


Multiplexed network formation and Bonacich
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Abstract

People share relationships that encompass interactions of different na-
tures. These are called multiplexed. We study a non-cooperative game in
which individuals participate in multiple activities and form activity-specific
links in an endogenously formed multiplexed network. We explain why mul-
tiplexed relationships arise. Differently from previous literature, outcome of
the game and Bonacich centrality of agents are determined simultaneously.
We generalize Bonacich centrality to weighted and multiplexed networks, and
show that it directly depends on the multiplexity of the network. We also
provide a new condition which ensures that the Bonacich centrality takes a
finite value in weighted and multiplexed networks.

1 Introduction

People share relationships that encompass interactions of different natures. They
interact in multiple areas of life, such as lending money or exchanging information.
This multifaceted aspect of relationships has been empirically documented and
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Figure 1a: Simplex relationship. Figure 1b: Multiplexed relationship.

shown to be an important feature in network formation (Banerjee et al., 2021).
Among the many models that aim to explain network formation, most consider only
one type of relationship between individuals. Relationships in which individuals
interact in multiple areas, as the ones documented in Banerjee et al. (2021), have
been been mostly studied in other fields such as sociology (Corominas-Murtra et al.,
2013), physics (Domenico et al., 2013) or computer science (Cai et al., 2005). The
literature in these fields has defined the relationships in which individuals interact
in only one area as simplex and the ones in which individuals interact in more than
one area as multiplexed. A graphical representation of a simplex and a multiplexed
relationship is shown in Figures 1a and 1b, respectively.

In the current paper, we aim to give a rationale to multiplexed networks. In
order to do so, we study a game where individuals allocate a limited amount
of time between multiple types of activities and form a weighted link in each of
these activities. Weights of links are determined by the equilibrium values of the
game, so that the network is formed endogenously. Individuals have heterogeneous
preferences over activities, and activities are costly. Their motivation to participate
in activities is both explained by their intrinsic preference for the activities and for
the enjoyment brought by meeting and spending time with other individuals.

We base our work on the models of Chen et al. (2018) and Belhaj and Deroïan
(2014), who also study games in which individuals can participate in different
activities. Differently from previous literature, we study endogenous network for-
mation and agents allocate exactly one unit of time between multiple activities.
Chen et al. (2018) present a model in which individuals can participate in multiple
activities, but the time agents can allocate to activities is not bounded. In real-
ity, time is a finite resource and there are opportunity costs. Belhaj and Deroïan
(2014) present a model in which individuals have one unit of time to allocate,
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but in which individuals can only participate in two activities. In our framework,
agents can participate in more than two activities and have one unit of time to
allocate between activities.

We define multiplexity of a relationship as the number of areas the two indi-
viduals interact in, and show that the enjoyment brought by meeting with other
individuals plays an important role in the formation of multiplexed networks. Be-
cause we study a weighted network, we define a second measure of multiplexity
which takes into account the intensity of relationships, and provide conditions
which give rise to highly multiplexed network, as defined by this second measure.
We furthermore find that pairs of agents spend more time practicing the same
activities as costs of performing activities increases, due to convexity in costs.

Another difference with respect to Chen et al. (2018) and Belhaj and Deroïan
(2014) is that these papers study an exogenous network in which equilibrium values
are shaped by the structure of the network. In the model of this work, equilibrium
values and structure of the network are determined simultaneously. In finite pop-
ulation non-cooperative games with linear-quadratic utilities where the network is
exogenous, as the models of Chen et al. (2018) and Belhaj and Deroïan (2014), it
has been shown by Ballester et al. (2006) that actions taken by individuals in equi-
librium are defined by their Bonacich centrality. Because we study a framework
in which equilibrium values and structure of the network are determined simulta-
neously, equilibrium values of agents are not defined by their Bonacich centrality.
We find that Bonacich centrality itself is determined by the multiplexity of the
network. Opsahl et al. (2010) generalize degree, closeness and betweenness cen-
tralities to weighted graphs, but do not do so for eigenvector centralities. Domenico
et al. (2013) propose an eigenvector centrality for multiplexed weighted networks,
in which the same importance is given to direct neighbors than to more distant
neighbors, which is against the spirit of Bonacich centrality which discounts the
importance of connections as the distance of connections increases. We generalize
Bonacich centrality to weighted and multiplexed networks. We also find that the
assumption required for the Bonacich centrality to take a finite value in weighted
networks corresponds with the one used in the literature only when all links of the
network take the same value. We provide a new condition which ensures that the
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Bonacich centrality takes a finite value in weighted networks.
Our paper fits more broadly in the literature of friendship formation (Currarini

et al., 2009, 2010, 2016), and relates to more recent works which study network
multiplexity (Kobayashi and Onaga, 2022; Cheng et al., 2021).

The remainder of the paper is organized as follows. Section 2 presents the
model. Section 3 presents the results on the formation of multiplexed networks.
Section 4 presents the results on Bonacich centrality in weighted and multiplexed
networks. Section 5 concludes.

2 The model

We consider a set N = {1, ..., N} of agents who have access to a set K = {1, ..., K}
of activities, where N,K ≥ 2. Each agent i ∈ N spends an amount of time ti,k

performing activity k ∈ K, and has an exogenously given preference parameter
ai,k ≥ 0 for activity k. The preference parameter measures how much agent i

enjoys performing activity k. Large values of ai,k indicate a high enjoyment of
agent i for activity k, whereas low values of ai,k indicate a low enjoyment. The
preference parameter only captures the enjoyment of an agent for an activity, say
sport, and does not capture the enjoyment brought by spending time with other
individuals who also perform the activity.
The utility brought to agent i ∈ N by spending time with individual j ∈ N in
group k, where j ̸= i, is captured by the product ti,ktj,k, where ti,k, tj,k ≥ 0 are
endogenously determined. Agents i and j will largely benefit from their interaction
in group k if they both spend a large amount of time performing activity k, whereas
they will have a low benefit from their interaction if at least either i or j spends
a small amount of time performing activity k. Agents gain utility by interacting
with all the other agents of set N , across each of the activities of set K.
While participating in activities brings utility, it also requires effort. These costs
of effort are measured by parameter c > 0. We represent the loss of utility brought
to agent i by costs of performing activity k as convex in the time agent i spends in
performing activity k. With such convex costs, agents have a decreasing incentive
in spending an additional amount of time in performing activity k as the amount
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of time they perform activity k increases.
To summarize, there are three channels which determine the utility of agents in
set N . First, agents derive utility by performing activities they enjoy. Second,
they derive utility by spending time with other individuals who are performing the
same activities. Third, they lose utility by performing effort-demanding activities.
These forces are represented in the utility of agent i ∈ N , which is written in (1):

