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This paper studies a principal-agent problem with learning before production. The learning stage 

is modeled as strategic experimentation with both dynamic moral hazard and adverse selection. 

We fully characterize effort off the equilibrium path in a mixed model to show that moral hazard 

requires the principal to reward success in learning, but adverse selection may induce the 

principal to reward failure.  We find the principal uses the timing of failure as a screening 

instrument despite the presence of moral hazard.  Therefore, both success and failure are 

rewarded with different payments and specific timing in the optimal contract.  We also study 

whether the principal should hire the same agent for both the learning and production stages 

(integration), or different agents (separation).  While separation is optimal under pure moral 

hazard, we show that adverse selection can make integration optimal.  Having the same agent 

working on both stages enables the principal to use the adverse selection rent to address dynamic 

moral hazard.  If adverse selection is severe, yielding a large rent, the principal can satisfy the 

moral hazard constraints by spreading the adverse selection rent over the duration of 

experimentation.   

 

 

Keywords: Strategic Experimentation, Moral hazard, Adverse selection, Outsourcing, Integration 

and Separation. 

 

JEL classification: D83, D86. 

 

 

  

 
1 E-mail: khalil@uw.edu (F. Khalil), lawarree@uw.edu (J. Lawarree), arodivil@stevens.edu (A. Rodivilov). 



1 

 

1. Introduction 
Many important tasks involve two stages: a preliminary stage of learning or 

experimentation before a production stage.  For instance, a principal, who is hiring an agent to 

perform a new project, may want the agent to learn its profitability before starting production.  

Should the principal hire the same agent for both the learning and production stages 

(integration), or a different agent for each stage (separation)?  This question has been studied in 

the endogenous information gathering literature, highlighting the interdependence between the 

private learning and production stages with an emphasis on the endogenous information rent in 

the production stage.  This literature mostly ignores the dynamic aspect of learning by relying on 

a simple static learning stage.2  The recent literature on strategic experimentation allows a rich 

and tractable context for dynamic learning, but the focus has been on motivating an agent to 

learn or experiment.  Thus, the interdependence between the dynamic learning and production 

stages has been largely ignored.   

We find that if there is only moral hazard at the learning stage, as is typically assumed in 

the strategic experimentation literature, separating the learning and production stages is optimal 

from an incentives point of view.  If, however, the learning stage involves both adverse selection 

and moral hazard, then integrating the two stages may become optimal.3  We show that the 

principal can use the adverse selection rent to address the dynamic moral hazard problem during 

learning.  This requires solving a model with both adverse selection and moral hazard in a 

strategic experimentation setting, which can be challenging, as noted by Halac, Kartik, and Liu 

(2016).4  One of our contributions is to offer a tractable mixed model and to characterize off-the-

equilibrium path effort.  Adverse selection in learning introduces a common value problem as the 

agent’s type directly appears in the principal’s objective function.5  Then both upward and 

downward incentive constraints can be binding, leading the principal to reward failure to screen 

types.  This result persists even in the presence of moral hazard in the learning stage, even 

though it increases the cost of inducing effort. 

 
2 See related literature section below. 
3 For instance, most large firms have in-house R&D departments. 
4 In particular, characterizing off the equilibrium path effort can be difficult. 
5 See, e.g., Laffont and Martimort (2002). 
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We introduce a principal-agent model where a production stage is preceded by a multi-

period learning stage modeled as strategic experimentation.6  Each period of experimentation is 

subject to shirking by an agent trying to learn the cost of production.  Success in experimentation 

is assumed to take the form of uncovering “good news”, i.e., the agent finds out whether 

production cost is low.  Therefore, failure to uncover good news increases the expected cost of 

production.  As in standard models of strategic experimentation, unobserved shirking makes the 

principal more pessimistic than the agent about the true cost leading to a moral hazard rent 

during experimentation.7  Unlike in standard models of experimentation, we capture the impact 

of possibly different beliefs between the principal and agent after failure.  We next explain the 

impact on the production stage of asymmetric beliefs after failure. 

The possibility of shirking during experimentation implies a second moral hazard rent at 

the production stage as the principal, unaware of the shirking, overestimates the cost of 

production.8  This second rent is novel and does not appear in models without a production stage 

or if we separate learning and production.  Thus, we find that separation is optimal in pure moral 

hazard models of experimentation.   

The learning stage also features adverse selection along with moral hazard.  The agent 

has private information about the ex-ante probability that the cost is low, i.e., the probability that 

experimentation will succeed.  Thus, updating beliefs after failure to uncover good news in each 

period depends on both the agent’s private information and his effort.   

 Because of the common value problem mentioned above, both low- and high-cost agents 

may have incentives to misreport, leading the principal to reward failure. 9  The low-cost agent’s 

incentive to overstate cost is resolved as usual by rewarding success, as the low-cost agent is 

more likely to succeed.  The high-cost agent’s incentive to understate cost is resolved by 

rewarding failure, as the high-cost agent is more likely to fail.  Thus, rewarding this type after 

failure is an optimal screening instrument when both incentive compatibility constraints are 

 
6 The exponential bandit model has been widely used as a canonical model of learning: see Bolton and Harris (1999) 

or Bergemann and Välimäki (2008). 
7 See, e.g., Bergemann and Hege (1998), Bergemann and Välimäki (2008), and Horner and Samuelson (2013). 
8 This rent at the production stage is similar to what we find in a standard procurement model.  See, e.g., Lewis T. 

and Sappington D. (1997). 
9 For static models with adverse selection and moral hazard, see, e.g., Ollier and Thomas (2013), Chakraborty et al. 

(2021), Gottlieb and Moreira (2022), or Rodivilov et al. (2022). 
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binding.  More precisely, the principal optimally pays the high-cost agent only if he fails in every 

period as the relative likelihood of failure between types is monotonic over time. 

It may seem surprising that rewarding failure remains optimal in the presence of moral 

hazard.  If the payment after failure is used as a screening instrument, the high-cost agent can 

guarantee himself rent by shirking in every period.  Failing over the entire experimentation stage 

then becomes a profitable outside option for the high-cost agent, and it increases the cost of 

inducing the agent to work in each period.  To prevent shirking, the principal must 

correspondingly increase the reward after success.  For instance, consider the last period of 

learning.  By shirking, the high-cost agent can guarantee himself the reward after failure.  To 

induce him to work, the principal must provide a higher reward after success than after failure.10  

The high-cost agent is rewarded both after success and failure but gets a higher reward after 

success.  Thus, having to reward failure is quite costly, and we find that it is optimal only when 

both incentive compatibility constraints are binding.  

When the adverse selection rent is large, the principal can satisfy the moral hazard 

constraints ‘for free’ by spreading this rent across time.  This provides the intuition for the 

optimality of integration.  A large adverse selection rent must be paid under both integration and 

separation.  But, under integration, the principal can choose to spread the adverse selection rent 

in every period of learning, satisfying the moral hazard constraints.11  Under separation, the 

principal saves the aforementioned “second” moral hazard rent at the production stage.  

However, with two separate agents, she cannot use the adverse selection rent in the production 

phase to satisfy the standard moral hazard rent in the learning phase.  Thus, there is a tradeoff, 

and the outcome depends on the relative size of the adverse selection and moral hazard problems. 

Next, we briefly outline two examples to illustrate our insight regarding the optimality of 

separating learning and production.  Consider first the case of drug approval trials, where a 

pharmaceutical company (principal) typically outsources to a clinical research organization (a 

separate agent) the clinical trials to demonstrate the effectiveness of a new drug.  Moral hazard is 

 
10 In our dynamic model, each previous periods’ moral hazard rewards must be increased to deter the agent from 

delaying success to the last period. 
11 Technically, it is because the relative probability of success over time is independent of type. 
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the more serious issue. 12  Adverse selection is less relevant as much information about the 

prospective efficacy of the drug is in the public domain.   

In contrast, consider the case of a surgeon who must decide on an appropriate surgical 

procedure, and relies on their assessment of the prospect for success along with their diagnosis 

based on medical history and a series of diagnostic tests.  The diagnosis is a dynamic learning 

process while the prospect for success depends largely on a surgeon’s prior experience and 

ability. Adverse selection is likely to be a major issue depending on each surgeon’s expertise and 

experience.  Moral hazard is less of a concern given protocols and regulations for healthcare 

activities required by the health insurance company or HMO.13  Integrating the two stages (a 

series of diagnostic tests and surgery) would be optimal as seems to be the observed practice. 

Related Literature.  Our paper builds on four strands of the literature.  First, it is related 

to the extensive literature on the integration and separation of learning and production between 

agents.  See, for instance, Lewis and Sappington (1997), Schmitz (2005), Khalil et al. (2006), 

Iossa and Martimort (2012), Li et al. (2015), Schmitz (2021), Hoppe and Schmitz (2013 and 

2021).  Unlike those papers, we model learning as a dynamic process with both moral hazard and 

adverse selection and show that their relative importance determines the optimal organization 

structure.  

This paper is also related to the literature on endogenous information gathering before 

production.  The standard model is static, where an agent privately exerts effort that increases the 

precision of the signal of the state (relevant for a production decision).14  By modeling effort as 

experimentation, we contribute to this literature by introducing the dynamics of learning, and 

especially the possibility of asymmetric learning by different types of agents.  In our model, the 

principal endogenously determines the degree of asymmetric information in the production stage 

by choosing the length of experimentation.  Unlike the rest of the literature, we show that the 

principal may find it optimal to over-experiment to screen the types. 

 
12 There are multiple examples of clinical research organizations shirking, for example, by creating fake patient 

profiles (see Lindblad et al. (2014), Anand et al. (2012), Pogue et al. (2013) and references therein).   
13 In addition, healthcare practitioners are required by law to record patient medical histories and retain detailed case 

histories.  There is also little room for skipping tests or altering results since this behavior might be simply illegal 

and a surgeon might be subject to prosecution.  Surgeons are of course also bound by the Hippocratic Oath. 
14 For early papers see Crémer and Khalil (1992), Lewis and Sappington (1997), and Crémer, Khalil, and Rochet 

(1998). For recent papers, see citations in Krähmer and Strausz (2011), Iossa and Martimort (2015), Rodivilov 

(2021), Downs (2021), Schmitz (2022), and Häfner and Taylor (2022). 
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In addition, our paper is related to the active literature on contracting for experimentation 

following Bergemann and Hege (1998).  Most of the literature considers either moral hazard or 

adverse selection models in isolation.15 Among the few exceptions that introduce both moral 

hazard and adverse selection are Gerardi and Maestri (2012), Guo (2016), and Halac et al. 

(2016).  Unlike all those papers, we also consider a production stage and show how the rent in 

one stage echoes into the other stage.16  In the pure moral hazard case, we find a new rent at the 

production stage, which implies that separation is optimal.  This result justifies the standard 

assumption in the strategic experimentation literature which considers only the experimentation 

stage in isolation assuming pure moral hazard.  Adding adverse selection in experimentation, we 

show that integration can be optimal.  While the standard result in the literature is to reward 

success in the experimentation stage to address moral hazard, we find that adverse selection in 

experimentation may make rewarding failure in the experimentation stage optimal even in the 

presence of moral hazard.  Moreover, the dynamic nature of the learning process allows the 

principal to use the timing of payments as a screening instrument. 

Finally, we also contribute to the literature on the power of incentives for innovation.  

Manso (2011) shows that an optimal incentive scheme may exhibit reward for early failure for a 

risk averse agent.  Benabou and Tirole (2003) show that using high-powered incentives may be 

detrimental to intrinsic motivation.  In a laboratory experiment, Ederer and Manso (2013) find 

that a combination of rewards for both failure and success can be effective in incentivizing 

innovation.  Sadler (2021) illustrates that high-powered incentives may discourage creativity.  

We contribute to this literature by showing theoretically that the coexistence of low- and high-

powered incentive schemes can be optimal to mitigate the effect of adverse selection when 

failures to innovate are informative for the subsequent production decision. 

2. The Model and the First Best 
A principal hires an agent to implement a project.  The cost of the project, 𝑐, is initially 

unknown to both the principal and the agent, but it is common knowledge that the cost can be 

low, 𝑐, with probability 𝛽0 ∈ (0,1), or high, 𝑐, with probability 1 − 𝛽0.  Both the principal and 

 
15 See, e.g., Horner and Samuelson (2013), Sadler (2021), Escobar and Zhang (2021), Rodivilov (2022), and Moroni 

(2022) for models of pure moral hazard, and Gomes et al. (2016) and Khalil et al. (2020) for models of adverse 

selection only. 
16 Except for Khalil et al. (2020) who introduce a production stage but with adverse selection only. 
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the agent are risk neutral, and, for simplicity, we assume that their discount factor is one.  Before 

the actual production occurs, there is learning that we model as a standard experimentation stage, 

when the agent gathers information regarding the production cost.17  In the production stage, the 

agent produces based on what is learned about cost during the experimentation stage.    

2.1. The Experimentation Stage 

The length of the experimentation 𝑇 is chosen by the principal.  In each period 𝑡 ∈

{1, 2, … , 𝑇}, the principal must address a moral hazard problem.  The agent privately chooses 

whether to perform an experiment, i.e., “work,” 𝑒𝑡 = 1, or not to experiment, “shirk,” 𝑒𝑡 = 0.  

Experimentation at 𝑡 costs 𝛾𝑒𝑡 to the agent, where 𝛾 > 0.  

The principal must also address an adverse selection problem.  We assume that the agent 

is privately informed about the probability that the cost is low, which we refer to as the agent’s 

type.  Thus, we define the initial belief that the cost is low with the agent’s type as the 

superscript 𝜃 ∈ {𝐻, 𝐿}: 

𝛽0
𝜃 = 𝑃𝑟(𝑐 = 𝑐|𝜃), 

where 0 < 𝛽0
𝐿 < 𝛽0

𝐻 < 1.18  In other words, a high type is more optimistic that the cost is low 

before experimentation starts, i.e., the high type has a relatively lower expected cost than the low 

type.  We assume that the agent is a high type (𝜃 = 𝐻) with probability 𝜈 ∈ (0,1) and a low type 

(𝜃 = 𝐿) with probability (1 − 𝜈).   

We assume that information gathering takes the form of looking for good news.  If the 

experimentation reveals that the cost is low (good news), we will say that the experimentation 

was successful.  If the cost is actually low and the agent works, success occurs with probability 

0 < 𝜆 < 1.  Success is publicly observable.  Once success occurs, the experimentation stage 

stops, and production takes place based on 𝑐 = 𝑐.  Success cannot occur if the cost is high, or if 

the agent shirks.  Thus, it is optimal to induce 𝑒𝑡 = 1 in every period of the experimentation 

stage. 

If the agent fails to learn that the cost is low in a period 𝑡, we say that experimentation 

failed in that period.  Then, experimentation resumes if 𝑡 < 𝑇, but both the agent and the 

 
17 See, e.g., Halac et al. (2016). 
18 If 𝛽0

𝜃 = 1 for some type, there is no learning for that type. 
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principal become more pessimistic about the likelihood of the cost being low.  Production takes 

place after the experimentation stage ends, either if the agent succeeds or if he fails all 𝑇 times.   

2.2. Updating Beliefs 

Given that 𝑒𝑡 = 1 for all 𝑡, and that experimentation has failed in previous periods, we 

denote by 𝛽𝑡
𝜃 the updated belief of type 𝜃 that the cost is low at the beginning of period 𝑡 (after 

𝑡 − 1 failures).  We have 𝛽𝑡
𝜃 =

𝛽𝑡−1
𝜃 (1−𝜆)

𝛽𝑡−1
𝜃 (1−𝜆)+(1−𝛽𝑡−1

𝜃 ) 
, which can be re-written in terms of 𝛽0

𝜃 as 

follows: 

𝛽𝑡
𝜃 =

𝛽0
𝜃(1−𝜆)𝑡−1

𝛽0
𝜃(1−𝜆)𝑡−1+1−𝛽0

𝜃. 

The expected cost for a type 𝜃 agent at the beginning of period 𝑡 is then 

𝑐𝑡
𝜃 = 𝛽𝑡

𝜃𝑐  + (1 − 𝛽𝑡
𝜃) 𝑐. 

After each failure, a type 𝜃 agent becomes more pessimistic about the true cost being low (𝛽𝑡
𝜃 

falls), and the expected cost rises.  For the same number of failures during the experimentation 

stage, a low type always stays relatively more pessimistic than a high type with a relatively 

higher expected cost (𝑐0
𝐻 < 𝑐0

𝐿).  However, both 𝑐𝑡
𝐻 and 𝑐𝑡

𝐿 approach 𝑐 in the limit.   

For future use, we also note that the difference in the expected cost,  

∆𝑐𝑡 ≡ 𝑐𝑡
𝐿 − 𝑐𝑡

𝐻 = (𝛽𝑡
𝐻 − 𝛽𝑡

𝐿)(𝑐 − 𝑐) = (𝛽𝑡
𝐻 − 𝛽𝑡

𝐿)𝛥𝑐 > 0, 

is either decreasing in time (if 𝛽0
𝐻 ≤ 1 − 𝛽0

𝐿) or is non-monotonic with one peak (if 𝛽0
𝐻 > 1 −

𝛽0
𝐿).  Two examples of ∆𝑐𝑡 are presented in Figure 1 below.  Sufficient conditions for binding 

incentive constraint rely on 𝛽0
𝐿 small so that ∆𝑐𝑡 is monotonically decreasing over time.  

2.3. The Production Stage 

If experimentation succeeds in some 𝑡 or fails all 𝑇 times, production takes place.  Since 

success publicly reveals low cost, the output after success is produced under complete 

information.  The interesting case occurs when the agent has failed to learn during the entire 

experimentation stage as production occurs under asymmetric information.19  This is a 

significant departure from the standard literature on strategic experimentation, where the quantity 

 
19 We assume that the agent will learn the exact cost later, but it is not contractible. 
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after failure is implicitly assumed to be zero.  In that case, asymmetric beliefs after failure 

between the principal and agent do not matter.  A difference in beliefs matters whenever there is 

a decision to be made at this stage, and we capture it by assuming an explicit production stage 

even after failure.  Thus, asymmetric information generated during the experimentation stage 

echoes into the production stage and, conversely, the anticipation of asymmetric information 

during production impacts the experimentation stage. 

The simplest way to capture the impact of asymmetric beliefs in production after failure 

is to assume that the output after failure is fixed at 𝑞𝐹 > 0.  We relax this assumption in an 

extension. 20  To be consistent with the extension section, we assume that the principal’s value of 

the project is given by 𝑉(𝑞), which is strictly increasing and strictly concave.  The output after 

success, 𝑞𝑆, is determined by 𝑉′(𝑞𝑆) = 𝑐.  We assume 𝑉(𝑞𝑆) > 𝑉(𝑞𝐹) > 0.   

 

Figure 1. Expected cost with 𝛽0
𝐻 = 0.9, 𝜆 = 0.2, 𝑐 = 0.5, 𝑐 = 5, 𝛽0

𝐿 = 0.1 (left) and 𝛽0
𝐿 = 0.75 (right). 

 

2.4. The Contract and Payoffs 

Before the experimentation stage takes place, the principal offers the agent a menu of 

dynamic contracts.  A contract specifies, for each type of agent, the length of the experimentation 

 
20 In the extension, the output is determined such that the marginal benefit of output equals its (expected) marginal 

cost.  The key results are unaffected, except that variation in output after failure is an additional screening device 

(see, for instance, Khalil et al. (2020)). 
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stage, and the transfer and output as a function of whether experimentation is successful in any 

period.   

Without loss of generality, we use a direct truthful mechanism, where the agent is asked 

to announce his type, denoted by 𝜃.  A contract is defined formally by 

𝜛𝜃̂ = (𝑇𝜃̂, {𝑤𝑡
𝜃̂(𝑐), 𝑤𝑡

𝜃̂(𝑐𝑡+1
𝜃̂ )}

𝑡=1

𝑇𝜃̂

), 

where 𝑇𝜃̂ is the (maximum) duration of the experimentation stage for the announced type 𝜃, 

𝑤𝑡
𝜃̂(𝑐) is the agent’s wage if he observed 𝑐 = 𝑐 in period 𝑡 ≤ 𝑇𝜃̂, and 𝑤𝑡

𝜃̂(𝑐𝑡+1
𝜃̂ ) is the agent’s 

wage if he fails 𝑡 ≤ 𝑇𝜃̂ times. 

An agent of type 𝜃, announcing his type as 𝜃 and choosing effort profile 𝑒𝜃 = {𝑒𝑡
𝜃}

𝑡=1

𝑡=𝑇𝜃̂

 , 

receives expected utility 𝑈𝜃(𝜛𝜃̂) at time zero from a contract 𝜛𝜃̂:21 

𝑈𝜃(𝜛𝜃̂, 𝑒𝜃) = (1 − 𝛽0
𝜃)∑ [𝑤𝑡

𝜃̂(𝑐𝑡+1
𝜃̂ ) − 1

{𝑡=𝑇𝜃̂}
𝑐

∑ 𝑒𝑠
𝜃𝑇𝜃̂

𝑠=1 +1

𝜃 𝑞𝐹 − 𝛾𝑒𝑡
𝜃]𝑇𝜃̂

𝑡=1   

+𝛽0
𝜃 ∑ (∏ (1 − 𝜆𝑒𝑠

𝜃)𝑡−1
𝑠=1 ) [𝑒𝑡

𝜃(𝜆(𝑤𝑡
𝜃̂(𝑐) − 𝑐𝑞𝑆) − 𝛾) + (1 − 𝜆𝑒𝑡

𝜃) (𝑤𝑡
𝜃̂(𝑐𝑡+1

𝜃̂ ) − 1
{𝑡=𝑇𝜃̂}

𝑐
∑ 𝑒𝑠

𝜃𝑇𝜃̂
𝑠=1 +1

𝜃 𝑞𝐹)]𝑇𝜃̂

𝑡=1 . 

Conditional on the actual cost being low, which happens with probability 𝛽0
𝜃, the probability of 

succeeding for the first time in period 𝑡 ≤ 𝑇𝜃̂ is given by (∏ (1 − 𝜆𝑒𝑠
𝜃)𝑡−1

𝑠=1 )𝑒𝑡
𝜃𝜆.  If the agent 

succeeds, he will produce 𝑞𝑆 and is paid 𝑤𝑡
𝜃̂(𝑐) by the principal.  In addition, it is possible that 

the agent never observes that the cost is low.  This is the case either if the cost is actually high 

(𝑐 = 𝑐̅), which happens with probability 1 − 𝛽0
𝜃, or, if the agent fails 𝑇𝜃̂ times despite 𝑐 = 𝑐, 

which happens with probability 𝛽0
𝜃 ∏ (1 − 𝜆𝑒𝑠

𝜃)𝑇𝜃̂

𝑠=1 . 22  In this case, the agent produces 𝑞𝐹 and is 

paid 𝑤
𝑇𝜃̂
𝜃̂ (𝑐

𝑇𝜃̂+1

𝜃̂ ) based on the expected cost at period 𝑇 + 1, denoted by 𝑐
𝑇𝜃̂+1

𝜃̂ .   

Denote by 𝑎⃗𝜃(𝜛𝜃̂) ≡ 𝑎𝑟𝑔𝑚𝑎𝑥𝑒𝜃𝑈𝜃(𝜛𝜃̂, 𝑒𝜃) the optimal action profile for type 𝜃 facing 

a contract 𝜛𝜃̂  in all periods 𝑡 ≤ 𝑇𝜃.  Denoting the equilibrium effort profile by 𝑒𝜃 = 1⃗⃗ (with 

𝑒𝑡
𝜃 = 1 for all 𝑡 ≤ 𝑇𝜃), the optimal contract must satisfy the following (global) moral hazard 

constraint: 

 
21 Where a characteristic function 1{𝑡∈𝕋} is defined as 1{𝑡∈𝕋} = {

1, 𝑡 ∈ 𝕋
0, 𝑡 ∉ 𝕋

 for any set 𝕋. 
22 Recall that if the agent shirks, success will also never be achieved. 
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(𝑴𝑯𝜽)     1⃗⃗ ∈ 𝑎⃗𝜃(𝜛𝜃).  

The optimal contract will have to satisfy the following incentive compatibility constraint 

for all 𝜃 and 𝜃: 

(𝑰𝑪𝜽,𝜽̂)    𝑈𝜃(𝜛𝜃, 1⃗⃗) ≥ 𝑈𝜃 (𝜛𝜃̂, 𝑎⃗𝜃(𝜛𝜃̂)). 

For future convenience, we introduce some notation.  We denote wage net of production 

cost (i.e., the rent) to the 𝜃-type who succeeds in period 𝑡 by 𝑦𝑡
𝜃, and that after failure until 

period 𝑡 by 𝑥𝑡
𝜃: 

𝑦𝑡
𝜃 ≡ 𝑤𝑡

𝜃(𝑐) − 𝑐𝑞𝑆, 

𝑥𝑡
𝜃 ≡ 𝑤𝑡

𝜃(𝑐𝑡+1
𝜃 ) − 1{𝑡=𝑇𝜃}𝑐𝑇𝜃+1

𝜃 𝑞𝐹. 

We denote the probability that an agent of type 𝜃 does not succeed during the first 𝑡 periods of 

the experimentation stage if 𝑒𝑗
𝜃 = 1 for all 𝑗 ≤ 𝑡 by: 

𝑃𝑡
𝜃 ≡ 1 − 𝛽0

𝜃 + 𝛽0
𝜃(1 − 𝜆)𝑡. 

Finally, we assume the agent must be paid his expected production cost whether 

experimentation succeeds or fails.23  To account for this, we impose the following limited 

liability (𝑳𝑳) constraints: 

(𝑳𝑳𝑺𝒕
𝜽)   𝑦𝑡

𝜃 ≥ 0 for 𝑡 ≤ 𝑇𝜃, 

(𝑳𝑳𝑭𝒕
𝜽)    𝑥𝑡

𝜃 ≥ 0 for 𝑡 ≤ 𝑇𝜃. 

The principal’s expected payoff from a contract 𝜛𝜃 offered to an agent of type 𝜃, that 

satisfies the above constraints, is given by 

𝜋𝜃(𝜛𝜃, 1⃗⃗) = 𝛽0
𝜃 ∑ (1 − 𝜆)𝑡−1 [𝜆 (𝑉(𝑞𝑆) − 𝑤𝑡

𝜃(𝑐)) − (1 − 𝜆)𝑤𝑡
𝜃(𝑐𝑡+1

𝜃 )]𝑇𝜃

𝑡=1   

 
23 Bankruptcy laws and minimum wage laws are well-known examples of legal restrictions on transfers that 

exemplify limited liability in contracts. See, e.g., Krähmer and Strausz (2015) for more examples.  Note that the 

agent is not protected off the equilibrium path.  Thus, this is not a constraint representing the agent’s wealth.   

Without limited liability, the principal can receive first best profit since success during experimentation is a random 

event correlated with the agent’s type (Crémer-McLean (1985)). To streamline the presentation, we assume the 

transfers must cover expected cost. This is reminiscent of the well-known cost-plus contracts in the procurement 

literature.  
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+(1 − 𝛽0
𝜃 + 𝛽0

𝜃(1 − 𝜆)𝑇𝜃
)𝑉(𝑞𝐹) − (1 − 𝛽0

𝜃)∑ 𝑤𝑡
𝜃(𝑐𝑡+1

𝜃 )𝑇𝜃

𝑡=1 . 

