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In the 2017 FCC auction (the Incentive Auction) for spectrum licenses, the
standard forward auction was combined with the novel reverse auction to
acquire and repackage spectrum, historically dispersed over numerous small
owners, see Ausubel et al. (2012, 2017) and Cramton et al. (2015). However,
the success was tarnished by several instances of supply reduction due to the
uniform-price nature of payments.! It was argued that this could lead to
under-performance in terms of revenue, see Doraszelski et al. (2017).> These
shortcomings set the stage for an auction format that would be strategy-proof

and also revenue-maximizing, that is, robust and optimal.

In this paper, we devise a dynamic auction in a two-sided market with multi-
unit demand and supply - a typical double-auction environment. This auction
should promote sincere bidding and have the capacity to be optimal. Specif-
ically, we are interested in optimality with independent private values and
ex-post IC, IR, and market-clearing constraints. For simplicity, we model the
trade of a perfectly divisible, homogeneous asset.> We break down this task

into four steps.

In the first step, we lay down general auction rules. Since it is a dynamic
auction, it will inevitably share multiple features with the Ausubel auction.
To be precise, there will be two Ausubel auctions, forward and reverse, in
which all agents participate. We describe activity rules, transactional prices,
rules to clear the market, the clock policy, and the disclosure policy. Then,
we introduce the per-unit (i.e., marginal) taxes paid on top of the baseline

Vickrey-style payments.

'For example, OTA Broadcasting, a private equity firm, has sold less than half of its
owned spectrum, some of which was acquired just before the Incentive Auction. See Ausubel
et al. (2017) for details. The reduced revenue in the allocation stage of the Spectrum
Auction should not be confused with additional revenue in the assignment stage, where a
VCG mechanism was used. See Ausubel and Baranov (2023).

2Public officials were concerned about raising enough revenue, see Loertscher et al. (2015)
and the 112th Congress hearing Keeping the New Broadband Spectrum Law on Track.

30ur auction only features the allocation stage, where volumes of the generic good are
traded. In practice, Spectrum Auctions feature an additional assignment stage, where par-
ticipants resolve the complementarities between ranges of spectrum by bidding for particular
lots; see, among others, Ausubel and Baranov (2023) and Rostek and Yoder (2023).


https://www.congress.gov/event/112th-congress/house-event/LC1188/text?s=1&r=29

In the second step, we analyze the strategic properties of the auction. We
show the auction to have a sincere equilibrium in the spirit of Ausubel (2004,
2006), for any clock and disclosure policies. This equilibrium yields the efficient
outcome in a fictitious economy that we refer to as virtual, which amounts to
the equilibrium being ex-post perfect, see Proposition 1. This will allow us to

implement a rich set of mechanisms, including optimal ones.

Furthermore, we study equilibrium refinements, similarly to Ausubel (2004).
Due to the 2-sided nature of the auction, additional equilibria emerge that
were not featured in the 1-sided version, see Examples 1 and 2. In particular,
the order of the movements of the clocks and the information released to
the participants matters. We show that, for any clock policy, the sincere
equilibrium can become a unique survivor of iterated elimination of weakly
dominated strategies, under full-support beliefs, see Proposition 2. The idea
is that, by concealing certain information from the bidders, one can prevent
the forward auction from informing the reverse auction about its future path,

and vice versa. We refer to it as the no-spoilers disclosure policy.

In the third step, we study the additional degree of freedom that emerges in
the 2-sided environment - the clock policy. For example, one could move the
clocks to match supply with demand almost continuously, as in McAfee (1992).
However, the objective that this approach minimizes - the temporary mismatch
of supply and demand - has no direct connection to efficiency, optimality, or
multiplicity of equilibria. Instead, we suggest paying attention to the flow of

information between the two auctions.

To be precise, when one auction generates information that could be harmful
to the other, we register an informational spillover. It turns moving the clock
prices to balance spillovers on the two sides leads to a decrease in the total
number of spillovers, see Proposition 3. As a result, the no-spoilers disclosure
policy becomes less binding, and more information is released to the partici-
pants, without compromising the uniqueness of equilibrium. We refer to it as

the adaptive clock policy.



In the fourth step, we study a broad class of piecewise-smooth optimization
problems. This is equivalent to finding an efficient and robust direct mech-
anism in a fictitious economy, that we refer to as wvirtual, parametrized by
one-dimensional private types. We call it a v-optimal mechanism. We show
how and under what conditions our dynamic auction implements this direct
mechanism, see Proposition 4. Next, we derive the original economy’s optimal
direct mechanism and, under mild regularity conditions, we show that it one
of the v-optimal mechanisms. Thus, it can be implemented via our auction,

see Proposition 5.

We pay special attention to the so-called worst-off types. Lu and Robert
(2001), working on a similar mechanism with interim constraints, admits that
two-sided trade creates difficulties beyond standard mechanism design. Indeed,
the monotonicity of a trader’s virtual valuation typically fails at the worst-off
type, even if the distribution of types is regular. Moreover, with the ex-post
constraints, the locus of the worst-off types is conditioned on other players’

types, making it untractable.

Despite the apparent complexity of the optimal mechanism, the implementa-
tion is relatively simple - two Ausubel auctions with a marginal tax on top.
We will refer to the anti-derivative of the marginal tax as the integrated taz.*
The optimal integrated tax has four key features. First, it does not depend
on the number of bidders. Second, it depends on the clock price due to the
ex-post nature of the mechanism. Third, it generically has a kink at zero.
Finally, it is typically concave (but less concave than the utility) on each side
of the kink. See Figure 1.

The cusp shape of the integrated tax comes from two conflicting ideas. On the
one hand, the auctioneer wants to exclude the traders whose contribution to
exchange is minimal to exert pressure on the rest of the traders. A convex kink
“in the middle” guarantees precisely that. On the other hand, the auctioneer

wants to minimize the distortion among the strongest buyers and sellers. Thus,

4A buyer is a bidder who increases his clinched position and pays the marginal tax. A
seller is a bidder that decreases his clinched position, so he is being paid.
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Figure 1: Marginal (left figure) and integrated (right figure) optimal tax at
different levels of the clock price p, for a quadratic utility and uniform|-1,1]
distribution.

the tax should flatten closer to the “shoulders.”®

Lastly, a natural question is how much revenue the optimal mechanism yields
compared to other robust mechanisms. To answer it, we focus on the special
case of quadratic utility, which gives additional tractability to the model, see

Proposition 6.

In Andreyanov and Sadzik (2021), two ad-hoc robust mechanisms were simi-
larly implemented with taxes, albeit in a sealed-bid fashion. The first mech-
anism featured smooth, progressive (quadratic) per-unit taxes. The second
one featured a flat per-unit tax.® We focus on two distributions of the hidden
type: uniform and logistic; and measure their revenue and efficiency relative
to the optimal mechanism, see Table 1. We find that the flat tax offers a bet-
ter efficiency-revenue trade-off than progressive tax and, moreover, it almost
reaches (but does not converge to) the Pareto frontier for certain distributions,
see Figure 5. These findings were only made possible due to the characteriza-

tion of the optimal robust mechanism. 7

5This flattening happens for all distributions with a strictly positive density on compact
support, such as uniform, because the £ and 1=£ terms vanish on the boundary. However,
for many distributions with full support, such as the logistic distribution, this does not
happen.

