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Abstract

The traditional parametric techniques used to forecast recession probabilities from economic

indicators have become unsettled due to the few but highly influential observations recorded

by most industrialized economies during the COVID-19 pandemic. This paper proposes a new

nonparametric approach to computing predictive probabilities of future recessions that is ro-

bust to influential observations and other data irregularities, such as structural breaks and

heteroskedasticity. The method involves simulating forecasts using past histories of the time

series which are embedded into a symbolic space. Then, the forecasts are converted into prob-

ability statements, which are weighted by the forecast probabilities of their respective symbols.

Using GDP data from the G7 countries, we show that our nonparametric proposal outperforms

other linear and nonlinear parametric approaches as a classifier of future national business cycle

phases, especially when data from 2020 are included in the sample.
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1 Introduction

Early detection of changes in business cycle phases is crucial for consumption, investment, sav-

ings, and production decisions made by economic agents, as well as for making monetary and

fiscal policies. Since phase changes are officially recognized long after they start, developing early

warning mechanisms to forecast recessions has been a long-standing quest for academics, market

practitioners, and policymakers.

To provide timely early warning of an approaching recession, academics usually rely on nonlin-

ear parametric methods that produce probabilistic statements of future phase changes from busi-

ness cycle indicators, such as the growth rates of quarterly real Gross Domestic Product (GDP). To

name only a few, Estrella and Mishkin (1998) used a probit model, Hamilton (1989) developed a

Markov-switching autoregressive (MSAR) specification, and Teräsvirta and Anderson (1993) pro-

posed a Smooth Transition Autoregressive (STAR) model.

In addition, Wecker (1979) offered a heuristic solution to compute inferences of future reces-

sions from linear autoregressive (AR) models based on Monte-Carlo simulations of forecast paths.

Considering a technical recession (two consecutive quarters of decline in the GDP) as a reces-

sion event, the method consists of computing the relative frequency of technical recessions across

the simulated forecasts. Despite its simplicity, Hamilton and Perez-Quiros (1996) and Camacho

and Perez-Quiros (2002) showed the considerable empirical reliability of this approach to provide

forecasts of US recession probabilities.

One way to assess the goodness of fit of recession forecast models is to examine their ability to

identify official recessions as determined by national Dating Committees, such as the committee of

the National Bureau of Economic Research (NBER) for the US economy. Regardless of how suc-

cessful the parametric methods have been in the past, in 2020, the parametric dating methods were

exposed to unprecedented atypical data that challenged their ability to provide reliable probability

forecasts of future recessions. In 2020, due to the economic collapse caused by the COVID-19 pan-

demic and the rapid countercyclical measures implemented by policymakers, most industrialized

countries recorded the sharpest fall and the largest rebound in quarterly GDP since records began.

In this paper, we show that these leverage points have dramatically altered the state of affairs in

performing business cycle inferences.1

To overcome this drawback, the empirical approaches used to compute forecasts of recession

probabilities with parametric models rely on the shortcut of manipulating the sample to estimate the

model parameters. One example is the Econbrowser GDP-based recession indicator index, which

estimates recession probabilities by applying a methodology based on the Markov-switching model

developed by Chauvet and Hamilton (2006). To keep the index working after the dramatic drop

in the second quarter of 2020, the parameters of the Markov-switching model were not estimated

but fixed with the values of the estimated parameters using data only up to the first quarter of

2020. In the same vein, McGrane (2022) obtained the post-COVID recession probabilities from a

1Although not in the context of forecasting recessions, Lenza and Primiceri, 2020, Leiva-Leon, Perez-Quiros and
Rots, 2020, Antolin-Diaz, Drechsel and Petrella, 2021, Carreiro at al., 2021, and Ng, 2021, have recently investigated
some ways to handle the unique features of the COVID-19 recession in time-series forecasting with parametric
approaches.
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Markov-switching model estimated with data only up to 2019. On a monthly basis, the recession

probability index maintained by the St. Louis Fed and documented by Chauvet and Piger (2008),

is computed from a Markov-switching model that allows a change in model parameters associated

with the period from March 2020 to July 2020.

The aim of this paper is to introduce a new approach to compute h-step ahead predictive

probabilities of future recessions that does not require manipulating the sample of the database

because the method is robust to influential points and other data irregularities, such as structural

breaks, heteroskedasticity and Autoregressive Conditional Heteroskedasticity (ARCH). Specifically,

we propose a nonparametric extension of Wecker’s method that generates h-period ahead forecast

paths at time t by adding to the time series under consideration at time t the past increments

occurred in the set of (h + 1)-dimensional blocks that can be extracted from the past of the

time series. Then, the forecast paths can be used to compute the relative frequency of technical

recessions.

As we will show below, this strategy implies assuming equal weigths for all the past increments,

which seems unreliable in practice. For example, past blocks of the time series referring to recovery

periods exhibit upward trends that would hardly ever occur when time t refers to a downturn.

To overcome this drawback, we embed all the forecast paths into a symbolic space and derive the

expressions required to compute the probability of occurrence of each of the symbols at the time of

the forecast. Thus, we compute the relative frequency of a technical recession across the forecast

paths by weighting each path differently according to the probability of the corresponding symbol

occurring at time t.

The advantage of forecasting recession probabilities in this way compared to linear and nonlin-

ear parametric approaches is twofold. Firstly, the method is nonparametric so there is no need to

make any assumption in a specific dynamic model for the given population. In addition, performing

of recession probabilities to provide accurate business inferences does not depend on the estimates

of the model parameters, which tend to be unstable under structural breaks and large outliers.

Secondly, the impact of extreme values appearing in some past blocks of the time series, like those

observed in the pandemic period, are expected to average out when computing the weighted rel-

ative frequency of the technical recessions and their impact on forecasting performance becomes

negligible.

By conducting several Monte Carlo experiments designed to capture standard data problems

that characterize economic data sets, we evaluate the finite-sample performance of the proposed

algorithm to predict recession probabilities. To assess its forecasting performance, we analyze Re-

ceiver Operating Characteristic (ROC) curves, Brier Scores, and Cohen’s Kappa coefficients. In

absence of data problems, we use these statistics in an out-of-sample forecasting scenario to show

that the nonparametric approach developed in this paper behaves similarly to Markov-switching

and Wecker’s approaches in one-period forecasting but its relative improvement over parametric

approaches consistently increases with the forecasting horizon. In the presence of influential obser-

vations and structural breaks, and when the errors are heteroskedastic or present ARCH dynamics,

the nonparametric approach outperforms the parametric models.