Ui(ti,1, ..., ti,k, ..., ti,K) =
K∑
k=1

ai,kti,k +
K∑
k=1

∑
j ̸=i

ti,ktj,k − c
K∑
k=1

t2i,k (1)

where Ui : [0, 1]K ⇒ R is a continuous and differentiable function in R. We
only consider agents who are interested in participating in at least one activity,
i.e.,

∑K
k=1 ai,k > 0 for all i ∈ N . We denote by {t∗i,1, ..., t∗i,k, ..., t∗i,K} the set of

equilibrium values, which is the set of values {ti,1, ..., ti,k, ..., ti,K} which maximizes
the utility of all agents i ∈ N . The set

⋃N
i=1{t∗i,1, ..., t∗i,k, ..., t∗i,K} is the Nash

equilibrium of the game, state in which no agent i has a profitable unilateral
deviation from her equilibrium value. If we let t′i,k be any value of ti,k, and t∗−i,k

be the set of equilibrium values of agents other than i in activity k, then the
Nash equilibrium is such that, for all agents i in N and all activities k in K,
U(t∗i,k, t

∗
−i,k) ≥ U(t′i,k, t

∗
−i,k) for all t′i,k ∈ [0, 1].

The equilibrium values give rise to a weighted, undirected network in which agents
are linked to each other in a maximum of K activities, in which the weight of the
link between agents i and j in activity k, denoted by wk

ij, takes value defined as:

wk
ij = t∗i,kt

∗
j,k (2)

We consider that a link in activity k is formed between agents m and n when
wk

mn > 0. A walk from node i to node j is a sequence of players {i, i+1, ..., j−1, j}
and links {wk

i,i+1,, ..., w
k
j−1,j} such that wk

mn > 0 for all m ∈ {i, i+ 1, ..., j − 1} and
n = m+1, where k ∈ K. It is worth noting that walks can be a sequence in which
not all nodes are distinct, and can be a sequence of nodes connected through links
in different activities. The length of a walk equals the number of nodes in the se-
quence minus 1. A component of a network is a set C of nodes such that there exists
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a walk from any node i ∈ C to any node j ∈ C. For any walk {i, i+ 1, ..., j − 1, j}
from node i to node j, we define the last link of the walk as the link connecting
nodes j − 1 and j, which we denote by wj−1,j. We define Wij as the set of links
between nodes i and j such that wk

ij > 0, and Wij =| Wij | as its cardinality.
We define wmin|ij = min{Wij} as the weakest relationship between agents i and j,
and wmax|ij = max{Wij} as the strongest relationship between agents i and j. We
define W as the set of links in the network, and wmin = min{W} as the weakest
relationship of the network. We define the strength si of node i as si =

∑
j ̸=i wij

which is a generalization of the notion of degree in weighted networks introduced
by Barrat et al. (2004). We define S as the set of strengths of the network, and
smax = max{S} as the strength of the network with the largest value.
We give an example of a network composed of 3 agents (denoted by 1, 2 and 3) and
3 types of relationships (denoted by R, S and T ). The parameters of preferences
are defined as:

Preference parameters
Agent 1 Agent 2 Agent 3

Group R a1,R = 0.8 a2,R = 0.5 a3,R = 0.4

Group S a1,S = 0.1 a2,S = 0.4 a3,S = 0.3

Group T a1,T = 0.1 a2,T = 0.1 a3,T = 0.3

Table 1: Preference parameters

We set the costs of performing activities to cR = cS = cT = 3
2
.

The resulting equilibrium values are given in Table 2.

Equilibrium values
Agent 1 Agent 2 Agent 3

Group R t∗1,R = 0.625 t∗2,R = 0.55 t∗3,R = 0.525

Group S t∗1,S = 0.225 t∗2,S = 0.3 t∗3,S = 0.275

Group T t∗1,T = 0.15 t∗2,T = 0.15 t∗3,T = 0.2

Table 2: Equilibrium values
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Figure 2: Weighted multiplexed network.

Given the parameter values, the subsequent equilibrium values, and the link for-
mation process given in (2), links’ weights take the values presented in Table 3 and
the network represented in Figure 2 arises.

Weights of links
w12 w13 w23

Group R wR
12 = 0.34 wR

13 = 0.33 wR
23 = 0.29

Group S wS
12 = 0.06 wS

13 = 0.06 wS
23 = 0.08

Group T wT
12 = 0.02 wT

13 = 0.03 wT
23 = 0.03

Table 3: Weights of links

3 Multiplexed network formation

Each agent i ∈ N solves the maximization problem P .

P

{
max Ui(ti,1, ..., ti,k, ..., ti,K) =

K∑
k=1

ai,kti,k +
K∑
k=1

∑
j ̸=i

ti,ktj,k − c

K∑
k=1

t2i,k.
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Whether individuals share one or multiple links depends on their equilibrium val-
ues, as indicated in (2). Their equilibrium values are given by the system of
best-response functions defined below in (3). The optimal amount of time agent
i spends in group k is increasing in her preference for group k and the amount of
time agents other than her spend in group k, and decreasing in the cost of spending
time in groups. 

t1,k =
a1,k+

∑
j ̸=1 tj,k

2c
,

...

ti,k =
ai,k+

∑
j ̸=i tj,k

2c
,

...

tN,k =
aN,k+

∑
j ̸=N tj,k

2c
.

(3)

In order to find the Nash equilibrium, both Belhaj and Deroïan (2014) and
Chen et al. (2018) use utility functions similar to (1). In Belhaj and Deroïan
(2014), the time agents spend in activities sums up to one unit of time and agents
can participate in two activities. The amount of time an agent spends in an activity
is computed, and then the time they spend in the other activity is deduced as the
amount of time they have not spent in the first activity. Equilibrium values of time
spent in one activity are re-scaled to 1 if their value exceeds 1 and to 0 if their
value is negative. In Chen et al. (2018), agents can participate in more than two
activities and have an unbounded amount of time to allocate between activities.
Conditions on the heterogeneity of preference parameters and on the degree of
interdependence between activities are provided for the equilibrium values to take
values in the interval [0,+∞[.
In the framework we present, agents have one unit of time to allocate between
activities, as in Belhaj and Deroïan (2014), can participate in multiple activities,
as in Chen et al. (2018), and equilibrium values lie in the interval [0, 1]. This
framework allows us to work with the —non-negative— endogenous variable time
as a finite resource, while keeping the flexibility of studying participation of agents
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in multiple groups.

Theorem 1. The game admits a set of equilibrium values {t∗1,k, ..., t∗N,k} such
that t∗i,k ∈ [0, 1] and

∑K
k=1 t

∗
i,k = 1 for all i ∈ N and all k ∈ K if and only if

φi(
∑K

k=1 ai,k) = η(2c − (N − 1)) for all i ∈ N , for any functions φi : R+ → R+

and η : R+ → R+.

