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Abstract

Testing normality against discrete normal mixtures is complex because some parameters

turn increasingly underidenti�ed along alternative ways of approaching the null, others are

inequality constrained, and several higher-order derivatives become identically 0. These

problems make the maximum of the alternative model log-likelihood function numerically

unreliable. We propose score-type tests asymptotically equivalent to the likelihood ratio

as the largest of two simple intuitive statistics that only require estimation under the null.

One novelty of our approach is that we treat symmetrically both ways of writing the null

hypothesis without excluding any region of the parameter space. We derive the asymptotic

distribution of our tests under the null and sequences of local alternatives. We also show that

their asymptotic distribution is the same whether applied to observations or standardized

residuals from heteroskedastic regression models. Finally, we study their power in simulations

and apply them to the residuals of Mincer earnings functions.
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1 Introduction

Finite mixture models play an important role in economics, where they are often used

to model unobserved heterogeneity, especially in labor and industrial organization (see Berry,

Carnall and Spiller (2006), Cameron and Heckman (1998), and Keane and Wolpin (1997)) but

also in other �elds such as �nance, where the objective is to capture the observed skewness and

kurtosis of asset returns that may result from di¤erent market conditions. Mixtures also arise

in game theory with multiple equilibria, in measurement error models, as well as in duration

models (see Compiani and Kitamura (2016) and the references therein).

In this paper, we focus on �nite Gaussian mixtures, which are the most popular. Suppose

that individuals can be of two types, j = 1; 2 with normal distribution N(�j ; �j) for type j.

Assume moreover that the types are not observed by the econometrician. Then, the probability

density function (pdf) of an observation is given by the following linear combination of the pdfs

of the two types

��

�
yi � �1
�1

�
+ (1� �)�

�
yi � �2
�2

�
;

where � denotes the standard normal pdf. The object of the paper is to test the null hypothesis

of a normal versus a �nite mixture of two normals.

Testing for normal mixtures is particularly challenging. First, the null hypothesis can be

written in two ways: either as H0 : �1 = �2 and �
2
1 = �22, or as H0 : � (1� �) = 0. Many papers

focus only on one of these two null hypotheses but we treat both together. Another di¢ culty is

linked to the fact that some parameters are not identi�ed under the null hypothesis, although

their identity depends on the way in which one approaches the null. Moreover, when testing

� (1� �) = 0, � is on the boundary of the parameter space and standard asymptotic theory

fails (see Andrews (2001)). Finally, some parameters are only identi�ed � if at all � through

higher-order derivatives (cf. Dovonon and Renault (2013)), which means that studying the

properties of the likelihood ratio (LR) test requires an eigth-order expansion. All these aspects

make testing for normal mixtures highly nonstandard.

Previous papers investigating the properties of the LR tests for normal mixtures include

Ghosh and Sen (1985), Hathaway (1985), Chen and Chen (2001), Chen, Chen and Kalb�eisch

(2004), Cho and White (2007), and Chen, Ponomareva and Tamer (2014). The closest paper

to ours is Kasahara and Shimotsu (2015). The main di¤erence is that they only focus on the

null H0 : �1 = �2 and �
2
1 = �22, while we simultaneously deal with the second null hypothesis

H0 : � (1� �) = 0. Our work is also closely related to Cho and White (2007), who consider

both null hypotheses but exclude some corner regions of the parameter space. In this respect,

1



one important contribution of our paper is that we explicitly consider all possible values of the

parameter space under the null thanks to a novel convenient bijective reparametrization.

To circumvent the unusual features of the LR test, which not only make inference complex

but also render the maximum of the log-likelihood function of the alternative model numerically

unreliable when the null is true, some authors have proposed moment-based tests. Such an

approach goes back to the smooth tests in Neyman (1937). In particular, Quandt and Ramsey

(1978) use moments derived from the moment generating function, while others compare the

empirical characteristic function to the theoretical one under normality (see Amengual, Carrasco

and Sentana (2020)), or simply a handful of higher-order moments of the normal distribution,

as in Jarque and Bera (1980), Bai and Ng (2005), and Bontemps and Meddahi (2005), who look

at the expected values of Hermite polynomials rather than simple powers.1

In this paper, we propose score-type tests based on expansions of the log-likelihood function

for three null hypotheses of interest: equality of means and variances, equality of means only,

and equality of variances only. In all three cases, our tests are asymptotically equivalent to the

analogous LR tests while being much simpler to implement because the unknown mean and

variance parameters are estimated under the null hypothesis. Interestingly, when testing for the

equality of means and variances, our test boils down to the popular Jarque and Bera�s test based

on skewness and kurtosis, which implies that theirs is equivalent to the LR test in that context.

However, when we look at the global LR test, which explicitly considers the two di¤erent ways

of writing the null hypothesis, the equivalence disappears.

Empirical researchers in economics and �nance, though, are often interested in testing the

normality of the standardized residuals of an econometric model. For that reason, we investigate

if our testing procedure is robust to parameter uncertainty. We show that when the mean and

variance of the observed variable given some conditioning variables are parametric functions

of those variables, replacing the unknown parameters by a constrained maximum likelihood

estimator obtained under the null does not alter the expressions for our proposed test statistics

or their asymptotic properties.

The rest of the paper is organized as follows. In Section 2, we introduce the model and the

three null hypotheses. Then, we derive the test statistics and their distributions under both the

null and suitable sequences of local alternatives in Section 3, and establish their robustness to

parameter uncertainty in Section 4. Next, we discuss the results of our simulation experiments

in Section 5, and present an empirical application to Mincer earnings functions in Section 6.

Finally, Section 7 concludes, with the detailed proofs collected in an appendix.

1Bai and Ng (2001) propose a test for conditional symmetry in time series contexts based on the empirical
distribution function, which can also be used to test the null of normality.
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2 Model, hypotheses, and overview of the test

The model we consider is

y = � (x; �) + � (x; �) " (1)

where � and � are known functions of x with a �nite dimensional unknown parameter � and

" is independent of x with zero-mean and unit-variance. We want to test " is standard normal

against the alternative that it follows a standardized mixture of two normals. Observations are

given by (xi; yi), i = 1; 2; : : : ; n, where xi could be the lagged value of yi to allow for time-series

models, and for simplicity we assume that "i conditional on the past is iid: As we will show

in Section 4, estimation of � does not a¤ect the properties of the test, so at this stage we can

assume � is known and focus on the case without conditioning variables.

Assuming that � (xi; �) = 0 and � (xi; �) = 1 without loss of generality, we want to test:

H0 : y has density � (yi) against

H1 : y has density ��
�
y���1
��1

�
+ (1� �)�

�
y���2
��2

�
, where

��1 =
�(1� �)q

1 + �(1� �)�2
; ��2 = �

�

1� ��
�
1

��21 =
1�

1 + �(1� �)�2
�
[�+ (1� �) exp({)]

and ��22 = exp({)��21 ; (2)

with �, {, and � being unknown parameters. This parametrization guarantees that the mar-

ginal distribution of y has zero-mean and unit-variance regardless of the values of the shape

parameters. As the labels of the two regimes are not identi�ed, in what follows we set � � 1=2.2

Let # = (�;{; �), with # 2 [���; ��]� [�{;{]� [1=2; 1]. We consider three di¤erent parameter

spaces

�01 = [���; ��]� [��{; �{]� [1=2; 1] ,

�02 = [���; ��]� f0g � [1=2; 1] , and

�03 = f0g � [��{; �{]� [1=2; 1] .

�01 corresponds to the case where �, {, and � are free to take any values within their respective

intervals. In turn, �02 corresponds to the case where { is constrained to be equal to zero,

which is relevant when the econometrician knows that the variance is the same in both regimes.

Finally, �03 corresponds to the case where � is constrained to be equal to zero, which captures

the knowledge that the mean is common to both regimes.

2 In the unlikely event that � = 1=2, we could label the two components based on the sign of �, and if that
also failed, we could eventually rely on the sign of �.

3



It is well known that the information matrix of the maximum likelihood estimators of (�;{)

is singular under H0. To isolate the singularities and have the �rst-order derivatives exactly

equal to zero under the null, we introduce the following reparametrization:

{ = �� (2�� 1)�2=3; (3)

so that the parameter vector becomes � = (�; �; �). The null hypothesis H0 can thus be written

as either � = 1 or � = � = 0. Let

�j = f(�; �; �) : (�; �� (2�� 1)�2=3; �) 2 �0jg, j = 1; 2; 3:

The goal of our paper is to construct a score-type test for each of the three hypotheses that is

asymptotically equivalent to the analogous LR statistic

LRj = 2

"
sup
�2�j

Ln(�; �; �)� Ln(�; �; 1)
#
with Ln(�; �; �) =

nX
i=1

li(�; �; �); (4)

where li is the log-likelihood of yi given �. The main di¢ culty of �nding a score-type test is

that some elements of � are not identi�ed under the null. Indeed, under H0 : � = � = 0, the

parameter � is not identi�ed. Similarly, the parameters � and � are not identi�ed when � = 1.

The existing literature circumvents the problem by testing

H01 : (�; �) = 0 with � � 1� " < 1, or testing H02 : � = 1 with maxfj�j; j�jg � "

(see, e.g., Cho and White (2007), and Kasahara and Shimotsu (2015), among others). However,

the �corner case�f(�; �; �) : maxfj�j; j�jg � "; � � 1� "g is missing, and it is not obvious that

the resulting test statistic is asymptotically equivalent to (4).

To address this issue, we partition the parameter space as follows,

Pa;j = f(�; �; �) 2 �j : maxfj�j; j�jg � 1� �g and Pb;j = f(�; �; �) 2 �j : maxfj�j; j�jg � 1� �g

for j = 1; 2; 3 so that we can test the two null hypotheses simultaneously. To the best of our

knowledge, this has never been done before.

In what follows, we call H0a;j : � = � = 0 with � 2 Pa;j , and H0b;j : � = 1 with � 2 Pb;j . To

begin with, we treat H0a;j and H0b;j separately and develop the two corresponding test statistics,

but then we will combine them by taking the largest of the two.
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Speci�cally, we show in the next section that

2

"
sup
�2Pa;1

Ln(�)� Ln(�; �; 1)
#
=
H2
3;n

nV3
+
H2
4;n

nV4
+ op(1), and

2

"
sup
�2Pb;1

Ln(�)� Ln(�; �; 1)
#
= sup
(�;�):(�;�;1)2�1nf0;0;1g

$
Gn(�; �)p
V (�; �)

%2
�

+ op(1)

where b�c� = min(0; �),

H3;n =
nX
i=1

h3i =
nX
i=1

yi(y
2
i � 3); V3 = var (h3;i) = 6;

H4;n =
nX
i=1

h4i =
nX
i=1

(3� 6y2i + y4i ) V4 = var (h4;i) = 24;

Gn(�; �) =
"
1p
n

nX
i=1

1

2
(3� e��

�2

3 )� 1p
e{
exp

�
1

2

�
y2i�(yi + �)2e

�
�
�� �2

3

���
��yi � (1� e��

�2

3 )
y2i
2
+
�2

2
(y2i � 1)

�
; and

V (�; �) =
exp[�2=(2� e�� �2

3 )]

�2
q
(2� e�� �2

3 )e��
�2

3

� 1

2�2

�
3� 2e��

�2

3 + (e��
�2

3 + �2)2
�
:

Thus, we obtain three score-type tests asymptotically equivalent to the respective LR tests,

namely,

LM1 = max

8<:H2
3;n

nV3
+
H2
4;n

nV4
; sup
(�;�):(�;�;1)2�1nf0;0;1g

$
Gn(�; �)p
V (�; �)

%2
�

9=;
= sup

(�;�):(�;�;1)2�1nf0;0;1g

$
Gn(�; �)p
V (�; �)

%2
�

;

LM2 = max

8><>:H
2
3;n

nV3
+
H2
4;n

nV4
1 [H4;n < 0] ; sup

j�j���;j�j�0

6664 Gn(�; �2=3)q
V (�; �2=3)

77752
�

9>=>; ;

and

LM3 = max

8<:H2
4;n

nV4
1 [H4;n > 0] ; sup

j�j�{;j�j>0

$
Gn(0; �)p
V (0; �)

%2
�

9=; = sup
j�j�{;j�j>0

$
Gn(0; �)p
V (0; �)

%2
�

;

where the second equalities for LM1 and LM3 hold because the test in Pa is no larger than the

test in Pb for all possible samples.
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3 Test statistics

In this section, we focus on testing whether yi is a standard normal versus the alterna-

tive where yi is a standardized mixture of two normal distributions. The case with nuisance

parameters will be treated in Section 4.

3.1 Test of H0a

As we mentioned above, testing H0a;1 : � = � = 0 with � 2 Pa;1 assesses whether the

mean and variance are the same in both regimes. Similarly, testing H0a;2 : � = 0 with � 2 Pa;2
implicitly assumes that the variances are known ex-ante to be the same in both regimes and

one simply wants to test whether the mean is also the same. Finally, testing H0a;3 : � = 0 with

� 2 Pa;3 maintains that the means of the two regimes are known ex-ante and one only wants to

check that the variances coincide too.

Let LRa;j be the LR statistics for testing H0a;j ; namely

LRa;j = 2

"
sup
�2Pa;j

Ln(�)� Ln(�; �; 1)
#
:

Thanks to our reparametrization, the derivatives of the log-likelihood with respect to � and �

at the point (0; 0; �) are such that

@li
@�

= 0,
@li
@�

= 0,

@2li

@�2
= 0,

@2li
@�@�

= �1
2
�(1� �)h3i,

@2li
@�2

=
1

4
�(1� �)h4i,

@3li

@�3
= 0, and

@4li

@�4
= �2

3
�(1� �)(1� �+ �2)h4i:

Using an eigth-order expansion of the log-likelihood function, we can characterize the leading

terms which are the basis for our score-type tests. In particular, if 1[A] denotes the indicator

function for event A, the score-type test statistics corresponding to the three null hypotheses

are given by

LMa;1 =
H2
3;n

nV3
+
H2
4;n

nV4
;

LMa;2 =
H2
3;n

nV3
+
H2
4;n

nV4
1 [H4;n < 0] ; and

LMa;3 =
H2
4;n

nV4
1 [H4;n > 0] :

In LMa;1 we recognize Jarque and Bera�s test, which exploits both the skewness and kurtosis
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of the data. In contrast, LMa;3 exploits only its potential lepkurtosis, while LMa;2 both its

skewness and its potential platykurtosis. Intuitively, when � = 0 but � 6= 0, the alternative

becomes a scale mixture of normals, which can only be leptokurtic and symmetric. On the other

hand, when � = 0 but � 6= 0, close to the null we can have either positive or negative skewness

but only platykurtosis. Finally, in the unrestricted case there are no restrictions because two-

component Gaussian mixtures can generate the entire admissible range of skewness-kurtosis

coe¢ cients.

The following propositions establish the equivalence between the LR and our score-type tests

and give their asymptotic distributions.

Proposition 1 For j = 1; 2; 3, LRa;j = LMa;j + op (1) under H0a;j.

Proposition 2 Under H0;

LMa;1
d! �22, LMa;2

d! �21 +max(0; Z)
2, and LMa;3

d! max(0; Z)2;

where �2j denotes a chi-square random variable with j degrees of freedom and Z is a standard

normal independent of �21.

3.2 Test of H0b

We are now concerned with testing H0b;j : � = 1 with � 2 Pb;j . H0b;1 corresponds to the

case where both the mean and variance can be di¤erent across regimes under the alternative,

H0b;2 to the case where only the mean may di¤er across regimes and H0b;3 to the case where

only the variance is allowed to change. Importantly, we are in the rather unusual setting where

the parameter � is on the boundary of its range and some nuisance parameters are not identi�ed

under H0.

The score with respect to � at the point � = 1 is given by

@li
@�

=
1

2

�
3� e��

�2

3

�
� 1q

e��
�2

3

exp

�
1

2

�
y2i�(yi + �)2e

�
�
�� �2

3

���
(5)

��yi �
�
1� e��

�2

3

�
y2i
2
+
�2

2
(y2i � 1):

To complicate the analysis further, the score with respect to � equals zero when � and � are 0

simultaneously. For that reason, we �rst focus on the case where the couple (�; �) is away from

(0; 0), leaving the discussion of the general case where (�; �) may go to (0; 0) for later.

Let B = f(�; �; 1) 2 Pb;1 :
p
�2 + �2 � �g for some � > 0. From the form of the score in (5),

we can see that the variance of @li=@� becomes unbounded when e
�
�
�� �2

3

�
� 2, so in principle
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it may seem that we should restrict � � �2=3 < ln(2). However, our test statistic is based on

the ratio of @li=@� over its variance, a ratio that goes to zero for � � �2=3 � ln(2). Therefore,

we will never get a maximum in this range because we take the supremum over other values

of � and � for which the ratio is not 0. As a result, we can ignore this constraint when the

variance in the denominator is estimated. In contrast, we need to restrict �� �2=3 � �{ < ln(2)

to avoid numerical over�ow when we use the explicit theoretical expression (6) of the variance

in computing the test statistic, even though the previous argument still applies.

Lemma 1 Under H0, we have

Gn(�; �) �
1p
n

nX
i=1

@li
@�

) G (�; �) ;

where G (�; �) is a Gaussian process indexed by (�; �) 2 B with mean 0, variance given by

var[G (�; �)] =
exp[�2=(2� e�� �2

3 )]q
(2� e�� �2

3 )e��
�2

3

� 1
2

�
3� 2e��

�2

3 + (e��
�2

3 + �2)2
�
; (6)

and covariance cov[G (�1; �1) ; G (�2; �2)] = g
�
�1; �1 � �2

3 ; �2; �2 �
�2

3

�
, where

g (�1; �1; �2; �2) =

exp

�
�(�

2
2e
�1+�21e

�2)
2ek1+k2

�
p
e�1 + e�2 � e�1+�2

exp

"
� (�2e

�1 + �1e
�2)2

2e�1+�2 (e�1+�2 � e�1 � e�2)

#
(7)

�1
2

h
3 + 2�1�2 + (�1�2)

2 + �21(e
�2 � 1) + �22(e�1 � 1)� e�1 � e�2 + e�1+�2

i
:

For a given (�; �), let

LMb (�; �) =

$
Gn(�; �)p
var[G (�; �)]

%2
�

:

In this context, we can de�ne our test statistic as

gLM b;1 = sup
(�;�;1)2B

LMb (�; �)

and the LR test statistic by

gLRb;j = 2
"

sup
�2Pb;j\B

Ln(�)� Ln(�; �; 1)
#
:

We can then show that:

Proposition 3 Under H0, we have that

(a) LMb (�; �)) bG (�; �)c2� ;
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where G (�; �) is a Gaussian process with zero mean and correlation function

cor[G (�1; �1) ;G (�2; �2)] = var[G (�1; �1)]
�1=2cov[G (�1; �1) ; G (�2; �2)]var[G (�2; �2)]

�1=2;

(b) gLM b;1
d! sup
(�;�;1)2B

bG (�; �)c2� ; and

(c) gLRb;1 = gLM b;1 + op (1) :

As we mentioned at the beginning of this section, so far we have restricted (�; �) away from

0 for simplicity. But now, we consider the case where (�; �)! 0, which is more complex because

the score with respect to � equals zero when � and � are simultaneously 0. Consequently,(
Gn(�; �)p
var[G (�; �)]

: (�; �; 1) 2 �1n f0; 0; 1g
)

is not Donsker because we could have both (�1n; �1n)! 0 and (�2n; �2n)! 0 but

lim
n!1

Gn (�1n; �1n)p
var[G (�1n; �1n)]

6= lim
n!1

Gn (�2n; �2n)p
var[G (�2n; �2n)]

:

To deal with this problem, we reparametrize the model and de�ne

G0n(� ;m) =
1

�
Gn[�(� ;m); �(� ;m)]

and

V
0
(� ;m) =

1

�2
varfG[�(� ;m); �(� ;m)]g;

so that � ! 0 if and only if (�; �) ! 0, in which case lim�!0 G
0
n(� ;m) is well de�ned. We can

further show that fG0n(� ;m)g is Donsker (see the proof of Proposition 4 for details).

