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Abstract

The literature on many weak instruments in a heteroskedastic environment under
data independence is largely developed. When data dependence, in particular cluster-
ing, is present, it poses difficulties in making correct and convenient inferences. We
show that clustering either deems the jackknife instrumental variables estimation in-
consistent, or makes its inferences hugely distorted. We suggest, instead of following
the ”save the Jackknife” approach, an alternative approach, which is computationally
attractive and allows general structures of intra-cluster correlations. We use the nat-
ural extension of jackknifing, the leave-cluster-out methodology, applied to the instru-
ment projection matrix, which allows one to dispose of the cross-cluster dependencies
in the influence function of the structural parameter estimator. We set out a formal
asymptotic framework to analyze the proposed cluster-jackknife instrumental variables
(CJIV) estimator, with an increasing number of clusters, possibly increasing hetero-
geneous cluster sizes, and possible presence of many weak instruments. We prove a
central limit theorem for the influence function embedded in the CJIV estimator, and
show consistency of the associated CJIV variance estimator. We study the importance
of instrument design on the properties of CJIV, run a simulation study revealing its
finite sample properties, and compare with other estimators in relevant empirical con-
texts.

Keywords: instrumental variables, many instruments, clustered dependence
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1 Introduction

Two-stage least squares estimator is not suitable for many instruments settings (see e.g.
Bekker, 1994), while jackknife instrumental variables estimator (JIVE) is consistent and
asymptotically normal under many instruments and independent data (Angrist et al., 1999,
Chao et al., 2012). In clustered environments under reasonable assumptions JIVE is still
consistent; however, asymptotic inferences are distorted. Furthermore, in certain relevant
settings clustered dependence can even render JIVE inconsistent. In this paper we show
that for JIVE the asymptotic bias and distortions in inferences may be huge, especially
when clusters are big (and unboundedly increase) and the instrumental design has a certain
degree of cluster dependence. Further, we propose an alternative estimator based on leave-
cluster-out (LCO) methodology that is robust to many weak instruments under clustering
and show its asymptotic properties.

A number of approaches have been proposed in order to mitigate the negative conse-
quences of the instrumental variables multiplicity. Donald and Newey (2001) suggested a
corrected version of the two-stage least squares estimator, which is robust to many instru-
ments bias. Bekker (1994) showed that limited information maximum likelihood estimator
(LIML) is consistent under random sampling. C. Hansen et al. (2008) and van Hasselt (2010)
extended the asymptotic theory by showing asymptotic normality of LIML under arbitrary
distributions of errors. Fuller estimator (Fuller, 1977), which is a corrected version of LIML
estimator, is also often used under many instruments.

In this paper, we focus on another approach, which is to employ the leave-out jackknife
idea to deal with the negative impact of many instruments. Angrist et al. (1999) and
Blomquist and Dahlberg (1999) proposed versions of a jackknife IV estimator that are robust
to many instruments. Later Chao et al. (2012) provided a concrete asymptotic analysis
of JIVE under many instruments and random sampling. Our proposed cluster-jackknife
instrumental variables (CJIV) estimator generalizes the idea of JIVE and the analysis of
Chao et al. (2012) to contexts with clustering.

There are, to the best of our knowledge, only three papers that tried to tackle the
clustered dependence under many instruments, namely Hausman et al. (2011), Chao et al.
(2023) and Ligtenberg (2023). Hausman et al. (2011) suggest computationally intensive
penalization methods, the main goal being to achieve the existence of moments. Later, Car-
rasco (2012) noted that the existence of moments and consistency of their procedure are
not simultaneously possible. The other stab at the problem in Chao et al. (2023) proposes
filtering out the individual effects in a within-type transformation and applying the jack-
knife methodology on top of that. However, this proposal is tied to the classical one-way
error component model (ECM) structure of regression errors, and is not expected to work
for more general within-cluster dependencies. We suggest another approach to tackle the
problem, which is computationally attractive and is not tied to a rigid ECM structure. In-
stead, it allows a more general setup, where the structural and reduced form errors may be
conditionally heteroskedastic and heterocorrelated in an arbitrary unknown form. Finally,
Ligtenberg (2023) proposes an AR-type test that is suitable for many instruments and clus-
tering. Conversely, we propose not a testing procedure but the whole framework for both
estimation and inference that is robust to many weak instruments and clustering, and can be
used in other contexts (e.g. few instruments with cluster dependence). Similar to Ligtenberg
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(2023), instead of jackknifing machinery, we use its natural extension – LCO methodology,
applied to the matrix of projection on the space of instruments. However, we push it further
by developing both inference and estimation in a broad class of problems. In the present
instrumental variables setup, LCO allows one to dispose of the very source of problems –
intra-cluster dependencies in the influence function of the structural parameter’s estimator.

Both our proposed CJIV and the associated CJIV variance estimators are computation-
ally simple and, importantly, allow general structures of intra-cluster correlations. We also
work towards the vectorization of the formula for the CJIV variance estimator to reduce
the computational burden. We set out a formal asymptotic framework with an increasing
number of clusters, possibly increasing average cluster size, and possible presence of many
weak instruments. Within this framework, we prove a central limit theorem for the influence
function embedded in the CJIV estimator, thus establishing its normality, and prove the
consistency of both CJIV and the associated CJIV variance estimators. Moreover, we argue
that CJIV might be useful in setups even with few instruments that are correlated within
clusters. In addition, we study the importance of instrument design on the properties of
CJIV, run an extensive simulation study revealing finite sample properties and advantages
of the proposed approach, apply CJIV methodology to setups from relevant empirical papers
(Angrist and Krueger, 1991 and Autor et al., 2013), and evaluate its computational intensity.

In addition, we propose and analyze a modification of CJIV estimator, WCJIV, in which
pairs of observations are weighted by sizes of corresponding clusters. This modification is
more robust to cluster size heterogeneity and large clusters.

The remainder of this paper is structured as follows. In Section 2, we set up the model,
discuss limitations of JIVE in terms of asymptotic bias and validity of inference, and propose
our CJIV estimator. In Section 3, we present formal asymptotic theory of CJIV. In Section
4, we describe the variance estimator and provide some simulation evidence of its validity.
In Section 5, we discuss possible generalizations of our LCO approach outside of many
instruments clustering setup. In Section 6, we apply CJIV to empirical studies and compare
its performance with 2SLS estimator and JIVE. Section 7 concludes.

2 Problems with JIVE, and the solution

2.1 Setup

We consider the following linear IV model:

y = Xβ + ε,

X = Υ+ u,

where X is an n×L vector of the endogenous variables, β is the coefficient vector of interest.
U is an n×L matrix of reduced-form disturbances, and Υ is an n×L matrix of reduced-form
values.

While Υ is not observed, we assume that we observe an n×K matrix of instruments Z
that approximate Υ well asymptotically. Given that instruments are many, and endogenous
regressors are few, it is not a restrictive assumption.

We can conduct most of the analysis conditionally on Z = (Z,Υ) in the spirit of Chao
et al. (2012).
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We introduce clustering by considering a known partition G of population into G mutu-
ally exclusive clusters with heterogeneous and asymptotically increasing sizes ng, g ∈ G (in
Section 5 we discuss possible generalization to multiway clustering), and allowing E[xiyj] ̸= 0
for x ∈ {ε, u}, y ∈ {ε, u} if i and j are in the same cluster (i.e. i ∈ g and j ∈ g for some
g ∈ G). Throughout the paper we assume w.l.o.g. that observations are ordered so that they
are grouped by cluster.

2.2 The tale of two examples

Let P = Z (Z ′Z)−1 Z ′, with pij denoting the (i, j)th element of P . A[g] = (Ai)i∈g for some
A.

Denote, by Ṗ the de-diagonalized P , that is, P with the main diagonal removed:

Ṗ =


0 p1,2 · · · p1,n−1 p1,n
p1,2 0 · · · p2,n−1 p2,n
...

...
. . .

...
...

p1,n−1 p2,n−1 · · · 0 pn−1,n

p1,n p2,n · · · pn−1,n 0

 .

Ṗ is the key component of JIVE estimator. Also, denote by P̊ the LCO version of P, that
is, P with diagonal blocks corresponding to clusters removed. For example, when ng = 2 for
all clusters,

P̊ =



0 0 p1,3 p1,4 · · · p1,n−1 p1,n
0 0 p2,3 p2,4 · · · p2,n−1 p2,n
p1,3 p2,3 0 0 · · · p3,n−1 p3,n
p1,4 p2,4 0 0 · · · p4,n−1 p4,n
...

...
...

...
. . .

...
...

p1,n−1 p2,n−1 p3,n−1 p4,n−1 · · · 0 0
p1,n p2,n p3,n p4,n · · · 0 0


.

We consider two running examples, in which different instrument designs induce different
properties of estimators. In both, the clusters are equally sized, so ng is constant across g.

Example DI: dummy supergroup instruments. Suppose the number of groups G is
proportional to S, number of supergroups (for example, industries and firms, respectively,
with equally-sized industries), so that one supergroup covers G/S clusters. Let n(s) be the
size of supergroup s, and let all supergroups and all clusters be equally-sized for the simplicity
of exposition. Then, Z = IS ⊗ ιn(s), leading to Z ′Z = n(s)IS, (Z

′Z)−1 = IS/n(s) and hence
P = (1/n(s))Is ⊗ (ιn(s)ι

′
n(s)). This matrix is block-diagonal, but blocks are n(s) × n(s), so

LCO yields non-null but block-sparse P̊ , which contains G/S (G/S − 1) off-diagonal blocks
of (n(s) − ng) × (n(s) − ng) squares of 1/n(s). By construction, ℓ = S; instruments are
moderately many if S is big. When S = G/2 (only two groups belong to a supergroup),
P = 1/(2ng)IG/2 ⊗ (ι2ngι

′
2ng

), and P̊ contains half of non-zero 2ng × 2ng blocks of P ; when
G/S > 2 (i.e. supergroups contain more clusters), a larger proportion of blocks are retained
in P̊ (see Supplementary appendix for details).
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Example RI: random independent instruments. Here, the elements of Z except the
first one are i.i.d. standard normal, and the first one equals 1. Then, non-diagonal elements
of P, by symmetry, possess the same marginal distribution.