We can take any values of
∑K

k=1 ai,k and 2c− (N −1) and transform them through
functions φi and η so that agents have one unit of time to allocate between activities
and spend non-negative amounts of time in activities. There is no restriction in
how each parameter is transformed.1

We say that individuals share a multiplexed relationship if they form a link in
two or more activities. We define two types of multiplexity, which are extensive
and intensive multiplexity. Extensive multiplexity is an intuitive definition of
multiplexity since it simply counts the different types of connections between two
individuals. Formally, the extensive multiplexity of a relationship is defined as:

Definition 1 (Extensive multiplexity). The extensive multiplexity MXE
ij of a re-

lationship between agents i and j is defined as MXE
ij = Wij.

We consider that a network fulfills extensive multiplexity if there exists two
agents i and j such that MXE

ij ≥ 2. A multiplexed network of this kind arises
if and only if there exists two activities that are enjoyed by at least one agent
each. Because agents enjoy meeting other agents, it suffices that an agent enjoys
performing an activity for her to participate in that activity, leading all other
agents to also spend time in that activity, even though some may not enjoy the
activity.

1Suppose that K = 2, where ai,1 = 1 and ai,2 = 1, so that
∑K

k=1 ai,k = 2. Also suppose that
η(2c − (N − 1)) = 4. For agent i to have one unit of time to allocate between activities and
spend non-negative amounts of time in activities, we need φi(

∑K
k=1 ai,k) = 4. This is possible if

preference parameters now take values ai,1 = 2 and ai,2 = 2, so that agent i is indifferent between
activities 1 and 2, as she was before the transformation through φi. Even though it makes sense
to have ai,1 = 2 and ai,2 = 2 in order to keep agent i’s indifference between activities 1 and 2,
the allocation ai,1 = 4 and ai,2 = 0, or any allocation such that ai,1 + ai,2 = 4 with ai,1, ai,2 ≥ 0,
also allows her to have one unit of time to allocate between activities and spend non-negative
amounts of time in activities.
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Figure 3a: 2 weak links. Figure 3b: 3 equally strong links.

Proposition 1. Suppose that φi(
∑K

k=1 ai,k) = η(2c − (N − 1)) for all i ∈ N so
that t∗i,k ∈ [0, 1] and

∑K
k=1 t

∗
i,k = 1 for all i ∈ N and all k ∈ K. The network fulfills

extensive multiplexity if and only if there exist two activities k and l, with k ̸= l,
such that ai,k > 0 and aj,l > 0 for any i, j ∈ N .

Even though extensive multiplexity is a simple and intuitive measure of multiplex-
ity, it can be misleading in weighted networks. To see why, consider the examples
given in Figures 3a and 3b.
The extensive multiplexity in both relationships is the same. However, one of the
three links in Figure 3a is very strong compared to the other ones. If the two weak
links took value 0, then the extensive multiplexity would decrease, even though
the change in the value of weights would be very small. Therefore, we provide a
measure of multiplexity that gives a higher importance to relationships in which
links are equally weighted, such as the one presented in Figure 3b. We call this
measure intensive multiplexity.2

Definition 2 (Intensive multiplexity). The intensive multiplexity MXI
ij of a rela-

tionship between agents i and j is defined as MXI
ij =

wmin|ij
wmax|ij

We consider that a network attains its maximum level of intensive multiplexity
when, for each pair of nodes, all weights of links have the same value. All agents
having the same preferences for activities leads them to spend the same amount of

2This measure only takes into account the strongest link and the weakest link of a relationship.
While links of a relationship which are not the strongest nor the weakest are not considered,
defining intensive multiplexity as the variance or entropy of weights in a relationship leads to the
same results.

11



time in activities, and hence to form intensively multiplexed relationships. In the
special case of two agents participating in two activities, it is sufficient that one
agent enjoys participating in an activity to the same amount than the other agent
enjoys participating in the other activity.

Proposition 2. Suppose that φi(
∑K

k=1 ai,k) = η(2c−(N−1)) for all i ∈ N so that
t∗i,k ∈ [0, 1] and

∑K
k=1 t

∗
i,k = 1 for all i ∈ N and all k ∈ K. The level of intensive

multiplexity of the network attains its maximum value if either condition 1A, 1B
or 1C is satisfied.
Condition 1A: N = {1, 2} and for both agents, ai,k > 0 for k = 1 or k = 2, and
a1,k = a2,l and a1,l = a2,k with a1,k > 0 and a1,l > 0 for some activities k and l.
Condition 1B: N ≥ 3 and preferences are such that ai,k = 2c−(N−1)

K
for all i ∈ N

and all k ∈ K.
Condition 1C: There exists at least an agent i such that ai,k > 0 for any k ∈ [3,∞[

and preferences are such that ai,k = 2c−(N−1)
K

for all i ∈ N and all k ∈ K.

In most cases, intensive multiplexity attains its maximum value when preferences
are homogeneous (conditions 1B and 1C). An example of a world composed of
agents with homogenous preferences is given in Table 4.

Preference parameters
Agent 1 Agent 2 Agent 3 Agent 4

Group R a1,R = 0.5 a2,R = 0.5 a3,R = 0.5 a4,R = 0.5

Group S a1,S = 0.5 a2,S = 0.5 a3,S = 0.5 a4,S = 0.5

Table 4: Homogeneous preferences

The utility of every agent is (c = 2):

Ui = 0.5 · 0.5 · 2 + 6 · 0.25− 2 · 2 · 0.52

Ui = 1
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An example of a world composed of agents with heterogeneous preferences is given
in Table 5.

Preference parameters
Agent 1 Agent 2 Agent 3 Agent 4

Group R a1,R = 1 a2,R = 1 a3,R = 0 a4,R = 0

Group S a1,S = 0 a2,S = 0 a3,S = 1 a4,S = 1

Table 5: Heterogeneous preferences

The utility of every agent is (c = 2):

Ui = 1 · 0.6 + 0.6 · (0.6 + 0.4 + 0.4) + 0.4 · (0.4 + 0.6 + 0.6)− 2(0.62 + 0.42)

Ui = 1.04

Heterogeneity of preferences for activities leads agents to have a higher utility.
Intensive multiplexity, which is in most cases attained through homogeneous pref-
erences, undermines welfare.
Pairs of agents can not only be heterogeneous in their preferences for activities and
in the weights of the links they share, but also in the time they spend together in
groups. There are two reasons for which two agents i and j spend similar amounts
of time in a group k. The first reason is the similarity in preference parameters
for activity k, ai,k and aj,k. Individuals with similar tastes for activities will more
likely spend time together in the same activities. The second reason is a high value
of the costs parameter c. Because costs are convex, agents are incentivized to al-
locate their time more equally between activities as costs increase, and disregard
their preferences for activities.

