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1 Introduction

Horizontal ownership concentration, where a small number of institutional investors hold

significant minority stakes in competing firms, is an increasingly pervasive phenomenon

which has raised regulatory concern because of its potential to foster anticompetitive

behavior (Backus et al. 2021, Posner et al. 2016). Horizontal minority shareholding,

where firms take non-controlling stakes in product market rivals, has also risen since

the turn of the millennium. Such forms of overlapping ownership have attracted a wave

of academic interest, kindled notably by empirical evidence of pricing distortions in the

airline industry due to common ownership (Azar et al. 2018). New types of evidence like

natural and laboratory experiments have emerged (Heim et al. 2022, Hariskos et al. 2022),

lending broad credence to the thesis that managers account for ownership structure in

their decision-making by internalizing some of the effects they exert on rival firms.

In the discussion surrounding common ownership, the causal mechanism linking own-

ers to the managerial decisions that determine product market outcomes is a central theme

(Hemphill and Kahan 2019, Anton et al. 2021). Case evidence suggests that institutional

investors regularly engage with the management of their portfolio firms (Shekita 2022),

and chief among the strategic decisions that top management makes is the exercise of

a firm’s real options (Smit and Trigeorgis 2017). So far the study of strategic effects of

common ownership has centered mostly around R&D investments, but firms in many in-

dustries concerned by common ownership hold other options which are equally important

if not more, like the option to build production capacity.

When firms exercise such investment options sequentially, the consequences of over-

lapping ownership are diverse. Internalization generally drives followers to behave less

aggressively by entering markets at a smaller scale if they do enter, or not entering at
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all. Leaders are then subject to two opposing forces. They may take advantage of softer

follower behavior to improve their position in the market, but they are limited in this

endeavor by their own internalization of follower profits. Most often, the former effect

dominates and the overall response of leaders to internalization is to act more aggressively.

From a normative standpoint though, more aggressive leader behavior may generate higher

consumer surplus and welfare, which means that evidence of delayed or deterred follower

entry (e.g. Newham et al. 2018) does not alone suffi ce to draw normative conclusions

about overlapping ownership.

In this paper, we study how leader and follower strategies are affected if two firms

have overlapping ownership (either because of common shareholders or because of cross-

holding) which induces their management to internalize rival value when making capacity

investment decisions. We first study sequential capacity choices in the standard Stack-

elberg model. In the case of a static market, we verify that internalization softens the

follower’s quantity reaction and show that this drives the leader to choose a larger capacity

under accommodation. In addition suffi cient internalization allow the leader to shut the

follower out of the market without exercising deterrence in the conventional sense. We

then introduce an entry cost and characterize equilibrium capacities, showing that either

a higher fixed cost or greater internalization shift the leader’s strategy from accommoda-

tion to deterrence. When the leader’s strategy shifts with internalization however, total

output jumps up which implies that consumers can benefit from more aggressive leader

behavior.

The following example from Section 3 below illustrates this idea. Take a standard

entry deterrence framework with sequential capacity choices by a leader and a follower,

linear demand Q = 1 − P , zero variable cost, and a fixed cost of entry f = .0025 for

the follower. With this setup the leader ordinarily prefers to accommodate follower entry.
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Suppose instead that there is symmetric cross-ownership with each firm i holding a 100λ

percent stake in the rival with λ ∈ {0, .1, .2}. Up to a normalization, each firm therefore

maximizes a weighed sum of profits, πi + λπ−i. The equilibrium capacities of the leader

and follower and resulting consumer surplus and welfare are:

Table 1: Procompetitive strategic shift (static case)

Q∗L Q∗F (Q∗L) QTotal CS W

no cross-ownership 1
2

1
4

3
4

.28125 .46625

10% cross-ownership 9
11

0 9
11

.33 .48

20% cross-ownership 3
4

0 3
4

.28125 .46875

Table 1 shows how a small degree of ownership overlap can be procompetitive. This

happens because internalization (due to mutual 10% stakes in the second row) induces

the leader to adopt a deterrence strategy which significantly increases output, to an extent

that suffi cient to outweigh the follower’s absence. With more overlap (mutual 20% stakes),

internalization still shifts the leader’s strategy from accommodation to deterrence, but

there is no longer a procompetitive output effect (total welfare is marginally higher though

due to the economy of the follower’s entry cost). We get the same finding in our dynamic

model, providing a similar example of a procompetitive strategic shift involving both

follower capacity and timing (see Table 3, page 31).

A central criticism of the Stackelberg model is that it assumes firm roles are exogenous.

To address this shortcoming we expand our analysis by allowing demand to fluctuate over

time and firms to compete for leadership by determining the timing as well as the scale

of their investment. We show that in this setting both the follower’s timing and capacity

choice are less aggressive with internalization.1 The follower’s less aggressive timing and

1This finding contrasts with work involving fixed investments which shows that the follower can enter
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quantity reactions benefit the leader, which enjoys a protracted monopoly period followed

by less intense duopoly competition, but the leader’s choices are also affected by its

own internalization of the follower. In the dynamic setting it is ineffi cient to deter the

follower permanently, but the leader can exercise strategic deterrence by delaying the

follower’s entry. We show the leader’s capacity decision problem is qualitatively unaltered

by internalization if the degree of internalization is not too high, which means that the

leader chooses to deter the follower in low demand states and to accommodate in high

demand states. At higher levels of internalization, we also show however that the leader

behaves more aggressively by invariably deterring the follower.

When firms compete for the leadership role, we find that in a preemption equilibrium

the leader chooses a capacity that delays the follower’s entry rather than accommodating

it. The follower’s less aggressive reaction makes leading relatively more attractive, so

internalization exacerbates positional competition between firms which has a procompet-

itive effect on entry timing. This procompetitive effect is offset however by the leader’s

lower equilibrium capacity. As in the static case, we also find in the dynamic model

that if leader investment occurs at an intermediate demand state, a moderate degree of

internalization can exert a procompetitive effect by shifting the leader’s strategy from

accommodation to deterrence.

We complement our analytical results with a numerical analysis which bears out these

insights, i.e. an anticompetitive effect of internalization for the follower but also a procom-

petitive effect on the timing of investment in preemption equilibrium. We show moreover

that the other procompetitive effect, due to the shift in the leader’s strategy, effectively

occurs and that the resulting increase in capacity can be large enough that consumer

surplus and welfare increase.

earlier if product market profits are extremely sensitive to internalization, which is not the case with the
quantity choice specification in the present model (Zormpas and Ruble 2021, Vives and Vravosinos 2022).
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Our paper contributes to the study of how overlapping ownership affects strategic

behavior. Many contributions so far have focused on the key dimension of innovation,

where overlapping ownership has been shown to affect welfare positively if R&D spillovers

are important (Vives 2020), in innovation contests (Stenbacka and VanMoer 2022), and by

facilitating technology transfer (Papadopoulos et al. 2019). Our analysis complements this

stream by identifying procompetitive effects which arise more broadly, e.g. in industries

that are not R&D intensive.

The contributions that relate most closely to ours are those that study the effect of

internalization on entry. Li et al. (2015) find that an incumbent may transfer ownership to

a potential entrant in order to deter it, though there are no capacity commitments in their

setup, and in symmetric entry models various authors find an inverted-U relationship be-

tween internalization and entry (Sato and Matsumura 2020, Vives and Vravosinos 2022).

Relative to these papers, our analysis highlights how internalization affects capacity com-

mitments and provides a complete characterization of accommodation and deterrence in

the standard duopoly entry model. Our analysis also relates to an entirely different strain

or work, exemplified by Etro (2008)’s study of Stackelberg commitment with endogenous

followers, which shows that more aggressive leader behavior can improve welfare.

The dynamic version of our model also contributes to the literature on strategic invest-

ment with timing and capacity choice (Huisman and Kort 2015) by complementing other

studies which have allowed for pre-existing capacities or introduced time-to-build consid-

erations (Huberts et al. 2019, Jeon 2021), and also complements prior work with fixed-size

investments (Zormpas and Ruble 2021), notably by showing how leader strategy shifts

with internalization and how lower equilibrium capacities mitigate the procompetitive

effect of preemption.

The rest of the paper is organized as follows. Section 2 states the main assumptions of
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our model. Section 3 characterizes leader and follower behavior in the static market case,

first in a standard Stackelberg setup and then in an entry deterrence framework. Section

4 studies follower behavior and leader behavior capacity choice in a dynamic market.

Section 5 endogenizes firm roles describes equilibrium investment. In Section 6, we study

a numerical example and discuss implications for welfare.

2 Model

An industry consists of two firms which are inactive in the product market initially.

Their ownership structures overlap and are symmetric. Each firm therefore maximizes an

objective

Ωi = Vi + λV−i (1)

where Vi denotes the value of the firm’s own assets and V−i the value of its rival’s assets.

The parameter λ ∈ [0, 1] measures the weight each firm’s objective places on rival value.

This weight is referred to as the degree of internalization, with λ = 0 representing purely

self-interested behavior and λ = 1 representing joint value maximization. Vives (2020)

discusses common and cross-ownership structures that yield Eq. (1) up to possible nor-

malization. Estimates of λ vary widely over industries and countries, with average values

for U.S. firms possibly reaching .7 (Backus et al. 2021). The degree of internalization

need not vary much across firms however, particularly in the case of common ownership.2

To motivate our assumption that the degree of internalization is symmetric, in the U.S.

pharmaceutical industry the combined ownership of the top three institutional sharehold-

ers (BlackRock, State Street and Vanguard) in the top three firms (Johnson & Johnson,

Merck, and Pfizer) amounted to 19, 18, and 18% respectively (as of August 2022).

2Ownership structures and hence internalization are less likely to be symmetric in situations of cross-
ownership, as with the minority share acquisitions reported by Heim et al. (2022).
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We suppose that at any time t ≥ 0, inverse demand in the product market is linear

with

P (t) = X(t) (1−Q(t)) (2)

where Q(t) ∈ [0, 1] is industry capacity and X(t) is an exogenous shock. The exogenous

shock evolves according to a geometric Brownian motion

dX(t) = µX(t)dt+ σX(t)dω(t) (3)

where µ is the drift, σ ≥ 0 the volatility, and ω(t) is a standard Wiener process.

The firms choose when and at what capacity to enter the market. Market entry

involves a single capacity investment. The incremental cost of capacity is a constant

δ > 0, and capacity can be neither altered nor resold once it is installed. There are no

production costs and firms invariably operate at capacity.

Finally the discount rate r is constant and we suppose r > µ to focus on the case

where the expected revenue stream is bounded.