2.3 Three cases against JIVE

Akin to Davidson and MacKinnon (2006)’s title, we point at futility of relying on JIVE in
the clustered data setup. The JIVE estimator reads

β̂JIV E =
(
X ′ṖX

)−1

X ′Ṗ Y =

(∑
i ̸=j

pijXiX
′
j

)−1∑
i ̸=j

pijXiYj.

Then,

√
n
(
β̂JIV E − β

)
= (HJIV E + o (1))−1 1√

n

∑
i ̸=j

pijXiεj,

where

HJIV E = plim
1

n

∑
i ̸=j

pijXiX
′
j

is assumed to be non-singular.
The JIVE, by dropping the terms related to correlations of endogenous regressors with

the structural error for the same unit, removes the adverse effects of endogeneity when many
instruments are present, but gives up on full utilization of information corresponding to that
unit. While this information is possible to utilize under strong restrictions like conditional
homoskedasticity, which is what bias-corrected 2SLS and LIML do, it appears impossible to
accomplish in a non-restricted environment. Thus, in return JIVE buys the robustness to
conditional heteroskedasticity under many instruments.

We consider expansions of the JIVE influence function into linear and quadratic compo-
nents

1√
n

∑
i ̸=j

pijXiεj =
1√
n

∑
i

(1− pii)Υiεi +
1√
n

∑
i ̸=j

pijuiεj ≡ AJIV E
1n + AJIV E

2n .

The Supplementary Appendix presents this expansion in detail.
To simplify the further discussion, let the cluster sizes be equal, with n = ngG, and

all the errors are conditionally homoskedastic, within-cluster equicorrelated, i.e. E [uiεj] =
σuεI{Ci=Cj} for constant σuε. We consider the two examples of instrument design that lead
to different orders and hence asymptotic properties of the JIVE.

Example DI. For the dummy supergroup instruments example, the properties for the
components in the expansions for the JIVE are1

E
[
AJIV E

1n

]
= 0, E

[
AJIV E

2n

]
= O

(
sng√
n

)
,

1see S1 in Appendix S
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var
(
AJIV E

1n

)
= O (ng) , var

(
AJIV E

2n

)
= O

(
sn2

g

n

)
.

It follows that

√
n
(
β̂JIV E − β

)
= (HJIV E + o (1))−1Op

(
Sng√
n

)
,

and

β̂JIV E = β +Op

(
S

G

)
,

so the JIVE is asymptotically biased in case a supergroup covers an asymptotically fixed
number of clusters so that S/G = O(1), be ng asymptotically increasing or fixed. This asymp-
totic bias originates from the biasedness of the quadratic part of the JIVE influence function
(AJIV E

2n ) under this particular instrument design, which arises from a lot of cross-cluster
correlations among the structural and reduced-form errors falling into the same cluster, and
corresponding weights pij not vanishing asymptotically because of the instrument design.

Example RI. For the random independent instruments example, the properties for the
linear component in the expansion for the JIVE are the same:

E
[
AJIV E

1n

]
= 0, var

(
AJIV E

1n

)
= O (ng) .

As for the quadratic component, the variance has the order2

var
(
AJIV E

2n

)
= O

(
n2
g

)
.

Furthermore, the linear component AJIV E
1n and the quadratic component AJIV E

2n are cor-
related.3 Yet another feature of JIVE is that clustering induces a (higher-order) bias into
quadratic component:4

E
[
AJIV E

2n

]
= O

(
ng√
n

)
.

leading to an additional component of (higher-order) bias for the JIVE estimator of order
n−1/2O (ng/

√
n) = O (1/G) . Thus, in this example, the JIVE is consistent, under some

2see S2 in Appendix S
3Indeed,

covZ
(
AJIV E

1n , AJIV E
2n

)
=

1

n

∑
i

∑
k

Ck=Ci

∑
ℓ ̸=k

Cℓ=Ci

E [εiukεℓ] (1− pii)Υipkℓ ̸= 0.

4see S3 in Appendix S
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restriction on the rate of growth of ng in case it is asymptotically increasing, but its influ-
ence function is not clean and contaminated by various factors that complicate modification
and/or pivotization of the JIVE estimator.

In the two examples above, the orders of the bias term are different so much that they
resulted in JIVE inconsistency in one case and its consistency in the other. The JIVE
(in)consistency depends largely on the instrument design. Consider a more general condi-
tionally heteroskedastic environment, and denote σeu

ij = E [eiuj] for i and j within the same
cluster. Then, a necessary condition for consistency of JIVE is5∑

i ̸=j
Cj=Ci

pijσ
uε
ij = o(n),

This does not hold in Example DI when a supergroup covers an asymptotically fixed number
of clusters and σuε

ij does not depend on (i, j) , so that
∑

i ̸=j,Cj=Ci
pij = O(n). However, this

condition does hold in Example RI. Heuristically, the instrument design in Example DI
results in all non-zero elements in Ṗ , although individually small, being of the same sign, so
en mass they weigh much higher than an analogous sum of elements of Ṗ in Example RI, as
these tend to be distributed around an asymptotically zero mean.6

Even when the JIVE is consistent, the use of the standard JIVE variance estimator not
accounting for clustering can lead to big biases and inferential distortions when the clusters
are asymptotically increasing, beyond those that could be expected when a wrong variance
estimator is used. The JIVE pivotization is unable to keep up with asymptotically increasing
cluster size.

To summarize, the three cases against JIVE are: (1) in some setups, JIVE is inconsistent;
(2) when JIVE is consistent, under-independence JIVE inference is invalid; (3) even when
JIVE is consistent, the linear and quadratic terms in the JIVE influence function are corre-
lated and the quadratic term has a non-zero (higher-order) bias, which greatly complicates
asymptotic derivations and pivotization. These properties of JIVE motivate one to deviate
from such a construct instead of attempting to “save” it, which is arguably impossible if one
does not impose strong restrictions on the within-cluster correlation structure.

2.4 Solution: CJIV

The CJIV estimator accommodates the LCO idea and excludes the terms that correspond
to observations within the same cluster:

β̂CJIV =
(
X ′P̊X

)−1

X ′P̊ Y =

 ∑
i,j

Ci ̸=Cj

pijXiX
′
j


−1 ∑

i,j
Ci ̸=Cj

pijXiyj.

5see S4 in Appendix S
6The sum of elements of Ṗ equals

∑
j ̸=i pij =

∑
i,j pij −

∑
i pii = n − ℓ, so their average is

(n− ℓ) /
(
n2 − n

)
, which is asymptotically O (1/n) .
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Then,

√
n
(
β̂CJIV − β

)
= (HCJIV + o (1))−1 1√

n

∑
i,j

Ci ̸=Cj

pijXiεj,

where

HCJIV = plim
1

n

∑
i,j

Ci ̸=Cj

pijXiX
′
j

is assumed to be non-singular.
The CJIV estimator goes farther than the JIVE and drops the terms related to cor-

relations of endogenous regressors with the structural errors for the same cluster, gives up
on full utilization of information corresponding to that cluster. As a result, estimation and
inference is robust to arbitrary patterns of within-cluster conditional heteroskedasticity and
heterocorrelation. More generally, if the dependence structure is known to a researcher, one
can remove arbitrary elements of P , so that the resulting matrix gives zero weight to pairs
of observations that might be correlated (see Section 5).

Example DI. For the dummy supergroup instruments example, the JIVE removes n non-
zero diagonal elements from P, while the CJIV, out of S (n(s))2 − n = n (n(s)− 1) off-
diagonal elements, removes G (ng)

2 − n = n (ng − 1) more elements. The proportion of ele-
ments removed by the CJIV on top of elements removed by the JIVE is (ng − 1) / (n(s)− 1) ,
which is asymptotically proportional to S/G, and is increasing with S.

Example RI. For the random independent instruments example, the CJIV, out of n2−n =
n (n− 1) off-diagonal elements, removes G (n/G)2 − n = n (n/G− 1) more elements, the
proportion of (n/G− 1) / (n− 1), which is asymptotically inversely proportional to G.

The CJIV influence function contains two terms:

1√
n

∑
i,j

Ci ̸=Cj

pijXiεj =
1√
n

∑
i,j

Ci ̸=Cj

pijΥiεj +
1√
n

∑
i,j

Ci ̸=Cj

pijuiεj ≡ ACJIV
1n + ACJIV

2n .

The orders of these two terms sharply differ from those for JIVE, hence resulting in different
asymptotic properties of the CJIV. In particular, LCO removes any bias in ACJIV

2n :

E
[
ACJIV

2n

]
=

1√
n

∑
i,j

Cj ̸=Ci

pijE [uiεj] = 0,

because E [uiej] = 0 whenever i and j belong to different clusters. Also, LCO makes the two
components ACJIV

1n and ACJIV
2n uncorrelated:

cov
(
ACJIV

1n , ACJIV
2n

)
=

1

n

∑
i,j

Cj ̸=Ci

pijΥi

∑
k,ℓ

Cℓ ̸=Ck

pkℓE [εjukεℓ] = 0,
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because E [εjukεℓ] = 0 whenever k and ℓ belong to different clusters, no mater which cluster
j belongs to. We consider the two examples of instrument design, across which, similarly to
JIVE, the variance of the quadratic component differs.