Proposition 3. Suppose that φi(
∑K

k=1 ai,k) = η(2c − (N − 1)) for all i ∈ N so
that t∗i,k ∈ [0, 1] and

∑K
k=1 t

∗
i,k = 1 for all i ∈ N and all k ∈ K. For any two

agents i, j ∈ N such that ai,k ̸= aj,k, the absolute value of the difference |t∗i,k − t∗j,k|
decreases as costs c increase.
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4 Bonacich centrality

As previously shown by Ballester et al. (2006), in finite population noncooperative
games with linear-quadratic utilities such as the ones of Chen et al. (2018) and
Belhaj and Deroïan (2014), equilibrium values of agents directly depend on their
Bonacich centrality. Said differently, the outcome of these games directly depends
on the—exogenous—structure of the network. In our framework, the network
arises endogenously such that outcome of the game and structure of the network
are determined simultaneously. Bonacich centrality is a centrality measure in which
a node’s importance is determined by the importance of its neighbors, with the
particularity that the importance of neighbors is discounted as the distance in-
creases. Centrality measures such as Bonacich centrality have been shown to play
a role in many kinds of networks such as co-authorship, criminal, transportation,
educational and drug abuse networks (Das et al., 2018). As Chen et al. (2018) and
Belhaj and Deroïan (2014) do, the literature has focused on Bonacich centrality in
unweighted and simplex networks. In order to study the role of Bonacich central-
ity in weighted and multiplexed networks, such as the one we study, we provide
a more general expression of Bonacich centrality. To the best of our knowledge,
Bonacich centrality has not been defined neither for weighted nor for multiplexed
networks. Opsahl et al. (2010) generalize degree, closeness and betweenness cen-
tralities to weighted graphs, but do not do so for eigenvector centralities. Domenico
et al. (2013) propose an eigenvector centrality for multiplexed weighted networks,
in which the same importance is given to direct neighbors than to more distant
neighbors, which is against the spirit of Bonacich centrality which discounts the
importance of connections as they become more distant.
Bonacich centrality of agent i in simplex and unweighted networks, as considered
by the literature, is defined in (4):

CB
i = a(

∞∑
x=1

b(x−1)gi:x), (4)

where gi:x sums the values of last links of walks of length x emanating from i, and
a and b are scalars such that a > 0 and b ∈ [0, 1]. As defined in Section 2, the
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last link of a walk from node i to node j is the link which connects node j − 1

and j. In unweighted networks, the last links of walks take value 1. Therefore,
computing gi:x in unweighted networks is equivalent to counting the number of
walks of length x emanating from i. For any given length x, the larger the number
of walks emanating from node i, the larger her Bonacich centrality. The importance
of walks in Bonacich centrality is discounted as the length x increases through the
term b(x−1).
For illustrative purposes on the computation of Bonacich centrality, let us consider
Figure 4a. The value of g1:1, which is the degree of node 1, takes value 1. There is
one walk of length 1 emanating from node 1—from node 1 to node 2—, and the
last link of this walk takes value 1. The value of g1:1 is therefore g1:1 = 1. The
value of g1:2 sums the values of last links of length 2 emanating from node 1, and
thus g1:2 = 1. In unweighted networks, computing gi:x is equivalent to counting
the number of walks of length x emanating from node i.
In weighted networks, we use the same expression, but we allow links to take any
values in the interval (0, 1]. The Bonacich centrality measure for weighted networks
is given in (5):

CWB
i = a(

∞∑
x=1

b(x−1)wi:x), (5)

where wi:x sums the values of last links of walks of length x, and a and b are scalars
such that a > 0 and b ∈ (0, 1). For illustrative purposes, let us consider Figure 4b
composed of two agents linked by three links L1, L2 and L3 which all take value
1
3
. The value of w1:1 sums the values of last links of walks of length 1 emanating

from node 1. In unweighted networks, w1:1 is the degree of node 1. In weighted
networks, this is commonly defined as strength, which is a generalization of the
notion of degree in weighted networks (Barrat et al., 2004). There are 3 walks of
length 1 emanating from node 1 —Node N1 - Link L1 - Node N2, Node N1 - Link
L2 - Node N2 and Node N1 - Link L3 - Node N2—, and the last links of all these
walks take value 1

3
. The value of w1:1 is therefore w1:1 = 3 · 1

3
= 1.

The value of w1:2 sums the values of last links of length 2 emanating from node
1. There are 9 walks of length 2 emanating from node 1, and the last links of all
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Figure 4a: Simplex network. Figure 4b: Multiplexed network.

these walks take value 1
3
.3 The value of w1:2 is therefore w1:2 = 9 · 1

3
= 3.

Let us assume a = 1
2

and b = 1
4
. The weighted Bonacich centrality for the network

of Figure 4a is equal to:

CWB(w, a, b) = (
1

2
· 1 + 1

4
· 1
2
· 1 + 1

16
· 1
2
· 1...)1,

CWB(w, a, b) ≈

[
0.66

0.66

]
,

where 1 is a vector of one’s.

The weighted Bonacich centrality for the network of Figure 4b is equal to:

CWB(w, a, b) = [
1

2
· (1
3
+

1

3
+

1

3
)+

1

4
· 1
2
· (1
3
+

1

3
+

1

3
+

1

3
+

1

3
+

1

3
+

1

3
+

1

3
+

1

3
)...]1,

CWB(w, a, b) ≈

[
2

2

]
.

Surprisingly, nodes 1 and 2 have larger Bonacich centralities in Figure 4b than
in Figure 4a, even though their strength in both figures is equal. This is due to the
fact that the extensive multiplexity of agents in Figure 4b is larger than the one of

3These 9 walks are N1 − L1 − N2 − L1 − N1, N1 − L1 − N2 − L2 − N1, N1 − L1 − N2 −
L3−N1, N1−L2−N2−L1−N1, N1−L2−N2−L2−N1, N1−L2−N2−L3−N1, N1−
L3−N2− L1−N1, N1− L3−N2− L2−N1 and N1− L3−N2− L3−N1.
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agents in Figure 4a. If the strength of agents 1 and 2 in Figure 4b were larger than
the one in Figure 4a, we could infer that the difference in Bonacich centralities
could be due to the difference in strengths. Similarly, we could also infer that the
difference in Bonacich centralities could come from a difference in the number of
nodes between Figures 4a and 4b, and hence, in the number of links. However,
the strength and the number of agents are equal across networks. We define two
networks G and G′, and f : G → G′ a bijective function which maps nodes of
network G to nodes of network G′ which have the same strength.
When f is bijective, there is no difference in the number nor the strength of agents
across networks, and hence a difference in Bonacich centralities across networks
can only be due to a difference in extensive multiplexity across networks.
It is worth noting that increasing the extensive multiplexity of a relationship be-
tween two agents has a positive impact on the Bonacich centrality of agents in the
component to which these two agents belong, and a null impact on the Bonacich
centrality of agents in other components.
We define a component C ∈ G and its corresponding component C′ ∈ G′, which
is such that f : C → C′ is bijective.