3 Sequential capacity choice with internalization (sta-

tic market)

Suppose µ = σ = 0 so the demand shock is a constant, which means the market is static.

Denote the demand shock level by X and suppose that δ < X
r
so the capacity cast is

not prohibitive compared to capitalized demand. For compactness, let δ′ = rδ
X
denote

normalized capacity cost. We start the section by studying how internalization affects

Stackelberg equilibrium and then discuss entry deterrence.

Suppose that the firms choose capacities sequentially and denote leader and follower
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capacities by QL and QF respectively. We proceed by backward induction and begin by

analyzing the follower’s problem.

By Eq. (1) the follower’s perceived profit function is

ΩF (QF , QL) = VF (QF , QL) + λVL (QL, QF )

=

(
X

r
(1−QL −QF )− δ

)
(QF + λQL) , (4)

QF ∈ [0, 1−QL]. Its optimal capacity is thereforeQ∗F (QL) = max
{

0, 1
2

(1− δ′ − (1 + λ)QL)
}
.

As the follower’s reaction insofar as the optimal capacity is weakly decreasing in λ, inter-

nalization predictably softens the follower’s reaction. Moreover the slope of the follower’s

reaction is decreasing in λ, so internalization also has a negative incentive effect.

By Eq. (1), the leader’s perceived profit function is

ΩL (QL) = VL (QL, Q
∗
F (QL)) + λVF (Q∗F (QL), QL)

=


1
4
X
r

(
− (2 + λ) (1− λ)2Q2

L + 2 (1− λ) (1− δ′)QL + λ (1− δ′)2
)
, QL <

1−δ′
1+λ(

X
r

(1−QL)− δ
)
QL, QL ≥ 1−δ′

1+λ
.
(5)

The first line shows how internalization affects the leader’s payoff both directly, through

the weight that the leader attributes to the follower’s payoff VF (Q∗F (QL), QL), and indi-

rectly, through the follower’s softened quantity reaction Q∗F (QL). The leader’s payoff in

the second line is defined piecewise due to the follower’s reaction. Over the first piece

the leader’s capacity is low enough that the follower chooses to be active, and over the

second piece the leader drives the follower to choose zero capacity. The leader’s optimum

capacity can lie on either piece depending on the degree of internalization.

If the degree of internalization is not too high (if λ <
√

2− 1), the leader’s perceived

profit has an interior maximum on its first piece and is decreasing on the second so the
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interior maximum is global. This interior maximum is referred to as the accommodation

capacity, and we denote it by QaL. For all positive λ, the accommodation capacity is larger

than the capacity the leader would choose in the absence of internalization, and which

we denote by QM as it corresponds to the monopoly capacity.3 Intuitively, the follower’s

softer and steeper reaction raises the leader’s incentive to build capacity while the leader’s

internalization of its negative effect on the follower works in the opposite direction, and

with linear demand it is the former of these effects which dominates.4 Moreover QaL is

increasing in λ so greater internalization makes the leader more aggressive.

If the degree of internalization is high enough (if λ ≥
√

2− 1), the leader’s perceived

profit is increasing over the first piece and decreasing over the second. The leader’s

optimal capacity is then 1−δ′
1+λ
. This capacity is suffi cient to drive the follower out of the

market, even though it does not face a positive entry cost (aside from its capacity cost)

and could profitably produce a positive output. As in the low internalization case, the

leader’s optimal capacity is more aggressive than without internalization. Its optimal

capacity decreases locally with the level of internalization however, as less scale is needed

to discourage the follower from producing.

To summarize:
3We have QaL = 1−δ′

(2+λ)(1−λ) and QM = 1−δ′
2 . QaL = QM for λ = 0 and QaL is increasing in λ, so

QaL > QM for λ > 0.
4Consider the general case of logconcave demand, so P (Q) + QP ′(Q) is decreasing. The leader’s

marginal perceived profit is dVL
dQL

(QL, Q
∗
F (QL)) + λ dVFdQL

(Q∗F (QL), QL).
The first term in this expression is the standard marginal profit of a Stackelberg leader, up to the

follower reaction Q∗F (QL) which incorporates the follower’s internalization of the leader’s payoff. Devel-

oping this first term gives P (QL +Q∗F (QL)) + QLP
′ (QL +Q∗F (QL))

(
1 +

dQ∗F
dQL

)
− δ, which is higher

with internalization because of the softer and steeper follower reaction (lowering Q∗F (QL) increases
P (QL +Q∗F (QL))+QLP

′ (QL +Q∗F (QL)) because demand is logconcave, and QLP ′ (QL +Q∗F (QL))
dQ∗F
dQL

increases if dQ
∗
F

dQL
becomes more negative).

The second term the leader’s marginal perceived profit is λ (P (QL +Q∗F (QL)) +Q∗FP
′ (QL +Q∗F (QL))− δ) dQ

∗
F

dQL

+λQ∗FP
′ (QL +Q∗F (QL)). The follower’s first-order condition implies that P (QL +Q∗F (QL)) +

Q∗FP
′ (QL +Q∗F (QL))− δ = −λQLP ′ (QL +Q∗F (QL)) > 0 and dQ∗F

dQL
< 0, so the entire term, which does

not appear in the absence of internalization, is negative.
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Proposition 1. In Stackelberg equilibrium the leader’s capacity choice is more ag-

gressive with internalization than without. Moreover,

i) if λ <
√

2− 1, the leader’s optimal capacity QaL increases with internalization;

ii) if λ ≥
√

2 − 1, the leader’s optimal capacity 1−δ′
1+λ

shuts the follower out of the

market.

Though we have not labeled it this way so far, part ii) of Proposition 1 describes how

a leader can deter a follower if there is suffi cient internalization, even in the absence of

an entry cost. In order to understand this possibility further, we next discuss strategic

deterrence in the conventional sense. To do this it suffi ces to generalize to an affi ne

capacity cost with positive intercept. For the rest of this section, suppose therefore that

the follower incurs an additional flat cost of entry f , and let f ′ = rf
X
denote its normalized

value.

In this situation, the follower’s entry decision factors in both the internalized profit if

the leader were to operate as a monopolist and the entry cost. The follower accordingly

enters if

ΩF (Q∗F (QL), QL) > ΩF (0, QL) + f (6)

where ΩF (QF , QL) refers to the follower’s post-entry payoff (Eq. 4). The internalized

leader monopoly profit represents an additional opportunity cost of entering, which along

with the capacity reaction Q∗F (QL) further softens the follower’s entry decision. Substi-

tuting the follower payoff expressions into Eq. (6) gives the capacity level beyond which

the leader deters the follower, which we denote by QdL.
5 QdL is decreasing in λ, i.e. the

greater the degree of internalization, the less capacity the leader needs to install in order

5Setting
(
X
r (1−QL −Q∗F (QL))− δ

)
(Q∗F (QL) + λQL) = λ

(
X
r (1−QL)− δ

)
QL + f , substituting for

Q∗F (QL), and solving for QL gives QdL = 1−δ′−2
√
f ′

1+λ . The capacity 1−δ
′

1+λ in part ii) of Proposition 1
therefore represents a limiting case of deterrence in the conventional sense as the entry cost f goes to
zero.
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to deter the follower.

Incorporating the follower’s entry decision into the leader’s perceived profit (Eq. 5)

gives

ΩL (QL) =


1
4
X
r

(
− (2 + λ) (1− λ)2Q2

L + 2 (1− λ) (1− δ′)QL + λ (1− δ′)2
)
− λf , QL < QdL(

X
r

(1−QL)− δ
)
QL, QL ≥ QdL.

(7)

Over the first piece of Eq. (7), the leader’s payoff has an interior maximum at the

accommodation capacity QaL if λ and f are not too large. Conversely, if λ and f are

large enough the leader’s payoff has an interior maximum over the second piece at the

monopoly capacity QM . For intermediate values of λ and f , QaL < QdL and Q
d
L > QM so

the leader chooses between accommodation and deterrence by comparing the respective

profits associated with the two local optima, ΩL (QaL) and ΩL

(
QdL
)
.

Figure 1 plots the regions in
( √

f ′

1−δ′ , λ
)
-space where the leader accommodates (Q∗L =

QaL), deters (Q
∗
L = QdL), or naturally blocks (Q

∗
L = QM) the follower’s entry. The horizon-

tal axis (λ = 0) is the standard entry deterrence model, where the leader chooses these

three strategies successively as the fixed cost increases. The vertical axis (f = 0) is the

Stackelberg equilibrium analyzed at the beginning of the section, where the leader succes-

sively accommodates and deters as the degree of internalization increases, with blockade

occurring only for λ = 1. The solid black curves extend the accommodation, deterrence

and blockade regions to situations where both the entry cost and degree of internalization

are positive.6 Starting from f = λ = 0, increasing either the fixed cost or the degree of

internalization shifts the leader’s strategy from accommodation to deterrence, and finally

to blockade. Within the range of parameter values where the leader deters, we also can

6Though it is diffi cult to distinguish visually, the boundary between accommodation and deterrence
only intersects the vertical axis at λ =

√
2− 1.
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distinguish two subregions depending upon whether the leader foregoes an interior op-

timum (accommodation) to shut the follower out strategically (λ <
√

2 − 1, below the

dotted line) or has a unique optimum (λ ≥
√

2− 1, above the dotted line).

By evaluating the total output that results from the leader’s optimal capacity choice,

we get the following set of results.

Proposition 2. The leader is more likely to deter the follower rather than accommo-

date as the degree of internalization increases. Moreover, greater internalization reduces

output for a given leader strategy (accommodation or deterrence), but output jumps up if

greater internalization switches the leader’s strategy from accommodation to deterrence.

Proof. See Appendix A.1.

Proposition 2 has a number of normative implications. First of all, because consumer

surplus is directly related to output, consumer surplus decreases with internalization

provided that the leader’s strategy (accommodation or deterrence) is unchanged. Second,

because industry output is above the monopoly level, industry variable profit increases

with internalization, provided again that the leader’s strategy is unchanged.

In addition to these first two effects, because output jumps up at points where greater

internalization shifts the leader’s strategy from accommodation to deterrence, so does

consumer surplus. We also show in the proof of Proposition 2 that industry profit de-

creases at such points. If λ is not too large therefore, the jump in consumer surplus can

be large enough that consumers are better off than if there were no internalization at

all, as illustrated by our introductory example (Table 1), and the same is true of total

welfare. In Figure 1, the area where internalization shifts the leader’s strategy (i.e. where

the leader deters but would accommodate in the absence of overlapping ownership) is the

wedge bounded above and below by the two black curves and to the right by the dashed

13



segment. Within this region, the area below the dark gray curve describes where con-

sumer surplus is higher with internalization than without because it induces suffi ciently

aggressive deterrence by the leader instead of accommodation, and the area below the

light gray curve corresponds to higher total welfare for similar reasons.7

In this section we have shown how internalization leads to more aggressive leader

behavior, but also that such a switch can generate higher consumer surplus and welfare.