Finally, we evaluate the ability of our nonparametric method to compute accurate in-sample
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forecasts of recession probabilities of future recessions (captured by NBER and ECRI recession

dates) from national GDP growth rates in the G7 countries. Using pre-pandemic data, the Markov

switching approach slightly outperforms the other approaches at one-period forecasting, although

there are no sizeable differences with the nonparametric proposal as the forecasting horizon in-

creases. Undoubtedly, the best-performing model is the nonparametric approach when the extreme

values of GDP growth rates observed in 2020 are included in the sample because its forecasts of

recession probabilities are barely affected by these influential observations.

The paper is organized as follows. Section 2 introduces the nonparametric approach to compute

forecasts of recession probabilities. Section 3 shows the results of the Monte Carlo simulations. Sec-

tion 4 applies the models to forecast recession probabilities in the G7 countries from quarterly GDP

growth rate data. This section highlights the estimation problems faced by parametric approaches

when the extreme figures observed in 2020 are included in the data set. Section 5 concludes and

outlines some further research lines.

2 Robust probabilistic recession statements

Based on a novel extension of Wecker’s (1979) proposal, this section describes a new procedure

to compute h-period forecasts of recession probabilities. For clarity, we first describe the linear

approach and then present our nonparametric extension.

2.1 The linear approach

The approach proposed by Wecker (1979) offers a heuristic solution to compute business cycle

inferences with linear autoregressive models based on Monte-Carlo simulations. Let {y1, . . . , yt}
be the observed values of a stationary and ergodic time series, yt, and let {ŷt+1, . . . , ŷt+h} be the

predictions of its uncertain future values {yt+1, . . . , yt+h}.
To adapt the method to our context, let yt be the growth rates of the seasonally adjusted real

GDP series for a given country. We rely on the popular definition of a technical recession to state

the occurrence of a recession, which requires the GDP to fall for at least two consecutive quarters.2

To obtain a probabilistic statement about the event of a recession, we define zt as the sequence

of indicator variables that indicate a recession at t, whose outcomes rely on the time series yt

according to the rule

zt(yt−1, yt) =

1 if yt−1 < 0 and yt < 0

0 otherwise
. (1)

Thus, the rule identifies a recession after two (or more) successive declines.

To estimate the h-step-ahead forecast of the probability of a recession, the vector of present and

future values of the time series Yh(t+1) = {yt, yt+1, . . . , yt+h−1, yt+h}, for h ≥ 1, must be estimated.

Assuming that the data-generating process is a univariate autoregressive Gaussian model, sample

paths of the future values of the time series can be repeatedly generated. Concretely, one can draw

2Among others, this definition has been used by Hamilton and Perez-Quiros (1996) and by Camacho and Perez-
Quiros (2002) to compute business cycle inferences from linear autoregressive models.



A new approach to forecasting the probability of recessions after the COVID-19 pandemic 5

a number M of vectors of forecasts {(ŷmt+1, . . . , ŷ
m
t+h)}Mm=1 from N(µt, Q), where explicit forms of

the mean and covariance matrix for different forecasting horizons are derived in Appendix A. This

leads to (h+ 1)-dimensional forecast paths

Ŷ m
h+1(t) = (yt, ŷ

m
t+1, . . . , ŷ

m
t+h), (2)

where m = 1, . . . ,M and we set ŷmt = yt.

Then, using the rule of two consecutive periods of declining stated in (1), we can compute M

realizations of the indicator variable ZM
t+h = {zt+h(ŷ

m
t+h−1, ŷ

m
t+h)}Mm=1. Notice that, since the distri-

bution of future values of the time series conditioned to its past values, gy(yt+1, . . . , yt+h|y1, . . . , yt),
can be approximated by the empirical distribution of the generated forecast paths Ŷ m

h+1(t), the dis-

tribution of zt+h can also be approximated by the empirical distribution of ZM
t+h, as stated in

Wecker (1979). Therefore, the sample mean of this empirical distribution is taken to be a forecast

of the probability that the economy will be in recession at date t+ h

PL(zt+h = 1) =
1

M

M∑
m=1

zt+h(ŷ
m
t+h−1, ŷ

m
t+h), (3)

for any look-ahead horizon h.

From this expression, it becomes clear that the ability of PL to detect future recessions de-

pends crucially on the performance of the forecasting model used to compute reliable forecasts

of (yt+1, . . . , yt+h). In this context, it is evident that model misspecification, structural breaks,

or extreme values inducing instability in the autoregressive parameters will negatively impact the

performance of PL.

2.2 Nonparametric forecasts

As in the linear approach, our proposal to infer whether an economy will be in recession with

forecast horizon h, requires estimating Yh+1(t) = {yt, yt+1, . . . , yt+h−1, yt+h}. However, instead of

generating forecast paths from parametric autoregressive models, we rely on simulating nonpara-

metric forecasts by embedding the time series {yt}Tt=1 in a (h+1)-dimensional space by computing

the histories

Yh+1(τ) = (yτ , yτ+1, . . . , yτ+h−1, yτ+h), (4)

where τ = 1, . . . , T − h. Each of these vectors summarizes the behavior of the time series in the

neighborhood of τ , accounting for the value of the stationary time series at τ and the subsequent

steps τ + 1, . . . , τ + h.

For each τ , we use Yh+1(τ) to generate realizations of the forecast of Yh+1(t) as follows:

Ŷ τ
h+1(t) = (yt, ŷ

τ
t+1, . . . , ŷ

τ
t+h), (5)

where ŷτt+k = yt + (yτ+k − yτ ) is the τ -th generation of the forecast yt+k, for k = 1, 2, . . . , h and

τ = 1, 2, . . . , t− h. In this proposal, the τ -th forecast of yt+k, given by ŷτt+k, is the value of yt plus

the increment produced in the time series in the following k step starting at a given period τ .
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Apart from it being stationary and ergodic, we do not require further assumptions about the

data-generating process of yt, its population probability distribution. In this case, it is straightfor-

ward to show that E(ŷτt+k) = E(yt). In addition, the increments in the time series, yt+k−yt as well

as yτ+k − yτ , are stationary because the time series is also stationary, which implies that they are

realizations of the same distribution distribution that depends on k but not on t. This supports

our approach as a natural way to perform the different forecasts.

Using the t− h forecast paths Ŷ τ
h+1(t), we can generate a sequence of indicators of a technical

recession zt+h(ŷ
τ
t+h−1, ŷ

τ
t+h) for τ = 1, . . . , t − h, whose empirical distribution approximates the

distribution of zt+h. Thus, as a natural extension of the linear approach, the probability of a

recession at t+ h can be estimated by

P (zt+h = 1) =
1

t− h

t−h∑
τ=1

zt+h(ŷ
τ
t+h−1, ŷ

τ
t+h), (6)

which is the frequency of a technical recession across the nonparametric simulations of the forecast

path.