Theorem 2. Let a component C ∈ G have a larger extensive multiplexity than
its corresponding component C′ ∈ G′. Then, all nodes of C are more Bonacich
central than the nodes of C′ they are mapped to.

If a link is removed from a simplex network, the Bonacich centrality of all agents
in the component will decrease. If a link is removed from a multiplexed network, the
Bonacich centrality of all agents in the component will decrease, but the reduction
will be lower because agents will still be able to connect through other means.
For instance, if agents can communicate through phone and e-mail, removing their
phones will still allow them to communicate through e-mail. In a world where only
phones exist, removing phones entails not being able to communicate.
Because there is an infinite amount of walks starting from a node, the Bonacich
centrality can take infinity as a value. A solution often used in the literature is
to give the scalar b a low enough value (Jackson, 2008), because it gives negligible
values to benefits from very distant nodes. More specifically, b needs to be lower
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Figure 5a Figure 5b Figure 5c

than 1
|λG| where |λG| is the norm of the largest eigenvalue of the adjacency matrix.

For the latter to be true, it is sufficient that b be smaller than 1
dmax

where dmax

is the maximum degree of any agent. The inequality b < 1
dmax

is a sufficient
condition for the Bonacich centrality to be finite in unweighted networks because
the maximum value gi:(x+1) can take is gi:x · dmax. Therefore, b < 1

dmax
implies that

bxgi:(x+1) < b(x−1)gi:x for all values of x, and hence that limx→∞ b(x−1)gi:x = 0, so
that the Bonacich centrality takes a finite value.
For illustrative purposes, let us consider Figures 5a, 5b and 5c. Consider that
scalars a and b take values a = 1 and b = 1

2
. The scalar b takes value 1

dmax
in the

networks represented in Figures 5a, 5b and 5c.
In Figure 5a, the weighted Bonacich centrality of agent 1 is:

CWB
1 = 2 +

1

2
· 4 + 1

4
· 8 + 1

8
· 16... = 2 + 2 + 2 + 2... (6)

Because b = 1
dmax

, the weighted Bonacich centrality of agent 1 is infinite. Were
b strictly lower than 1

dmax
, the largest term in the sum of (6) would be 2, and all

other terms would take a value lower than 2, with an infinity of them taking a
positive value close to 0, making the weighted Bonacich centrality finite. In Figure
5b, the weighted Bonacich centrality of agent 1 is:

CWB
1 = 1 +

1

2
· 2 + 1

4
· 4 + 1

8
· 8... = 1 + 1 + 1 + 1... (7)

Again, the weighted Bonacich centrality of agent 1 is infinite. This is because
b = 1

dmax
. Were b strictly lower than 1

dmax
, the weighted Bonacich centrality would

be finite.
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Figure 6a: Length 1 Figure 6b: Length 2 Figure 6c: Length 3

Figure 6d: Length 4 Figure 6e: Length 5

In figure 5c, the Bonacich centrality of agent 1 is infinite. To see why this is the
case, consider Figures 6a, 6b, 6c, 6d and 6e which count, respectively the number of
last links of walks of length 1, 2, 3, 4 and 5 starting from node 1. For example, there
are two walks of length 1 emanating from node 1, and hence two corresponding
last links : one connects nodes 1 and 2, and the other one connects nodes 1 and
3. As another example, there are also four walks of length 2 emanating from node
1 : one last link connects nodes 1 and 2, another last link connect nodes 1 and 3,
and the other two last links connect nodes 2 and 3.
For walks of odd (even) length, the links connecting nodes 1 and 2, and nodes 1
and 3, are last links of exactly one more (less) walk than the link connecting nodes
2 and 3. Due to this pattern, the share of last links being w23 over the total number
of last links is larger (lower) for any odd (even) length (x+ 2) than for any length
x. It follows that, if the value of w23 is larger (lower) than the mean between w12

and w13, we have w1:(x+2) > w1:x · d2max for any positive odd (even) value of x.
Therefore, b < 1

dmax
is not sufficient for the weighted Bonacich centrality of agent

1 to be finite. Similarly, we have that w1:(x+2) > w1:x · d2max for any positive even
value of x when the value of w23 is lower than the mean between w12 and w13,
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Figure 7: Subgraph of a weighted network

which also renders the condition b < 1
dmax

insufficient for the weighted Bonacich
centrality to be finite. On a more general note, for any network in which all pairs
of agents share the same number of links, the inequality wi:(x+2) > wi:x · d2max is
fulfilled for all odd (even) values of length x when the mean of weights wjk in
set {wjk | j ̸= i and k ̸= i} is larger (lower) than the mean of weights wjk in set
{wjk | either j = i or k = i}.
The condition b < 1

dmax
may not be sufficient for the Bonacich centrality to take a

finite value when weights of links differ in value. Because the condition b < 1
dmax

does not guarantee the finiteness of the Bonacich centrality in weighted graphs, we
provide a condition which does.
The maximum value that wi:(x+1) can take for any x ≥ 1 is wi:x · smax

wmin
, where smax

is the maximum strength of any node, and wmin ̸= 0 is the value of the link which
takes the minimum value. To see why it is the case, consider the subgraph of
Figure 7.
The value of w1:1 is 0.1. The value of w1:2 is w1:2 = 0.1 + 0.9 + 0.9 + 0.9 = 2.8,
which is the strength of node 2. If all links took value 0.1, then we would have
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that w1:2 = 0.4 = dmax · w1:1. However, since links which are at distance 2 from
node 1 take a larger value than those which are at distance 1, we have that w1:2 >

dmax · w1:1. In the subgraph of Figure 7, and more generally in any weighted and
multiplexed network, the maximum value that w1:2 can take is smax

wmin
· w1:1.

Hence, b < 1
smax
wmin

, or equivalently, b < wmin

smax
is sufficient for the Bonacich centrality

to be finite. It is worth noting that, in unweighted networks or any setting in
which all links take the same value, wmin

smax
= 1

dmax
.

Proposition 4. The condition b < wmin

smax
is sufficient for the weighted Bonacich

centrality to take a finite value.

Contrary to the condition on b considered in unweighted networks, the condition on
b in weighted networks not only depends on the agent that is the most connected,
but also on the weakest link of the network.

5 Conclusion

People interact in multiple areas of life. Relationships where individuals interact
in two or more areas have mainly been studied in other fields, and are called mul-
tiplexed. We study a game in which individuals allocate one unit of time between
multiple activities, and form relationships in each of these activities. We define
two measures of multiplexity and provide conditions which give rise to these two
types of multiplexed networks. We furthermore find that agents spend more time
together as costs of performing activities increase. We provide an expression of
Bonacich centrality for weighted and multiplexed networks, and find that its value
depends on the multiplexity of the network. We also study the condition for the
Bonacich centrality of agent i to take a finite value in such networks, and find that
the condition is consistent with the one given in the literature only when all links
take the same value. We provide a new condition which ensures that the Bonacich
centrality takes a finite value in any weighted network.
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Appendix

Proof of Theorem 1

We prove that the game admits a set of equilibrium values {t∗1,k, ..., t∗N,k} such
that t∗i,k ∈ [0, 1] and

∑K
k=1 t

∗
i,k = 1 for all i ∈ N and all k ∈ K if and only if∑K

k=1 ai,k = 2c − (N − 1) for all i ∈ N . The proof extends to the introduction of
functions φi and η.