Our analysis so far suffers from the standard criticism of Stackelberg models however,

namely that the order of moves is imposed upon firms exogenously. In the next sections,

we relax this assumption by turning to the dynamic version of the model and endogenizing

firm roles, which also allows us to identify which outcome (accommodation or deterrence)

is likelier to emerge in equilibrium in an evolving market.

4 Sequential capacity choice with internalization (dy-

namic market)

In this and the following sections, we suppose that the demand shock has positive drift µ

or volatility σ so the market evolves over time. In low demand states therefore, there is an

incentive to wait for more opportune conditions rather than invest immediately. Because

demand may increase without bound, it is also more diffi cult for the leader to shut the

follower out permanently, because demand may increase without bound. However the

leader can exercise a dynamic form of deterrence where it delays the follower’s entry

7The condition for consumer surplus to be higher under internalization/deterrence is QdL >
3
4

(
1− δ′

)
= Qa |λ=0 where Qa = QaL + Q∗F (QaL). For welfare (consumer surplus and industry

profit, net of any follower entry cost) the condition is Qd2
L

2 + QdL
(
1− δ′ −QdL

)
> 15

32

(
1− δ′

)2 − f ′

=
(
1
2 (Qa)

2
+Qa

(
1− δ′ −Qa

))∣∣∣
λ=0
− f ′.

14



strategically, which we return to in the the latter part of the section.8

Even if demand evolves in continuous time, from a decision perspective the investment

problem remains essentially a sequential one. In this section we assume that the firms have

exogenous leader or follower roles, so as to study the leader and follower decision problems

individually. We suppose that the leader can choose its capacity freely but must invest at

the initial state. Capacity choice is definitive so the leader cannot postpone investment

by initially choosing QL = 0, and we accordingly restrict attention to demand states

where investment is profitable.9 The follower chooses both the timing and the size of its

investment. We proceed by backward induction and study follower investment problem

first before turning to the leader’s problem.

4.1 Follower investment

Suppose that when the demand state is X > 0 the leader builds capacity QL. Then the

follower holds a real option on a perceived duopoly profit flow. It chooses when to invest

and what capacity level QF to install when it does.

We start by studying the follower’s capacity choice problem. LetX ′ denote the value of

the demand state when the follower invests. Although the demand process fluctuates per-

petually after the follower has invested, its expected behavior looking forward is straight-

forward. Because X(t) follows a geometric Brownian motion, the capitalized expected

demand state starting from X ′ is EX′
[∫∞

0
X(s)e−rsds

]
= X′

r−µ .
10 The follower’s perceived

8There would be little to gain in the analysis therefore by incorporating a positive entry cost f as in
the latter part of Section 3.

9I.e., X > δ (r − µ). The monopoly value of capacity Q in state X is

EX

[∫ ∞
0

X(s) (1−Q)Qe−rsds− δQ
]

=
X

r − µ

(
1− δ (r − µ)

X
−Q

)
Q

so this condition is necessary for positive monopoly investment.
10See Dixit et al. (1994), p. 316.
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payofffunction upon entry is thereforeΩF (QF , QL, X
′) = X′

r−µ (1− (QL +QF )) (λQL +QF )−

δQF . Aside from the additional µ term which reflects expected growth of the demand

process, this payoff function is the same as in the static case (Eq. 4), and the follower’s

capacity decision is entirely analogous. Optimizing the perceived payoff yields a quan-

tity reaction Q∗F (QL, X
′) = max

{
0, 1

2

(
1− δ(r−µ)

X′ − (1 + λ)QL

)}
. This reaction is soft-

ened by internalization, and it determines the follower’s perceived payoff upon entry

ΩF (Q∗F (QL, X
′), QL, X

′).

We next turn to the follower’s timing decision. To economize on notation, we use

ΩF (·) to denote both the terminal payoff resulting from capacities QF and QL in state

X, ΩF (QF , QL, X) and the follower’s option value in a given demand state X, ΩF (X).

Letting T denote its choice of stopping time, the follower’s perceived value is

ΩF (X) = sup
T≥0

EX

[∫ T

0

λX(s) (1−QL)QLe
−rsds+ ΩF (Q∗F (QL, X(T )), QL, X(T )) e−rT

]
.

(8)

In Eq. (8), the integral term is the internalized value of the leader’s profit while it is

operating as a monopolist. When the follower chooses its timing the leader has sunk its

capacity, so its cost does not appear here. The second term in Eq. (8) is the expected

discounted value of the perceived payoff the follower gets upon stopping.

If QL <
1

1+λ
, the follower’s option is valuable and its optimal policy is to set a finite

threshold. It thus invests when the demand shock first reaches

X∗F (QL) =
β + 1

β − 1

δ (r − µ)

1− (1 + λ)QL

(9)

where

β =
1

2
− α

σ2
+

√(
1

2
− α

σ2

)2

+
2r

σ2
> 1 (10)
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is a constant that reflects discounting in a stochastic environment.11 We denote the

lower bound of follower thresholds, below which follower entry cannot occur, by X∗F =

β+1
β−1

δ (r − µ).

If QL ≥ 1
1+λ
, the follower’s option is worthless and its optimal policy is to never enter,

which amounts to setting an infinite threshold (X∗F =∞).

Eq. (9) shows that the follower’s threshold X∗F is positively related to λ. A greater

degree of internalization is therefore associated with later follower entry. Intuitively, with

internalization the follower’s option involves a perceived dividend, λX(t) (1−QL)QL.

Like in the static case (Eq. 6), this dividend represents an additional opportunity cost of

entry. The follower’s net payoff from entry is therefore lower with internalization, which

softens its timing decision. In the extreme the leader can block the follower from entering

at any demand state by choosing suffi cient capacity, though we show further down that

this form of deterrence is never actually chosen.

4.2 Leader investment

Because the market is dynamic, the leader’s capacity choice has a strategic effect on both

the timing of the follower’s entry and, indirectly, the size of its investment.

Letting X ′(QL) = max {X,X∗F (QL)} denote the demand state when the follower en-

ters, the leader’s perceived payoff when the follower enters is ΩL (QL, Q
∗
F (QL, X

′), X ′)

= X′

r−µ (1− (QL +Q∗F (QL, X
′)) (QL + λQ∗F (QL, X

′)) −λδQF . Up to the additional drift

term µ, the leader’s perceived payoff is similar to the static case (Eq. 5). At its own

11See Appendix A.2.
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capacity decision stage, the leader’s instantaneous perceived value is therefore

ΩL(X) = max
QL∈[0,1]

EX

[∫ T

0

X(s) (1−QL)QLe
−rsds+ ΩL (Q∗F (QL, X

′(QL)), QL, X
′(QL)) e−rT

]
−δQL

(11)

where T = inf {t ≥ 0 |X(t) ≥ X ′(QL)} is the follower’s stopping time. The follower in-

variably reacts to the leader’s capacity through Q∗F (X), even if T = 0 so both firms

effectively enter at the same moment with the follower choosing its capacity “just after”

the leader.

Through its capacity choice, the leader affects the follower’s entry timing by deter-

mining whether the follower enters immediately (T = 0, provided the current demand

state allows it), after a finite time (T ∈ (0,∞)), or never (T =∞). For states X ≥ X∗F ,

setting X∗F (QL) = X gives the capacity beyond which the leader drives the follower to

delay entering,

Q̂L (X) =
1

1 + λ

(
1− β + 1

β − 1

δ (r − µ)

X

)
. (12)

Finally we can rule out capacities beyond 1
1+λ

when studying the leader’s capacity choice,

as these are unnecessary to deter the follower and lie on the decreasing part of the leader’s

profit.

The leader’s perceived payoff in the capacity choice stage is then defined piecewise as

18



follows. For X < X∗F (so the follower invariably enters later immediately),

ΩL(QL, X) =

(
X
r−µ(1−QL)− δ

)
QL +

(
X

X∗F (QL)

)β (
ΩL (QL, Q

∗
F (QL, X

∗
F (QL)), X∗F (QL))− X∗F (QL)

r−µ (1−QL)QL

)
,

if 0 ≤ QL <
1

1+λ
,(

X
r−µ(1−QL)− δ

)
QL, if QL = 1

1+λ
,

(13)

and for X ≥ X∗F (so the follower may enter immediately),

ΩL(QL, X) =

ΩL (QL, Q
∗
F (QL, X), X) , if 0 ≤ QL ≤ Q̂L (X) ,(

X
r−µ(1−QL)− δ

)
QL +

(
X

X∗F (QL)

)β (
ΩL (QL, Q

∗
F (QL, X

∗
F (QL)), X∗F (QL))− X∗F

r−µ(1−QL)QL

)
,

if Q̂L (X) < QL <
1

1+λ
,(

X
r−µ(1−QL)− δ

)
QL, if QL = 1

1+λ
.

(14)

Eq. (13) states that at low demand states, the leader’s capacity choice involves two

pieces corresponding to strategic delay and the limiting case of permanent deterrence

(where the follower has infinite threshold and stopping time). Eq. (14) describes the

payoff at higher demand states and involves an additional piece at low capacity which

corresponds to accommodation.

Under accommodation (over the first piece of Eq. 14), the existence of a local optimum

and the resulting payoff proceed similarly to the static case aside from the constraint

that the leader’s capacity is consistent with immediate follower entry (QL ≤ Q̂L (X)).

Although accommodation is possible for all states above X∗F , at lower states within this
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range the leader’s payoff is increasing over
(

0, Q̂L (X)
)
, whereas accommodation may

occur only if there is an interior maximum. If λ <
√

2 − 1, then there exists a finite

demand state threshold Xa
1 > X∗F beyond which ΩL(QL, X) has an interior maximum QaL

over its first piece.12

Under strategic delay (over the first piece of Eq. (?? and the second piece of Eq.

14), the interior maximum is defined only implicitly. Even without an analytic solu-

tion, we can provide a partial characterization. To begin with, we can show that the

second-order condition holds if β and λ are not too large.13 We maintain throughout

our discussion that this suffi cient condition holds. Next, there exists a demand state

threshold Xd
1 <

β
β−1

δ (r − µ) < Xa
1 below which no interior maximum exists. There also

exists a finite demand state threshold Xd
2 above which there is no interior maximum if

λ /∈
[√

β+1
β
− 1, 1

β

]
(Xd

2 is infinite if λ ∈
[√

β+1
β
− 1, 1

β

]
). Finally, because the threshold

function X∗F (QL) is continuous, we can directly rule out the limiting case of permanent

deterrence (QL = 1
1+λ
) whenever there is an interior optimum QdL, i.e. over

[
Xd

1 , X
d
2

]
.