6See Example 8 in Andreyanov and Sadzik (2021)

“For 100 bidders, simulations show that progressive taxation is also dominated in the
following sense. For any quadratic tax, a flat tax can yield the same expected utility but
higher expected revenue. Moreover, for the logistic distribution, a flat tax almost almost



I Literature

Our paper is linked to three strands of literature: robust mechanisms, optimal

mechanisms, and practical auction rules.

The first strand is the classical literature on optimal mechanism design. The
concept of virtualization, necessary for optimality, was developed indepen-
dently by Mussa and Rosen (1978) and Myerson (1981). It was later gen-
eralized, among others, by Wilson (1985), Gresik and Satterthwaite (1989),
Maskin and Riley (2000), and Lu and Robert (2001), to be used for two-sided

and multi-unit environments.®

The second strand is the design of robust mechanisms. The concept of robust
implementation is in the sense of Wilson (1987), Bergemann and Morris (2005),
and Chung and Ely (2007), meaning that the mechanism should work for all
information structures, distributions, and beliefs. Furthermore, in optimality,
we can distinguish three approaches to robustness. The first classical approach
is finding a mechanism with given properties, assuming the type distribution is
known. The second approach is to estimate the properties of the distribution
in a static environment, see Kojima and Yamashita (2017), or estimate it on
the fly, see Loertscher and Marx (2020) and Loertscher and Mezzetti (2021).
The third approach is to consider the worst-case, relative to the maximized
objective, scenario. See Brooks and Du (2021) and Suzdaltsev (2022). Our
paper belongs to the first approach, which can be justified by saying that the
distribution can always be estimated using a small randomly sampled group

of agents, which will be asymptotically negligible.

The third strand is the design of simple mechanisms when optimal mechanisms
are impractical. For example, in Hart and Nisan (2017), it was argued that
simple mechanisms for selling two goods could achieve a guaranteed fraction

of the optimal revenue. In Andreyanov and Sadzik (2021), two families of

reaches the Pareto frontier.
8We add to this body of literature a non-linear utility and a small observation, see
Lemma 2, that circumvents the non-monotonicity of virtual type.



simple mechanisms were suggested for an exchange environment with multi-
unit demands. In this paper, we give the means to compare them to the
optimal mechanism and find that they often capture a significant portion of

optimal revenue.

Our numerical exercises contribute to the long ongoing debate over the efficiency-
revenue tradeoff in two-sided markets with private information on both sides.
One of the oldest results in this area is the impossibility of budget surplus
under efficient trade by Myerson and Satterthwaite (1983), meaning that full

ex-post efficiency is very costly in revenue.

Another argument was made by Gresik and Satterthwaite (1989) that optimal
mechanisms converge to efficiency at a quadratic rate, and in Lu and Robert
(2001), they converge to a simple bid-ask spread. Both results, however, rely on
either unit demand or linear utility. With decreasing returns to scale, optimal
mechanisms neither converge to efficiency nor to bid-ask spreads, which we

confirm under quadratic utility.

Furthermore, Loertscher et al. (2015) argues that the efficiency-revenue trade-
off is steeper in markets with two-sided private information than those with
one-sided, meaning that full optimality might be too costly in terms of effi-
ciency. With our quadratic-utility model, we can reassess this claim by plot-
ting the Pareto frontier. Interestingly, the simple mechanisms based on bid-ask

spreads almost reach that frontier for the logistic distribution.

Our paper also contributes to the expanding literature studying uniform-price
and pay-as-bid auctions; see Back and Zender (1993), Ausubel et al. (2014)
and Wang and Zender (2002). One of the main takeaways is that demand
reduction with multi-unit demands can severely impact auction revenues. We
show that one possible solution to the problem is a combination of a per-unit
tax with a bid-ask spread. However, in our numerical exercises, the latter is
disproportionally more important. See Figure 5. Furthermore, Burkett and
Woodward (2020) argues that there could also be low-revenue equilibria and

suggests using reserve prices. Such “collusive-seeming” equilibria also emerge



in our setting, but for a different reason: the inadvertent informational spillover

between the two sides of the auction.

Finally, in the domain of robust auction design with private values, our paper
is most similar to McAfee (1992) in its oral double-clock design and Ausubel
(2004, 2006) in the clinching design of the payments. However, to our best
knowledge, we are the first to characterize the optimal tax in the robust set-
ting and to show how the price path can be guided to improve the strategic

properties of the double auction.

II Dynamic auction

Our auction can be thought of as two copies: forward (i.e., ascending, buy-
ers’) and reverse (i.e., descending, sellers’); of the efficient dynamic auction of
Ausubel (2004), with the clock prices running towards each other, and with
carefully crafted per-unit taxes on top of the baseline Vickrey-style payments.
These additional payments are necessary to implement mechanisms other than

efficient ones, such as revenue-maximizing. °

A. Forward, reverse auctions and clinching

Two clock auctions run continuously or in discrete rounds. To distinguish
between the two auctions, we will use superscript + for the forward and — for

the reverse. We denote the clock prices in these auctions as p™ and p~.

Each player i participates in both auctions and, at any given pair of clock
prices, submits a demand ¢ in the forward auction and ¢; in the reverse
auction. To be precise, in each auction round, the auctioneer first announces
the clock price or a range of clock prices to be run. Bidders simultaneously
and independently from each other respond with quantities or, in the latter

case, demand schedules.

9The double-clock nature of the proposed auction resembles the recent Incentive Auction
used for spectrum bandwidth reallocation.



The forward auction starts at a low price pg and gradually raises it. Likewise,
the reverse auction starts at a high price p, and gradually lowers it. The
forward auction stops when the total demand becomes non-positive, while the
reverse auction stops when the total demand becomes non-negative. We will

refer to this pair of, possibly different, final clock prices as the stop-off prices.

There is much freedom in how the auctioneer can move the clock prices to-
wards each other. The exact instructions would depend on the auctioning style
(discrete or continuous clocks) and also on the objectives of the auctioneer,

which we will discuss later.

Following Ausubel (2004), at any clock prices, we define residual supply (q_;)

and clinched supply (¢; ) in the forward and reverse auctions correspondingly:

Qil = _Zq;7 q:z = _ZQJ7 q:c = maX(07 qiz)a q;c = mln(()? q:z)
J#i J#i

B. Activity and clearing rules
Buyers and sellers can submit demands satisfying two activity rules.

First, demands in both auctions are non-increasing in their respective prices,
which we will refer to as demand monotonicity. Second, at any point, the
agent’s demand in the reverse auction is no greater than her demand in the

forward auction, which we will refer to as no-arbitrage.

The clearing rule is a protocol for finalizing allocations and transfers at the
stop-off prices. If everyone plays continuous demands, there will be an exact
market clearing at one or several. However, because demands are allowed to
jump, one can end up with a mismatch of supply and demand in the auction.
If such a mismatch happens, some of the most recent demands might require

rationing.

Luckily, it is always possible to put the final allocation “inside” the revealed

demand of each agent, in order to incentivize them to submit truthfully.!* One

10The definition of sincere demand in our paper will ensure that jumps in quantity de-



can easily see that the set of such allocations is convex and non-empty.'! A
member of this set can be selected, for example, by minimizing the sum of

squared allocations. Other selections were proposed in Okamoto (2018).