It is worth emphasizing that this extension of the linear approach to producing probabilistic

statements for the occurrence of recessions could lead to invalid inferences. Notice that in the linear

autoregressive case, the forecasts of the variable of interest yt+1, ..., yt+h, account for the inertia of

the time series since they are computed using linear combinations of past values of the variable,

with the recent past having the highest weights.

By contrast, our nonparametric projections do not consider the typical business-cycle inertia of

GDP growth rates when developing the short-term forecasts at t. In fact, expression (6) computes

the probability of a recession at t + h by averaging the t − h estimates of the indicator variable

z, which assigns equal weights to all the indicators of recession zt+h(ŷ
τ
t+h−1, ŷ

τ
t+h), regardless of

the neighborhoods of the time series at t and τ . Thus, when the economy is in the middle of an

expansion at t, the method would assign the same weight to Ŷ τ
h+1(t) regardless of whether τ refers

to an expansionary or to a recessionary period.

The following section proposes a modification of (6) that overcomes this drawback using a

weighting algorithm based on symbolic dynamics.

2.3 Symbolic dynamics based weights

Symbolic dynamics involves the simple process of labeling each of the (h + 1)-history Yh+1(t) =

(yt, yt+1, . . . , yt+h), for t = 1, . . . , T −h, with a symbol. Thus, instead of following the trajectory of

the time series point by point, one only keeps recording the alternation of the symbols. According

to Collet and Eckmann (2009), the evolution of the symbols can capture the complete description

of the dynamic system3.

The proposed symbolization is as follows. Let Sh+1 be the symmetric group of order (h +

1)!, that is the group formed by all the permutations of length h + 1 of the elements in the set

{0, 1, 2, . . . , h}. An element of this group, namely π = (i0, i1, ..., ih) ∈ Sh+1, is called a symbol. The

3Some other applications of symbolic dynamics in economics are Tino et al. (2000), Matilla, Ruiz, and Dore
(2014), Hou et al. (2017) and Camacho, Romeu, and Ruiz (2021).
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symbolization procedure consists on assigning a unique permutation that sorts out its entries from

the smallest to the largest to any (h+ 1)-tuple Yh+1(t). Formally, this procedure maps Yh+1(t) to

the unique permutation π = (i0, i1, ..., ih) ∈ Sh+1, satisfying the following two conditions:

yt+i0 ≤ yt+i1 ≤ ... ≤ yt+ih , (7)

is−1 < is if yt+is−1 = yt+is . (8)

The first condition imposes an ordinal pattern and the second is a technical condition that guar-

antees the uniqueness of the symbol in the case of equal values, which theoretically has zero prob-

ability of occurring in the case of continuous distributions. Thus, symbolic dynamics converts the

sequences of (h+1)-histories {Yh+1(t)}T−h
t=1 into sequences of ordinal patterns labeled with symbols

{π(t)}T−h
t=1 .

As a quick example, consider the time series {yt} = {5, 3, 2, 1, 8, 9, 3, 4, 5, 2} of length T = 10.

For a forecasting horizon h = 2, we can obtain eight 3-histories

{Y3(t)}8t=1 = {(5, 3, 2), (3, 2, 1), (2, 1, 8), (1, 8, 9), (8, 9, 3), (9, 3, 4), (3, 4, 5), (4, 5, 2)}. (9)

Using the integers {0, 1, 2} to construct the symbols, the set of potential symbols is

S3 = {(0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1), (2, 1, 0)}. (10)

Now, symbolic dynamics yields the symbolized series as

{π(t)}8t=1 = {(2, 1, 0), (2, 1, 0), (1, 0, 2), (0, 1, 2), (1, 2, 0), (2, 0, 1), (0, 1, 2), (1, 2, 0)}. (11)

It is worth emphasizing that symbol (0,1,2) will be associated with increasing patterns (expansions)

in the time series, while symbol (2,1,0) will typically refer to decreasing dynamics (recessions).

In addition, the probability at t of symbol π ∈ Sh+1, which we call P t
π, can be computed

analytically. Based on an extension of Abd Alla (2004), Appendix B shows the expressions of

these forecasts for h = 1, 2, 3. These forecasts of symbol probabilities can be used to improve the

accuracy of the recession probability forecasts stated in (6).

To this end, let τ be any time period smaller or equal to t−h, and denote with π(τ) the symbol

associated with (h+1)-history Yh+1(τ). Let P t
π(τ) be the probability that symbol π(τ) appears at

t.4 We propose the nonparametric forecast at t of a recession occurring at t+ h as

PNP (zt+h = 1) =

t−h∑
τ=1

zt+h(ŷ
τ
t+h−1, ŷ

τ
t+h)P

t
π(τ)

t−h∑
τ=1

P t
π(τ)

. (12)

This expression implies that the contribution to PNP (zt+h = 1) of the τ -th recession indicator is

weighted by the probability that the ordinal pattern of (h+1)-history Yh+1(τ) = (yτ , yτ+1, . . . , yτ+h)

4It implies that P t
π(τ) = P t

π if π(τ) = π, for all π ∈ Sh+1.
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(i. e. symbol π(τ)) would occur at t, where the weights are normalized to add up to one.5

It is easy to check that forecasting probabilities of recession with the weighted average of the

recession indicators as in (12) overcomes the drawback of (6). Let us denote with πE those symbols

associated with expansions and with πR those associated with recessions. If we assume that the

economy is in the middle of an expansion at t, then probability P t
πE

should be much higher than

probability P t
πR

. Therefore, if period τ is in the middle of a recession, the corresponding (h+1)-

history, Yh+1(τ), will be associated with π(τ) = πR and the weight of the recessionary indicator

zt+h(ŷ
τ
t+h−1, ŷ

τ
t+h) appearing in the numerator of (12) will be as low as P t

πR
.

3 Monte Carlo simulation

In this section, we set up several Monte Carlo experiments to assess the finite-sample perfor-

mance of our nonparametric proposal to compute h-step ahead predictions of recession proba-

bilities, PNP (zt+h = 1), for h = 1, 2, 3. In addition, we use the simulations to evaluate how data

problems, such as influential points, structural breaks, heteroskedasticity, and ARCH effects, might

affect forecast performance. To facilitate comparisons with Wecker’s (1979) linear approach, we

also include the forecasts of recession probabilities using an autoregressive model, PL(zt+h = 1).