The following proposition describes the optimal payoff that results from the capacity

choice problem maxQL∈[0, 1
1+λ ] ΩL(QL, X) provided the degree of internalization is not too

high.

12Differentiating the first piece gives QaL(X) =
1− δ(r−µ)X

(2+λ)(1−λ) which results in a payoffΩL(QaL, X) = 1
4
X
r−µ(

− (2 + λ) (1− λ)
2
Q2L + 2 (1− λ)

(
1− δ(r−µ)

X

)
QL + λ

(
1− δ(r−µ)

X

)2)
similar to Eq. (5), provided

X ≥ Xa
1 where X

a
1 = β(1−λ(2+λ))+3−λ2

(β−1)(1−λ(2+λ)) δ (r − µ) solves QaL(Xa
1 ) = Q̂L (Xa

1 ) if λ <
√

2− 1 or λ >
√

2− 1

and β > 3−λ2

(λ+1−
√
2)(λ+1+

√
2)
(this second possibility is ruled out however by the restriction we impose on

β further below in footnote 13), or is infinite otherwise.
13The specific condition β < 2

λ(3−λ2) (see Appendix A.3).
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Proposition 3. If λ <
√

β+1
β
− 1 the leader’s payoff is

ΩL(X) =



ΩL(0, X), if X ≤ Xd
1

ΩL(QdL, X), if Xd
1 < X < Xa

1

max
{

ΩL(QaL, X),ΩL(QdL, X)
}
, if Xa

1 ≤ X < Xd
2

ΩL(QaL, X), if X ≥ Xd
2 .

(15)

where ΩL(0, X) = λ (β−1)β−1Xβ

(β+1)β+1δβ−1(r−µ)β
, ΩL(QaL, X) = (1+λ)2X

4(2+λ)(r−µ)

(
1− δ(r−µ)

X

)2

, and ΩL(QdL, X) =(
X
r−µ
(
1−QdL

)
− δ
)
QdL +

(
X

X∗F (QdL)

)β
δ(λ−(1+λ)(β+1−λβ)QdL)

β2−1
.

Proof. See Appendix A.4.

Proposition 3 asserts that the solution of the leader’s capacity choice problem at low

enough levels of internalization resembles the situation without internalization. That is

to say, its only optimal capacities are either those which induce delay (0 or QdL) or an

interior accommodation solution (QaL) and the demand states that determine when these

solutions arise satisfy the ranking Xd
1 < Xa

1 < Xd
2 . Based on numerical simulations,

Huisman and Kort (2015) observe that the accommodation and delay payoff cross at

a single threshold X
d
L ∈

(
Xa

1 , X
d
2

)
, so that the leader chooses to delay the follower at

lower demand states and to accommodate at higher demand states (where deterrence

is more costly). Because internalization softens both the follower’s timing and capacity

choice, we expect internalization to favor deterrence (which leverages both dimensions

of the follower’s reaction) relative to accommodation (which leverages only its quantity

reaction) so that X
d
L increases. In Section 6, we conduct a numerical analysis which bears

out these different ideas.

Provided that the second-order condition holds, the restriction on λ in Proposition 3
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can be relaxed to λ <
√

2 − 1. In this case (if
√

β+1
β
≤ λ + 1 <

√
2), Xd

2 is infinite and

the last piece of Eq. (15) is irrelevant but the rest of the payoff function is unaltered. A

more interesting situation arises if λ ≥
√

2 − 1 and β < 2
λ(3−λ2)

(so QdL is well-defined).

In this case, both Xa
1 and X

d
2 are infinite. Accommodation remains a possibility for the

leader at any demand state X > X∗F , but because there is never a maximum on the first

piece we can conclude that the leader chooses to strategically delay the follower’s entry at

all demand states X ≥ Xa
1 . This situation, which does not arise without internalization,

lends further support to the idea that internalization generally induces more aggressive

leader behavior.

There is a counterexample however, where internalization leads to less aggressive fol-

lower behavior. Because the lower bound Xd
1 is an increasing function of λ, for positive

degrees of internalization there is a range of demand states
(
Xd

1 (0), Xd
1 (λ)

]
where the

leader sets QdL (X) = 0 instead of a positive capacity without internalization. The reason

for this unusual behavior is that if the leader must invest at a low enough demand state,

it is better off leaving the market entirely to the follower, who is free to enter optimally,

and reaping its perceived share of the follower’s monopoly profits. In such instances in-

ternalization pushes the leader acts less aggressively rather than more, though this is due

in large part to the constraint that the leader invest immediately.

At the other extreme, for suffi ciently high demand states (X ≥ Xa
1 ), the outcome

of the capacity decision resembles accommodation in the static case. As internalization

increases, the leader’s capacity decreases, i.e. internalization invariably leads to more

aggressive leader behavior in this case.
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5 Equilibrium investment

To characterize equilibrium investment, we suppose that the initial demand state is low

enough that no firm invests immediately and that the roles of each firm (leader or follower)

are determined noncooperatively (implying λ < 1).14,15 At any demand state X at which

no investment has yet occurred, the firms have the choice to invest or to wait. The

instantaneous payoff from investing as a leader in demand state X is ΩL(X) (Eq. ??).

The instantaneous payoff for the remaining firm is the follower payoff ΩF (X,Q∗L) (Eq.

??) net of the internalized leader investment cost λδQ∗L, where Q
∗
L denotes the leader’s

optimal capacity at X. The incentive of each firm to preempt its rival by investing first

is therefore given by the difference

f(X) = ΩL(X)− (ΩF (X,Q∗L)− λδQ∗L) . (16)

The set of demand states over which firms prefer to lead rather than follow is called

the preemption range. In equilibrium, the first investment in the industry takes place at

the lower bound of this range. We denote this lower bound by XP . Intuitively, since XP

is the smallest demand state at which firms prefer to lead rather than follow and as the

payoff to following is non-negative, if one of the firms were to set a higher investment

threshold X ′ > XP its rival would have an incentive to enter before it at a lower threshold

in (XP , X
′). If the initial state is low enough therefore (X < XP ), one of the firms must

invest as a leader at XP in equilibrium.16 The preemption threshold does not have an

explicit expression, but the following proposition narrows down the range within which it

14The demand state is low enough for firms to wait if X ≤ XP , where XP is the preemptionnthreshold
defined further below in the section. A suffi cient condition is X ≤ δ(r − µ).
15If λ = 1 joint profit is maximized by having a single firm invest as a monopoly, i.e. with capacity
1

β+1 at the demand state threshold
β+1
β−1δ(r − µ).

16See Appendix A.5 for a more detailed discussion of strategies and outcomes in this game.
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lies and establishes that that firms invest sequentially.

Proposition 4. For initial states X ≤ Xd
1 , in a preemption equilibrium the leader in-

vests at the demand state threshold XP = inf {X > 0, s.t. f(X) > 0} with XP ∈
(
Xd

1 ,min
{
Xa

1 , X
d
2

})
and chooses capacity QdL(XP ). The follower invests at the demand state threshold X∗F

(
QdL
)
>

XP .

Proof. See Appendix A.6.

If λ <
√

β+1
β
− 1 for example, Propositions 4 asserts that the first equilibrium in-

vestment occurs at a threshold in the range of demand states
(
Xd

1 , X
∗
F

(
QdL
))
where the

leader’s optimum capacity is Q∗L = QdL, which implies the follower’s investment is delayed.

In this range the preemption incentive takes the form

f(X) = (1− λ)

(1−QdL)QdLX
r − µ − δQdL −

(
X

X∗F
(
QdL
))β ((

1−QdL
)
QdLX

∗
F

(
QdL
)

r − µ − δQdL

)

(17)

+

(
X

X∗F
(
QdL
))β ((

1−
(
QdL +Q∗F (X∗F )

))
X∗F
(
QdL
)

r − µ − δ
)(

QdL −Q∗F (X∗F )
) .

Up to scaling by (1− λ), Eq. (17) breaks the preemption incentive down into two parts.

The first part consists of the terms in the first line which represent the rent that the

leader obtains from the industry’s monopoly phase by entering ahead of the follower. The

second part consists of the terms in the second line, which represent the leader’s relative

profit during the industry’s duopoly phase. This relative profit may be either positive or

negative depending on whether is the leader has a larger capacity than the follower or not.

For suffi ciently small values of λ moreover, the upper bound on the preemption threshold

can be tightened to X∗F , which means that competition between the firms to enter first

is intense enough to drive the leader’s entry down to states where it is no longer possible
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to accommodate the follower, in which case the leader’s capacity satisfies QdL <
1

β+1
and

is therefore lower than the monopoly capacity.17

To see how internalization affects the preemption incentive, recall from Section 4.1

that internalization softens the follower’s investment timing and quantity reactions, and

lowers its asset value. Because the follower is less aggressive internalization the leader’s

asset value increases, both through the lengthier monopoly phase and through the higher

duopoly share the leader gets once the follower does enter. These positive effects of inter-

nalization are offset by the leader’s internalization of the follower’s lower value. Similarly,

the decrease in the follower’s own value is partially offset by its internalization of the

leader’s higher value value. The effect of internalization on the preemption incentive

depends on the difference of these two sets of effects. We expect own value effects to

dominate cross value effects at low levels of internalization, so a small increase in inter-

nalization should raise the incentive to preempt and result in earlier initial investment.

In equilibrium therefore, the anticompetitive effect of overlapping ownership on the fol-

lower should lead to more competitive behavior ex-ante as firms vie for leadership more

aggressively. The next proposition bears out these ideas by characterizing the effect of

internalization on the preemption equilibrium.

Proposition 5. For small λ, the preemption threshold and leader capacity decrease

with internalization ( dXP/dλ, dQ
d
L (XP ) /dλ < 0).

Proof. See Appendix A.7.