C. Allocations, and payments

The final allocation is determined by the units clinched between the starting

and the stop-off prices and the clearing rule.

Similar to Ausubel (2004), payments are only made for the incrementally
clinched units. However, they consist of two parts. The first part is stan-
dard - each incrementally clinched unit costs exactly the clock price at which
it was clinched in the corresponding auction. The second part consists of
marginal taxes m7 that depend on the current clock price and the current
position in clinched supplies. Namely, agent i pays m7(p*, ql-'fc) for the addi-
tional (positive) unit incrementally clinched in the forward auction and is paid

m7(p~,¢q;.) for an additional (negative) unit in the reverse auction.

Thus, agent ’s total payment given final allocation ¢ will be equal to

Jq (p—i(z) + m7;(p_i(z), x)) dx,

0
where p_;(+) is the inverse residual supply curve facing agent i.

It is worth mentioning that agents do not have direct control over the units
they clinch and the payments they make or receive. However, they can affect

the stop-off price.

manded coincide with linear parts in the tax-adjusted utility of each agent, thus the jump
in demand simply indicates a convex-valued demand correspondence.

HTf, at a certain price, the sum of lower bounds to demand correspondences is non-
positive, while the sum of upper bounds is non-negative, by Intermediate Value Theorem,
there exists a convex combination of the upper and lower bounds such that it adds up to
Z€ro.

10



D. Clock and disclosure policies

In each round, the auctioneer determines which clock to advance, either the
forward or reverse. Additionally, he has to determine how much information to
reveal to the bidders. We will refer to it as the clock policy and the disclosure

policy. In particular, we focus on two such policies.

e Adaptive clock policy: If the number of agents for whom ¢;" > ¢, is
greater than the number of agents for whom ¢;” < ¢*, - move the forward
clock. If the number of agents for whom ¢;” > ¢~ is less than for whom

q; < q*, - move the reverse clock. Otherwise, move either clock.

e No-spoilers disclosure policy: Each bidder observes, apart from the

clocks, two additional statistics:

Gia = max(q,q%), gy =min(g; ,q%).
The idea is that this knowledge bears little consequence for the bidder.
Indeed, conditional on q;f 4 and ¢; 4, the possible range of final allocations
for bidder ¢ is [¢;", ¢; |-

Combining the two policies above will allow us to deal with the potential
‘void of incentives’ when an agent learns about the outcome, regardless of his
future play, see Example 1 and 2. This consideration is only valid it two-sided

environments, as opposed to pure sales or procurement.

We will consider three additional policies for the exposition. With the simple
clock policy, we fully advance the clock price in one of the two auctions: for-
ward or reverse, until it hits the stop-off price. After that, we fully advance the
clock price in the opposite auction. A full-disclosure policy informs the bid-
ders about the most recent values of all forward and reverse auction demands.
To the contrary, a no-disclosure policy does not share additional information
with the bidders.!?

12Even with the no-disclosure policy, bidders observe the switches between the forward
and reverse auctions.

11



E. Structure of rounds

To summarise, our auction features forward and reverse clocks, with activity
rules, disclosure and clock policies. It remains to define the structure of rounds,
for which there are two approaches: continuous and discrete. Both are stylized
representations of a dynamic (oral) auction and have unique strengths and
weaknesses. For the purpose of the paper, we adopt a mixed approach by

modeling discrete rounds but continuous demands.

We will refer to the position of the clocks at the beginning of round k as p; and
pi - The clocks start at round 0 at exogenous positions pj < p, and advance
one at a time in discrete steps of size (p; — pg )/M. Thus, the auction ends in

exactly M — 1 rounds.

Once a round starts, each bidder submits a demand function in the range be-
tween that clock’s most recent positions, constrained by the two activity rules.
The clinches are then calculated in the respective range, with the exception
of the round where the market clearing price was found. The information is
revealed at the end of the round: whether the auction is over or not, which
clock moves next according to the clock policy, and each bidder i is informed

about the latest values of qZ 4 and ¢; ; according to the disclosure policy.

Special attention should be paid to the last rounds in the forward and reverse
auctions because one of the two clock prices will likely overshoot, and the
other will fall short of market clearing. During the round where overshooting
happens, the clinches should be calculated only up to the market clearing
price. Likewise, clinches must be added to the opposite side, as if the clock

moved up to the market clearing.

This modeling approach retains most features of the oral design without the

technical complications of switching between the two clocks continuously. 3

13Electricite de France (EDF) used a similar clock auction design for its power sales.
The auction consists of several rounds; the clock price continuously advances during each
round. Each round raises the price by some pre-determined amount unless the total demand
decreases below the total supply. Bidders had to determine their bid plan before each round.
Practically, this approach balances transparency with fast implementation of the auction.

12



III Strategic analysis

In this section, we introduce game-theoretic primitives, such as preferences,
information, strategy, and equilibrium concepts, to set the basis for strategic

analysis.

We then introduce the sincere demand - a stylized representation of the agent’s
tax-adjusted preferences. If all agents reveal their sincere demands during the
double auction, the outcome will be efficient in the virtual economy populated

by agents with tax-adjusted preferences.
We make three progressively narrow statements about this outcome.

First, it is an ex-post perfect equilibrium for all clock and disclosure policies. It
is neither unique nor a dominant strategy equilibrium. However, using the no-
spoilers disclosure policy, we ensure that it is the only survivor of equilibrium

refinement - iterated elimination of weakly dominated strategies.

Finally, we show that the adaptive clock policy, in a certain sense, maximizes
disclosure under the no-spoilers disclosure policy or, equivalently, maximizes

the incentives to play sincerely under full disclosure.

A. Primitives and solution concepts

Agent i’s preferences are represented by a quasilinear utility u;(¢;) — ¢;, where
t; is the transfer and u;(q;) is agent 4’s utility from holding ¢; units of asset.
Let U; denote the possible utility functions of agent 7. Any u; € U; is strictly
concave and continuously differentiable so that it has a strictly decreasing
derivative mu;(q) := a—iui(q) for each ¢ € R. Each agent i privately observes
her utility u; at the beginning and plays the double clock auction by the rules

detailed in the previous section.

Assume, without loss of generality, that at round k, the forward clock moves

from position p; to p;,,. Agent i’s strategy o; maps h; - the entire history

See pages 281-282 of Milgrom (2004) for more detail.

13



available to him at the beginning of the round, to a function on [p;, p;.,],

bound by the activity rules.

Following Ausubel (2004), we will consider two equilibrium concepts. The first

one is ex-post equilibrium, extended naturally to the dynamic setting.

Definition 1. A profile of strategies (0;); is an ex-port perfect equilibrium if for
every round k, following any history h; ., and for every realization of the profile
of (w;)i, the profile of continuation strategies (o;(:|k, hix,w;)); constitutes a

Nash equilibrium of the game in which (u;); is common knowledge.

The second one is more subtle. It is well-known that in the Vickrey auction,
the additional equilibria can be discarded by eliminating weakly dominated

strategies. In the dynamic setting, iterative elimination can be used. '

Definition 2. A profile of strategies (0;); is a unique survivor of iterated
elimination of weakly dominated strategies if (i) there is an order of elimination
such that every other strategy is weakly dominated, and (ii) there is no order

of elimination, such that o; is weakly dominated, for some 1.