Example DI. For the dummy supergroup instruments example, the variance properties
for the components in the expansions for the CJIV are7

var
(
ACJIV

1n

)
= O (ng) , var

(
ACJIV

2n

)
= O

(sng

G

)
= O (ng) .

It follows that

β̂CJIV = β +Op

(
1√
G

)
,

so the CJIV is
√
G-consistent, provided that G is asymptotically increasing. Recall that

JIVE is inconsistent because of the bias in AJIV E
2n is of a rather high order.

Example RI. For the random independent instruments example, the variance properties
for the components in the expansions for the CJIV are8

var
(
ACJIV

1n

)
= O (ng) , var

(
ACJIV

2n

)
= O

(
n2
g

)
.

It follows that

β̂CJIV = β +Op

(
ng√
n

)
.

2.5 Solution improved: weighted CJIV

We also consider a modification of our CJIV estimator, which is weighted by cluster sizes :

β̂WCJIV =

 ∑
i,j

Ci ̸=Cj

pijXiX
′
j/
√

|Ci| · |Cj|


−1 ∑

i,j
Ci ̸=Cj

pijXiyj/
√
|Ci| · |Cj|.

Weighted CJIV by construction normalizes terms both in the numerator and the denomina-
tor, so that we analyze self-normalized cluster-level averages. It makes our approach more
robust to cluster size heterogeneity and to large clusters.

7Indeed,

var
(
ACJIV

2n

)
=

1

n

∑
i

∑
j

Cj ̸=Ci

pij
∑
k

Ck=Ci

∑
ℓ

Cℓ=Cj

pkℓ (E [uiuk]E [εjεℓ] + E [uiεk]E [uℓεj ]) = O
(sng

G

)

(see S1 in Appendix S)
8see S2 in Appendix S
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3 Asymptotic theory (preliminary)

We combine several asymptotic frameworks, including many instruments asymptotics (see
Bekker, 1994), many weak instrument asymptotics (see Chao and Swanson, 2005), and
many clusters asymptotics (see e.g. B. E. Hansen and Lee, 2019). We require the number
of clusters to grow with the sample size and we allow for heterogeneous unbounded cluster
sizes, individually weak instruments, and the number of instruments growing with sample
size.

Assumption 1. K = Kn −→ ∞, Z includes among its columns a vector of ones, rank(Z) =

K, and for some, C < 1 pii ≤ C ∀ i a.s.n. As n −→ ∞, maxg∈G
n3
g

n
−→ 0.

Assumption 1 formally sets up the many instruments framework and many clusters
framework. At the same time, the restrict the growth rate of maximum cluster size, which
is common in the literature.

Assumption 2. Let i ∈ g. Υi = Snzi/
√
n where Sn = S̃ndiag(µ1n, ..., µLn), S̃n is L × L

and bounded, and the smallest eigenvalue of S̃nS̃
′
n is bounded away from zero. Also, for each

j, either µjn =
√
n or µjn/

√
n −→ 0, rn = (min1≤j≤G µjn)

2 −→ ∞, and
√
Knmax/rn −→ 0. Also,

there is C > 0 such that
∣∣∣∣∑n

i=1 ziz
′
i/n
∣∣∣∣ ≤ C and λmin (

∑n
i=1 ziz

′
i/n) ≥ 1/C a.s.n.

Assumption 2 is similar to the one made by Chao et al. (2012). It links the structure
of the reduced form to the latent underlying instrument zi and to the “scaling” matrix
S̃n. Also Assumption 2 restricts the concentration parameter, which is a measure of instru-
ment strength, to the number of instruments and maximum cluster size. The restriction√
Knmax/rn −→ 0 is stronger than assumed for consistency of JIVE (Chao et al., 2012) under

random sampling by a factor of nmax. Though it is still less restrictive than K/rn −→ 0
required for consistency of 2SLS under random sampling (Chao and Swanson, 2005).

Assumption 3. There is a constant, C, such that conditional on Z = (Υ, Z), the observa-
tions (ε[g], U[g])(g = 1, ..., G) are independent, with E[εi|Z] = E[Ui|Z] = 0 ∀ i, supi E[ε2i |Z] <
C, and supi E[||Ui||2|Z] ≤ C a.s.

Theorem 1. Suppose Assumptions 1-3 and T are satisfied. Then, r
−1/2
n S ′

n(β̂CJIV −β)
p−→ 0,

and β̂
p−→ β.

Conjecture. Weighted CJIV estimator is consistent under non-stronger assumptions.

Assumption 4. There is a πK such that
∑

i∈g ||zi − πKZi||2/n −→ 0 for every g a.s.

Assumption 4 ensures that the reduced form is well approximated by a linear combination
of instruments.

Assumption 5. There is a constant, C > 0, such that
∑n

i=1 ||zi||4/n2 −→ 0, supi E[ε4i |Z] <
C, and supi E[||Ui||4|Z] ≤ C a.s.
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Theorem 2. Suppose that Assumptions 1-5 are satisfied and maxg∈G
n5
max

n
−→ 0, σ2

i ≥ C > 0
a.s., and Kn2

max/rn is bounded. Then Vn is nonsingular a.s.n, and

V −1/2
n S ′

n(β̂CJIV − β)
d−→ N (0, IL).

Theorem 3. Suppose that Assumptions 1-5 are satisfied, σ2
i ≥ C > 0 a.s., and Kn2

max/rn
is bounded. Then VW,n is nonsingular a.s.n, and

V
−1/2
W,n S ′

n(β̂WCJIV − β)
d−→ N (0, IL).

4 Variance estimation

The population variance of (non-normalized) CJIV influence function is by definition

E


 ∑

i,j
Ci ̸=Cj

pijxiej


2

|Z

 = E

∑
i

∑
j

Cj ̸=Ci

∑
k

∑
ℓ

Cℓ ̸=Ck

xix
′
kejeℓpijpkℓ|Z



= E

∑
i

∑
j

Cj ̸=Ci

∑
k

Ck=Cj

∑
ℓ

Cℓ=Ci

xixkejeℓpijpkℓ +
∑
i

∑
k

∑
j

Cj /∈{Ci,Ck}

∑
ℓ

Cℓ=Cj

xixkejeℓpijpkℓ

 .

It consists of two parts, the first one representing association between first-stage residuals
u and second-stage errors ε, while the second one – between second-stage errors ε. The
population variance above can be straightforwardly estimated by its sample analog

Σ̂ =
∑
i

∑
j

Cj ̸=Ci

∑
k

Ck=Cj

∑
ℓ

Cℓ=Ci

xixkêj êℓpijpkℓ +
∑
i

∑
k

∑
j

Cj /∈{Ci,Ck}

∑
ℓ

Cℓ=Cj

xixkêj êℓpijpkℓ,

where êi is a residual êi = yi − x′
iδ̂CJIV . Thus, the variance estimator of δ̂CJIV is

V̂n = Ĥ−1
CJIV Σ̂Ĥ

−1
CJIV ,

and ĤCJIV is as usual estimated by
∑

i,j
Ci ̸=Cj

pijxix
′
j.

For the efficiency of computation, we propose a vectorized variance estimator formula.
We use

∑
i∈g
j∈h

pijxix
′
j = X ′

[g]P[gh]X[h]. Then

ĤCJIV = X ′PX −
∑
g

X ′
[g]P[gh]X[h],

which is more computationally efficient. Similarly, the influence function variance can be
represented by

Σ̂ =
∑
g,h
g ̸=h

X ′
[g]P[gh]e[h]e

′
[g]P[gh]X[h] +

∑
g,h,g′

g′ /∈{g,h}

X ′
[g]P[gg′]e[g′]e

′
[g′]P[g′h]X[h].

11



Figure 1: N = 512, G = 32, homogeneous cluster sizes

These vectorized formulae substitute multiple sums across all observations by sums across all
clusters, which usually have considerably fewer summands. As a result, we can substantially
reduce the computation time.

Next we show some suggestive evidence that our variance estimator is asymptotically
valid, and inferences that use it are correct.

4.1 Simulations

We set up a simulation study that shows that ... The design is heteroskedastic, with cluster
dependence, in the spirit of Example DI from Section 2. All variables are indexed by super-
group s, (nested in it) cluster g, and generic i. Endogenous variable is a scalar, instruments
are supergroup dummies (“supergroup-specific intercept”), a continuous instrument with its
powers up to 4, and interactions of this continuous instrument with supergroup dummies
(“supergroup-specific slope”):

ysgi = Xsgiβ + εsgi,

Xsgi = αs + θsZsgi +
4∑

k=1

ωkZ
k
sgi + usgi.

For more details on DGP, see S5 in Appendix. Figure
Figure 1 shows the distribution of the t-statistic (which uses estimated variance). This

distribution already has a bell-shaped curve even for 32 clusters (nmax = 16, N = 532). First,
Figure 1 suggests that variance estimator that we propose in Section 4 produces normally
distributed t-statistics as desired. Second, the quality of approximation seems to be pretty
good already with a modest number of clusters.