The negative effect of internalization on the preemption threshold is similar to a re-

sult in the fixed investment size case, whereby softer follower timing due to internalization

accelerates preemptive investment (Zormpas and Ruble 2021). The more novel assertion

17See Appendix A.7.
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in Proposition 5 is therefore that earlier preemptive investment is accompanied by lower

leader capacity when capacities are endogenized. This negative capacity effect is the result

of several effects. First of all, there is a direct effect of the demand state which is common

to models of timing and capacity choice. All else equal, capacity is relatively more expen-

sive at lower demand states. As preemption drives firms to enter at lower demand states,

this effect drives the leader to install less capacity. In addition to this, internalization also

has a number of strategic effects on the leader’s first order condition, e.g. through the

follower’s softer reaction and through the leader’s internalization of follower profits. The

overall sign of these strategic effects is indeterminate.18 At demand states near the lower

bound Xd
1 , the leader’s capacity approaches zero, and greater internalization reduces the

leader’s capacity as it places greater weight on the follower’s profit. Conversely at demand

states near X∗F , the leader’s capacity approaches
1

β+1
and greater internalization increases

the leader’s capacity. Proposition 5 establishes that either the direct effect or the follower

internalization effect must dominate. In either case, the leader’s lower capacity offsets the

procompetitive effect of earlier entry.

6 Numerical analysis

As the leader’s optimal capacity and the preemption threshold are defined only implicitly,

we use numerical methods in this section to further examine the consequences of internal-

ization. We use the parameter values r = .1, µ = .06, σ = .1, δ = .1 in order to replicate

existing results in Huisman and Kort (2015) and measure the effects of moderate inter-

nalization levels (λ = .1 or λ = .2). We conducted the same computations varying the

values for the discount rate, drift, and volatility parameters and obtained similar results

18See Eq. 53 in the Appendix.
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to those we report here. Besides corroborating the main insights of the preceding sections,

e.g. an anticompetitive effect of internalization on follower behavior and a procompetitive

effect on equilibrium investment, the numerical analysis also serves to highlight a novel

procompetitive effect of internalization at demand states above the preemption thresh-

old, whereby moderate internalization drives a leader to opt for strategic deterrence by

choosing significantly larger capacity.

To visualize first how internalization affects equilibrium investment timing, Figure 3

plots the leader and follower payoffs as functions of the demand state. The leader payoff

ΩL(X) is the upper envelope of the payoffs under accommodation and delay, i.e. of the

local maxima ΩL

(
min

{
QaL(X), Q̂(X)

}
, X
)
(dashed curve) and ΩL(QdL(X), X) (dotted

curve). With internalization, the leader perceives a positive payoff even below Xd
1 because

it accounts for the follower’s positive option value. The follower’s ex-ante payoff lies above

the leader payoff initially, and crosses below it at the preemption thresholdXP . The figure

indicates there is a single demand state X
d
L at which the leader shifts from deterrence to

accommodation. This shift creates an upward kink in the leader payoff and an upward

jump in the follower payoff. The effect of internalization is gauged by comparing with

the benchmark no-internalization case which is plotted in gray. With respect to the two

critical demand states, XP decreases with internalization consistently with Proposition 5,

whereas X
d
L increases so the leader chooses to deter the follower over a broader range of

demand states.

The effect of internalization on firm capacities is represented in Figure 4, which plots

optimal leader and follower capacities against the demand state at which the leader invests.

For either of the strategies that a leader can adopt (deterrence or accommodation), higher

demand states result in higher leader capacity. At the demand state X
d
L where the leader

shifts from deterrence to accommodation however, its optimal capacity jumps downward.

27



The follower’s capacity is decreasing in the demand state if the leader opts to delay its

entry, but increasing if both firms invest simultaneously. The effect of internalization on

capacities is non-monotonic. Internalization decreases the leader’s optimal capacity at

low demand states though the effect is slight, and increases it at higher demand states.

The follower’s equilibrium capacity on the other hand increases with internalization at

low demand states, albeit very slightly, and decreases at higher demand states.

For a given leader strategy, total capacity (and hence instantaneous consumer sur-

plus) is invariably lower with internalization as in the static model. However, with the

moderate internalization levels considered here, over the range of demand states where

internalization shifts the leader’s strategy from accommodation to deterrence, the procom-

petitive effect of internalization on leader capacity outweighs the anticompetitive effect

on follower capacity and total capacity increases. Thus, if a leader is brought to invest

at a moderately high demand state (e.g. because the initial value of X(t) is suffi ciently

high), moderate internalization can shift its strategy towards deterrence so as to induce

a suffi ciently higher leader capacity that total capacity increases. Instantaneous welfare

therefore increases during the industry’s duopoly phase, but there is also a countervailing

dynamic effect because the follower’s entry is delayed until its optimal threshold X∗F is

reached.

To evaluate the effect of internalization on welfare, we assume that consumers have

the same discount rate as firms and use a consumer surplus welfare standard, which is

stricter than total surplus as internalization invariably raises firm values in equilibrium.

The consumer surplus at the moment that the leader invests is19

S(X) = EX

[∫ T

0

1

2
X(s)ηQ2

Le
−rsds+

∫ ∞
T

1

2
X(s)η (QL +Q∗F (X(T )))2 e−rsds

]
. (18)

19In the analysis of this section, we add a slope parameter η = .05 to inverse demand as Huisman and
Kort (2015) do.
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Inside the conditional expectation in Eq. (18), the first term is the discounted consumer

surplus during the industry’s monopoly phase and the second term is the discounted

consumer surplus during the industry’s duopoly phase, evaluated at an optimal leader

capacity. If the demand state is suffi ciently high for the leader to choose positive capacity

and low enough for it to opt for delay, taking the expectation gives

Sd(X) =
η

2

(
QdL
)2
X

r − µ +
η

2

(
X

X∗F

)β ((QdL +Q∗F (X∗F )
)2 −

(
QdL
)2
)
X∗F

r − µ . (19)

At demand states which are high enough that the leader accommodates and follower entry

is immediate, substituting values for Q∗F (X) and QL gives a consumer surplus expression

Sa(X) =
(3 + λ)2

8η (2 + λ)2

(
1− δ (r − µ)

X

)2
X

r − µ . (20)

We first study the preemption equilibrium and resulting welfare. Table 2 reports

the values which we obtain. Consistently with Proposition 5 in the preceding section

internalization has a procompetitive effect on equilibrium entry timing, but also results

in lower leader capacity. The effect on the follower’s capacity is negative and its threshold

increases. Internalization therefore raises instantaneous consumer surplus because the

monopoly phase starts earlier but has countervailing consequences on leader capacity

and on the timing and surplus associated with the duopoly phase. To gauge the overall

effect, we take three different degrees of internalization (0, .1, and .2) and determine the

preemption equilibrium in each case. To compare consumer surplus values we evaluate

these at a common demand state X = XP (.2) = .0100, which is the smallest of the

preemption equilibria. The countervailing effects dominate here so the effect of moderate

internalization levels on consumer surplus and welfare is negative.
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Table 2: Preemption equilibrium

λ XP (λ) Q∗L Q∗F QTotal X∗F S (X)|X=XP (.2) W (X)|X=XP (.2)

0 .0105 5.53 5.59 11.12 0.0243 .5269 .9873

.1 .0102 5.38 5.44 10.82 0.0250 .4967 .9684

.2 .0100 5.22 5.31 10.52 0.0256 .4678 .9495

We focus next on the shift in leader strategy. To this end we take initial demand states

around the range where internalization alters the leader’s strategy and suppose that one

of the firms invests immediately as a leader in the initial state, either exogenously or as a

result of competition with the follower. A shift in leader strategy has contrasting effects

on overall consumer surplus, as it raises capacity which mitigates the harm induced by

the monopoly phase (which would not be incurred if the leader accommodated), but also

raises capacity during the industry’s duopoly phase. To assess the balance of these effects,

we take three different degrees of internalization (0, .1, and .2) and evaluate consumer

surplus and welfare at the three demand states to the right of which the leader’s strategy

shifts (X
d
L(0) = .0325, X

d
L(.1) = .0397, and X

d
L(.2) = .0559) The resulting capacities and

surplus values are reported in Table 3.

In the top part of the table which corresponds to a demand state just to the left

of X
d
L(0), the leader chooses deterrence for all the internalization levels, as evidenced

by the fourth column (X∗F is invariably larger than X). As described above, with the

leader’s strategy held constant, leader capacity increases with internalization whereas the

follower’s capacity decreases. Total duopoly output and consumer surplus decrease with

internalization, as does total welfare.

The middle part of the table is the most similar to Table 1 in the introduction, though

in the dynamic model the effect of internalization involves both capacities and follower
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timing. The leader chooses accommodation if λ = 0 and deterrence otherwise, so inter-

nalization produces a strategic shift here. As a result, the leader’s capacity and total

capacity increase sharply between λ = 0 and λ = .1, yielding in an increase in consumer

surplus of roughly 5% as well as a smaller total welfare increase of 1%. Going from λ = .1

to λ = .2, the increase in leader capacity is much smaller and total capacity decreases.

Total capacity is still higher than without internalization, but the follower’s investment

is significantly delayed and consumer surplus and welfare both decrease.
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Table 3: Procompetitive strategic shift (dynamic)

X = .0325

λ Q∗L Q∗F QTotal X∗F/X S(X) W (X)

0 9.75 3.96 13.71 1.06 3.76 5.94

.1 10.09 3.44 13.53 1.22 3.54 5.89

.2 10.29 2.96 13.24 1.41 3.30 5.82

X = .0397

λ Q∗L Q∗F QTotal X∗F/X S(X) W (X)

0 8.99 4.50 13.49 1 4.51 7.52

.1 10.77 3.15 13.92 1.09 4.72 7.60

.2 10.96 2.65 13.60 1.29 4.37 7.50

X = .0559

λ Q∗L Q∗F QTotal X∗F/X S(X) W (X)

0 9.28 4.64 13.93 1 6.78 11.29

.1 9.82 3.88 13.71 1 6.56 11.13

.2 12.04 2.14 14.19 1.13 6.89 11.34

In the bottom part of the table, the leader’s strategy does not shift at λ = .1 so a

low level of internalization only leads to reduced total capacity and consumer surplus.

At λ = .2 however, the shift to deterrence does occur and the sharp increase in leader

capacity that ensues results in slightly higher consumer surplus and welfare than without

internalization, again because the increase in the follower’s threshold is not too large.
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We take from these results that increased competition for the market due to internal-

ization may not be beneficial to consumers if capacities are endogenous, but also that if

competition occurs at a moderately high demand state some degree of common owner-

ship or cross holding can generate a procompetitive shift in the leader’s strategy which is

beneficial for consumers.