B. Sincere bidding

We aim to show that, in equilibrium, agents will behave similarly to a price-
taking consumer. We describe such behavior by the sincere demand defined

below. Note that sincere demand is not a strategy yet.

Definition 3. The sincere demand d;(p) is defined as
q
) = avgmaz, | (o) - [ (o, 0)de - pa. )
0

We will refer to u;(q) — §§ m7i(p, z)dx as taz-adjusted utility.

Sincere demand maximizes the agent’s tax-adjusted utility, as if she were a

Tterative elimination here entails comparing the preferred strategy to every other strat-
egy, conditional on all histories that are consistent with the strategies that have not been
eliminated yet.

14



price taker, given the wholesale price p. Thus, a market clearing price with
sincere demands will achieve an efficient outcome in a fictitious economy with
tax-adjusted utilities, evaluated at that price. However, these utilities are not

private, as they depend on p.

For any utility u; and tax mr;, we wish to devise a private utility v; that
would replicate the same behavior as the tax-adjusted one, independently of

the price. We will refer to these new utilities as wvirtual.

We can reverse engineer the virtual utility for agent i, up to a constant by

solving the following system of first-order conditions,

p = mu;(q) — m7i(p, q) = mvi(q).

In other words, mw;(q) is the graph of the set of points in the (g, p) space, where
the first-order conditions are satisfied for the sincere demand. Furthermore,
the v; utilities should be strictly concave to validate the first-order approach.
Thus, we introduce a joint restriction on the set of utilities ¢; and the shape

of the marginal tax.

Assumption 1. For any i and any possible utility u; € U;,
mr{ (q) —mul (q) > &, (1+m7,(q.p) " >0,

for all (p,q) € R x (R\{0}) and some £,6 > 0.

This assumption requires that the tax be less concave than any utility from
U; at all prices, and the marginal tax can not decrease too fast in the current
price. These two properties ensure that the virtual utility is, indeed, concave.
To see this point, linearize the first-order condition around (p, ¢) to obtain

mT. (p,q) — mu}
! () = 1P ) w@<_%

1+ m7/,(p,q)

at points of differentiability so that mu; is strictly decreasing in ¢q. We will

refer to the economy with private utilities v; as the wvirtual economy.

15



Thus, a market clearing price with sincere demands will achieve an efficient
(i.e., Walrasian) outcome of the virtual economy. Coupled with Vickrey-style
payments, the latter will amount to an ex-post equilibrium. It remains to find

a strategy that will generate sincere demand along the equilibrium path.

Such a strategy exists. It entails playing sincere demand when not constrained

by either activity rule, otherwise staying as close as possible to the demand.

Definition 4. Agent i’s strategy o} s said to be the sincere strategy if, at any
round k after any history of play h;y such that p} and p, are the clock prices

at the beginning of round k, her reporting plan for that round is

max(min(d;(p), ¢ (), 4 (p1,))

in the forward auction, and

min(max(d;(p), ¢; (py, ), 4" (03)))

in the reverse auction.

We will refer to the profile of strategies (o7 ); as sincere bidding. *> We are now

ready to state the first main result of our paper, see Appendix A for proof.
Proposition 1. Consider any clock policy and disclosure policy, then

1. Sincere bidding yields the market clearing price and allocations of the

Walrasian equilibrium in the virtual economy,
2. Sincere bidding is an ex-post perfect equilibrium,

for any utilities and taxes satisfying Assumption 1.

15The domain on which the strategies are defined is unimportant since the sincere strategy
is basically a constant function, constrained by the activity rules.

16



C. Weak dominance

It is worth noting that, with only a forward auction and no taxes, the sincere

play is weakly dominant under no-disclosure, see Ausubel (2004), Theorem 1.

This is not true in the two-sided setting. The reason is that the auctioneer
releases important information by merely switching between the forward and
reverse auctions. This information can be used to manipulate the actions of
other players in order to achieve certain results. We will use the simple clock

policy to demonstrate it.

Example 1. With the simple clock and no-disclosure policies, sincere bidding

15 not weakly dominant.

Consider two players i = 1,2 with sincere demands d; (p) = 2—p, da(p) = 1—2p
that are common knowledge (i.e., U; are singleton) and no additional taxes.
Let the starting prices be pj = 0, p; = 2, and let the forward clock advance
first, to p = 1.

Under sincere bidding, the stop-off price is found by the forward clock at the
end of round 0, and it equals 1. The reverse clock then moves to confirm the
same stop-off price. The first and second player’s total clinches amount to 1
and —1. That is, the first player is the buyer. The average prices are 0.75 and
1.5 correspondingly, see Figure 2 (left).

Consider now a modified strategy for player 1. Namely, if the stop-off price
after the forward auction is less than 1, she plays sincerely in the reverse
auction. Otherwise, she plays d,(p) = di(2) = 0, that is, she advances her

demand in the reverse auction earlier than the sincere demand prescribes.

If player 2 proceeds with bidding sincerely, she will clinch everything at the
stop-off price 1, see Figure 2 (right). Her loss due to the insidious actions of
the first player in the reverse auction amounts to exactly 0.5. If, however,
player 2 shifts her demand to dg(p) = dy(p) — ¢, for a small € > 0, the stop-off
price in the forward auction will be equal to 1 — 5 and player 1 will then play

sincerely in the reverse auction.
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Figure 2: Payments when player 1 plays sincerely (left) when player 1 advances
her demand late (middle) and early (right) in the reverse auction.

Thus, playing sincerely is not a dominant strategy for player 2.

D. Iterated elimination

Clearly, weak dominance is too strong an equilibrium concept. It is, however,
possible to discard insincere strategies using iterated elimination of weakly
dominated strategies. With only a forward auction and no taxes, sincere bid-
ding was shown to be the unique survivor of such elimination, under full dis-
closure, see Ausubel (2004), Theorem 2.

Surprisingly, this is also not true in the two-sided setting. The reason is that
the forward auction generates information that can be strategically used in

the reverse auction and vice versa.

Example 2. With the simple clock and full-disclosure policies, there are equi-
libria other than sincere bidding that survive iterated elimination of weakly

dominated strategies.
To build the counterexample, consider the same setting as in Example 1.

Consider now a modified strategy for player 1. Namely, if at the end of the
first round, the stop-off price turns out to be 1 with final allocations 1 and -1,
player 1 submits a flat demand of size 1 in the reverse auction. Otherwise, she

plays sincerely. This can be thought of as dropping the demand “later” than

18




the sincere strategy would prescribe, see Figure 2 (middle).

Since the non-standard strategy of player 1 is in the final round, it can not be

eliminated in that subgame and thus can not be eliminated iteratively.

E. Full support beliefs

The reason why in the previous example, player 1 could deviate was that, by
the end of round 0, her final allocation was known to be 1. Thus, she faced no

consequence for changing her demand.

To keep the players from executing such deviations, one has to make sure that
i) the information generated in the forward auction does not inform the players
in the reverse auction about the potential range of allocations and vice versa,
and ii) no matter what the players do, there is persisting uncertainty about
the realization of the stop-off price and final allocations. The latter is typically
called a full support assumption, see Ausubel (2004).