For the sake of comparison, we have included the forecasts of a Markov-switching autoregressive

model of order q, MSAR(q), which is one of the most popular approaches used to compute recession

probabilities. Following Hamilton (1989), we assume that the dynamics of yt are governed by an

unobservable regime-switching state variable, st. The model can be stated as

yt = µst + a1(yt−1 − µst−1) + . . .+ aq(yt−q − µst−q) + ϵt, (13)

where ϵt ∼ iidN(0, σ2).6

Within this framework and assuming that µ0 > µ1, one can label st = 0 and st = 1 as the

expansion and recession states at time t, respectively. In addition, it is commonly supposed that the

state variable evolves following an irreducible 2-state Markov chain whose transition probabilities

are defined by

p(st = j|st−1 = i, st−2 = h, ..., It−1) = p(st = j|st−1 = i) = pij , (14)

where i, j = 0, 1 and It = {y1, . . . , yt} is the information set up to period t.

Hamilton (1989) described a forward filter to store the filtered probabilities of recession P (st =

1|θ, It), where θ = (µ0, µ1, a1, . . . , aq, p00, p11) and to provide a maximum likelihood estimation of

model parameters θ̂. Using the parameter estimates, it is easy to compute inferences about the

5It is worth pointing out that, since PNP (zt+h = 1) = E(zt+h), expression (3) is an unbiased estimator of the
probability of recession.

6The dynamics can be adapted to account for regime shifts in the autoregressive parameters and in the variance.
In addition, the nonlinearities can be imposed in the mean or in the drift of the time series.
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business cycle regime at t+ 1 as

P (st+1 = 1|θ̂, It) =
1∑

i=0

P (st = i|θ̂, It)pi1. (15)

This expression can be used recursively to obtain h-period ahead forecasts P (st+h = 1|θ̂, It).
We quantify the ability of the Wecker (1979) method, the Markov-switching model, and our

nonparametric approach to forecasting the h-step ahead state of the business cycle with the help

of three different metrics. The first metric is the Brier score, BS, which is the mean square error

of recession probability. A Brier score of 0 means perfect accuracy, and a Brier score of 1 means

perfect inaccuracy. For more detailed information this metric is also computed only for recessions

(BSR) and expansions (BSE).

The second metric is the area under the receiver operating characteristic curve, namelyAUROC

(Berje and Jorda, 2011), which is a measure of the overall performance of a binary classifier, it

considers the trade-off between the true positive rate and the false positive rate. The AUROC takes

values between 0.5 for a random classifier and 1 for a perfect classifier. Regarding this metric, we

define the True Posititive rate (TPR) as the probability of predicting recessions that actually

become recessions and the True Negative rate (TNR) as the probability of predicting expansions

that actually become expansions.

The third metric is Cohen’s Kappa coefficient (Cohen, 1960), which is a chance-corrected

measure of agreement between the classification of the forecasting techniques and actual recessions.

This metric, denoted by κ, reaches 1 for complete agreement. A more detailed explanation of these

metrics can be found in Appendix C.

3.1 Nonparametric model performance

We start the simulations by generating r = 1, . . . , R = 500 business cycle sequences srt of expansions

(srt = 0) and recessions (srt = 1) of length T = 500 that follow 2-state Markov chains. To ensure that

these dummies share the standard business cycle dynamics, we use the NBER dates to compute

the percentage of quarters classified as expansions followed by expansions and the percentage of

quarters classified as recessions followed by recessions in the period 1955.2-2022.3. According to

this analysis, we set p00 = 0.9 and p11 = 0.6.

The data-generating process is an MSAR(1) as outlined in (13) with noisy terms ϵ2t ∼ iidN(0, 0.5).

Using srt , the dynamics of time series yrt are generated by setting the differences of the within-state

means µ0 − µ1 = 0.5 and a state-independent autoregressive parameter a1 = 0.2. With this data-

generating process, we examine forecasting performance in an out-of-sample scenario.

The results of this exercise for the nonparametric approach are displayed in Table 1. The base-

line simulations, whose results are presented in Panel A, show that the accuracy of the probability

forecasts deteriorates very little as the forecasting horizon increases, as documented by the Brier

score. Similarly, the AUROC metric is around 0.8 regardless of the forecasting horizon, indicating

that our nonparametric method presents a good discriminating ability to distinguish the state of

the generated business cycles. Finally, Cohen’s kappa suggests a reasonable level of agreement
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between the one-period forecasts of the nonparametric method and the generated business cycles.

Nevertheless, κ tends to diminish slightly as the forecasting horizon increases.

Panel B of Table 1 evaluates the effect of the persistence of the generated time series, measured

by the autoregressive parameter a1, on the nonparametric probability forecasts. The results indicate

that the forecasting performance is somehow worsened by higher persistence, mainly through BSR.

However, the deterioration of the forecasting performance is not dramatic since the persistence

does not change this metric substantially when the autoregressive parameter rises from a1 = 0.2 to

a1 = 0.5 or a1 = 0.8.

To examine the effect of the sample size in the nonparametric approach, Panel C displays

the estimates of the forecasting performance metrics for data-generating processes of sample sizes

T = 250 and T = 1000. In these two cases, the figures are similar to those obtained in the baseline

scenario, indicating that the model’s performance is invariant to time series of reasonable sample

sizes.

We also study the effects of uncertainty on forecasting performance by generating noisy terms

with variances of σ2 = 1 and σ2 = 1.5, shown in Panel D. As expected, the ability of the model

to compute inferences on the generated business cycle deteriorates substantially when variance σ2

increases. Thus, we find that noisy scenarios deteriorate the ability of the nonparametric procedure

to classify the periods into recessions and expansions.

In addition, we evaluate the effects of business cycle phase persistence on forecasting per-

formance by performing simulations with combinations (p00, p11) of (0.6, 0.6) and (0.9, 0.9). The

results are shown in Panel E. When a business cycle phase becomes more persistent, the Brier score

falls, whereas the overall performance of the binary classifier (AUROC) and the overall agreement

(κh) of the forecasts and the generated cycles increase.

Finally, to examine how the business cycle signal affects forecasting performance, we also set

the within-state difference µ0−µ1 to 1 and 2. Panel F shows that larger differences of within-state

means substantially improve the performance of the nonparametric model as the signal-to-noise of

the data-generating process increases. Thus, large differences between within-state means facilitate

the classification of the time periods into recessions and expansions.

3.2 Comparison of the methods’ performance under data problems

Despite the good performance of the model in providing statistical inferences of the generated

business cycles in the baseline scenario, the data problems that characterize the economic dynamics

in empirical applications could lead to potential performance deterioration. To evaluate these

potential adverse effects, we conduct an out-of-sample forecasting exercise with outliers, structural

breaks, heteroskedasticity, and ARCH dynamics.