Consider the score-type tests corresponding to H0b;j , with j = 1; 2; 3, namely:

LMb;1 = sup
(�;�):(�;�;1)2�1nf0;0;1g

$
Gn(�; �)p
var[G(�; �)]

%2
�

;

LMb;2 = sup
j�j���;j�j>0

6664 Gn(�; �
2

3 )q
var[G(�; �

2

3 )]

77752
�

;

and

LMb;3 = sup
j�j�{;j�j>0

$
Gn(0; �)p
var[G(0; �)]

%2
�

;

where we have excluded the element f0; 0; 1g because at this point var[G(�)] = 0. Let us explain
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the choice of the spaces over which the supremum is taken. Recall that

�j = f(�; �; �) : (�; �� (2�� 1)�2=3; �) 2 �0jg:

When � = 1, (�; �; 1) 2 �1 is equivalent to
�
(�; �) : j�j � ��; j�� �2=3j � �{

	
, i.e.,

sup
(�;�;1)2�1nf0;0;1g

$
Gn(�; �)p
var[G(�; �)]

%2
�

= sup
j�j���;j���2=3j��{

$
Gn(�; �)p
var[G(�; �)]

%2
�

:

Similarly, (�; �; 1) 2 �2 is equivalent to
�
(�; �) : j�j � ��; � = �2=3

	
, while (�; �; 1) 2 �3 is equiv-

alent to f(�; �) : � = 0; j�j � �{g.

In this context, the following proposition establishes the equivalence between our proposed

tests and the LR:

Proposition 4 Under H0; we have

LRb;j = LMb;j + op (1) ;

where

LRb;j = 2

"
sup
�2Pb;j

Ln(�)� Ln(�; �; 1)
#
:

3.3 Combined test of H0

Now, we want to test H0 against H1 as de�ned in Section 2. Three tests are available

depending on the set �j , j = 1; 2; 3, of �. Note that �j = Paj [ Pbj , so that the likelihood ratio

test LRj = max(LRa;j ; LRb;j), and similarly LMj = max(LMa;j ; LMb;j). Using the previous

results, we have LRj = LMj + op (1).

Interestingly, we can show that the test statistic in Pa is no larger than the one in Pb with

probability 1 for �1 and �3, which implies that the corresponding tests can be simpli�ed as

follows:

Proposition 5 Under H0, we have

LR1 = sup
j�j���;j���2=3j��{;j�j;j�j>0

$
Gn(�; �)p
V (�; �)

%2
�

+ op(1) (8)

and

LR3 = sup
j�j��{;j�j>0

$
Gn(0; �)p
V (0; �)

%2
�

+ op(1): (9)
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However for �2, the test statistic in Pb may be either smaller or larger than that in Pa with

positive probability asymptotically (see the appendix for further details).

In summary, our score-type tests are

LM1 = LMb;1, LM2 = max(LMa;2; LMb;2) and LM3 = LMb;3

for testing H0 against a �nite normal mixture with � 2 �1, �2, and �3, respectively.

3.4 Distribution under local alternatives

Given that there are two ways of expressing the null, there are two types of local alternatives

to H0 : yi � N (0; 1), depending on whether � goes to 1, or (�; �)! (0; 0).

We �rst consider local alternatives in which � goes to 1, namely

H1n : �n = 1�
�p
n
;

where � is some positive constant and � and � are assumed away from 0.

Let P�;�n, with � = (�; �), denote the probability measure of y1; : : : ; yn corresponding toH1n,

and P0 be the probability measure of y1; : : : ; yn corresponding to H0. In addition, let �2k (�)

denote a non-central chi-square random variable with k degrees of freedom and non-centrality

parameter �. We can then show that:

Proposition 6 (a) For any (�; 1) 2 B, P�;�n is contiguous with respect to P0.

(b) Under H1n,0BB@
H3;np
n

H4;np
n

1p
n

P
i
@li
@�

1CCA d! N

264
0B@ �c3�

�c4�
�var[G (�)]�

1CA ;

0B@ V3 0 c3

0 V4 c4

c3 c4 var[G (�)]

1CA
375 ;

where

c3 = cov

�
h3i;

@li
@�

�
= �3 + 3�

�
e��

�2

3 � 1
�

and

c4 = cov

�
h4i;

@li
@�

�
= 6�2

�
1� e��

�2

3

�
� �4 � 3

�
1� e��

�2

3

�2
:

(c) Under H1n,

LMa;1 =
H2
3;n

nV3
+
H2
4;n

nV4

d! �22

�
c23�

2

V3
+
c24�

2

V4

�
:
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(d) Under H1n, gLM b;1
d! sup
(�;1)2B

minf0;G (�)� var1=2[G (�)]�g2:

The following remarks are in order:

1. The gLM b;1 test has nontrivial power against local alternatives of order 1/
p
n.

2. It follows from Proposition 6 that the LM1 test has non trivial power againstH1n provided

either � 6= 0 or � 6= 0. On the other hand, if � goes to zero faster than 1/
p
n, then LM1 will not

have power even if � 6= 0 and � 6= 0.

3. The asymptotic distribution of max(LMa;1;gLM b;1) under H1n could in principle be de-

duced from Proposition 6 (b), although there is no simple expression for it.

Next, we consider local alternatives in which (�; �) approaches (0; 0). Let P�n be the distri-

bution of yi under local alternatives such that limn!1(w1n; w2n) = (w1; w2) 2 R2, where

w1n = �1
2
(1� �n)�n

p
n�n�n;

w2n = (1� �n)�n
p
n

�
1

8
�2n �

1� �n + �2n
36

�4n

�
:

Somewhat unusually, we can have w1n = O (1) and w2n = O (1) in two di¤erent cases:

(a) when
p
n (1� �n) �n�n = O (1) and (1� �n)

p
n�2n = O(1), or

(b) when
p
n (1� �n) �n�n = O (1) and

p
n (1� �n) �4n = O(1).

We can then show that:

Proposition 7 (a) P�n is contiguous with respect to P0.

(b) Under the local alternative P�n, we have

LMa;1 =
H2
3;n

nV3
+
H2
4;n

nV4

d! �22
�
V3w

2
1 + V4w

2
2

�
;

gLM b;1 = sup
(�;1)2B

LMn (�)
d! sup
(�;1)2B

minf0;G (�) + var�1=2[G (�)] (c3w1 + c4w2)g2:

An interesting implication of Proposition 7 in terms of power is the following. We have

c3w1 =

�
�3 + 3�

�
e��

�2

3 � 1
��

w1 � 0;

while the sign of

c4w2 =

"
6�2
�
1� e��

�2

3

�
� �4 � 3

�
1� e��

�2

3

�2#
w2

depends on both the type of local alternative (either
p
n�2n = O (1) or

p
n�4n = O (1)) and the

values taken by � and �. Since we take a minimum over � and �, we can always �nd values of
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these parameters such that c4w2 � 0. Consequently, the expectation of @li=@� is negative and

the test gLM b;1 will have nontrivial power against P�n . However, if �n and �n go to zero too fast,

or in other words, if w1 = op (1) and w2 = op (1), then the test will have trivial power.

Nevertheless, we would like to emphasize that Propositions 6 and 7 imply that our tests are

consistent for any �xed alternative for which � 6= 1 and either � 6= 0 or � 6= 0. Indeed, the

di¤erent test statistics diverge under such �xed alternatives, and their power goes to 1.

4 Robustness to parameter uncertainty

In this section, we study the impact of estimating the mean and variance parameters under

the null on the asymptotic properties of our testing procedures. Speci�cally, we consider the case

where the conditional mean and variance of y are parametric functions of another observable

variable x, as in (1). Autoregressive and Garch models are particular examples in which x

contains lagged values of y. In this context, the objective becomes to test whether the standard-

ized innovation " follows a standard normal distribution versus a standardized mixture of two

Gaussian components.

The conditional log-likelihood of the ith observation is given by

k � 1
2
ln�Y (xi; �) + ln

8<: �p
��21

exp

24� 1

2��21

0@yi � �Y (xi; �)q
�2Y (xi; �)

� ��1

1A235
+
1� �p
��22

exp

24� 1

2��22

0@yi � �Y (xi; �)q
�2Y (xi; �)

� ��2

1A2359=; ;

where k is an integration constant and ��1, �
�
2, �

�2
1 and ��22 are de�ned in (2).

Assumption 1 �Y (xi; �) and �Y (xi; �) are eight times continuously di¤erentiable with

respect to �.

Assumption 2 For all k 2 Nd� and �0k = 1; : : : ; 8, it holds that

E

24 @�0k�Y (xi; �)
@�k

!235 <1; E
24 @�0k�2Y (xi; �)

@�k

!235 <1;
where k = (k1; : : : ; kd�),

@�
0k�Y (xi; �)

@�k
=

@�
0k�Y (xi; �)

@�k11 : : : @�
kd�
d�

, and

@�
0k�2Y (xi; �)

@�k
=

@�
0k�2Y (xi; �)

@�k11 : : : @�
kd�
d�

:
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Proposition 8 Under Assumptions 1 and 2, replacing � by the restricted maximum likelihood

estimator under H0, �̂, does not alter the expressions of the score-type tests or their asymptotic

distributions.

In practice, yi is simply replaced by ŷi = [yi � �Y (xi; �̂)]=
q
�2Y (xi; �̂) in the expressions for

the di¤erent test statistics discussed in the previous section.

Proposition 8 is reminiscent of Proposition 3 in Fiorentini and Sentana (2007), who proved

that when a researcher estimates a multivariate parametric location-scale model with a para-

metric distribution for the innovations that nests the multivariate normal, including mixtures of

normals as a particular case, the (scaled, average) scores of the mean and variance parameters

are asymptotically independent of the (scaled, average) scores of the shape parameters when the

true distribution is in fact Gaussian. However, their proof assumes a regular model in which the

information matrix equality holds.

5 Monte Carlo evidence

In this section, we assess the �nite sample performance of our proposed tests by means of

several extensive Monte Carlo exercises. The composite null hypothesis is a normal distribution

with unknown mean � and variance �2, while the alternative is a mixture of two normal dis-

tributions with either di¤erent means, di¤erent variances, or di¤erent means and variances. In

addition, we compare our tests to the LR test and some popular nonparametric procedures based

on either the empirical cumulative distribution function (cdf) or the characteristic function.

Speci�cally, we look at the Kolmogorov-Smirnov (KS) test and the continuum of moments-test

proposed in Amengual, Carrasco and Sentana (2020) (ACS).

In this context, the LR test e¤ectively reduces to

LRj = 2 sup
�2�j

nX
i=1

L(ŷi; �)� 2
nX
i=1

L

�
ŷi; 0; 0;

1

2

�
;

where the standardized observations are

ŷi =
yi � �̂n
�̂n

; with �̂n =
1

n

nX
i=1

yi and �̂2n =
1

n

nX
i=1

(yi � �̂n)2:

To calculate the maximizers of the �rst term, we use GlobalSearch Toolbox in Matlab with initial

value (0; 0; 1=2) and 1,000 potential starting points for � and �. We have also tried as initial

values the maximizers of the eighth-order expansion of the log-likelihood function. Speci�cally,

for each �j , we consider:
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� Initial value 1:
�
��n; �

�
n � (2��n � 1)(��n)2=3; ��n

�
, where ��n, �

�
n and �

�
n are de�ned in Step 5

of the proof of Proposition 1.

� Initial value 2: (�b; �b � (2�b � 1)�2b=3; �b), where

(�b; �b) 2 argmax
(�;�;1)2�j ;�2+�2>10�3

�
b@Ln(�; �; 1)=@�c�

�2
V (�; �)

and

�b = max

�
1 +

1

n

�
1

V (�b; �b)

@L(�b; �b; 1)

@�

�
�
;
1

2

�
:

In addition, we also tried the optimization of the reparametrized log-likelihood function

sup
�2�j

nX
i=1

L(ŷi; �);

using analogous initial values. It turns out, though, that the original likelihood with initial

value (0; 0; 1=2) yields the value of the parameters that yielded the largest criterion function in

all 1,000 trial points.

As for the other tests that we use for comparison purposes, we compute the KS statistic

on the basis of the probability integral transforms of the standardized observations obtained

through the standard normal cumulative distribution function (cdf), while we �x the Tikhonov

regularization parameter � to .01 and the scale parameter !2 of the Gaussian density used

to de�ne distances and inner products in a suitable L2-type Hilbert space to 1 in view of the

simulation results in Amengual, Carrasco and Sentana (2020).

In all cases, we compute empirical critical values using the following parametric bootstrap

procedure. First, we generate y1; : : : ; yn iid N(0; 1) and calculate the test statistics based on the

observations standardized with the estimated mean and variance in that sample, restricting the

parameter values over which we compute the sup to j�j � �� = 2 and j{j � �{ = 2=3. We then

repeat this 100,000 times to get the 1� � quantile of the test statistics which we use as critical

values.

To assess the size-corrected power of the di¤erent tests, we generate y1; : : : ; yn from a stan-

dardized normal mixture distribution with several combinations of �, � and { that include

symmetric mixtures �with either inliers ({ < 0) or outliers ({ > 0) �as well as asymmetric

ones (� 6= 0). Then, for each sample we standardize the observations and calculate the test statis-

tics as before, repeating this step 10,000 times. Finally, we compute the corresponding rejection

rates using the empirical critical values obtained under the null by means of the parametric

bootstrap procedure described in the previous paragraph.
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Rejection rates for sample sizes n = 125 and n = 500 are reported in Tables 1 and 2. We

report results for LMj , LMa;j and LMb;j , j = 1; 2; 3, whenever di¤erent. Note that LMa;1 is

denoted as JB in the tables because it coincides with Jarque and Bera�s test. Moreover, LMb;1

and LMb;3 are omitted from the tables because LM1 coincides with LMb;1, and LM3 with LMb;3.

The upper panels contain results for di¤erent combinations of � and { when � =.75, while the

lower ones do the same but when the mixing probability is .95. As a guide, we also include two

columns reporting the third and fourth moments of the alternative DGPs that we consider.

By and large, the results are very encouraging. When focusing on the parameter space �1,

our LM1 test performs similarly to the usual Jarque-Bera test, while for �2 (�3) it clearly

dominates both LMa and LMb (LMa), as expected. In addition, the relative performance of the

tests for di¤erent ��s is in line with the alternative DGPs we consider. Still, the ACS test does

a good job, beating both the LR and our score-type tests for some speci�c alternatives.

We also assess the asymptotic equivalence between our LM test and the LR test by computing

Gaussian rank correlation coe¢ cients (see Amengual, Tian and Sentana (2022)), which are

robust to the presence of unusually large values. Speci�cally, when n = 125 (500) we obtain .90,

.88 and .86 (.93, .90 and .86) for �1, �2 and �3, respectively.

Finally, we can con�rm that computing times for the score-tests are signi�cantly smaller than

for the LR tests, taking 0.59, 0.62 and 0.27 seconds per simulation when n = 500 versus 1.57,

1.20 and 1.53 seconds for �1, �2 and �3, respectively. Nevertheless, these �gures underestimate

the numerical advantages of our proposed tests in practice for two di¤erent reasons. First, the

location-scale model that we have considered in this section only contains two parameters, unlike

more realistic empirical models such as the one considered in the next section, which typically

contain many more parameters that will have to be estimated under the alternative too. Second,

supplemental appendix E7 of Fiorentini and Sentana (2021) shows that the ML estimators of

the unconditional mean and variance parameters � and �2 in any given sample are numerically

the same regardless of the values of the shape parameters �, { and �, which e¤ectively means

that we did not have to re-estimate them under the alternative because they coincide with the

sample mean and variance (with denominator n) of the observations. As a result, the criterion

function under the alternative calculated keeping � and �2 �xed at their restricted ML estimators

coincides with the criterion function maximized over all �ve parameters.

6 Empirical application to wage determinants

As is well known, the popular Mincer (1974) regression equation explains the (log) earnings

of individual workers as a function of their education, measured by the number of years of
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schooling, and their experience, which is usually captured by a quadratic polynomial to re�ect

skill depreciation. The rationale for these variables is that labor earnings are usually regarded as

the returns to human capital, with education and on the job-training being two di¤erent forms

of investment in it.

The simple Mincer equation, though, fails to capture cross-sectional heterogeneity in the

earnings of workers with identical schooling and experience. As an example, it is often argued

that female MBAs typically earn noticeably less than male MBAs with the same number of years

of experience. For that reason, empirical Mincer earnings functions often include several dummy

variables, like gender or race, aimed to capture part of that heterogeneity. Formally, the gender

dummy regression coe¢ cient can be understood as the proportional decrease in labor earnings

for a woman relative to a man with the same schooling and experience pro�le. Not surprisingly,

earnings discrimination analysis often focuses precisely on the statistical signi�cance of this

regression coe¢ cient.

But another crucial determinant of earnings is innate ability, for which data is regrettably

inexistent in most labor surveys.3 Given the dummy representation of a discrete mixture that

we have exploited in our tests, a mixture model for the residuals of the Mincer equation seems

very adequate to capture the possible existence of di¤erent underlying groups (or categories) of

workers with noticeably di¤erent ability characteristics.4

Chapter 5 of Berndt (1991) contains not only a detailed analysis of the issues that arise in

estimating the determinants of labor earnings, but also a random sample of 534 observations

from the May 1985 issue of the Current Population Survey compiled by the US Bureau of

Census. Given the illustrative nature of our analysis, we estimate by OLS the following baseline

speci�cation with all the observations in this dataset:

lnw = �C + �FFE + �OOTHERS + ";

where w is earnings, FE the female dummy variable, and OTHERS includes dummy variables

for union status, blacks, Hispanics, years of education, years of experience, its square and an

interaction term between schooling and experience. In addition, we estimate the same regression

speci�cation using exclusively female and male subsamples separately after dropping FE to avoid

collinearity. For each of those three empirical speci�cations, we test whether the residual follows

a normal distribution with 0 mean and unknown variance �2.
3Griliches and Mason (1972) constitute an important exception, as they had data on both earnings and IQ

scores for the individuals in their sample. Somewhat surprisingly, though, they found that their ability measures
were essentially uncorrelated with schooling, which means that the omitted variable bias in measuring the returns
to education was negligible.

4See Bonhomme and Manresa (2015) for a closely related approach in panel data.
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Unfortunately, we cannot use the parametric bootstrap to compute the critical values as we

did in our Monte Carlo simulations because of the presence of regressors. For that reason, we

use the following semiparametric bootstrap procedure:

1. Regress Y (= lnw) on the explanatory variables (X) and obtain the ordinary least-squares

estimates �̂, �̂2, and the OLS residual "̂.

2. Calculate the test statistic (denoted bT for simplicity) using "̂.
3. Using random sampling with replacement to nonparametrically bootstrap the regressors,

Xb, and then construct

Yb = Xb�̂+ �̂"b;

where "bj(Y;X) � iid N(0; 1).