Thus, the principal’s objective function is: 

𝛦𝜃𝜋𝜃(𝜛𝜃, 1⃗⃗) = 𝜈𝜋𝐻(𝜛𝐻 , 1⃗⃗) + (1 − 𝜈)𝜋𝐿(𝜛𝐿, 1⃗⃗). 

To summarize, the timing is as follows: 

1. The agent learns his type 𝜃. 

2. The principal offers a contract to the agent. If the agent rejects the contract, the game is 

over and both parties get payoffs normalized to zero; if the agent accepts the contract, the game 

proceeds to the experimentation stage with maximum duration as specified in the contract. 

3. The experimentation stage begins. 

4. If the agent learns that 𝑐 = 𝑐, the experimentation stage stops, and the production stage 

occurs with output and transfers as specified in the contract.  In case no success is observed 

during the entire experimentation stage, the production stage occurs with output and transfers as 

specified in the contract. 

2.5. The First Best Benchmark 

Suppose the agent’s type 𝜃 is common knowledge before the principal offers the contract 

and, in addition, the agent’s effort choice is publicly observable.  The first-best solution is found 

by maximizing the expected surplus net of costs denoted by 

                Ω𝜃 = 𝛽0
𝜃 ∑ (1 − 𝜆)𝑡−1𝜆[𝑉(𝑞𝑆) − 𝑐𝑞𝑆 − ∑ 𝛾𝑡

𝑠=1 ]𝑇𝜃

𝑡=1   

+(1 − 𝛽0
𝜃 + 𝛽0

𝜃(1 − 𝜆)𝑇𝜃
) [𝑉(𝑞𝐹) − 𝑐

𝑇𝜃+1
𝜃 𝑞𝐹 − ∑ 𝛾𝑇𝜃

𝑠=1 ].  

Since the expected cost is rising until success is obtained, the first-best solution is 

characterized by a termination date 𝑇𝐹𝐵
𝜃 , the maximum number of periods an agent of type 𝜃 is 

allowed to experiment: 

𝑇𝐹𝐵
𝜃 ∈ 𝑎𝑟𝑔 max

𝑇𝜃
Ω𝜃. 

Note that 𝑇𝐹𝐵
𝜃  is bounded and it is the highest 𝑡𝜃 such that 

𝛽
𝑡𝜃
𝜃 𝜆[𝑉(𝑞𝑆) − 𝑐𝑞𝑠] + (1 − 𝛽

𝑡𝜃
𝜃 𝜆)[𝑉(𝑞𝐹) − 𝑐

𝑡𝜃+1
𝜃 𝑞𝐹] ≥ 𝛾 + [𝑉(𝑞𝐹) − 𝑐

𝑡𝜃
𝜃 𝑞𝐹]. 
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The intuition is that, by extending the experimentation stage by one additional period, the agent 

of type 𝜃 can learn that 𝑐 = 𝑐 with probability 𝛽
𝑡𝜃
𝜃 𝜆.  If the agent succeeds in any 𝑡𝜃, 𝑞𝑠 is 

produced.  The transfer to the agent covers the actual cost, and no rent is given to the agent.  In 

case the agent fails in the entire experimentation stage, 𝑞𝐹 is produced.  The transfer covers the 

expected cost, and no expected rent is given to the agent. 

Note that the first-best termination date of the experimentation stage 𝑇𝐹𝐵
𝜃  is a monotonic 

function of the agent’s type.24  The reason is that the high type is more likely to learn 𝑐 = 𝑐 

(conditional on the actual cost being low) since 𝛽𝑡
𝐻𝜆 > 𝛽𝑡

𝐿𝜆 for any 𝑡.  This implies that the 

principal should allow the high type to experiment longer.  As is standard, we assume that it is 

always optimal to experiment at least once in the first-best case, where the principal observes 

effort and knows 𝛽0
𝜃.25  This restriction does not apply in the optimal contract under asymmetric 

information, where the principal is free to choose not to experiment.   

3. Optimal Contracts 

3.1. Pure Adverse Selection (No Moral Hazard) 

In this section, we consider the benchmark under pure adverse selection without moral 

hazard.  Thus, we assume for now that the agent privately knows his type, but his effort choice is 

public and that 𝑒𝑡
𝜃 = 1 for all 𝑡 ≤ 𝑇𝜃.  Since effort is observable, the principal pays for the cost 

of experimentation 𝛾 in each period directly as in the first best case.  The key new feature 

relative to a standard adverse selection problem is that both incentive compatibility constraints 

can be binding because experimentation introduces a common value problem.  As a result, the 

principal may choose to over-experiment and reward failure. 

Next, we present the principal’s optimization problem.  Recalling that 𝑃𝑡
𝜃 = 1 − 𝛽0

𝜃 +

𝛽0
𝜃(1 − 𝜆)𝑡, the principal chooses the contracts 𝜛𝐻 and 𝜛𝐿 to maximize 

𝐸𝜃 {Ω𝜃 − 𝛽0
𝜃 ∑ (1 − 𝜆)𝑡−1𝜆𝑦𝑡

𝜃𝑇𝜃

𝑡=1 − ∑ 𝑃𝑡
𝜃𝑥𝑡

𝜃𝑇𝜃

𝑡=1 } s.t. 

 
24 This is different from Halac et al. (2016) and Khalil et al. (2020), where the first-best termination date is non-

monotonic in type and plays a key role.  The reason for the non-monotonicity in those papers is that agent’s type is 

given by 𝜆, and the conditional probability of success is higher for the high type early but becomes lower as the 

length of experimentation increases. 
25 In particular, we assume that the principal would not choose 𝑞𝑆 without experimenting. 
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(𝐼𝐶𝐻,𝐿) 𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1𝜆𝑦𝑡

𝐻𝑇𝐻

𝑡=1 + ∑ 𝑃𝑡
𝐻𝑥𝑡

𝐻𝑇𝐻

𝑡=1  

≥ 𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1𝜆𝑦𝑡

𝐿𝑇𝐿

𝑡=1 + ∑ 𝑃𝑡
𝐻𝑥𝑡

𝐿𝑇𝐿

𝑡=1 + 𝑃
𝑇𝐿
𝐻 ∆𝑐𝑇𝐿+1𝑞𝐹, 

(𝐼𝐶𝐿,𝐻) 𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1𝜆𝑦𝑡

𝐿𝑇𝐿

𝑡=1 + ∑ 𝑃𝑡
𝐿𝑥𝑡

𝐿𝑇𝐿

𝑡=1  

≥ 𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1𝜆𝑦𝑡

𝐻𝑇𝐻

𝑡=1 + ∑ 𝑃𝑡
𝐿𝑥𝑡

𝐻𝑇𝐻

𝑡=1 − 𝑃𝑇𝐻
𝐿 ∆𝑐𝑇𝐻+1𝑞𝐹, 

(𝐿𝐿𝑆𝑡
𝜃) 𝑦𝑡

𝜃 ≥ 0 for 𝑡 ≤ 𝑇𝜃, 

(𝐿𝐿𝐹𝑡
𝜃) 𝑥𝑡

𝜃 ≥ 0 for 𝑡 ≤ 𝑇𝜃 for 𝜃 = 𝐿,𝐻. 

In this benchmark without moral hazard, it is only when experimentation fails all 𝑇𝜃 

times that the principal and a lying agent have asymmetric assessments of expected cost of 

production. If an agent experiences success before the terminal date, 𝑇𝜃, the true cost 𝑐 = 𝑐 is 

publicly revealed. 

3.1.1. Both (IC) may be binding 

The (𝐼𝐶𝐻,𝐿 ) is binding, which is typical in adverse selection models.  Since a low type 

must be given at least his expected cost following failure, a high type will have lower expected 

costs if he lies and experimentation fails in all periods, that is, 𝑐𝑇𝐿+1
𝐻 < 𝑐𝑇𝐿+1

𝐿 .  He will have to be 

given a rent of 𝑃𝑇𝐿
𝐻 ∆𝑐𝑇𝐿+1𝑞𝐹 to truthfully report his type and (𝐼𝐶𝐻,𝐿) is binding. 

Less typical for adverse selection models is that (𝐼𝐶𝐿,𝐻) might be binding as well.  The 

reason is that experimentation leads to a common value problem since the agent’s type 𝛽0
𝜃 

directly enters the principal’s objective function by determining the probability of success and 

failure.26  As is well known, in a common value setting like ours, both incentive compatibility 

constraints can be binding because of a conflict between the principal’s preference for the high 

type to experiment longer for pure efficiency reasons and the monotonicity condition imposed by 

asymmetric information.27  

 
26 We would also have a common value problem if the asymmetric information was about the probability of success, 

𝜆, when the cost is low.  
27 See, e.g., Laffont and Martimort (2002), page 53. Experimentation introduces two key features to the standard 

adverse selection problem.  Besides the common value problem mentioned above, note also that the difference in 

expected costs Δ𝑐𝑇, that determines the incentive to misreport, depends on the termination date 𝑇, which is 

endogenous in our model. 
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To understand why the low type might be interested in pretending to be the high type, 

i.e., (𝐼𝐶𝐿,𝐻) might be binding, note that misreporting is a gamble for the low type with his payoff 

depending on the outcome of experimentation.  If the low type lies about his type, he has a 

chance to obtain the high-type’s rent 𝑃
𝑇𝐿
𝐻 ∆𝑐𝑇𝐿+1𝑞𝐹 if experimentation succeeds.  This is the 

benefit of lying for the low type.  But he will incur an expected loss in the production stage if 

experimentation fails 𝑇𝐻 times since 𝑐
𝑇𝐻+1
𝐿 > 𝑐

𝑇𝐻+1
𝐻 .  This is the cost of lying for the low type 

represented by 𝑃
𝑇𝐻
𝐿 ∆𝑐𝑇𝐻+1𝑞𝐹 on the 𝑅𝐻𝑆 of (𝐼𝐶𝐿,𝐻). The low type’s gamble is positive if the 

benefit is higher than the cost.  

We provide sufficient conditions for (𝐼𝐶𝐿,𝐻) to be binding in Supplementary Appendix 

A.  Specifically, we show that (𝐼𝐶𝐿,𝐻) is binding if 𝜆 is high. To understand the reason, note that 

both the benefit and the cost of lying for the low type are decreasing in the duration of 

experimentation. That is, 𝑃𝑇𝐿
𝐻 ∆𝑐𝑇𝐿+1 is decreasing in 𝑇𝐿 and 𝑃𝑇𝐻

𝐿 ∆𝑐𝑇𝐻+1 is decreasing in 𝑇𝐻. 

Then, if 𝜆 is high (each experiment changes ∆𝑐𝑡 significantly), then the monotonicity condition 

implied by the two binding incentive compatibility constraints yields 𝑇𝐿 > 𝑇𝐻. 28  This is in 

contradiction with the first-best order for the termination periods, 𝑇𝐻 ≥ 𝑇𝐿 , as is often the case 

in common value problems.  

3.1.2. The optimal contract under pure adverse selection 

The optimal contract is presented in Proposition 1 and formally derived in Supplementary 

Appendix A. The principal has two tools to screen the agent: (i) the payment structure, and (ii) 

the length of the experimentation period. We first characterize them in the proposition below and 

then explain the intuition. 

 

 
28 To see the intuition why the gamble is positive for the low type when 𝜆 is high, consider first the case where 𝜆 →
0.  In that case, there is no experimentation, and our model becomes the standard second-best problem where the 

low type does not want to pretend to be the high type (see our sufficient condition for (𝐼𝐶𝐿,𝐻) to be slack in 

Supplementary Appendix A).  Next consider the other extreme case where 𝜆 → 1.  In Supplementary Appendix A, 

we show that the (𝐼𝐶𝐿,𝐻) requires that  

0 ≥ 𝛽0
𝐿 [

𝑃
𝑇𝐿
𝐻 ∆𝑐

𝑇𝐿+1
𝑞𝐹

𝛽0
𝐻 ] − 𝑃

𝑇𝐻
𝐿 ∆𝑐𝑇𝐻+1𝑞𝐹, which can be rewritten as (1 − 𝜆)𝑇𝐻−𝑇𝐿

≥

𝛽0
𝐿

(1−𝛽0
𝐿)

𝛽0
𝐻

(1−𝛽0
𝐻)

∈ (0,1).  Maintaining the 

first-best order 𝑇𝐻>𝑇𝐿 , the gamble becomes positive when 𝜆 → 1, and the low type wants to pretend to be a high 

type.  
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Proposition 1. The optimal contract under adverse selection (no moral hazard)  

(i) If both (𝐼𝐶𝐻,𝐿) and (𝐼𝐶𝐿,𝐻) are binding, the high type is rewarded only after success (𝑥𝑡
𝐻 = 0 

for 𝑡 ≤ 𝑇𝐻 and 𝑦𝑡
𝐻 > 0 for some 𝑡 ≤ 𝑇𝐻), while the low type is rewarded only after failure in the 

last period (𝒙
𝑻𝑳
𝑳 > 𝟎 = 𝑥𝑡

𝐿 for 𝑡 < 𝑇𝐿 and 𝑦𝑡
𝐿 = 0 for 𝑡 ≤ 𝑇𝐿).  If only (𝐼𝐶𝐻,𝐿) is binding, the low 

type receives no rent and there is no restriction on when to reward the high type to pay his rent. 

(ii) Relative to the first best, the low type strictly over-experiments, while the high type weakly 

under-experiments (strictly, when both the incentive compatibility constraints are binding). 

Proof: See Supplementary Appendix A. 

The key findings regarding payments are derived when both incentive compatibility 

constraints bind, which we prove to be the case when 𝜆 is high.  The principal must reward the 

high type only after success and the low type only after failure in the very last period.  Therefore, 

in the absence of moral hazard, we find that dynamic screening of the agent’s types can lead the 

principal to reward failure.   

Screening requires rewarding each type for an event that is relatively more likely to occur 

given the type, which is success for the high-type and failure for the low-type, respectively.29  

Furthermore, because the relative probability of failure 
𝑃𝑡

𝐿

𝑃𝑡
𝐻 is increasing in 𝑡, it is optimal to 

postpone the low-type’s reward to the very last period of the relationship, 𝑥𝑇𝐿
𝐿 > 0, making it less 

likely for a (misreporting) high type to obtain it.  However, it does not matter when the principal 

rewards success as the relative likelihood of success is independent of time: 

𝛽0
𝐿(1−𝜆)𝑡−1𝜆

𝛽0
𝐻(1−𝜆)𝑡−1𝜆

=
𝛽0

𝐿

𝛽0
𝐻 for every 𝑡 ≤ 𝑇𝐿. 

If only (𝐼𝐶𝐻,𝐿) is binding, the rent to the low type is zero, and we show that the principal 

can use any combination of 𝑦𝑡
𝐻 and 𝑥𝑡

𝐻 to pay the rent to the high type as long as (𝐼𝐶𝐻,𝐿) is 

satisfied, i.e., 

𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1𝜆𝑦𝑡

𝐻𝑇𝐻

𝑡=1 + ∑ 𝛿𝑡𝑇𝐻

𝑡=1 𝑃𝑡
𝐻𝑥𝑡

𝐻 = 𝑃𝑇𝐿
𝐻 ∆𝑐𝑇𝐿+1𝑞𝐹. 

 
29 The relative probability of failure is given by 

𝑃𝑡
𝐿

𝑃𝑡
𝐻 > 1 for all 𝑡. The relative probability of success is given by 

𝛽0
𝐿(1−𝜆)𝑡−1𝜆

𝛽0
𝐻(1−𝜆)𝑡−1𝜆

=
𝛽0

𝐿

𝛽0
𝐻 < 1, which is independent of 𝑡, for any 𝑡 ∈ 𝑁. 
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The principal can also use the length of experimentation to screen the types.  We first 

note that the positive part of rent for each type is determined by the high-type’s rent, given by 

𝑃𝑇𝐿
𝐻 ∆𝑐𝑇𝐿+1𝑞𝐹, which we prove to be decreasing in 𝑇𝐿.  Thus, it is optimal to distort 𝑇𝐿 above the 

first-best level, which leads to over experimentation.  When (𝐼𝐶𝐿,𝐻) is also binding, the cost of 

lying for a low type is given by 𝑃𝑇𝐻
𝐿 ∆𝑐𝑇𝐻+1𝑞𝐹, which is shown to be decreasing in 𝑇𝐻.  Thus, the 

principal optimally under-experiments by distorting 𝑇𝐻 below its first-best level.30   

3.2. Pure Moral Hazard (No Adverse Selection) 

In this section, we present a pure moral hazard benchmark by assuming that the agent’s 

type 𝜃 is commonly known but his effort choice is private.  To simplify notation, we omit the 

superscript 𝜃 in this section.  The key new feature in our model relative to the standard dynamic 

moral hazard problem is that the agent receives rent during the production stage.  Besides the 

standard moral hazard rent during experimentation, there will be a second moral hazard rent at 

the production stage since a shirking agent will have a lower expected cost compared to what the 

principal believes.  This second moral hazard rent has two effects in this model. First, it makes 

the separation of experimentation and production optimal which we will explain in Section 4. 

Second, as we explain in this section, the second rent leads to a greater degree of under-

experimentation than in moral hazard models without a production stage.  Unsurprisingly, we 

also show that it is not optimal to reward failure in a pure moral hazard model. 

The agent’s expected utility from accepting contract 𝜛 at time zero while exerting an 

effort profile 𝑒 is 

𝑈(𝜛, 𝑒) = (1 − 𝛽0) ∑ [𝑥𝑡 − 𝛾𝑒𝑡]
𝑇
𝑡=1 + 𝛽0 ∑ [∏ (1 − 𝜆𝑒𝑠)

𝑡−1
𝑠=1 ][𝑒𝑡(𝜆𝑦𝑡 − 𝛾) + (1 − 𝜆𝑒𝑡)𝑥𝑡]

𝑇
𝑡=1 . 

The principal’s optimization problem in this case, denoted by ℙ𝑀, becomes the following: 

[ℙ𝑀]      𝑚𝑎𝑥
𝜛

𝜋(𝜛, 1⃗⃗) subject to 

(𝑀𝐻)      1⃗⃗ ∈ 𝑎𝑟𝑔 max
𝑒

𝑈(𝜛, 𝑒), 

(𝐿𝐿𝑆𝑡)     𝑦𝑡 ≥ 0 for 𝑡 ≤ 𝑇, 

(𝐿𝐿𝐹𝑡)     𝑥𝑡 ≥ 0 for 𝑡 ≤ 𝑇. 

 
30 As there is over-experimentation in 𝑇𝐿, we also require 𝜈 to be small when providing the sufficient conditions. 
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3.2.1. A production stage rent due to moral hazard 

Before we present the solution to the principal’s optimization problem, we argue that the 

global moral hazard constraint (𝑀𝐻) can be replaced by with a sequence of local one-period 

moral hazard constraints (𝑀𝐻𝑡).  Consider the agent’s incentives to engage in a one-shot 

deviation and shirk at period 𝑡 ≤ 𝑇, assuming that the agent has worked in all prior periods 𝑗 < 𝑡 

without success and will work in all subsequent periods 𝑠 > 𝑡. The ensuing one-period moral 

hazard constraint (𝑀𝐻𝑡) at period 𝑡 can be written as: 

(𝑀𝐻𝑡)   𝑦𝑡 − 𝑥𝑡 ≥
𝛾

𝜆𝛽𝑡
+ ∑ (1 − 𝜆)𝑠−𝑡−1(𝜆𝑦𝑠 + (1 − 𝜆)𝑥𝑠 − 𝛾)𝑇

𝑠=𝑡+1 +
(1−𝛽0)(1−𝜆)𝑇−𝑡

𝑃𝑇
Δ𝑐𝑞𝐹. 

The principal can motivate the agent to work by paying a reward for success (𝑦𝑡), but it 

should be intuitive from (𝑀𝐻𝑡) that there is no reason to pay the agent after failure (𝑥𝑡 = 0).   

Next, we argue that if it is unprofitable for the agent to shirk only once, then it is not 

optimal to shirk in several periods either.  If the (𝑀𝐻𝑡) constraint is satisfied in period 𝑡, the 

agent prefers to work in this period rather than shirk.  If the agent has shirked in a preceding 

period, he can be only more optimistic as he has perceived fewer failures, so he strictly prefers to 

work.  If he plans to deviate in a future period 𝑡̂ > 𝑡, his continuation value from shirking in 

period 𝑡 can only go down since then he is more likely to get to period 𝑡̂ without success and 

receive 𝑥𝑡̂.   

The first two terms on the RHS of (𝑀𝐻𝑡) capture a standard rent in a dynamic model of 

experimentation without production (see, e.g., Bergemann and Hege (1998)).31 The third term is 

novel and represents the second moral hazard rent for the agent.  The reason is that the shirking 

agent will be more optimistic than the principal that the cost of production is low when 

experimentation fails overall.  The principal’s belief is based on one more period of working 

compared to that of a shirking agent.  Thus, the shirking agent has a lower expected cost: 𝑐𝑇 =

𝑐𝑇+1 − (𝛽𝑇 − 𝛽𝑇+1)Δ𝑐 < 𝑐𝑇+1, and he will receive an additional production stage rent as a 

result. 

 
31 The first term is a static moral hazard rent. The second term is an additional rent due to beliefs regarding the 

quality of the project being updated every period. When the agent deviates at period 𝑡, he knows that a failure at this 

period should not change beliefs regarding the project's quality. However, if this deviation is not observed by the 

principal, she will update her belief and become more pessimistic regarding the project. Thus, the agent must be 

compensated for his cost of effort and for the asymmetry of information (beliefs) he can create by shirking.  
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3.2.2. The optimal contract under pure moral hazard 

In the optimal contract, the agent receives a positive moral hazard rent that is increasing 

in 𝑇.  As a result, the principal terminates experimentation inefficiently early.  We characterize 

the optimal contract in Proposition 2 below. 

Proposition 2. The optimal contract with moral hazard (no adverse selection) 

(i) The agent receives two moral hazard rents: a standard rent in the experimentation stage and 

a second rent in the production stage.  The agent is rewarded only after success, and the optimal 

reward 𝑦𝑡 is constant for 𝑡 ≤ 𝑇: 

𝑦𝑡 =
𝛾

𝜆𝛽𝑇
+

(1−𝛽0)

𝑃𝑇
𝛥𝑐𝑞𝐹, where 

𝛾

𝜆𝛽𝑇
=

𝛾

𝜆𝛽𝑡
+ 𝛾 ∑

(1−𝛽0)

𝛽0(1−𝜆)𝑡+𝑠−1
𝑇−𝑡
𝑠=1 . 

(ii) The agent under-experiments relative to the first best. 

Proof: See Supplementary Appendix B. 

As noted above, the term 
𝛾

𝜆𝛽𝑇
 represents the standard moral hazard rent in a dynamic 

model of experimentation without production.  The standard rent has two parts, where 
𝛾

𝜆𝛽𝑡
 

addresses the static gain, and 𝛾 ∑
(1−𝛽0)

𝛽0(1−𝜆)𝑡+𝑠−1
𝑇−𝑡
𝑠=1  is the rent coming from a higher probability of 

collecting future moral hazard rents (than the principal expects in equilibrium).32  The term 

(1−𝛽0)

𝑃𝑇
Δ𝑐𝑞𝐹 is what we called the second moral hazard rent and it stems from the shirking agent 

having a lower expected cost of production than the principal expects in equilibrium. 

3.3. General Case: Adverse Selection and Moral Hazard 

We now return to the general case with both moral hazard and adverse selection. The 

optimal contract must satisfy the moral hazard (𝑀𝐻𝑡
𝜃) and incentive compatibility (𝐼𝐶𝜃,𝜃̂) 

constraints for all 𝜃 and 𝜃.  Note that the moral hazard problem is also implicitly reflected in the 

(𝐼𝐶𝜃,𝜃̂) constraints, which requires characterizing off-equilibrium effort on the 𝑅𝐻𝑆 of these 

constraints. A key result of this section is that, even when the principal must address moral 

hazard, it remains optimal to reward the low type for failure when the impact of the adverse 

selection problem is significant.  

 
32 Note that 𝑦𝑡 is constant for 𝑡 ≤ 𝑇 because we assume there is no discounting. Then, the optimal contract is unique 

up to payoff-irrelevant alteration. A similar reward structure holds in Halac et al. (2016) who argue that in the case 

of no discounting, the principal can be restricted to using constant bonus contracts.  See also Rodivilov (2022). 
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3.3.1. Off the equilibrium path efforts 

A key issue in a mixed model is characterizing off the equilibrium efforts, which we 

discuss next. 33  Consider the low type’s off-equilibrium effort level 𝑎⃗𝐿(𝜛𝐻). We find that it is 

not optimal for the low type to work in every period if he claims being a high type. We prove in 

Lemma C1 in Appendix C that if the low type misreports, he works for 𝑡𝐿,𝐻 ≤ 𝑇𝐻 periods and 

shirks in other periods.34 The first reason for this result is standard in a mixed model – a payment 

that makes a high-type agent work may be not sufficient to induce a low type to work as well.  

This is because, after misreporting his type, the low type is more pessimistic than the high type 

and less likely to collect promised rewards after success.35  The second reason is specific to our 

model with a production stage with endogenous asymmetric information.  Recall that the low 

type has a relatively higher expected cost than the high type if experimentation fails in all 

periods.  Since rent at the production stage for the lying low type depends on the high type’s 

expected cost after failure, it does not provide incentives for the lying low type to work.36  

Next, consider the high type’s off-equilibrium effort level 𝑎⃗𝐻(𝜛𝐿). We show that the 

high type finds it optimal to never shirk if he claims being low.  We prove this in Lemma C2 in 

Appendix C.  Again, one reason is standard from a mixed model – a payment that makes a low 

type to work, will be enough to induce a high type to work as well.  This is because, after 

misrepresenting his type, the high type is less pessimistic than the low type and more likely to 

collect promised rewards after success.  The second reason also favors working by the high type 

off the equilibrium path as his expected cost is relatively lower compared to the low type’s when 

experimentation fails in all periods.  Since rent at the production stage for the lying high type 

 
33 A similar result is not easily available in Halac et al. (2016) as the agent’s private information is about 𝜆 the 

efficiency of learning parameter.  In that case, the relative probability of success between the two types changes in 

ranking over time.  As a result, the authors provide examples that it is possible to have multiple off-equilibrium 

paths for effort in the optimal contract. 
34 Note that we have weak inequality 𝑡𝐿,𝐻 ≤ 𝑇𝐻 since time is discrete. It is possible that the low type shirks off-the-

equilibrium in all periods, i.e., 𝑡𝐿,𝐻 = 0.  
35 It is without loss of generality to consider an off-the-equilibrium effort path where 𝑎⃗𝐿(𝜛𝐻) is a stopping rule: the 

low type works up to period 𝑡𝐿,𝐻 ≤ 𝑇𝐻 and shirks thereafter.  The reason is that (i) all the rewards for success are 

identical and, (ii) the low type’s probability of success in any period and the expected cost after failure depends on 

the total number of failures up to that period (not on when those failures occurred). 
36 The payment after failure for the high type must cover his expected cost 𝑐

𝑇𝐻+1
𝐻 . If the low type works in every 

period after misrepresenting his type, he is more pessimistic than the high type if experimentation fails in all periods, 

i.e., 𝑐
𝑇𝐻+1
𝐿 > 𝑐

𝑇𝐻+1
𝐻 . Therefore, anticipating a smaller payment relative to his expected cost, the low type may not 

find it attractive working in every period off-equilibrium. 
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depends on the low type’s expected cost after failure, it provides incentives for the lying high 

type to work.37  

3.3.2. Optimal payment structure with both moral hazard and adverse selection 

Having characterized off-the-equilibrium behavior for both types, we now discuss how 

the interaction between moral hazard and adverse selection affects optimal payments. We find 

that despite the presence of moral hazard, it may be optimal to reward the low type for failure 

due to the impact of adverse selection.   