We will model this uncertainty by letting the auctioneer participate in the
auction as a shill bidder, non-strategically and without taxes. In particular,
she must be able to reduce her demand at any price and by any amount that
does not violate the activity rules. Alternatively, we can interpret it as a

population of noise traders.

Definition 5. The double clock auction is said to satisfy the full support as-

sumption if the auctioneer can play any demand that satisfies the activity rules.
We are ready to state the second main result, see Appendix A for proof.

Proposition 2. Consider any clock policy and no-spoilers disclosure policy,
then sincere bidding is a unique survivor of iterated elimination of weakly dom-

inated strategies under the full support assumption.
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IV Informational spillover and clock policy

The multiplicity of equilibria, discussed in the previous sections, is a conse-
quence of a general phenomenon in double auctions: the inadvertent informa-
tional spillover between the forward and reverse auctions. In this section, we

will attempt to create a language to describe and classify this phenomenon.

Furthermore, we will use a headcount of agents experiencing spillover to opti-
mally guide the clock prices towards the stop-off price, which will justify the

adaptive clock policy introduced in Section II.
Consider clock prices pt < p~.

Definition 6. For agent i, there is spillover into the forward auction if ¢_,(p~) <

q; (p*), and into the reverse auction if q; (p~) < ¢*,(p*). 1

Imagine that at some point in time, agent ¢ observes that the residual supply in
the forward auction is ahead of agent ¢’s sincere demand in the reverse auction,

that is, d;(p~) < ¢*,(p™), see Figure 6 (right). Then, i can reveal any value
+

between [d;(p~), ¢ ;(p*)] in the reverse auction without risking changing the
stop-off price. Alternatively, she can keep her demand unchanged for the range
of prices [d; '(p*), p~] in the reverse auction. Thus, spillover allows supporting

equilibria that are not sincere when agents observe the residual supply.

One can see that the no-spoilers disclosure policy, introduced in previous sec-
tion, was designed precisely to conceal spillover. Indeed, spillover into the
reverse auction happens if and only if the disclosure policy binds, that is,
q;r , = min(q; ,¢",) = ¢;, making q;f , uninformative about the distance be-
tween her demand ¢; and the residual supply in the opposite market ¢*,. A
similar argument applies to the forward auction, which allowed us to eliminate

non-sincere equilibria under the no-spoilers policy in Proposition 2.

The question that we want to answer is whether there exists a clock policy

that, in some sense, minimizes spillovers and thus maximizes disclosure under

16See Appendix B for an alternative definition of spillover.
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Figure 3: spillover into the forward auction (left figure) and into the reverse
auction (right figure).

the no-spoilers disclosure policy.

The simple clock policy can not give us this property. Indeed, after fully
advancing the clock in the forward auction, the residual supply there is no less
than the sincere demand in the reverse auction for every player, and strictly so
for strictly decreasing demands. Moreover, for n = 2, it is simply impossible
to rule out spillovers with generic demands. However, we can try to make the
number of agents that experience spillover as small as possible. This approach

is motivated by the following lemma:

Lemma 1. For any clock prices p* < p~: if there is type-1 into both auctions

(forward and reverse), then there is type-1 spillover for exactly one agent.

According to this lemma, the number of agents experiencing type-1 spillovers
at any time is far from arbitrary. Represented by a pair of numbers, it can
only be one of the following: (0,0), (1,0), (0,1), (1,1), (2+,0), (0,2+); where
r+ stands for “z and more”, see Figure 4 for an illustration. Moreover, when

the numbers are (1, 1), the same agent experiences spillover on both sides.

With this structure at hand, we can show that, for any collection of well-
behaved sincere demands, a price path exists with special properties. Namely,

along this path, the number of agents with spillovers monotonically decreases
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Figure 4: Stylized illustration of the price path associated with adaptive clock
policy, and a continuous price path in Proposition 3.

until there is at most one such agent, and it stays that way, see Appendix B for
formal proof. To make the result sharp, we put a few technical assumptions

on the sincere demands and treat them as known.

Proposition 3. Let agents play continuous and weakly monotone sincere de-
mands, and there exists a stop-off price p* such that the market clears. Then,
for any starting prices p; < p* < py, there exist a weakly monotone path

py(t),p_(t) connecting (pg,py) with (p*,p*) continuously.

The path consists of two parts. In the first part, the number of agents expe-
riencing type-1 spillover decreases monotonically until there s, at most, one

such agent. In the second part, there is still at most one such agent.

How does this help with the design of the auction? If we could find a realis-
tic clock policy that mimics the aforementioned path, it could be considered
superior to other clock policies, as it minimizes spillovers and thus maximizes

disclosure under the no-spoilers policy.

Now, recall the adaptive clock policy. If the number of agents for whom there
is spillover into the forward auction is greater than the number of agents for
whom there is spillover into the reverse auction, we move the forward clock.

If the number of agents for whom there is spillover into the reverse auction is
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greater than the number of agents for whom there is spillover into the forward

auction, we move the reverse clock. Otherwise, we move either clock.!”

In other words, adaptive clock policy synchronizes the clocks in a way that
balances the number of type-1 spillovers in the forward and reverse auctions,

eventually localizing them to at most one agent, see Figure 4. ®

V Direct mechanisms

In this section we derive the optimal tax for the double auction. To achieve this
feat, we add more structure to the agents’ preferences: private values, single-
dimensional types and single-crossing preferences. We consider a flexible class
of designer objectives, which covers expected revenue maximization and near-
efficiency as special cases. First, we derive an optimal direct mechanism for
this class of objectives. Then, we derive the taxation function that achieves the

same allocation and payoffs in the sincere equilibrium of our dynamic auction.

A. Single-dimensional types

We model agent’s preferences as a single-dimensional, private type 6; € ©; < R.

Thus, agent’s payoff with type 6;, allocation ¢; € R and transfer ¢; € R, is
ui(0i, q;) — ti.

We will refer to the whole profile of types as # and the profile of types other
than agent ¢ as #_;. For agent ¢, the domain of types, ©;, can be either a
segment or the real line. For simplicity, we will refer to the domains of 6;, 6_;

and 6 as the support.

17 A numerical example of how adaptive policy works is presented in Appendix E.

8There is no guarantee that the set of prices for which there are no spillovers is connected
nor that it reaches the stop-off price. Thus, we can monotonically reduce the number of
agents for whom spillover takes place to at most 1, but not 0. In Appendix B we present
a slightly different definition of spillover, for which the set of prices for which there are no
spillovers contains the stop-off price.
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We begin with a minimal set of assumptions that are typically used in the

mechanism design literature.

Assumption 2. 0; is independently distributed with CDF F; and a strictly
positive density fi;, u;(0;,q;) is twice continuously differentiable and strictly

single crossing (#Zqiui(ﬁi, qi) > 0), for all i, ¢; € R and 6; in the support.

We focus on direct mechanisms with a truth-telling equilibrium, invoking the
revelation principle. A direct mechanism (g,t) consists of an allocation rule
q : R" — R™ and a transfer rule ¢ : R” — R". A direct mechanism must satisfy
the incentive compatibility (IC) and individual rationality (IR) constraints so
that the agents play a truth-telling equilibrium. In this paper, we require that
both constraints are satisfied ex-post, that is, at each type profile on the type
space, as in Andreyanov and Sadzik (2021), rather than on average, as in Lu
and Robert (2001). Formally, they are defined as below.