4. Regress Yb on Xb and get �̂b and "̂b.

5. Calculate the test statistic Tb with input "̂b.

6. Repeat 10,000 times steps 2 to 5 and compute the bootstrap p-value as

1

B

BX
b=1

1[Tb > T̂ ]:

Importantly, we can achieve higher-order re�nements to the asymptotic distribution by im-

posing the normality of the standardized innovations.

The results of the empirical application are displayed in Table 3. The �rst column includes

results for the full sample, and the second and third ones for men and women separately. On

the basis of the p-values, we can see that the distribution of wages for the entire sample, condi-

tional on the regressors, is leptokurtic but apparently symmetric. However, when we distinguish

between males and females, some asymmetry appears, with positive skewness for men and nega-

tive skewness for women. Moreover, our tests reject the null hypothesis of normality against the

normal mixture, which suggests that some unobserved heterogeneity remains in both samples.

7 Conclusions and directions for further research

This paper presents score-type tests for normality against normal mixtures with di¤erent

means or variances. Our tests, which are robust to the sampling uncertainty resulting from

the estimation of the conditional mean and variance parameters used to construct standardized

residuals, are asymptotically equivalent to the LR test.
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For illustrative purposes, we focus on mixtures of two normal distributions. Considering more

than two categories would represent an interesting extension. We could also explore procedures

to determine the number of components in normal mixture models, as in Kasahara and Shimotsu

(2015). We have restricted ourselves to serially independent observations, but the underlying

regimes may be somewhat persistent in many macroeconomic and �nancial applications. An

extension of our work to the Markov-switching models recently considered by Carrasco, Hu and

Ploberger (2014) and Qu and Fan (2021) provides another promising route for future research.

It would also be interesting to consider other distributions besides the normal. In fact, the

normal distribution is very special and some of the di¢ culties we have dealt with, such as the

singularity of the information matrix, may not arise with other mixtures. Scale mixtures of

univariate normals give rise to mixtures of chi-square distributions with 1 degree of freedom

for the squares, and the same happens in the multivariate case if we consider the exponents

of the multivariate normal density, except that the degrees of freedom of the chi-squares will

coincide with the dimension of the random vectors. Therefore, it should be possible to test for

mixtures of two chi-squares using our existing results. We are currently exploring some of these

interesting research avenues.
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Appendix: Proofs

The proofs of our main theorems use some lemmas which we state and prove at the end

of the appendix. We will also make extensive use of the following notation:

1. the stochastic sequence an is �bounded in probability�, or Op(1), when 8� > 0, there exists

M such that Pr(janj < M) � 1� � for all n;

2. the sequence of events An holds �in�nitely often� (i.o.) when the cardinality of the set

fn : An holdsg is in�nite; and

3. An holds ultimately (all but �nite) when there exists N such that fn : An holdsg = fn :

n � Ng, with N <1.

Proof of Proposition 1

Overview of the proof

In this part, we �nd the score type test statistic that is asymptotically equivalent to

2

�
sup
�2Pa

Ln(�)� Ln(�; �; 1)
�
;

where Pa satis�es that (0; 0; 1) 2 Pa � �1. Notice that in the proof, we use Pa as the parameter

space, but we could, when required, change from Pa to Pa;k for k = 1; 2; 3. With a slight abuse

of notation, we also de�ne

LRn(�) = 2 [Ln(�)� Ln(0; 0; �)] , and

LMa
n(�) = 2

H3;np
n
w1 � V3w21 + 2

H4;np
n
w2 � V4w22; (10)

where

w1 = �
�

2

p
n(1� �)�� and w2 = �

�(1� �+ �2)
36

p
n(1� �)�4 + �

8

p
n(1� �)�2:

Moreover, note that Ln(�; �; 1) = Ln(0; 0; �):

There will be �ve steps in the proof:

1. For all sequences of �n 2 � with (�n; �n)
p�! 0, we have that

LRn(�n) = LMa
n(�n) + op[hn(�n)];

where hn(�) = max
�
1; n(1� �)2�8; n(1� �)2�2�2; n(1� �)2�4

	
.
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2. De�ning �LMn = (�LMn ; �LMn ; �LMn ) 2 argmax�2�LMa
n(�), we show that (�

LM
n ; �LMn )

p�! 0

and hn(�LMn ) = Op(1).

3. De�ning �LRn = (�LRn ; �LRn ; �LRn ) 2 argmax�2�LRn(�), we also show that (�LRn ; �LRn )
p�! 0

and hn(�LRn ) = Op(1).

4. We then prove that LRn(�LRn ) = LMa
n(�

LM
n ) + op(1).

5. We �nally simplify LMa
n(�

LM
n ) to LMa1 (resp, LMa2 and LMa3) in Pa1 (resp, Pa2 and

Pa3).

Step 1

We want to show that for all sequences �n = (�n; �n; �n) 2 � with (�n; �n)
p�! 0, we have

LRn(�n) = LMa
n(�n) + op[hn(�n)]; (11)

where hn(�) = max
�
1; n(1� �)2�8; n(1� �)2�2�2; n(1� �)2�4

	
.

Let l denote the log likelihood of the obervable y, h3 = y(y2� 3) and h4 = y4� 6y2+3. The

scores and relevant higher-order derivatives with respect to � and � at the point (0; 0; �) are

@l

@�
= 0,

@l

@�
= 0,

@2l

@�2
= 0,

@2l

@�@�
= �1

2
(1� �)�h3,

@2l

@�2
=
1

4
(1� �)�h4,

@3l

@�3
= 0, and

@4l

@�4
= �2

3
(1� �)�(1� �+ �2)h4:

Let

L[k1;k2]n =
1

k1!k2!

@k1+k2Ln(�)

@�k1@�k2

����
(0;0;�n)

and

4[k1;k2]
n =

1

k1!k2!

@k1+k2Ln(�)

@�k1@�k2

����
(~�n;~�n;�n)
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with (~�n; ~�n) between 0 and (�n; �n). Then, taking an eighth-order Taylor expansion we get

1

2
LRn(�n) =Ln(�n)� Ln(0; 0; �n)

=
p
n�4n

�
A1n + �nA2n +

p
n�4nA3n

�
+
p
n�2n

�
A4n + �nA5n +

p
n�2n (A6n + �nA7n)

�
+
p
n�n�n

�
A8n + �n

�
A9n +

p
n�4nA10n

�
+ �n

�
A11n +

p
n�2nA12n

��
+ n�2n�

2
n (A13n +A14n) +

X
j+k=9

1

n
�[j;k]n�jn�

k
n; (12)

where

A1n =

�
1p
n
L[4;0]n

�
, A2n =

7X
j=5

�
1p
n
L[j;0]n

�
�i�5n , A3n =

�
1

n
L[8;0]n

�
, A4n =

�
1p
n
L[0;2]n

�
,

A5n =

�
1p
n
L[0;3]n

�
, A6n =

1

n
L[0;4]n , A7n =

8X
j=5

�
1

n
L[0;j]n

�
�j�5n , A8n =

�
1p
n
L[1;1]n

�
,

A9n =

5X
j=2

�
1p
n
L[j;1]n

�
�j�2n , A10n =

7X
j=6

�
1

n
L[j;1]n

�
�j�6n , A11n =

3X
j=2

�
1p
n
L[1;j]n

�
�j�2n ,

A12n =
7X
j=4

�
1

n
L[1;j]n

�
�j�4n ; A13n =

1

n
L[2;2]n and A14n =

X
8�j+k�5
j�2;k�2

�
1

n
L[j;k]n

�
�j�2n �k�2n ;

Next, we have to show that X
j+k=9

�[j;k]�jn�
k
n = op[hn(�n)]: (13)

To do so, it is worth noticing that for j + k = 9,���� 1n�[j;k]n

���� �
����� 1n 1

j!k!

@j+kLn(�)

@�j@�k

����
(0;0;�n)

�����+
����� 1n 1

j!k!

@j+k+1Ln(�)

@�j+1@�k

����
(��n;��n;�n)

����� ���~�n��� (14)

+

����� 1n 1

j!k!

@j+k+1Ln(�)

@�j@�k+1

����
(��n;��n;�n)

����� j~�nj
�
����� 1j!k!

"
E
@j+kl(�)

@�j@�k

����
(0;0;�n)

#
+Op

�
1p
n

������
+ (1� �n)

1

j!k!
(15)

�
(�����E

"
@j+k+1l(�)

@�j+1@�k

����
(0;0;�n)

#�����+
�����
"
E
@j+k+1Ln(�)

@�j@�k+1

����
(0;0;�n)

#�����+ op(1)
)

=O
�
(1� �n)2

�
+Op

�
1p
n

�
+ op(1� �n); (16)

where (14) is a Taylor expansion around (0; 0; �n), (15) follows from the central limit theorem
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and

maxf
���~�n��� ; j~�njg � maxfj�nj ; j�njg � (1� �n);

while (16) follows from

E

24 @j0+k0 l(�)
@�j

0
@�k0

�����
(0;0;�n)

35 = O[(1� �n)2];

for j0 + k0 = 9 and j0 + k0 = 10, which can be easily checked by hand. Then,

X
j+k=9

�[j;k]�jn�
k
n =

X
j+k=9

�
O
�
(1� �n)2

�
+Op

�
1p
n

�
+ op [(1� �n)]

�
n�jn�

k
n

=
X
j+k=9

O
�
(1� �n)2

�
n�jn�

k
n +

X
j+k=9

Op(
p
n�jn�

k
n) +

X
j+k=9

op [(1� �n)]n�jn�kn

= op [hn(�n)] ;

which follows from �n, �n = op(1) and (1� �n) � maxfj�nj; j�njg.

If we then use (12) and (13), we can show that

1

2
LRn(�n) =

p
n�4n

�
A1n +

p
n�4nA3n

�
+
p
n�2n

�
A4n +

p
n�2nA6n

�
+
p
n�n�n

�
A8n +

p
n�n�nA13n

�
+ op[hn(�n)]; (17)

which follows from the fact that A1n to A13n are Op(1), and A14n = op(1) because the terms in

curly brackets are Op(1). Also,

1

2
LRn(�n) =�

�n(1� �n + �2n)
36

H4;np
n

p
n(1� �n)�4n

� 1
2

�
�n(1� �n + �2n)

36

�2
V4n(1� �n)2�8n

+
�n
8

H4;np
n

p
n(1� �n)�2n �

1

2

�
�n
8

�2
V4n(1� �n)2�4n

� �n
2

H3;np
n

p
n(1� �n)�n�n �

1

2

�
�n
2

�2
V3n(1� �n)2�2n�2n + op[hn(�n)] (18)

=
H3;np
n
w1n �

1

2
V3w

2
1n +

H4;np
n
w2n �

1

2
V4w

2
2n + op[hn(�n)]; (19)

with

w1n = �
�n
2

p
n(1� �n)�n�n and w2n = �

�n(1� �n + �2n)
36

p
n(1� �n)�4n +

�n
8

p
n(1� �n)�2n;

(20)

where in the �rst step we re-write (17) as (18). Then, letting

l[k1;k2] =
1

k1!k2!

@k1+k2 l

@�k1@�k2
;
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the result follows from

1

n
L[8;0]n = �1

2
E[(l[4;0])2] +Op(n

� 1
2 ) and

1

n
L[0;4]n = �1

2
E[(l[0;2])2] +Op(n

� 1
2 );

(see Lemma 1 in Rotnitzky et al (2000)), and

1

n
L[2;2]n = �1

2
E[(l[1;1])2] +Op(n

� 1
2 );

which can easily be checked by hand. As for the second step, it is a simple rearrangement of

terms to go from (18) to (19). Therefore, the only di¤erence in the leading terms is the coe¢ cient

of V4, namely,

w22n�
�
�n
8

�2
n(1��n)2�4n�

�
�n(1� �n + �2n)

36

�2
n(1��n)2�8n = Op[n(1��n)2�4n�2n] = op[hn(�n)];

as we wanted to show.

Step 2

First, we show that hn(�LMn ) = Op(1). By de�nition, we have

LMa
n(�) =2

1p
n
H3;nw1 + 2

1p
n
H4;nw2 � V3w21 � V4w22

=� V3
�
w1 �

1

V3

H3;np
n

�2
+
1

V3

�
H3;np
n

�2
� V4

�
w2 �

1

V4

H4;np
n

�2
+
1

V4

�
H4;np
n

�2
:

It is then straightforward to see that wLM1n = Op(1) and wLM2n = Op(1), where wLM1n and wLM2n

are de�ned in (20), because

n�
1
2H3;n
V3

= Op(1) and
n�

1
2H4;n
V4

= Op(1)

by the central limit theorem. Next, we have that

��pn(1� �LMn )�LMn �LMn
�� = ����2wLM1n�LMn

���� � ��4wLM1n �� = Op(1);

whence
p
n(1� �LMn )�LMn �LMn = Op(1): (21)

In addition, we also have�����pn(1� �LMn )
�
�LMn

�2 � 2[1� �LMn +
�
�LMn

�2
]

9

p
n(1� �LMn )

�
�LMn

�4����� =
���� 8

�LMn
wLM2n

����
� 16

��wLM2n �� = Op(1):
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Then by Lemma 7,
p
n(1� �LMn )

�
�LMn

�2
= Op(1) and

p
n(1� �LMn )

�
�LMn

�4
= Op(1). Together

with (21), we have hn(�LMn ) = Op(1). Moreover, it holds that �LMn ; �LMn = op(1) because

p
n(j�LMn j)3 �

p
n(�LMn )2(1� �LMn ) = Op(1)

and
p
n(j�LMn j)5 �

p
n(�LMn )4(1� �LMn ) = Op(1);

as desired.

Step 3

In what follows, we show Step 3.1: (�LRn ; �LRn )
p�! 0, and Step 3.2: hn(�LRn ; �LRn ; �LRn ) = Op(1).

Step 3.1

Let l0(�) = E(0;0;�) [l(�)]. Invoking Lemma 8, we have

sup�2�

���� 1nLn(�)� l0(�)
���� p�! 0 (22)

(i.e. uniform convergence). Moreover, for all � > 0, we have that

l0 (0; 0; �) > sup�2+�2>�;�2Pa l0(�) (23)

(i.e. well separated maximum), which follows from the fact that � = � = 0 is the unique

maximizer (note that (1��) � maxfj�j; j�jg), l0(�) is continuous, and � is compact. Hence, we

have that (�LRn ; �LRn ) = op(1) by virtue of Lemma A1 in Andrews (1993).

Step 3.2

hn(�
LR
n ) = Op(1) follows directly from Step 3.2.1 and Step 3.2.2 below.

Step 3.2.1

We �rst show that n
�
1� �LRn

�2 �
�LRn

�8
= Op(1) and n

�
1� �LRn

�2 �
�LRn

�4
= Op(1). By

contradiction, assume that either n
�
1� �LRn

�2 �
�LRn

�8 6= Op(1) or n
�
1� �LRn

�2 �
�LRn

�4 6= Op(1),

so that there exists � > 0 such that for all M it holds that Pr(An) > � i.o., where

An =

�
1

288
n
1
2
�
1� �LRn

� �
�LRn

�4
> M

�
[
�
1

144
n
1
2
�
1� �LRn

� �
�LRn

�2
> M

�
:

Since H3;n=
p
n and H4;n=

p
n are Op(1), there exists M1 such that Pr(Bn) � 1 � �=4 for all n,

where

Bn =

�����H3;np
n

���� < M1

�
\
�����H4;np

n

���� < M1

�
:

Next, let rn(�) = LRn(�) � LMn(�). Since �LRn , �LRn and rn(�LRn )=h(�LRn ) are op(1), with
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positive � < 1=3, we have that Pr (Cn) � 1� �=4 ult., where

Cn =
�
j�LRn j < �; j�LRn j < �

	
\
(���� rn(�LRn )

hn(�
LR
n )

���� < �

�
1

288

�2)
:

Let us de�ne wLR2n in the same way as w2n, but with the parameters �n, �n and �n replaced by

�LRn , �LRn and �LRn , respectively. In addition, let

Dn =

�
jwLR2n j �

1

288
max

h
n
1
2
�
1� �LRn

� �
�LRn

�4
; 2n

1
2
�
1� �LRn

� �
�LRn

�2i�
;

En =
n
n
1
2
�
�LRn

�4
> 2n

1
2
�
�LRn

�2o
and Fn =

�
jwLR2n j < jwLR1n j

	
:

Then, we can show that for all M ,

Pr(An \Bn \ Cn) � Pr(An) + Pr(Bn) + Pr(Cn)� 2 �
�

2
i.o.,

where the �rst inequality follows from Pr(A\B) � Pr(A)+Pr(B)�1, and the second inequality

follows from the lower bounds of Pr(An), Pr(Bn) and Pr(Cn) derived above.

In addition, let M > M1=� and consider An \Bn \Cn \Dn \En. We next use Lemma 9 to

show that An \Bn \ Cn \Dn \ En �
�
LR(�LRn ; �LRn ; �LRn ) < 0

	
= ;. To do so, let us check all

the required conditions. First, notice that jH3;n=
p
nj < M1 and jH4;n=

p
nj < M1 are satis�ed

on Bn. Second, we can easily check that

jwLR1n j >
M1

�
and jwLR1n j > jwLR2n j

because

n
�
1� �LRn

�2 �
�LRn �LRn

�2
= n

1
2
�
1� �LRn

� �
�LRn

�2
n
1
2
�
1� �LRn

� �
�LRn

�2
=

�
8wLR2n
�LRn

+
2

9
[1� �LRn +

�
�LRn

�2
]n

1
2 (1� �LRn )

�
�LRn

�4�
(24)

� n
1
2 (1� �LRn )

�
�LRn

�2
�
�
�16

��wLR2n ��+ 16n 1
2 (1� �LRn )

�
�LRn

�4�
n
1
2 (1� �LRn )

�
�LRn

�2
(25)

�
�
1

6
� 1

18

�
n
�
1� �LRn

�2 �
�LRn

�6 � n
�
1� �LRn

�2 �
�LRn

�8
9�2

; (26)

where (24) follows from the de�nition of wLR2n , (25) follows from the bound of �LRn , the �rst

inequality of (26) is a direct consequence of combining Dnwith En, while the second one follows

from the de�nition of Cn.
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Then, we have

��wLR1n �� = �LRn
2

���n 1
2 (1� �LRn )�LRn �LRn

��� � 1

4

n
1
2 (1� �LRn )

�
�LRn

�4
3�

(27)8<:� 24M
� > M1

� (i)

> 1
288n

1
2 (1� �LRn )

�
�LRn

�4 � jwLR2n j (ii)
(28)

where (27) follows from (26), (28i) follows from combining An with En and M1 < M , while

(28ii) follows from combining Dn with En.

Next, we check that rn(�LRn )=
�
wLR1n

�2
< � thanks to

���n 1
2 (1� �LRn )�LRn �LRn

��� � n
1
2 (1� �LRn )

�
�LRn

�4
3�

� n
1
2 (1� �LRn )

�
�LR

�4
(29)

���n 1
2 (1� �LRn )�LRn �LRn

��� � n
1
2 (1� �LRn )

�
�LRn

�4
3�

�
2n

1
2 (1� �LRn )

�
�LR

�2
3�

> n
1
2 (1� �LRn )

�
�LR

�2
;

(30)

where (29) follows from (26) and � < 1=3, and (30) follows from the de�nition of En and � < 1=3.