We highlight the impact of adverse selection on the optimal payments in the presence of 

moral hazard, and we outline our key findings in Proposition 3 below.  Then, we discuss the 

optimal length of experimentation in Proposition 4. 

If the moral hazard problem is relatively more important than the adverse selection 

problem, the reward required after success could be so high that neither incentive compatibility 

constraint binds.  The agent is only rewarded for success as in the pure moral hazard benchmark 

of Proposition 2.  Specifically, the agent is paid just enough to satisfy (𝑀𝐻𝑡
𝜃) as equalities.   

At the other extreme, if adverse selection is the relatively more important problem and 

creates a common value problem, merely satisfying the (𝑀𝐻𝑡
𝜃) as equalities with only payments 

after success is not enough to satisfy either incentive constraint.38  Then, both (𝐼𝐶𝐻,𝐿) and 

(𝐼𝐶𝐿,𝐻) are binding.  An additional screening rent needs to be paid to each type on top of the 

rewards after success due to moral hazard.   

The interesting question is when the principal should allocate this additional screening 

rent.  Along with choosing the timing to minimize the screening cost, the principal has to ensure 

that each type has incentive to work in each period.  Recall from the pure adverse selection case 

of Section 3.1 that the relative probability of success for the low type is independent of type 

 
37 The payment after failure for the low type must cover his expected cost 𝑐

𝑇𝐿+1
𝐿 . If the high type works in every 

period after misrepresenting his type, he is more optimistic than the low type if experimentation fails in all periods, 

i.e., 𝑐
𝑇𝐿+1
𝐻 < 𝑐

𝑇𝐿+1
𝐿 . Therefore, the payment for failure that covers the low type’s expected cost also covers the high 

type’s cost. 
38 We present formal sufficient conditions for both IC binding in Supplementary Appendix F.  They are analogous to 

those we found under pure adverse selection except that we must now account for moral hazard.  Again, we show 

that both IC are binding when 𝜆 is high enough, but also that 𝛾 is relatively small (compared to Δ𝑐) to minimize the 

relative impact of moral hazard compared to adverse selection.  We also derived sufficient conditions for the cases 

where only one or neither IC are binding and report them in Supplementary Appendix F. 



21 

 

while the relative probability of failure is increasing.  Thus, as in the benchmark of Proposition 

1, the additional screening rent is given to the high type only after success, while it is given to 

the low type only after failure in the last period:39   

𝑥𝑡
𝐻 = 0 for 𝑡 ≤ 𝑇𝐻,  

𝑦𝑡
𝐻 ≥

𝛾

𝜆𝛽
𝑇𝐻
𝐻 +

(1−𝛽0
𝐻)

𝑃
𝑇𝐻
𝐻 𝛥𝑐𝑞𝐹 for 𝑡 ≤ 𝑇𝐻 (strict inequality for some t), 

𝒙
𝑻𝑳
𝑳 > 𝟎 = 𝑥𝑡

𝐿 for 𝑡 ≤ 𝑇𝐿. 

Of course, rewarding failure in the last period requires that the reward after success also 

be raised (by the same amount) not only in that last period:  

𝑦𝑇𝐿
𝐿 = 𝒙𝑻𝑳

𝑳 +
𝛾

𝜆𝛽𝑇𝐿
𝐿 +

(1 − 𝛽0
𝐿)

𝑃𝑇𝐿
𝐿  

Δ𝑐𝑞𝐹 , 

but also in the all the previous periods 𝑡 < 𝑇𝐿: 

𝑦𝑡
𝐿 =

𝛾

𝜆𝛽𝑡
𝐿 + ∑ (1 − 𝜆)𝑠−𝑡−1(𝜆𝑦𝑠

𝐿 − 𝛾)𝑇𝐿

𝑠=𝑡+1 + (1 − 𝜆)𝑇𝐿−𝑡𝒙𝑻𝑳
𝑳 +

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿  

Δ𝑐𝑞𝐹 ,  

which increases the payments 𝑦𝑡
𝐿 strictly above the optimal pure payments in each period under 

pure moral hazard: 
𝛾

𝜆𝛽
𝑇𝐿
𝐿 +

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿 𝛥𝑐𝑞𝐹.  That is, the low-type agent must be given extra 

incentives to work in each period since he is now rewarded for failure in the last period.  The 

benefit of rewarding failure comes from better screening of the two types. 

The other two cases where only one incentive compatibility constraint binds are 

intermediate.  In each case, rewards are paid only after success, and the additional screening rent 

for the type with the binding incentive constraint implies that his moral hazard constraints can be 

satisfied ‘for free’.  For the type whose incentive constraint is not binding, all the moral hazard 

constraints are binding.40 

 
39 For example, it is without loss of generality to pay the extra rent to the high type after the very first success, i.e., 

front load the extra rent. 

40 If only (𝐼𝐶𝐿,𝐻) binds 𝑥𝑡
𝐻 = 0, 𝑦𝑡

𝐻 =
𝛾

𝜆𝛽
𝑇𝐻
𝐻 +

(1−𝛽0
𝐻)

𝑃
𝑇𝐻
𝐻  

𝛥𝑐𝑞𝐹 for 𝑡 ≤ 𝑇𝐻.  If only (𝐼𝐶𝐻,𝐿) binds 𝑥𝑡
𝐿 = 0, 𝑦𝑡

𝐿 =
𝛾

𝜆𝛽
𝑇𝐿
𝐿 +

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿 𝛥𝑐𝑞𝐹 for 𝑡 ≤ 𝑇𝐿. 
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To summarize, we find that rewarding failure can be optimal despite the presence of the 

moral hazard constraints.  Because of moral hazard, success must always be rewarded but this 

reward may not be enough to satisfy the adverse selection constraints and additional rewards 

may be given after failure.   

 

Proposition 3. The optimal contract with both moral hazard and adverse selection:  

To address moral hazard, the principal must reward each type after success in every period 

(𝑦𝑡
𝜃 > 0 for 𝑡 ≤ 𝑇𝜃).  Furthermore, each type is paid an additional screening rent when his 

incentive compatibility constraint is binding.  If both (𝐼𝐶𝐿,𝐻) and (𝐼𝐶𝐻,𝐿) are binding, the high 

type receives his additional screening rent only after success, while the low type receives this 

extra screening rent only after failure in all periods. 

Proof: See Appendix C. 

 

Now we consider the optimal length of experimentation. 

Proposition 4: Optimal length of experimentation: 

Over-experimentation can occur whenever at least one incentive compatibility constraint is 

binding.  If only moral hazard constraints are binding, both types under experiment.   

Proof: See Appendix C. 

 

When both (𝐼𝐶𝐿,𝐻) and (𝐼𝐶𝐻,𝐿) are slack, the moral hazard rent for each type is 

sufficiently high so that neither type is interested in misreporting their type.  Such a case cannot 

occur under pure adverse selection.  Note that if the principal was not allowed to use the length 

of the experimentation stage as a screening variable, i.e., if we exogenously imposed 𝑇𝐻 = 𝑇𝐿 =

𝑇, then 𝑦𝑡
𝐻 < 𝑦𝑡

𝐿 for all 𝑡, and the high type would have incentives to misrepresent his type.41  

Because the high type would be attracted by the higher reward for success offered to the low 

type (𝑦𝑡
𝐿 > 𝑦𝑡

𝐻), (𝐼𝐶𝐻,𝐿) can only be slack if he is allowed to experiment longer (𝑇𝐻 > 𝑇𝐿).  As 

in the pure moral hazard case of Section 3.2, both types under-experiment to reduce the moral 

hazard rent. 

 
41 To see that 

𝛾

𝜆𝛽𝑇
𝐻 +

(1−𝛽0
𝐻)

𝑃𝑇
𝐻 

Δ𝑐𝑞𝐹 <
𝛾

𝜆𝛽𝑇
𝐿 +

(1−𝛽0
𝐿)

𝑃𝑇
𝑙  

Δ𝑐𝑞𝐹 note that 𝛽𝑇
𝐻 > 𝛽𝑇

𝐿 and 
(1−𝛽0

𝐻)

𝑃𝑇
𝐻 

<
(1−𝛽0

𝐿)

𝑃𝑇
𝑙  

. 
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When (𝐼𝐶𝐻,𝐿) constraint is slack, but (𝐼𝐶𝐿,𝐻) binding, only the low type is interested in 

pretending to be the high type.  This is the case if 𝑇𝐻 is sufficiently higher than 𝑇𝐿, so the low 

type benefits from lying since he has more chances to succeed during 𝑇𝐻 periods rather than 𝑇𝐿 

periods only.  Since the informational rent of the low-type agent is non-monotonic in 𝑇𝐻, it is 

possible, in general, to have over- or under-experimentation for the high type.  The stopping time 

for the low type, 𝑇𝐿, does not affect information rents and, as a result, is not distorted. 

When (𝐼𝐶𝐻,𝐿) binds and (𝐼𝐶𝐿,𝐻) is slack, only the high type is interested in pretending to 

be the low type.  This is the case if 𝑇𝐻 is not much higher than 𝑇𝐿, so only the high type benefits 

from misrepresenting.  This scenario is similar to that under a standard adverse selection problem 

except that the low type also receives a rent due to the moral hazard problem.  Since the 

informational rent of the high-type agent is non-monotonic in 𝑇𝐿, it is possible, in general, to 

have over- or under-experimentation for the low type.  The stopping time for the high type, 𝑇𝐻, 

does not affect information rents and, as a result, is not distorted.   

Finally, when both (𝐼𝐶) constraints are binding, it is possible to have under- or over-

experimentation for both types since the informational rent of both types is non-monotonic in the 

termination date of the other type,  

4. Is integrating experimentation and production optimal? 
In our model with experimentation and production, the interaction of adverse selection 

and moral hazard creates interdependent rents.  In a pure moral hazard model, the principal 

would prefer to employ two different agents, one for experimenting and one for producing.  She 

would then save what we have called the second moral hazard rent at the production stage.  This 

begs the question of whether integrating the two tasks, as in our main model, can be optimal due 

to the presence of adverse selection.   

A key benefit to the principal of integrating the two tasks is being able to use the adverse 

selection rent to induce effort, i.e., pay for the moral hazard rent.  We show that the principal is 

able to spread these rents across time to satisfy the dynamic moral hazard constraints.42  This 

benefit must be balanced against the cost of the second moral hazard rent when integrating.  We 

find that integration is optimal if the adverse selection problem (𝛽0
𝐻 far apart from 𝛽0

𝐿) is severe 

 
42 Since the relatively probability of success across types is time invariant, the distribution of the adverse selection 

rent does not impact the incentive to misreport. 
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enough relative to the moral hazard problem in experimentation.  We present below sufficient 

conditions for separation/integration to be optimal.  

Proposition 5: Sufficient Conditions for separation/integration: 

(i) Separation is optimal if the adverse selection problem is small enough (𝛽0
𝐻 is close to 𝛽0

𝐿). 

(ii) Integration is optimal if the adverse selection problem is severe enough (𝛽0
𝐻 is close to one 

and 𝛽0
𝐿 sufficiently close to zero) and 𝜈 is high enough. 

Proof: See Appendix D. 

To establish the above result, we can use a very simple extension of our model, where the 

principal outsources the experimentation task to a second agent (experimenter).  An ‘in-house’ 

agent (producer) still produces output based on what is learned publicly in the experimentation 

stage, and his private information about the likelihood of low cost, 𝛽0
𝜃.  We discuss alternative 

models of separation at the end of this section.  Before experimentation starts, the in-house 

producer is asked to publicly announce his type, based on which experimentation occurs.  The 

principal pays an adverse selection rent to the producer to induce truthful reporting.  However, 

the experimentation stage is a pure moral hazard problem, yielding only a standard moral hazard 

rent to the experimenter (based on a commonly known 𝛽0
𝜃).  

Since the principal saves the moral hazard rent at the production stage when she separates 

the two tasks, a key issue is the relative magnitude of this moral hazard rent at the production 

stage.  When this rent is small relatively to the adverse selection rent, the principal’s ability to 

use the adverse selection rent to satisfy moral hazard constraints dominates, and integration is 

optimal: for example, when the difference in cost Δ𝑐 is small relative to the difference between 

𝛽0
𝐻 and 𝛽0

𝐿.43 

A possible issue regarding the model of separation above is that we assume an in-house 

producer publicly pre-announces the type 𝛽0
𝜃.  We chose this benchmark for ease of comparison 

with the main model of integration.  Instead, we could assume that the production agent is 

brought in after experimentation ends and therefore cannot announce his type before 

experimentation starts.  Our key arguments regarding the optimality of integration would only 

 
43 As we show in our proofs, this basic intuition holds regardless of which IC is binding.   
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get stronger.  This would also be the case if the in-house producer privately announced his type 

𝛽0
𝜃 to the principal.  We briefly discuss these two sub-extensions next. 

Consider first that, under separation, experimentation occurs under a common prior, 

between the principal and the experimenter, that the cost of production is low with probability 

𝛽0.  There is now an additional cost of separation as the length of experimentation can no longer 

be based on the private information about 𝛽0
𝜃 of the (integrated) agent.  Next consider that the in-

house producer privately announces it type to the principal, who contracts with an outside 

experimenter.  In the interim, a principal’s incentive constraint (𝑃𝐼𝐶) would also have to be 

satisfied, which will again reduce the benefit of separation. 

5. Endogenous Output 
In this section, we allow the principal to choose output optimally after success and after 

failure, and she can now use output as another screening variable.  While our main findings 

continue to hold, output after failure can now be used as a screening device.  Thus, the key new 

results occur if the experimentation stage fails: the low type is asked to under-produce relative to 

the first best, while the high type might over-produce.  Just like over-experimentation, over-

production can be used to increase the cost of lying. 

When output is optimally chosen by the principal in the contract, the main change from 

the base model is that output after failure, which is denoted by 𝑞𝐹
𝜃, can vary continuously 

depending on the expected cost.  We can replace 𝑞𝐹 by 𝑞𝐹
𝜃 in the principal’s problem. 

We derive the formal output scheme in Supplementary Appendix E but present the 

intuition here.  When experimentation is successful, there is no asymmetric information and no 

reason to distort the output.  Both types produce the first best output.  When experimentation 

fails to reveal the cost, asymmetric information will induce the principal to distort the output to 

limit the rent.   

When both (𝐼𝐶𝐿,𝐻) and (𝐼𝐶𝐻,𝐿) are slack, both types under produce after failure. As 

would be the case in the pure moral hazard model with production (see Section 3.2), both types 

under-produce to reduce the moral hazard rent. 

When the (𝐼𝐶𝐻,𝐿) constraint is slack, but (𝐼𝐶𝐿,𝐻) binding, it is possible, in general, to 

have over- or under-experimentation for the high type.  The reason is that the informational rent 
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of the low-type agent is non-monotonic in 𝑇𝐻.  The output for the low type, 𝑞𝐹
𝜃, does not affect 

information rents and, as a result, is not distorted. The high type, however, might be asked to 

over produce. This is the case if the low type is more pessimistic after misreporting and failing 

experimentation. Over-production is, therefore, used to increase the cost of the lying low type. 

When the (𝐼𝐶𝐻,𝐿) binds and (𝐼𝐶𝐿,𝐻) is slack, the low type is asked to under-produce in 

order to limit the rent of the high type. The output for the high type, 𝑞𝐹
𝜃, does not affect 

information rents and, as a result, is not distorted.   

When both (𝐼𝐶) constraints are binding, the low type under produces to limit the rent of 

the high type.  Like the case when only (𝐼𝐶𝐻,𝐿) binds, the high type might be asked to over 

produce to increase the cost of the lying low type. 

6. Conclusions 
We presented a dynamic model of strategic experimentation with both moral hazard and 

adverse selection.  Technically, such a mixed model of experimentation can become quickly 

intractable with off the equilibrium path effort hard to characterize.44  We offer a tractable model 

to provide an explanation for the co-existence of both high and low-powered incentive schemes, 

which is used in practice to spur innovative activity.  We find that, while moral hazard always 

leads the principal to reward success in experimentation, adverse selection may induce the 

principal to reward failure.  The reason is that rewarding failure allows the principal to 

dynamically screen the agents, and it remains optimal even in the presence of moral hazard. 

We also find that the principal may prefer to integrate experimentation and production by 

employing one agent for both.  We show that the standard model of experimentation, where 

experimentation is studied in isolation without a production stage, is valid as long as adverse 

selection during experimentation is not a significant concern. Integration of experimentation and 

production allows the principal to use the adverse selection rent to incentivize the agent to work.  

By distributing the adverse selection rent optimally, the principal can alleviate the moral hazard 

constraints.  This is the case if the adverse selection problem is severe enough relative to moral 

hazard or, equivalently, if the adverse selection rent is high. 

 
44 If the adverse selection lies in the probability of success, as in Halac et al. (2016), the relative probability of 

success between the two types changes in ranking over time. 
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Appendix C: Proof of Propositions 3 and 4 
Proof: We first characterize the optimal payment structure (Proposition 3), and then the optimal 

length of experimentation (Proposition 4).  

The principal’s optimization problem is to choose contracts 𝜛𝜃for 𝜃 ∈ {𝐻, 𝐿} to 

maximize 

𝐸𝜃 {Ω𝜃 − 𝛽0
𝜃 ∑ (1 − 𝜆)𝑡−1𝜆𝑦𝑡

𝜃𝑇𝜃

𝑡=1 − ∑ 𝑃𝑡
𝜃𝑥𝑡

𝜃𝑇𝜃

𝑡=1 } s.t. 

(𝐼𝐶𝜃,𝜃̂)    𝑈𝜃(𝜛𝜃, 1⃗⃗) ≥ 𝑈𝜃 (𝜛𝜃̂, 𝑎⃗𝜃(𝜛𝜃̂)), 

(𝑀𝐻𝑡
𝜃) 𝑦𝑡

𝜃 − 𝑥𝑡
𝜃 ≥

𝛾

𝜆𝛽𝑡
𝜃 + ∑ (1 − 𝜆)𝑠−𝑡−1(𝜆𝑦𝑠

𝜃 + (1 − 𝜆)𝑥𝑠
𝜃 − 𝛾)𝑇𝜃

𝑠=𝑡+1 +
(1−𝛽0

𝜃)

𝑃
𝑇𝜃
𝜃 Δ𝑐𝑞𝐹 for 𝑡 ≤ 𝑇𝜃, 

(𝐿𝐿𝑆𝑡
𝜃)    𝑦𝑡

𝜃 ≥ 0 for 𝑡 ≤ 𝑇𝜃, 

(𝐿𝐿𝐹𝑡
𝜃)    𝑥𝑡

𝜃 ≥ 0 for 𝑡 ≤ 𝑇𝜃. 

Note that with the moral hazard constraints all the (𝐿𝐿𝑆𝑡
𝐻) and (𝐿𝐿𝑆𝑡

𝐿) constraints are 

automatically satisfied and, therefore, can be ignored.  When 𝑒𝜃 = 1⃗⃗, the notation for the 

expected costs in the (𝐼𝐶𝜃,𝜃̂) constraint is 𝑐
𝑇𝜃+1
𝜃 .  When the agent lies about his type and 

possibly shirks, we need to introduce a new notation.  On the RHS of (𝐼𝐶𝐻,𝐿) we label the effort 

chosen by the agent in each period 𝑠 as 𝑒𝑠
𝐻,𝐿 ∈ {0,1}, and the expected cost is 𝑐

∑ 𝑒𝑠
𝐻,𝐿𝑇𝐿+1

𝑠=1

𝐻 .  

Similarly, on the RHS of (𝐼𝐶𝐿,𝐻) we label the effort chosen by the agent in each period 𝑠 as 

𝑒𝑠
𝐿,𝐻 ∈ {0,1}, and the expected cost is 𝑐

∑ 𝑒𝑠
𝐿,𝐻𝑇𝐻+1

𝑠=1

𝐿 .   

Labeling 𝜉𝐻, 𝜉𝐿, {𝜇𝑡
𝐻}𝑡=1

𝑇𝐻
, {𝜇𝑡

𝐿}𝑡=1
𝑇𝐿

, {𝜂𝑡
𝐻}𝑡=1

𝑇𝐻
, {𝜂𝑡

𝐿}𝑡=1
𝑇𝐿

 as the Lagrange multipliers of the 

constraints associated with (𝐼𝐶𝐻,𝐿), (𝐼𝐶𝐿,𝐻), (𝑀𝐻𝑡
𝐻), (𝑀𝐻𝑡

𝐿), (𝐿𝐿𝐹𝑡
𝐻) and (𝐿𝐿𝐹𝑡

𝐿) respectively, 

the optimization problem has the following Lagrangian: 

ℒ = 𝜈[Ω𝐻 − 𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1𝜆𝑦𝑡

𝐻𝑇𝐻

𝑡=1 − ∑ 𝑃𝑡
𝐻𝑥𝑡

𝐻𝑇𝐻

𝑡=1 ]  

+(1 − 𝜈)[Ω𝐿 − 𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1𝜆𝑦𝑡

𝐿𝑇𝐿

𝑡=1 − ∑ 𝑃𝑡
𝐻𝑥𝑡

𝐿𝑇𝐻

𝑡=1 ]  

+𝜉𝐻

[
 
 
 
 𝛽0

𝐻 ∑ (1 − 𝜆)𝑡−1𝜆𝑦𝑡
𝐻𝑇𝐻

𝑡=1 + ∑ 𝑃𝑡
𝐻𝑥𝑡

𝐻𝑇𝐻

𝑡=1 − ∑ 𝑃𝑡−1
𝐻 𝛾𝑇𝐻

𝑡=1

−(1 − 𝛽0
𝐻)∑ [𝑥𝑡

𝐿 − 𝛾𝑒𝑡
𝐻,𝐿]𝑇𝐿

𝑡=1 − 𝛽0
𝐻 ∑ (∏ (1 − 𝜆𝑒𝑠

𝐻,𝐿)𝑡−1
𝑠=1 )[𝑒𝑡

𝐻,𝐿𝜆𝑦𝑡
𝐿 + (1 − 𝜆𝑒𝑡

𝐻,𝐿)𝑥𝑡
𝐿 − 𝑒𝑡

𝐻,𝐿𝛾]𝑇𝐿

𝑡=1

−(1 − 𝛽0
𝐻 + 𝛽0

𝐻(∏ (1 − 𝜆𝑒𝑠
𝐻,𝐿)𝑇𝐿

𝑠=1 )) (𝑐𝑇𝐿+1
𝐿 − 𝑐

∑ 𝑒𝑠
𝐻,𝐿𝑇𝐿+1

𝑠=1

𝐻 ) 𝑞𝐹 ]
 
 
 
 

  

+𝜉𝐿

[
 
 
 
 𝛽0

𝐿 ∑ (1 − 𝜆)𝑡−1𝑦𝑡
𝐿𝑇𝐿

𝑡=1 + ∑ 𝑃𝑡
𝐿𝑥𝑡

𝐿𝑇𝐿

𝑡=1 − ∑ 𝑃𝑡−1
𝐿 𝛾𝑇𝐿

𝑡=1

−(1 − 𝛽0
𝐿)∑ [𝑥𝑡

𝐻 − 𝛾𝑒𝑡
𝐿,𝐻]𝑇𝐻

𝑡=1 − 𝛽0
𝐿 ∑ (∏ (1 − 𝜆𝑒𝑠

𝐿,𝐻)𝑡−1
𝑠=1 )[𝑒𝑡

𝐿,𝐻𝜆𝑦𝑡
𝐻 + (1 − 𝜆𝑒𝑡

𝐿,𝐻)𝑥𝑡
𝐻 − 𝑒𝑡

𝐿,𝐻𝛾]𝑇𝐻

𝑡=1

−(1 − 𝛽0
𝐿 + 𝛽0

𝐿(∏ (1 − 𝜆𝑒𝑠
𝐿,𝐻)𝑇𝐻

𝑠=1 )) (𝑐𝑇𝐻+1
𝐻 − 𝑐

∑ 𝑒𝑠
𝐿,𝐻𝑇𝐻+1

𝑠=1

𝐿 ) 𝑞𝐹 ]
 
 
 
 

  

+∑ 𝜇𝑡
𝐻 [𝑦𝑡

𝐻 − 𝑥𝑡
𝐻 −

𝛾

𝜆𝛽𝑡
𝐻 − ∑ (1 − 𝜆)𝑠−𝑡−1(𝜆𝑦𝑠

𝐻 + (1 − 𝜆)𝑥𝑠
𝐻 − 𝛾)𝑇𝐻

𝑠=𝑡+1 −
(1−𝛽0

𝐻)

𝑃
𝑇𝐻
𝐻 Δ𝑐𝑞𝐹]𝑇𝐻

𝑡=1   
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+∑ 𝜇𝑡
𝐿 [𝑦𝑡

𝐿 − 𝑥𝑡
𝐿 −

𝛾

𝜆𝛽𝑡
𝐿 − ∑ (1 − 𝜆)𝑠−𝑡−1(𝜆𝑦𝑠

𝐿 + (1 − 𝜆)𝑥𝑠
𝐿 − 𝛾)𝑇𝐿

𝑠=𝑡+1 −
(1−𝛽0

𝐿)

𝑃
𝑇𝐿
𝐿 Δ𝑐𝑞𝐹]𝑇𝐿

𝑡=1   

+∑ 𝜂𝑡
𝐻𝑇𝐻

𝑡=1 𝑥𝑡
𝐻 + ∑ 𝜂𝑡

𝐿𝑇𝐿

𝑡=1 𝑥𝑡
𝐿. 