12



5 Discussion and extensions

The leave-cluster-out idea that we employ can be extended to deal with other known struc-
tures of dependence. Here we focus on clustered data with clusters being non-overlapping,
thus the population variance-covariance matrix of errors is nicely represented by a block-
diagonal matrix with blocks corresponding to clusters. More generally than in our setup, if
the data contains multiway clustering, a leave-out procedure similar to ours can be carried
out. While we essentially assign zero weight (in the estimator) to pairs of observations from
the same cluster because they might be correlated, in multiway clustering setups it might be
also reasonable to give zero weight to pairs of observations that are associated. Further, sim-
ilar leave-out ideas can be applied to known network structures with geometrically decaying
correlation. In this case, we can give zero weight to observations that are highly associated
with one another.

Though we focus on many instruments setup, the leave-cluster-out procedure might be
also useful in few instruments environments. Section 6.2 illustrates how CJIV works in the
setup of Autor et al. (2013) with one instrument only. Heuristically, the reason for leave-
cluster-out in such setups is that the fitted values from the first stage are weighted averages
of endogenous xs:

x̂i =
n∑

j=1

pijxj = piixi +
∑
i ̸=j

Ci=Cj

pijxj +
∑

Ci ̸=Cj

pijxj,

and, while the first term is always endogenous (and non-negligible with many instruments),
the second term might also be endogenous if there is cluster dependence and E[εixj] ̸= 0 for
some (i, j) in the same cluster. Together with the instrument design, this cluster dependence
of unobservables might even make fitted values endogenous and bias 2SLS estimator towards
the probability limit of OLS estimator. Therefore, CJIV is more robust to these cases of
strong cluster-dependence also with few instruments.

6 Applications

In this section we illustrate the performance of CJIV with two classical empirical examples
and compare it to 2SLS and JIVE. The first one is a study of returns to schooling by Angrist
and Krueger (1991) and employs many instruments. The second one is a study of Chinese
import penetration in the US by Autor et al. (2013) and employs only one instrument.

6.1 Returns to schooling

We apply CJIV to two setups from Angrist and Krueger (1991). In one of them we use
quarter of birth dummies as instruments for education (30 instruments in total). In another
one, we augment the set of instruments by state of birth dummies and their interactions with
quarter of birth (180 instruments in total). We treat states as clusters. Table 1 presents the
results. CJIV provides a larger effect than 2SLS, the effect is quite precise, and it is more
stable than JIVE, that differs dramatically in these two setups.
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Instruments set OLS 2SLS JIVE CJIV
30 instruments 0.0632 0.0600 0.0860 0.1311

(0.0290) (0.0211)
180 instruments 0.0624 0.0635 0.1329 0.1147

(0.0122) (0.0187)

Table 1: Angrist and Krueger (1991) re-estimation of β̂; s.e. in parentheses

6.2 Effects of import penetration

Autor et al. (2013) instrument for US local exposure to Chinese imports using Chinese import
exposure of other countries, so they have a single instrument in their specifications. We run
the annual change in manufacturing employment per working-age population on the annual
change in imports from China per working-age population and a bunch of controls (like in
Table 3, column 6 in Autor et al., 2013, but unweighted). Similarly to Section 6.1, we treat
states as clusters. Standard errors are clustered at the state level, like in the paper. The
results are given in Table 2. Similar to Section 6.1, CJIV indicates a stronger effect than
2SLS, and quite precisely. It suggests that CJIV is capable of providing point estimates that
are not worse than alternative estimators, regarding neither bias, nor precision, even in few
instruments setups.

2SLS JIVE CJIV
-0.3028 -0.3447 -0.3586
(0.1005) (0.0994)

Table 2: Autor et al. (2013) re-estimation of β̂; s.e. in parentheses

7 Conclusion

In this paper we propose two novel leave-cluster-out estimators and derive their asymptotic
properties under many weak instruments and many clusters. We find that CJIV estimator is
consistent and asymptotically normal and argue that the inferences based on it are valid. We
further discuss that similar leave-out ideas can be employed in other contexts with known
dependence structure. In progress is also the proof of variance estimator consistency and
inference validity.
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Appendix

Appendix S.

S1. Indeed,

E
[
AJIV E

2n

]
=

1√
n

∑
i

∑
j ̸=i

Cj=Ci

pijE [uiεj] = O

(
sng√
n

)
,

as ∑
i

∑
j ̸=i

Cj=Ci

pij =
s

n
G
( n
G

− 1
) n

G
= s (ng − 1) .

As for var
(
AJIV E

2n

)
, it rests on the behaviour of the following sums (see SA):∑

i

∑
j

Cj ̸=Ci

∑
k

Ck=Ci

∑
ℓ

Cℓ=Cj

pijpkℓ =
( s
n

)2∑
g1

∑
g2 ̸=g1

∑
i∈Cg1

∑
j∈Cg2

n2
g =

( s
n

)2
s
G

s

(
G

s
− 1

)
n2
gn

2
g = s

(
1− s

G

)
n2
g,

∑
i

∑
j ̸=i

Cj=Ci

∑
k

Ck=Ci

∑
ℓ̸=k

Cℓ=Cj

pijpkℓ =
( s
n

)2∑
g

∑
j ̸=i

i,j∈Cg

ng (ng − 1) =
( s
n

)2
Gn2

g (ng − 1)2 < s
(
1− s

G

)
n2
g.

S2. Indeed, the order rests on the following two terms (see SA) both of which can be
bounded from above:∣∣∣∣∣∣∣∣
∑
i

∑
j

Cj ̸=Ci

∑
k

Ck=Ci

∑
ℓ

Cℓ=Cj

pijpkℓ

∣∣∣∣∣∣∣∣ ≤

∑
i

∑
j

Cj ̸=Ci

∑
k

Ck=Ci

∑
ℓ

Cℓ=Cj

p2ij


1/2∑

i

∑
j

Cj ̸=Ci

∑
k

Ck=Ci

∑
ℓ

Cℓ=Cj

p2kℓ


1/2

≤

n2
g

∑
i

∑
j

Cj ̸=Ci

p2ij


1/2∑

i

∑
k

Ck=Ci

∑
j

∑
ℓ

Cℓ=Cj

p2kℓ


1/2

≤

(
n2
g

∑
i

∑
j

p2ij

)1/2(
ng

∑
k

ng

∑
ℓ

p2kℓ

)1/2

=
(
n2
gℓ
)1/2 (

n2
gℓ
)1/2

= O
(
nn2

g

)
.

and in a similar vein, though less tightly:∣∣∣∣∣∣∣∣
∑
i

∑
j ̸=i

Cj=Ci

∑
k

Ck=Ci

∑
ℓ̸=k

Cℓ=Cj

pijpkℓ

∣∣∣∣∣∣∣∣ ≤

∑
i

∑
j ̸=i

Cj=Ci

∑
k

Ck=Ci

∑
ℓ̸=k

Cℓ=Cj

p2ij


1/2∑

i

∑
j ̸=i

Cj=Ci

∑
k

Ck=Ci

∑
ℓ ̸=k

Cℓ=Cj

p2kℓ


1/2

≤

n2
g

∑
i

∑
j ̸=i

Cj=Ci

p2ij


1/2∑

i

∑
k

Ck=Ci

∑
j

∑
ℓ

Cℓ=Cj

p2kℓ


1/2

= O
(
nn2

g

)
.

15



S3. First, because of the presence of a constant among the instruments,∑
i

∑
j ̸=i

pij =
∑
i

∑
j

pij −
∑
i

pii = n− ℓ = O (n) .

Hence, due to symmetry across off-diagonal elements,

∑
i

∑
j ̸=i

Cj=Ci

pij =
G
(
n2
g − ng

)
n2 − n

O

(∑
i

∑
j ̸=i

pij

)
= O (ng) .

where G
(
n2
g − ng

)
is the number of off-diagonal elements in the double sum of interest, and

n2 − n is the total number of off-diagonal elements in P. Therefore,

E
[
AJIV E

2n

]
=

σuε√
n

∑
i

∑
j ̸=i

Cj=Ci

pij = O

(
ng√
n

)
.

S4. Presuming that
∑

i ̸=j xipijxj = Op (n) , the difference β̂−β will be op (1) if
∑

j ̸=i pijxiεj =
Op (n) . Considering the order of the bias of this quantity, we evaluate the expectation

E

[∑
j ̸=i

pijxiεj

]
=
∑
i ̸=j

Cj=Ci

pijσ
uε
ij .

S5. Simulation setup details:

Zgi = ζg + ζgi,

ζg
iid∼ N (0, 1), ζgi

iid∼ N (0, 1).

ugi = vgi + vugi + ξg, εgi = vgi + vεgi + ξg,

ξg
iid∼ N

(
0, ζ2g

)
, vgi

iid∼ N
(
0, ζ2gi

)
,

vugi
iid∼ N (0, 1), vεgi

iid∼ N (0, 1).
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Appendix A.

Proofs are in progress; so normalizations in certain places are subject to further work.

Lemma A1. If, conditional on Z = (Υ, Z), (W[g], Y[g])(g = 1, ..., G) are independent
a.s., Wi and Yi are scalars, and P is a symmetric, idempotent matrix of rank K, then
for w̄ = E[(W1, ...,Wn)

′|Z] and ȳ = E[(Y1, ..., Yn)
′|Z], σ̄Yn = maxi

√
Var(Yi|Z), σ̄Wn =

maxi
√

Var(wi|Z), and Dn = σ̄2
Wn

σ̄2
Yn
n2
maxK + ȳ′ȳnmaxσ̄

2
Wn

+ w̄′w̄nmaxσ̄
2
Yn
, there exists C > 0

such that

E

 ∑
Ci ̸=Cj

pijWiYj −
∑

Ci ̸=Cj

pijw̄iȳj

2 ≤ CDn a.s.