Thus, hn(�LRn ) = n
�
1� �LRn

�2 �
�LRn �LRn

�2
and, as a result,�����rn(�LRn )�

wLR1n
�2
����� =

����� rn(�LRn )

hn(�
LR
n )

hn(�
LR
n )�

wLR1n
�2
����� =

���� rn(�LRn )

hn(�
LR
n )

����
�����n
�
1� �LRn

�2 �
�LRn �LRn

�2�
wLR1n

�2
�����

< �

�
1

288

�2 4

[�LRn ]2
< �; (31)

where (31) follows from the de�nitions of Cn and wLR1n . But then, we have that LR(�
LR
n ) < 0

conditional on An \Bn \Cn \Dn \En by virtue of Lemma 9, and consequently, that An \Bn \

Cn \Dn \ En = ;.

Consider now An \Bn \Cn \Dn \Ecn. We can use Lemma 9 again to show that An \Bn \

Cn \Dn \ Ecn �
�
LR(�LRn ) < 0

	
= ;. First, notice that jH3;n=

p
nj < M1 and jH4;n=

p
nj < M1

are satis�ed on Bn. Next, we have to check that jwLR1n j > M1=� and jwLR1n j > jwLR2n j. To do so,
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notice that

n
�
1� �LRn

�2 �
�LRn �LRn

�2 � n
1
2
�
�LRn

�2
n
1
2
�
�LRn

�4 1
�2
�
1� �LRn

�2
(32)

� n
1
2
�
1� �LRn

� �
�LRn

�2 36

(1� �n + �2n)
(33)

�
�
1

8

p
n
�
1� �LRn

� �
�LRn

�2 � wLR2n
�n

�
1

�2

� n
1
2
�
1� �LRn

� �
�LRn

�2
36 (34)

�
�
1

8

p
n
�
1� �LRn

� �
�LRn

�2 � 2jwLR2n j� 1

�2

� 4n
�
1� �LRn

�2 �
�LRn

�4 1
�2
; (35)

where (32) follows from the de�nition of Cn, (33) follows from the de�nition of wLR2n , (34) follows

from the bound of �LRn , and (35) follows from combining Dn with Ecn.

Then,

��wLR1n �� = ����(1� �LRn )�LRn
2

n
1
2�LRn �LRn

���� � 1

4

2n
1
2 (1� �LRn )

�
�LRn

�2
�

>
1

72
n
1
2 (1� �LRn )

�
�LRn

�2
(36)8<:> M > M1

� (i)

� jwLR2 j (ii)
; (37)

where (36) follows from (35), (37i) follows from combining An with Ecn, and (37ii) follows from

combining Dn with Ecn.

To check that rn(�LRn )=
�
wLR1n

�2
< �, let us write

���n 1
2 (1� �LRn )�LRn �LRn

��� � 2n
1
2 (1� �LRn )

�
�LRn

�2
�

> n
1
2 (1� �LRn )

�
�LRn

�2
(38)

���n 1
2 (1� �LRn )�LRn �LRn

��� � 2n
1
2 (1� �LRn )

�
�LRn

�2
�

>
n
1
2 (1� �LRn )

�
�LRn

�4
�

> n
1
2 (1� �LRn )

�
�LRn

�4
; (39)

where (38) follows from (35), and (39) follows from the de�nition of Ecn. Thus, hn(�
LR
n ) =

n
�
1� �LRn

�2 �
�LRn �LRn

�2
and, consequently,�����rn(�LRn )�

wLR1n
�2
����� =

���� rn(�LRn )

hn(�
LR
n )

����
�����n
�
1� �LRn

�2 �
�LRn �LRn

�2�
wLR1n

�2
����� =

���� rn(�LRn )

hn(�
LR
n )

���� ���� 4

(�LRn )2

���� < �; (40)

where the last inequality in (40) follows from the de�nition of Cn. By Lemma 9, we have

LR(�LRn ) < 0 conditional on An \Bn \ Cn \Dn \ Ecn, and thus, An \Bn \ Cn \Dn \ Ecn = ;.

Consider now the case An \ Bn \ Cn \Dc
n \ Fn. We can use Lemma 9 once again to show
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that An \ Bn \ Cn \ Dc
n \ Fn �

�
LR(�LRn ) < 0

	
= ;. Noticing that jwLR1n j > M > M1=� is

satis�ed by combining An with Dc
n and Fn, and that jwLR1n j > jwLR2n j is satis�ed by Fn, we have

to check that jrn(�LRn )=
�
wLR1n

�2 j < �. To do so,�����rn(�LRn )�
wLR1n

�2
����� =

���� rn(�LRn )

hn(�
LR
n )

���� (41)
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n
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�
1� �LRn

�2 �
�LRn

�4
; n
�
1� �LRn

�2 �
�LRn

�8
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�
1� �LRn
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�LRn �LRn

�2o�
wLR1n
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������

<

���� rn(�LRn )

hn(�
LR
n )
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������
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n�
288wLR2n

�2
;
�
2wLR1n =�

LR
n

�2o�
wLR1n

�2
������ (42)

�
���� rn(�LRn )

hn(�
LR
n )

���� (288)2 � �;

where (41) to (42) follow from the de�nitions of Dc
n and w1. By Lemma 9, we have that

LR(�LRn ; �LRn ; �LRn ) < 0;

conditional on An \Bn \ Cn \Dc
n \ Fn, and therefore An \Bn \ Cn \Dc

n \ Fn = ;.

Finally, consider the case An \Bn \ Cn \Dc
n \ F cn, in which

hn(�
LR
n )�

wLR2n
�2 = max

n
n
�
1� �LRn

�2 �
�LRn

�4
; n
�
1� �LRn

�2 �
�LRn

�8
; n
�
1� �LRn

�2 �
�LRn �LRn

�2o�
wLR2n

�2
�
max

n�
288wLR2n

�2
;
�
4wLR1n

�2o�
wLR2n

�2 � 124 � 4; (43)

where the �rst inequality in (43) follows from the de�nition of Dc
n and the second one from the

de�nition of F cn. But then,

LRn(�
LR
n )�

wLR2n
�2 = 2

H3;np
n

wLR1n�
wLR2n

�2 + 2H4;np
n

1

wLR2n
� V3

�
wLR1n

�2�
wLR2n

�2 � V4 + rn(�
LR
n )�

wLR2
�2

� 2M1

M
+ 2

M1

M
� V4 +

���� rn(�LRn )

hn(�
LR
n )

����� 124 � 4 (44)

� 4� � V4 + � < 0; (45)

where (44) follows from the combination of An with Bn, Dc
n, F

c
n and (43), and (45) follows from

the de�nition of Cn and V4 = 24.

To summarize, we have An \Bn \ Cn = ;, which contradicts

Pr(An \Bn \ Cn) �
�

2
i.o.,
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as desired, and thus, n
�
1� �LRn

�2 �
�LRn

�8
= Op(1) and n

�
1� �LRn

�2 �
�LRn

�4
= Op(1).

Step 3.2.2

Next, we will show that n
�
1� �LRn

�2 �
�LRn �LRn

�2
= Op(1), i.e. that for all � > 0, there exists

M > 1 such that Pr[n
�
1� �LRn

�2
�LRn �LR2n > M ] < � ult. To do so, notice that

rn(�
LR
n ) = op[hn(�

LR
n )] = op[maxf1; n

�
1� �LRn

�2 �
�LRn �LRn

�2g]
because n

�
1� �LRn

�2 �
�LRn

�8
= Op(1) and n

�
1� �LRn

�2 �
�LRn

�4
= Op(1). Letting 0 < m < 1

4V3,

we have that

Pr

 ����� 16rn(�
LR
n )

maxf1; n
�
1� �LRn

�2 �
�LRn �LRn

�2g
����� > 2m

!
<
�

2
ult. (46)

In turn, given that H3;n=
p
n and H4;n=

p
n are Op(1), there exists M > 1 such that 8n,

Pr

�
H3;np
n
�M

�
V3
2
� 2m

��
<
�

4
and Pr

264
�
H4;np
n

�2
2V4

> mM2

375 < �

4
: (47)

We then have that Pr
���wLR1n �� > M

�
is equal to

=Pr
�
f
��wLR1n �� > Mg \ fLR(�LRn ) � 0g

�
=Pr

�
f
��wLR1n �� > Mg \

�
LMa

n(�
LR
n )

(wLR1n )
2

+
rn(�

LR
n )

(wLR1n )
2
� 0
��

=Pr

�
f
��wLR1n �� > Mg \

�
LMa

n(�
LR
n )

(wLR1n )
2

+
rn(�

LR
n )

(wLR1n )
2
� 0
�
\
�����rn(�LRn )

(wLR1n )
2

���� � 2m��
+ Pr

�
f
��wLR1n �� > Mg \

�
LMa

n(�
LR
n )

(wLR1n )
2

+
rn(�

LR
n )

(wLR1n )
2
� 0
�
\
�����rn(�LRn )

(wLR1n )
2

���� > 2m��

�Pr

264f��wLR1n �� > Mg \

8><>:H3;np
n

1

wLR1n
� V3
2
�
V4

�
wLR2n � 1

V4

H4;np
n

�2
2(wLR1n )

2
+

1
V4

�
H4;np
n

�2
2(wLR1n )

2
+m � 0

9>=>;
375

+ Pr

"�����rn(�LRn )�
wLR1n

�2
����� > 2m

#

�Pr
 
f
��wLR1n �� > Mg \

(
H3;np
n
� wLR1n

"
V3
2
�m�

H2
4;n

2nV4

1�
wLR1n

�2
#)!

+
�

2
(48)

�Pr
"
H3;np
n
�M

 
V3
2
�m�

H2
4;n

2nV4

1

M2

!#
+
�

2
ult., (49)
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where (48) uses (46). In addition,

(49) �Pr
"(

H3;np
n
�M

 
V3
2
�m�

H2
4;n

2nV4

1

M2

!)
\
(
H2
4;n

2nV4
� mM2

)#

+ Pr

"(
H3;np
n
�M

 
V3
2
�m�

H2
4;n

2nV4

1

M2

!)
\
(
H2
4;n

2nV4
> mM2

)#
+
�

2

�Pr
�
H3;np
n
�M

�
V3
2
� 2m

��
+ Pr

 
H2
4;n

2nV4
> mM2

!
+
�

2

� �
4
+
�

4
+
�

2
= �; (50)

where in (50) we have used (47).

Step 4

We now show that LRn(�LRn ) = LMa
n(�

LM
n ) + op(1), that is, that 8�1 > 0,8�2 > 0, there

exists N such that for all n > N ,

P
���LRn(�LRn )� LMa

n(�
LM
n )

�� < �1
�
> 1� �2:

Letting

Gn =
n
n
1
2
�
1� �LRn

� �
�LRn

�4
; jn

1
2
�
1� �LRn

�
�LRn �LRn j; n

1
2
�
1� �LRn

� �
�LRn

�2
;

n
1
2
�
1� �LRn

� �
�LMn

�4
; jn

1
2
�
1� �LRn

�
�LMn �LMn j; n

1
2
�
1� �LRn

� �
�LMn

�2o
;

we know that max fGng = Op(1), so that for �2 > 0 there exists M such that for all n,

Pr (maxGn �M) > 1� �2
2
: (51)

Letting A = f� 2 � : n 1
2 (1� �) �4 � M;n

1
2 (1� �)�2 � M; jn 1

2 (1� �) ��j � Mg, we can then

show

sup
�2A

jLRn(�)� LMa
n(�)j = op(1);

i.e. there exists N such that for all n > N , we have that

Pr

�
sup
�2A

jLRn(�)� LMa
n(�)j < �1

�
> 1� �2

2
: (52)

To show this, let

(�n; �n; �n) 2 arg max
(�;�;�)2A

jLRn(�; �; �)� LMa
n(�; �; �)j :
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Given that n
1
2 (1� �n) �4n = Op(1) and n

1
2 (1� �n)�2n = Op(1), we have �n; �n

p�! 0, whence

sup
(�;�;�)2A

jLRn(�; �; �)� LMa
n(�; �; �)j = jLRn(�n; �n; �n)� LMa

n(�n; �n; �n)j = op(1);

where the second equality follows from (11). Therefore, for n > N we have

Pr
���LRn(�LRn )� LMa

n(�
LM
n )

�� < �1
�

�Pr
����LRn(�LRn )� LMa

n(�
LM
n )

�� < �1
	
\
�
�LRn 2 A

	
\
�
�LMn 2 A

	�
�Pr

��
sup
�2A

jLRn(�)� LMa
n(�)j < �1

�
\
�
�LRn 2 A

	
\
�
�LMn 2 A

	�
(53)

�Pr
�
sup
�2A

jLRn(�)� LMa
n(�)j < �1

�
+ P

��
�LRn 2 A

	
\
�
�LMn 2 A

	�
� 1 (54)

�1� �2
2
+ 1� �2

2
� 1 = 1� �2; (55)

where we have used Pr(E1 \ E2) � Pr(E1) + Pr(E2) � 1 to go from (53) to (54), and (51) and

(52) to go from (54) to (55).

Step 5

We consider the di¤erent cases separately in Step 5.1: P = Pa;1, Step 5.2: P = Pa;2 and

Step 5.3: P = Pa;3.

Step 5.1 We have that

LMa
n(�; �; �) = �V3

�
w1n �

1

V3

H3;np
n

�2
+
1

V3

�
H3;np
n

�2
� V4

�
w2n �

1

V4

H4;np
n

�2
+
1

V4

�
H4;np
n

�2
;

where

w1 = �
1

2
(1� �)�

p
n�� and w2 = �(1� �)

p
n

�
1

8
�2 � 1� �+ �

2

36
�4
�
:

Next, let w21 =
(1��)�
8

p
n�2 and w22 = � (1��)�(1��+�2)

36

p
n�4. We �rst aim to �nd an upper

bound for LMa
n(�

LM
n ). In that respect, we can easily show that

LMa
n(�

LM
n ) �

H2
3;n

nV3
+
H2
4;n

nV4
: (56)

Second, we aim to �nd a lower bound for LMa
n(�

LM
n ). To do so, let ��n = 1=2,

��n =

8><>:2n
� 1
8

�
� 12
V4

H4;np
n

� 1
4

if H4;n � 0

�n� 1
4

��� 2V3 H3;np
n

���.q 2
V4

H4;np
n

if H4;n > 0
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and

��n =

8><>:�
�
n�

3
8
4
V3

H3;np
n

�.�
� 12
V4

H4;np
n

� 1
4
if H4;n < 0

4sign(H3;n)n�
1
4

q
2
V4

H4;np
n

if H4;n � 0
:

It is then easy to verify that (��n; �
�
n; �

�
n) 2 Pa with probability approaching one, whence

LMa
n

�
�LMn

�
� LMa

n (�
�
n; �

�
n; �

�
n) =

H2
3;n

nV3
+
H2
4;n

nV4
+ op(1): (57)

To verify the second equality of (57), we can easily check by hand that

w�1 = �
1

2
(1� ��n)��n

p
n��n�

�
n =

1

V3

H3;np
n
;

w�21 =
(1� ��n)��n

8

p
n(��)2 =

8><>:
1
32n

� 1
4

�
4
V3

H3;np
n

�2��
� 12
V4

H4;np
n

� 1
2
= op(1) if H4;n < 0;

1
V4

H4;np
n

if H4;n � 0:

w�22 = �
(1� ��n)��n(1� ��n + (��n)2)

36

p
n(��n)

4

=

8<:
1
V4

H4;np
n

if H4;n � 0

� 1
192n

� 1
2

�
�
��� 2V3 H3;np

n

���.q 2
V4

H4;np
n

�4
= op(1) if H4;n > 0

with

w�2 = w�21 + w
�
22 =

1

V4

H4;np
n
+ op(1):

But then, (56) and (57) imply that

LMa
n

�
�LMn

�
=
H2
3;n

nV3
+
H2
4;n

nV4
+ op(1):

Step 5.2: Recall that �2 = f� : � 2 [1=2; 1]; � 2 [��; ��]; � = (2� � 1)�2=3]g. Then, given

that � = (2�� 1)�2=3, we will have

w1 = �
(1� �)�(2�� 1)

6

p
n�3 and w2 =

(1� �)�
72

�
�1� 2�+ 2�2

�p
n�4:

As before, we �rst aim to �nd an upper bound for LMa
n(�

LM
n ). In that regard, we can notice

that w2 � 0 for � 2 �2 so that

LMa
n(�

LM
n ; �LMn ; �LMn ) � 1

V3

�
H3;np
n

�2
+ sup
w22R�

"
�V4

�
w2 �

1

V4

H4;np
n

�2
+
1

V4

�
H4;np
n

�2#

=
1

V3

�
H3;np
n

�2
+
1

V4

�
H4;np
n

�2
1 [H4;n < 0] :
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Second, we aim to �nd a lower bound for LMa
n(�

LM
n ). For that purpose, let �� 2 (1=2; 1),

��n =

8>>><>>>:
�sign(H3;n)2n�

1
8

�
� 12
V4

H4;np
n

� 1
4
if H4;n < 0

�n� 1
6

 
6
V3

H3;np
n

(1���)��(2���1)

! 1
3

if H4;n � 0;

and

��n =

8>><>>:
1
2 + n

� 1
8
sign(H3;n) 3V3

H3;np
n

2
�
� 12
V4

H4;np
n

� 3
4

if H4;n < 0

�� if H4;n � 0:

We can then verify that

w�1 = �
(1� ��n)��n(2��n � 1)

6

p
n(��n)

3 =
1

V3

H3;np
n
+ op(1);

w�2 =
(1� ��n)��n

72
[�1� 2��n + 2(��n)2]

p
n(��n)

4

=

8><>:
1
V4

H4;np
n
+ op(1) if H4;n < 0

(1���)��
72

�
�1� 2��+ 2��2

�
n�

1
6

h
1

(1���)��(2���1)
6
V3

H3;;np
n

i 4
3
= op(1) if H4;n � 0:

As a result,

LMa
n(�

LM
n ) � LMa

n(�
�
n; �

�
n; �

�
n) =

H2
3;n

nV3
+
H2
4;n

nV4
1[H4;n < 0] + op(1);

whence

LMa
n(�

LM
n ) =

H2
3;n

nV3
+
H2
4;n

nV4
1[H4;n < 0];

as desired.

Step 5.3: Recall that �03 = f# : � 2 [1=2; 1]; � = 0;{ 2 [��; ��]g and Pa;3 = f(�; �; �) :

(�; �� (2�� 1)�3=3; �) 2 �03;maxfj�j; j�jg � 1� �g. Exploiting the fact that � = 0, we have

w1 = 0 and w2 =
1

8
�(1� �)

p
n�2:

Thus,

LMa
n(�; �; �) = �V4

�
w2 �

1

V4

H4;np
n

�2
+
1

V4

�
H4;np
n

�2
:

Next, we �rst aim to �nd an upper bound for LMa
n(�

LM
n ). It is easy to see that w2 � 0 for
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� 2 �3 so that

LMa
n(�

LM
n ; �LMn ; �LMn ) � sup

w22R+

"
�V4

�
w2 �

1

V4

H4;np
n

�2
+
1

V4

�
H4;np
n

�2#

=
1

V4

�
H4;np
n

�2
1 [H4;n > 0] :

Second, to �nd a lower bound for LMa
n(�

LM
n ), let ��n =

1
2 and

��n =

8<:0 if H4;n � 0;

4n�
1
4

q
2H4;n
V4
p
n

if H4;n > 0:

As a result, w�2 =
1
V4

H4;np
n
1 [H4;n > 0], whence

LMa
n(�

LM
n ) � LMa

n(0; �
�
n; �

�
n) =

H2
4;n

nV4
1[H4;n � 0];

as desired. �

Proof of Lemma 1

By Theorem 10.2 of Pollard (1990) (see also Andrews (2001)), 1p
n

P
i
@li
@� (:; 1)) G (:) if (i) ~B

(the set within which the index lies) is totally bounded, (ii) the �nite dimensional distributions

of 1p
n

P
i
@li
@� (:; 1) converge to those of G(.), (iii)

n
1p
n

Pn
i=1

@li
@� (:; 1) : n � 1

o
is stochastically

equicontinuous.