The relevant Kuhn-Tucker conditions for the optimization problem are: 

(C1) 
𝜕ℒ

𝜕𝑦𝑡
𝐻 = −𝜈𝛽0

𝐻(1 − 𝜆)𝑡−1𝜆 + 𝜉𝐻𝛽0
𝐻(1 − 𝜆)𝑡−1𝜆 − 𝜉𝐿𝛽0

𝐿(∏ (1 − 𝜆𝑒𝑠
𝐿,𝐻)𝑡−1

𝑠=1 )𝜆𝑒𝑡
𝐿,𝐻

 

+𝜇𝑡
𝐻 − ∑ 𝜇𝑗

𝐻(1 − 𝜆)𝑡−𝑗−1𝑡−1
𝑗=1 𝜆 = 0; 

(C2) 
𝜕ℒ

𝜕𝑦𝑡
𝐿 = −(1 − 𝜈)𝛽0

𝐿(1 − 𝜆)𝑡−1𝜆 − 𝜉𝐻𝛽0
𝐻(∏ (1 − 𝜆𝑒𝑠

𝐻,𝐿)𝑡−1
𝑠=1 )𝜆𝑒𝑡

𝐻,𝐿
 

+𝜉𝐿𝛽0
𝐿(1 − 𝜆)𝑡−1𝜆 + 𝜇𝑡

𝐿 − ∑ 𝜇𝑗
𝐿(1 − 𝜆)𝑡−𝑗−1𝑡−1

𝑗=1 𝜆 = 0; 

(C3) 
𝜕ℒ

𝜕𝑥𝑡
𝐻 = −𝜈𝑃𝑡

𝐻 + 𝜉𝐻𝑃𝑡
𝐻 − 𝜉𝐿(1 − 𝛽0

𝐿 + 𝛽0
𝐿 ∏ (1 − 𝜆𝑒𝑠

𝐿,𝐻)𝑡
𝑠=1 ) 

−𝜇𝑡
𝐻 − ∑ 𝜇𝑗

𝐻(1 − 𝜆)𝑡−𝑗𝑡−1
𝑗=1 + 𝜂𝑡

𝐻 = 0; 

(C4) 
𝜕ℒ

𝜕𝑥𝑡
𝐿 = −(1 − 𝜈)𝑃𝑡

𝐿 − 𝜉𝐻(1 − 𝛽0
𝐻 + 𝛽0

𝐻 ∏ (1 − 𝜆𝑒𝑠
𝐻,𝐿)𝑡

𝑠=1 ) + 𝜉𝐿𝑃𝑡
𝐿 

−𝜇𝑡
𝐿 − ∑ 𝜇𝑗

𝐿(1 − 𝜆)𝑡−𝑗𝑡−1
𝑗=1 + 𝜂𝑡

𝐿 = 0. 

 

Optimal payment structure (Proposition 3)  

 

We show next that both (𝐼𝐶𝐻,𝐿) and (𝐼𝐶𝐿,𝐻) may be slack, and either or both may be 

binding simultaneously. We examine each case below. 

Case 1: Both the (𝐼𝐶𝐻,𝐿) and (𝐼𝐶𝐿,𝐻) constraints are slack. 

If both the (𝐼𝐶) constraints are slack, it is because the moral hazard rent for each type is 

sufficiently high so that neither is interested in misreporting their type.  The moral hazard 

constraints for both types are binding in every period.  Each type is rewarded after success in 

every period to satisfy the moral hazard constraints, and none is rewarded after failure. This is 

Case 1. 

Claim C1. 𝜉𝐻 = 𝜉𝐿 = 0 ⇒ 𝜂𝑡
𝐻, 𝜂𝑡

𝐿, 𝜇𝑡
𝐻, 𝜇𝑡

𝐿 > 0 (it is optimal to set 𝑥𝑡
𝜃 = 0 and 𝑦𝑡

𝜃 =
𝛾

𝜆𝛽
𝑇𝜃
𝜃 +

(1−𝛽0
𝜃)

𝑃
𝑇𝜃
𝜃  

Δ𝑐𝑞𝐹 for 𝑡 ≤ 𝑇𝜃 and 𝜃 ∈ {𝐻, 𝐿}). 

Proof:  

𝝁𝒕
𝜽 > 𝟎. We first prove that if the (𝐼𝐶) constraints are slack, then all the (𝑀𝐻𝑡

𝜃) constraints for 

𝑡 ≤ 𝑇𝜃 and 𝜃 ∈ {𝐻, 𝐿} must be binding.  

𝝁𝒕
𝑯 > 𝟎. Given that 𝜉𝐻 = 𝜉𝐿 = 0, (𝐶1) at each period 𝑡 ≤ 𝑇𝐻 can be rewritten as 

𝑡 = 1: −𝜈𝛽0
𝐻𝜆 + 𝜇1

𝐻 = 0 ⟹ 𝜇1
𝐻 = 𝜈𝛽0

𝐻𝜆 > 0; 

𝑡 = 2: −𝜈𝛽0
𝐻(1 − 𝜆)𝜆 + 𝜇2

𝐻 − 𝜆𝜇1
𝐻 = 0 ⟹ 𝜇2

𝐻 = 𝜈𝛽0
𝐻𝜆 > 0;  

Solving recursively for 𝑡 = 3,… , 𝑇𝐻 we have 

𝜇𝑡
𝐻 = 𝜈𝛽0

𝐻𝜆 > 0 for 𝑡 ≤ 𝑇𝐻. 
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Thus, all the (𝑀𝐻𝑡
𝐻) constraints are binding.  

𝝁𝒕
𝑳 > 𝟎. Given that 𝜉𝐻 = 𝜉𝐿 = 0, (𝐶2) at each period 𝑡 ≤ 𝑇𝐿 can be rewritten as 

𝑡 = 1: −(1 − 𝜈)𝛽0
𝐿𝜆 + 𝜇1

𝐿 = 0 ⟹ 𝜇1
𝐿 = (1 − 𝜈)𝛽0

𝐿𝜆 > 0; 

𝑡 = 2: −(1 − 𝜈)𝛽0
𝐿(1 − 𝜆)𝜆 + 𝜇2

𝐿 − 𝜆𝜇1
𝐿 = 0 ⟹ 𝜇2

𝐿 = (1 − 𝜈)𝛽0
𝐿𝜆 > 0;  

Solving recursively for 𝑡 = 3,… , 𝑇𝐿 we have 

𝜇𝑡
𝐿 = (1 − 𝜈)𝛽0

𝐿𝜆 > 0 for 𝑡 ≤ 𝑇𝐿. 

Thus, all the (𝑀𝐻𝑡
𝐿) constraints are binding. 

𝒙𝒕
𝜽 = 𝟎.  This follows immediately from (𝐶3) and (𝐶4) as  𝜉𝐻 = 𝜉𝐿 = 0 implies 𝜂𝑡

𝜃 > 0 for all 

𝑡 ≤ 𝑇𝜃.  Furthermore, given that 𝜇𝑡
𝐻 = 𝜈𝛽0

𝐻𝜆, and 𝜇𝑡
𝐿 = (1 − 𝜈)𝛽0

𝐿𝜆, we can also show that 

𝜂𝑡
𝐻 = 𝜈(𝑃𝑡

𝐻 + 𝛽0
𝐻𝜆) + 𝜈𝛽0

𝐻𝜆 ∑ (1 − 𝜆)𝑡−𝑗𝑡−1
𝑗=1 > 0 for 𝑡 ≤ 𝑇𝐻, and that 𝜂𝑡

𝐿 = (1 − 𝜈)(𝑃𝑡
𝐿 +

𝛽0
𝐿𝜆) + (1 − 𝜈)𝛽0

𝐿𝜆 ∑ (1 − 𝜆)𝑡−𝑗𝑡−1
𝑗=1 > 0 for 𝑡 ≤ 𝑇𝐿. 

Thus, if the (𝐼𝐶) constraints are slack, both types rewarded only for success and all the 

(𝑀𝐻𝑡
𝜃) constraints for 𝑡 ≤ 𝑇𝜃 and 𝜃 ∈ {𝐻, 𝐿} are be binding: 

𝑦𝑡
𝜃 =

𝛾

𝜆𝛽𝑡
𝜃 + ∑ (1 − 𝜆)𝑠−𝑡−1(𝜆𝑦𝑠

𝜃 − 𝛾)𝑇𝜃

𝑠=𝑡+1 +
(1−𝛽0

𝜃)

𝑃𝑇
𝜃 Δ𝑐𝑞𝐹,  

𝑥𝑡
𝜃 = 0 for 𝑡 ≤ 𝑇𝜃 and 𝜃 ∈ {𝐻, 𝐿}. 

Finally, in Supplementary Appendix B, we proved that the unique sequence of 𝑦𝑡
𝜃 that solves the 

system of binding (𝑀𝐻𝑡
𝜃) constraints is: 

𝑦𝑡
𝜃 =

𝛾

𝜆𝛽
𝑇𝜃
𝜃 +

(1−𝛽0
𝜃)

𝑃
𝑇𝜃
𝜃  

Δ𝑐𝑞𝐹 for 𝑡 ≤ 𝑇𝜃 and 𝜃 ∈ {𝐻, 𝐿}. 

This concludes the proof of Claim C1.      Q.E.D. 

Case 2: The (𝐼𝐶𝐿,𝐻) constraint binds and (𝐼𝐶𝐻,𝐿) is slack. 

If (𝐼𝐶𝐻,𝐿) is slack, it is because the high type’s moral hazard rent is sufficiently high such 

that he is not interested in pretending to be the low type.  It must be that (𝑀𝐻𝑡
𝐻) is binding in 

each period.  Moreover, the low type could now be interested in pretending to be the high type 

making (𝐼𝐶𝐿,𝐻) binding.  The adverse selection rent to the low type is sufficient to satisfy all 

moral hazard constraints for the low type at no extra cost.  Thus, we have that (𝑀𝐻𝑡
𝐿) are all 

slack.  This is Case 2. 

 

Claim C2. 𝜉𝐻 = 0, 𝜉𝐿 > 0 ⇒ 𝜂𝑡
𝐻, 𝜇𝑡

𝐻 > 0 and 𝜇𝑡
𝐿 = 0, 𝜂𝑡

𝐿 = 0 (it is optimal to set 𝑥𝑡
𝐻 =

0 and 𝑦𝑡
𝐻 =

𝛾

𝜆𝛽
𝑇𝐻
𝐻 +

(1−𝛽0
𝐻)

𝑃
𝑇𝐻
𝐻  

Δ𝑐𝑞𝐹 for 𝑡 ≤ 𝑇𝐻 and any combination of 𝑥𝑡
𝐿 and 𝑦𝑡

𝐿 such that 𝑦𝑡
𝐿 −

𝑥𝑡
𝐿 ≥

𝛾

𝜆𝛽𝑡
𝐿 + ∑ (1 − 𝜆)𝑠−𝑡−1(𝜆𝑦𝑠

𝐿 + (1 − 𝜆)𝑥𝑠
𝐿 − 𝛾)𝑇𝐿

𝑠=𝑡+1 +
(1−𝛽0

𝐿)

𝑃
𝑇𝐿
𝐿  

Δ𝑐𝑞𝐹 for 𝑡 ≤ 𝑇𝐿 and 

(1 − 𝛽0
𝐿)∑ [𝑥𝑡

𝐿 − 𝛾]𝑇𝐿

𝑡=1 + 𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1[(𝜆𝑦𝑡

𝐿 − 𝛾) + (1 − 𝜆)𝑥𝑡
𝐿]𝑇𝐿

𝑡=1 =

𝑈𝐿(𝜛𝐻 , 𝑎⃗𝐿(𝜛𝐻))). 
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Proof:  

H-type. We first prove that the high type is rewarded only for success and all the (𝑀𝐻𝑡
𝐻) 

constraints are binding for 𝑡 ≤ 𝑇𝐻. 

 

𝝁𝒕
𝑯 > 𝟎. Given that 𝜉𝐻 = 0 and 𝜉𝐿 > 0, condition (𝐶1) at each period 𝑡 ≤ 𝑇𝐻 can be rewritten 

as 

𝜇𝑡
𝐻 = 𝜈𝛽0

𝐻(1 − 𝜆)𝑡−1𝜆 + 𝜉𝐿𝛽0
𝐿(∏ (1 − 𝜆𝑒𝑠

𝐿,𝐻)𝑡−1
𝑠=1 )𝜆𝑒𝑡

𝐿,𝐻
  

+∑ 𝜇𝑗
𝐻(1 − 𝜆)𝑡−𝑗−1𝑡−1

𝑗=1 𝜆 > 0 for 𝑡 ≤ 𝑇𝐻. 

Thus, all the (𝑀𝐻𝑡
𝐻) constraints are binding. 

We next prove that the high type is rewarded only for success, i.e., 𝑥𝑡
𝐻 = 0 for 𝑡 ≤ 𝑇𝐻. 

𝒙𝒕
𝑯 = 𝟎.  Given that 𝜉𝐻 = 0 and 𝜉𝐿 > 0 condition (𝐶3) at each period 𝑡 ≤ 𝑇𝐻 can be rewritten 

as 

𝜂𝑡
𝐻 = 𝜈𝑃𝑡

𝐻 + 𝜉𝐿(1 − 𝛽0
𝐿 + 𝛽0

𝐿 ∏ (1 − 𝜆𝑒𝑠
𝐿,𝐻)𝑡

𝑠=1 )  

+𝜇𝑡
𝐻 + ∑ 𝜇𝑗

𝐻(1 − 𝜆)𝑡−𝑗𝑡−1
𝑗=1 > 0 for 𝑡 ≤ 𝑇𝐻.  

Therefore, 𝜂𝑡
𝐻 > 0 for every 𝑡 ≤ 𝑇𝐻 and, as a result, the high type is not rewarded for failures: 

𝑥𝑡
𝐻 = 0 for 𝑡 ≤ 𝑇𝐻. 

Thus, the high type is rewarded only for success with the rewards given by: 

𝑦𝑡
𝐻 =

𝛾

𝜆𝛽
𝑇𝐻
𝐻 +

(1−𝛽0
𝐻)

𝑃
𝑇𝐻
𝐻  

Δ𝑐𝑞𝐹 for 𝑡 ≤ 𝑇𝐻. 

L-type. We next characterize the optimal contract for the low type. In Lemma C1, we 

characterize the off-equilibrium effort level for the low type 𝑎⃗𝐿(𝜛𝐻). We prove that if the low 

type claims being high, he works for 𝑡𝐿,𝐻 ≤ 𝑇𝐻 periods and shirks in other periods.  For 

expositional ease, we consider that that agent works for the first 𝑡𝐿,𝐻 periods without loss of 

generality.   

Lemma C1.  In Case 2, a lying low type works for 𝑡𝐿,𝐻 periods and shirks otherwise: there 

exists 𝑡𝐿,𝐻, such that 0 ≤ 𝑡𝐿,𝐻 ≤ 𝑇𝐻  and ∑ 𝑒𝑠
𝐿,𝐻𝑇𝐻

𝑠=1 = 𝑡𝐿,𝐻 . 

Proof: First, it is without loss of generality to consider an off-the-equilibrium effort path where 

the low type works in consecutive periods. The reason is that (i) all the rewards for success are 

identical and, (ii) the low type’s probability of success in any period and the expected cost after 

failure depends on the total number of failures up to that period (not on when those failures 

occurred).45 Second, for the same reason, it is without loss of generality to consider an off-the-

 
45 On the RHS of (𝐼𝐶𝐿,𝐻), we focus on the middle term 𝛽0

𝐿 ∑ (∏ (1 − 𝜆𝑒𝑠
𝐿,𝐻)𝑡−1

𝑠=1 )𝑒𝑡
𝐿,𝐻[𝜆𝑦𝑡

𝐻 − 𝛾]𝑇𝐻

𝑡=1  to see that when 

shirking occurs does not matter to the total payoff since 𝑦𝑡
𝐻 is constant.  To illustrate, consider the case of 𝑇𝐻 = 3: 

𝛽0
𝐿 ∑(∏(1 − 𝜆𝑒𝑠

𝐿,𝐻)

𝑡−1

𝑠=1

)𝑒𝑡
𝐿,𝐻[𝜆𝑦𝑡

𝐻 − 𝛾]

3

𝑡=1

= {𝑒1
𝐿,𝐻 + (1 − 𝜆𝑒1

𝐿,𝐻)𝑒2
𝐿,𝐻 + (1 − 𝜆𝑒1

𝐿,𝐻)(1 − 𝜆𝑒2
𝐿,𝐻)𝑒3

𝐿,𝐻}[𝜆𝑦𝑡
𝐻 − 𝛾]. 

Suppose that the agent works in any two periods.  It is easy to see that we have identical payoffs no matter 

which period the agent chooses to shirk. 
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equilibrium effort path where 𝑎⃗𝐿(𝜛𝐻) is a stopping rule: the low type works up to period 𝑡𝐿,𝐻 ≤

𝑇𝐻 and shirks after.46 

Therefore, by replacing 𝑥𝑡
𝐻 = 0 for 𝑡 ≤ 𝑇𝐻and using Lemma C1 on the RHS of the 

(𝐼𝐶𝐿,𝐻), the low type’s expected utility function when he pretends being the high type can be 

written as 𝑈𝐿(𝜛𝐻 , 𝑎⃗𝐿(𝜛𝐻)) = 

(1 − 𝛽0
𝐿)∑ [𝑥𝑡

𝐻 − 𝛾𝑒𝑡
𝐿,𝐻]𝑇𝐻

𝑡=1 + 𝛽0
𝐿 ∑ (∏ (1 − 𝜆𝑒𝑠

𝐿,𝐻)𝑡−1
𝑠=1 )[𝑒𝑡

𝐿,𝐻𝜆𝑦𝑡
𝐻 + (1 − 𝜆𝑒𝑡

𝐿,𝐻)𝑥𝑡
𝐻 − 𝑒𝑡

𝐿,𝐻𝛾]𝑇𝐻

𝑡=1   

(1 − 𝛽0
𝐿 + 𝛽0

𝐿(∏ (1 − 𝜆𝑒𝑠
𝐿,𝐻)𝑇𝐻

𝑠=1 )) (𝑐𝑇𝐻+1
𝐻 − 𝑐

∑ 𝑒𝑠
𝐿,𝐻𝑇𝐻+1

𝑠=1

𝐿 ) 𝑞𝐹  

= 𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1 𝜆𝑦𝑡

𝐻𝑡𝐿,𝐻

𝑡=1 (1 − 𝛽0
𝐿)∑ [−𝛾]𝑡𝐿,𝐻

𝑡=1 + 𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1 [−𝛾]𝑡𝐿,𝐻

𝑡=1   

+𝑃
𝑡𝐿,𝐻
𝐿 (𝑐

𝑇𝐻+1
𝐻 − 𝑐

𝑡𝐿,𝐻+1
𝐿 )𝑞𝐹  

= 𝛽0
𝐿 ∑(1 − 𝜆)𝑡−1 𝜆𝑦𝑡

𝐻

𝑡𝐿,𝐻

𝑡=1

− ∑𝑃𝑡−1
𝐿

𝑡𝐿,𝐻

𝑡=1

𝛾 + 𝑃𝑡𝐿,𝐻
𝐿 (𝑐𝑇𝐻+1

𝐻 − 𝑐𝑡𝐿,𝐻+1
𝐿 )𝑞𝐹, 

where we define 𝑡𝐿,𝐻 as a time period that maximizes 𝑈𝐿(𝜛𝐻, 𝑎⃗𝐿(𝜛𝐻)): 

𝑡𝐿,𝐻 ≔ arg max
0≤𝑡𝐿,𝐻≤𝑇𝐻

𝑈𝐿(𝜛𝐻 , 𝑎⃗𝐿(𝜛𝐻)). 

This concludes the proof of Lemma C1.       Q.E.D. 

To recap, given the definition of 𝑡𝐿,𝐻 above the binding (𝐼𝐶𝐿,𝐻) is given by, 

𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1𝑦𝑡

𝐿𝑇𝐿

𝑡=1 + ∑ 𝑃𝑡
𝐿𝑥𝑡

𝐿𝑇𝐿

𝑡=1 − ∑ 𝑃𝑡−1
𝐿 𝛾𝑇𝐿

𝑡=1 =  

𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1 𝜆𝑦𝑡

𝐻𝑡𝐿,𝐻

𝑡=1 − ∑ 𝑃𝑡−1
𝐿𝑡𝐿,𝐻

𝑡=1 𝛾 + 𝑃𝑡𝐿,𝐻
𝐿 (𝑐𝑇𝐻+1

𝐻 − 𝑐𝑡𝐿,𝐻+1
𝐿 )𝑞𝐹. 

Next, we prove that the principal can use any combination of 𝑥𝑡
𝐿 and 𝑦𝑡

𝐿 such that  

𝑦𝑡
𝐿 − 𝑥𝑡

𝐿 ≥
𝛾

𝜆𝛽𝑡
𝐿 + ∑ (1 − 𝜆)𝑠−𝑡−1(𝜆𝑦𝑠

𝐿 + (1 − 𝜆)𝑥𝑠
𝐿 − 𝛾)𝑇𝐿

𝑠=𝑡+1 +
(1−𝛽0

𝐿)

𝑃
𝑇𝐿
𝐿  

Δ𝑐𝑞𝐹 for 𝑡 ≤ 𝑇𝐿, and 

(1 − 𝛽0
𝐿)∑ [𝑥𝑡

𝐿 − 𝛾]𝑇𝐿

𝑡=1 + 𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1[(𝜆𝑦𝑡

𝐿 − 𝛾) + (1 − 𝜆)𝑥𝑡
𝐿]𝑇𝐿

𝑡=1 = 𝑈𝐿(𝜛𝐻, 𝑎⃗𝐿(𝜛𝐻)). 

 

𝝁𝒕
𝑳 = 𝜼𝒕

𝑳 = 𝟎. Given that 𝜉𝐻 = 0, conditions (𝐶2) and (𝐶4) can be rewritten as 

(C2) 
𝜕ℒ

𝜕𝑦𝑡
𝐿 = −(1 − 𝜈)𝛽0

𝐿(1 − 𝜆)𝑡−1𝜆 + 𝜉𝐿𝛽0
𝐿(1 − 𝜆)𝑡−1𝜆 + 𝜇𝑡

𝐿 − ∑ 𝜇𝑗
𝐿(1 − 𝜆)𝑡−𝑗−1𝑡−1

𝑗=1 𝜆 = 0; 

(C4) 
𝜕ℒ

𝜕𝑥𝑡
𝐿 = −(1 − 𝜈)𝑃𝑡

𝐿 + 𝜉𝐿𝑃𝑡
𝐿 − 𝜇𝑡

𝐿 − ∑ 𝜇𝑗
𝐿(1 − 𝜆)𝑡−𝑗𝑡−1

𝑗=1 + 𝜂𝑡
𝐿 = 0. 

 There exists a solution to (𝐶2) and (𝐶4) for 𝑡 ≤ 𝑇𝐿 such that 

𝜇𝑡
𝐿 = 𝜂𝑡

𝐿 = 0 and 𝜉𝐿 = (1 − 𝜈) for 𝑡 ≤ 𝑇𝐿. 

Therefore, the principal can use any combination of 𝑥𝑡
𝐿 and 𝑦𝑡

𝐿 such that 

𝑦𝑡
𝐿 − 𝑥𝑡

𝐿 ≥
𝛾

𝜆𝛽𝑡
𝐿 + ∑ (1 − 𝜆)𝑠−𝑡−1(𝜆𝑦𝑠

𝐿 + (1 − 𝜆)𝑥𝑠
𝐿 − 𝛾)𝑇𝐿

𝑠=𝑡+1 +
(1−𝛽0

𝐿)

𝑃
𝑇𝐿
𝐿  

Δ𝑐𝑞𝐹 for 𝑡 ≤ 𝑇𝐿, and 

(1 − 𝛽0
𝐿)∑ [𝑥𝑡

𝐿 − 𝛾]𝑇𝐿

𝑡=1 + 𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1[(𝜆𝑦𝑡

𝐿 − 𝛾) + (1 − 𝜆)𝑥𝑡
𝐿]𝑇𝐿

𝑡=1 = 𝑈𝐿(𝜛𝐻, 𝑎⃗𝐿(𝜛𝐻)). 

 

This concludes the proof of Claim C2.       Q.E.D. 

 
46 Alternatively, we could write that the agent worked for 𝑡𝐿,𝐻/𝑇𝐻 periods, but the notation would be cumbersome 

as we would need to indicate the periods he works in. 
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Case 3: The (𝐼𝐶𝐻,𝐿) constraint binds and (𝐼𝐶𝐿,𝐻) is slack. 

The case where (𝐼𝐶𝐻,𝐿) binds and (𝐼𝐶𝐿,𝐻) is slack is similar to that under a standard 

adverse selection problem except that the low type also receives a rent due to moral hazard.  The 

(𝑀𝐻𝑡
𝐿) are binding in each period.  As (𝐼𝐶𝐻,𝐿) is binding, the high type’s moral hazard rent is 

not sufficiently high to deter him from misreporting.  We find that the high-type’s adverse 

selection rent is sufficient to satisfy all moral hazard constraints for the high type at no extra cost.  

Thus, we have (𝑀𝐻𝑡
𝐻) are all slack.  This is Case 3. 

Claim C3. 𝜉𝐻 > 0, 𝜉𝐿 = 0 ⇒ 𝜂𝑡
𝐿, 𝜇𝑡

𝐿 > 0 and 𝜂𝑡
𝐻 = 𝜇𝑡

𝐻 = 0 (it is optimal to set 𝑥𝑡
𝐿 = 0 

and 𝑦𝑡
𝐿 =

𝛾

𝜆𝛽
𝑇𝐿
𝐿 +

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿 Δ𝑐𝑞𝐹 for 𝑡 ≤ 𝑇𝐿 and any combination of 𝑥𝑡

𝐻 and 𝑦𝑡
𝐻 such that 𝑦𝑡

𝐻 −

𝑥𝑡
𝐻 ≥

𝛾

𝜆𝛽𝑡
𝐻 + ∑ (1 − 𝜆)𝑠−𝑡−1(𝜆𝑦𝑠

𝐻 + (1 − 𝜆)𝑥𝑠
𝐻 − 𝛾)𝑇𝐻

𝑠=𝑡+1 +
(1−𝛽0

𝐻)

𝑃
𝑇𝐻
𝐻 Δ𝑐𝑞𝐹 for 𝑡 ≤ 𝑇𝐻 and 

(1 − 𝛽0
𝐻)∑ [𝑥𝑡

𝐻 − 𝛾]𝑇𝐻

𝑡=1 + 𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1[(𝜆𝑦𝑡

𝐻 − 𝛾) + (1 − 𝜆)𝑥𝑡
𝐻]𝑇𝐻

𝑡=1 = 𝑈𝐻(𝜛𝐿, 1⃗⃗)). 

Proof:  

L-type. We first prove that the low type is rewarded only for success and all the (𝑀𝐻𝑡
𝐿) 

constraints are binding for 𝑡 ≤ 𝑇𝐿. 

𝝁𝒕
𝑳 > 𝟎. Given that 𝜉𝐿 = 0 and 𝜉𝐻 > 0, condition (𝐶2) at each period 𝑡 ≤ 𝑇𝐿 can be rewritten as 

𝜇𝑡
𝐿 = (1 − 𝜈)𝛽0

𝐿(1 − 𝜆)𝑡−1𝜆 + 𝜉𝐻𝛽0
𝐻(∏ (1 − 𝜆𝑒𝑠

𝐻,𝐿)𝑡−1
𝑠=1 )𝜆𝑒𝑡

𝐻,𝐿
  

+∑ 𝜇𝑗
𝐿(1 − 𝜆)𝑡−𝑗−1𝑡−1

𝑗=1 𝜆 > 0 for 𝑡 ≤ 𝑇𝐿. 

Thus, all the (𝑀𝐻𝑡
𝐿) constraints are binding. 

We next prove that the low type is rewarded only for success, i.e., 𝑥𝑡
𝐿 = 0 for 𝑡 ≤ 𝑇𝐿. 