Step 1: Suppose that the utility function is defined on a closed, bounded
and convex set.
Brouwer’s fixed-point theorem states that an equilibrium exists if the utility func-
tion Ui(ti,k) is continuous in ti,k, is defined on a closed, bounded and convex set,
and is an endomorphism.
Suppose that the utility function is defined on a closed, bounded and convex set.
Because the utility function is an ordinal concept, we can transform it and keep the
order of preferences preserved as long as the transformation is positive monotonic.
We define the positive monotonic function g(U) such that the range of g(U) is the
same as its domain. The function g(U) is continuous in ti,k and is defined on a
closed, bounded and convex set. It is also an endomorphism since its domain and
range are the same.
We are assuming that an equilibrium exists through ti,k being defined on a closed,
bounded and convex set, and prove in the next steps that if an equilibrium in-
deed exists, the game admits a set of equilibrium values {t∗1,k, ..., t∗N,k} such that
t∗i,k ∈ [0, 1] and

∑K
k=1 t

∗
i,k = 1 for all i ∈ N and all k ∈ K if and only if∑K

k=1 ai,k = 2c − (N − 1) for all i ∈ N . Because t∗i,k ∈ [0, 1] entails that the
utility function is defined on a closed, bounded and convex set, an equilibrium
necessarily exists.

Step 2: Prove that t∗i,k ∈ [0, 1] and
∑K

k=1 t
∗
i,k = 1 for all i ∈ N and all k ∈ K

implies
∑K

k=1 ai,k = 2c− (N − 1) for all i ∈ N .
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The equalities t∗i,k ∈ [0, 1] and
∑K

k=1 t
∗
i,k = 1 for all i ∈ N imply:

K∑
k=1

t∗i,k = 1,

∑K
k=1 ai,k +

∑
k=1

∑
j ̸=i tj,k

2c
= 1,

2c =
K∑
k=1

ai,k + (N − 1),

K∑
k=1

ai,k = 2c− (N − 1).

Step 3: Prove that
∑K

k=1 ai,k = 2c− (N − 1) for all i ∈ N implies t∗i,k ∈ [0, 1]

and
∑K

k=1 t
∗
i,k = 1 for all i ∈ N and all k ∈ K.

Step 3.1: Prove that
∑K

k=1 ai,k = 2c − (N − 1) for all i ∈ N implies∑K
k=1 t

∗
i,k = 1 for all i ∈ N .

The difference
∑K

k=1 ti,k −
∑K

k=1 tj,k is:

K∑
k=1

ti,k −
K∑
k=1

tj,k =

∑K
k=1 ai,k −

∑K
k=1 aj,k +

∑K
k=1

∑
j ̸=i tj,k −

∑K
k=1

∑
i ̸=j ti,k

2c
.

Since
∑K

k=1 ai,k and
∑K

k=1 aj,k are both equal to 2c − (N − 1), the difference∑K
k=1 ai,k −

∑K
k=1 aj,k equals 0.

K∑
k=1

ti,k −
K∑
k=1

tj,k =

∑K
k=1 tj,k −

∑K
k=1 ti,k

2c
,

K∑
k=1

ti,k −
K∑
k=1

tj,k =

∑K
k=1 tj,k −

∑K
k=1 ti,k∑K

k=1 ai,k + (N − 1)
.

The previous equality holds if
∑K

k=1 ai,k+(N−1) = −1, or if
∑K

k=1 ti,k =
∑K

k=1 tj,k.
It is impossible that

∑K
k=1 ai,k + (N − 1) = −1 since N ≥ 2 and

∑K
k=1 ai,k > 0.
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It therefore follows that
∑K

k=1 ti,k =
∑K

k=1 tj,k. Since i and j are chosen without
generality, this equality holds for any pair of agents in N .

The expression of
∑K

k=1 ti,k is:

K∑
k=1

ti,k =

∑K
k=1 ai,k +

∑K
k=1

∑
j ̸=i tj,k

2c
.

Since
∑K

k=1 ti,k =
∑K

k=1 tj,k for all j ∈ N , we have that:

K∑
k=1

ti,k =

∑K
k=1 ai,k + (N − 1)

∑K
k=1 ti,k

2c
,

K∑
k=1

ti,k(2c− (N − 1)) =
K∑
k=1

ai,k,

K∑
k=1

ti,k =

∑K
k=1 ai,k

2c− (N − 1)
.

We replace
∑K

k=1 ai,k by 2c− (N − 1).

K∑
k=1

ti,k =
2c− (N − 1)

2c− (N − 1)
,

K∑
k=1

ti,k = 1.

Step 3.2: Prove that
∑K

k=1 ai,k = 2c−(N−1) for all i ∈ N implies t∗i,k ∈ [0, 1]

for all i ∈ N and all k ∈ K.

Step 3.2.1: Prove that
∑K

k=1 ai,k = 2c− (N − 1) for all i ∈ N implies t∗i,k ≥ 0

for all i ∈ N and all k ∈ K.

The notation x≥ 0 means that all components of the vector x are nonnegative.
Farkas’ lemma states that, for any A ∈ Rm×n and b ∈ Rm, exactly one of the
following two assertions is true:
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1. There exists an x ∈ Rn such that Ax=b and x ≥ 0.

2. There exists a y ∈ Rm such that ATy≥ 0 and bTy< 0.

The system of best-response functions can be re-written in matrix notation Ax=b,
where:

A =



2c −1 −1 ... ... −1

−1 2c −1 ... ... −1

−1 −1 2c ... ... −1

... ... ... ... ... ...

... ... ... ... ... ...

−1 −1 −1 ... ... 2c


x =



t1,k

t2,k

t3,k

...

...

tN,k


b =



a1,k

a2,k

a3,k

...

...

aN,k


where A ∈ RN×N , x ∈ RN and b ∈ RN . We denote by xi the entry i of vector x
and by yi the entry i of vector y. Let us suppose, ad absurdum, that there exists
an entry i of x, xi, such that xi < 0. It follows, by Farkas’ lemma, that there exists
a y ∈ RN such that ATy≥ 0 and bTy< 0. The vector ATy is:

ATy =



2cy1 −
∑

j ̸=1 yj

2cy2 −
∑

j ̸=2 yj

2cy3 −
∑

j ̸=3 yj

...

...

2cyN −
∑

j ̸=N yj


.