In addition, we are interested in evaluating the differences in performance deterioration that the

data problems may cause in Markov-switching, linear and nonparametric specifications to forecast

recession probabilities. For this purpose, Panels A, B, and C of Table 2 display the Brier scores,

AUROC, and Kappa coefficients achieved by these three alternative forecasting proposals. To

facilitate comparisons, the first row in each panel reports the results of the baseline scenario. The

table shows that the three models perform well forecasting business cycle phases. For h = 1,
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the three models display similarly low BS, and high AUROC and κ. Notably, the forecasts that

deteriorate the least with the prediction horizon are those of the nonparametric model. Regardless

of the statistic, the nonparametric model has the greatest classification ability for h = 2 and h = 3.

To assess the performance deterioration caused by extremely large observations, we generate

additive outliers in the simulated time series that are consistent with the magnitude of the large

GDP growth rates observed in 2020. Specifically, we add an additive outlier of -15 standard

deviations from the mean of the simulated time series at t = 100, followed by a 10 standard

deviations outlier in t+1 to the baseline data-generating process. In line with the results reported

in Table 2, of the three models, the one that fails the most in performing business cycle inferences

due to the large number of observations is the Markov-switching model. Intuition indicates that

the estimated mean in the low-growth regime is dominated by the first outlier and the sample after

this date is classified as expansion regardless of the value of the time series. For this reason, BSR

tends to 1 while TPR and AUROC are close to 0 and 0.5, respectively.

For one-period forecasting horizons, the performance deterioration of the probability forecasts

computed with the linear model is not as significant as that of the Markov-switching model. How-

ever, the deterioration is much greater for forecasting horizons larger than 1, as demonstrated by

the low values of AUROC, which fall to about 0.5, indicating no better classification ability than

the toss of a coin strategy. Performance deterioration in forecasting recessions is also evident in

the large value of BSR, which is 0.72, and the low value of κ, which tends to 0.

Remarkably, the forecasts computed with the nonparametric algorithm do not show any signif-

icant deterioration in the metrics used to examine the performance of the h-step ahead forecasts of

the business cycle, regardless of the forecasting horizon considered. As Panel C of Table 2 shows,

the metrics are almost invariant when the outlier is introduced into the data-generating process

and BS, AUROC, and κ are roughly similar to the baseline scenario.

The second robustness check focuses on structural breaks. To examine this data problem, we

generate the last three-fourths of the sample as in the baseline scenario (µ0 = 0.25) while we set

µ0 = 1 for the first fourth of the sample, with the rest of the parameters unaltered. The third row

of each panel of Table 2 shows that, as in the case of the outlier, the structural break produces

substantial deterioration in the performance of the Markov-switching and linear specifications.

However, the changes in the performance of the nonparametric proposal are, again, negligible.

Finally, we evaluate the models’ performance to static and serially correlated heteroskedasticity.

To simulate data with static heteroskedasticity, we generate the last three-fourths of the sample

as in the baseline scenario (σ2 = 0.5) while we set σ2 = 2.5 for the first fourth of the sample.

Serially correlated heteroskedasticity is achieved by generating disturbances ϵt = σtut, where ut

is a normalized independent Gaussian process and σt = 0.2 + 0.8ϵt−1. Again, the performance

deterioration of Markov-switching and linear autoregressive forecasts is substantial, although a bit

less severe than in the cases of outliers and structural breaks. As in the previous two scenarios, the

deterioration in the performance of the linear and Markov-switching approaches is much greater

than in our nonparametric proposal.



A new approach to forecasting the probability of recessions after the COVID-19 pandemic 12

4 Empirical example

In this section, we assess the empirical reliability of Markov-switching specifications, linear autore-

gressive models, and our nonparametric approach to provide accurate in-sample forecasts in the

run-up to business cycle recessions in the G7 countries. In addition, we examine the impact of

the COVID-19 recession, which led to record falls and recoveries, on forecasting performance. For

this purpose, we develop the analysis with a sample that ends in 2019 and a complete sample that

includes the COVID-19 pandemic data ending in the third quarter of 2022.

The COVID-19 recession is the latest in our data sets. Thus, we are precluded from examining

its effect in out-of-sample exercises as in the section devoted to Monte Carlo simulations. To

assess the effect that the observations recorded in 2020 will have on the future performance of

the forecasting approaches, we focus on the impact of these influential observations on historical

business cycle dating. Notice that we do not pursue ad-hoc shortcuts as temporary solutions to

this problem, such as using additional regimes or shortening the sample used to estimate model

parameters.

We use data sets of the growth rates of seasonally adjusted real GDP for the Group of Seven

(G7) countries (USA, UK, Germany, France, Italy, Canada, and Japan). The data come from the

OECD Main Economic Indicators. The sample starts in 1955.2 for the UK and US, 1960.2 for

Italy, Canada, and Japan, 1964.1 for Germany, and 1969.1 for France. It ends in 2022.3 for all

the countries. To evaluate the empirical performance of the forecasting approaches, we use the

reference cycle dates provided by the dating committees of the NBER in the case of the US and

the Economic Cycle Research Institute (ECRI) for the rest of the countries.

4.1 Pre-COVID-19 data

In the first approximation to the analysis of forecasting performance, we focus on the historical

ability of the three forecasting approaches to classify the dates into expansion and recession in

constrained samples that end in the last quarter of 2019. Remarkably, the results reported in Panel

C of Table 3 show that the probability forecast of our nonparametric procedure is in close agreement

with the reference cycles for all the countries. Regardless of the forecasting horizon, our approach

results in a low Brier score, an AUROC much higher than 0.5, and a large kappa coefficient, all of

which are comparable to those reached by the Markov-switching model (Panel A) and the linear

specification (Panel B).

In terms of ROC curves, the Markov-switching model achieves the best business cycle perfor-

mance across all the possible classification thresholds for all the countries but France, Germany, and

Italy, in part because their higher volatilities tend to diminish the ability of the Markov-switching

model to separate the states.7 Although this approach shows high values for the US, UK, and

Canada, the magnitudes reported for the linear and the nonparametric approaches are also sig-

nificantly greater than 0.5, indicating their considerable discriminating ability. The apparently

better performance of the Markov-switching approach relies on its ability to classify expansions

because this advantage vanishes when examining the ability to correctly identify recessions with

7This result agrees with those of Carstensen et al.(2020).
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TPR statistics.