Definition 7. A direct mechanism (q,t) satisfies the ex-post IC and IR con-

straint if it satisfies the following inequalities.
IC: u;(0:,q(0;,0-;)) — t(60;,60_;) = u;(6;,q(6;,0_;)) — t(0,0_;),
IR: w;i(0;,q(0;,0_;)) — t(0;,0_;) = u;(0;,0).

for all © and all 6 in the support.

Denote by @;(0;, q;) the net (i.e. relative to the autarky), utility of agent i:
@i (0;, ¢;) = wi(0;, ¢;) — u;(6;,0).

A standard mechanism-design argument tells, see e.g. Milgrom and Shannon
(1994); Milgrom and Segal (2002); Sinander (2022), that under strict single
crossing, a direct mechanism (g, t) is ex-post IC if and only if: ¢;(6;,0_;) is

non-decreasing in 6; (monotonicity constraint) and the envelope conditions
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hold:
0;
- 94 a_elaz(x7Qz(xvefz))dx7

(2)

t:(0:,0_;)—t;(0;,0_;) = 1;(0:, qi(0;,0_;))—1;(0;, q: (05, 0_;))

for all 7 and 6;,0:,0_; in the support.

77

B. Net surplus and worst-off-types

Another convenient way to describe the envelope conditions - is in terms of
the agent’s equilibrium payoff (added relative to the autarky), §;(0;,60_;) that

we refer to as her net surplus:
5:(0;,0_;) = u;(0;,4q:(0;,0_;)) — t:(0:,0_;) = gn%x{ﬂi(ei» a:i(0;,0-;)) — t:(6;,0_;)}.
(€6
This allows us to recast the IR constraint as
i 35.(0 D) >
g%g(gi 5i(0:,0-;) =0 (3)

Furthermore, consider a candidate mechanism with the net surplus functions

§;, and the allocation functions ¢;. Let wot;(0_;) denote the set of worst-off

types, and tet;(0_;) denote the set of types excluded from trade of agent i:
wot;(0—;) = arg min 5,(0;,0_;), tet;(0_;) = {0; € ©; : ¢:(6;,0 ;) = 0}.

QZE@Z'

Lemma 2. Under Assumption 2, in an ex-post IC direct mechanism, any type

excluded from trade is a worst-off type (i.e., tet;(0_;) < wot;(6_;)).
The above lemma allows us to recast the envelope conditions (2) as follows:

0;

~ . ~ / (9 ~
3i(0:,0-;) = 0}2(;_ 5i(0;,0-;) + J* a—eiui(l’,%(%e%))d% (4)

0

where 67 is one of the types excluded from trade if tet;(6_;) is non-empty in

the candidate mechanism. If tet;(6_;) is empty, we will also have to consider
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0% to be at the end of the support if it is compact, and +oo otherwise. '

Thus, we can replace the IR and IC constraints with (3) and (4). This is
without loss of generality since any of the envelope conditions (2) can be

obtained by combining two envelope conditions (4).

C. v-optimality

We are interested in a broad class of mechanisms, which we will refer to as v-
optimal. Consider functions v;(6;, ¢), which can be interpreted as contributions
of each agent to a certain social utility. We wish to maximize it subject to the
market clearing constraint >  ¢; = 0, ex-post. Additionally, we normalize

agent’s payoff at the worst-off type to be equal her payoff in the autarky.

Definition 8. A v-optimal direct mechanism (q,t) mazimizes

ff 0| 1o

subject to: monotonicity constraints, envelope conditions (4), market clearing

and infyce, 5;(0;,0 ;) = 0, for all i and 0_; in the support.

While not fully general, this formulation covers a number of important fami-
lies of mechanisms. In particular, three such families have been studied before.
The first family, studied in Gresik and Satterthwaite (1989), Lu and Robert
(2001), in the context of Bayesian IC and IR constraints, can be informally
defined via v; = (1 — a)u; + at;, and can be thought of as a convex combina-
tion of efficient and revenue-maximizing mechanisms. The second and third
families, studied in Andreyanov and Sadzik (2021), are v; = u; — 0¢?/2 and
v; = u; — 0|q|. They can be thought of as nearly efficient mechanisms capable
of balancing the budget ex-post through controlled demand reduction. By co-
incidence, if the utility is quadratic: u;(6;, q) = ;g — uq?/2, the second family

also contains (for o = ~#5) the uniform-price double auction, studied, among

19Tn the paper, we also provide conditions for the type excluded from trade to exist.
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others, in Kyle (1989) and Rostek and Weretka (2012).

We place a few technical assumptions on the auctioneer’s objective v, which
ensure that the v-optimal mechanism is a solution to a smooth (with a notable

exception of ¢ = 0) and convex optimization problem.

Assumption 3. v;(6;, q;) is twice continuously differentiable, strictly concave

in q; and strictly single crossing, for all i, q; # 0, and 6; in the support.

With a slight abuse of notation, let muv;(6;, ¢;) denote a%_vi(ei, ¢;) at points of
differentiability, and the sub-gradient of v; otherwise. Likewise, let mu;(6;, ¢;)
denote a%uz(gz, qz)

D. Relaxed problem and monotonicity of allocation

As is common in the literature, we now relax the problem. Namely, we drop the
monotonicity constraint, as well as all the remaining conditions stemming from
the IR and IC constraints, with only the market clearing constraint remaining.
This allows us to optimize (5) only over the allocation functions ¢;, pointwise,

and then check that all the ignored constraints can be satisfied.

Since the relaxed problem is convex, the method of Lagrange multipliers can
be applied to characterize the optimum when it exists.?? The first-order con-

ditions for the saddle point of the Lagrangian are:
p(0) € mvi(6;,4:(0)), >, a(6) =0, (6)

where p(f) € R is the Lagrange multiplier. By strict concavity of the v;

functions, ¢;(#) is also single-valued.

Below, we verify that the solution to the relaxed problem is indeed monotonous.

For convenience, let muv; ,, mv; , denote ag;fi (0:, i), %(Gi, q;) respectively. For

20For convex-constrained optimization problems, the saddle-point condition is both nec-
essary and sufficient for optimality, see Theorem 2 in Luenberger 1969, 221p.
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any g # 0, we may linearize (6) around (p, q) as below

, , 0 0 , 0 G o
muj g +muj , aeiql(ﬁ) =% 0), mvj, aeiq](e)— aeip(@), j#i. (7)

We can then solve for the slopes of allocation and price using market clearing

0 mu 1 0 _muy [ 1/mu),
21 /mu

_p(e) = / R _q( )_ /
00; mvj, 3,1 /muy " 06; muj

1 - i)) ®)

Clearly, under strict single crossing and strict concavity of v;, the allocation of
any agent is strictly increasing in her type, which is sufficient for the existence
of transfers that satisfy all the IC and IR constraints that were omitted from

21

the relaxed problem.”* We would like to strengthen the properties of the

allocation function further by uniformly bounding the slopes of mu;.

Assumption 4. mv;, > ¢, and —1/mv;, = 6, for all i and 0;,0_;,q; in the

support, and some €, > 0.