The value of bTy is:

bTy =
K∑
k=1

ai,kyk,

where yk is the entry k of vector y.
The value of bTy is strictly negative if and only if there exists some y1, chosen
without loss of generality, such that y1 < 0. Because ATy≥ 0, we have that:

25



2cy1 −
∑
j ̸=1

yj ≥ 0,

which simplifies to:

y1 ≥
∑

j ̸=1 yj

2c
.

Because y1 < 0, it follows that there exists some y2, chosen without loss of gener-
ality, such that y2 < 0.
Because ATy≥ 0, we have that:

2cy1 −
∑
j ̸=1

yj + 2cy2 −
∑
j ̸=2

yj ≥ 0,

2c(y1 + y2)− y2 − y1 − 2
∑

j ̸=1̸=2

yj ≥ 0,

(2c− 1)(y1 + y2)− 2
∑

j ̸=1̸=2

yj ≥ 0.

Because we have assumed 2c =
∑K

k=1 ai,k+(N−1), the previous equation simplifies
to:

(
K∑
k=1

ai,k +N − 2)(y1 + y2)− 2
∑

j ̸=1̸=2

yj ≥ 0.

If N = 2, then there are two entries of y since y ∈ RN , which implies that∑
j ̸=1̸=2 yj = 0. A contradiction arises since we have that

∑K
k=1 ai,k > 0, y1 < 0

and y2 < 0.
If N ≥ 3, then

∑K
k=1 ai,k > 0, y1 < 0 and y2 < 0 imply that there exists some y3,

chosen without loss of generality, such that y3 < 0.
The three following inequalities are true. The first is:

(2c− 1)(y1 + y2)− 2
∑

j ̸=1̸=2

yj ≥ 0.

The second is:
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(2c− 1)(y1 + y3)− 2
∑

j ̸=1̸=3

yj ≥ 0.

The third is:

(2c− 1)(y2 + y3)− 2
∑

j ̸=2̸=3

yj ≥ 0.

It follows that

(2c−1)(y1+y2)−2
∑

j ̸=1̸=2

yj+(2c−1)(y1+y3)−2
∑

j ̸=1̸=3

yj+(2c−1)(y2+y3)−2
∑

j ̸=2̸=3

yj ≥ 0,

(2c− 1)(y1 + y2 + y1 + y3 + y2 + y3)− 2(
∑

j ̸=1̸=2

yj +
∑

j ̸=1̸=3

yj +
∑

j ̸=2̸=3

yj) ≥ 0,

(2c− 1)(2y1 + 2y2 + 2y3)− 2y3 − 2y2 − 2y1 − 6
∑

j ̸=1̸=2̸=3

yj ≥ 0,

(2c− 2)(2y1 + 2y2 + 2y3)− 6
∑

j ̸=1̸=2̸=3

yj ≥ 0,

(
K∑
k=1

ai,k +N − 3)(2y1 + 2y2 + 2y3)− 6
∑

j ̸=1̸=2̸=3

yj ≥ 0.

If N = 3, then there are three entries of y since y ∈ RN , which implies that
6
∑

j ̸=1̸=2̸=3 yj = 0. A contradiction arises since we have that
∑K

k=1 ai,k > 0,
y1 < 0, y2 < 0 and y3 < 0.
If N ≥ 4, then

∑K
k=1 ai,k > 0, y1 < 0, y2 < 0 and y3 < 0 imply that there exists

some y4, chosen without loss of generality, such that y4 < 0.
By induction of the argument, a contradiction arises for any N ≥ 4.

Step 3.2.2: Prove that
∑K

k=1 ai,k = 2c− (N − 1) for all i ∈ N implies t∗i,k ≤ 1

for all i ∈ N and all k ∈ K.
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Let us suppose, ad absurdum, that there exists an agent i such that t∗i,k > 1. Step
3.1 of the proof of Theorem 1 proves that

∑K
k=1 ai,k = 2c− (N − 1) for all i ∈ N

implies
∑K

k=1 t
∗
i,k = 1 for all i ∈ N . It follows that there exists a group l ̸= k such

that t∗i,l < 0, which contradicts what has been proved in Step 3.2.1 of the proof of
Theorem 1. □

Proof of Proposition 1

Step 1: We first prove that if there exists two activities k and l, with
k ̸= l, such that ai,k > 0 and aj,l > 0 for any i, j ∈ N , then the network is
multiplexed.

Let us suppose, ad absurdum, that there exists two activities k and l, with k ̸= l,
such that ai,k > 0 and aj,l > 0 for any i, j ∈ N , and that the network is simplex.
The system of best-response functions of activity k is:

t1,k =
a1,k+

∑
j ̸=1 tj,k

2c
,

...

ti,k =
ai,k+

∑
j ̸=i tj,k

2c
,

...

tN,k =
aN,k+

∑
j ̸=N tj,k

2c
.

Since ai,k > 0, we have that ti,k > 0. It follows that tj,k > 0 for all j ∈ N . Given
the process of link formation, we have that wk

ij > 0 for all i, j ∈ N .

The system of best-response functions of activity l is:
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t1,l =
a1,l+

∑
j ̸=1 tj,l

2c
,

...

ti,l =
ai,l+

∑
j ̸=i tj,l

2c
,

...

tN,l =
aN,l+

∑
j ̸=N tj,l

2c
.

Because aj,l > 0, we also have that wl
ij > 0 for all i, j ∈ N , and a contradiction

arises since links are formed in activities k and l, and we assumed that the network
is simplex.

Step 2: We next prove that if the network is multiplexed, then there
exists two activities k and l, with k ̸= l, such that ai,k > 0 and aj,l > 0 for
any i, j ∈ N .

Let us suppose, ad absurdum, that the network is multiplexed, and that there does
not exist two activities k and l, with k ̸= l, such that ai,k > 0 and aj,l > 0 for any
i, j ∈ N . Because the network is multiplexed, there exists two activities k and l,
with k ̸= l, such that t∗i,k > 0, t∗i,l > 0, t∗j,k > 0 and t∗j,l > 0. Because there does
not exist two activities k and l, with k ̸= l, such that ai,k > 0 and aj,l > 0 for
any i, j ∈ N , there exists one activity k ∈ K such that ai,k = 2c− (N − 1) for all
i ∈ N , and all other activities l ̸= k are such that ai,l = 0 for all i ∈ N .
The difference ti,k − tj,k for any two agents i, j ∈ N is:

ti,k − tj,k =
ai,k − aj,k +

∑
j ̸=i tj,k −

∑
i ̸=j ti,k

2c
.