(i) is satis�ed because � � (�; �) 2 eB =
n
(�; �) : (�; �; 1) 2 Pb;1 and

p
�2 + �2 � �

o
and eB

is compact.

(ii) The process @li@� (:; 1) is iid with mean 0. Moreover,

E sup
�2 eB

���� @l@� (�; 1)
���� <1: (58)

Indeed, the absolute value of the score involves a constant, a linear combination of jyij and y2i ,

and �nally an exponential term. By the de�nition of eB, we cannot have � = 0 and � = 0

simultaneously. Below, we use the notation y for yi while { denotes ���2=3. As � and � belong

to compact sets, so does {. Hence, we can write { 2 [�{;{]. Moreover, 1� e�{ � 1� e�{ < 1
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and

1p
e{
exp

�
1

2

�
y2� [y + �]

2

e{

��
= e�{=2 exp

�
�1
2

(1� e{)
e{

y2
�
exp

�
�y�
e{

�
exp

�
� �2

2e{

�
= e�{=2 exp

�
1

2

�
1� e�{

�
y2
�
exp

�
�y�
e{

�
exp

�
� �2

2e{

�
� exp

�
1

2

�
1� e�{

�
y2
�
exp

�
jyj j�j
e{

�
� exp

�
1

2

�
1� e�{

�
y2
�
exp

�
jyj e{

������
� g� (y) : (59)

Note that E[g� (y)] is �nite because 1 � e�{ < 1. So we can major
���@li@� (�; 1)��� by terms which

do not depend on � and have �nite expectations.

By (58), the martingale di¤erence central limit theorem of Billingsley (1968, Theorem 3.1)

implies that each of the �nite dimensional distributions of 1p
n

P
i
@li
@� (:; 1) converges in distrib-

ution to a multivariate normal distribution whose covariance matrix is characterized by (7).

(iii) Let �n (�) = 1p
n

P
i
@li
@� (�; 1). A process �n (�) is stochastically equicontinuous if for all

" > 0, there exists c > 0 such that

limn!1P

"
sup

k�1��2k�c
j�n (�1)� �n (�2)j > "

#
< ":

To establish that the process �n (�) is stochastically equicontinuous, we use Theorem 1 of An-

drews (1994). First, we use the notation f for �n (�) = 1p
n

P
i f (yi; �) and show that f belongs

to the type II class of functions de�ned in Andrews (1994, p.2270). This is the class of Lipschitz

functions in �, which is such that

jf (:; �1)� f (:; �2)j �M (:) k�1 � �2k , for all �1; �2 2 ~B:

But

f (y; �1)� f (y; �2) =
e{2 � e{1

2
� e�{1=2 exp

�
1

2
[y2 � (y + �1)2e�{1 ]

�
+e�{2=2 exp

�
1

2
[y2 � (y + �2)2e�{2 ]

�
+ (�2 � �1) y

+(e{1 � e{2) y
2

2
+

�
�21 � �22

�
2

(y2 � 1):

Using the mean-value theorem, we have

e{2 � e{1 = e~{ ({2 � {1)
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where ~{ lies between {1 and {2. Hence, je{2 � e{1 j = e~{ j{2 � {1j � e{ j{2 � {1j. Let

g (y; �) = �e�{=2 exp
�
1

2
[y2� (y + �)2 e�{]

�
:

The mean-value theorem gives

g (y; �1)� g (y; �2) =
1

2

�
e�~{

�
y + ~�

�2
� 1
�
g(y; e�) ({1 � {2)� �y + ~�� e�~{g(y; e�) (�1 � �2)

jg (y; �1)� g (y; �2)j � 1

2

h
e~{
�
y2 + 2 jyj

�����+ �����2�+ 1i g� (y) j{1 � {2j
+
�
jyj+

������ e~{g� (y) j�1 � �2j ;
where e� = �

~�; ~�
�
, ~� is between �1 and �2, and g� is de�ned in (59). Note that j�1 � �2j �

k�1 � �2k and j{1 � {2j � k�1 � �2k. Hence, f is Lipschitz with M (y) = c0 + c1y + c2y
2 +

c3 jyj g� (y) + c4y
2g� (y) for some constants c0, c1, c2, c3 and c4. Now, to apply Theorem 1 of

Andrews (1994), we need to check his Assumptions A, B, and C. Speci�cally, Assumption A: the

class of functions f satis�es Pollard�s entropy condition with some envelope �M . This is satis�ed

with �M = 1_ sup jf j _M(.) by Theorem 2 of Andrews (1994) because f is Lipschitz. Similarly,

Assumption B:

lim
n!1

1

n

nX
i

E �M2+� (yi) <1 for some � > 0:

This condition is also satis�ed because yi is a standard normal random variable (r.v.). In turn,

Assumption C: fyig is anm-dependent triangular array of r.v�s holds because fyig is iid. Finally,

stochastic equicontinuity follows from Theorem 1 in Andrews (1994). �

Proof of Proposition 3

Expressions (a) and (b) are direct consequences of Lemma 1 and the continuous mapping

theorem.

In turn, expression (c) follows from Andrews (2001). To see this, we need to check the

assumptions in Andrews (2001), whose notation is such that � is our � and � is our (�; �).

Let li denote the log-likelihood of yi. Note that � + (1� �) exp ({) � 1 + exp ({) and 1 +

� (1� �) �2 � 1 + �2=4 � 1 + �
2
. As a consequence, ��1 � [

�
1 + �

2
�
(1 + exp ({))]�1 > 0 and

��2 � exp (�{) [
�
1 + �

2
�
(1 + exp ({))]�1 > 0.

To verify Assumption 1*(a), it su¢ ces to apply the uniform law of large numbers (see Lemma

2.4 of Newey and McFadden (1994)) which holds because flig is iid, continuous in both � and
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� � (�; �) with probability one, and

E sup
�2[0;1];�2 ~B

jli (�; �)j � sup
�2[0;1];�2 ~B

ln

(
1p
2���1

+
1p
2���2

)
<1:

Moreover, the limit
P
i li (�; �) =n is E[li (�; �)] � l (�; �), which does not depend on � when

� = 1.

To verify Assumption 1*(b), we need to show that l (�; �) is maximized over [0; 1] at �0 = 1

for each � 2 ~B. By the properties of maximum likelihood estimators (see Theorem 2.5 of Newey

and McFadden (1994)), it su¢ ces to check that P [li (�; �) 6= li (�0; �0)] > 0 for any � 6= �0 and

� 6= �0 = 1, which is true here.

Assumption 22
�
(a) is clearly satis�ed for �+ = (1� "; 1).

As for Assumption 22
�
(b), it is easy to check that li (�; �) has left and right partial derivatives

with respect to � on �+, 8� 2 ~B.

Regarding Assumption 22
�
(c), we can show that for all n ! 0,

sup
�2[0;1]:k��1k�n

 1n
nX
i=1

�
@2

@�2
li (�; �)�

@2

@�2
li (�; 1)

� = op� (1)

where Xn� = op� (1), implies that sup�2 ~B kXn�k = op (1). This condition is tedious to check

but does not raise any special di¢ culty, so the details are omitted.

Assumption 3� holds by Lemma 1. Assumption 5 is satis�ed for Bn = bn =
p
n and � = R�.

Assumption 6 holds because R� is convex.

Assumptions 7 and 8 hold with �� = R� and with the fact that � (in Andrews notation)

corresponds to our �, and (�;  ) (in Andrews notation) is absent in our setting.

Assumptions 9 and 10 are satis�ed. Assumptions 1o and 4o hold trivially because the

restricted estimator is � = 1 and therefore not random.

By Theorem 4 and the remark at the bottom of p. 719 of Andrews (2001), it follows thatgLRb;1 = gLM b;1 + op (1). �

Proof of Proposition 4

Overview of the proof

In this part, we �nd the score-type test statistic that is asymptotically equivalent to

2

"
sup
�2Pb

Ln(�)� Ln(�; �; 1)
#
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where Pb satis�es that (0; 0; 1) 2 Pb � �1. Notice that in the following proof we use Pb as the

parameter space, but we could, if necessary, replace Pb with Pb;k for k = 1; 2; 3. For � 2 Pb,

de�ne

LRn(�) = 2 [Ln(�)� Ln(�; �; 1)]

and for � 2 Pbnf(0; 0; 1)g, let

LM b
n(�) =

2p
n

@Ln(�; �; 1)

@�

p
n(�� 1)� V (�; �)n(�� 1)2;

Vb(�; �) = E

"�
@l(�; �; 1)

@�

�2#
:

We will show that the LR test statistic is asymptotically equivalent to the following score-type

statistic:

sup
�2Pb

LRn(�) =
1

n
sup

�;�:(�;�;1)2Pbn(0;0;1)

(min f@Ln(�; �; 1)=@�; 0g)2

V (�; �)
+ op(1):

The LM statistic is usually constructed based on the �rst two terms of the Taylor expansion.

A third-order Taylor expansion of l(�) gives

l(�; �; �)� l(�; �; 1) = @l(�; �; 1)

@�
(�� 1) + 1

2

@2l(�; �; 1)

@�2
(�� 1)2 + 1

3!

@3l(�; �; ~�)

@�3
(�� 1)3:

It is then easy to verify that @l(�; �; 1)=@� = 0 at (�; �) = 0, which con�rms the singular

information matrix problem. Moreover, the limit

lim
(�;�)!0

1p
V (�; �)

@l(�; �; 1)

@�

does not exist because its value depends on the direction of (�; �). One way to circumvent this

problem is to normalize @l(�;�;1)
@� by a function of (�; �) and further reparameterize the model.

To be more speci�c, for �2 + �2 > 0, let

� = max

����� 136�4 � 18�2
���� ; ����12��

����� (1� �); (60)

� = max

����� 136�4 � 18�2
���� ; ����12��

����� ; (61)

m =
min

��� 1
36�

4 � 1
8�
2
�� ; ��12����	

max
��� 1
36�

4 � 1
8�
2
�� ; ��12����	 : (62)

Note that � > 0 if and only if �2 + �2 > 0. Additionally, we can normalize the score by � as

39



follows: if
�� 1
36�

4 � 1
8�
2
�� � ��12����,

lim
�!0

��1
@l(�; �; 1)

@�
= sign

�
1

36
�4 � 1

8
�2
�
h4 + sign

�
1

2
��

�
h3m;

and if
�� 1
36�

4 � 1
8�
2
�� � ��12����,
lim
�!0

��1
@l(�; �; 1)

@�
= sign

�
1

36
�4 � 1

8
�2
�
h4m+ sign

�
1

2
��

�
h3:

To further simplify the notation, we also reparameterize from � to d = (�; � ;m).

To guarantee that there is a one to one mapping from � to d, we further partition the

parameter space into the following sets. Let

A10 =

�
(�; �; �) 2 Pb :

����12��
���� � ���� 136�4 � 18�2

���� ; �2 + �2 > 0� ;
A20 =

�
(�; �; �) 2 Pb :

1

36
�4 � 1

8
�2 � 0; �2 + �2 > 0

�
;

A30 =
�
(�; �; �) 2 Pb : � � 0; �2 + �2 > 0

	
;

A40 =
�
(�; �; �) 2 Pb : � � 0; �2 + �2 > 0

	
;

De�ne Ai1 = Pbn (Ai0 [ f(0; 0; 1)g) and let

�
A1; : : : ; A16

	
=
�
\4i=1Aiji : (j1; : : : ; j4) 2 f0; 1g4

	
:

It is easy to see that

sup
�2Pb

LRn(�) = max
k�16

sup
�2Ak

LRn(�) and sup
�2Pb

LM b
n(�) = max

k�16
sup
�2Ak

LM b
n(�):

As a consequence, it su¢ ces to consider the asymptotic equivalence between sup�2Ak LRn(�)

and sup�2Ak LMn(�) for each Ak. Let

Dk =
n
d = (�; � ;m) : there exists � 2 Ak such that (60)-(62) holds

o
:

Similarly, let

Ak�� =
n
(�; �) : there exists � such that (�; �; �) 2 Ak

o
;

Dk
�m =

n
(� ;m) : there exists � such that (�; � ;m) 2 Dk

o
:

By Lemma 5, there is a one-to-one mapping between � 2 Ak and d 2 Dk.

We will show below the asymptotic equivalence of sup�2A1 LRn(�) and sup�2A1 LMn(�) for

A1 = \4i=1Ai0. The proofs for the remaining 15 sets are very similar, so we omit them in the
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interest of space. With a slight abuse of notation, let �(� ;m); �(� ;m); �(�; � ;m) denote the

value of �; �; � for given (�; � ;m), and let �(�; �; �); �(�; �);m(�; �) denote the value of (�; � ;m)

for given (�; �).

For (� ;m) 2 D1
�m, let

Gdn(� ;m) =
1p
n
��1

@Ln(�(� ;m); �(� ;m); 1)

@�
;

so that

lim
�!0

Gdn(� ;m) =
1p
n
(H4 +mH3):

Finally, let

LMd
n(�; � ;m) = 2Gdn(� ;m)

p
n� � V (� ;m)n�2;

LRdn(�; � ;m) = LRn(�(� ;m); �(� ;m); �(�; � ;m));

There will be four steps in the proof:

1. For all sequences of (�n; �n;mn) 2 D1 and �n
p�! 0, we have that

LRdn(�n; �n;mn)� LMd
n(�n; �n;mn) = op(n�

2
n):

2.
�
Gdn(� ;m) : (� ;m) 2 D1

�m

	
is Donsker.

3. We prove that

sup
d2D1

LRdn(d) = sup
d2D1

LMd
n(d) + op(1) = sup

(�;m)2D1
�m

�
min

�
Gdn(� ;m); 0

	�2
V (�; �)

+ op(1):

4. Main theorem (combine results for the 16 sets and go back to the (�;{) space)

sup
#2�0

2 (Ln(#)� Ln(0; 0; 1)) =
1

n
sup
#2�0

(min f@Ln(�;{; 1)=@�; 0g)2

V (�;{)
+ op(1):

Step 1

Lemma 2 Let Rdn(�; � ;m) = LRdn(�; � ;m)� LMd
n(�; � ;m). For all sequences of (�n; �n;mn) 2

D1 and �n
p�! 0, we have that

Rdn(�n; �n;mn) = op
�
n�2n

�
:

Proof. Let �n = �(�n;mn), �n = �(�n;mn), �n = �(�n; �n;mn). First we show that 1��n
p�! 0.
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Recall that �n = max
��� 1
36�

4
n � 1

8�
2
n

�� ; ��12�n�n��	 (1� �n), whence either (1� �n) � p�n or
max

����� 136�4n � 18�2n
���� ; ����12�n�n

����� � p�n: (63)

Under (63), we have

2� �
�
1

36
�4n �

1

8
�2n

�2
+
1

4
�2n�

2
n =

�
1

36
�4n

�2
+

�
1

8
�2n

�2
+
1

4
�2n�

2
n

�
1� 1

36
�2n

�
: (64)

It is then easy to verify that given (63), 1� 1
36�

2
n � 0 with probability approaching 1. Therefore,

(64) implies that

2�n �
�
1

36
�4n

�2
+

�
1

8
�2n

�2
)j�nj � 25=8

p
3�1=8n ; j�nj � 27=4�1=4n ;

and also, that 1 � �n � maxfj�nj; j�njg � maxf25=8
p
3�
1=8
n ; 27=4�

1=4
n g because of the restriction

on Pb. In sum, it holds that

1� �n � max
n
25=8

p
3�1=8n ; 27=4�1=4n ; �1=2n

o
p�! 0:

Second, a third-order Taylor expansion gives

1

2
LRdn(�n; �n;mn) =L

d
n(�n; �n;mn)� Ldn(0; �n;mn)

=Ln(�n; �n; �n)� Ln(�n; �n; 1)

=
@Ln(�n; �n; 1)

@�
(�n � 1) +

1

2

@2Ln(�n; �n; 1)

@�2
(�n � 1)2

+
1

3!

@3Ln(�n; �n; ~�n)

@�3
(�n � 1)3:

The �rst term is

@Ln(�n; �n; 1)

�
(�n � 1) =

1p
n

1

�n

@Ln(�n; �n; 1)

@�

p
n�n(�n � 1)

= Gdn(�n;mn)
p
n�n(�n � 1):
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In turn, the second term will be

1

2

�
1

n

@2Ln(�n; �n; 1)

�2

�
n(�n � 1)2 =

1

2

�
E

�
@2l(�n; �n; 1)

@�2

�
+Op

�
�np
n

��
n(�n � 1)2 (65)

=
1

2
E

�
@2l(�n; �n; 1)

@�2

�
n(�n � 1)2 +Op[

p
n�n(�n � 1)2]

=
1

2
E

�
��2n

@2l(�n; �n; 1)

@�2

�
n�2n(�n � 1)2 +Op[

p
n�n(�n � 1)2]

(66)

= �1
2
V d(�n;mn)n�

2
n(�n � 1)2 + op[

p
n�n(�n � 1)]; (67)

where (65) follows from Lemma 10(10.1); and (66) to (67) follow from the information matrix

equality.

Let us now turn to the third term. By Lemmas 10(10.2) and 10(10.5), we have����� 1n��1n @3L(�n; �n; ~�n)

@�3

����� =
�������1n E

"
@3l(�n; �n; ~�n)

@�3

#
+Op

�
1p
n

������
= O(�n) +Op

�
1p
n

�
;

whence

1

n

@3L(�n; �n; ~�n)

@�3
n(�n � 1)3 =

�
O(�n) +Op

�
1p
n

��
n�n(�n � 1)3 = op[n�

2
n(�n � 1)2]:

In sum, we have LR(�n; �n; �n) = LM(�n; �n; �n) + op
�
n�2n

�
. �

Step 2

Lemma 3 For (� ;m) 2 D1
�m, Gdn(� ;m)) Gd(� ;m), where Gd(� ;m) is a Gaussian process with

mean 0 and covariance kernel

K[(� ;m); (� 0;m0)] =
1

�� 0
cov

�
@l[�(� ;m); �(� ;m); 1]

@�
;
@l[�(� 0;m0); �(� 0;m0); 1]

@�

�
: (68)

Proof. Here we follow Andrews (2001). By Theorem 10.2 of Pollard (1990), Gdn(�) ) Gd(�)

if (i) the domain of (� ;m) is totally bounded, (ii) the �nite dimensional distributions of Gdn(�)

converge to those of Gd(�), (iii)
�
Gdn(�) : n � 1

	
is stochastically equicontinuous.

(i) is satis�ed because (� ;m) �
h
0; ��

4
+ ��2 + ����

i
� [0; 1].

(ii) The process 1�
@li(�(�;m);�(�;m);1)

@� is iid with mean 0.
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Moreover,

E

"
sup

(�;m)2D1
�m

����1� @l(�(� ;m); �(� ;m); 1)@�

����
#
� E

"
sup

j�j���2;j�j���2;�2+�2>0

���� 1

�(�; �)

@l(�; �; 1)

@�

����
#
<1:

(69)

To prove (69), consider the �fth-order Taylor expansion of @l(�;�;1)@� around (�; �) = (0; 0) given

by

@l (�; �; 1)

@�
=

4X
k=1

X
i+j=k

1

i!j!

@1+kl (0; 0; 1)

@�@�i@�j
�i�j +

X
i+j=5

1

i!j!