Measured by the Brier score, the differences in forecasting performance across the three com-

peting approaches are minor in all the cases. The nonparametric model slightly outperforms in

one and two-quarter forecasts, and the linear approach outperforms in three-quarter forecasts. Re-

garding the kappa index, the data reveal uniformly closer agreement between the nonparametric

probabilities of recession the official recessions than with the other two forecasting approaches. The

numbers reported in Table 3 show that the kappa coefficients of the nonparametric approach are

substantially larger than those of the other two competitors, regardless of the forecasting horizon

and the country of the sample.

To illustrate the good performance of the three dating processes with samples that do not

include the pandemic period, Figure 1 displays the growth rates of quarterly real GDP for the

US from 1955.2 to 2019.4 (Panel A) and the 2-quarter ahead predictions of the probabilities of

recession obtained from a Markov-switching model (Panel B), a linear specification (Panel C) and

our nonparametric approach (Panel D), which are obtained using full-sample parameter estimates.

To facilitate comparisons, the panels include the dates of economic recessions as determined by the

NBER, which are shaded.

The Markov-switching model estimates within-expansion and within-recession means of µ̂0 =

0.91 and µ̂1 = −0.56, respectively. Panel B of Figure 1 plots the two-horizon forecast recession

probabilities P (st+2 = 1|θ̂, It), with θ̂ estimated using data up to 2019.4. These probabilities

produce satisfactory data classification into expansions and recessions, reproducing the NBER

chronology very closely. During periods that the NBER classifies as expansions, the probabilities

of recession are usually close to zero. At the NBER peaks, the probabilities rise above 30% and

remain at these levels until the NBER troughs.

Moving to Wecker’s approach, we fit an AR(2) model to the GDP growth rates, whose pa-

rameters are also estimated using data up to 2019.4. This specification produces estimates of the

autoregressive parameters of â1 = 0.26 and â2 = 0.13, respectively, which are statistically sig-

nificant. At each period, we use (3) to compute the 2-period forecasts of recession probability,

PL(zt+2 = 1), which are plotted in Panel C of Figure 1. The predicted probabilities of recession

also align well with the official NBER business cycle, although to a lesser degree than the Markov-

switching specification. Generally, when the probability of recession exceeds 40%, a recession

follows, while recession probabilities fall below 40% in recession troughs.

Finally, Panel D of Figure 1 plots the 2-quarter forecasts of recession probabilities computed as

expression (12). Despite the simplicity of computing the forecasts, the figure shows that the new,

nonparametric assessment of recession probabilities is proficient at capturing the NBER-referenced

business cycle chronology. Specifically, the forecasts of recession probabilities always jump to almost

one at the point of NBER recessions (shown in shaded areas) and remain much lower at NBER

expansions.

4.2 Complete data set

Despite the good performance of the three alternative methods when the samples end in 2019,

the COVID-19 pandemic in 2020 hit the national economies worldwide with unprecedented force
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causing record fluctuations in GDP growth that have substantially altered the findings obtained

with pre-pandemic data. Particularly, the G7 countries faced one of their sharpest declines during

the health restrictions established in the first quarter of 2020, followed by exceptionally rapid

rebounds when the restrictions were relaxed and stimulus measures came into effect.

In Table 4, we evaluate the impact of the extraordinaryly high growth rates reported in 2020

on forecasting performance by extending the sample to the third quarter of 2022. Regardless of

the country, the table shows that the Markov-switching specification has lost its business cycle

classification abilities. For each country, the model identifies only one recession in 2020 while

classifying the rest of the sample dates as expansions. This implies that BSR tends to be one, and

BSE tends to be zero. For this model, the AUROC metrics are close to 0.5, suggesting no better

performance than a random classifier. In addition, the kappa coefficients are always close to zero.

The deterioration suffered in the linear autoregressive forecasts is a bit less severe than in the

Markov-switching approach. However, we find that BSR increases substantially and the TPR

falls dramatically, as does κh, indicating that this model is not very useful for anticipating future

recessions. In addition, Table 4 reveals that the losses in forecasting accuracy when pandemic data

is included increase as the forecasting horizon expands.

In contrast to the Markov-switching model and the linear autoregressive specification, Table

4 shows that our nonparametric approach is scarcely affected by the 2020 data. Regardless of

the country, when the extreme data are included, the model still agrees closely with the reference

cycles, has good overall performance as a binary classifier, and is consistent with the turning points

determined by the national dating committees.

To illustrate this graphically, we enlarge the sample in Figure 1 with US GDP growth rates

observed up to 2022.3. Panel A of Figure 2 shows that the US suffered from the deepest reces-

sion and the most significant recovery on record in two consecutive quarters (-8.9% and 7.5% in

2020.2 and 2020.3, respectively). These two extreme observations blur the patterns of the time

series dynamics observed in the pre-pandemic data. A straightforward explanation is that the two

influential observations drastically skewed the empirical distribution of the GDP.

In the case of the Markov-switching specification, the two influential observations in 2020 affect

the estimate of the within-recession mean dramatically. It falls to µ̂1 = −9.07, leaving the within-

recession mean almost unaltered at µ̂0 = 0.77. The resulting 2-period ahead forecasts of recession

probability, displayed in Panel B of Figure 2 show that the cyclical interpretation of high and

low growth states fails spectacularly. The substantial drop in GDP growth documented in 2020.2,

which is identified as a low-growth state, is so influential that the model relegates all the previous

recessions to a high-growth state. This invalidates the standard Markov-switching approach as a

tool for anticipating future recessions unless we use ad-hoc shortcuts such as allowing changes in

model parameters in 2020 or estimating model parameters using data only up to 2019.

Regarding Wecker’s technique, it is well-known that extreme observations greatly affect the

forecasting performance of linear autoregressive models and tend to bias the full-sample parameter

estimates. Fitting an AR(2) to the enlarged sample of growth rates produces autoregressive pa-

rameters that fall dramatically to â1 = 0.03 and â2 = 0.08 and become statistically non-significant.

We use these estimates to simulate the forecast paths and the recessionary indicator required to
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compute the two-period forecasts of recession probabilities. Panel C of Figure 2, which displays

these probabilities, shows that Wecker’s technique also fails to predict the NBER-referenced reces-

sions when the two extreme observations released in 2020 are used to compute the model-based

forecasts.

Notably, Panel D of Figure 2 shows that enlarging the sample with data up to 2022.3 does

not deteriorate the performance of the new nonparametric approach. In this case, estimating

the model parameters from samples that use the extreme observations reported in 2020 leads to

recession probabilities that continue to be remarkably similar to NBER business cycle dating. This

shows that, unlike the cases of autoregressive models and Markov-switching specifications, our

proposal minimizes the importance of extreme observations in the time series used to perform the

forecasts of recession probabilities.