Because ai,k = aj,k = 2c− (N − 1) for activity k, we have that:

ti,k − tj,k =
tj,k − ti,k

2c
,

ti,k − tj,k =
tj,k − ti,k∑K

k=1 ai,k + (N − 1)
.
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The previous equality holds if
∑K

k=1 ai,k + (N − 1) = −1, or if ti,k = tj,k. It is
impossible that

∑K
k=1 ai,k + (N − 1) = −1 since N ≥ 2 and

∑K
k=1 ai,k > 0. It

therefore follows that ti,k = tj,k. Since i and j are chosen without generality, this
equality holds for any pair of agents in N .
The expression of ti,k is:

ti,k =
ai,k +

∑
j ̸=i tj,k

2c
.

Because ti,k = tj,k for all j ∈ N , we have that:

ti,k =
ai,k + (N − 1)ti,k

2c
,

ti,k(2c− (N − 1)) = ai,k,

ti,k =
ai,k

2c− (N − 1)
.

Since ai,k = 2c− (N − 1), we have that:

t∗i,k = 1.

Since i is chosen without loss of generality, we have that t∗i,k = 1 for all i ∈ N .
We have just shown that in activity k, for which ai,k = 2c− (N − 1) for all agents
i ∈ N , all agents are such that t∗i,k = 1. By Theorem 1, it follows that t∗i,l = 0

for all activities l ̸= k and for all agents i ∈ N . A contradiction arises since we
assumed that there exists two activities k and l, with k ̸= l, such that t∗i,k > 0,
t∗i,l > 0, t∗j,k > 0 and t∗j,l > 0. □

Proof of Proposition 2

The intensive multiplexity takes its maximum value for all agents when wk
ij takes

the same value for all i, j ∈ N and all k ∈ K, which happens when, for all pairs
of agents i and j ∈ N and all pairs of activities k and l ∈ K such that k ̸= l
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and i ̸= j, either (i) t∗i,l = t∗i,k and t∗j,l = t∗j,k, or (ii) t∗i,l = t∗j,k and t∗j,l = t∗i,k. The
difference t1,k − t2,k can be expressed as:

t1,k − t2,k =
a1,k − a2,k +

∑
j ̸=1 tj,k −

∑
j ̸=2 tj,k∑K

k=1 ai,k + (N − 1)
,

t1,k − t2,k =
a1,k − a2,k + t2,k − t1,k∑K

k=1 ai,k + (N − 1)
,

t1,k − t2,k =
a1,k − a2,k∑K
k=1 ai,k +N

.

Let us suppose, ad absurdum, that N ≥ 3, that the intensive multiplexity of
the network takes its maximum value and that that a1,k > a2,k, so that not all
preference parameters take the same value ai,k = 2c−(N−1)

K
. Therefore, t∗1,k > t∗2,k.

Because
∑K

k=1 t
∗
i,k = 1 and t∗i,k ∈ [0, 1] for all i and all k, there exists at least

another group l such that t∗1,l < t∗2,l. If case (i) happens, such that t∗1,l = t∗1,k, then
t∗2,l = t∗2,k is impossible because we found that t∗1,k > t∗2,k and t∗1,l < t∗2,l. If case (ii)
happens, such that t∗1,l = t∗2,k and t∗2,l = t∗1,k, then there is at least a third agent 3

for whom t∗3,k = t∗1,l, t∗3,l = t∗1,k, t∗3,k = t∗2,l and t∗3,l = t∗2,k. It follows that t∗1,l = t∗2,l,
and a contradiction arises since we proved t∗1,l < t∗2,l.
Let us now suppose, ad absurdum, that a1,k > a2,k, that the intensive multiplexity
of the network takes its maximum value and that There exists at least an agent
i such that ai,k > 0 for any k ∈ [3,∞[. Case (i) is impossible for the reason
mentioned above: a1,k > a2,k implies that t∗1,k > t∗2,k and that there exists another
activity l such that t∗1,l < t∗2,l. If case (ii) happens, such that t∗1,l = t∗2,k and
t∗2,l = t∗1,k, then there is at least a third activity m such that t∗1,k = t∗2,m and
t∗2,k = t∗1,m, and t∗1,l = t∗2,m and t∗2,l = t∗1,m. It follows that t∗1,k = t∗1,l, and a
contradiction arises since t∗1,k > t∗2,k and t∗1,l = t∗2,k imply t∗1,k > t∗1,l.
Let us suppose, ad absurdum, that N = {1, 2}, that both agents are such that
ai,k > 0 for k = 1 or k = 2, that the intensive multiplexity of the network takes its
maximum value and that a1,k > a2,l (a1,k < a2,l) and a1,l < a2,k (a1,l > a2,k) with
a1,k > 0, a2,l > 0, a1,l > 0 and a2,l > 0 for some activities k and l. It follows that
t∗1,k > t∗2,l (t∗1,k < t∗2,l) and t∗1,l < t∗2,k (t∗1,l > t∗2,k), which renders case (ii) impossible.
Case (i) is also impossible since t∗1,k = t∗1,l implies t∗2,k > t∗2,l (t∗2,k < t∗2,l).
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The cases a1,k < a2,l and a1,l = a2,k, a1,k > a2,l and a1,l = a2,k, a1,k = a2,l and
a1,l > a2,k, a1,k = a2,l and a1,l < a2,k, a1,k > a2,l and a1,l > a2,k, and a1,k < a2,l and
a1,l < a2,k are not studied since they would break with the assumption that the
sum of preference parameters over activities

∑K
k=1 ai,k = 2c− (N − 1) is constant

across all agents.
Since agents 1, 2 and 3 and activities k, l and m are chosen without loss of gener-
ality, contradictions arise for any agents in N and any activities in K. □

Proof of Proposition 3

The difference t1,k − t2,k is:

t1,k − t2,k =
a1,k − a2,k + t2,k − t1,k

2c
,

which simplifies to

t1,k − t2,k =
a1,k − a2,k
2c+ 1

.

Increasing costs c reduces the difference | t1,k − t2,k |.
Since agents 1 and 2 are chosen without loss of generality, increasing c reduces the
difference | ti,k − tj,k | for any agents i, j ∈ N . □

Proof of Theorem 2

Nodes of a component of G can be more Bonacich central than the nodes of G′

they are mapped to if either (i) values of weights are larger in the component of G
than in the component of G′, or (ii) there are more links in the component of G
than in the component of G′. A difference in Bonacich centralities between nodes
of G and G′ cannot come from a difference in values of weights, since nodes of G
are mapped to nodes of G′ which have the same strength. It can therefore only
come from a difference in the number of links across components of networks G

and G′. Components of networks G and G′ have the same number of nodes since
f is bijective. Therefore, if the extensive multiplexity of a component of network
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G is larger than the one of the component of G′ to which nodes of G are mapped,
then there exist values of x ∈ N such that the number of walks of length x ema-
nating from a node in G is larger than the number of walks of length x emanating
from the node in G′ it is mapped to. □

Proof of Proposition 4

For any x and any i, the maximum value that wi:(x+1) can take is wi:x · smax

wmin
.

Therefore, b < wmin

smax
is a sufficient condition for the weighted Bonacich centrality

to be finite. □
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