𝒙𝒕
𝑳 = 𝟎.  Given that 𝜉𝐿 = 0 and 𝜉𝐻 > 0 condition (𝐶4) at each period 𝑡 ≤ 𝑇𝐿 can be rewritten as 

𝜂𝑡
𝐿 = (1 − 𝜈)𝑃𝑡

𝐿 + 𝜉𝐻(1 − 𝛽0
𝐻 + 𝛽0

𝐻 ∏ (1 − 𝜆𝑒𝑠
𝐻,𝐿)𝑡

𝑠=1 )  

+𝜇𝑡
𝐿 + ∑ 𝜇𝑗

𝐿(1 − 𝜆)𝑡−𝑗𝑡−1
𝑗=1 > 0 for 𝑡 ≤ 𝑇𝐿.  

Therefore, 𝜂𝑡
𝐿 > 0 for every 𝑡 ≤ 𝑇𝐿 and, as a result, the low type is not rewarded for failures: 

𝑥𝑡
𝐿 = 0 for 𝑡 ≤ 𝑇𝐿. 

Thus, the low type is rewarded only for success with the rewards given by: 

𝑦𝑡
𝐿 =

𝛾

𝜆𝛽
𝑇𝐿
𝐿 +

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿  

Δ𝑐𝑞𝐹 for 𝑡 ≤ 𝑇𝐿. 

H-type. We next characterize the optimal contract for the high type. 

𝒂⃗⃗⃗𝑯(𝝕𝑳) = 𝟏⃗⃗⃗. In Lemma C2, we that the high type never shirks off-the-equilibrium path. 

Lemma C2.  In Case 3, a lying high type works off the equilibrium path: 𝑒𝑡
𝐻,𝐿 = 1 for 𝑡 ≤ 𝑇𝐿. 

Proof: First, recall that the global moral hazard constraint is implied by the sequence of local 

ones (see Supplementary Appendix B for a formal proof). Second, consider the high type’s 

incentives to engage in a one-shot deviation and shirk at period 𝑡 ≤ 𝑇𝐿. Suppose the high type 

accepts a contract designed for the low type and deviates only at some period 𝑡 ≤ 𝑇𝐿, then his 

continuation value from the relationship is 
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𝑥𝑡
𝐿 + 𝛽𝑡

𝐻 ∑ (1 − 𝜆)𝑠−𝑡−1[𝜆𝑦𝑠
𝐿 + (1 − 𝜆)𝑥𝑠

𝐿 − 𝛾]𝑇𝐿

𝑠=𝑡+1 + (1 − 𝛽𝑡
𝐻)∑ (𝑥𝑠

𝐿 − 𝛾)𝑇𝐿

𝑠=𝑡+1   

+(1 − 𝛽𝑡
𝐻 + 𝛽𝑡

𝐻(1 − 𝜆)𝑇𝐿−𝑡)(𝑐
𝑇𝐿+1
𝐿 − 𝑐

𝑇𝐿
𝐻 )𝑞𝐹.  

In contrast, if the lying high type decides to work at period 𝑡, his continuation value from 

the relationship becomes 

−𝛾 + 𝜆𝛽𝑡
𝐻𝑦𝑡

𝐿 + (1 − 𝜆𝛽𝑡
𝐻)𝑥𝑡

𝐿 + 𝛽𝑡
𝐻 ∑ (1 − 𝜆)𝑠−𝑡[𝜆𝑦𝑠

𝐿 + (1 − 𝜆)𝑥𝑠
𝐿 − 𝛾]𝑇𝐿

𝑠=𝑡+1 +

(1 − 𝛽𝑡
𝐻)∑ (𝑥𝑠

𝐿 − 𝛾)𝑇𝐿

𝑠=𝑡+1 + (1 − 𝛽𝑡
𝐻 + 𝛽𝑡

𝐻(1 − 𝜆)𝑇𝐿−𝑡+1)(𝑐
𝑇𝐿+1
𝐿 − 𝑐

𝑇𝐿+1
𝐻 )𝑞𝐹.  

By combining the two continuation values presented above, we can write a one-period 

moral hazard constraint at period 𝑡 below for the lying high type, which we denote by (𝑀𝐻𝑡
𝐻,𝐿):  

(𝑀𝐻𝑡
𝐻,𝐿)  𝑦𝑡

𝐿 − 𝑥𝑡
𝐿 ≥

𝛾

𝜆𝛽𝑡
𝐻 + ∑ (1 − 𝜆)𝑠−𝑡−1(𝜆𝑦𝑠

𝐿 + (1 − 𝜆)𝑥𝑠
𝐿 − 𝛾)𝑇𝐿

𝑠=𝑡+1   

+
(1−𝜆)𝑇

𝐿−𝑡(1−𝛽0
𝐿)(𝑐−𝑐)𝑞𝐹

1−𝛽0
𝐿+𝛽0

𝐿(1−𝜆)𝑇𝐿 . 

Third, we prove that if 𝑦𝑡
𝐿 =

𝛾

𝜆𝛽
𝑇𝐿
𝐿 +

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿 Δ𝑐𝑞𝐹 for 𝑡 ≤ 𝑇𝐿, then (𝑀𝐻𝑡

𝐻,𝐿) is satisfied for 

every 𝑡 ≤ 𝑇𝐿. Replacing 𝑥𝑠
𝐿 = 0, the (𝑀𝐻𝑡

𝐻,𝐿) constraint simplifies to: 

𝑦𝑡
𝐿 ≥

𝛾

𝜆𝛽𝑡
𝐻 + ∑ (1 − 𝜆)𝑠−𝑡−1(𝜆𝑦𝑠

𝐿 − 𝛾)𝑇𝐿

𝑠=𝑡+1 +
(1−𝜆)𝑇

𝐿−𝑡(1−𝛽0
𝐿)(𝑐−𝑐)𝑞𝐹

𝑃
𝑇𝐿
𝐿 , 

𝛾

𝜆𝛽
𝑇𝐿
𝐿 +

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿 Δ𝑐𝑞𝐹 ≥

𝛾

𝜆𝛽𝑡
𝐻 + (𝜆 [

𝛾

𝜆𝛽
𝑇𝐿
𝐿 +

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿 Δ𝑐𝑞𝐹] − 𝛾)∑ (1 − 𝜆)𝑠−𝑡−1𝑇𝐿

𝑠=𝑡+1   

+
(1−𝜆)𝑇

𝐿−𝑡(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿 Δ𝑐𝑞𝐹. 

Given that ∑ (1 − 𝜆)𝑠−𝑡−1𝑇𝐿

𝑠=𝑡+1 = ∑ (1 − 𝜆)𝑗𝑇𝐿−𝑡−1
𝑗=0 =

1−(1−𝜆)𝑇
𝐿−𝑡

1−(1−𝜆)
=

1−(1−𝜆)𝑇
𝐿−𝑡

𝜆
, 

the (𝑀𝐻𝑡
𝐻,𝐿) constraint can be rewritten as: 

𝛾

𝜆𝛽
𝑇𝐿
𝐿 +

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿 Δ𝑐𝑞𝐹 ≥

𝛾

𝜆𝛽𝑡
𝐻 + (𝜆 [

𝛾

𝜆𝛽
𝑇𝐿
𝐿 +

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿 Δ𝑐𝑞𝐹] − 𝛾) (

1−(1−𝜆)𝑇
𝐿−𝑡

𝜆
)  

+
(1−𝜆)𝑇

𝐿−𝑡(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿 Δ𝑐𝑞𝐹, 

𝛾

𝜆𝛽
𝑇𝐿
𝐿 +

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿 Δ𝑐𝑞𝐹 ≥

𝛾

𝜆𝛽𝑡
𝐻 + ([

𝛾

𝜆𝛽
𝑇𝐿
𝐿 +

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿 Δ𝑐𝑞𝐹] −

𝛾

𝜆
) (1 − (1 − 𝜆)𝑇𝐿−𝑡)  

+
(1−𝜆)𝑇

𝐿−𝑡(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿 Δ𝑐𝑞𝐹,  

𝛾

𝜆𝛽
𝑇𝐿
𝐿 ≥

𝛾

𝜆𝛽𝑡
𝐻 + ([

𝛾

𝜆𝛽
𝑇𝐿
𝐿 ] −

𝛾

𝜆
) (1 − (1 − 𝜆)𝑇𝐿−𝑡)  

+
(1−𝛽0

𝐿)

𝑃
𝑇𝐿
𝐿 Δ𝑐𝑞𝐹((1 − 𝜆)𝑇𝐿−𝑡 − 1 + 1 − (1 − 𝜆)𝑇𝐿−𝑡), 

1

𝛽
𝑇𝐿
𝐿 ≥

1

𝛽𝑡
𝐻 + (

1

𝛽
𝑇𝐿
𝐿 − 1) (1 − (1 − 𝜆)𝑇𝐿−𝑡),  

1 ≥
𝛽

𝑇𝐿
𝐿

𝛽𝑡
𝐻 + (1 − 𝛽𝑇𝐿

𝐿 )(1 − (1 − 𝜆)𝑇𝐿−𝑡), 
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𝛽𝑡
𝐻 ≥ 𝛽

𝑇𝐿
𝐿 + 𝛽𝑡

𝐻(1 − 𝛽
𝑇𝐿
𝐿 )(1 − (1 − 𝜆)𝑇𝐿−𝑡), 

𝛽0
𝐻(1−𝜆)𝑡−1

1−𝛽0
𝐻+𝛽0

𝐻(1−𝜆)𝑡−1 ≥
𝛽0

𝐿(1−𝜆)𝑇
𝐿−1

1−𝛽0
𝐿+𝛽0

𝐿(1−𝜆)𝑇
𝐿−1

+
𝛽0

𝐻(1−𝜆)𝑡−1

1−𝛽0
𝐻+𝛽0

𝐻(1−𝜆)𝑡−1 (
(1−𝛽0

𝐿)(1−(1−𝜆)𝑇
𝐿−𝑡)

1−𝛽0
𝐿+𝛽0

𝐿(1−𝜆)𝑇
𝐿−1

), 

𝛽0
𝐻(1−𝜆)𝑡−1

1−𝛽0
𝐻+𝛽0

𝐻(1−𝜆)𝑡−1 −
𝛽0

𝐿(1−𝜆)𝑇
𝐿−1

1−𝛽0
𝐿+𝛽0

𝐿(1−𝜆)𝑇𝐿−1
≥

𝛽0
𝐻(1−𝜆)𝑡−1

1−𝛽0
𝐻+𝛽0

𝐻(1−𝜆)𝑡−1 (
(1−𝛽0

𝐿)(1−(1−𝜆)𝑇
𝐿−𝑡)

1−𝛽0
𝐿+𝛽0

𝐿(1−𝜆)𝑇𝐿−1
), 

𝛽0
𝐻(1−𝜆)𝑡−1(1−𝛽0

𝐿+𝛽0
𝐿(1−𝜆)𝑇

𝐿−1)−𝛽0
𝐿(1−𝜆)𝑇

𝐿−1(1−𝛽0
𝐻+𝛽0

𝐻(1−𝜆)𝑡−1)

(1−𝛽0
𝐻+𝛽0

𝐻(1−𝜆)𝑡−1)(1−𝛽0
𝐿+𝛽0

𝐿(1−𝜆)𝑇
𝐿−1)

  

≥
𝛽0

𝐻(1−𝜆)𝑡−1

(1−𝛽0
𝐻+𝛽0

𝐻(1−𝜆)𝑡−1)

(1−𝛽0
𝐿)(1−(1−𝜆)𝑇

𝐿−𝑡)

(1−𝛽0
𝐿+𝛽0

𝐿(1−𝜆)𝑇𝐿−1)
, 

𝛽0
𝐻(1 − 𝜆)𝑡−1 − 𝛽0

𝐿𝛽0
𝐻(1 − 𝜆)𝑡−1 − 𝛽0

𝐿(1 − 𝜆)𝑇𝐿−1 + 𝛽0
𝐻𝛽0

𝐿(1 − 𝜆)𝑇𝐿−1 

≥ 𝛽0
𝐻(1 − 𝜆)𝑡−1(1 − 𝛽0

𝐿 − (1 − 𝜆)𝑇𝐿−𝑡 + 𝛽0
𝐿(1 − 𝜆)𝑇𝐿−𝑡), 

𝛽0
𝐻(1 − 𝜆)𝑡−1 − 𝛽0

𝐿𝛽0
𝐻(1 − 𝜆)𝑡−1 − 𝛽0

𝐿(1 − 𝜆)𝑇𝐿−1 + 𝛽0
𝐻𝛽0

𝐿(1 − 𝜆)𝑇𝐿−1 ≥ 

(𝛽0
𝐻(1 − 𝜆)𝑡−1 − 𝛽0

𝐿𝛽0
𝐻(1 − 𝜆)𝑡−1 − 𝛽0

𝐻(1 − 𝜆)𝑇𝐿−1 + 𝛽0
𝐻𝛽0

𝐿(1 − 𝜆)𝑇𝐿−1), 

−𝛽0
𝐿(1 − 𝜆)𝑇𝐿−1 ≥ −𝛽0

𝐻(1 − 𝜆)𝑇𝐿−1, 

𝛽0
𝐻 ≥ 𝛽0

𝐿. 

Therefore, all the (𝑀𝐻𝑡
𝐻,𝐿) constraints are satisfied as strict inequalities and, as a result, the high 

type never shirks off-the-equilibrium if 𝑦𝑡
𝐿 =

𝛾

𝜆𝛽
𝑇𝐿
𝐿 +

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿 Δ𝑐𝑞𝐹 for 𝑡 ≤ 𝑇𝐿. 

This concludes the proof of Lemma C2.      Q.E.D. 

 

We next prove that the principal any combination of 𝑥𝑡
𝐻 and 𝑦𝑡

𝐻 such that all (𝑀𝐻𝑡
𝐻) 

constraints are satisfied and the high type’ expected rent is 𝑈𝐻(𝜛𝐿 , 1⃗⃗). 

𝝁𝒕
𝑯 = 𝜼𝒕

𝑯 = 𝟎. Given that 𝜉𝐿 = 0, conditions (𝐶1) and (𝐶3) can be rewritten as 

 

(C1)      
𝜕ℒ

𝜕𝑦𝑡
𝐻 = −𝜈𝛽0

𝐻(1 − 𝜆)𝑡−1𝜆 + 𝜉𝐻𝛽0
𝐻(1 − 𝜆)𝑡−1𝜆 + 𝜇𝑡

𝐻 − ∑ 𝜇𝑗
𝐻(1 − 𝜆)𝑡−𝑗−1𝑡−1

𝑗=1 𝜆 = 0; 

(C3)      
𝜕ℒ

𝜕𝑥𝑡
𝐻 = −𝜈𝑃𝑡

𝐻 + 𝜉𝐻𝑃𝑡
𝐻 − 𝜇𝑡

𝐻 − ∑ 𝜇𝑗
𝐻(1 − 𝜆)𝑡−𝑗𝑡−1

𝑗=1 + 𝜂𝑡
𝐻 = 0. 

 There exists a solution to (𝐶1) and (𝐶3) for 𝑡 ≤ 𝑇𝐻 such that 

𝜇𝑡
𝐻 = 𝜂𝑡

𝐻 = 0 and 𝜉𝐻 = 𝜈 for 𝑡 ≤ 𝑇𝐻. 

Therefore, the principal can use any combination of 𝑥𝑡
𝐻 and 𝑦𝑡

𝐻 such that 

𝑦𝑡
𝐻 − 𝑥𝑡

𝐻 ≥
𝛾

𝜆𝛽𝑡
𝐻 + ∑ (1 − 𝜆)𝑠−𝑡−1(𝜆𝑦𝑠

𝐻 + (1 − 𝜆)𝑥𝑠
𝐻 − 𝛾)𝑇𝐻

𝑠=𝑡+1 +
(1−𝛽0

𝐻)

𝑃
𝑇𝐻
𝐻 Δ𝑐𝑞𝐹 for 𝑡 ≤ 𝑇𝐻, and 

(1 − 𝛽0
𝐻)∑ [𝑥𝑡

𝐻 − 𝛾]𝑇𝐻

𝑡=1 + 𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1[(𝜆𝑦𝑡

𝐻 − 𝛾) + (1 − 𝜆)𝑥𝑡
𝐻]𝑇𝐻

𝑡=1 = 𝑈𝐻(𝜛𝐿, 1⃗⃗). 

This concludes the proof of Claim C3.      Q.E.D. 

Case 4: Both (𝐼𝐶𝐻,𝐿) and (𝐼𝐶𝐿,𝐻) bind. 

The case where both (𝐼𝐶𝐻,𝐿) and (𝐼𝐶𝐿,𝐻) are binding is similar to the Case B of the 

adverse selection only benchmark. The novel feature is that the principal has to pay an additional 
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adverse selection rent on top of the moral hazard rent to both types.47 Similarly, to the pure 

adverse selection benchmark, the low type receives his extra adverse selection rent after the very 

last failure. This is Case 4. 

Claim C4. 𝜉𝐻 > 0, 𝜉𝐿 > 0 ⇒ 𝜂𝑡
𝐻 > 0 = 𝜇𝑡

𝐻 for 𝑡 ≤ 𝑇𝐻, 𝜇𝑡
𝐿 > 0 for 𝑡 ≤ 𝑇𝐿, 𝜂𝑡

𝐿 > 0 =

𝜂𝑇𝐿
𝐿  for 𝑡 < 𝑇𝐿. 

(it is optimal to set 𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1(𝜆𝑦𝑡

𝐻 − 𝛾)𝑇𝐻

𝑡=1 − 𝛾 ∑ 𝑃𝑡
𝐻𝑇𝐻

𝑡=1 = 𝑈𝐻(𝜛𝐿 , 1⃗⃗), 

𝑦𝑇𝐿
𝐿 = 𝑥𝑇𝐿

𝐿 +
𝛾

𝜆𝛽
𝑇𝐿
𝐿 +

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿  

Δ𝑐𝑞𝐹, 

𝑦𝑡
𝐿 =

𝛾

𝜆𝛽𝑡
𝐿 + ∑ (1 − 𝜆)𝑠−𝑡−1(𝜆𝑦𝑠

𝐿 − 𝛾)𝑇𝐿

𝑠=𝑡+1 + (1 − 𝜆)𝑇𝐿−𝑡𝑥𝑇𝐿
𝐿 +

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿  

Δ𝑐𝑞𝐹 for 𝑡 < 𝑇𝐿,  

and 

𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1(𝜆𝑦𝑡

𝐿 − 𝛾)𝑇𝐿

𝑡=1 − 𝛾 ∑ 𝑃𝑡
𝐿𝑇𝐿−1

𝑡=1 + 𝑃𝑇𝐿
𝐿 (𝑥𝑇𝐿

𝐿 − 𝛾) = 𝑈𝐿(𝜛𝐻 , 𝑎⃗𝐿(𝜛𝐻))). 

Proof:  

H-type. We first describe the optimal contract for the high type and prove that the high type is 

rewarded only for success with the rewards distributed such that all the (𝑀𝐻𝑡
𝐻) constraints are 

satisfied (at no additional cost, i.e., 𝜇𝑡
𝐻 = 0 for 𝑡 ≤ 𝑇𝐻). 

𝒙𝒕
𝑯 = 𝟎. First, the high type is rewarded only for success. The reason is that rewarding the high 

type for failures does not allow mitigating the low type’s rent since he is relatively more likely to 

fail if he works off-the-equilibrium (the high type is not rewarded for failures in a benchmark 

without moral hazard, see Supplementary Appendix A for a formal proof) and, in addition, he is 

even more likely to fail if he shirks off-the-equilibrium. Therefore, rewarding the high type for 

failures does not mitigate the low type’s rent. In addition, rewarding the high type for failures 

makes it only more difficult to satisfy the (𝑀𝐻𝑡
𝐻) constraints. Therefore, the high type is not 

rewarded for failures: 

𝑥𝑡
𝐻 = 0 for 𝑡 ≤ 𝑇𝐻. 

𝒚𝒕
𝑯 ≥ 𝟎. We next prove that the principal any combination of 𝑦𝑡

𝐻 such that all (𝑀𝐻𝑡
𝐻) constraints 

are satisfied and the high type’ expected rent is 𝑈𝐻(𝜛𝐿 , 1⃗⃗). 

𝝁𝒕
𝑯 = 𝟎. Conditions (𝐶1) and (𝐶3) can be rewritten as 

 

(C1) 
𝜕ℒ

𝜕𝑦𝑡
𝐻 = −𝜈𝛽0

𝐻(1 − 𝜆)𝑡−1𝜆 + 𝜉𝐻𝛽0
𝐻(1 − 𝜆)𝑡−1𝜆 − 𝜉𝐿𝛽0

𝐿(∏ (1 − 𝜆𝑒𝑠
𝐿,𝐻)𝑡−1

𝑠=1 )𝜆𝑒𝑡
𝐿,𝐻

 

+𝜇𝑡
𝐻 − ∑ 𝜇𝑗

𝐻(1 − 𝜆)𝑡−𝑗−1𝑡−1
𝑗=1 𝜆 = 0; 

(C3) 
𝜕ℒ

𝜕𝑥𝑡
𝐻 = −𝜈𝑃𝑡

𝐻 + 𝜉𝐻𝑃𝑡
𝐻 − 𝜉𝐿(1 − 𝛽0

𝐿 + 𝛽0
𝐿 ∏ (1 − 𝜆𝑒𝑠

𝐿,𝐻)𝑡
𝑠=1 ) 

−𝜇𝑡
𝐻 − ∑ 𝜇𝑗

𝐻(1 − 𝜆)𝑡−𝑗𝑡−1
𝑗=1 + 𝜂𝑡

𝐻 = 0; 

There exists a solution to (𝐶1) and (𝐶3) for 𝑡 ≤ 𝑇𝐻 such that for all 𝑡 ≤ 𝑇𝐻: 

𝜇𝑡
𝐻 = 0; 

 
47 We ignore the knife-edge case where both the (𝐼𝐶) constraints and all the (𝑀𝐻𝑡

𝐻) are binding simultaneously. In 

that case, the adverse selection rent is exactly equal to the moral hazard rent and there is no extra rent to be paid. 
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𝜉𝐿 = 𝜂𝑡
𝐻 𝛽0

𝐻(1−𝜆)𝑡−1𝜆

((1−𝛽0
𝐿+𝛽0

𝐿 ∏ (1−𝜆𝑒𝑠
𝐿,𝐻)𝑡

𝑠=1 )𝛽0
𝐻(1−𝜆)𝑡−1𝜆−𝛽0

𝐿(∏ (1−𝜆𝑒𝑠
𝐿,𝐻)𝑡−1

𝑠=1 )𝜆𝑒𝑡
𝐿,𝐻𝑃𝑡

𝐻)
> 0; 

𝜉𝐻𝛽0
𝐻(1 − 𝜆)𝑡−1𝜆𝑃𝑡

𝐻 = 𝜈𝛽0
𝐻(1 − 𝜆)𝑡−1𝜆𝑃𝑡

𝐻 + 𝜉𝐿𝛽0
𝐿(∏ (1 − 𝜆𝑒𝑠

𝐿,𝐻)𝑡−1
𝑠=1 )𝜆𝑒𝑡

𝐿,𝐻𝑃𝑡
𝐻 > 0. 

Therefore, the principal sets 𝑥𝑡
𝐻 = 0 and uses any combination of 𝑦𝑡

𝐻 such that 

𝑦𝑡
𝐻 ≥

𝛾

𝜆𝛽𝑡
𝐻 + ∑ (1 − 𝜆)𝑠−𝑡−1(𝜆𝑦𝑠

𝐻 − 𝛾)𝑇𝐻

𝑠=𝑡+1 +
(1−𝛽0

𝐻)

𝑃
𝑇𝐻
𝐻 Δ𝑐𝑞𝐹 for 𝑡 ≤ 𝑇𝐻, and 

𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1(𝜆𝑦𝑡

𝐻 − 𝛾)𝑇𝐻

𝑡=1 − 𝛾 ∑ 𝑃𝑡
𝐻𝑇𝐻

𝑡=1 = 𝑈𝐻(𝜛𝐿 , 1⃗⃗). 

 

L-type. We now describe the optimal contract for the low type.  

𝝁𝒕
𝑳 > 𝟎 for 𝒕 ≤ 𝑻𝑳. Combining (𝐶2) and (𝐶4) we have:48 

 

           𝜉𝐻𝜆 [
𝛽0

𝐿(1 − 𝛽0
𝐻)(1 − 𝜆)𝑡−1 − 𝛽0

𝐻(1 − 𝛽0
𝐿)𝑒𝑡

𝐻,𝐿 ∏ (1 − 𝜆𝑒𝑠
𝐻,𝐿)𝑡−1

𝑠=1

+𝛽0
𝐿𝛽0

𝐻(1 − 𝜆)𝑡−1(1 − 𝑒𝑡
𝐻,𝐿)∏ (1 − 𝜆𝑒𝑠

𝐻,𝐿)𝑡−1
𝑠=1

] + 𝜇𝑡
𝐿𝑃𝑡−1

𝐿  

= 𝛽0
𝐿(1 − 𝜆)𝑡−1𝜆𝜂𝑡

𝐿 + (1 − 𝛽0
𝐿)∑ 𝜇𝑗

𝐿(1 − 𝜆)𝑡−𝑗−1𝑡−1
𝑗=1 𝜆 for 𝑡 ≤ 𝑇𝐿. 

 

Since that 𝑒𝑡
𝐻,𝐿 = 1 for 𝑡 ≤ 𝑇𝐿 by Lemma 𝐶2, the condition above simplifies to 

(𝑪𝟓)              −𝜉𝐻𝜆(1 − 𝜆)𝑡−1(𝛽0
𝐻 − 𝛽0

𝐿) + 𝜇𝑡
𝐿𝑃𝑡−1

𝐿  

= 𝛽0
𝐿(1 − 𝜆)𝑡−1𝜆𝜂𝑡

𝐿 + (1 − 𝛽0
𝐿)∑ 𝜇𝑗

𝐿(1 − 𝜆)𝑡−𝑗−1𝑡−1
𝑗=1 𝜆 for 𝑡 ≤ 𝑇𝐿. 

Given that the RHS of (𝐶5) is non-negative, we have, 𝜇𝑡
𝐿 > 0 for every 𝑡 ≤ 𝑇𝐿 and, as a 

result, the (𝑀𝐻𝑡
𝐿) constraints must be binding: 

𝑦𝑡
𝐿 − 𝑥𝑡

𝐿 =
𝛾

𝜆𝛽𝑡
𝐿 + ∑ (1 − 𝜆)𝑠−𝑡−1(𝜆𝑦𝑠

𝐿 + (1 − 𝜆)𝑥𝑠
𝐿 − 𝛾)𝑇𝐿

𝑠=𝑡+1 +
(1−𝛽0

𝐿)

𝑃
𝑇𝐿
𝐿  

Δ𝑐𝑞𝐹 for 𝑡 ≤ 𝑇𝐿. 