@6l
�
~�; ~�; 1

�
@�@�i@�j

�i�j

=h4

�
1

36
�4 � 1

8
�2
�
+ h3

1

2
��+

X
4�i+j�3;i�1;j�1

1

i!j!

@6l (0; 0; 1)

@�@�i@�j
�i�j

+
X

i+j=5;i�1;j�1

1

i!j!

@6l
�
~�; ~�; 1

�
@�@�i@�j

�i�j +
@6l
�
~�; ~�; 1

�
@�@�5

�5 (70)

+

0@@4l (0; 0; 1)
@�@�3

+
@5l (0; 0; 1)

@�@�4
�+

@6l
�
~�; ~�; 1

�
@�@�5

�2

1A�3:

Consequently���� 1

�(�; �)

@L(�; �; 1)

@�

���� � jh4j+ jh3j+ X
4�i+j�3;i�1;j�1

����@6l (0; 0; 1)@�@�i@�j

���� 2i!j!��i�1��j�1
+

X
i+j=5;i�1;j�1

sup
j~�j���;j~�j���

������ 1i!j!
@6l
�
~�; ~�; 1

�
@�@�i@�j

������ ��i�1��j�1 + sup
j~�j���;j~�j���

������
@6l
�
~�; ~�; 1

�
@�@�5

������
���� �5

�(�; �)

���� (71)

+

0@����@4l (0; 0; 1)@�@�3

����+ ����@5l (0; 0; 1)@�@�4

���� j��j+ sup
j~�j���;j~�j���

������
@6l
�
~�; ~�; 1

�
@�@�5

������ ��2
1A���� �3

�(�; �)

���� :
It is then easy to check that

E

24jh4j+ jh3j+ X
4�i+j�3;i�1;j�1

1

i!j!

����@6l (0; 0; 1)@�@�i@�j

����+ ����@4l (0; 0; 1)@�@�3

����+ ����@5l (0; 0; 1)@�@�4

����
35 <1; (72)

and

E

24 X
i+j=5;i�0;j�0

sup
j~�j���;j~�j���

������
@6l
�
~�; ~�; 1

�
@�@�i@�j

������
35 <1: (73)

For �2 + �2 > 0, if � = 0, �2

maxfj 136 �4� 1
8
�2j;j 12 ��jg

= 0, otherwise

�2

�(�; �)
=

1

max
n��� 136 �2�2 �2 � 1

8

��� ; ��12 �� ��o �
8><>:

2

j �� j
� 2�� if �

2

�2
� 1

��
2

1��� 136 �2�2 �2� 1
8

��� � 1

j 136� 1
8 j
= 72

7 if �
2

�2
� 1

��
2 :

(74)
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Finally,�����5�
���� � �

 ���4 � 36
8 �

2
��

max
��� 1
36�

4 � 1
8�
2
�� ; ��12����	 +

36
8 �

2

max
��� 1
36�

4 � 1
8�
2
�� ; ��12����	

!
< ��

�
1 + 2�� +

72

7

�
(75)

In sum, (69) follows from (71) - (75). But given (69), the martingale di¤erence central limit the-

orem of Billingsley (1968, Theorem 3.1) implies that each of the �nite dimensional distributions

of Gdn(�) converges in distribution to a multivariate normal distribution with covariance given by

(68).

(iii) The process Gdn(� ;m) is stochastically equicontinuous if for all " > 0, there exists c > 0

such that

lim sup
n!1

P

"
sup

k(�1;m1)�(�2;m2)k�c, (�1;m1);(�2;m2)2D1
�m

���Gdn(�1;m1)� Gdn(�2;m2)
��� > "

#
< ":

In the rest of this section, we keep the restriction (�1;m1); (�2;m2) 2 D1
�m implicit to simplify

notation. First note that for 0 < c � c1,

sup
k(�1;m1)�(�2;m2)k�c

���Gdn(�1;m1)� Gdn(�2;m2)
��� (76)

�max
(

sup
k(�1;m1)�(�2;m2)k�c;j�1j;j�2j�2c1

���Gdn(�1;m1)� Gdn(�2;m2)
��� ;

sup
k(�1;m1)�(�2;m2)k�c;j�1j;j�2j�c1

���Gdn(�1;m1)� Gdn(�2;m2)
���);

whence

P

"
sup

k(�1;m1)�(�2;m2)k�c

���Gdn(�1;m1)� Gdn(�2;m2)
��� > "

#

�P
"(

sup
k(�1;m1)�(�2;m2)k�c;j�1j;j�2j�2c1

���Gdn(�1;m1)� Gdn(�2;m2)
��� > "

)

[
(

sup
k(�1;m1)�(�2;m2)k�c;j�1j;j�2j�c1

���Gdn(�1;m1)� Gdn(�2;m2)
��� > "

)#

�P
"

sup
k(�1;m1)�(�2;m2)k�c;j�1j;j�2j�2c1

���Gdn(�1;m1)� Gdn(�2;m2)
��� > "

#
(77)

+ P

"
sup

k(�1;m1)�(�2;m2)k�c;j�1j;j�2j�c1

���Gdn(�1;m1)� Gdn(�2;m2)
��� > "

#
: (78)

For the �rst term in (77), we show that for all " > 0, there exist c1 � c2 > 0 such that

P

"
sup

k(�1;m1)�(�2;m2)k�c2;j�1j;j�2j�2c1

���Gdn(�1;m1)� Gdn(�2;m2)
��� > "

#
� "

2
:
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Given (70), we will have that

Gdn(� ;m) =
H4p
n

1
36�

4 � 1
8�
2

�
+
H3p
n

1
2��

�
+

X
4�i+j�3;j�1

1

i!j!

1p
n

@6Ln (0; 0; 1)

@�@�i@�j
�i�j

�

+
X
i+j=5

1

i!j!

1p
n

@6Ln

�
~�; ~�; 1

�
@�@�5

�i�j

�
;

where j~�j � j�j, j~�j � j�j, and �, �, ~�, ~� are functions of (� ;m) even though we have omitted

these arguments. Therefore,

1

21

h
Gdn(�1;m1)� Gdn(�2;m2)

i2
�
�
H4p
n

�2�
��11

�
1

36
�41 �

1

8
�21

�
� ��12

�
1

36
�42 �

1

8
�22

��2
(79)

+

�
H3p
n

�2�1
2
��11 �1�1 �

1

2
��12 �2�2

�2
(80)

+
X

4�i+j�3;j�1

�
1

i!j!

1p
n

@6Ln (0; 0; 1)

@�@�i@�j

�2 n
��11 �i1�

j
1 � �

�1
2 �i2�

j
2

o2
(81)

+
X
i+j=5

sup
j�j���;j�j���

�
1

i!j!

1p
n

@6Ln (�; �; 1)

@�@�i@�j

�2 n
��21 �2i1 �

2j
1 + �

�2
2 �2i2 �

2j
2

o
; (82)

where �1 = �(�1;m1), �1 = �(�1;m1), �2 and �2 are de�ned in the same way. First, we can

easily check that

E

"�
H4p
n

�2#
= E

�
h24
�
<1; E

"�
H3p
n

�2#
= E

�
h23
�
<1;

E

"�
1

i!j!

1p
n

@6Ln (0; 0; 1)

@�@�i@�j

�2#
= E

�
1

i!j!

@6l (0; 0; 1)

@�@�i@�j

�2
<1:

by the iid assumption and the zero expectation of these terms. Second, for the terms (79)-

(82), we can show that the non-random coe¢ cients in fg converge to zero as c; c1 ! 0, using

arguments in (74), (75) and Lemma 11. To be more speci�c, for (� ;m) 2 B1, we have

��11

�
1

36
�41 �

1

8
�21

�
� ��12

�
1

36
�42 �

1

8
�22

�
= 1� 1 = 0

1

2
��11 �1�1 �

1

2
��12 �2�2 =

1

2
(m1 �m2)

��11 �i1�
j
1 � �

�1
2 �i2�

j
2 =

8<:= m1�
i�1
1 �j�11 �m2�

i�1
2 �j�12 if i � 1

= ��11 �j1 � �
�1
2 �j2 � sup

����2� ��� (�1 + �2) if i = 0
;
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and the same applies to ��21 �2i1 �
2j
1 . Together with Lemma 10(10.3), which implies that

E

"
sup

j�j���;j�j���

�
1p
n

@6Ln (�; �; 1)

@�@�i@�j

�2#
! E

"
sup
j�j;j�j

�
G[i;j](�; �)

�2#
<1;

we can �nd c1 � c2 > 0 such that

E

"
sup

k(�1;m1)�(�2;m2)k�c2;�1;�2�2c1

�
Gdn(�1;m1)� Gdn(�2;m2)

�2#
� "3

2
: (83)

Then Chebychev�s inequality implies that

P

"
sup

k(�1;m1)�(�2;m2)k�c;j�1j;j�2j�2c1

���Gdn(�1;m1)� Gdn(�2;m2)
��� > "

#

� 1

"2
E

"
sup

k(�1;m1)�(�2;m2)k�c;j�1j;j�2j�2c1

�
Gdn(�1;m1)� Gdn(�2;m2)

�2#
� ":

Next, consider (78). Given c1, we need to �nd c such that c1 � c > 0 and

P

"
sup

k(�1;m1)�(�2;m2)k�c;j�1j;j�2j�c1

���Gdn(�1;m1)� Gdn(�2;m2)
��� > "

#
� "

2
: (84)

First, we change (� ;m) to (�; �) for simplicity. For (� ;m) 2 D1, it holds that

1

36
�4 � 1

36
�4 � 1

8
�2 = �(�; �) � c1; � � 0;

which implies � �
p
6c

1
4
1 . Moreover, for all c > 0, there exists a cB > 0 such that

�
(�1;m1; �2;m2) 2 B1�m �B1�m : k(�1;m1)� (�2;m2)k � c; �1; �2 � c1

	
�
�
(�1;m1; �2;m2) 2 B1�m �B1�m : k(�1; �1)� (�2; �2)k � cB; �1; �2 �

p
6c

1
4
1

�
(85)

because
�
(� ;m) 2 D1

�m : � � c1
	
is a compact set, and �(�; �) and m(�; �) are continuous on

this set. Therefore, it su¢ ces to �nd cB such that
n
Gn(�; �) : j�j �

p
6c
1=4
1 ; (�; �) 2 A1��

o
is

stochastically equicontinuous. To do so, we use Theorem 1 of Andrews (1994). Speci�cally, we

use the notation f for Gn(�; �) = 1p
n

P
i f (yi; �; �) and show that f belongs to the type II class

of functions de�ned in Andrews (1994, p.2270). This is the class of Lipschitz functions in (�; �),

which is such that

jf (:; �1; �1)� f (:; �; �)j �M (:) (j�1 � �2j+ j�1 � �2j)

for all (�1; �1); (�2; �2) 2 A1��; j�1j; j�2j �
p
6c
1=4
1 .
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Note that

1

�1

@l

@�
(�1;m1)�

1

�2

@l

@�
(�2;m2) = y2 [D1(�1; �1; �1)�D1(�2; �2; �2)]

+ y [D2(�1; �1; �1)�D2(�2; �2; �2)]

+ [D3(�1; �1; �1)�D3(�2; �2; �2)]

� 1

�1
exp

24�e �213 ��1
2

(�1 + y)
2 +

1

2
y2 +

1

6
�21 �

1

2
�1

35
+
1

�2
exp

24�e �223 ��2
2

(�2 + y)
2 +

1

2
y2 +

1

6
�22 �

1

2
�2

35 ; (86)

where

D1(� ; �; �) =
1

2
��1e��

�2

3 +
1

2

�2

�
; D2(� ; �; �) = �

�

�
;

D3(� ; �; �) = �
1

2
��1

�
e��

�2

3 � �2
�

so that D1, D2 and D3 are all Lipschitz in (�; �) for (�; �) 2 A1�� and � = �(�; �). And for the

last term in (86), the mean value theorem implies that

� 1

�1
exp

24�e �213 ��1
2

(�1 + y)
2 +

1

2
y2 +

1

6
�21 �

1

2
�1

35
+
1

�2
exp

24�e �223 ��2
2

(�2 + y)
2 +

1

2
y2 +

1

6
�22 �

1

2
�2

35
=exp

24�e ~�23 �~�
2

(~� + y)2 +
1

2
y2 +

1

6
~�
2 � 1

2
~�

35( 1

~�2
(�1 � �2)

+
1

3~�

�
e
~�
2

3
�~�
�
~�
3
+ 3~� + ~�y2 + 2~�

2
y + 3y

�
� ~�
�
(�1 � �2)

+
1

2~�

�
1� e

~�
2

3
�~�(~� + y)2

�
(�1 � �2)

)
: (87)

In addition,

j�1 � �2j =
���� 136�41 � 18�21 � 1

36
�42 +

1

8
�22

����
=

���� 136 ��21 + �22� (�1 + �2)(�1 � �2)� 18 (�1 + �2) (�1 � �2)
����

� 1

9
��
3 j�1 � �2j+

��

4
j�1 � �2j : (88)
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Moreover

exp

0@�e �23 ��
2

(� + y)2 +
1

2
y2 +

1

6
�2 � 1

2
�

1A � g�(y); (89)

where

g�(y) = exp

�
�e

���

2
(2��jyj+ y2) + 1

2
y2 +

1

6
��
2
+
1

2
��

�
:

Combining (86), (87), (88) and (89), we will have

1

�1

@l

@�
(�1;m1)�

1

�2

@l

@�
(�2;m2) � (g�(y) + 1)

�
c1 + c2jyj+ c3y2

	
(j�1 � �2j+ j�1 � �2j) :

But since

E
�
(g�(y) + 1)

�
c1 + c2jyj+ c3y2

	�
<1;

f will be Lipschitz with M (y) = (g�(y)+1)
�
c1 + c2jyj+ c3y2

�
for some constants c1, c2 and c3.

To apply Theorem 1 of Andrews (1994), we need to check Assumptions A, B, and C. Assumption

A: the class of functions f satis�es Pollard�s entropy condition with some envelope �M . This is

satis�ed with �M = 1 _ sup jf j _M(:) by Theorem 2 of Andrews (1994) because f is Lipschitz.

In turn, Assumption B:

lim sup
n!1

1

n

nX
i=1

E �M2+� (yi) <1 for some � > 0;

is also satis�ed because yi is a standard normal r.v. Finally, Assumption C: fyig is an m-

dependent triangular array of r.v�s holds because fyig is iid. Stochastic equicontinuity of f

follows from Theorem 1 of Andrews (1994). Thus, for given " > 0, we can �nd cB such that (84)

holds.

In sum, we have

lim sup
n!1

P

"
sup

k(�1;m1)�(�2;m2)k�c

���Gdn(�1;m1)� Gdn(�2;m2)
��� > "

#

� lim sup
n!1

P

"
sup

k(�1;m1)�(�2;m2)k�c2, j�1j;j�2j�2c1

���Gdn(�1;m1)� Gdn(�2;m2)
��� > "

#

+ lim sup
n!1

P

"
sup

k(�1;m1)�(�2;m2)k�c, j�1j;j�2j�c1

���Gdn(�1;m1)� Gdn(�2;m2)
��� > "

#
�"
2
+
"

2
� ";

as desired. �
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Step 3

Lemma 4 supd2D1 LRdn(d) = supd2D1 LMd
n(d) + op(1) = sup(�;m)2D1

�m

[Gdn(�;m)]
2

�
V d(�;m)

+ op(1).

Proof. Since���� sup
d2D1

LRdn(d)� sup
d2D1

LMd
n(d)

���� � sup
(�;m)2D1

�m

����� sup
�:(�;� ;m)2D1

LRdn(�; � ;m)� sup
�:(�;� ;m)2D1

LMd
n(�; � ;m)

����� ;
it su¢ ces to show that

sup
�:(�;� ;m)2D1

LRdn(�; � ;m) = sup
�:(�;� ;m)2D1

LMd
n(�; � ;m) + op(1): (90)

Expression (90) follows from Andrews (2001). To see this, we need to check his assumptions.

Let

ld(�; � ;m) = l(�(� ;m); �(� ;m); �(�; � ;m))

denote the log-likelihood of yi written in d 2 D1. The null hypothesis is H0 : � = 0 and (� ;m)

is the nuisance parameter that only appears under the alternative. Let

LRdn(�̂�m; � ;m) = sup
�:(�;� ;m)2D1

LRdn(�; � ;m):

To verify Assumption 1, namely �̂�m = op;�m(1), let ld0(d) = E
�
ld(1; � ;m)

�
. Invoking Lemma

8, we have

supb2B1

���� 1nLdn(d)� ld0(0; � ;m)
���� � sup�2� ���� 1nLn(�)� l0(�)

���� p�! 0 (91)

(i.e. uniform convergence). Moreover, for all � > 0,

ld0(d) > sup�>�;d2cl(B1)l
d
0(d) (92)

(i.e. well separated maximum), which follows from the fact that � = 1 is the unique maximizer

(note that (1 � �) � maxfj�j; j�jg), ld0(d) is continuous and cl(D1) is compact. As a result,

Lemma A1 in Andrews (1993) implies that we have �̂�m = op;�m(1).

Assumption 2� holds with BT =
p
n, see Lemma 2. Assumption 3� holds by Lemma 3.

Assumption 4 is implied by Assumptions 1, 2� and 3. Assumption 5 is satis�ed for Bn = bn =
p
n

and � = R�. Assumption 6 holds because R� is convex. Assumptions 7 and 8 hold with �� = R�

and with the fact that � and  are absent in our setting. Assumptions 9 and 10 are satis�ed.

Assumptions 1o and 4o hold trivially because the restricted estimator is � = 0 and therefore not

random.