Proof. Let W̃i = Wi − w̄i and Ỹi = Yi − ȳi. Note that∑
Ci ̸=Cj

pijWiYj −
∑

Ci ̸=Cj

pijw̄iȳj =
∑

Ci ̸=Cj

pijW̃iỸj +
∑

Ci ̸=Cj

pijW̃iȳj +
∑

Ci ̸=Cj

pijw̄iỸj.

By CS and
∑

j p
2
ij = pii

E

 ∑
Ci ̸=Cj

pijW̃iỸj

2

|Z

 =
∑
I

pijpkℓ

(
E
[
W̃iW̃k|Z

]
E
[
ỸjỸℓ|Z

]
+ E

[
W̃iỸk|Z

]
E
[
ỸjW̃ℓ|Z

])
≤ 2σ̄2

Wn
σ̄2
Yn

∑
I

∣∣pijpkℓ∣∣ ≤ 2σ̄2
Wn

σ̄2
Yn

√∑
Ci ̸=Cj

∑
Iij

p2ij
∑

Ck ̸=Cℓ

∑
Ikℓ

p2kℓ

≤ 2σ̄2
Wn

σ̄2
Yn
n2
maxK,

where I = {(i, j, k, ℓ)|Ci = Ck ̸= Cj = Cℓ}, and Iij = {(k, ℓ)|Ci = Ck ̸= Cj = Cℓ}.

E

 ∑
Ci ̸=Cj

pijW̃iȳj

2

|Z

 = E

(∑
i,j

pijW̃iȳj

)2

|Z

+ E

 ∑
Ci=Cj

pijW̃iȳj

2

|Z


− 2E

[∑
i,j

∑
Ck=Cℓ

pijW̃iȳjpkℓW̃kȳℓ|Z

]
.

Now let W̃ = (W̃1, ..., W̃n)
′, x̄(g) = (x̄i)i∈g for x ∈ {w, y}, P̊ be a block-diagonal version of

P with G blocks corresponding to clusters, ΣXn = E
[
X̃X̃ ′|Z

]
for X ∈ {W,Y }, ΣXn(g) =
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E
[
X̃(g)X̃(g)′|Z

]
for X ∈ {W,Y }. Consider three terms above separately:

E

(∑
i,j

pijW̃iȳj

)2

|Z

 = E
[(

ȳ′PW̃
)2

|Z
]
= ȳ′PE

[
W̃W̃ ′|Z

]
P ȳ

≤ ȳ′P ȳ
∣∣∣∣∣∣ΣW̄n

∣∣∣∣∣∣ = ȳ′ȳmax
g

∣∣∣∣∣∣ΣW̄n(g)

∣∣∣∣∣∣
≤ ȳ′ȳmax

g

∣∣∣∣∣∣ΣW̄n(g)

∣∣∣∣∣∣
F
= ȳ′ȳmax

g

√∑
i,j∈g

Σ2
W̄n(g),ij

≤ ȳ′ȳmax
g

√
n2
g

(
max
i∈g

Var(Wi|Z)

)2

≤ ȳ′ȳnmaxσ̄
2
Wn

,

E

 ∑
Ci=Cj

pijW̃iȳj

2

|Z

 = E

(∑
i,j∈g

pijW̃iȳj

)2

|Z

 = E

(∑
g

ȳ(g)′PggW̃ (g)

)2

|Z


≤
∑
g

ȳ(g)′P 2
ggȳ(g)

∣∣∣∣∣∣E [W̃ (g)W̃ (g)′|Z
] ∣∣∣∣∣∣

≤
∑
g

ȳ(g)′ȳ(g)
∣∣∣∣∣∣ΣW̄n(g)

∣∣∣∣∣∣ · ∣∣∣∣∣∣Pgg

∣∣∣∣∣∣2
≤ nmaxσ̄

2
Wn

∑
g

ȳ(g)′ȳ(g) ≤ ȳ′ȳnmaxσ̄
2
Wn

,∣∣∣∣∣E
[∑

i,j

∑
Ck=Cℓ

pijW̃iȳjpkℓW̃kȳℓ|Z

] ∣∣∣∣∣ =
∣∣∣∣∣E [ȳ′PW̃W̃ ′P̊ ȳ|Z

] ∣∣∣∣∣ =
∣∣∣∣∣ȳ′PE

[
W̃W̃ ′|Z

]
P̊ ȳ

∣∣∣∣∣
≤
√

ȳ′P ȳ

√
ȳ′P̊ ′P̊ ȳ

∣∣∣∣∣∣ΣW̄n

∣∣∣∣∣∣ ≤ ȳ′ȳ

√
max

g

∣∣∣∣Pgg

∣∣∣∣∣∣∣∣∣∣ΣW̄n

∣∣∣∣∣∣
≤ ȳ′ȳnmaxσ̄

2
Wn

.

Hence,

E

 ∑
Ci ̸=Cj

pijW̃iȳj

2

|Z

 ≤ Cȳ′ȳnmaxσ̄
2
Wn

.

Similarly, interchanging roles of Yi and Wj,

E

 ∑
Ci ̸=Cj

pijw̄iỸj

2

|Z

 ≤ Cw̄′w̄nmaxσ̄
2
Yn
.
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Then by cr-inequality

E

 ∑
Ci ̸=Cj

pijWiYj −
∑

Ci ̸=Cj

pijw̄iȳj

2 ≤ C

E

 ∑
Ci ̸=Cj

pijW̃iỸj

2

|Z


+ E

 ∑
Ci ̸=Cj

pijW̃iȳj

2

|Z


+ E

 ∑
Ci ̸=Cj

pijw̄iỸj

2

|Z


≤ C

(
σ̄2
Wn

σ̄2
Yn
n2
maxK + ȳ′ȳnmaxσ̄

2
Wn

+ w̄′w̄nmaxσ̄
2
Yn

)
≤ CDn.

Lemma A2. Suppose that, conditional on Z, the following conditions hold a.s.:

(i) P = P (Z) is a symmetric, idempotent matrix with rank(P ) = K and pii ≤ C < 1;

(ii) {Cg}Gg=1 is a partition of {1, ..., n};

(iii) (WgG, Ug, εg)g are independent, and DG =
∑G

g=1 E[WgGW
′
gG|Z] satisfies ||DG|| ≤ C

a.s.n;

(iv) E[WgG|Z] = 0, E[Ug|Z] = 0, E[εg|Z] = 0, and there exists a constant C such that
E[||Ui||4|Z] ≤ C, E[||εi||4|Z] ≤ C;

(v)
∑G

g=1 E [||WgG||4|Z]
a.s.−−→ 0;

(vi) K −→ ∞ as G −→ ∞.

Then

1. for
Σ̄G ≡

∑
Ci ̸=Cj

Ck=Ci
Cℓ=Cj

pijpkℓ (E[UiU
′
k|Z]E[εjεℓ|Z] + E[Uiεk|Z]E[εjU ′

ℓ|Z]) /K

and any sequences c1G and c2G depending on Z of conformable vectors with ||c1G|| ≤ C,
||c2G|| ≤ C, and ΞG = c′1GDGc1G + c′2GΣ̄Gc2G > 1/C a.s.n, it follows that

YG = Ξ
−1/2
G

c′1G
∑
g

WgG + c′2G
∑

Ci ̸=Cj

Uipijεj/
√
K

 d−→ N(0, 1), a.s.;

i.e., Pr(YG ≤ y|Z)
a.s.−−→ Φ(y) for all y.
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2. for

Σ̄G ≡
∑

Ci ̸=Cj

Ck=Ci
Cℓ=Cj

pijpkℓ (E[UiU
′
k|Z]E[εjεℓ|Z] + E[Uiεk|Z]E[εjU ′

ℓ|Z]) / (K|Ci| · |Cj|)

and any sequences c1G and c2G depending on Z of conformable vectors with ||c1G|| ≤ C,
||c2G|| ≤ C, and ΞG = c′1GDGc1G + c′2GΣ̄Gc2G > 1/C a.s.n, it follows that

YG = Ξ
−1/2
G

c′1G
∑
g

WgG + c′2G
∑

Ci ̸=Cj

Uipijεj/
√
K|Ci| · |Cj|

 d−→ N(0, 1), a.s.;

i.e., Pr(YG ≤ y|Z)
a.s.−−→ Φ(y) for all y.

Proof. Let b1G = c1GΞ
−1/2
G and b2G = c2GΞ

−1/2
G and note that these are bounded in G

because ΞG is bounded away from 0 by hypothesis. Let wgG = b′1GWgG and ui = b′2GUi. Then,

YG = w1G +
∑G

g=2 ygG, ygG = wgG + ȳgG, ȳgG =
∑

g′<g

∑
i∈g
∑

j∈g′(uipijεj + ujpjiεi)/
√
K.

Also, E[||w1G||4|Z] ≤
∑

g E[||wgG||4|Z] ≤ CE[||WgG||4|Z] −→ 0 a.s., so by a conditional
version of M, we deduce that for any v > 0, P (|w1G| ≥ v|Z) −→ 0. Moreover, note that
supn E[|P (|w1G| ≥ v|Z)|2] < ∞. It follows that, by the Corollary to Theorem 25.12 of

Billingsley (1986), P (|w1G| ≥ v) = E[P (|w1G| ≥ v|Z)] −→ 0; i.e. w1G
p−→ 0 unconditionally.

Hence, YG =
∑G

i=2 ygG + op(1).
Let Xg = ({W ′

iG, U
′
i , εi}i∈g)′ for g = 1, ..., G. Define the σ-fields Fg,G = σ(X1, ...,Xg) for

g = 1, ..., G. By construction, Fg−1,G ⊆ Fg,G. Conditional on Z, {ygG,Fg,G, 1 ≤ g ≤ G,G ≥
2} is a martingale difference array.