𝒙𝑻𝑳
𝑳 > 𝒙𝒕

𝑳 = 𝟎 for 𝒕 < 𝑻𝑳. Since the low type gets a rent higher than the one determined by the 

binding (𝑀𝐻𝑡
𝐿) constraint with 𝑥𝑡

𝐿 = 0 for 𝑡 ≤ 𝑇𝐿, we must have 𝑥𝑡
𝐿 ≥ 0 with a strict inequality 

for some 𝑡. Following the same two steps as in the benchmark with adverse selection only (see 

Supplementary Appendix A), it follows that the low type is rewarded for failure in the very last 

period only.49  

Therefore, the low type’s payments are determined by 

𝑦𝑇𝐿
𝐿 = 𝑥𝑇𝐿

𝐿 +
𝛾

𝜆𝛽
𝑇𝐿
𝐿 +

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿  

Δ𝑐𝑞𝐹, 

𝑦𝑡
𝐿 =

𝛾

𝜆𝛽𝑡
𝐿 + ∑ (1 − 𝜆)𝑠−𝑡−1(𝜆𝑦𝑠

𝐿 − 𝛾)𝑇𝐿

𝑠=𝑡+1 + (1 − 𝜆)𝑇𝐿−𝑡𝑥
𝑇𝐿
𝐿 +

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿  

Δ𝑐𝑞𝐹 for 𝑡 < 𝑇𝐿, 

and 

𝑈𝐿(𝜛𝐻 , 𝑎⃗𝐿(𝜛𝐻)) = 𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1(𝜆𝑦𝑡

𝐿 − 𝛾)𝑇𝐿

𝑡=1 − 𝛾 ∑ 𝑃𝑡
𝐿𝑇𝐿−1

𝑡=1 + 𝑃𝑇𝐿
𝐿 (𝑥𝑇𝐿

𝐿 − 𝛾). 

 

 
48 We multiply (C4) by 𝛽0

𝐿(1 − 𝜆)𝑡−1𝜆 and subtract it from (C2) multiplied by 𝑃𝑡
𝐿. 

49 First, low type is rewarded for failure in only one period 𝑠 ≤ 𝑇𝐿. Second, it is optimal to reward the low type for 

the very last failure, i.e., 𝑠 = 𝑇𝐿. 
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𝒂⃗⃗⃗𝑳(𝝕𝑯). Given the high type’s rewards are front loaded, an off-the-equilibrium effort path 

𝑎⃗𝐿(𝜛𝐻) is a stopping rule: the low type works up to period 𝑡𝐿,𝐻 ≤ 𝑇𝐻 and shirks thereafter. 

Therefore, the low type’s expected payoff when he pretends being high can be written as: 

𝑈𝐿(𝜛𝐻 , 𝑎⃗𝐿(𝜛𝐻)) = −𝛾(1 − 𝛽0
𝐿)𝑡𝐿,𝐻 + 𝛽0

𝐿 ∑ (1 − 𝜆)𝑡−1 (𝜆𝑦𝑡
𝐻 − 𝛾)𝑡𝐿,𝐻

𝑡=1 +  

𝑃
𝑡𝐿,𝐻
𝐿 (𝑐

𝑇𝐻+1
𝐻 − 𝑐

𝑡𝐿,𝐻+1
𝐿 )𝑞𝐹,  

where 𝑡𝐿,𝐻 is the number of time periods that maximizes 𝑈𝐿(𝜛𝐻 , 𝑎⃗𝐿(𝜛𝐻)): 

𝑡𝐿,𝐻 ≔ arg max
0≤𝑡𝐿,𝐻≤𝑇𝐻

𝑈𝐿(𝜛𝐻 , 𝑎⃗𝐿(𝜛𝐻)). 

This concludes the proofs of Claim C4 and part (i) of Proposition 3.   Q.E.D. 

 

Optimal length of experimentation (Proposition 4) 

Case 1: Both the (𝐼𝐶𝐻,𝐿) and (𝐼𝐶𝐿,𝐻) constraints are slack (under experimentation for both 

types). 

Information rents for both types are given by 

𝑈𝜃 = 𝛽0
𝜃 ∑ (1 − 𝜆)𝑡−1𝜆𝑦𝑡

𝜃𝑇𝜃

𝑡=1 , where 𝑦𝑡
𝜃 =

𝛾

𝜆𝛽
𝑇𝜃
𝜃 +

(1−𝛽0
𝜃)

𝑃
𝑇𝜃
𝜃  

Δ𝑐𝑞𝐹 for 𝑡 ≤ 𝑇𝜃 and 𝜃 ∈ {𝐻, 𝐿}. 

Since the agent’s information rent is increasing in 𝑇𝜃, there will be under experimentation for 

both types, that is, 𝑇𝑆𝐵
𝜃 < 𝑇𝐹𝐵

𝜃  for 𝜃 ∈ {𝐻, 𝐿}. 

Case 2: The (𝐼𝐶𝐿,𝐻) binds and (𝐼𝐶𝐻,𝐿) constraint is slack (𝑇𝑆𝐵
𝐿 = 𝑇𝐹𝐵

𝐿 , under experimentation for 

the high type). 

Information rents for both types are given by 

𝑈𝐻 = 𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1𝜆𝑦𝑡

𝐻𝑇𝐻

𝑡=1 , and 

𝑈𝐿(𝜛𝐻 , 𝑎⃗𝐿(𝜛𝐻)) = −𝛾(1 − 𝛽0
𝐿)𝑡𝐿,𝐻 + 𝛽0

𝐿 ∑ (1 − 𝜆)𝑡−1 (𝜆𝑦𝑡
𝐻 − 𝛾)𝑡𝐿,𝐻

𝑡=1   

+𝑃𝑡𝐿,𝐻
𝐿 (𝑐𝑇𝐻+1

𝐻 − 𝑐𝑡𝐿,𝐻+1
𝐿 )𝑞𝐹, 

where 𝑦𝑡
𝐻 =

𝛾

𝜆𝛽
𝑇𝐻
𝐻 +

(1−𝛽0
𝐻)

𝑃
𝑇𝐻
𝐻  

Δ𝑐𝑞𝐹 for 𝑡 ≤ 𝑇𝐻. 

Since the informational rent of the low-type agent is non-monotonic in 𝑇𝐻, it is possible, 

in general, to have both 𝑇𝑆𝐵
𝐻 < 𝑇𝐹𝐵

𝐻  and 𝑇𝑆𝐵
𝐻 > 𝑇𝐹𝐵

𝐻 .  The stopping time for the low type, 𝑇𝐿, does 

not affect information rents and, as a result, is not distorted: 𝑇𝑆𝐵
𝐿 = 𝑇𝐹𝐵

𝐿 . 

Case 3: The (𝐼𝐶𝐻,𝐿) binds and (𝐼𝐶𝐿,𝐻) constraint is slack (𝑇𝑆𝐵
𝐻 = 𝑇𝐹𝐵

𝐻 , 𝑇𝑆𝐵
𝐿 < 𝑇𝐹𝐵

𝐿  or 𝑇𝑆𝐵
𝐿 > 𝑇𝐹𝐵

𝐿 ). 

Information rents for both types are given by  

𝑈𝐿 = 𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1𝜆𝑦𝑡

𝐿𝑇𝐿

𝑡=1 , and 

𝑈𝐻(𝜛𝐿 , 1⃗⃗) = −𝛾(1 − 𝛽0
𝐿)𝑇𝐿 + 𝛽0

𝐿 ∑ (1 − 𝜆)𝑡−1 (𝜆𝑦𝑡
𝐿 − 𝛾)𝑇𝐿

𝑡=1  +𝑃𝑇𝐿
𝐻 (𝑐𝑇𝐿+1

𝐿 − 𝑐𝑇𝐿+1
𝐻 )𝑞𝐹, 

where 𝑦𝑡
𝐿 =

𝛾

𝜆𝛽
𝑇𝐿
𝐿 +

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿  

Δ𝑐𝑞𝐹 for 𝑡 ≤ 𝑇𝐿. 

Since the informational rent of the high-type agent is non-monotonic in 𝑇𝐿, it is possible, 

in general, to have both 𝑇𝑆𝐵
𝐿 < 𝑇𝐹𝐵

𝐿  and 𝑇𝑆𝐵
𝐿 > 𝑇𝐹𝐵

𝐿 . The stopping time for the high type, 𝑇𝐻, does 

not affect information rents and, as a result, is not distorted: 𝑇𝑆𝐵
𝐻 = 𝑇𝐹𝐵

𝐻 . 
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Case 4: Both (𝐼𝐶𝐻,𝐿) and (𝐼𝐶𝐿,𝐻) bind (𝑇𝑆𝐵
𝐻 < 𝑇𝐹𝐵

𝐻  or 𝑇𝑆𝐵
𝐻 > 𝑇𝐹𝐵

𝐻 , 𝑇𝑆𝐵
𝐿 < 𝑇𝐹𝐵

𝐿  or 𝑇𝑆𝐵
𝐿 > 𝑇𝐹𝐵

𝐿 ). 

Information rents for both types are given by 

𝑈𝐻(𝜛𝐿 , 1⃗⃗) = (1 − 𝛽0
𝐻)∑ [𝑥𝑡

𝐿 − 𝛾]𝑇𝐿

𝑡=1 + 𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1[(𝜆𝑦𝑡

𝐿 − 𝛾) + (1 − 𝜆)𝑥𝑡
𝐿]𝑇𝐿

𝑡=1   

+(1 − 𝛽0
𝐻 + 𝛽0

𝐻(1 − 𝜆)𝑇𝐿
)(𝑐

𝑇𝐿+1
𝐿 − 𝑐

𝑇𝐿+1
𝐻 )𝑞𝐹; 

𝑈𝐿(𝜛𝐻 , 𝑎⃗𝐿(𝜛𝐻)) = (1 − 𝛽0
𝐿)∑ [𝑥𝑡

𝐻 − 𝛾]𝑡=𝑡𝐿,𝐻

𝑡=1 + 𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1[𝜆𝑦𝑡

𝐻 + (1 − 𝜆)𝑥𝑡
𝐻 − 𝛾]𝑡=𝑡𝐿,𝐻

𝑡=1   

+(1 − 𝛽0
𝐿) ∑ 𝑥𝑡

𝐻𝑇𝐻

𝑡=𝑡𝐿,𝐻+1 + (1 − 𝜆)𝑡𝐿,𝐻−1𝛽0
𝐿 ∑ 𝑥𝑡

𝐻𝑇𝐻

𝑡=𝑡𝐿,𝐻+1   

−(1 − 𝛽0
𝐿 + 𝛽0

𝐿(1 − 𝜆)𝑡𝐿,𝐻
)(𝑐𝑡𝐿,𝐻+1

𝐿 − 𝑐𝑇𝐻+1
𝐻 )𝑞𝐹. 

Since the informational rent of the high-type agent is non-monotonic in 𝑇𝐿, it is possible, in 

general, to have both 𝑇𝑆𝐵
𝐿 < 𝑇𝐹𝐵

𝐿  and 𝑇𝑆𝐵
𝐿 > 𝑇𝐹𝐵

𝐿 . Similarly, as the informational rent of the low-

type agent is non-monotonic in 𝑇𝐻, it is possible, in general, to have 𝑇𝑆𝐵
𝐻 < 𝑇𝐹𝐵

𝐻  and 𝑇𝑆𝐵
𝐻 > 𝑇𝐹𝐵

𝐻 . 

This completes part (ii) of the proof of Proposition 3. 

Q.E.D. 

Appendix D: Sufficient Conditions for Separation/Integration 

Claim D1. Sufficient Conditions for Separation 

Separation is optimal if the adverse selection problem is small enough (𝛽0
𝐻 is close to 𝛽0

𝐿). 

Proof: We prove that separation is optimal in all 4 cases of the main model (depending on which 

IC are binding) if the adverse selection problem is small enough. That is, for any 𝛽0
𝐿 there exists 

a value of 𝛽0
𝐻, called 𝛽

0

𝐻
(𝛽0

𝐿), such that separation is optimal if 𝛽0
𝐻 < 𝛽

0

𝐻
(𝛽0

𝐿). We consider each 

of the four cases in turn and prove that in each of them the principal is better off with separating 

contracts for experimentation and production than under integration if the adverse selection 

problem is not severe. 

From the principal’s problem in Appendix C, the expected payment by the principal to 

both types under integration is given by: 

𝐸𝜃 [𝛽0
𝜃 ∑ (1 − 𝜆)𝑡−1𝜆𝑦𝑡

𝜃𝑇𝜃

𝑡=1 + ∑ 𝑃𝑡
𝜃𝑥𝑡

𝜃𝑇𝜃

𝑡=1 ] = 𝜈[𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1𝜆𝑦𝑡

𝐻𝑇𝐻

𝑡=1 + ∑ 𝑃𝑡
𝐻𝑥𝑡

𝐻𝑇𝐻

𝑡=1 ] +

(1 − 𝜈)[𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1𝜆𝑦𝑡

𝐿𝑇𝐿

𝑡=1 + ∑ 𝑃𝑡
𝐿𝑥𝑡

𝐿𝑇𝐿

𝑡=1 ], 

where the two (𝐼𝐶) constraints are 

(𝐼𝐶𝐿,𝐻)  𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1𝜆𝑦𝑡

𝐿𝑇𝐿

𝑡=1 + 𝑃𝑇𝐿
𝐿 𝑥𝑇𝐿

𝐿   

≥ 𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1𝛾𝑇𝐿

𝑡=1 + 𝛾 ∑ 𝑃𝑡
𝐿𝑇𝐿

𝑡=1 − 𝛾𝑡𝐿,𝐻(1 − 𝛽0
𝐿) − 𝛾𝛽0

𝐿 ∑ (1 − 𝜆)𝑡−1𝑡=𝑡𝐿,𝐻

𝑡=1   

−(1 − 𝛽0
𝐿 + 𝛽0

𝐿(1 − 𝜆)𝑡𝐿,𝐻
)(𝑐𝑡𝐿,𝐻+1

𝐿 − 𝑐𝑇𝐻+1
𝐻 )𝑞𝐹  

+𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1𝜆𝑦𝑡

𝐻𝑡=𝑡𝐿,𝐻

𝑡=1 ,   

 

(𝐼𝐶𝐻,𝐿)  𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1𝜆𝑦𝑡

𝐻𝑇𝐻

𝑡=1  

≥ 𝛾 ∑ 𝑃𝑡
𝐻𝑇𝐻

𝑡=1 + 𝛾𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1𝑇𝐻

𝑡=1 − 𝛾𝑇𝐿(1 − 𝛽0
𝐻) − 𝛾𝛽0

𝐻 ∑ (1 − 𝜆)𝑡−1𝑇𝐿

𝑡=1   
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+(1 − 𝛽0
𝐻 + 𝛽0

𝐻(1 − 𝜆)𝑇𝐿
)(𝑐

𝑇𝐿+1
𝐿 − 𝑐

𝑇𝐿+1
𝐻 )𝑞𝐹 

+𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1𝜆𝑦𝑡

𝐿𝑇𝐿

𝑡=1 + 𝑃
𝑇𝐿
𝐻 𝑥

𝑇𝐿
𝐿 .  

 

The expected payment by the principal to each type under separation is the sum of the 

standard moral hazard rent paid to the experimentation experimenter (𝑦𝑡
𝜃 =

𝛾

𝜆𝛽
𝑇𝜃
𝜃  and 𝑥𝑡

𝜃 = 0 for 

𝑡 ≤ 𝑇𝜃) and the adverse selection rent paid to the producer.  Recalling from the proof of part (i) 

of Proposition 1 in Supplementary Appendix A that this adverse selection rent depends on 

whether one or both IC are binding (Case A or B under separation): 

Case A:  𝜈𝑈𝐴
𝐻 + (1 − 𝜈)𝑈𝐴

𝐿 = 𝜈𝑃
𝑇𝐿
𝐻 ∆𝑐𝑇𝐿+1𝑞𝐹 since 𝑈𝐴

𝐿 = 0. 

Case B:  𝜈𝑈𝐵
𝐻 + (1 − 𝜈)𝑈𝐵

𝐿 = 𝜈𝑃𝑇𝐿
𝐻 ∆𝑐𝑇𝐿+1𝑞𝐹 + [

𝛽0
𝐿𝑃

𝑇𝐿
𝐻 ∆𝑐

𝑇𝐿+1
𝑞𝐹−𝛽0

𝐻𝑃
𝑇𝐻
𝐿 ∆𝑐

𝑇𝐻+1
𝑞𝐹

[𝛽0
𝐻−𝛽0

𝐿]
] 𝐸𝑃

𝑇𝐿
𝜃 , 

where 𝐸𝑃
𝑇𝐿
𝜃 = (𝜈𝑃𝑇𝐿

𝐻 + (1 − 𝜈)𝑃𝑇𝐿
𝐿 ). 

Thus we have the expected payment by the principal under separation: 

Case A:  (1 − 𝜈)𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1𝜆

𝛾

𝜆𝛽
𝑇𝐿
𝐿

𝑇𝐿

𝑡=1 + 𝜈𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1𝜆

𝛾

𝜆𝛽
𝑇𝐻
𝐻

𝑇𝐻

𝑡=1 + 𝜈𝑃𝑇𝐿
𝐻 ∆𝑐𝑇𝐿+1𝑞𝐹.  

Case B: (1 − 𝜈)𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1𝜆

𝛾

𝜆𝛽
𝑇𝐿
𝐿

𝑇𝐿

𝑡=1 + 𝜈𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1𝜆

𝛾

𝜆𝛽
𝑇𝐻
𝐻

𝑇𝐻

𝑡=1  

+
𝛽0

𝐿𝐸𝑃
𝑇𝐿
𝜃  𝑃

𝑇𝐿
𝐻 ∆𝑐

𝑇𝐿+1

(𝛽0
𝐻−𝛽0

𝐿)
𝑞𝐹 −

𝐸𝑃
𝑇𝐿
𝜃  𝛽0

𝐻𝑃
𝑇𝐻
𝐿 ∆𝑐

𝑇𝐻+1

(𝛽0
𝐻−𝛽0

𝐿)
𝑞𝐹 + 𝜈𝑃𝑇𝐿

𝐻 ∆𝑐𝑇𝐿+1𝑞𝐹. 

Given that 

(𝑫𝟏)       ∆𝑐𝑡+1 = (𝛽𝑡+1 
𝐻 − 𝛽𝑡+1

𝐿 )𝛥𝑐 =
𝛽0

𝐻(1−𝜆)𝑡

𝑃𝑡
𝐻 −

𝛽0
𝐿(1−𝜆)𝑡

𝑃𝑡
𝐿 𝛥𝑐 = (

𝛽0
𝐻(1−𝜆)𝑡

𝑃𝑡
𝐻 −

𝛽0
𝐿(1−𝜆)𝑡

𝑃𝑡
𝐿 )𝛥𝑐  

=
𝛽0

𝐻(1−𝜆)𝑡𝑃𝑡
𝐿−𝛽0

𝐿(1−𝜆)𝑡𝑃𝑡
𝐻

𝑃𝑡
𝐻𝑃𝑡

𝐿 𝛥𝑐 =
(𝛽0

𝐻−𝛽0
𝐿)(1−𝜆)𝑡

𝑃𝑡
𝐻𝑃𝑡

𝐿 𝛥𝑐 for any 𝑡,  

we rewrite the expected payment by the principal under separation: 

Case A:  (1 − 𝜈)𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1𝜆

𝛾

𝜆𝛽
𝑇𝐿
𝐿

𝑇𝐿

𝑡=1 + 𝜈𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1𝜆

𝛾

𝜆𝛽
𝑇𝐻
𝐻

𝑇𝐻

𝑡=1  

+𝜈𝑃𝑇𝐿
𝐻 (𝛽0

𝐻−𝛽0
𝐿)(1−𝜆)𝑇

𝐿

𝑃
𝑇𝐿
𝐻 𝑃

𝑇𝐿
𝐿 𝛥𝑐𝑞𝐹. 

Case B: (1 − 𝜈)𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1𝜆

𝛾

𝜆𝛽
𝑇𝐿
𝐿

𝑇𝐿

𝑡=1 + 𝜈𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1𝜆

𝛾

𝜆𝛽
𝑇𝐻
𝐻

𝑇𝐻

𝑡=1  
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+

𝛽0
𝐿𝐸𝑃

𝑇𝐿
𝜃  𝑃

𝑇𝐿
𝐻 (𝛽0

𝐻−𝛽0
𝐿)(1−𝜆)𝑇

𝐿

𝑃
𝑇𝐿
𝐻 𝑃

𝑇𝐿
𝐿 𝛥𝑐

(𝛽0
𝐻−𝛽0

𝐿)
𝑞𝐹 −

𝐸𝑃
𝑇𝐿
𝜃  𝛽0

𝐻𝑃
𝑇𝐻
𝐿 (𝛽0

𝐻−𝛽0
𝐿)(1−𝜆)𝑇

𝐻

𝑃
𝑇𝐻
𝐻 𝑃

𝑇𝐻
𝐿 𝛥𝑐

(𝛽0
𝐻−𝛽0

𝐿)
𝑞𝐹 +

𝜈𝑃𝑇𝐿
𝐻 (𝛽0

𝐻−𝛽0
𝐿)(1−𝜆)𝑇

𝐿

𝑃
𝑇𝐿
𝐻 𝑃

𝑇𝐿
𝐿 𝛥𝑐𝑞𝐹. 

Note that the standard MH payment during experimentation, denoted as 𝑀𝐻𝑒:    

(1 − 𝜈)𝛽0
𝐿 ∑(1 − 𝜆)𝑡−1𝜆

𝛾

𝜆𝛽𝑇𝐿
𝐿

𝑇𝐿

𝑡=1

+ 𝜈𝛽0
𝐻 ∑(1 − 𝜆)𝑡−1𝜆

𝛾

𝜆𝛽𝑇𝐻
𝐻

𝑇𝐻

𝑡=1

 

is paid under both integration and separation.   

We compare the adverse selection rent to the producer against the MH rent at the time of 

production under integration, denoted by 𝑀𝐻𝑝:  

𝐸𝜃 ∑(1 − 𝜆)𝑡−1𝜆

𝑇𝜃

𝑡=1

(1 − 𝛽0
𝜃)

𝑃
𝑇𝜃
𝜃  

Δ𝑐𝑞𝐹 = 

[𝜈𝛽0
𝐻 (1−𝛽0

𝐻)

𝑃
𝑇𝐻
𝐻  

(1 − (1 − 𝜆)𝑇𝐻
) + (1 − 𝜈)𝛽0

𝐿 (1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿  

(1 − (1 − 𝜆)𝑇𝐿
)]Δ𝑐𝑞𝐹. 

We will check this for each of the Cases 1-4 depending on which IC is binding under integration. 

Case 1 under integration: both IC are slack 

In Case 1, when both ICs are slack, from Appendix C, we have 𝑥𝑡
𝜃 = 0 for 𝑡 ≤ 𝑇𝜃 and 𝜃 ∈

{𝐻, 𝐿} and 𝑦𝑡
𝜃 =

𝛾

𝜆𝛽
𝑇𝜃
𝜃 +

(1−𝛽0
𝜃)

𝑃
𝑇𝜃
𝜃  

Δ𝑐𝑞𝐹  Thus, the expected rent under integration is given by: 

(1 − 𝜈)𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1𝜆 (

𝛾

𝜆𝛽
𝑇𝐿
𝐿 +

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿  

Δ𝑐𝑞𝐹)𝑇𝐿

𝑡=1   

+𝜈𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1𝜆 (

𝛾

𝜆𝛽
𝑇𝐻
𝐻 +

(1−𝛽0
𝐻)

𝑃
𝑇𝐻
𝐻  

Δ𝑐𝑞𝐹)𝑇𝐻

𝑡=1 . 

Case A under separation (only (𝐼𝐶𝐻,𝐿) is binding).  We prove that separation is optimal if 𝛽0
𝐻 is 

close to 𝛽0
𝐿 .  Separation is optimal if 

𝜈𝑃𝑇𝐿
𝐻 (𝛽0

𝐻−𝛽0
𝐿)(1−𝜆)𝑇

𝐿

𝑃
𝑇𝐿
𝐻 𝑃

𝑇𝐿
𝐿 𝛥𝑐𝑞𝐹 < [𝜈

(1−𝛽0
𝐻)𝛽0

𝐻(1−(1−𝜆)𝑇
𝐻

)

𝑃
𝑇𝐻
𝐻  

+ (1 − 𝜈)
(1−𝛽0

𝐿)𝛽0
𝐿(1−(1−𝜆)𝑇

𝐿
)

𝑃
𝑇𝐿
𝐿  

] 𝛥𝑐𝑞𝐹, 

(𝑫𝟏𝑨)      𝜈(1 − 𝜆)𝑇𝐿
(𝛽0

𝐻 − 𝛽0
𝐿)  

< 𝜈(1 − 𝛽0
𝐻)(1 − (1 − 𝜆)𝑇𝐻

)
𝑃
𝑇𝐿
𝐿

𝑃
𝑇𝐻
𝐻 + (1 − 𝜈)(1 − 𝛽0

𝐿)(1 − (1 − 𝜆)𝑇𝐿
). 

Since the 𝑅𝐻𝑆 stays strictly positive and the 𝐿𝐻𝑆 goes to zero as 𝛽0
𝐻 → 𝛽0

𝐿, for any 𝛽0
𝐿 there 

exists a value of 𝛽0
𝐻, called 𝛽̅0

𝐻1𝑎(𝛽0
𝐿), such that the inequality is satisfied if 𝛽0

𝐻 < 𝛽̅0
𝐻1𝑎(𝛽0

𝐿). 
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Case B under separation (both (𝐼𝐶) are binding). We prove that separation is optimal if 𝛽0
𝐻 is 

close to 𝛽0
𝐿. Separation is optimal if 

𝛽0
𝐿𝐸𝑃

𝑇𝐿
𝜃  𝑃

𝑇𝐿
𝐻 (𝛽0

𝐻−𝛽0
𝐿)(1−𝜆)𝑇

𝐿

𝑃
𝑇𝐿
𝐻 𝑃

𝑇𝐿
𝐿 𝛥𝑐

(𝛽0
𝐻−𝛽0

𝐿)
𝑞𝐹 −

𝐸𝑃
𝑇𝐿
𝜃  𝛽0

𝐻𝑃
𝑇𝐻
𝐿 (𝛽0

𝐻−𝛽0
𝐿)(1−𝜆)𝑇

𝐻

𝑃
𝑇𝐻
𝐻 𝑃

𝑇𝐻
𝐿 𝛥𝑐

(𝛽0
𝐻−𝛽0

𝐿)
𝑞𝐹 + 𝜈𝑃

𝑇𝐿
𝐻 (𝛽0

𝐻−𝛽0
𝐿)(1−𝜆)𝑇

𝐿

𝑃
𝑇𝐿
𝐻 𝑃

𝑇𝐿
𝐿 𝛥𝑐𝑞𝐹   

< [
𝜈(1−𝛽0

𝐻)𝛽0
𝐻(1−(1−𝜆)𝑇

𝐻
)𝑃

𝑇𝐿
𝐿 +(1−𝜈)(1−𝛽0

𝐿)𝛽0
𝐿(1−(1−𝜆)𝑇

𝐿
)𝑃

𝑇𝐻
𝐻

𝑃
𝑇𝐻
𝐻  𝑃

𝑇𝐿
𝐿 ] 𝛥𝑐𝑞𝐹. 