7 Conclusion

In this article, we study how either common ownership or symmetric cross holdings affect

strategic capacity decisions in an evolving market by driving managers to internalize

effects on rival firms. Greater internalization predictably makes a follower to react less

aggressively. Because softer timing and capacity reactions are particularly beneficial to

the leader if the follower delays entry, internalization drives leaders to pursue deterrence

over a broader range of demand states. We show through an example that such a shift

in leader strategy can be procompetitive, both in the static and in the dynamic versions

of the model. If firms compete for industry leadership, then the follower’s softer timing

and capacity reactions raise the attractiveness of leading. Internalization therefore has a

procompetitive effect on the timing of entry, though we show this is mitigated by lower

leader capacities.

Because they do not hinge on the presence of R&D spillovers or high R&D intensity,

the effects of overlapping ownership we identify may emerge in a broad range of industries.

Our analysis implies, for example, that common ownership of retailers like Wal-Mart and

Costco20 should accelerate their initial entry into local markets, but also lower store sizes

and lengthen the gap between initial and follower entry.

20Combined ownership of the top three institutional shareholders was respectively 9% and 17% for
these two firms (as of March 2023).
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Our analysis relies on several assumptions which could be relaxed in future work. To

begin with, the assumption of symmetric ownership structures may closely reflect common

ownership in certain industries but not in others. In the case of unilateral minority share

acquisitions for example, cross holdings are naturally asymmetric. A closer representation

of these situations would therefore account for asymmetric ownership and result in an

asymmetric preemption game, whose equilibrium outcome generalizes the one which we

describe here. In addition, we have restricted our attention to new markets where neither

firm operates initially, but further effects of overlapping ownership could be expected to

arise in markets where firms have preexisting capacities or the ability to make multiple

capacity additions.
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A Appendix

A.1 Proof of Proposition 2

The conditions referred to in the text for the leader to have local maxima involving

accommodation and deterrence are QaL < QdL and QdL < QM , or respectively
√
f ′

1−δ′ <

1
2

(
√

2+1+λ)(
√

2−1−λ)
(2+λ)(1−λ)

and
√
f ′

1−δ′ >
1−λ

4
. Note that λ <

√
2−1 is necessary for accommodation

to occur at some fixed cost.

We have ΩL (QaL) = (1+λ)2(1−δ′)2
4(2+λ)

− λf ′ and ΩL

(
QdL
)

=
(1−δ−2

√
f ′)(λ(1−δ)+2

√
f ′)

(1+λ)2
. The

leader prefers deterrence over accommodation if ΩL

(
QdL
)
> ΩL (QaL), or

− (1− λ)
(
4 + 3λ+ λ2

) f ′

(1− δ′)2 + 2 (1− λ)

√
f ′

1− δ′ −
(

(1 + λ)4

4 (2 + λ)
− λ
)
> 0 (21)

after rearrangement.

The left-hand side has a lower root
√
f ′0

1−δ′ = 1
4+3λ+λ2

(
1−

√
(1+λ)3(4−3λ−4λ2−λ3)

4(1−λ)(2+λ)

)
which

is positive and decreasing for λ <
√

2− 1 (which is necessary for QaL < QdL), and accom-

modation is no longer feasible as QdL < QaL once
√
f ′

1−δ′ reaches the upper root. The leader

therefore prefers deterrence for f ′ ≥ f ′0 (λ).

Under accommodation, total output is QaL + Q∗F (QaL) = (1−δ′)(3+λ)
2(2+λ)

, which decreases

with λ. Under deterrence, total output is QdL, which is decreasing in λ

Because total output lies above the monopoly output, it is negatively related to short

run industry profit. To show that output jumps up when the leader’s strategy shifts,

consider a degree of internalization where the leader is indifferent between accommodation

and deterrence, i.e. λ such that ΩL (QaL) = ΩL

(
QdL
)
. Expanding gives VL (QaL, Q

∗
F (QaL))+

λVF (Q∗F (QaL) , QaL) − λf ′ = VL
(
QdL, 0

)
, where VF denotes the follower’s profit without

accounting for entry cost. Then VL (QaL, Q
∗
F (QaL)) + VF (Q∗F (QaL) , QaL) = VL

(
QdL, 0

)
+
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λf ′ + (1 − λ)VF (Q∗F (QaL) , QaL) > VL
(
QdL, 0

)
, which implies that output is higher under

deterrence.

We can also establish that (long run) industry profit jumps down at such a point.

This requires showing that VL (QaL, Q
∗
F (QaL)) +VF (Q∗F (QaL) , QaL)− f ′ > VL

(
QdL, 0

)
. Sub-

stituting again for VL
(
QdL, 0

)
and rearranging, the desired inequality is equivalent to

(1− λ) (VF (Q∗F (QaL) , QaL)− f ′) > 0. To verify that the second term on the left hand

side is positive, observe that under accommodation the follower prefers to pay the entry

cost, i.e. ΩF (Q∗F (QaL), QaL) > ΩF (0, QaL)+f ′, so VF (Q∗F (QaL) , QaL)+λVL (QaL, Q
∗
F (QaL)) >

λVL (QaL, 0)+f ′ and therefore VF (Q∗F (QaL) , QaL)−f ′ > λ (VL (QaL, 0) − VL (QaL, Q
∗
F (QaL))) >

0. �

A.2 Follower value

As stated in the text, the follower’s option is worthless ifQL ≥ 1
1+λ

in which case ΩF (X) =

λ X
r−µ (1−QL)QL. Hereafter suppose that QL <

1
1+λ
.

The follower will only stop in states where its optimal capacity Q∗F (QL, X) is positive,

i.e. where X > δ(r−µ)
1−(1+λ)QL

. In such states its terminal payoff is

ΩF (Q∗F (QL, X), QL, X) =
1

4

(
X

r − µ (1− (1− λ)QL)2 − 2δ (1− (1 + λ)QL) +
r − µ
X

δ2

)
.

(22)

A suffi cient condition for optimality of an upper threshold policy is if λX (1−QL)QL −

rΩF (Q∗F (QL, X), QL, X) is decreasing in X (Dixit et al. 1994, p. 128). Developing and

differentiating gives a condition

−
(

4λ
r − µ
r

+ (1− λ)2

)
Q2
L + 2

(
2λ
r − µ
r

+ (1− λ)

)
QL − 1 +

δ2(r − µ)2

X2
< 0. (23)

40



Substituting the lower bound onX gives a further suffi cient condition which holds trivially,

−4λµ
r

(1−QL)QL ≤ 0.

The follower’s value satisfies the no-arbitrage condition rΩF (X)dt = λX (1−QL)QLdt+

EX [dΩF (X)]. Applying Itô’s lemma and taking the expectation gives a second-order or-

dinary differential equation

rΩF (X) = λX (1− ηQL)QL + µXΩ′F (X) +
1

2
σ2X2Ω′′F (X) (24)

over the inaction region (0, X∗F ), with boundary conditions

ΩF (0) = 0 (25)

and

ΩF (X∗F ) = ΩF (Q∗F (QL, X
∗
F ), QL, X

∗
F ) . (26)

The optimal threshold X∗F satisfies the smooth pasting condition

Ω′F (X∗F ) =
∂ΩF

∂X
(Q∗F (QL, X

∗
F ), QL, X

∗
F ) . (27)

The solution has the form ΩF (X) = λ X
r−µ (1−QL)QL +AFX

β where β > 1 is the upper

root of 1
2
σ2b(b− 1) + µb− r = 0 (see Eq. 10), and solving yields the threshold X∗F in the

text and the payoff

ΩF (X,QL) = λ X
r−µ (1−QL)QL +

(
X
X∗F

)β (
ΩF (Q∗F (QL, X

∗
F ), QL, X

∗
F )− λ X∗F

r−µ (1−QL)QL

)
, if X < X∗F

ΩF (Q∗F (QL, X), QL, X) , if X ≥ X∗F .
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A.3 Leader payoffwith strategic delay

Evaluating ΩL(QL, X) over the range QL ∈
(

max
{

0, Q̂L (X)
}
, 1

1+λ

)
where X∗F (QL) is

finite gives

(
X

r − µ (1−QL)− δ
)
QL +

(
X

X∗F (QL)

)β
δ (λ− (1 + λ) (β + 1− λβ)QL)

β2 − 1
. (28)

Differentiating with respect to QL gives the first-order condition for an interior opti-

mum QdL,

X

r − µ
(
1− 2QdL

)
− δ −

(
X

X∗F
(
QdL
))β

δ (1 + λ)
(
1− (1 + λ) (β + 1− λβ)QdL

)
(β − 1)

(
1− (1 + λ)QdL

) = 0. (29)

The second-order condition is X
r−µ

((
X

X∗F (QdL)

)β−1
β(1+λ)2(2−λ−(1+λ)(β+1−λβ)QdL)

(β+1)(1−(1+λ)QdL)
− 2

)
<

0. Observe that 2−λ−(1+λ)(β+1−λβ)QdL
1−(1+λ)QdL

= 1+(1− λ)
1−β(1+λ)QdL
1−(1+λ)QdL

< 2−λ. SinceX < X∗F (QL),

the second-order condition holds if (1 + λ)2 (2− λ) < 2β+1
β
, which gives the condition in

footnote 13.

We next determine the range of demand states for which Eq. (29) has a solution.

First, setting QdL = 0 gives a condition

X

δ (r − µ)
− 1− (1 + λ) (β − 1)β−1

(β + 1)β

(
X

δ (r − µ)

)β
= 0. (30)

The left-hand side is strictly concave in X and negative at zero. Evaluating it at X =

β
β−1

δ (r − µ) gives 1
β−1

(
1−

(
β
β+1

)β
(1 + λ)

)
> 0 so there is a lower root Xd

1 which satis-

fies Xd
1 <

β
β−1

δ (r − µ). Evaluating the left-hand side at X∗F >
β
β−1

δ (r − µ) gives 1−λ
β−1

> 0,
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so the QL ≥ Q̂L (X) > 0 constraint binds at the upper root.

To sign dQdL
dX
, differentiate the first-order condition with respect to X and substitute

it back in for the second set of terms so as to get ∂2ΩL
∂Q∂X

(QdL, X) = − (β − 1)
1−2QdL
r−µ + β δ

X
.

By the implicit function theorem therefore, dQ
d
L

dX
is zero if X = β

β−1
δ(r−µ)

1−2QdL
. Supposing that

such a point exists, substitute back into Eq. (29) to get

δ

β − 1

(
1−

(
β

β + 1

)β (
1− (1 + λ)QdL

1− 2QdL

)β−1 (
1− (1 + λ) (β + 1− λβ)QdL

))
. (31)

BecauseQdL <
1

1+λ
at any interior solution,

(
β
β+1

)β (
1−(1+λ)QdL

1−2QdL

)β−1

=

(
β(1−(1+λ)QdL)
(β+1)(1−2QdL)

)β
1−2QdL

1−(1+λ)QdL
<

1 so the expression above is positive. Because there is noX at which the derivative cancels,

dQdL
dX

> 0.