Now we need to verify that {ygG,Fg,G, 1 ≤ g ≤ G,G ≥ 2} is square integrable,
conditional on Z, i.e. E[y2gG|Z] < ∞. First note that E[wgGȳgG|Z] = 0 a.s. Then
E[y2gG|Z] = E[w2

gG|Z] + E[ȳ2gG|Z].

E[ȳ2gG|Z] ≤ 1

K
E

[∑
g′<g

(u′
[g]P[g,g′]e[g′])

2 + 2|u[g′]P[g,g′]e[g]| · |u[g]P[g,g′]e[g′]|+ (u′
[g′]P[g,g′]e[g])

2

]

≤ C

K
n2
max

∑
g′<g

λmax(P[g,g′]P
′
[g,g′])

≤ C

K
n2
max

G∑
g′=1

tr(P[g,g′]P
′
[g,g′])

=
C

K
n2
max

∑
i∈g

pii

≤ C

K
n3
max,

E[w2
gG|Z] ≤

√
E[w4

gG|Z] −→ 0 a.s.

Hence, E[y2gG|Z] < ∞.
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Then

s2G(Z) = E

( G∑
g=2

ygG

)2

|Z

 =
G∑

g=2

E
[
w̄2

gG

]
+

G∑
g=2

E
[
ȳ2gG|Z

]
= b′1GDGb1G − E[w1G] + b′2GΣ̄Gb2G + oa.s.(1)

= Ξ
−1/2
G

(
c′1GDGc1G + c′2GΣ̄Gc2G

)
Ξ
−1/2
G + oa.s.(1)

= Ξ
−1/2
G ΞGΞ

−1/2
G + oa.s.(1) = 1 + oa.s.(1)

a.s.−−→ 1,

Thus, s2G(Z) is is bounded and bounded away from 0 a.s.
Next, we check if Lindeberg’s condition holds.

∑G
g=2 E[|ygG|4|Z] ≤

∑G
g=2 E

[
w4

gG|Z
]
+∑G

g=2 E
[
ȳ4gG|Z

]
. The first term is

G∑
g=2

E
[
w4

gG|Z
]
=

G∑
g=2

E
[
||b′1GWgG||4|Z

]
≤ C

G∑
g=2

E
[
||WgG||4|Z

]
−→ 0.
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The second term is

K2

G∑
g=2

E
[
ȳ4gG|Z

]
= E

[
G∑

g=2

∑
g1<g

(
u′
gPgg1εg1

)4]
+ 3E

 G∑
g=2

∑
g1,g2<g
g1 ̸=g2

(
u′
gPgg1εg1

)2 (
u′
gPgg2εg2

)2
+ E

[
G∑

g=2

∑
g1<g

(
ε′gPgg1ug1

)4]
+ 3E

 G∑
g=2

∑
g1,g2<g
g1 ̸=g2

(
ε′gPgg1ug1

)2 (
ε′gPgg2ug2

)2 .

K2E

[
G∑

g=2

∑
g1<g

(
u′
gPgg1εg1

)4] ≤ E

[
G∑

g=2

∑
g1<g

(
u′
gug

)2 (
ε′g1εg1

)2
λ2
max (Pgg1Pg1g)

]

≤ Cn4
max

G∑
g=2

∑
g1<g

E

[(
max
i∈g

{ui}
)2
]
E

[(
max
j∈g1

{εj}
)2
]
λmax (Pgg1Pg1g)

≤ Cn4
max

G∑
g=2

tr

(∑
g1

Pgg1Pg1g

)
= Cn4

max

G∑
g=2

tr (Pgg) ≤ Cn4
maxK.

K2E

 G∑
g=2

∑
g1,g2<g
g1 ̸=g2

(
u′
gPgg1εg1

)2 (
u′
gPgg2εg2

)2 ≤ E

 G∑
g=2

∑
g1,g2<g
g1 ̸=g2

(
u′
gug

)2 (
ε′g1εg1

) (
ε′g2εg2

)
||Pgg1||2||Pgg2||2


≤ Cn4

max

G∑
g=2

∑
g1<g

||Pgg1||2
∑
g2<g

||Pgg2||2

≤ Cn4
max

G∑
g=2

(∑
g1<g

||Pgg1||2F

)2

= Cn4
max

G∑
g=2

∑
g1

∑
i∈g
j∈g1

p2ij


2

≤ Cn4
max

G∑
g=2

(∑
i∈g

pii

)2

≤ Cn5
max

G∑
g=2

∑
i∈g

p2ii ≤ Cn5
maxK.

Then, a.s.
∑G

g=2 E
[
ȳ4gG|Z

]
−→ 0, and

∑G
g=2 E[|ygG|4|Z] −→ 0.
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To apply the martingale central limit theorem, it suffices to show that for any v > 0

P

(∣∣∣∣∣
G∑

g=2

E
[
y2gG|X1, ...,Xg−1,Z

]
− s2G(Z)

∣∣∣∣∣ ≥ v|Z

)
−→ 0.

As noted above, E[wgGȳgG|Z] = 0 a.s., thus we can write

G∑
g=2

E
[
y2gG|X1, ...,Xg−1,Z

]
− s2G(Z) =

G∑
g=2

(
E
[
w2

gG|X1, ...,Xg−1,Z
]
− E

[
w2

gG|Z
])

+
G∑

g=2

E [wgGȳgG|X1, ...,Xg−1,Z] +
G∑

g=2

(
E
[
ȳ2gG|X1, ...,Xg−1,Z

]
− E

[
ȳ2gG|Z

])
.

In progress an argument why first two terms are 0 asymptotically.
It remains only to show that, for any v > 0,

P

(∣∣∣∣∣
G∑

g=2

(
E
[
ȳ2gG|X1, ...,Xg−1,Z

]
− E

[
ȳ2gG|Z

]) ∣∣∣∣∣ ≥ v|Z

)
−→ 0 a.s.
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Now write
G∑

g=2

(
E
[
ȳ2gG|X1, ...,Xg−1,Z

]
− E

[
ȳ2gG|Z

])

=
1

K


G∑

g=2

∑
g′<g
h<g

∑
i,k∈g
j∈g′
ℓ∈h

pijpkℓ (E[uiuk|Z]ejeℓ + E[eiuk|Z]ujeℓ + E[uiek|Z]ejuℓ + E[eiek|Z]ujuℓ)

−
G∑

g=2

∑
g′<g

∑
i,k∈g
j,ℓ∈g′

pijpkℓ (E[uiuk|Z]E[ejeℓ|Z] + 2E[eiuk|Z]E[ujeℓ|Z] + E[eiek|Z]E[ujuℓ|Z])



=
1

K

 G∑
g=2

∑
g′<g

∑
i,k∈g
j,ℓ∈g′

pijpkℓ (E[uiuk|Z]ejeℓ + E[eiuk|Z]ujeℓ + E[uiek|Z]ejuℓ + E[eiek|Z]ujuℓ)

+ 2
G∑

g=3

∑
h<g′<g

∑
i,k∈g
j∈g′
ℓ∈h

pijpkℓ (E[uiuk|Z]ejeℓ + E[eiuk|Z]ujeℓ + E[uiek|Z]ejuℓ + E[eiek|Z]ujuℓ)

−
G∑

g=2

∑
g′<g

∑
i,k∈g
j,ℓ∈g′

pijpkℓ (E[uiuk|Z]E[ejeℓ|Z] + 2E[eiuk|Z]E[ujeℓ|Z] + E[eiek|Z]E[ujuℓ|Z])



=
1

K

2
G∑

g=3

∑
h<g′<g

∑
i,k∈g
j∈g′
ℓ∈h

pijpkℓ (E[uiuk|Z]ejeℓ + E[eiuk|Z]ujeℓ + E[uiek|Z]ejuℓ + E[eiek|Z]ujuℓ)

+
G∑

g=2

∑
g′<g

∑
i,k∈g
j,ℓ∈g′

pijpkℓE[uiuk|Z] (ejeℓ − E[ejeℓ|Z])

+
G∑

g=2

∑
g′<g

∑
i,k∈g
j,ℓ∈g′

pijpkℓE[eiuk|Z] (ujeℓ − E[ujeℓ|Z])

+
G∑

g=2

∑
g′<g

∑
i,k∈g
j,ℓ∈g′

pijpkℓE[uiek|Z] (ejuℓ − E[ejuℓ|Z])

+
G∑

g=2

∑
g′<g

∑
i,k∈g
j,ℓ∈g′

pijpkℓE[eiek|Z] (ujuℓ − E[ujuℓ|Z])

 .
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By applying Lemma A7, we show that each term converges to 0 in probability.
The preceding argument shows that as G −→ ∞, P (YG ≤ y|Z) −→ Φ(y) a.s. PZ , for every

real number y, where Φ(y) denotes denotes the c.d.f. of a standard normal distribution.
Moreover, it is clear that, for some v > 0, supG E[|P (YG ≤ y|Z)|1+v] < ∞. Hence, by a
version of the dominated convergence theorem, as given by Theorem 25.12 of Billingsley
(1986), we deduce that P (YG ≤ y) = E[P (YG ≤ y|Z)] −→ E[Φ(y)] = Φ(y), which gives the
first conclusion.

The second conclusion follows similarly; instead of Lemma A7 we use Lemma A8.

Lemma A5. If Assumptions 1-3 are satisfied, then

(i) S−1
n ĤS−1

n =
∑

Ci ̸=Cj

pijziz
′
j/n+ op(1),

(ii) S−1
n

∑
Ci ̸=Cj

pijXiεj = Op

(√
nmax +

√
Kn2

max/rn

)
.