To sum up, the two influential observations of GDP growth rates in 2020 have (and will have in

the future) devastating effects on business cycle identification from standard parametric models and

calls into question whether they will be useful for dating business cycles from the COVID-19 period

on. We show that our nonparametric proposal is robust to this and other data-generating problems,

such as structural breaks and when errors are heteroscedastic or present ARCH dynamics.

5 Conclusions

Providing economic agents with early warning systems that give advanced notice of future business

cycle developments has become an issue of great interest in economics. For this purpose, some

parametric approaches, such as the Markov-switching model advocated by Hamilton (1989) or the

autoregressive forecasts used by Wecker (1979), have become very popular methods to provide

recession probabilities. However, the unprecedented magnitude of the recession caused by the

recent global pandemic has shown that these tools fail to produce robust dating of business cycle

turning points.

To contribute to this literature, this paper develops a nonparametric extension of the au-

toregressive forecast method, combined with symbolic dynamics, to compute robust inferences of

reference cycle turning points. Our simulations suggest that the method performs well in recession

predictions and that, unlike the parametric alternatives, it is robust against outliers, structural

breaks, heteroscedasticity, and ARCH effects. This is desirable in early warning systems because,

in practice, these data problems are the norm rather than the exception.

Using pre-COVID-19 data, the empirical evidence shows that the historical ability of the non-

parametric approach to forecasting the business cycle phases of the G7 countries is similar to that of

its parametric competitors. However, when the sample is enlarged with COVID-data, the nonpara-

metric approach substantially outperforms the parametric forecasts, whose performance is hardly

better than a random classifier.

We look forward to carrying out future work addressing the following issues. First, we see a

natural extension of our approach to developing early warning systems for determined events in

many other situations by defining the event under consideration differently. For example, further

application areas are forecasting critical transitions in temperature regimes, detecting product de-
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fects in manufacturing, or providing statistical classifications of diseases. Second, our empirical

application relies on an in-sample approach because the post-COVID-19 data have only been avail-

able for roughly two years. As new vintages become available, real-time reassessments will provide

new insights into the model’s forecasting performance. Third, we see the possibility of adjusting

the methodology to a multivariate approach, to take several series into account when predicting

recessions.
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Appendix A

Let yt be a time series that follows the following autoregressive process of order 2

yt = c+ a1yt−1 + a2yt−2 + ϵt, (A.1)

where ϵt is a white noise Gaussian disturbance term with a mean of 0 and variance σ2. For a

one-step forecasting horizon h = 1, simulations of yt+1 can be developed from the distribution

yt+1 ∼ N(c+ a1yt + a2yt−1, σ2). (A.2)

When the forecasting horizon is h = 2, simulations of (yt+2, yt+1)
′ can be performed by(

yt+2

yt+1

)
∼ N

((
(1 + a1)c+ (a21 + a22)yt + a1a2yt−1

c+ a1yt + a2yt−1

)
, σ2

(
(1 + a21) a1

a1 1

))
. (A.3)

Finally, when h = 3, simulations of (yt+3, yt+2, yt+1)
′ can be obtained fromyt+3

yt+2

yt+1

 ∼ N


(1 + a1 + a2 + a21)c+ (a31 + 2a1a2)yt + (a21a2 + a22)yt−1

(1 + a1)c+ (a21 + a22)yt + a1a2yt−1

c+ a1yt + a2yt−1

 , Q

 , (A.4)

where

Q = σ2

(a21 + a2)
2 + a21 + 1 a1(a

2
1 + a2) + a1 a21 + a2

a1(a
2
1 + a2) + a1 (1 + a21) a1

a21 + a2 a1 1

 . (A.5)
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Appendix B

Let {yt}Tt=1 be a stationary Gaussian process and ρti its autororrelation of order i computed

with information up to t. In addition, let h = 1, 2, 3 be the forecasting horizon, let Yh+1(τ) be the

(h+1)-dimensional history of this time series starting at τ , and let π ∈ Sh+1 be its corresponding

symbol. Finally, let P t
π be the forecast probability of that symbol. For a forecasting horizon h = 1,

the probability of the symbols that belong to S2 are

P t
(0,1) = P t

(1,0) =
1

2
. (B.1)

For a forecasting horizon h = 2, the probability of the symbols that belong to S3 become

P t
(0,1,2) = P t

(2,1,0) =
1

π
arcsin(

1

2

√
1− ρt2
1− ρt1

) (B.2)

and

P t
(0,2,1) = P t

(1,2,0) = P t
(2,0,1) = P t

(1,0,2) =
1

4
(1− 2

π
arcsin(

1

2

√
1− ρt2
1− ρt1

)) (B.3)

Finally, for a forecasting horizon h = 3, the probability of the symbols that belong to S4 are

P t
(0,1,2,3) = P t

(3,2,1,0) =
1

8
(1 +

2

π
(arcsin(αt

1) + 2arcsin(αt
2))), (B.4)

P t
(2,0,3,1) = P t

(1,3,0,2) =
1

8
(1 +

2

π
(2arcsin(αt

3) + arcsin(αt
4))), (B.5)

P t
(3,1,2,0) = P t

(0,2,1,3) =
1

8
(1 +

2

π
(arcsin(αt

4)− 2arcsin(αt
5))). (B.6)

P t
(1,0,3,2) = P t

(2,3,0,1) =
1

8
(1 +

2

π
(2arcsin(αt

6) + arcsin(αt
1))), (B.7)

P t
(0,1,3,2) = P t

(1,0,2,3) = P t
(2,3,1,0) = P t

(3,2,0,1) =
1

8
(1 +

2

π
(arcsin(αt

7)− arcsin(αt
1)− arcsin(αt

5))),

(B.8)

P t
(2,0,1,3) = P t

(0,2,3,1) = P t
(3,1,0,2) = P t

(1,3,2,0) =
1

8
(1 +

2

π
(arcsin(αt

7)− arcsin(αt
4)− arcsin(αt

5))),

(B.9)

P t
(0,3,1,2) = P t

(3,0,2,1) = P t
(2,1,3,0) = P t

(1,2,0,3) =
1

8
(1 +

2

π
(arcsin(αt

3) + arcsin(αt
8)− arcsin(αt

5))),

(B.10)

and

P t
(0,3,2,1) = P t

(3,0,1,2) = P t
(1,2,3,0) = P t

(2,1,0,3) =
1

8
(1 +

2

π
(arcsin(αt

6)− arcsin(αt
8) + arcsin(αt

2))),

(B.11)
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where

αt
1 =

2ρt2 − ρt1 − ρt3
2(1− ρt1)