Or, equivalently 

(𝑫𝟏𝑩)  
𝛽0

𝐿𝐸𝑃
𝑇𝐿
𝜃 (1−𝜆)𝑇

𝐿
𝑃
𝑇𝐻
𝐻 −𝐸𝑃

𝑇𝐿
𝜃  𝛽0

𝐻(1−𝜆)𝑇
𝐻

𝑃
𝑇𝐿
𝐿

𝑃
𝑇𝐿
𝐿 𝑃

𝑇𝐻
𝐻 + 𝜈𝑃

𝑇𝐿
𝐻 (𝛽0

𝐻−𝛽0
𝐿)(1−𝜆)𝑇

𝐿

𝑃
𝑇𝐿
𝐻 𝑃

𝑇𝐿
𝐿    

<
𝜈(1−𝛽0

𝐻)𝛽0
𝐻(1−(1−𝜆)𝑇

𝐻
)𝑃

𝑇𝐿
𝐿 +(1−𝜈)(1−𝛽0

𝐿)𝛽0
𝐿(1−(1−𝜆)𝑇

𝐿
)𝑃

𝑇𝐻
𝐻

𝑃
𝑇𝐻
𝐻  𝑃

𝑇𝐿
𝐿 , 

Since the 𝑅𝐻𝑆 stays strictly positive and the 𝐿𝐻𝑆 goes to zero as 𝛽0
𝐻 → 𝛽0

𝐿, for any 𝛽0
𝐿 there 

exists a value of 𝛽0
𝐻, called 𝛽̅0

𝐻1𝑏(𝛽0
𝐿), such that the inequality is satisfied if 𝛽0

𝐻 < 𝛽̅0
𝐻1𝑏(𝛽0

𝐿). 

Case 2 under integration: only (𝑰𝑪𝑳,𝑯) binding 

We first determine the rent paid to the high type. In Case 2, Appendix C, we have 𝑥𝑡
𝐻 = 0 and 

𝑦𝑡
𝐻 =

𝛾

𝜆𝛽
𝑇𝐻
𝐻 +

(1−𝛽0
𝐻)

𝑃
𝑇𝐻
𝐻  

Δ𝑐𝑞𝐹 for all 𝑡 ≤ 𝑇𝐻. Therefore, the rent paid to the high type is  

𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1𝜆𝑦𝑡

𝐻𝑇𝐻

𝑡=1 + ∑ 𝑃𝑡
𝐻𝑥𝑡

𝐻𝑇𝐻

𝑡=1 = 𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1𝜆 (

𝛾

𝜆𝛽
𝑇𝐻
𝐻 +

(1−𝛽0
𝐻)

𝑃
𝑇𝐻
𝐻  

Δ𝑐𝑞𝐹)𝑇𝐻

𝑡=1 . 

We next determine the rent paid to the low type. From Lemma C1 in Appendix C, Case 2, we 

have the binding (𝐼𝐶𝐿,𝐻) constraint: 

𝛽0
𝐿 ∑(1 − 𝜆)𝑡−1𝑦𝑡

𝐿

𝑇𝐿

𝑡=1

+ ∑𝑃𝑡
𝐿𝑥𝑡

𝐿

𝑇𝐿

𝑡=1

− ∑𝑃𝑡−1
𝐿 𝛾

𝑇𝐿

𝑡=1

= 

𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1 𝜆𝑦𝑡

𝐻𝑡𝐿,𝐻

𝑡=1 − ∑ 𝑃𝑡−1
𝐿𝑡𝐿,𝐻

𝑡=1 𝛾 + 𝑃𝑡𝐿,𝐻
𝐿 (𝑐𝑇𝐻+1

𝐻 − 𝑐𝑡𝐿,𝐻+1
𝐿 )𝑞𝐹, 

and by moving ∑ 𝑃𝑡−1
𝐿 𝛾𝑇𝐿

𝑡=1  to the RHS, the rent paid to the low type can be written as: 

𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1𝜆𝑦𝑡

𝐿𝑇𝐿

𝑡=1 + ∑ 𝑃𝑡
𝐻𝑥𝑡

𝐿𝑇𝐻

𝑡=1   

= 𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1 𝜆𝑦𝑡

𝐻𝑡𝐿,𝐻

𝑡=1 + ∑ 𝑃𝑡−1
𝐿 𝛾𝑇𝐿

𝑡=1 − ∑ 𝑃𝑡−1
𝐿𝑡𝐿,𝐻

𝑡=1 𝛾 + 𝑃𝑡𝐿,𝐻
𝐿 (𝑐𝑇𝐻+1

𝐻 − 𝑐𝑡𝐿,𝐻+1
𝐿 )𝑞𝐹. 

Thus, the expected rent under integration is 

𝜈 [𝛽0
𝐻 ∑(1 − 𝜆)𝑡−1𝜆𝑦𝑡

𝐻

𝑇𝐻

𝑡=1

+ ∑𝑃𝑡
𝐻𝑥𝑡

𝐻

𝑇𝐻

𝑡=1

] + (1 − 𝜈) [𝛽0
𝐿 ∑(1 − 𝜆)𝑡−1𝜆𝑦𝑡

𝐿

𝑇𝐿

𝑡=1

+ ∑𝑃𝑡
𝐿𝑥𝑡

𝐿

𝑇𝐿

𝑡=1

] 
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= 𝜈𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1𝜆 (

𝛾

𝜆𝛽
𝑇𝐻
𝐻 +

(1−𝛽0
𝐻)

𝑃
𝑇𝐻
𝐻  

Δ𝑐𝑞𝐹)𝑇𝐻

𝑡=1   

+(1 − 𝜈)(
𝛽0

𝐿 ∑ (1 − 𝜆)𝑡−1 𝜆 [
𝛾

𝜆𝛽
𝑇𝐻
𝐻 +

(1−𝛽0
𝐻)

𝑃
𝑇𝐻
𝐻  

Δ𝑐𝑞𝐹]𝑡𝐿,𝐻

𝑡=1

+∑ 𝑃𝑡−1
𝐿 𝛾𝑇𝐿

𝑡=1 − ∑ 𝑃𝑡−1
𝐿𝑡𝐿,𝐻

𝑡=1 𝛾 + 𝑃
𝑡𝐿,𝐻
𝐿 (𝑐

𝑇𝐻+1
𝐻 − 𝑐

𝑡𝐿,𝐻+1
𝐿 )𝑞𝐹

). 

Case A under separation (only (𝐼𝐶𝐻,𝐿) is binding).  We prove that separation is optimal if 𝛽0
𝐻 is 

close to 𝛽0
𝐿 . 

Separation is optimal if 

(1 − 𝜈)𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1𝜆

𝛾

𝜆𝛽
𝑇𝐿
𝐿

𝑇𝐿

𝑡=1 + 𝜈𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1𝜆

𝛾

𝜆𝛽
𝑇𝐻
𝐻

𝑇𝐻

𝑡=1 +

𝜈𝑃𝑇𝐿
𝐻 (𝛽0

𝐻−𝛽0
𝐿)(1−𝜆)𝑇

𝐿

𝑃
𝑇𝐿
𝐻 𝑃

𝑇𝐿
𝐿 𝛥𝑐𝑞𝐹  

 < 𝜈𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1𝜆 (

𝛾

𝜆𝛽
𝑇𝐻
𝐻 +

(1−𝛽0
𝐻)

𝑃
𝑇𝐻
𝐻  

Δ𝑐𝑞𝐹)𝑇𝐻

𝑡=1   

+(1 − 𝜈)(
𝛽0

𝐿 ∑ (1 − 𝜆)𝑡−1 𝜆 [
𝛾

𝜆𝛽
𝑇𝐻
𝐻 +

(1−𝛽0
𝐻)

𝑃
𝑇𝐻
𝐻  

Δ𝑐𝑞𝐹]𝑡𝐿,𝐻

𝑡=1

+∑ 𝑃𝑡−1
𝐿 𝛾𝑇𝐿

𝑡=1 − ∑ 𝑃𝑡−1
𝐿𝑡𝐿,𝐻

𝑡=1 𝛾 + 𝑃𝑡𝐿,𝐻
𝐿 (𝑐𝑇𝐻+1

𝐻 − 𝑐𝑡𝐿,𝐻+1
𝐿 )𝑞𝐹

), 

(𝑫𝟐𝑨)              𝜈(1 − 𝜆)𝑇𝐿
(
𝛽0

𝐻−𝛽0
𝐿

𝑃
𝑇𝐿
𝐿 ) Δ𝑐𝑞𝐹 

< 𝜈𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1𝜆 (

(1−𝛽0
𝐻)

𝑃
𝑇𝐻
𝐻  

Δ𝑐𝑞𝐹)𝑇𝐻

𝑡=1 +  

(1 − 𝜈)(
𝛽0

𝐿 ∑ (1 − 𝜆)𝑡−1 𝜆 [
𝛾

𝜆𝛽
𝑇𝐻
𝐻 +

(1−𝛽0
𝐻)

𝑃
𝑇𝐻
𝐻  

Δ𝑐𝑞𝐹]𝑡𝐿,𝐻

𝑡=1

+∑ 𝑃𝑡−1
𝐿 𝛾𝑇𝐿

𝑡=1 − ∑ 𝑃𝑡−1
𝐿𝑡𝐿,𝐻

𝑡=1 𝛾 + 𝑃𝑡𝐿,𝐻
𝐿 (𝑐𝑇𝐻+1

𝐻 − 𝑐𝑡𝐿,𝐻+1
𝐿 )𝑞𝐹 − 𝛽0

𝐿 ∑ (1 − 𝜆)𝑡−1𝜆
𝛾

𝜆𝛽
𝑇𝐿
𝐿

𝑇𝐿

𝑡=1

). 

The LHS goes to zero and as 𝛽0
𝐻 → 𝛽0

𝐿. Since 𝑡𝐿,𝐻 → 𝑇𝐻 → 𝑇𝐿 as 𝛽0
𝐻 → 𝛽0

𝐿, the RHS goes to:50 

𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1 𝜆

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿  

Δ𝑐𝑞𝐹 > 0𝑇𝐿

𝑡=1 .  

Since the 𝑅𝐻𝑆 stays strictly positive and the 𝐿𝐻𝑆 goes to zero as 𝛽0
𝐻 → 𝛽0

𝐿, for any 𝛽0
𝐿 there 

exists a value of 𝛽0
𝐻, called 𝛽̅0

𝐻2𝑎(𝛽0
𝐿), such that the inequality is satisfied if 𝛽0

𝐻 < 𝛽̅0
𝐻2𝑎(𝛽0

𝐿). 

Case B under separation (both (𝐼𝐶) are binding). We prove that separation is optimal if 𝛽0
𝐻 is 

close to 𝛽0
𝐿.  Separation is optimal if 

 
50 The value of 𝑡𝐿,𝐻 → 𝑇𝐻 as 𝛽0

𝐻 → 𝛽0
𝐿 because the low type’s disadvantage with the probability of success goes 

down as 𝛽0
𝐻 → 𝛽0

𝐿.  To see this, recall that the payment 𝑦𝑡
𝐻 induces a lying low type to only work for 𝑡𝐿,𝐻 ≤ 𝑇𝐻 

periods, and this difference in relative probabilities of success disappears as 𝛽0
𝐻 → 𝛽0

𝐿. Therefore, the value of 

𝑡𝐿,𝐻 → 𝑇𝐻 as 𝛽0
𝐻 → 𝛽0

𝐿. 
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(1 − 𝜈)𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1𝜆

𝛾

𝜆𝛽
𝑇𝐿
𝐿

𝑇𝐿

𝑡=1 + 𝜈𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1𝜆

𝛾

𝜆𝛽
𝑇𝐻
𝐻

𝑇𝐻

𝑡=1   

+

𝛽0
𝐿𝐸𝑃

𝑇𝐿
𝜃  𝑃

𝑇𝐿
𝐻 (𝛽0

𝐻−𝛽0
𝐿)(1−𝜆)𝑇

𝐿

𝑃
𝑇𝐿
𝐻 𝑃

𝑇𝐿
𝐿 𝛥𝑐

(𝛽0
𝐻−𝛽0

𝐿)
𝑞𝐹 −

𝐸𝑃
𝑇𝐿
𝜃  𝛽0

𝐻𝑃
𝑇𝐻
𝐿 (𝛽0

𝐻−𝛽0
𝐿)(1−𝜆)𝑇

𝐻

𝑃
𝑇𝐻
𝐻 𝑃

𝑇𝐻
𝐿 𝛥𝑐

(𝛽0
𝐻−𝛽0

𝐿)
𝑞𝐹 +

𝜈𝑃
𝑇𝐿
𝐻 (𝛽0

𝐻−𝛽0
𝐿)(1−𝜆)𝑇

𝐿

𝑃
𝑇𝐿
𝐻 𝑃

𝑇𝐿
𝐿 𝛥𝑐𝑞𝐹  

< 𝜈𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1𝜆 (

𝛾

𝜆𝛽
𝑇𝐻
𝐻 +

(1−𝛽0
𝐻)

𝑃
𝑇𝐻
𝐻  

Δ𝑐𝑞𝐹)𝑇𝐻

𝑡=1   

+(1 − 𝜈)(
𝛽0

𝐿 ∑ (1 − 𝜆)𝑡−1 𝜆 [
𝛾

𝜆𝛽
𝑇𝐻
𝐻 +

(1−𝛽0
𝐻)

𝑃
𝑇𝐻
𝐻  

Δ𝑐𝑞𝐹]𝑡𝐿,𝐻

𝑡=1

+∑ 𝑃𝑡−1
𝐿 𝛾𝑇𝐿

𝑡=1 − ∑ 𝑃𝑡−1
𝐿𝑡𝐿,𝐻

𝑡=1 𝛾 + 𝑃𝑡𝐿,𝐻
𝐿 (𝑐𝑇𝐻+1

𝐻 − 𝑐𝑡𝐿,𝐻+1
𝐿 )𝑞𝐹

), 

(𝑫𝟐𝑩)   
𝛽0

𝐿𝐸𝑃
𝑇𝐿
𝜃 (1−𝜆)𝑇

𝐿
𝑃
𝑇𝐻
𝐻 −𝐸𝑃

𝑇𝐿
𝜃  𝛽0

𝐻(1−𝜆)𝑇
𝐻

𝑃
𝑇𝐿
𝐿

𝑃
𝑇𝐿
𝐿 𝑃

𝑇𝐻
𝐻 Δ𝑐𝑞𝐹 + 𝜈

(𝛽0
𝐻−𝛽0

𝐿)(1−𝜆)𝑇
𝐿

𝑃
𝑇𝐿
𝐿 𝛥𝑐𝑞𝐹   

< 𝜈𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1𝜆

(1−𝛽0
𝐻)

𝑃
𝑇𝐻
𝐻  

Δ𝑐𝑞𝐹
𝑇𝐻

𝑡=1   

+(1 − 𝜈)

(

  
 

𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1 𝜆 [

𝛾

𝜆𝛽
𝑇𝐻
𝐻 +

(1−𝛽0
𝐻)

𝑃
𝑇𝐻
𝐻  

Δ𝑐𝑞𝐹]𝑡𝐿,𝐻

𝑡=1

+∑ 𝑃𝑡−1
𝐿 𝛾𝑇𝐿

𝑡=1 − ∑ 𝑃𝑡−1
𝐿𝑡𝐿,𝐻

𝑡=1 𝛾 + 𝑃𝑡𝐿,𝐻
𝐿 (𝑐𝑇𝐻+1

𝐻 − 𝑐𝑡𝐿,𝐻+1
𝐿 )𝑞𝐹

−𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1𝜆

𝛾

𝜆𝛽
𝑇𝐿
𝐿

𝑇𝐿

𝑡=1 )

  
 

, 

Since the LHS goes to zero and the RHS goes to (1 − 𝜈)𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1𝜆

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿  

Δ𝑐𝑞𝐹
𝑇𝐿

𝑡=1 > 0 as 

𝛽0
𝐻 → 𝛽0

𝐿, for any 𝛽0
𝐿 there exists a value of 𝛽0

𝐻, called 𝛽̅0
𝐻2𝑏(𝛽0

𝐿), such that the inequality is 

satisfied if 𝛽0
𝐻 < 𝛽̅0

𝐻2𝑏(𝛽0
𝐿). 

Case 3 under integration: only (𝑰𝑪𝑯,𝑳) binding 

We first determine the expected payment to the low type. From Claim C3 in Case 3, Appendix 

C, we have 𝑥𝑡
𝐿 = 0, and 𝑦𝑡

𝐿 =
𝛾

𝜆𝛽
𝑇𝐿
𝐿 +

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿  

Δ𝑐𝑞𝐹 for all 𝑡 ≤ 𝑇𝐿. Therefore, the expected 

payment to the low type in the principal’s objective function is  

(1 − 𝜈)[𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1𝜆𝑦𝑡

𝐿𝑇𝐿

𝑡=1 + ∑ 𝑃𝑡
𝐿𝑥𝑡

𝐿𝑇𝐿

𝑡=1 ]  

= (1 − 𝜈)𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1𝜆 (

𝛾

𝜆𝛽
𝑇𝐿
𝐿 +

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿  

Δ𝑐𝑞𝐹)𝑇𝐿

𝑡=1 . 

We next determine the expected payment to the high type. Given 𝑥𝑡
𝐿 = 0, we have the binding 

(𝐼𝐶𝐻,𝐿) constraint: 

𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1𝜆𝑦𝑡

𝐻𝑇𝐻

𝑡=1 + ∑ 𝑃𝑡
𝐻𝑥𝑡

𝐻𝑇𝐻

𝑡=1 − ∑ 𝑃𝑡−1
𝐻 𝛾𝑇𝐻

𝑡=1   
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= 𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1 𝜆𝑦𝑡

𝐿𝑇𝐿

𝑡=1 − ∑ 𝑃𝑡−1
𝐻𝑇𝐿

𝑡=1 𝛾 + 𝑃
𝑇𝐿
𝐻 Δc𝑇𝐿+1𝑞𝐹, 

and by moving ∑ 𝑃𝑡−1
𝐻 𝛾𝑇𝐻

𝑡=1  to the RHS, the expected payment to the high type in the principal’s 

objective function can be written as: 

𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1𝜆𝑦𝑡

𝐻𝑇𝐻

𝑡=1 + ∑ 𝑃𝑡
𝐻𝑥𝑡

𝐻𝑇𝐻

𝑡=1   

= 𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1 𝜆𝑦𝑡

𝐿𝑇𝐿

𝑡=1 + ∑ 𝑃𝑡−1
𝐻 𝛾𝑇𝐻

𝑡=1 − ∑ 𝑃𝑡−1
𝐻𝑇𝐿

𝑡=1 𝛾 + 𝑃
𝑇𝐿
𝐻 Δc𝑇𝐿+1𝑞𝐹. 

Thus, the expected payment by the principal to both types under integration in Case 3 is given 

by:   (1 − 𝜈)𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1𝜆 (

𝛾

𝜆𝛽
𝑇𝐿
𝐿 +

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿  

Δ𝑐𝑞𝐹)𝑇𝐿

𝑡=1   

+𝜈 (𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1 𝜆 [

𝛾

𝜆𝛽
𝑇𝐿
𝐿 +

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿  

Δ𝑐𝑞𝐹]𝑇𝐿

𝑡=1 + ∑ 𝑃𝑡−1
𝐻 𝛾𝑇𝐻

𝑡=1 − ∑ 𝑃𝑡−1
𝐻𝑇𝐿

𝑡=1 𝛾 + 𝑃𝑇𝐿
𝐻 Δc𝑇𝐿+1𝑞𝐹). 

Case A under separation (only (𝐼𝐶𝐻,𝐿) is binding).  We prove that separation is optimal if 𝛽0
𝐻 is 

close to 𝛽0
𝐿 .  Separation is optimal if the expected rent in under Case A separation is smaller than 

that under Case 3 integration: 

(1 − 𝜈)𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1𝜆

𝛾

𝜆𝛽
𝑇𝐿
𝐿

𝑇𝐿

𝑡=1 + 𝜈𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1𝜆

𝛾

𝜆𝛽
𝑇𝐻
𝐻

𝑇𝐻

𝑡=1 +

𝜈𝑃𝑇𝐿
𝐻 (𝛽0

𝐻−𝛽0
𝐿)(1−𝜆)𝑇

𝐿

𝑃
𝑇𝐿
𝐻 𝑃

𝑇𝐿
𝐿 𝛥𝑐𝑞𝐹  

< (1 − 𝜈)𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1𝜆 (

𝛾

𝜆𝛽
𝑇𝐿
𝐿 +

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿  

Δ𝑐𝑞𝐹)𝑇𝐿

𝑡=1   

+𝜈 (𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1 𝜆 [

𝛾

𝜆𝛽
𝑇𝐿
𝐿 +

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿  

Δ𝑐𝑞𝐹]𝑇𝐿

𝑡=1 + ∑ 𝑃𝑡−1
𝐻 𝛾𝑇𝐻

𝑡=1 − ∑ 𝑃𝑡−1
𝐻𝑇𝐿

𝑡=1 𝛾 + 𝑃𝑇𝐿
𝐻 Δc𝑇𝐿+1𝑞𝐹),  

(𝑫𝟑𝑨)              𝜈𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1𝜆

𝛾

𝜆𝛽
𝑇𝐻
𝐻

𝑇𝐻

𝑡=1 + 𝜈𝑃𝑇𝐿
𝐻 (𝛽0

𝐻−𝛽0
𝐿)(1−𝜆)𝑇

𝐿

𝑃
𝑇𝐿
𝐻 𝑃

𝑇𝐿
𝐿 𝛥𝑐𝑞𝐹  

< (1 − 𝜈)𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1𝜆 (

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿  

Δ𝑐𝑞𝐹)𝑇𝐿

𝑡=1   

+𝜈 (𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1 𝜆 [

𝛾

𝜆𝛽
𝑇𝐿
𝐿 +

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿  

Δ𝑐𝑞𝐹]𝑇𝐿

𝑡=1 + ∑ 𝑃𝑡−1
𝐻 𝛾𝑇𝐻

𝑡=1 − ∑ 𝑃𝑡−1
𝐻𝑇𝐿

𝑡=1 𝛾 + 𝑃𝑇𝐿
𝐻 Δc𝑇𝐿+1𝑞𝐹). 

The LHS goes to 𝜈𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1𝜆

𝛾

𝜆𝛽
𝑇𝐿
𝐿

𝑇𝐿

𝑡=1  as 𝛽0
𝐻 → 𝛽0

𝐿 and the RHS goes to: 

𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1𝜆 (

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿  

Δ𝑐𝑞𝐹)𝑇𝐿

𝑡=1 + 𝜈𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1𝜆

𝛾

𝜆𝛽
𝑇𝐿
𝐿

𝑇𝐿

𝑡=1  as 𝛽0
𝐻 → 𝛽0

𝐿. 

Since 𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1𝜆 (

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿  

Δ𝑐𝑞𝐹)𝑇𝐿

𝑡=1 > 0, the condition is satisfied as 𝛽0
𝐻 → 𝛽0

𝐿.  Therefore, 

for any 𝛽0
𝐿 there exists a value of 𝛽0

𝐻, called 𝛽̅0
𝐻3𝑎(𝛽0

𝐿), such that the inequality is satisfied if 

𝛽0
𝐻 < 𝛽̅0

𝐻3𝑎(𝛽0
𝐿). 
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Case B under separation (both (𝐼𝐶) are binding). We prove that separation is optimal if 𝛽0
𝐻 is 

close to 𝛽0
𝐿.  Separation is optimal if 

(1 − 𝜈)𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1𝜆

𝛾

𝜆𝛽
𝑇𝐿
𝐿

𝑇𝐿

𝑡=1 + 𝜈𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1𝜆

𝛾

𝜆𝛽
𝑇𝐻
𝐻

𝑇𝐻

𝑡=1   

+

𝛽0
𝐿𝐸𝑃

𝑇𝐿
𝜃  𝑃

𝑇𝐿
𝐻 (𝛽0

𝐻−𝛽0
𝐿)(1−𝜆)𝑇

𝐿

𝑃
𝑇𝐿
𝐻 𝑃

𝑇𝐿
𝐿 𝛥𝑐

(𝛽0
𝐻−𝛽0

𝐿)
𝑞𝐹 −

𝐸𝑃
𝑇𝐿
𝜃  𝛽0

𝐻𝑃
𝑇𝐻
𝐿 (𝛽0

𝐻−𝛽0
𝐿)(1−𝜆)𝑇

𝐻

𝑃
𝑇𝐻
𝐻 𝑃

𝑇𝐻
𝐿 𝛥𝑐

(𝛽0
𝐻−𝛽0

𝐿)
𝑞𝐹 + 𝜈𝑃

𝑇𝐿
𝐻 (𝛽0

𝐻−𝛽0
𝐿)(1−𝜆)𝑇

𝐿

𝑃
𝑇𝐿
𝐻 𝑃

𝑇𝐿
𝐿 𝛥𝑐𝑞𝐹   

< (1 − 𝜈)𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1𝜆 (

𝛾

𝜆𝛽
𝑇𝐿
𝐿 +

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿  

Δ𝑐𝑞𝐹)𝑇𝐿

𝑡=1   

+𝜈 (𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1 𝜆 [

𝛾

𝜆𝛽
𝑇𝐿
𝐿 +

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿  

Δ𝑐𝑞𝐹]𝑇𝐿

𝑡=1 + ∑ 𝑃𝑡−1
𝐻 𝛾𝑇𝐻

𝑡=1 − ∑ 𝑃𝑡−1
𝐻𝑇𝐿

𝑡=1 𝛾 + 𝑃
𝑇𝐿
𝐻 Δc𝑇𝐿+1𝑞𝐹),  

(𝑫𝟑𝑩)   
𝛽0

𝐿𝐸𝑃
𝑇𝐿
𝜃 (1−𝜆)𝑇

𝐿
𝑃
𝑇𝐻
𝐻 −𝐸𝑃

𝑇𝐿
𝜃  𝛽0

𝐻(1−𝜆)𝑇
𝐻

𝑃
𝑇𝐿
𝐿

𝑃
𝑇𝐿
𝐿 𝑃

𝑇𝐻
𝐻 Δ𝑐𝑞𝐹 + 𝜈𝛽0

𝐻 ∑ (1 − 𝜆)𝑡−1𝜆
𝛾

𝜆𝛽
𝑇𝐻
𝐻

𝑇𝐻

𝑡=1   

+𝜈𝑃𝑇𝐿
𝐻 (𝛽0

𝐻−𝛽0
𝐿)(1−𝜆)𝑇

𝐿

𝑃
𝑇𝐿
𝐻 𝑃

𝑇𝐿
𝐿 𝛥𝑐𝑞𝐹  

< (1 − 𝜈)𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1𝜆

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿  

Δ𝑐𝑞𝐹
𝑇𝐿

𝑡=1   

+𝜈 (𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1 𝜆 [

𝛾

𝜆𝛽
𝑇𝐿
𝐿 +

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿  

Δ𝑐𝑞𝐹]𝑇𝐿

𝑡=1 + ∑ 𝑃𝑡−1
𝐻 𝛾𝑇𝐻

𝑡=1 − ∑ 𝑃𝑡−1
𝐻𝑇𝐿

𝑡=1 𝛾 + 𝑃𝑇𝐿
𝐻 Δc𝑇𝐿+1𝑞𝐹),  

The LHS goes to 𝜈𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1𝜆

𝛾

𝜆𝛽
𝑇𝐿
𝐿

𝑇𝐿

𝑡=1  as 𝛽0
𝐻 → 𝛽0

𝐿 and the RHS goes to: 

𝜈𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1𝜆

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿  

Δ𝑐𝑞𝐹
𝑇𝐿

𝑡=1 + 𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1 𝜆

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿  

Δ𝑐𝑞𝐹
𝑇𝐿

𝑡=1  as 𝛽0
𝐻 → 𝛽0

𝐿. 