Proof. Let ek be kth unit vector and let Yi = e′kS
−1
n Xi = e′kzi/

√
n + e′kS

−1
n Ui and Wi =

e′ℓS
−1
n Xi for some (k, ℓ). By Assumption 2, λmin(Sn) ≥ C

√
rn, then ||S−1

n || ≤ C/
√
rn. It

follows that a.s.

E[Yi|Z] = e′kzi/
√
n, Var(Yi|Z) = e′kS

−1
n E[UiU

′
i ]S

−1
n

′ek ≤ C||S−1
n ||2 ≤ C/rn,

E[Wi|Z] = e′ℓzi/
√
n, Var(Wi|Z) = e′ℓS

−1
n E[UiU

′
i ]S

−1
n

′eℓ ≤ C||S−1
n ||2 ≤ C/rn.

Note that a.s.

σ̄Wnσ̄Ynnmax

√
K ≤ Cnmax

√
K/rn −→ 0,√

ȳ′ȳnmaxσ̄2
Wn

≤ C

√∣∣∣∣∣∣∑
i

ziz′i/n
∣∣∣∣∣∣√nmax/rn −→ 0,

√
w̄′w̄nmaxσ̄2

Yn
≤ C

√∣∣∣∣∣∣∑
i

ziz′i/n
∣∣∣∣∣∣√nmax/rn −→ 0.

Because e′kS
−1
n ĤS−1

n eℓ = e′kS
−1
n

∑
Ci ̸=Cj

pijXiX
′
jS

−1
n eℓ =

∑
Ci ̸=Cj

pijYiWj and pij ȳiw̄j =

pije
′
kziz

′
jeℓ/n, applying Lemma A1 and the conditional version of M, we deduce that for any

v > 0 and An = {|e′kS−1
n ĤS−1

n
′eℓ −

∑
Ci ̸=Cj

pije
′
kziz

′
jeℓ/n| ≥ v}, P (An|Z)

a.s.−−→ 0. By the

dominated convergence theorem, P (An) = E[P (An|Z)] −→ 0.
The preceding argument establishes the first conclusion for the (k, ℓ)th element. Doing

so for every element of S−1
n ĤS−1

n completes the proof of the first conclusion.
For the second conclusion, let Yi = e′kS

−1
n Xi = e′kzi/

√
n + e′kS

−1
n Ui for some k as before

and Wi = εi. Note that E[Wi|Z] = 0 and Var(Wi|Z) ≤ C. Then by Lemma A1,

E

e′kS
−1
n

∑
Ci ̸=Cj

pijXiεj

2

|Z

 ≤ CKn2
max/rn + Cnmax.

The conclusion then follows from the fact that E[A2
n|Z] ≤ Ccn implies An = Op(

√
cn).
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Lemma A6. If Assumptions 1–4 are satisfied, then

S−1
n ĤS−1

n
′ = Hn + op(1).

Proof. Denote I[g] to be ng × ng identity matrix. Using Lemma A5,

S−1
n ĤS−1

n
′ =

∑
Ci ̸=Cj

pijziz
′
j/n+ op(1)

=
∑
g,h

z′[g]P[g,h]z[h]/n−
∑
g

z′[g]P[g,g]z[g]/n+ op(1)

=
∑
g

z′[g]

(∑
h

P[g,h]z[h] − z[g]

)
/n+

∑
g

z′[g](I[g] − P[g,g])z[g]/n+ op(1).

It suffices to show that
∑

g z
′
[g]

(∑
h P[g,h]z[h] − z[g]

)
/n = oa.s.(1). Let z̄[g] =

∑
h P[g,h]z[h] and

z̄i =
∑

j pijzj. Note that

||z[g] − z̄[g]||2/n =
∑
i∈g

||zi − z̄i||2

and ∑
g

||z[g] − z̄[g]||2/n =
∑
i

||zi − z̄i||2 −→ 0 a.s.

by Lemma A6 in Chao et al. (2012). It follows that∣∣∣∣∣
∣∣∣∣∣∑

g

z′[g]
(
z̄[g] − z[g]

)
/n

∣∣∣∣∣
∣∣∣∣∣ ≤ ∑

g

∣∣∣∣z[g]∣∣∣∣× ∣∣∣∣ (z̄[g] − z[g]
) ∣∣∣∣/n

≤
√∑

g

∣∣∣∣z[g]∣∣∣∣2/n√∑
g

∣∣∣∣ (z̄[g] − z[g]
) ∣∣∣∣2/n −→ 0 a.s.
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Proof of Theorem 1. First note that that by λmin(SnS
′
n/rn) ≥ λmin(S̃nS̃

′
n) ≥ C, we have∣∣∣∣∣∣S ′

n(δ̂ − δ)/
√
rn

∣∣∣∣∣∣ ≥ √λmin(SnS ′
n/rn)

∣∣∣∣∣∣δ̂ − δ
∣∣∣∣∣∣ ≥ C

∣∣∣∣∣∣δ̂ − δ
∣∣∣∣∣∣.

Therefore, S ′
n(δ̂ − δ)/

√
rn

p−→ 0 implies δ̂
p−→ δ. Lemma A6 implies that

(
S−1
n ĤS−1

n
′
)−1

=

Op(1). By Lemma A5,

r−1/2
n S ′

n(δ̂ − δ) =
(
S−1
n ĤS−1

n
′
)−1

S−1
n

∑
Ci ̸=Cj

Xipijξj/
√
rn = Op(1)op(1)

p−→ 0.

All of the previous statements are conditional on Z, so for the random variable Rn =
r
−1/2
n S ′

n(δ̂ − δ), we have shown that for any constant v > 0, a.s. Pr(||Rn|| ≥ v|Z) −→ 0.
Then by the dominated convergence theorem, Pr(||Rn|| ≥ v) = E[Pr(||Rn|| ≥ v|Z)] −→ 0.

Therefore, because v is arbitrary, it follows that Rn = r
−1/2
n S ′

n(δ̂ − δ)
p−→ 0.
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Assumption A1. ||Mgg|| ≤ 1.

Assumption A2 λmin

(∑
g z

′
[g](I[g] − P[g,g])E

[
ε[g]ε

′
[g]|Z

]
(I[g] − P[g,g])z[g]

)
/n ≥ C > 0.

Proof of Theorem 2. Define

YG =
G∑

g=1

z′[g](I[g] − P[g,g])ε[g]/
√
n+ S−1

n

∑
Ci ̸=Cj

Uiεjpij.

By Assumptions 2-4,

E

∣∣∣∣∣
∣∣∣∣∣

G∑
g=1

(z[g] − z̄[g])ε[g]/
√
n

∣∣∣∣∣
∣∣∣∣∣
2

|Z

 =
G∑

g=1

∣∣∣∣z[g] − z̄[g]
∣∣∣∣2E [∣∣∣∣ε[g]∣∣∣∣2|Z] /n

≤ C
G∑

g=1

∣∣∣∣z[g] − z̄[g]
∣∣∣∣2ng/n −→ 0 a.s.

Then by M,

S−1
n

∑
Ci ̸=Cj

Xiεjpij − YG =
G∑

g=1

(z[g] − z̄[g])ε[g]/
√
n

p−→ 0.

Let ΓG = Var(YG|Z), so

ΓG =
G∑

g=1

z′[g](I[g] − P[g,g])E
[
ε[g]ε

′
[g]

]
(I[g] − P[g,g])z[g]/n

+ S−1
n

∑
g,h

∑
i,k∈g
j,ℓ∈h

(E[UiU
′
k|Z]E[εjεℓ|Z] + E[Uiεk|Z]E[εjU ′

ℓ|Z])pijpkℓS
−1
n

′.

S−1
G ≤ C/

√
rn by Assumption 2 , and

∑
g,h

∑
i,k∈g
j,ℓ∈h

|pijpkℓ| ≤ n2
maxK. By Assumption A1

and Assumption 3, E
[∑G

g=1 z
′
[g](I[g] − P[g,g])ε[g]ε

′
[g](I[g] − P[g,g])z[g]/n

]
≤ C

∑G
g=1 ||

∑
i∈g ziz

′
i/n|| ≤

C. Then by boundedness of Kn2
max/rn, ||ΓG|| ≤ C a.s.n.

By Assumption A2, λmin(ΓG) ≥ C > 0 a.s.n, and ||Γ−1
G || ≤ C a.s.n.

Let α be a L × 1 nonzero vector. Let WgG =
∑

i,j∈g ziεjpij/
√
n, c1G = Γ

−1/2
G α, and

c2G =
√
KS−1

n Γ
−1/2
G α. Condition (i) of Lemma A2 is satisfied.

Condition (ii) of Lemma A2 is satisfied by Assumption A2.
Condition (iii) of Lemma A2 is satisfied by Assumptions 3 and 5.
Condition (iv) of Lemma A2 is satisfied by Assumptions 3 and 5:

∑
g

E[||WgG||4|Z] ≤
∑
g

||z[g]||4||P[g,g]||4
(∑

i∈g

E[ε2i |Z]

)2

/n2

≤ Cn2
max

∑
g

||z[g]||4/n2 −→ 0 a.s.
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Condition (v) of Lemma A2 is satisfied by Assumption 1.
Further note that ||c1G|| ≤ C and ||c2G|| ≤ C a.s.n. Also by construction

ΞG = Var

c′1G
∑
g

WgG + c′2G
∑

Ci ̸=Cj

Uiεjpij/
√
K|Z

 = Var
(
α′Γ

−1/2
G

′YG|Z
)
= α′α.