, αt
2 =

2ρt1 − ρt2 − 1

2(1− ρt1)
, αt

3 =
ρt2 − ρt1 + ρt3 − 1

2
√
(1− ρt2)(1− ρt3)

,

αt
4 =

ρt1 − ρt3
2(1− ρt2)

, αt
5 =

1

2

√
1− ρt2
1− ρt1

, αt
6 =

ρt1 + ρt3 − ρt2 − 1

2
√
(1− ρt1)(1− ρt2)

,

αt
7 =

ρt1 + ρt2 − ρt3 − 1

2
√
(1− ρt1)(1− ρt2)

, αt
8 =

ρt1 − ρt2√
(1− ρt1)(1− ρt3)

.
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Appendix C

The Brier score is computed as the average over the R simulations of the squared deviations of

the h-period recession probability forecasts, P̂ tr
h , from a binary value, srt+h, which takes the value

of one in actual recessions:

BSh =
1

R

R∑
r=1

1

T

T∑
t=1

(P̂ tr
h − srt+h)

2, (B.1)

where P̂ tr
h is PNP (zt+h = 1) in the case of the nonparametric forecasts proposed in this paper. It

is PL(zt+h = 1) in the case of the autoregressive forecasts, and it is P (st+h = 1|θ̂r, It) in the case

of the Markov-switching autoregressive forecasts for h = 1, 2, 3, and r = 1, . . . , R. A Brier score

of 0 means perfect accuracy, and a Brier score of 1 means perfect inaccuracy. When the measure

focuses only on those time periods where a recession occurs (srt = 1), we call it the Brier Score of

Recessions (BSRh), whereas when it focuses on expansions (srt = 0), we call it the Brier Score of

Expansions (BSEh).

The second metric used to measure the models’ performance follows the lines suggested by

Berje and Jorda (2011). In particular, we measure the recession/expansion classification ability of

the three forecasting methods using the Receiver Operating Characteristic (ROC) framework. In

particular, given a threshold c, a recession is called when P̂ tr
h > c, whereas an expansion is called

when P̂ tr
h ≤ c. For each simulation, we can define the True Positive rate, TP r

h(c), and the False

Positive rate, FP r
h(c), as

TP r
h(c) = P (P̂ tr

h > c|srt+h = 1), (B.2)

FP r
h(c) = P (P̂ tr

h > c|srt+h = 0). (B.3)

This implies that TP r
h(c) is the probability of calling recessions when there are actually reces-

sions, and FP r
h(c) is the probability of calling recessions when there are actually expansions. We

refer to the True Positive Rate, TPRh, as the average of TP r
h(c) for all r = 1, 2, . . . , R, and all c

from 0 to 1 at steps of 0.001,

TPRh =
1

1000R

R∑
r=1

1∑
c=0.001

TP r
h(c). (B.4)

Similarly, we define the True Negative rate, TNRh as

TNRh =
1

1000R

R∑
r=1

1∑
c=0.001

(1− FP r
h(c)). (B.5)

The ROC curve represents the trade-off between TP r
h(c) and FP r

h(c) for different thresholds

c. Concretely the ROC curve is represented plotting the points (FP r
h(c), TP

r
h(c)) on a [0, 1]× [0, 1]

plane for all possible thresholds c. When P̂ tr
h is an uninformative classifier with respect to the

phase cycle, the ROC curve coincides with the main diagonal line, and, when it is a perfect

classifier the ROC curve is on the upper left part of the unit quadrant. A standard measure of
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overall classification ability is the area under the ROC curve, denoted by AUROCr
h. This quantity

takes values between 0.5 for a random classifier and 1 for a perfect classifier (see Berge and Jorda,

2011). Then, we take

AUROCh =
1

R

R∑
r=1

AUROCr
h, (B.6)

which measures the business cycle classification ability of the h-step forecasting probabilities.

Finally, we use Cohen’s kappa coefficient, originally developed by Cohen (1960). It is a chance-

corrected measure of agreement between forecasting technique classifications and real recessions.

For a given threshold c, the kappa coefficient is calculated as

κrh(c) =
P r
a (c)− P r

r (c)

1− P r
u(c)

, (B.7)

where P r
a denotes the probability of overall agreement and P r

u is the probability of hypotheti-

cal probability of chance agreement for the r-th simulation. Specifically, these probabilities are

calculated as:

P r
a (c) =

1

T − h

T−h∑
t=1

[
I(P̂ tr

h > c)srt+h + I(P̂ tr
h < c)(1− srt+h)

]
, (B.8)

and

P r
u(c) =

1

T − h

T−h∑
t=1

I(P̂ tr
h > c)

1

T − h

T−h∑
t=1

srt+h +
1

T − h

T−h∑
t=1

I(P̂ tr
h < c)

1

T − h

T−h∑
t=1

(1− srt+h) (B.9)

where I(·) is an indicator function taking the value 1 for a true statement.

Using this notation, the calculation of Cohen’s metric, κrh, for a particular forecasting horizon

h, is given by the average of all kappa coefficients:

κh =
1

1000R

R∑
r=1

1∑
c=0.001

κrh(c) (B.10)

The interpretation of a given magnitude of κh is somehow problematic.8 Nonetheless, it is

straightforward to check that Cohen’s κ is equal to 1 when there is complete agreement between

the two classifiers while it is equal to 0 when there is no agreement between the classifiers other

than what would be expected by chance. The metric can be negative when the agreement between

the two classifiers is worse than random.

8Cohen’s κ tends to increase when recessions and expansions are equiprobable and when expansions and recessions
are distributed asymmetrically by the two classifiers.
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Figure 1: Business cycle inferences: 1955.2-2019.4

Panel A. US GDP growth rates Panel B. Probability from Markov-switching

Panel C. Probability from AR(2) Panel D. Probability from nonparametric

Notes. Panel A displays the US quarterly GDP growth rate for the period 1955.2-2019.4. Panels B, C, and D plot the

2-quarter ahead predictions of the probability of recession from AR(2), Markov-switching and nonparametric models,

respectively. The shaded areas represent the NBER-referenced recessions.
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Figure 2: Business cycle inferences: 1955.2-2022.3

Panel A. US GDP growth rates Panel B. Probability from Markov-switching

Panel C. Probability from AR(2) Panel D. Probability from nonparametric

Notes. Panel A displays the US quarterly GDP growth rate for the period 1955.2-2022.3. Panels B, C, and D plot the

2-quarter ahead predictions of the probability of recession from AR(2), Markov-switching and nonparametric models,

respectively. The shaded areas represent the NBER-referenced recessions.
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