Next, provided λ /∈
[√

β+1
β
− 1, 1

β

]
there exists a finite demand state at which setting

QdL = Q̂L (X) solves Eq. (29),

Xd
2 =

(β + 1) (2 + λ)(1− βλ)

(β − 1) (1− 2βλ(2 + λ))
δ (r − µ) . (32)

which represents the upper bound of the demand states at which an interior optimum

exists. To verify that Xd
2 (if it exists) is an upper bound and not just a tangency point

with the Q̂L (X) locus, we check that dQdL
dX

(Xd
2 ) < dQ̂L

dX
(Xd

2 ). From Eq. (29)

dQdL
dX

(
Xd

2

)
= −

1− 2QdL −
β(1+λ)
β+1

(
1− (1 + λ) (β + 1− λβ)QdL

)
Xd

2

(
β(1+λ)2

β+1

(2−λ−(1+λ)(β+1−λβ)QdL)
1−(1+λ)QdL

− 2

) , (33)

and from Eq. (12)
dQ̂L

dX

(
Xd

2

)
=
β + 1

β − 1

δ (r − µ)

Xd2
2 (1 + λ)

. (34)
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Comparing the two, we find that dQ̂L
dX

(
Xd

2

)
>

dQdL
dX

(
Xd

2

)
if βλ (2− λ(1 + λ)) < 1−λ which

holds whenever Xd
2 is finite. �

A.4 Proof of Proposition 3

The payoff ΩL(0, X) is the leader’s share of the follower payoff ΩL(X, 0) (Eq. ??),

ΩL(QaL, X) is a straight application of ΩL (QL, Q
∗
F (QL, X), X) in the text (see also footnote

12), and ΩL(QdL, X) is given by Eq. (28). If the leader shuts the follower out permanently,

its payoff is ΩL

(
1

1+λ
, X
)

=
(

X
r−µ

λ
1+λ
− δ
)

1
1+λ
.

We first show that the leader choose zero capacity rather than 1
1+λ

if X < Xd
1 . Setting

ΩL (0, X) > ΩL

(
1

1+λ
, X
)
gives

(1 + λ) (β − 1)β−1

(β + 1)β

(
X

δ(r − µ)

)β
− β + 1

1 + λ

X

δ(r − µ)
+
β + 1

λ
> 0. (35)

By Eq. (30), Xd
1 is the lower root of

(1 + λ) (β − 1)β−1

(β + 1)β

(
X

δ (r − µ)

)β
− X

δ (r − µ)
+ 1 = 0. (36)

The left hand sides of the two expressions above have a unique intersection at X∗ =

1+λ
λ

β+1−λ
β−λ δ(r − µ) where Eq. (35) cuts Eq. (36) from above. We suppose that Q∗L = 1

1+λ

for some X ≤ Xd
1 and argue by contradiction. For the left-hand side of Eq. (35) to have

a lower root at Xd
1 or below, it is necessary that X

∗ lie to the left of minimum of Eq.

(36), X0 = (β+1)
β
β−1

(β−1)β
1

β−1 (1+λ)
1

β−1
δ(r − µ), i.e. that

β (β − 1)β−1 (1 + λ)β (β + 1− λ)β−1

(β + 1)β λβ−1 (β − λ)β−1
< 1, (37)
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and also that the left-hand side of Eq. (36) be negative at X∗, i.e. that

(β − 1)β−1 (1 + λ)β+1 (β + 1− λ)β

(β + 1)β+1 λβ−1 (β − λ)β−1
≥ 1. (38)

Dividing Eq. (38) by Eq. (37) gives (1+λ)(β+1−λ)
β(β+1)

> 1, which cannot hold as λ ∈ [0, 1) and

β > 1. Therefore, QL = 1
1+λ

is strictly suboptimal up to Xd
1 .

Next, for X ∈
(
Xd

1 , X
d
2

]
, the leader’s capacity choice problem has a local maximum

at QdL which is interior. The restriction λ ≤
√

β+1
β
− 1 implies λ ≤

√
2 − 1, so Xa

1 is

finite. Moreover, Xa
1 < Xd

2 . To establish this last inequality, is is enough to show that

the denominator terms satisfy 1 − λ(2 + λ) > 1 − 2βλ(2 + λ) (which holds trivially)

whereas the numerator terms satisfy (β + 1) (2 + λ)(1− βλ) > β (1− λ(2 + λ)) + 3− λ2.

This last inequality is equivalent to − (1 + β)λ2 +
(
β + 1

2

)
λ + 1 > 0, and the quadratic

expression on the left-hand side is positive at λ = 0 and λ =
√

β+1
β
− 1, and hence for all

λ <
√

β+1
β
− 1

Finally, to show that QL = 1
1+λ
is suboptimal for X > Xa

1 (and hence > Xd
2 ), we

compare ΩL(QaL, X) and ΩL

(
1

1+λ
, X
)
over this range. After rearrangement, blockade is

therefore ruled out if

(
2− (1 + λ)2

(1 + λ)2

)2(
X

δ (r − µ)

)2

− 2
λ3 + 3λ2 + λ− 3

(1 + λ)3

X

δ (r − µ)
+ 1 > 0, (39)

and the left-hand side is positive and increasing at Xa
1 . �

A.5 Preemption game specification

The text gives an intuitive account of the preemption game, but the firms’ strategies

and resulting outcomes have a more formal description. If firms choose when to stop in

45



continuous time, then in any subgame starting at a given time t0 the strategies consist

of pairs of real-valued functions
(
Gt0
i , α

t0
i

)
for each player i, where Gt0

i is a conditional

distribution function representing that player’s investment probability and αt0i is an inten-

sity parameter which augments the strategy space to allow limiting outcomes of discrete

time strategies to be represented in continuous time, subject to a set of regularity and

consistency requirements. The subgame perfect equilibrium strategies which support the

equilibrium described in Proposition 4 are ((Gt
1, α

t
1) , (Gt

2, α
t
2))t∈R+ where, for i ∈ {1, 2}

and any t ≥ 0,

Gt
i (u) =



0, if u < T tP

ΩL

(
X
Tt
P

)
−ΩM

(
X
Tt
P

)
ΩL

(
X
Tt
P

)
−2ΩM

(
X
Tt
P

)
+ΩF

(
X
Tt
F

) if T tP ≤ u < T tF

1, if u ≥ T tF

(40)

and

αti (u) =



0, if u < T tP

ΩL

(
X
Tt
P

)
−ΩF

(
X
Tt
P

)
ΩL

(
X
Tt
P

)
−ΩM

(
X
Tt
P

) if T tP ≤ u < T tF

1, if u ≥ T tF

(41)

where T tP = inf {τ ≥ t|Xτ ≥ XP} and T tF = inf {τ ≥ t|Xτ ≥ X∗F} are stopping times,

and

ΩM (X) = (1 + λ)

(
X

r − µ max {1− 2Q∗L, 0} − δ
)
Q∗L (42)

is the perceived payoff simultaneous stopping (Thijssen et al. 2012, Theorem 1). At

the threshold XP , ΩL

(
XT tP

)
= ΩF

(
XT tP

)
implying that either firm invests, with equal

probability.21

21The main difference relative to Thijssen et al. (2012) pertains to variable investment size rather
than internalization. Inside the preemption range, there is a positive probability of simultaneous invest-
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A.6 Proof of Proposition 4

First take demand states X ≤ Xd
1 . If a firm invests as a leader at such demand states, it

sets Q∗L = 0. The value of the preemption incentive is then f(X) = − (1− λ) ΩF (X, 0),

which is negative because ΩF (X, 0) > 0. The preemption threshold is therefore bounded

below by Xd
1 .

For the upper bound, suppose first that Xa
1 is finite. It is convenient to express the

preemption incentive as f (X) = ΩL(Q∗L, X)−(λVL(Q∗L, X) + VF (Q∗L, X)) = ΩL(Q∗L, X)−(
λΩL(Q∗L, X)− λ2VF (Q∗L, X) + VF (Q∗L, X)

)
= (1− λ) ΩL(Q∗L, X) −

(
1− λ2

)
VF (Q∗L, X),

where VF (Q∗L, X) denotes the value of the follower’s own assets (with timing and ca-

pacity choices X∗F (Q∗L) and Q∗F being those in Section 4.1). At X
a
1 , Q

∗
L = QdL is op-

timal for the leader so (1− λ) ΩL(QdL, X) ≥ (1− λ) ΩL(QaL, X). Because greater leader

capacity lowers the follower’s residual demand and its value, −
(
1− λ2

)
VF (QaL, X) <

−
(
1− λ2

)
VF (QdL, X) is increasing. Hence, f (Xa

1 ) > (1− λ) ΩL(QaL, X
a
1 )−

(
1− λ2

)
VF (QaL, X

a
1 ) =

ΩL(QaL, X
a
1 ) − (ΩF (QaL, X

a
1 )− λδQaL) where the right-hand side is the value of the pre-

emption incentive if leader capacity were set suboptimally at QaL. At QL = QaL how-

ever, investments are simultaneous with the follower acting as a Stackelberg quantity fol-

lower, so payoffs are those of the static Stackelberg game with internalization (see Section

3). The leader’s perceived payoff is therefore higher than the follower’s (ΩL(QaL, X
a
1 ) >

ΩF (QaL, X
a
1 )− λδQaL), which implies that f (Xa

1 ) > 0.

If Xa
1 is infinite, then a similar argument can be made at X

d
2 (provided X

d
2 is finite)

with Q̂L

(
Xd

2

)
instead of QaL. Otherwise, both X

a
1 and X

d
2 are infinite, and in this case

Q∗L = QdL for arbitrarily high demand states. The monopoly rent term in Eq. (17) is then

positive for large enoughX as is the relative profit term because limX→∞
(
QdL(X)−Q∗F

)
≥

ment which implies that the optimal capacity Q∗L must maximize the expected payoff
1−α
2−αΩL (X,QL) +

α
2−αΩM (X,QL).
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limX→∞

(
Q̂L(X)−Q∗F

)
= 1

1+λ
, so f(X) is positive for suffi ciently large X.

We conclude that the preemption range is nonempty, with lower boundXP ∈
(
Xd

1 ,min
{
Xa

1 , X
d
2

})
.