By Lemma A2, it follows that

(α′α)−1/2α′Γ
−1/2
G YG

d−→ N (0, 1) a.s..

By the Cramér-Wold device, Γ
−1/2
G YG

d−→ N (0, IL) a.s.

It follows that Γ
−1/2
G YG = Op(1). ||Γ1/2

G || ≤ C a.s.n.; Vn = H−1
n ΓGH

−1
n , λmin(H

−1
n ΓGH

−1
n ) ≥

C > 0 a.s.n., then ||V −1/2
n || ≤ C a.s.n. Then Γ

1/2
G = Op(1) and V

−1/2
n = Op(1). Let

BG = V̄
−1/2
n H−1

n Γ
1/2
G . It follows that BGΓ

−1/2
G = V

−1/2
n H−1

n = Op(1) and V
−1/2
n YG =

V
−1/2
n Γ

1/2
G Γ

−1/2
G YG = Op(1). Combining it with Lemma A6 and the definition of δ̂,

V̄ −1/2
n S ′

n(δ̂ − δ) = V̄ −1/2
n (S−1

n ĤS−1
n

′)−1S−1
n

∑
Ci ̸=Cj

pijXiεj

= V̄ −1/2
n (H−1

n + op(1))Γ
1/2
G Γ

−1/2
G (YG + op(1))

= BGΓ
−1/2
G YG + op(1).

Note that BG is orthogonal and is a function of Z only. Then using Slutsky theorem,

V̄ −1/2
n S ′

n(δ̂ − δ) = BGΓ
−1/2
G YG + op(1)

d−→ N (0, IL).
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Lemma A7. Suppose that

(a) P = P (Z) is a symmetric, idempotent matrix with rank(P ) = K and pii ≤ C < 1;

(b) (εg, ug)
G
g=1 are independent conditional on Z; n5

max/n −→ 0;

(c) there exists a constant C such that a.s., supi E[u4
i |Z] ≤ C, supi E[ε4i |Z] ≤ C, and

supi |ϕi(Z)| ≤ C. Then a.s.

Then, a.s.,

(i) E

[(
1
K

∑G
g=2

∑
g′<g

∑
i,k∈g
j,ℓ∈g′

pijpkℓϕik (εjεℓ − E[εjεℓ|Z])

)2

|Z

]
−→ 0,

(ii) E

[(
1
K

∑G
g=2

∑
g′<g

∑
i,k∈g
j,ℓ∈g′

pijpkℓϕik (ujεℓ − E[ujεℓ|Z])
)2

|Z

]
−→ 0,

(iii) E

[(
1
K

∑G
g=2

∑
g′<g

∑
i,k∈g
j,ℓ∈g′

pijpkℓϕik (εjuℓ − E[εjuℓ|Z])
)2

|Z

]
−→ 0,

(iv) E

[(
1
K

∑G
g=2

∑
g′<g

∑
i,k∈g
j,ℓ∈g′

pijpkℓϕik (ujuℓ − E[ujuℓ|Z])
)2

|Z

]
−→ 0,

(v) E

 1
K

∑G
g=3

∑
h<g′<g

∑
i,k∈g
j∈g′
ℓ∈h

pijpkℓϕikεjεℓ

2

|Z

 −→ 0,

(vi) E

 1
K

∑G
g=3

∑
h<g′<g

∑
i,k∈g
j∈g′
ℓ∈h

pijpkℓϕikujεℓ

2

|Z

 −→ 0,

(vii) E

 1
K

∑G
g=3

∑
h<g′<g

∑
i,k∈g
j∈g′
ℓ∈h

pijpkℓϕikεjuℓ

2

|Z

 −→ 0,

(viii) E

 1
K

∑G
g=3

∑
h<g′<g

∑
i,k∈g
j∈g′
ℓ∈h

pijpkℓϕikujuℓ

2

|Z

 −→ 0.
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Proof. We show part (i) first:

E


 1

K

G∑
g=2

∑
g′<g

∑
i,k∈g
j,ℓ∈g′

pijpkℓϕik (εjεℓ − E[εjεℓ|Z])


2

|Z



=
1

K2

∣∣∣∣∣∣∣∣∣∣
∑
g,h

g′<min{g,h}

∑
i1,k1∈g
i2,k2∈h

j1,ℓ1,j2,ℓ2∈g′

pi1j1pk1ℓ1pi2j2pk2ℓ2ϕi1k1ϕi2k2 (E[εj1εℓ1εj2εℓ2|Z]− E[εj1εℓ1|Z]E[εj2εℓ2|Z])

∣∣∣∣∣∣∣∣∣∣
≤ C

K2

∑
g′

∑
g>g′

∑
i1,k1∈g
j1,ℓ1∈g′

|pi1j1pk1ℓ1|
∑
h>g′

∑
i2,k2∈h
j2,ℓ2∈g′

|pi2j2pk2ℓ2| =
C

K2

∑
g′

∑
g>g′

∑
i1∈g
j1∈g′

|pi1j1 |
∑
k1∈g
ℓ1∈g′

|pk1ℓ1|


2

=
C

K2

∑
g′

∑
g>g′

∑
i1∈g
j1∈g′

|pi1j1|


2

2

≤ C

K2
n2
max

∑
g′

∑
g

∑
i1∈g
j1∈g′

p2i1j1


2

=
C

K2
n2
max

∑
g

(∑
j∈g

pjj

)2

≤ C

K2
n3
max

∑
g

∑
j∈g

p2jj ≤
C

K
n3
max −→ 0.

Parts (ii), (iii), and (iv) follow similarly by interchanging the roles of ε and u.
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Now we show part (v):

E


 1

K

G∑
g=3

∑
h<g′<g

∑
i,k∈g
j∈g′
ℓ∈h

pijpkℓϕikεjεℓ


2

|Z



=
1

K2

∣∣∣∣∣∣∣∣∣∣∣∣
∑
g,h

g2<g1<g,h

∑
i1,k1∈g
i2,k2∈h
j1,j2∈g1
ℓ1,ℓ2∈g2

pi1j1pk1ℓ1pi2j2pk2ℓ2ϕi1k1ϕi2k2E [εj1εℓ1εj2εℓ2|Z]

∣∣∣∣∣∣∣∣∣∣∣∣
≤ C

K2

∑
g2

g1>g2


∑
g>g1

∑
i1,k1∈g
j1∈g1
ℓ1∈g2

|pi1j1pk1ℓ1|



∑
h>g1

∑
i2,k2∈h
j2∈g1
ℓ2∈g2

|pi2j2pk2ℓ2|


≤ C

K2
n4
max

∑
g2

g1>g2

∑
g>g1

∑
i1∈g
j1∈g1

p2i1j1

∑
g>g1

∑
k1∈g
ℓ1∈g2

p2k1ℓ1

≤ C

K2
n4
max

∑
g

(∑
j∈g

pjj

)2

≤ C
n5
max

K
−→ 0.

Parts (vi), (vii), and (viii) follow similarly by interchanging the roles of ε and u.
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Lemma A8. Suppose that

(a) P = P (Z) is a symmetric, idempotent matrix with rank(P ) = K and pii ≤ C < 1;

(b) (εg, ug)
G
g=1 are independent conditional on Z; n3

max/n −→ 0;

(c) there exists a constant C such that a.s., supi E[u4
i |Z] ≤ C, supi E[ε4i |Z] ≤ C, and

supi |ϕi(Z)| ≤ C. Then a.s.

Then, a.s.,

(i) E

[(
1
K

∑G
g=2

∑
g′<g

∑
i,k∈g
j,ℓ∈g′

pijpkℓϕik (εjεℓ − E[εjεℓ|Z]) /(|g| · |g′|)
)2

|Z

]
−→ 0,

(ii) E

[(
1
K

∑G
g=2

∑
g′<g

∑
i,k∈g
j,ℓ∈g′

pijpkℓϕik (ujεℓ − E[ujεℓ|Z]) /(|g| · |g′|)
)2

|Z

]
−→ 0,

(iii) E

[(
1
K

∑G
g=2

∑
g′<g

∑
i,k∈g
j,ℓ∈g′

pijpkℓϕik (εjuℓ − E[εjuℓ|Z]) /(|g| · |g′|)
)2

|Z

]
−→ 0,

(iv) E

[(
1
K

∑G
g=2

∑
g′<g

∑
i,k∈g
j,ℓ∈g′

pijpkℓϕik (ujuℓ − E[ujuℓ|Z]) /(|g| · |g′|)
)2

|Z

]
−→ 0,

(v) E

 1
K

∑G
g=3

∑
h<g′<g

∑
i,k∈g
j∈g′
ℓ∈h

pijpkℓϕikεjεℓ/(|g|
√
|g′| · |h|)

2

|Z

 −→ 0,

(vi) E

 1
K

∑G
g=3

∑
h<g′<g

∑
i,k∈g
j∈g′
ℓ∈h

pijpkℓϕikujεℓ/(|g|
√

|g′| · |h|)

2

|Z

 −→ 0,

(vii) E

 1
K

∑G
g=3

∑
h<g′<g

∑
i,k∈g
j∈g′
ℓ∈h

pijpkℓϕikεjuℓ/(|g|
√

|g′| · |h|)

2

|Z

 −→ 0,

(viii) E

 1
K

∑G
g=3

∑
h<g′<g

∑
i,k∈g
j∈g′
ℓ∈h

pijpkℓϕikujuℓ/(|g|
√
|g′| · |h|)

2

|Z

 −→ 0.

Proof. Almost identical to proof of Lemma A7.
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