+ nB

i
wyi + Cw

�
=
1

2
(s+ Aw)

2 � 1

2

n(Bii)

2 � dx

�Aw ((1 + �(n� 1)) yi + �xx) + nBiw
�
1



Bii � �yyi

�
: (51)

From this expression we can derive the following condition for Aw

((r + �x)Aw + d)x = 0;

so that the value of Aw is

Aw = �
d

r + �x
: (52)

We can also obtain a condition for Biw

n((r + �y)B
i
w + Aw(1 + �(n� 1)))yi = 0;

that using (52) yields

Biw =
d(1 + �(n� 1))
(r + �x)(r + �y)

: (53)

Finally, substituting Aw in (50) we obtain the coe¢ cient

Bii =
(n+ 1)d� s(r + �x)
n(r + �x)(r + �y)

: (54)

The coe¢ cient Ci and Cw can be also calculated using (49) and (51), but as the optimal

strategies do not depend on these coe¢ cient in order to save space we will omit these

calculations.
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B Solution to the di¤erential equation describing the dynamics

of the pollution stock

The dynamics of the pollution stock in (31) once the solution of the abatement capital

stock given in (37) is substituted reads:

_x+ �xx =
(r + �x)s� d
r + �x

� n(1 + �(n� 1))(y�ss
�
1� e��yt

�
+ y0e

��yt): (55)

First, we solve the homogeneous �rst order linear equation _x+ �xx = 0. The general

solution to this equation reads: xh(t) = Ce��xt, with C a constant of integration. Second,

we postulate a particular solution of the non-homogenous equation as follows: xnh(t) =

A+Be��yt if �x 6= �y and xnh(t) = A+Bte��t if �x = �y = �.

Substituting in the di¤erential equation (55) if �x 6= �y we get:

��yBe��yt+ �x(A+Be��yt) =
(r + �x)s� d
r + �x

� n(1 + �(n� 1))(y�ss
�
1� e��yt

�
+ y0e

��yt):

Identifying terms:

��yB + �xB = �n(1 + �(n� 1))(�y�ss + y0);

�xA =
(r + �x)s� d
r + �x

� n(1 + �(n� 1))y�ss:

Hence,

A =
1

�x

�
(r + �x)s� d
r + �x

� n(1 + �(n� 1))y�ss
�
;

B =
n (1 + �(n� 1)) (y�ss � y0)

�x � �y
: (56)

Simplifying the expression of A we can easily show that A coincides with the steady-

state value of the pollution stock, x�ss, given in (33). The solution to equation (55) is

given by x(t) = xh(t) + xnh(t) = Ce��xt + x�ss + Be
��yt, with B given in (56). From the

initial condition x(0) = x0, we determine the constant of integration C which is given by

C = x0 � x�ss �B.

Substituting in the di¤erential equation (55) if �x = �y = � we get:

(1� �t)Be��t+ �(A+Bte��t) = (r + �x)s� d
r + �x

�n(1+�(n�1))(y�ss
�
1� e��yt

�
+y0e

��yt):
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Identifying terms:

B = n (1 + �(n� 1)) (y�ss � y0);

�A = �n(1 + �(n� 1))y�ss +
(r + �x)s� d
r + �x

:

Hence,

A =
1

�

�
�n(1 + �(n� 1))y�ss +

(r + �x)s� d
r + �x

�
= x�ss;

B = n(1 + �(n� 1))(y� � y0): (57)

Again, the solution to equation (55) is given by x(t) = xh(t)+xnh(t) = Ce��t+x�ss+Bte
��t,

with B given in (57). From the initial condition x(0) = x0, we have C = x0 � x�ss.