We can bound the slope of the allocation function from below:

iqi(e) = myl’.e . (_1/m1jg,q) ' (Zk;ﬁl _1/m'l};€;q) . n—1
7 (_1/mvi,q) + (Zk# —1/mvk’q) n

£0. 9
20 (9)
Consequently, one can invert the allocation function with respect to own type

everywhere except ¢ = 0. We will refer to it as an inverse allocation function

¢ *(x,0;), defined on the (R\{0}) x R"~! domain.

E. Existence of the type excluded from trade

To increase tractability, we would like to ensure the existence of the type
excluded from trade.?? Together with the tazation principle, see Rochet (1985),

this will allow us to once again recast the envelope conditions using the inverse

21The allocation function is also strictly decreasing in types of others, and the market
clearing price is strictly increasing in all types.

22This requirement can be dropped, but then, in the optimal mechanism, the designer
will have to charge entry fees, conditional on 6_;.
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allocation function.

Lemma 3. Under Assumptions 2 to 4, in a v-optimal mechanism (q,t), tet;(0_;)

s nonempty, and the transfers can be written as:

ti(q,0_;) J mu;(q;  (z,0_;), x)dx, (10)

for all i and 6_; in the support.

We also provide two alternative versions of Assumption 4 that would ensure

the existence of types excluded from trade, see Section .

F. Taxation scheme

We are now ready to derive the taxation scheme associated with the auction
described in Section II, which would match the one in our v-optimal mecha-
nism. According to the auction rules of the auction, the payments consist of
two parts: the Vickrey-style payments and the integrated (along the residual

supply curve) marginal taxes

ti(q, 0 f mT(p 6_;) + p_i(x)dz, (11)

where p_;(z) is the residual supply curve facing agent i.

If we could set the marginal tax equal to the wedge between mu,; and muv; at
the desired allocation, the agents would essentially perceive v; as their true

utility. It only remains to do it for every realization of types.

Definition 9. Set the marginal tax m7;(p,q) = x, where (z, é) solves

~ A~ ~

xr = muz(67 q) - mvi(ea Q)> b= mvi(67 Q)a (12)

for all p,q in the support.

We refer to the solution 6; (p, q) to the system of equations (12), as the fized-
point type. It is correctly defined on the R x (R\{0}) domain, and so is the
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marginal tax, when the support of 6; is the real line.
We are ready to formulate our second main result.

Proposition 4. Under Assumptions 2 to /, the sincere equilibrium in the
double clock auction with the marginal tax m7(p,q) defined by (12) achieves

the same allocation and transfer as in the v-optimal mechanism.

The proof proceeds by observing, quite mechanically, the equivalence between

the transfers ;(6;, ¢;) and tzi((%, i), see Appendix C.

Finally, by linearizing (12) around (p, ¢), we can derive the slopes of the fixed-

point type and the marginal tax

N’ / N’ / /
0, = 1/mvi,9, 0, = —mvi7q/mvi79, (13)
/ VA / Y /
mr;, = mumﬁp -1, m7, = muqu + mu . (14)

Corollary 1. Under Assumptions 2 to 4, the marginal tax mt; is continuously
differentiable for all ¢ # 0 and satisfies

/ / /
mt; , —mu;, >0, m7, ,+1>0.

In other words, the (integrated) tax is less concave than the utility, and the

marginal tax can not respond to the change in price too fast.

VI Revenue maximization

Our special case of interest is revenue maximization. Ignoring the monotonicity

constraint, we will attempt to maximize the average transfer

1 Z [ Gt - sou0-parion| TTare) o)

Jj#i
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subject to market clearing and envelope conditions. Naturally, in the revenue-
maximizing mechanism, any leftover surplus can be extracted via translation
of monetary transfers, therefore, infy 3;(6},0_;) = 0. We aim to get rid of the
net surplus in (15), similarly to Myerson (1981) in a one-sided setting, via

integration by parts.

Before we proceed, there is one more assumption that we have to make related
to the integrability of the net surplus of a candidate mechanism, which is

necessary for integration by parts on the real line. 2

Assumption 5. 4;(0;,q;) < C(6;) for any q : Z?:I ¢; = 0 and some function
C(z), such that § C(x)dF;(x) < c.

Although this assumption is very weak, it follows that the expected net surplus
in the exchange economy is finite. To see the importance of this observation,
note that even with simple quadratic models as in Section VII, the utility is not

bounded on R, and thus the expected net surplus is not obviously bounded.

Lemma 4. Under Assumptions 2 and 5: Siooo 5i(2,0_;)dF;(z) < o for all 0_;
i the support.

With this at hand, we split the integral of the net surplus at the type excluded
from trade (when this type exists) and apply integration by parts to each of
the two halves. Otherwise, we apply the integration by parts to the whole

integral. This gives us the following equivalence

fR (01, 45) — 5:(65,0—)) dFA(6) fR 7,65, 4)AF(6) (16)
Ji(eia CJz') = ﬂ(ei, %’) - H(Qi >;)()95 F(HZ) %@(ez‘; Q)~ (17)

We will refer to J; as the virtual utility. It is worth noting that the virtual util-
ity, in this particular form, is continuous in both allocation and type. Indeed,
the only potential source of discontinuity is the indicator function I(g; > 0)

multiplied by %ﬁ(@i,q), which is zero at ¢ = 0. Thus, there is no jump at

23Riemann integration if I is continuous, or, more generally, Stiltjes.
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¢ = 0. Instead, there is a concave kink. 24

It remains to check whether the premise of the Proposition 4 is satisfied so that
we can also claim the implementation of the revenue-maximizing mechanism.

One way to achieve this - is to put more assumptions on the true utilities u;.

Assumption 6. F; is log-concave and both mu;, - sgn(q;(0)) and —mu, -
sgn(q;(0)) are nondecreasing in 0;, for all i and 0 in the support, such that

This assumption guarantees that Assumption 3 is satisfied for v; = J;, which

leads to the following proposition. See Appendix D for formal proof.

Proposition 5. Under Assumptions 2 and 5, the revenue-mazximizing mech-

anism 1s v-optimal with v; equal to the virtual utility J;.

Corollary 2. Under Assumptions 2, 5 and 6, the virtual utility J; is twice
continuously differentiable, strictly concave in q; and strictly single crossing,

for all i, q; # 0, and 6; in the support.

Likewise, even stronger restrictions on the utility u; can guarantee that As-

sumption 4 is satisfied for v; = J;.%

S : ! / 2 1-F "
Assumption 7. Assumption 6 hold and MU g 2> €, =MW < 5, —5 MUy S

% for some €,6 > 0.
Corollary 3. Under Assumptions 2, & and 7, the virtual utility satisfies all
properties in Corollary 2 and also mv;, > ¢, and —1/mv,§’q > 6, for all i and

0;,0_;,q; in the support.

241t is also possible to derive a virtual utility without applying Lemma 2, in that case, it
would be discontinuous (downward jump) in own type.
25These assumptions are automatically satisfied is the types are distributed on a segment.

32



expected transfer

revenue from optimal surplus from efficient

distribution \ tax | optimal quad. | optimal flat | optimal quad. | optimal flat

uniform 50% 88.8% 5% 74.1%
logistic 64.8% 99.7% 75% 74.4%

Table 1: Percentage of optimal revenue and efficient surplus, achieved by the
optimal quadratic-tax and flat-tax mechanisms, for a quadratic utility and in
the large economy limit.
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Figure 5: Comparison of flat-tax and quadratic-tax mechanisms relative to the
Pareto frontier, for n = 100 agents with quadratic utility and either uniform[-
1,1] (left figure) or logistic (right figure) distribution of 6. See Section for the
description of simulations.