By Theorem 4 and the remark at the bottom of p. 719 of Andrews (2001), it follows that
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(90) holds. �

Step 4

In this step, we show that

sup
#2�0

2 [Ln(#)� Ln(0; 0; 1)] =
1

n
sup

#2�0n(0;0;1)

(min f@Ln(�;{; 1)=@�; 0g)2

V (�;{)
+ op(1);

where we use the notation Ln for the log-likelihood indexed by V, whereas Ln is the log-likelihood

indexed by �. First, by the results in Step 3, we have

sup
b2Bk

LRdn(b) = sup
(�;m)2Bk�m

�
Gdn(� ;m)

�2
�

V d(� ;m)
+ op(1):

Noticing also that

sup
b2Bk

LRdn(b) = sup
�2Ak

LRn(�) and sup
(�;m)2Bk�m

�
Gdn(� ;m)

�2
�

V d(� ;m)
= sup
(�;�)2Ak�m

bGn(�; �)c2�
V (�; �)

;

we will have that

sup
�2Pb

LRn(�) = max
k�16

sup
b2Bk

LRdn(b) = max
k�16

sup
(�;�)2Ak�m

bGn(�; �)c2�
V (�; �)

+ op(1)

= sup
(�;�):(�;�;1)2Pb

bGn(�; �)c2�
V (�; �)

+ op(1):

Therefore,

sup
#2P 0b

2 (Ln(#)� Ln(0; 0; 1)) = sup
�2Pb

LRn(�) = sup
(�;�):(�;�;1)2Pb

bGn(�; �)c2�
V (�; �)

+ op(1)

= sup
(�;{):(�;{;1)2P 0b

bGn(�;{)c2�
V (�;{)

:

Proof of Proposition 5

To show (8), note that for k1 2 R,

lim
"!0

$
Gn("; k1")p
V ("; k1")

%2
�

=
1

n

�
4k1H3;n � k21H4;n

�2
�

16k21V3 + k
4
1V4

: (93)
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In addition, let k1 = �4H4;nV3H3;nV4
, which is well de�ned with probability one. Then, we can write

(93) =
1

n

�
4k1H3;n � k21H4;n

�2
�

16k21V3 + k
4
1V4

=
1

n

�
�16H4;nV

2
3

H2
3;nV4

�
H2
3;n

V3
+

H2
4;n

V4

��2
�

162
H2
4;nV

4
3

H4
3;nV

2
4

�
H2
3;n

V3
+

H2
4;n

V4

�
=

1

n

 
H2
3;n

V3
+
H2
4;n

V4

!
1 [H4;n > 0] :

On the other hand, for k2 2 R,

lim
"!0

6664 Gn("; k218"3)q
V ("; k218"

3)

77752
�

=
1

n

bH4;n + k2H3;nc2�
V4 + k22V3

: (94)

Letting k2 =
H4;nV3
H3;nV4

, we can write

(94) =
1

n

bH4;n + k2H3;nc2�
V4 + k22V3

=
1

n

j
H4;n +

H3;nV4
H4;nV3

H3;n

k2
�

V4 +
H2
3;nV

2
4

H2
4;nV

2
3
V3

=
1

n

�
V4
H4;n

�
H2
4;n

V4
+

H2
3;n

V3

��2
�

V 24
H4;n

�
H2
4;n

V4
+

H2
3;n

V3

�
=

1

n

 
H2
3;n

V3
+
H2
4;n

V4

!
1 [H4;n < 0] :

Then, it is easy to show that with probability 1,

sup
j�j���;j���2=3j��{;j�j;j�j>0

$
Gn(�;{)p
V (�;{)

%2
�

� max

8><>:lim"!0
$
Gn("; k1")p
V ("; k1")

%2
�

; lim
"!0

6664 Gn("; k218"3)q
V ("; k218"

3)

77752
�

9>=>;
=
1

n

 
H2
3;n

V3
+
H2
4;n

V4

!
:

In turn, to show (9), note that

Gn(0; �) =
1p
n

nX
i=1

1

2

h
(e� � 1)(y2i � 1) + 2� 2e

1
2((1�e

��)y2i��)
i

V (0; �) =
1

2

 
�2
p
2e�� � 1
e� � 2 + 2e� � e2� � 3

!
;

with

lim
�!0

Gn(0; �)p
V (0; �)

=
�H4;np
n
p
V4
:
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As a consequence,

sup
j�j��{;j�j>0

$
Gn(0; �)p
V (0; �)

%2
�

�
�
�H4;np
n
p
V4

�2
�
=
H2
4;n

nV4
1 [H4;n > 0] ;

as desired. �

Proof of Proposition 6

(a) By LeCam�s �rst lemma (see Lemma 6.4 of van der Vaart (1998)), contiguity holds if

dP�;�n=dP0
d! U under P0 with E (U) = 1.

Let Ln (�; �) denote the joint likelihood of y1; : : : ; yn for a given � and �. By the mean value

theorem, we have

Ln (�; �) = Ln (�; �0) +
@Ln (�; �0)

@�
(�n � �0) +

1

2

@2Ln

�
�; ~�

�
@�2

(�n � �0)2 ;

where ~� is between �0 and �n. Replacing �0 by 1 and using Andrews (2001), we have

Ln (�; �n) = Ln (�; 1)�
@Ln (�; 1)

@�

�p
n
� 1
2

@2Ln

�
�; ~�

�
@�2

�2

n

= Ln (�; 1)�
1p
n

@Ln (�; 1)

@�
�� 1

2
var[G (�)]�2 + op� (1) :

Therefore, under H0;

dP�;�n
dP0

= exp

�
� 1p

n

@Ln (�; 1)

@�
�� 1

2
var[G (�)]�2

�
+ op� (1)

d! U = exp

�
�G (�) �� 1

2
var[G (�)]�2

�
:

Using the expression of the moment generating function of a normal distribution, we have

E (U) = 1 and hence (a) holds.

(b) Using the results from (a), the joint distribution of�
H3;np
n
;
H4;np
n
;
1p
n

@Ln (�; 1)

@�
; ln

�
dP�;�n
dP0

��0
converges under H0 to a Gaussian process such that

N

266664
0BBBB@

0

0

0

�1
2var[G (�)]�

2

1CCCCA ;

0BBBB@
V3 : : :

0 V4 : :

c3 c4 var[G (�)] :

�c3� �c4� �var[G (�)]� var[G (�)]�2

1CCCCA
377775 : (95)
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Let ! = �� �2=3 and consider

c3 = cov[h3i; @li (�; 1) =@�] = E[h3i@li (�; 1) =@�]

= � 1p
e�
E

��
y3i � 3yi

�
exp

�
1

2

�
y2i�

(yi + �)
2

e!

���
;

which follows because h3i is orthogonal to both h1i = yi and h2i = y2i�1. UnderH0; yi � N (0; 1),

it follows that

E

��
y3i � 3yi

�
exp

�
1

2

�
y2i�

(yi + �)
2

e!

���
=

1p
2�

Z �
y3 � 3y

� 1p
2�
exp

�
�(y + �)

2

2e!

�
dy

=
p
e!
Z ��p

e!u� �
�3
� 3

�p
e!u� �

�� 1p
2�
e�

u2

2 du

=
p
e!
�
��3 � 3�e! + 3�

�
if we use the change of variable u = (y + �) =

p
e!.

Hence, we have cov[h3i; @li (�; 1) =@�] = �3 + 3� (e! � 1), and also

cov [h4i; @li (�; 1) =@�] = E[h4i@li (�; 1) =@�]

= � 1p
e!
E
�
y4i � 6y2i + 3

�
exp

�
1

2

�
y2i�

(yi + �)
2

e!

��
= �

�
3e2! + 6e!�2 + �4 � 6

�
e! + �2

�
+ 3
�

= 6�2 (1� e!)� �4 � 3 (1� e!)2

by the orthogonality of the Hermite polynomials and the same change of variable as before.

Then, if we denote by (T; ln(U)) the limiting joint distribution given in (95), it follows from

LeCam�s third Lemma (see van der Vaart (1998)) that Tn =
�
H3;np
n
;
H4;np
n
; 1p

n
@Ln(�;1)

@�

�
converges

in distribution under H1n to a normal distribution with mean E(T )+cov[T; ln(U)] and the same

variance V (T ) as under H0, which proves result (b).

Part (c) then follows from the joint distribution of
�
H3;np
n
;
H4;np
n

�
under H1n derived in (b).

Finally, the limiting distribution of gLM b;1 test in part (d) follows from the continuous map-

ping theorem. �
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Proof of Proposition 7

To establish the result, we need �rst to look at the joint distribution of H3;np
n
;
H4;np
n
, 1p

n
@Ln(�;1)

@�

and ln dP�ndP�0
under P�0 . It is easy to see that0BBBBB@

H3;np
n

H4;np
n

1p
n
@Ln(�;1)

@�

ln
dP�n
dP�0

1CCCCCA d! N

266664
0BBBB@

0

0

0

�V3w21
2 � V4w22

2

1CCCCA ;

0BBBB@
V3 : : :

0 V4 : :

c3 c4 var[G (�)] :

V3w1 V4w2 c3w1 + c4w2 V3w
2
1 + V4w

2
2

1CCCCA
377775

under P�0 . It then follows from Le Cam�s third lemma (see van der Vaart (1998)) that0BB@
H3;np
n

H4;np
n

1p
n
@Ln(�;1)

@�

1CCA d! N

264
0B@ V3w1

V4w2

c3w1 + c4w2

1CA ;

0B@ V3 0 c3

0 V4 c4

c3 c4 var[G (�)]

1CA
375

under P�n . Therefore,

LMn =
H2
3;n

nV3
+
H2
4;n

nV4

d! �22
�
V3w

2
1 + V4w

2
2

�
:

as desired. �

Proof of Proposition 8

Constant � and �2

We �rst consider the simple case in which we estimate both the unconditional mean and

variance parameters, say � and �2, respectively, under the additional assumption that they are

constants. Speci�cally, letting y =
p
�2z + � and z � MixN(0; 1), we have that the pdf of y is

given simply by

fY (y) =
1p
�2
fZ

�
y � �p
�2

�
;

so that the contribution of observation yi to the log-likelihood, `(�; �2; �;{; �; y), will be given

by

k� 1
2
log�2+ log

(
�p
��21

exp

"
� 1

2��21

�
y � �p
�2

� ��1
�2#

+
1� �p
��22

exp

"
� 1

2��22

�
y � �p
�2

� ��2
�2#)

;

where k is an integration constant and

��1 =
�(1� �)q

1 + �(1� �)�2
; ��2 = �

�

1� ��
�
1
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��21 =
1�

1 + �(1� �)�2
�
[�+ (1� �) exp({)]

and ��22 = exp({)��21 :

Subtest in Pa We consider the reparametrization in (3) and de�ne

Ln(�; �
2; �; �; �) =

1

n

nX
i=1

li(�; �
2; �; �; �);

with li(�; �2; �; �; �) = `(�; �2; �; �� (2�� 1)�2=3; �; yi).

To shorten notation, let � = (�; �) with � = (�; �2) and � = (�; �; �). Next, de�ne

LRn(�; �
2; �; �; �) = 2

�
Ln(�; �

2; �; �; �)� Ln(�0; �20; 0; 0; �)
�

(96)

and

�LRn;r = argmax
�2��f0g2�[ 1

2
;1]

LR(�); �LRn;u = argmax
�2��P

LR(�);

where P can be replaced by Pa;1; Pa;2; Pa;3 as needed, and � denotes the feasible parameter space

of (�; �2). Then, it is easy to verify that �LRn;r =
�
�n;r; 0; 0; �n;r

�
with

�n;r = (�n;r; �
2
n;r) =

"
1

n

nX
i=1

yi;
1

n

nX
i=1

(yi � �n;r)2
#
;

which provide the restricted MLEs of �.

Let

LMa;�
n (�) =2

�
1

�0

H1;np
n

�p
n(�� �0) + 2

�
1

2�20

H2;np
n

�p
n(�2 � �20) (97)

� 1

�20
n(�� �0)2 �

1

2�40
n
�
�2 � �20

�2
;

where

H1;n =
nX
i=1

h1i =
nX
i=1

yi � �0p
�20

;

H2;n =

nX
i=1

h2i =

nX
i=1

(yi � �0)2 � �20
�20

;

so that LMa
n(�;�0) coincides with (10) if we replace yi with (yi � �0)=

p
�20. As in the proof of

Proposition 1, we have the following �ve steps:

1. For all sequences of �n = (�n; �n; �n; �n) with (�n; �n; �n)
p�! (�0; 0; 0), we have that

LRn(�n) = LMa
n(�n) + LM

a;�
n (�n) + op[h

�
n(�n)] + op[h

�
n(�n)];
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where h�n(�) = max
�
1; n(�� �0)2; n(�2 � �20)2

	
and

h�n(�) = max
�
1; n(1� �)2�8; n(1� �)2�2�2; n(1� �)2�4

	
:

2. For �n = (�LMn ; �2LMn ) 2 argmax�2� LM
a;�
n (�), we have that �LMn = �0 + op(1) and

h�n(�
LM
n ) = Op(1); and also de�ne �LMn = (�LMn ; �LMn ; �LMn ) 2 argmax�2� LMa

n(�), we

have that (�LMn ; �LMn ) = op(1) and h�n(�
LM
n ) = Op(1).

3. For �LRn;u = (�
LR
n;u; �

LR
n;u; �

LR
n;u; �

LR
n;u) 2 argmax�2��P LRn(�), we have that

(�LRn;u � �0; �LRn;u; �LRn;u)
p�! 0

and h(�LRn;u) = Op(1).

4. Then, we prove that LRn(�LRn;r )� LRn(�LRn;u) = LMa
n(�

LM
n ) + op(1).

5. Finally, show that the test is the same as before, but replace yi by
yi��n;r
�n;r

.

Before going into the details of these steps, let us emphasize that the main di¤erence is in

Step 1, which shows that in the Taylor expansion the cross terms (T3 de�ned below) of � and �

are negligible, and thus we can consider the two parts separately. Step 2-4 are almost the same

as before.

Step 1 : Consider a sequence �n = (�n; �n; �n; �n) with (�n; �n; �n)
p�! (�0; 0; 0). Let

L[k1;k2;k3;k4]n =
1

k1!k2!k3!k4!

@k1+k2+k3+k4Ln(�)

@�k1 (@�2)k2 @�k3@�k4

�����
�n;0

where �n;0 = (�0; 0; 0; �n) and

4[k1;k2;k3;k4]
n =

1

k1!k2!k3!k4!

24 @k1+k2+k3+k4Ln(�)

@�k1 (@�2)k2 @�k3@�k4

�����
(~�n;

~�n;~�n;�n)

� @k1+k2Ln(�)

@�k1@�k2

����
�n;0

35 ;
with (~�n; ~�n; ~�n) between (�0; 0; 0) and (�n; �n; �n). Consider the following eighth-order Taylor

expansion,

1

2
LRn(�n) =Ln(�0 + �n; �

2
0 + �

2
n; �n; �n; �n)� Ln(�0; �20; 0; 0; �n)

=T1n(�n;�0) + T2n(�n;�0) + T3n(�n;�0; �
2
0) + �n;
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where

T1n(�n;�0) =
X

k3+k4�8
L[0;0;k3;k4]n �k3n �

k4
n ;

T2n(�n;�0) =
X

k1+k2�8
L[k1;k2;0;0]n (�n � �0)k1

�
�2n � �20

�k2 ;
T3n(�n;�0) =

X
k1+k2+k3+k4�8
k1+k2�1; k3+k4�1

L[k1;k2;k3;k4]n (�n � �0)k1
�
�2n � �20

�k2 �k3n �k4n ;
�n =

X
k1+k2+k3+k4=8

�[k1;k2;k3;k4]n (�n � �0)k1
�
�2n � �20

�k2 �k3n �k4n
First, we will show that T3n(�n;�0) = op[h

�
n(�n)] + op[h

�
n(�n)]. Speci�cally, for (k1; k2) 2

f(1; 0); (0; 1)g and (k3; k4) 2 f(k; 0) : k � 4g[f(0; k) : k � 2g[f(1; 1)g, we can easily check that

E[l[k1;k2;k3;k4](�0)] = 0 and Ef[l[k1;k2;k3;k4](�0)]2g <1;

which means that p
n

n

@k1+k2+k3+k4Ln(�)

@�k1 (@�2)k2 @�k3@�k4

�����
�0

= Op(1): (98)

Therefore, we will have that the (k1; k2; k3; k4) term is such that

L[k1;k2;k3;k4]n �k1n
�
�2n
�k2 �k3n �k4n =

0@pn
n

@k1+k2+k3+k4Ln(�)

@�k1 (@�2)k2 @�k3@�k4

�����
�0

1A
�
hp

n (�n � �0)k1
�
�2n � �20

�k2i �k3n �k4n
= op[h

�(�n)];

where the last equality follows from (98) and the fact that �k3n �
k4
n = op(1). As for the remaining

terms in T3n, we have either: a) k1 + k2 � 2 so that

n (�n � �0)k1
�
�2n � �20

�k2 �k3n �k4n = op[h
�(�n)]; (99)

or b) (k3; k4) 2 f(k; 0) : k > 4g [ f(0; k) : k > 2g [ f(k; k0) : k; k0 > 1g, so that

L[k1;k2;k3;k4]n (�n � �0)k1
�
�2n � �20

�k2 �k3n �k4n =

 
1

n

nX
i=1

g(yi)

!
n (�n � �0)k1

�
�2n � �20

�k2
�(1� �n)�k3n �k4n

= op[h
�(�n)];
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where g(y) = l
[k1;k2;k3;k4]
n (�n0)

(1��n) is square integrable. In this case, the last equality follows from

n�k1n
�
�2n
�k2 (1��n)�k3n �k4n =

p
n (�n � �0)k1

�
�2n � �20

�k2 pn(1��n)�k3n �k4n = op[h
�(�n)]: (100)

Secondly, we have to show that T2n = LM�
n (�n;�0) + op[h

�(�n)]. Invoking Rotnitzky et al

(2000), we will have that

1

n
L[2;0;0;0]n = � 1

2�20
+Op(n

� 1
2 ),

1

n
L[0;2;0;0]n = � 1

4�20
+Op(n

� 1
2 ) and

1

n
L[1;1;0;0]n = Op(n

� 1
2 ):

Therefore

2
X

k1+k2=2

L[k1;k2;0;0]n (�n � �0)k1
�
�2n � �20

�k2 = 2 X
k1+k2=2

1

n
L[k1;k2;0;0]n n (�n � �0)k1

�
�2n � �20

�k2
= �V1

�20
n (�n � �0)2 �

V2
4�20

n
�
�2n � �20

�2
+ op[h

�(�n)]:

For k1 + k2 > 2, we have 1
nL

[k1;k2;0;0]
n = Op(1) and n�k1n

�
�2n
�k2 = op

�
h�(�n)

�
.

Third, we have to show that T1n = LMn(�n) + op[h
�(�n)]. But since this is the same as we

did in proof of Proposition 1, we can omit it.

The last part requires to prove that �[k1;k2;k3;k4]n (�n � �0)k1
�
�2n � �20

�k2 �k3n �k4n = op(1) for

k1 + k2 + k3 + k4 = 8, which is entirely analogous to the proof of Proposition 1.

Step 2 : This step is trivial since max�2� LM�(�) has a closed-form solution with probability

approaching one. The asymptotic properties of �LMn

Step 3 : Following the proof of Proposition 1, we can �rst show that �LRn
p�! 0. Next, we can

also show that h�n(�
LR
n ) = Op(1) and h

�
n(�

LR
n ) = Op(1) (similar to Lemma 3 in Amengual, Bei

and Sentana (2020)).

Step 4 : Similarly, it follows from the same argument as in the corresponding proof of

Proposition 1.

Step 5 : Simplify LM �
n(�

LM
n ) is as in the proof of Proposition 1. Then by the stochastic

equicontinuity of the test statistic in �, we can replace � by �n;r.

Subtest in Pb In terms of Andrews (2001) notation, we have

�1 = �; � = (� ;m);  = (�; �2):

We show that we do not need to adjust for parameter uncertainty by verifying Assumption 7

of Andrews (2001), which guarantees that there is no cross term of � and � in the quadratic
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approximation. Let

LRdn(�; �
2; �; � ;m) =LRn[�; �

2; �(� ;m); �(� ;m); �(�; � ;m)];

LMd
n(�; �

2; �; � ;m) =2Gn(� ;m)
p
n� � V (� ;m)n�2 + LM�

n (�);

Rdn(�; �
2; �; � ;m) =LRdn(�; �

2; �; � ;m)� LMd
n(�; �

2; �; � ;m);

where LRdn(�; �
2; �; � ;m) is de�ned in (96) and LM�

n (�) in (97). We need to show that for all

sequences (�n; �
2
n; �n; �n;mn) with (�n � �0; �2n � �20; �n)

p�! 0, it holds that

Rn(�n; �
2
n; �n; �n;mn) = op

�
max[n�2n; n(�n � �0); n(�2n � �20)2]

	
: (101)

To see this, we can modify the proof of Proposition 1. Let �n = (�n; �
2
n; �n; �n; �n) with

�n = �(�n;mn), �n = �(�n;mn) and �n = �(�n; �n;mn). A third-order Taylor expansion gives

Ld(�n; �
2
n; �n; �n;mn)� Ld(�0; �20; 0; �n;mn) = L(�n; �

2
0 + �

2
n; �n; �n; �n)� L(�20; �n; �n; 1)

= T1n(�n;�0) + T2n(�n;�0)

+ T3n(�n;�0) + T4n(�n;�0);

where

T1n(�n;�0) =
@L(�n0)

@�
(�n � 1) +

1

2

@2L(�n0)

@�2
(�n � 1)2 +

1

3!