�

A.7 Proof of Proposition 5

The preemption equilibrium is characterized by the equilibrium condition f (XP ) = 0

(where XP is restricted to be the lower root) along with the first-order condition defining

QdL (XP ). To express these compactly, define Z = XP
δ(r−µ)

to get a the system of equations

f (X,Q) = (1−Q)Z − 1− Zβ (β − 1)β−1

(β + 1)β+1

(1 + β (1 + λ)Q) (1− (1 + λ)Q)β

Q
= 0 (43)

(Eq. 17) and

g (Z,Q) = (1− 2Q)X−1−Xβ (β − 1)β−1

(β + 1)β
(1 + λ) (1− (1 + λ) (β + 1− λβ)Q) (1− (1 + λ)Q)β−1 = 0

(44)

(for Eq. 29).

By the implicit function theorem, in the preemption equilibrium described by Eqs.

(43) and (44), the sensitivities of Z and Q with respect to λ are given by

dZ

dλ
=

∂f
∂Q

∂g
∂λ
− ∂f

∂λ
∂g
∂Q

∂f
∂Z

∂g
∂Q
− ∂f

∂Q
∂g
∂Z

and
dQ

dλ
=

∂f
∂λ

∂g
∂Z
− ∂f

∂Z
∂g
∂λ

∂f
∂Z

∂g
∂Q
− ∂f

∂Q
∂g
∂Z

. (45)

We first evaluate the partial derivatives with respect to λ,

∂f

∂λ
= Zβ β (β − 1)β−1

(β + 1)β
(1 + λ)Q (1− (1 + λ)Q)β−1 (46)
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and

∂g

∂λ
= −Xβ (β − 1)β−1

(β + 1)β
(1− (1 + λ)Q)β−2 (47)((

β2 (1− λ) + β(1− 2λ) + 1
)

(1 + λ)2Q2 − (2β + 2− 3λβ) (1 + λ)Q+ 1
)
.

To establish the proposition we determine the signs of dZ
dλ
and dQ

dλ
at λ = 0 and argue

that these hold for small λ by continuity. Evaluated at λ = 0, the system of equilibrium

conditions is (1−Q)Z − 1− Zβ (β−1)β−1

(β+1)β+1
(1+βQ)(1−Q)β

Q
= 0

(1− 2Q)Z − 1− Zβ (β−1)β−1

(β+1)β
(1− (β + 1)Q) (1−Q)β−1 = 0.

(48)

We establish that a solution to this system satisfiesQ < 1
β+1

and Z <
X∗F

δ(r−µ)
. At Z =

Xd
1

δ(r−µ)

the optimal leader capacity is QdL = 0. The first-order condition for QdL (second line in

Eq. 48) implies that Z = 1
1−2Q

=
X∗F

δ(r−µ)
>

Xd
1

δ(r−µ)
is the only demand state at which the

optimal leader capacity is QdL = 1
β+1
. Continuity of QdL (X) then implies Q < 1

β+1
for any

Z <
X∗F

δ(r−µ)
. Furthermore, at Z =

X∗F
δ(r−µ)

(hence Q = QdL = 1
β+1
), the preemption incentive

(the first line in Eq. 48) is positive, since22

(1−Q)Z − 1− Zβ (β − 1)β−1

(β + 1)β+1

(1 + βQ) (1−Q)β

Q
> 0

⇔ 1− 2β + 1

β + 1

(
β

β + 1

)β
> 0.(49)

Therefore, XP < X∗F , implying that a solution to Eq. (48) satisfies Q < 1
β+1
. Observe

22To verify the last inequality, denote the left-hand side by Λ (β). Then Λ(1) = .75 < 1, and Λ′ (β) =
ββ

(β+1)β+1

(
2 + (2β + 1) ln

(
β
β+1

))
. Taking the first terms of the Maclaurin series, ln

(
β
β+1

)
< − 1

β+1 −
1

2(β+1)2
− 1

3(β+1)3
, and substituting back and simplifying yields Λ′ (β) < − 16

ββ(β−1)
(β+1)β+4

< 0.
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also that at a solution (Z,Q) to Eq. (48),

Z =
(β2 + β + 1)Q2 − 2Q+ 1

(1−Q)
(
(β2 + 1)Q2 − 3Q+ 1

) (50)

and

Zβ (β − 1)β−1

(β + 1)β+1
(1−Q)β−1 =

Q2

(1−Q)
(
(β2 + 1)Q2 − 3Q+ 1

) . (51)

For λ = 0, the partial derivatives with respect to λ above (Eqs. 46 and 47) become

∂f

∂λ
= Zβ β (β − 1)β−1

(β + 1)β
Q (1−Q)β−1 (52)

and
∂g

∂λ
= −Zβ (β − 1)β−1

(β + 1)β
((
β2 + β + 1

)
Q2 − 2 (β + 1)Q+ 1

)
(1−Q)β−2 . (53)

Using Eqs. (50) and (51) to substitute for Z and Zβ gives

∂f

∂Z
=

(1−Q)2 (1− (β + 1)Q)

(β2 + β + 1)Q2 − 2Q+ 1
> 0 (54)

and
∂f

∂Q
=

(β + 1)Q

(β2 + 1)Q2 − 3Q+ 1
> 0. (55)

Also,

∂g

∂Z
= 1− 2Q−Xβ−1β (β − 1)β−1

(β + 1)β
(1− (β + 1)Q) (1−Q)β−1 (56)

=
β

Z
− (β − 1) (1− 2Q) =

∂f

∂Z
+ (β − 1)Q > 0

where the second line uses the first-order condition g (Z,Q) = 0 to substitute for the last
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term. Using Eqs. (50) and (51) once again to substitute for Z and Zβ,

∂g

∂Q
= −(β3 − β − 2)Q3 + 6Q2 − 6Q+ 2

(1−Q)2 ((β2 + 1)Q2 − 3Q+ 1
) < 0, (57)

which is the leader’s second-order condition.

We show first that the denominator of dZ
dλ
and dQ

dλ
is negative. Using Eq. (56), the

denominator can be expressed as ∂f
∂Z

∂g
∂Q
− ∂f

∂Q
∂g
∂Z

= ∂f
∂Z

(
∂g
∂Q
− ∂f

∂Q

)
− ∂f

∂Q
(β − 1)Q. Because

∂f
∂Z
and ∂f

∂Q
are positive, it is enough to show that ∂g

∂Q
− ∂f

∂Q
is negative. The sign of ∂g

∂Q
− ∂f

∂Q

is that of the cubic expression −(β3−1)Q3 + 2(β−2)Q2− (β−5)Q−2, which is negative

because the quadratic 2(β − 2)Q2 − (β − 5)Q− 2 is negative for Q < 1
β+1
.

To establish the proposition, all that remains is to show that the numerators of dZ
dλ

and dQ
dλ
are positive. Starting with the latter, using Eq. (56) to substitute for ∂g

∂Z
gives

∂f
∂λ

∂g
∂Z
− ∂f

∂Z
∂g
∂λ

= ∂f
∂Z

(
∂f
∂λ
− ∂g

∂λ

)
+ ∂f

∂λ
(β − 1)Q. Because ∂f

∂X
and ∂f

∂λ
are positive, it is enough

to show that ∂f̃
∂λ
− ∂g̃

∂λ
is also positive. Evaluating gives

∂f

∂λ
− ∂g

∂λ
= Zβ (β − 1)β−1

(β + 1)β
(1−Q)β−2 ((β2 + 1)Q2 − (β + 2)Q+ 1

)
. (58)

The sign is that of the last bracket. Express this term as a quadratic in β, Q2β2 −Qβ +

(1−Q)2, which is positive for β = 1 and has a negative discriminant Q2
(
1− 4 (1−Q)2)

because Q < .5, so ∂f
∂λ
− ∂g

∂λ
> 0.

The other numerator is

∂f

∂Q

∂g

∂λ
− ∂f

∂λ

∂g

∂Q̃
=

Zβ (β − 1)β−1

(β + 1)β
(1−Q)β−2

(
− ∂f
∂Q

((
β2 + β + 1

)
Q2 − 2 (β + 1)Q+ 1

)
− ∂g

∂Q
βQ (1−Q)

)
.
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The sign is that of the last bracketed term. Developing and simplifying byQ (1−Q) leaves

a cubic expression,
(
β4 + β3 + β2 + 1

)
Q3−

(
β3 + 4β2 + 3

)
Q2 +

(
2β2 − β + 3

)
Q+β− 1.

This is greater than −
(
β3 + 4β2 + 3

)
Q2 +

(
2β2 − β + 3

)
Q+β−1, which takes the value

β − 1 > 0 at Q = 0 and (2β2+1)(β−1)

(β+1)2
> 0 at Q = 1

β+1
, and is hence positive for all

Q ∈
[
0, 1

β+1

]
implying ∂f

∂Q
∂g
∂λ
− ∂f

∂λ
∂g
∂Q

> 0. �
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blockadeaccommodation deterrence(𝜆 = 0)

blockade (𝜆 > 0)

deterrence (𝜆 > 0)

ac
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m
m
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n 

(𝜆
>
0

)

TW higher with 𝜆 > 0

CS higher with 𝜆 > 0

Figure 1: In
( √

f ′

1−δ′ , λ
)
-space, the accommodation (Q∗L = QaL), deterrence (Q

d
L), and block-

ade (QM) regions are delimited by the black curves. To the left of the dashed segment
in the deterrence region, the leader would accommodate in the absence of internalization.
Within this region consumer surplus is higher with internalization due to the leader’s
strategic shift up to the dark grey curve, and up to the light gray curve total welfare is
higher.
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Ω 𝑚𝑖𝑛 𝑄 , 𝑄a , 𝑋

Ω 𝑄d, 𝑋

𝑋 𝜆 𝑋 0                                                         𝑋 0              𝑋 𝜆           

X

Figure 2: Leader and follower payoffs for r = .1, µ = .06, σ = .1, δ = .1, η = .05 and
λ = 0 (gray) or .1 (black). At the demand state X

d
L the leader shifts from deterrence

to accommodation, resulting in a kink in the leader payoff and an upward jump in the
follower payoff. The preemption equilibrium XP lies at the intersection of the leader and
follower payoffs. Greater internalization results in earlier equilibrium investment (lower
XP ) and drives the leader to pursue deterrence over a broader range (higher X

d
L).
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Q

X
X (λ) X (0)                                                                                𝑋 0                      𝑋 λ                     

strategic shiftdeterrence
(follower delayed)

accommodation 
(static Stackelberg 
outcome)

∗( )

∗ ( )

Figure 3: Optimal leader and follower capacities for r = .1, µ = .06, σ = .1, δ =

.1, η = .05 and λ = 0 (gray) or .1 (black). For demand states between X
d
L (0) and

X
d
L (λ) internalization shifts the leader’s strategy from accommodation to deterrence,

which results here in higher total output.
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