Since 𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1 𝜆

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿  

Δ𝑐𝑞𝐹
𝑇𝐿

𝑡=1 > 0, the condition is satisfied as 𝛽0
𝐻 → 𝛽0

𝐿.  Therefore, 

for any for any 𝛽0
𝐿 there exists a value of 𝛽0

𝐻, called 𝛽̅0
𝐻3𝑏(𝛽0

𝐿), such that the inequality is 

satisfied if 𝛽0
𝐻 < 𝛽̅0

𝐻3𝑏(𝛽0
𝐿). 

Case 4 under integration: both IC are binding 

Since the rent under integration in Case 4 is greater than in Cases 2 and 3, separation is optimal 

in Case 4 under the same parameters as in those two cases. 

To complete the proof, define  

𝛽
0

𝐻
(𝛽0

𝐿) = min {𝛽̅0
𝐻1𝑎(𝛽0

𝐿), 𝛽̅0
𝐻1𝑏(𝛽0

𝐿), 𝛽̅0
𝐻2𝑎(𝛽0

𝐿), 𝛽̅0
𝐻2𝑏(𝛽0

𝐿), 𝛽̅0
𝐻3𝑎(𝛽0

𝐿), 𝛽̅0
𝐻3𝑏(𝛽0

𝐿)} 

Q.E.D. 
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Claim D2. Sufficient Conditions for integration to be optimal 

Integration is optimal if the adverse selection problem is severe enough (𝛽0
𝐻 is sufficiently close 

to one and 𝛽0
𝐿 sufficiently close to zero) and 𝜈 is high enough. 

Proof: We fix the experimentation lengths to the optimal values under separation.  We will find 

conditions such that integration dominates separation given these experimentation lengths.  

Then, integration will also dominate (for the same parameter conditions) for the optimal 𝑇𝜃 

under integration by revealed preference. 

We argue first that we will only need to we consider only Case A under separation.  As 

𝛽0
𝐿 → 0 and 𝛽0

𝐻 → 1 then 𝑇𝐿 → 0, 𝑇𝐻 → 1, 𝑡𝐿,𝐻 → 0, and 𝑡𝐻,𝐿 → 0. Thus, the additional adverse 

selection rent in Case B under integration becomes negative as 𝛽0
𝐿 → 0 and 𝛽0

𝐻 → 1: 

𝛽0
𝐿𝐸𝑃

𝑇𝐿
𝜃 (1−𝜆)𝑇

𝐿
𝑃
𝑇𝐻
𝐻 −𝐸𝑃

𝑇𝐿
𝜃  𝛽0

𝐻(1−𝜆)𝑇
𝐻

𝑃
𝑇𝐿
𝐿

𝑃
𝑇𝐿
𝐿 𝑃

𝑇𝐻
𝐻 Δ𝑐𝑞𝐹 →

0−1 (1−𝜆)11

1(1−𝜆)
Δ𝑐𝑞𝐹 = −Δ𝑐𝑞𝐹 < 0. 

Therefore, Case B is not relevant as 𝛽0
𝐿 → 0 and 𝛽0

𝐻 → 1. 

Case 1 under integration: both IC are slack  

Case A under separation (only (𝐼𝐶𝐻,𝐿) is binding).  From condition (𝐷1𝐴), integration is 

optimal if     𝜈(1 − 𝜆)𝑇𝐿
(𝛽0

𝐻 − 𝛽0
𝐿) 

> 𝜈(1 − 𝛽0
𝐻)(1 − (1 − 𝜆)𝑇𝐻

)
𝑃
𝑇𝐿
𝐿

𝑃
𝑇𝐻
𝐻 + (1 − 𝜈)(1 − 𝛽0

𝐿)(1 − (1 − 𝜆)𝑇𝐿
). 

Since the 𝐿𝐻𝑆 stays strictly positive as 𝛽0
𝐿 → 0 and 𝛽0

𝐻 → 1: 

𝜈(1 − 𝜆)𝑇𝐿
(𝛽0

𝐻 − 𝛽0
𝐿) → 𝜈(1 − 𝜆)0(1 − 0) = 𝜈 > 0, 

and the 𝑅𝐻𝑆 goes to zero as 𝛽0
𝐿 → 0 and 𝛽0

𝐻 → 1: 

𝜈(1 − 𝛽0
𝐻)(1 − (1 − 𝜆)𝑇𝐻

)
𝑃
𝑇𝐿
𝐿

𝑃
𝑇𝐻
𝐻 + (1 − 𝜈)(1 − 𝛽0

𝐿)(1 − (1 − 𝜆)𝑇𝐿
)  

→ 𝜈(1 − 1)(1 − (1 − 𝜆)𝑇𝐻
)

𝑃
𝑇𝐿
𝐿

𝑃
𝑇𝐻
𝐻 + (1 − 𝜈)(1 − 0)(1 − (1 − 𝜆)0) = 0, 

there exist 𝛽̅0
𝐿1𝑎 > 0 and 𝛽𝐻1𝑎 < 1, such that the inequality is satisfied if 𝛽0

𝐿 < 𝛽̅0
𝐿1𝑎 and 𝛽0

𝐻 >

𝛽𝐻1𝑎. 

Case 2 under integration: only (𝐼𝐶𝐿,𝐻) binding 

Case A under separation (only (𝐼𝐶𝐻,𝐿) is binding).  From condition (𝐷2𝐴), integration is 

optimal if 
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𝜈(1 − 𝜆)𝑇𝐿
(
𝛽0

𝐻 − 𝛽0
𝐿

𝑃𝑇𝐿
𝐿 )Δ𝑐𝑞𝐹 > 𝜈𝛽0

𝐻 ∑(1 − 𝜆)𝑡−1𝜆 (
(1 − 𝛽0

𝐻)

𝑃𝑇𝐻
𝐻  

Δ𝑐𝑞𝐹)

𝑇𝐻

𝑡=1

+ 

(1 − 𝜈)(
𝛽0

𝐿 ∑ (1 − 𝜆)𝑡−1 𝜆 [
𝛾

𝜆𝛽
𝑇𝐻
𝐻 +

(1−𝛽0
𝐻)

𝑃
𝑇𝐻
𝐻  

Δ𝑐𝑞𝐹]𝑡𝐿,𝐻

𝑡=1

+∑ 𝑃𝑡−1
𝐿 𝛾𝑇𝐿

𝑡=1 − ∑ 𝑃𝑡−1
𝐿𝑡𝐿,𝐻

𝑡=1 𝛾 + 𝑃
𝑡𝐿,𝐻
𝐿 (𝑐

𝑇𝐻+1
𝐻 − 𝑐

𝑡𝐿,𝐻+1
𝐿 )𝑞𝐹 − 𝛽0

𝐿 ∑ (1 − 𝜆)𝑡−1𝜆
𝛾

𝜆𝛽
𝑇𝐿
𝐿

𝑇𝐿

𝑡=1

), 

Since the LHS goes to 𝜈Δ𝑐𝑞𝐹 as 𝛽0
𝐿 → 0 and 𝛽0

𝐻 → 1: 

𝜈(1 − 𝜆)𝑇𝐿
(
𝛽0

𝐻−𝛽0
𝐿

𝑃
𝑇𝐿
𝐿 ) Δ𝑐𝑞𝐹 → 𝜈(1 − 𝜆)0 (

1−0

𝑃0
𝐿 ) Δ𝑐𝑞𝐹 = 𝜈Δ𝑐𝑞𝐹, 

and the RHS goes to (1 − 𝜈)(𝑐2
𝐻 − 𝑐1

𝐿)𝑞𝐹 as 𝛽0
𝐿 → 0 and 𝛽0

𝐻 → 1: 

𝜈𝛽0
𝐻 ∑(1 − 𝜆)𝑡−1𝜆 (

(1 − 𝛽0
𝐻)

𝑃𝑇𝐻
𝐻  

Δ𝑐𝑞𝐹)

𝑇𝐻

𝑡=1

+ 

(1 − 𝜈)(
𝛽0

𝐿 ∑ (1 − 𝜆)𝑡−1 𝜆 [
𝛾

𝜆𝛽
𝑇𝐻
𝐻 +

(1−𝛽0
𝐻)

𝑃
𝑇𝐻
𝐻  

Δ𝑐𝑞𝐹]𝑡𝐿,𝐻

𝑡=1

+∑ 𝑃𝑡−1
𝐿 𝛾𝑇𝐿

𝑡=1 − ∑ 𝑃𝑡−1
𝐿𝑡𝐿,𝐻

𝑡=1 𝛾 + 𝑃𝑡𝐿,𝐻
𝐿 (𝑐𝑇𝐻+1

𝐻 − 𝑐𝑡𝐿,𝐻+1
𝐿 )𝑞𝐹 − 𝛽0

𝐿 ∑ (1 − 𝜆)𝑡−1𝜆
𝛾

𝜆𝛽
𝑇𝐿
𝐿

𝑇𝐿

𝑡=1

), 

→ 𝜈 ∑ (1 − 𝜆)𝑡−1𝜆
(1−1)

𝑃1
𝐻 

Δ𝑐𝑞𝐹
1
𝑡=1 + (1 − 𝜈)𝑃0

𝐿(𝑐1+1
𝐻 − 𝑐0+1

𝐿 )𝑞𝐹 = (1 − 𝜈)(𝑐2
𝐻 − 𝑐1

𝐿)𝑞𝐹,  

there exist 𝛽̅0
𝐿2𝑎 > 0 and 𝛽𝐻2𝑎 < 1, such that the inequality is satisfied if 𝛽0

𝐿 < 𝛽̅0
𝐿2𝑎, 𝛽0

𝐻 > 𝛽𝐻2𝑎 

and 𝜈 >
(𝑐2

𝐻−𝑐1
𝐿)

Δ𝑐+𝑐2
𝐻−𝑐1

𝐿. 

Case 3 under integration: only (𝐼𝐶𝐻,𝐿) binding 

Case A under separation (only (𝐼𝐶𝐻,𝐿) is binding).  From condition (𝐷3𝐴), integration is 

optimal if 

  𝜈𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1𝜆

𝛾

𝜆𝛽
𝑇𝐻
𝐻

𝑇𝐻

𝑡=1 + 𝜈𝑃𝑇𝐿
𝐻 (𝛽0

𝐻−𝛽0
𝐿)(1−𝜆)𝑇

𝐿

𝑃
𝑇𝐿
𝐻 𝑃

𝑇𝐿
𝐿 𝛥𝑐𝑞𝐹  

> (1 − 𝜈)𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1𝜆 (

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿  

Δ𝑐𝑞𝐹)𝑇𝐿

𝑡=1   

+𝜈 (𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1 𝜆 [

𝛾

𝜆𝛽
𝑇𝐿
𝐿 +

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿  

Δ𝑐𝑞𝐹]𝑇𝐿

𝑡=1 + ∑ 𝑃𝑡−1
𝐻 𝛾𝑇𝐻

𝑡=1 − ∑ 𝑃𝑡−1
𝐻𝑇𝐿

𝑡=1 𝛾 + 𝑃𝑇𝐿
𝐻 Δc𝑇𝐿+1𝑞𝐹). 

Since the LHS goes to 𝜈
𝛾

𝛽1
𝐻 + 𝜈𝛥𝑐𝑞𝐹 and the RHS goes to 𝜈𝛾 + 𝜈𝛥𝑐𝑞𝐹 as 𝛽0

𝐿 → 0 and 𝛽0
𝐻 → 1, 

there exist 𝛽̅0
𝐿3𝑎 > 0 and 𝛽𝐻3𝑎 < 1, such that the inequality is satisfied if 𝛽0

𝐿 < 𝛽̅0
𝐿3𝑎 and 𝛽0

𝐻 >

𝛽𝐻3𝑎. 
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Case 4 under integration: both IC are binding 

Case A under separation (only (𝐼𝐶𝐻,𝐿) is binding).   

Recalling from Appendix C that in Case 4, we have 𝑦𝑡
𝐻 =

𝛾

𝜆𝛽
𝑇𝐻
𝐻 +

(1−𝛽0
𝐻)

𝑃
𝑇𝐻
𝐻 Δ𝑐𝑞𝐹 for 𝑡 > 1, and for 

all 𝑡 ≤ 𝑇𝐿 𝑦𝑡
𝐿 = 𝑥

𝑇𝐿
𝐿 +

𝛾

𝜆𝛽
𝑇𝐿
𝐿 + (1 + 𝜆(𝑇𝐿 − 𝑡))

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿  

Δ𝑐𝑞𝐹, we can rewrite the binding (𝐼𝐶) 

constraints:  

(𝐼𝐶𝐿,𝐻)  𝑥𝑇𝐿
𝐿  [𝛽0

𝐿 ∑ (1 − 𝜆)𝑡−1𝜆𝑇𝐿

𝑡=1 + 𝑃𝑇𝐿
𝐿 ] = 𝛽0

𝐿𝜆𝑦1
𝐻   

 +𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1𝛾𝑇𝐿

𝑡=1 + 𝛾 ∑ 𝑃𝑡
𝐿𝑇𝐿

𝑡=1 − 𝛾𝑡𝐿,𝐻(1 − 𝛽0
𝐿) − 𝛾𝛽0

𝐿 ∑ (1 − 𝜆)𝑡−1𝑡=𝑡𝐿,𝐻

𝑡=1   

−𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1𝜆 [

𝛾

𝜆𝛽
𝑇𝐿
𝐿 + (1 + 𝜆(𝑇𝐿 − 𝑡))

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿  

Δ𝑐𝑞𝐹]𝑇𝐿

𝑡=1   

+𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1𝜆 [

𝛾

𝜆𝛽
𝑇𝐻
𝐻 +

(1−𝛽0
𝐻)

𝑃
𝑇𝐻
𝐻 Δ𝑐𝑞𝐹]𝑡=𝑡𝐿,𝐻

𝑡=2    

−(1 − 𝛽0
𝐿 + 𝛽0

𝐿(1 − 𝜆)𝑡𝐿,𝐻
)(𝑐𝑡𝐿,𝐻+1

𝐿 − 𝑐𝑇𝐻+1
𝐻 )𝑞𝐹,  

(𝐼𝐶𝐻,𝐿)  𝛽0
𝐻𝜆𝑦1

𝐻 = 𝑥𝑇𝐿
𝐿  [𝛽0

𝐻 ∑ (1 − 𝜆)𝑡−1𝜆𝑇𝐿

𝑡=1 + 𝑃𝑇𝐿
𝐻 ]  

+𝛾 ∑ 𝑃𝑡
𝐻𝑇𝐻

𝑡=1 + 𝛾𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1𝑇𝐻

𝑡=1 − 𝛾𝑇𝐿(1 − 𝛽0
𝐻) − 𝛾𝛽0

𝐻 ∑ (1 − 𝜆)𝑡−1𝑇𝐿

𝑡=1   

−𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1𝜆 [

𝛾

𝜆𝛽
𝑇𝐻
𝐻 +

(1−𝛽0
𝐻)

𝑃
𝑇𝐻
𝐻 Δ𝑐𝑞𝐹]𝑇𝐻

𝑡=2    

+𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1𝜆 [

𝛾

𝜆𝛽
𝑇𝐿
𝐿 + (1 + 𝜆(𝑇𝐿 − 𝑡))

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿  

Δ𝑐𝑞𝐹]𝑇𝐿

𝑡=1   

+(1 − 𝛽0
𝐻 + 𝛽0

𝐻(1 − 𝜆)𝑇𝐿
)(𝑐𝑇𝐿+1

𝐿 − 𝑐𝑇𝐿+1
𝐻 )𝑞𝐹. 

Solving 𝑦1
𝐻 and 𝑥𝑇𝐿

𝐿  from the two binding (𝐼𝐶) constraints we obtain: 

𝑥𝑇𝐿
𝐿  =

𝛽0
𝐿𝜆

[𝛽0
𝐿 ∑ (1−𝜆)𝑡−1𝜆𝑇𝐿

𝑡=1 +𝑃
𝑇𝐿
𝐿 ]

 𝑦1
𝐻   

 +
1

[𝛽0
𝐿 ∑ (1−𝜆)𝑡−1𝜆𝑇𝐿

𝑡=1 +𝑃
𝑇𝐿
𝐿 ]

(𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1𝛾𝑇𝐿

𝑡=1 + 𝛾 ∑ 𝑃𝑡
𝐿𝑇𝐿

𝑡=1 − 𝛾𝑡𝐿,𝐻(1 − 𝛽0
𝐿) −

𝛾𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1𝑡=𝑡𝐿,𝐻

𝑡=1 − 𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1𝜆 [

𝛾

𝜆𝛽
𝑇𝐿
𝐿 + (1 + 𝜆(𝑇𝐿 − 𝑡))

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿  

Δ𝑐𝑞𝐹]𝑇𝐿

𝑡=1 +

𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1𝜆 [

𝛾

𝜆𝛽
𝑇𝐻
𝐻 +

(1−𝛽0
𝐻)

𝑃
𝑇𝐻
𝐻 Δ𝑐𝑞𝐹]𝑡=𝑡𝐿,𝐻

𝑡=2 − (1 − 𝛽0
𝐿 + 𝛽0

𝐿(1 − 𝜆)𝑡𝐿,𝐻
)(𝑐𝑡𝐿,𝐻+1

𝐿 − 𝑐𝑇𝐻+1
𝐻 )𝑞𝐹)   

𝑦1
𝐻 =  
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[𝛽0
𝐻 ∑ (1−𝜆)𝑡−1𝜆𝑇𝐿

𝑡=1 +𝑃
𝑇𝐿
𝐻 ]

𝜆(𝛽0
𝐻𝑃

𝑇𝐿
𝐿 −𝛽0

𝐿𝑃
𝑇𝐿
𝐻 )

[
 
 
 
 
 
 𝛽0

𝐿 ∑ (1 − 𝜆)𝑡−1𝛾𝑇𝐿

𝑡=1 + 𝛾 ∑ 𝑃𝑡
𝐿𝑇𝐿

𝑡=1 − 𝛾𝑡𝐿,𝐻(1 − 𝛽0
𝐿) − 𝛾𝛽0

𝐿 ∑ (1 − 𝜆)𝑡−1𝑡=𝑡𝐿,𝐻

𝑡=1

−𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1𝜆 [

𝛾

𝜆𝛽
𝑇𝐿
𝐿 + (1 + 𝜆(𝑇𝐿 − 𝑡))

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿  

Δ𝑐𝑞𝐹]𝑇𝐿

𝑡=1

+𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1𝜆 [

𝛾

𝜆𝛽
𝑇𝐻
𝐻 +

(1−𝛽0
𝐻)

𝑃
𝑇𝐻
𝐻 Δ𝑐𝑞𝐹]𝑡=𝑡𝐿,𝐻

𝑡=2

−(1 − 𝛽0
𝐿 + 𝛽0

𝐿(1 − 𝜆)𝑡𝐿,𝐻
)(𝑐

𝑡𝐿,𝐻+1
𝐿 − 𝑐

𝑇𝐻+1
𝐻 )𝑞𝐹 ]

 
 
 
 
 
 

    

+
[𝛽0

𝐿 ∑ (1−𝜆)𝑡−1𝜆𝑇𝐿
𝑡=1 +𝑃

𝑇𝐿
𝐿 ]

𝜆(𝛽0
𝐻𝑃

𝑇𝐿
𝐿 −𝛽0

𝐿𝑃
𝑇𝐿
𝐻 )

[
 
 
 
 
 
 𝛾 ∑ 𝑃𝑡

𝐻𝑇𝐻

𝑡=1 + 𝛾𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1𝑇𝐻

𝑡=1 − 𝛾𝑇𝐿(1 − 𝛽0
𝐻) − 𝛾𝛽0

𝐻 ∑ (1 − 𝜆)𝑡−1𝑇𝐿

𝑡=1

+𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1𝜆 [

𝛾

𝜆𝛽
𝑇𝐿
𝐿 + (1 + 𝜆(𝑇𝐿 − 𝑡))

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿  

Δ𝑐𝑞𝐹]𝑇𝐿

𝑡=1

−𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1𝜆 [

𝛾

𝜆𝛽
𝑇𝐻
𝐻 +

(1−𝛽0
𝐻)

𝑃
𝑇𝐻
𝐻 Δ𝑐𝑞𝐹]𝑇𝐻

𝑡=2

+(1 − 𝛽0
𝐻 + 𝛽0

𝐻(1 − 𝜆)𝑇𝐿
)(𝑐𝑇𝐿+1

𝐿 − 𝑐𝑇𝐿+1
𝐻 )𝑞𝐹 ]

 
 
 
 
 
 

   

𝑥𝑇𝐿
𝐿  = 

𝛽0
𝐻

(𝛽0
𝐻𝑃

𝑇𝐿
𝐿 −𝛽0

𝐿𝑃
𝑇𝐿
𝐻 )

[
 
 
 
 
 
 𝛽0

𝐿 ∑ (1 − 𝜆)𝑡−1𝛾𝑇𝐿

𝑡=1 + 𝛾 ∑ 𝑃𝑡
𝐿𝑇𝐿

𝑡=1 − 𝛾𝑡𝐿,𝐻(1 − 𝛽0
𝐿) − 𝛾𝛽0

𝐿 ∑ (1 − 𝜆)𝑡−1𝑡=𝑡𝐿,𝐻

𝑡=1

−𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1𝜆 [

𝛾

𝜆𝛽
𝑇𝐿
𝐿 + (1 + 𝜆(𝑇𝐿 − 𝑡))

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿  

Δ𝑐𝑞𝐹]𝑇𝐿

𝑡=1

+𝛽0
𝐿 ∑ (1 − 𝜆)𝑡−1𝜆 [

𝛾

𝜆𝛽
𝑇𝐻
𝐻 +

(1−𝛽0
𝐻)

𝑃
𝑇𝐻
𝐻 Δ𝑐𝑞𝐹]𝑡=𝑡𝐿,𝐻

𝑡=2

−(1 − 𝛽0
𝐿 + 𝛽0

𝐿(1 − 𝜆)𝑡𝐿,𝐻
)(𝑐𝑡𝐿,𝐻+1

𝐿 − 𝑐𝑇𝐻+1
𝐻 )𝑞𝐹 ]

 
 
 
 
 
 

    

+

𝛽0
𝐿

(𝛽0
𝐻𝑃

𝑇𝐿
𝐿 −𝛽0

𝐿𝑃
𝑇𝐿
𝐻 )

[
 
 
 
 
 
 𝛾 ∑ 𝑃𝑡

𝐻𝑇𝐻

𝑡=1 + 𝛾𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1𝑇𝐻

𝑡=1 − 𝛾𝑇𝐿(1 − 𝛽0
𝐻) − 𝛾𝛽0

𝐻 ∑ (1 − 𝜆)𝑡−1𝑇𝐿

𝑡=1

+𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1𝜆 [

𝛾

𝜆𝛽
𝑇𝐿
𝐿 + (1 + 𝜆(𝑇𝐿 − 𝑡))

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿  

Δ𝑐𝑞𝐹]𝑇𝐿

𝑡=1

−𝛽0
𝐻 ∑ (1 − 𝜆)𝑡−1𝜆 [

𝛾

𝜆𝛽
𝑇𝐻
𝐻 +

(1−𝛽0
𝐻)

𝑃
𝑇𝐻
𝐻 Δ𝑐𝑞𝐹]𝑇𝐻

𝑡=2

+(1 − 𝛽0
𝐻 + 𝛽0

𝐻(1 − 𝜆)𝑇𝐿
)(𝑐𝑇𝐿+1

𝐿 − 𝑐𝑇𝐿+1
𝐻 )𝑞𝐹 ]

 
 
 
 
 
 

.  

Note that 𝑦1
𝐻 →

(𝑐2
𝐻−𝑐1

𝐿)𝑞𝐹

𝜆
 and 𝑥𝑇𝐿

𝐿 → (𝑐2
𝐻 − 𝑐1

𝐿)𝑞𝐹 as 𝛽0
𝐿 → 0 and 𝛽0

𝐻 → 1.  

Since 𝑦𝑡
𝐿 = 𝑥𝑇𝐿

𝐿 +
𝛾

𝜆𝛽
𝑇𝐿
𝐿 + (1 + 𝜆(𝑇𝐿 − 𝑡))

(1−𝛽0
𝐿)

𝑃
𝑇𝐿
𝐿  

Δ𝑐𝑞𝐹 for 𝑡 ≥ 1and 𝑦𝑡
𝐻 =

𝛾

𝜆𝛽
𝑇𝐻
𝐻 +

(1−𝛽0
𝐻)

𝑃
𝑇𝐻
𝐻 Δ𝑐𝑞𝐹 → for 𝑡 > 1, the expected rent paid by the principal under integration converges to 

(1 − 𝜈) [𝛽0
𝐿 ∑(1 − 𝜆)𝑡−1𝜆𝑦𝑡

𝐿

𝑇𝐿

𝑡=1

+ 𝑃𝑇𝐿
𝐿 𝑥𝑇𝐿

𝐿 ] + 𝜈 [𝛽0
𝐻 ∑(1 − 𝜆)𝑡−1𝜆𝑦𝑡

𝐻

𝑇𝐻

𝑡=1

] 

→ 𝜈𝜆𝑦1
𝐻 = 𝜈𝜆

(𝑐2
𝐻−𝑐1

𝐿)𝑞𝐹

𝜆
= 𝜈(𝑐2

𝐻 − 𝑐1
𝐿)𝑞𝐹. 

Case A under separation (only (𝐼𝐶𝐻,𝐿) is binding).  The rent under separation converges to 

𝜈𝛾 + 𝜈∆𝑐𝑞𝐹 as 𝛽0
𝐿 → 0 and 𝛽0

𝐻 → 1. Therefore, integration is optimal as 𝛽0
𝐿 → 0 and 𝛽0

𝐻 → 1 if 
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(𝑫𝟒𝑨)      𝜈(𝑐2
𝐻 − 𝑐1

𝐿)𝑞𝐹 < 𝜈𝛾 + 𝜈∆𝑐𝑞𝐹, (𝑐2
𝐻 − 𝑐1

𝐿)𝑞𝐹 < 𝛾 + ∆𝑐𝑞𝐹, 

which holds for any parameters. Thus, there exist 𝛽̅0
𝐿4𝑎 > 0 and 𝛽𝐻4𝑎 < 1, such that integration 

is optimal if 𝛽0
𝐿 < 𝛽̅0

𝐿4𝑎, 𝛽0
𝐻 > 𝛽𝐻4𝑎.        Q.E.D. 
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