C The dynamics of the state variables

In order to evaluate the dynamics of the pollution stock, we calculate the �rst derivative

of (38) that can be rearranged as follows

_x(t) = (x�ss � x0)�xe��xt �
n(1 + �(n� 1))(y0 � y�SS)

�x � �y

�
�x
e�xt

� �y
e�yt

�
: (58)

To evaluate the sign of this derivative and to know whether the stock is increasing or

decreasing, we begin studying whether _x(t) = 0 has a solution. For _x(t) = 0; expression

(58) yields

(x�ss � x0)�x =
n(1 + �(n� 1))(y0 � y�ss)

�x � �y
�
�x � �ye(�x��y)t

�
: (59)

On the left-hand side we have a constant and on the right-hand side a function of t with

the following features: initial value, n(1+�(n�1))(y0�y�ss); �rst derivative, �n(1+�(n�

1))(y0�y�ss)�ye(�x��y)t; and second derivative, �n(1+�(n�1))(y0�y�ss)�y(�x��y)e(�x��y)t:

Thus, the existence of a solution for this equation depends on the sign of the di¤erences:

x�ss � x0; y0 � y�ss and �x � �y:

We initiate the analysis considering �x > �y and y0 < y�ss: In this case, the function on

the right-hand side of (59) is an increasing convex function with a negative initial value,

and consequently equation (59) has a unique positive solution provided that (x�ss�x0)�x >
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n(1 + �(n� 1))(y0 � y�ss): This condition is satis�ed if (y�ss � �x(x0 � x�ss))=(n(1 + �(n�

1))) < y0; i.e. if vector (x0; y0) is below isocline _x = 0: Notice that isocline _x = 0 is

a straight line with slope ��x=(n(1 + �(n � 1))), so that we can write it as follows

y� y�ss = ��x=(n(1 + �(n� 1)))(x� x�ss): Thus, we can conclude that if (x0; y0) is below

isoclines _x = _y = 0; the stock of pollution �rst increases until line _x = 0 is reached

and decreases afterwards. However, if (x0; y0) is below isocline _y = 0 but above isocline

_x = 0; the pollution stock is a monotone decreasing function of time. Next, we suppose

that y0 > y�SS: In this case, the function on the right-hand side of (59) is a decreasing

concave function with a positive initial value, and then equation (59) has a unique positive

solution provided that (x�SS�x0)�x < =(n(1+�(n�1)))(y0�y�ss); i.e. if vector (x0; y0) is

above isocline _x = 0. This implies that if (x0; y0) is above isoclines _x = _y = 0; the stock

of pollution �rst decreases until line _x = 0 is reached and increases afterwards. But in

the case that (x0; y0) is below isocline _x = 0 and above isocline _y = 0; the pollution stock

is a monotone increasing function of time.

We continue the analysis considering �x < �y and y0 < y�ss: In this case, the right-hand

side of (59) is an increasing concave function of time with a negative initial value that

converges to the following value

lim
t!+1

(y0 � y�ss)(n(1 + �(n� 1)))
�x � �y

�
�x � �ye(�x��y)t

�
=
y0 � y�ss
�x � �y

�xn(1 + �(n� 1)) > 0:

In this case, equation (59) has a unique positive solution if

(y0 � y�ss)n(1 + �(n� 1)) < (x�ss � x0)�x <
y0 � y�ss
�x � �y

n(1 + �(n� 1))�x: (60)

This condition implies, on the one hand, that y0 < y�ss � �x(x0 � x�ss)=(n(1 + �(n � 1)))

and, on the other hand, that y0 < n(1 + �(n� 1))y�ss + (x0 � x�ss)(�y � �x) that requires

that (x0; y0) is below isocline _x = 0 and below the straight line that passes through the

stationary point (x�ss; y
�
ss) and has as direction vector the eigenvector (1; (�y� �x)=(n(1+

�(n � 1)))): If this is the case, the pollution stock �rst increases until isocline _x = 0 is

reached and decreases afterwards. When this condition is not satis�ed because the initial

point is above isocline _x = 0; the pollution stock is a monotone decreasing function; while

if it is not satis�ed because the initial point is above the line y � y�ss = (�y � �x)=(n(1 +

�(n� 1)))(x� x�ss); the pollution stock is a monotone increasing function.
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Next, we suppose that y0 > y�ss: When the initial value of the abatement capacity

is larger than its steady-state value, the right-hand side of (59) is a decreasing convex

function of time with a positive initial value that converges to the negative value: n(1 +