@3L(~�n)

@�3
(�n � 1)3:

T2n(�n;�0) =
X
i+j�2

1

i!j!

@i+jL(�n0)

@�i@(�2)j
(�n��0)i(�2n��20)j+

X
i+j=3

1

i!j!

@3L(~�n)

@�i@(�2)j
(�n��0)i(�2n��20)j ;

T3n(�n;�0) =
@2L(�n0)

@�@�
(�n � 1)(�n � �0) +

@2L(�n0)

@�@�2
(�n � 1)(�2n � �20)

+
1

2

@3L(~�n)

@�2@�
(�n � 1)2(�n � �0) +

1

2!2!

@3L(~�n)

@�2@�2
(�n � 1)2(�2n � �20);

T4n =
X
j+k=2

1

j!k!

�
1

n

@3L(~�n)

@�@�j@(�2)k

�
n(�n � �0)j(�2n � �20)k(�n � 1);

with ~�n = (~�n; ~�
2
n; �n; �n;

~�n) between (�n; �
2
0 + �2n; �n; �n; �n) and �n0 = (�0; �

2
0; �n; �n; 1). We

can show that

2T1n(�n;�0) = 2Gn(�n;mn)
p
n�n � V (�n;mn)n�

2
n + op(n�

2
n) (102)
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using the same argument as in Proposition 1. Hence, it is straightforward to show that

2T2n(�n;�0) = LM�
n (�n) + op

h
n
�
�2n
�2
+ n�2n

i
(103)

We can also show that

T3n(�n;�0) =

�
1p
n

@2L(�n0)

@�@�

��p
n(�n � �0)

�
(�n � 1)

+

�
1p
n

@2L(�n0)

@�@�2

��p
n(�2n � �20)

�
(�n � 1)

+
1

2

�
1

n
��1n

@3L(~�n)

@�2@�

�
[n(�n � �0)�n] (�n � 1)

+
1

4

�
1

n
��1n

@3L(~�n)

@�2@�2

��
n(�2n � �20)�n

�
(�n � 1)

=op

h
n(�n � �0)2 + n

�
�2n � �20

�2
+ n�2n

i
; (104)

where the �rst equality follows from �n = (�n�1)�n and the second one follows from Lemma 10

and �n
p�! 1. The last part is easy, as n(�n � �0)

j(�2n � �20)
k = O

h
n�2n + n

�
�2n
�2i and �n ! 1,

so that

T4n = op

h
n
�
�2n
�2
+ n�2n

i
: (105)

Combining the results in (102), (103), (104) and (105), we �nally prove (101).

General � and �2

Let us now consider the general case in which the conditional mean and variance are para-

metric functions of another observable vector X.

In this context, let Wt = (Yt; Xt) and assume that

fYtj(Xt;W t�1)(yjx;wt�1) = fYtjXt(yjx) =
1q

�2Y (x;�)
fZ

0@y � �Y (x;�)q
�2Y (x;�)

1A :

As a consequence, the (conditional) log-likelihood can be written as

`p(�; �;{; �;Yt; Xt) = `(�Y (Xt;�); �
2
Y (Xt;�); �;{; �;Yt)

the subscript p is for �parametric�and ` was de�ned in the previous section. Accordingly, we

denote the likelihood after reparametrization as lp(�; �; �; �;Yt; Xt).

For Pa part, we only need to check the argument in Step 1 since Steps 2 to 4 are the same.

First, notice that for every vector k �with the same dimension as �� such that jkj = 1 and
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(k2; k3) 2 f(k; 0) : k � 4g [ f(0; k) : k � 2g [ f(1; 1)g,

l[k1;k2;k3]p (�0) = l[1;0;k2;k3]c (�0)
@�Y (Xt;�)

@�k
+ l[0;1;k2;k3]c (�0)

@�2Y (Xt;�)

@�k
:

Therefore, by the law of iterated expectations, we will have

E[l[k1;k2;k3]p (�0)] = EfE[l[k1;k2;k3]p (�0)jXt]g

= E

�
@�Y (Xt;�)

@�k
E[l[1;0;k2;k3]c (�0)jXt]

�
+ E

�
@�2Y (Xt;�)

@�k
E[l[0;1;k2;k3]c (�0)jXt]

�
= 0

because E[l[1;0;k2;k3]c (�0)jXt] = E[l
[0;1;k2;k3]
c (�0)jXt] = 0. Hence, if Assumptions 1 and 2 hold,

the same arguments in Step 1 applies. Analogous arguments apply for the Pb part too, which

completes the proof. �

Lemmas

Lemma 5 For k = 1; : : : ; 16, let

Dk =
n
(�; � ;m) : there exists � 2 Ak such that (60)-(62) holds

o
:

Then, (i) for all � 2 Ak, there exists a unique d 2 Dk such (60) - (62) holds; (ii) for all d 2 Dk,

there exists a unique � 2 Ak such that (60) - (62) holds.

Proof. (i) is straightforward. As for (ii), we show it for k = 1 since the proof for k = 2; : : : ; 16 is

similar. We only need to show the uniqueness of �, as the existence follows from the construction

of D1. Note that � > 0 for all � 2 A1, thus � = 1� �
� . With the restrictions of A

1, it holds that

1

36
�4 � 1

8
�2 = � , that is,

1

2
�� = m�: (106)

Hence, we can easily write
2

9
�4 � 4�

2m2

�2
= 8� : (107)

Since the left hand side of (107) is strictly increasing in �2, we can get unique �. Finally, we get

� from (106). �

Lemma 6 (��wLM1n �� �M;

�����n�
1
2H3;n
V3

����� < M1p
3V3

;

�����n�
1
2H4;n
V4

����� < M1p
3V4

)
= ;

62



where

M =
M1p
V3

�
1 +

1p
3

�
:

Proof. It su¢ ces to show that when�����n�
1
2H3;n
V3

����� < M1p
3V3

and

�����n�
1
2H4;n
V4

����� < M1p
3V4

;

sup
�2�;jw1j�M

LMn(�) < LMn(0; 0; �) = 0:

But

sup
�2�;jw1j�M

LMn(�)

= sup
�2�;jw1j�M

24�V3 w1 � n�
1
2H3;n
V3

!2
+
H2
3;n

nV3
� V4

 
w2 �

n�
1
2H4;n
V4

!2
+
H2
4;n

nV4

35
� sup
jw1j�M

24�V3 w1 � n�
1
2H3;n
V3

!2
+
H2
3;n

nV3
+
H2
4;n

nV4

35
< sup
jw1j�M

24�V3 w1 � n�
1
2H3;n
V3

!235+ 2M2
1

3
(108)

<�M2
1 +

2M2
1

3
< 0 = LMn(0; 0; �); (109)

which is a contradiction. Notice that from (108) to (109) we used the fact that when

jw1j �M =
M1p
V3

�
1 +

1p
3

�
and

�����n�
1
2H3;n
V3

����� < M1p
3V3

;

we have  
w1 �

n�
1
2H3;n
V3

!2
>
M2
1

V3
;

as desired. �

Lemma 7 If

(a)
p
n(1� �n)�n�n = Op(1) and (b)

p
n(1� �n)

�
�2n �

2(1� �n + �2n)
9

�4n

�
= Op(1);

where �n 2 [1=2; 1], then we have
p
n(1� �n)�2n = Op(1) and

p
n(1� �n)�4n = Op(1).

Proof. From (b) we have

p
n(1� �n)�2n =

2

9
(1� �n + �2n)

p
n(1� �n)�4n +Op(1):
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But if
p
n(1 � �n)�

4
n = Op(1), then we can trivially show that

p
n(1 � �n)�

2
n = Op(1) because

1��n+�2n 2 [34 ; 1]. The rest of the proof is by contradiction. Let us assume that
p
n(1��n)�4n 6=

Op(1), in other words, that there exists an � > 0 such that 8M1

Pr(n
1
2 (1� �n)�4n > M1) > � i.o. (110)

Next, given that
p
n(1� �n)�2n� 2

9(1� �n+ �
2
n)
p
n(1� �n)�4n = Op(1), there exists an M2 such

that

Pr

�����pn(1� �n)�2n � 29(1� �n + �2n)pn(1� �n)�4n
���� < M2

�
> 1� �

2

for all n. Consider M 0 > maxfM2;
��
2

6 g and let M1 = 6M
0+6M2. In view of (110), we have that

Pr(n
1
2 (1� �n)�4n > 6M 0 + 6M2) > � i.o.

Let

An = fn
1
2 (1� �n)�4n > 6M 0 + 6M2g

and

Bn = fj
p
n(1� �n)�2n �

2

9
(1� �n + �2n)

p
n(1� �n)�4nj < M2g:

Since Pr(An) > � i.o. and Pr(Bn) > 1� �
2 8n, we will also have

Pr(An \Bn) � Pr(An) + Pr(Bn)� 1 >
�

2
i.o.

Let us now consider the set An \Bn. We can prove that

n(1� �n)2�2n�2n =
p
n(1� �n)�2n

�
2

9
(1� �n + �2n)

p
n(1� �n)�4n

+

�p
n(1� �n)�2n �

2

9
(1� �n + �2n)

p
n(1� �n)�4n

��
>
p
n(1� �n)�2n

�
2

9
(1� �n + �2n)

p
n(1� �n)�4n �M2

�
(111)

�
p
n(1� �n)�2n

�
1

6

p
n(1� �n)�4n �M2

�
(112)

�
p
n(1� �n)�4n

M 0

��
2 (113)

�
p
n(1� �n)�4n

6
�M 0 +M2 > M 0; (114)

where (111) uses the de�nition of Bn, (112) uses 1� �n+ �2n � 3
4 , (113) combines the de�nition

of An with �2n � ��
2, and (114) uses the de�nitions of M 0 and An. Hence, An \ Bn � fn(1 �
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�n)
2�2n�

2
n > M 0g, which implies that for all M 0,

Pr(n(1� �n)2�2�2 > M 0) � �

2
i.o.

which is a contradiction to (a). Thus, we have proved that
p
n(1� �n)�2n = Op(1) and

p
n(1�

�n)�
4
n = Op(1), as desired. �

Lemma 8 Assume the data is iid, Ln(�) is continuous at 8� 2 � with probability 1, and � is

compact. Then,

sup�2�

���� 1nLn(�)� l0(�)
���� p�! 0:

Proof. Let ��2 = exp(�{)
� = 2exp(�{) be an upper bound for max(��21 ; ��22 ), �2 = e�2�{=(1 + 1

4
��
2
)

a lower bound for min(��21 , �
�2
2 ), and �� = �� an upper bound for both j��1j and j��2j. Then, we

have

l(�) = log

(
�

1p
��21

exp

�
�(x� �

�
1)
2

2��21

�
+ (1� �) 1p

��22
exp

�
�(x� �

�
2)
2

2��22

�)

� � log

(
1p
��21

exp

�
�(x� �

�
1)
2

2��21

�)
+ (1� �) log

(
1p
��22

exp

�
�(x� �

�
2)
2

2��22

�)

� �1
2
log(��2)� �(x� ��1)2 + (1� �)(x� ��2)2

2�2

� �1
2
log(��2)� (jxj+ ��)

2

2�2
;

where the �rst inequality follows from the concavity of the logarithm, the second one from the

de�nitions of ��2 and �2, and the last one from the de�nition of ��. As a consequence,

l(�) = log

(
�

1p
��21

exp

�
�(x� �

�
1)
2

2��21

�
+ (1� �) 1p

��22
exp

�
�(x� �

�
2)
2

2��22

�)

� log
"
�

1p
��21

+ (1� �) 1p
��22

#
= log

 
1p
�2

!
:

Next, letting

d(x) =
(jxj+ ��)2
2�2

+
��log( ��2)��+ �����log

 
1p
�2

!����� ;
it is straightforward to see that jl(�)j � d(x) and E[jd(x)j] <1. Thus, by Lemma 2.4 in Newey

and McFadden (1994),

sup�2�

���� 1nLn(�)� l0(�)
���� p�! 0;

as desired. �
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Lemma 9 If there exist an M1 > 0 and a � < 1 such that jH3;n=
p
nj < M1, jH4;n=

p
nj < M1,

jw1j > M1=�, jw1j > jw2j, rn(�)=w21 < �, then LRn(�) < 0.

Proof. We have that

LRn(�) = 2
H3;np
n
w1 + 2

H4;np
n
w2 � V3w21 � V4w22 + rn(�);

so that

LRn(�)

w21
= 2

H3;np
n

1

w1
+ 2

H4;np
n

w2
w21

� V3 � V4
w22
w21

+
rn(�; �; �)

w21

� 2� + 2�w2
w1
� V3 + �

� 5� � V3

< 0

because V3 = E[h23] = 6; which proves the result. �

Lemma 10 Donsker property

(10.1)
p
n
�
1
n�

�1 @2L(�(�;m);�(�;m);1)
@�2

� E
h
��1 @

2l(�(�;m);�(�;m);1)

@�2

i�
= Op;(�;m)(1).

(10.2)
p
n
�
1
n�

�1 @3L(�(�;m);�(�;m);�(�;� ;m))
@�3

� E
h
��1 @

3l(�(�;m);�(�;m);�(�;� ;m))

@�3

i�
= Op;(�;m)(1).

(10.3) 1p
n
@6Ln(�;�;1)

@�@�i@�j
) G[i;j](�; �) for i+ j = 5.

(10.4) 1
n�

�1 @4L(�(�;m);�(�;m);�(�;� ;m))
@�4

= Op;(�;m)(1).

(10.5) ��2E
h
@3l(�(�;m);�(�;m);�(�;� ;m))

@�3

i
= O(�;m)(1).

(10.6) With � and �2, 1p
n
@2L(�n0)
@�@� = Op(1) and 1p

n
@2L(�n0)
@�@�2

= Op(1).

(10.7) With � and �2,
n
1
n�

�1
n

@3L(~�n)

@�2@�

o
= Op(1) and

n
1
n�

�1
n

@3L(~�n)

@�2@�2

o
= Op(1).

Proof. The proof of (10.1) and (10.2) is similar to the proof of Proposition 1. Therefore, we

only give the Taylor expansion of @
2l(�;�;1)

@�2
and @3l(�;�;1)

@�3
to justify the normalization ��1, but

omit the detailed steps. Speci�cally, �fth-order Taylor expansions yield

@2l(�; �; 1)

@�2
=h4

�
1

9
�4 � 1

4
�2
�
+ h3��

+

4X
i=3

1

i!

@2+il(�; �; 1)

@�2@�i
�i +

4X
i+j=3;i�1;j�1

1

i!j!

@2+i+jl(�; �; 1)

@�2@�i@�j
�i�j

+
X
i+j=5

1

i!j!

@2+i+jl(~�; ~�; 1)

@�2@�i@�j
�i�j ;
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@3l(�; �; 1)

@�3
=8h4�4 +

4X
i=3

1

i!

@3+il(�; �; 1)

@�3@�i
�i +

4X
i+j=3;i�1;j�1

1

i!j!

@3+i+jl(�; �; 1)

@�3@�i@�j
�i�j

+
X
i+j=5

1

i!j!

@3+i+jl(~�; ~�; 1)

@�3@�i@�j
�i�j :

The proof of (10.3) is similar but much simpler, as it is not normalized by � . To prove (10.4),

it su¢ ces to apply the uniform law of large numbers (see Lemma 2.4 of Newey and McFadden

(1994)) and use

g(� ;m) =

8<:��1
@4l(�(�;m);�(�;m);�(�;� ;m))

@�4
if � 6= 0;

lim�!0 ��1
@4l(�(�;m);�(�;m);�(�;� ;m))

@�4
= 24h4 if � = 0:

To see (10.5)

E

�
@3l

@�3

�
= �8960�8 � 54�4 � 36�2�2 + o(�2):

As for (10.7), we can also show that evaluated at ~�

1

n

@3Ln

@�2@�
= � 32

3�̂
�4Ĥ3 +

2

�̂
�2Ĥ3 + op(�);

1

n

@3Ln

@�2@�2
= � 16

3�2
1

n
Ĥ4�

4 +
1

�2
1

n
Ĥ4�

2 � 3

2�2
1

n
Ĥ3 + op(�);

where

Ĥ3 =
X
i

ŷi(ŷ
2
i � 3);

Ĥ4 =
X
i

ŷ4i � 6ŷ2i + 3;

ŷi =
X
i

yi � �̂
�̂

;

whence we prove the desired result. �

Lemma 11
�� 1
36�

4 � 1
8�
2
��! 0 and

��1
2��
��! 0 implies � ! 0 and �! 0.

Proof. Once again, we prove this by contradiction. If the lemma does not hold, then one of the

following statement must be true:

(i) there exist sequences �n, �n such that
�� 1
36�

4
n � 1

8�
2
n

��! 0 and
��1
2�n�n

��! 0 but �n ! �� 6= 0,

or

(ii) there exist sequences �n, �n such that
�� 1
36�

4
n � 1

8�
2
n

��! 0 and
��1
2�n�n

��! 0 but �n ! �� 6= 0.

67



Consider (i):
��1
2�n�n

��! 0 and �n ! �� 6= 0 implies �n ! 0, thus���� 136�4n � 18�2n
����! ���� 136��4n

���� 6= 0;
which is a contradiction to

�� 1
36�

4
n � 1

8�
2
n

��! 0. Similarly, for (ii),
��1
2�n�n

��! 0 and �n ! �� 6= 0

implies �n ! 0, thus ���� 136�4n � 18�2n
����! ����18��2n

���� 6= 0;
as desired. �
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Table 3: Application to Mincer equations

Speci�cation (1) (2) (3)

n 534 245 289
Skewness -0.08 0.49 -0.56
Kurtosis 4.72 4.68 4.70

Testing procedures
statistic p-value statistic p-value statistic p-value

�1 LM1 751.0 .00 522.3 .00 1,234.5 .00
JB 61.9 .00 34.2 .00 45.0 .00
LR1 10.7 .01 10.0 .01 11.1 .01

�2 LM2 534.1 .00 468.9 .00 963.8 .00
LMa;2 0.6 .62 8.8 .00 13.7 .00
LMb;2 534.1 .00 468.9 .00 963.8 .00
LR2 5.2 .07 6.2 .05 7.1 .03

�3 LM3 714.1 .00 207.9 .00 464.1 .00
LMa;3 61.3 .00 25.5 .00 31.3 .00
LR3 10.6 .00 5.0 .00 5.4 .00

JB skew 0.6 .44 8.8 .00 13.7 .00
JB kurt 61.3 .00 25.5 .00 31.3 .00

KS 0.2 .66 0.4 .36 0.5 .05
ACS -0.6 .19 -0.9 .48 -0.5 .13

Notes: CPS85 dataset provided by the Berndt (1981). (1) refers to women and men, (2) refers to men
only, and (3) women only. For both, the score-type tests and the likelihood ratio test, the three di¤erent
parameter spaces are

�01 = [���; ��]� [��{; �{]� [1=2; 1] ; �02 = [���; ��]� f0g � [1=2; 1] ; and �03 = f0g � [��{; �{]� [1=2; 1] :

JB skew (JB kurt) refers to the Jarque-Bera skewness (kurtosis) component of the Jarque-Bera (1980)
test. KS denotes the Kolmogorov-Smirnov test and ACS the CGMM test proposed in Amengual, Carrasco
and Sentana (2020) with Tikhonov regularization parameter � =.01 and scale parameter !2 = 1. LM�s
and LR�s are de�ned in Section 3.
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