�(n�1))(y0�y�ss)�x=(�x��y): Now, equation (59) has a unique positive solution provided

that

n(1 + �(n� 1))y0 � y
�
ss

�x � �y
�x < (x

�
ss � x0)�x < n(1 + �(n� 1))(y0 � y�ss):

This condition holds now if (x0; y0) is above isocline _x = 0 and line y � y�ss = (�y �

�x)=(n(1 + �(n� 1)))(x� x�ss): If this is the case, the pollution stock �rst decreases until

isocline _x = 0 is reached and increases afterwards. When this condition does not hold, two

possibilities arise. In the �rst possibility the initial point is below isocline _x = 0, and then

the pollution stock is a monotone increasing function of time. In the second possibility

the initial point is below the line with direction vector (1; (�y � �x)=(n(1 + �(n � 1))));

and in this case the stock of pollution is a monotone decreasing function of time.

Finally, we address the case �x = �y: When the decay rate of the pollution stock is

equal to the depreciation rate of the abatement capacity the two roots of the characteristic

equation (�x; �y) are identical and equal to �: Then, there are no changes in the solution

of di¤erential equation (32) that can be written as follows

y(t) = (y0 � y�ss)e��t + y�ss:

However, now the solution for the di¤erential equation of the pollution stock reads

x(t) = x0e
��t + (1� e��t)x�ss � n(1 + �(n� 1))(y0 � y�ss)te��t:

For this solution the �rst derivative is

_x(t) = e��t ((x�ss � x0)� � n(1 + �(n� 1))(y0 � y�ss)(1� t�)) ;

so that equation _x(t) = 0 has a positive solution provided that the following expression

is positive

t =
1

�
+

x0 � x�ss
(y0 � y�ss)n(1 + �(n� 1))

: (61)

It is obvious that this expression is positive if x0 > x�ss and y0 > y
�
ss or if x0 < x

�
ss and

y0 < y�ss: When x0 > x�ss and y0 < y�ss; (61) is positive if y0 < y�ss � �(x0 � x�ss); i.e. if
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the initial point is below isocline _x = 0. When x0 < x�ss and y0 > y
�
ss; (61) is positive if

y0 > y
�
ss � �(x0 � x�ss)=(n(1 + �(n � 1))); i.e. if the initial point is above isocline _x = 0:

Thus, if the initial point is below (above) isoclines _x = _y = 0; the pollution stock �rst

increases (decreases) until isocline _x = 0 is reached and then begins to decrease (increase).

In the other cases, the pollution stock increases (decreases) if the initial stock is below

(above) its steady-state value.

D Determination of the sign of (45)

Next we analyze function

f(t) =
e��yt � e��xt
�x � �y

� 1

�x
(1� e��xt):

Function f(t) is exclusively zero at t = 0 and takes a negative value if t > 0.

It is clear that f(0) = 0 and to show that f(t) < 0 if t > 0, we prove that f(t) is a

strictly decreasing function for any t > 0.

The derivative of function f(t) reads:

f 0(t) =
1

�x � �y
�
��ye��yt + �xe��xt

�
� e��xt:

Then,

f 0(t) < 0, 1

�x � �y
�
��ye��yt + �xe��xt

�
� e��xt < 0:

Multiplying by e�xt, we have

f 0(t) < 0, 1

�x � �y
�
��ye(�x��y)t + �x

�
� 1 < 0, 1

�x � �y
�
��ye(�x��y)t + �x

�
< 1:

Therefore, if �x > �y, then

f 0(t) < 0, ��ye(�x��y)t + �x < �x � �y , ��ye(�x��y)t < ��y , e(�x��y)t > 1:

Last inequality always applies under assumptions �x > �y and t > 0.

If �x < �y, then

f 0(t) < 0, ��ye(�x��y)t + �x > �x � �y , ��ye(�x��y)t > ��y , e(�x��y)t < 1:

Last inequality always applies under assumptions �x < �y and t > 0

Consequently, we have proved that f 0(t) < 0 for any t > 0, regardless of how �x and

�y compares, and hence, f(t) < 0 for any t > 0.
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