VII Symmetric quadratic model

This section illustrates our methodology in a symmetric model where each
agent ¢ has the following quadratic utility function.
oo

54

Ui(eia%) =0,q; — 5

for some known p > 0. We consider two log-concave distributions of private
types 6;: uniform on the [—1,1] interval and logistic (i.e., with full support).
The above specification provides additional tractability and allows for com-
parison across different mechanisms, in large, as well as finite economies, see

Table 1, Figure 5 and also Appendix E.
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A. Pareto frontier

We now solve for the mechanism that maximizes a linear combination of ex-
pected transfer and surplus, in other words, finds the Pareto frontier. Following
the arguments in Section VI, we have to maximize ). J,(6;, ¢;) over g, subject
to the market clearing constraint > ¢; = 0, where

Jai(0i, @) = @i [0a(bs) - 1(q; > 0) + ¥a(0;) - I(g; < 0)] — ngza

pointwise, where ¢, (6;) = 0; — Oz% and Vo (0;) = 0 + o) ) These func-

tions are monotone, as long as F' is log-concave.

To identify the optimal allocation, we must find a Lagrange multiplier p(#)
such that the market clears and the first-order conditions hold. This leads to

the following solution

di(p|0;) = p~" [min(0, 9a(6;) — p) + max(0, ga(0;) —p)],

for each agent 7, which will also be her sincere demand in the auction implemen-
tation. The Lagrange multiplier p(0) is then the root of >\ | d;(p|6;)/n = 0,

that is, the price at which the average sincere demand equals zero.

Finally, the marginal tax m7 and the fixed-point type 6 solve the system of

equations (12) and thus

~

0(p,q) = o5 (ug +p) - L(qg > 0) + v (ug + p) - L(g < 0) (18)
m7(p,q) = 0(p,q) — (nq + p) (19)

Proposition 6. In the symmetric quadratic model with a log-concave distri-
bution I with a strictly positive density f and a finite second moment, the

optimal mechanism ezists and is implemented via marginal tazes (19).

Since the worst-off types are in the interior of the type space, the transfers can
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be formally written out, conditional on the shape of the residual supply curve.

t(@il6_) = S(E (oot (nz + p_i(2l0-)) — pz)dz, ¢>0 | o0
§o (ot (uz +poi(2]0-)) — p2)dz, ¢ <0

where p_;(z]0_;) is the inverse residual supply curve. Despite a relatively
simple mechanism implementation, further characterization is rather difficult

in a finite economy, even for standard distributions. 26

B. Quadratic-tax mechanisms

Our first benchmark is smooth nearly-efficient mechanisms in Andreyanov and
Sadzik (2021) called o-VCG mechanisms, which can be thought of as an at-
tempt to control demand reduction explicitly via quadratic (integrated) tax.
One way to define this mechanism is the maximizer of )}, J,,(0;,¢;) over g,
subject to the market clearing constraint > ¢; = 0, where

u+aq2
2

Ja,i(eh Qi) = 0;q; —
The ex-post allocation and transfer in this mechanism can be derived:

n—l@i—é_i o ,U,—f—TLO'
;= ———— tilq) =0+ ——=¢",
q PR— (¢:) TP

where 0_; = ﬁ >, i 0; is the average type other than agent ¢’s type.

Since both transfer and utility are quadratic in types, we can compute their

expected values given the variance of the type distribution:

(n—1)( + 20)
2n(p + 0)?

2n(p+ 0)?

V@i, Eul = Veza

26For n = o0, the average demand curve converges pointwise to a monotone function,
which has a root at 0 in a symmetric model. Since the slope of that function is strictly
positive at 0, the root itself converges in the probability limit, which means that in the large
economy limit, p = 0 effectively.
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since Ef_; = Ef;, E(0_;)? = 0P+ (=B nd VO = E6? — (E6;)?. Naturally,

n—1

for a uniform-price double auction (¢ = -£5), the expected payment is equal

to zero, while for the efficient mechanism (o = 0), it is negative.

Finally, the maximum expected transfer over o-VCG mechanisms is attained

. (n—2)2 (n—=2)(3n—2) vo
n—2" n(n—1) n(n—1) 8p”

at o = and is equal to -2%’, while the utility is equal to

C. Flat-tax mechanisms

Our second benchmark is non-smooth nearly-efficient mechanisms in Andreyanov
and Sadzik (2021), which can be thought of as a bid-ask spread of size 2. One
way to define this mechanism is the maximizer of ), J5;(0;, ¢;) over ¢, subject

to the market clearing constraint ). ¢; = 0, where

Jsal6:05) = a: [ps(6) - La > 0) + ¥s(6:) - Lgs < 0)] = 52

pointwise, where ¢s(0) = 0; — 0 and 95(6) = 0 + §. The rest of the algorithm
is identical to the one used for revenue maximization, so we have to rely on

Monte Carlo simulations for finite economies.

In the limit economy, however, there is no supply reduction, so the agent’s
demand is equal to (6; — 9)/u if he turns out to be a buyer, and (0; + §)/p if
he turns out to be a seller. Moreover, for symmetric distributions, the limit
of the equilibrium price will be equal to 0, so buyers will pay a per-unit price
of 9, while sellers will get a per-unit price of —. Thus, we can compute the

expected payment and utility:

g -4 FOTr 26 pa—6
Eti=25J [—]de, EU:':QJ [[E ———z]de
e A 5 e il LA

which can be easily maximized over 4, for any given distribution.
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VIII Conclusion

The two-sided nature of exchange combined with robustness introduces chal-

lenges for auction designers that were not featured in the 1-sided setting.

The auctioneer has to decide on the order in which the clocks move — the clock
policy — and which information to reveal to the bidders — the disclosure policy.
In this paper, we show that certain combinations these policies can be used to

balance the openness of the auction with the incentives to play sincerely.

Another big challenge is to extract maximal revenue. Due to the endogeneity
of the worst-off type, the optimal direct mechanism is very complicated. How-
ever, the associated implementation is simple - two Ausubel auctions, forward

and reverse, with the clock prices running towards each other.

Finally, with the optimal robust mechanism at hand, we are able to re-assess
some of the ad-hoc robust mechanisms introduced in Andreyanov and Sadzik
(2021). Numerical analysis shows that, for simple distributions, a flat tax
captures the bulk of the optimal revenue and offers a better revenue-efficiency

trade-off than a progressive (namely, quadratic) differential tax.
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Online Appendix.

Appendix A Proofs for Section III

Proof of Proposition 1

Observe first that, in every subgame, along the conjectured equilibrium path,
the revealed demands in the sincere ex-post equilibrium coincide with the
sincere demands {d;(p)}!_, which, together with the market-clearing condition

fully characterize the outcome (price and allocation) of the game.

We will now prove that the market clearing price and allocation under sincere

bidding coincide with the Walrasian equilibrium in the virtual economy.

Suppose that players bid by the sincere strategy in the clock auction. Then
auction outcomes are characterized by the first-order condition for the sincere

demands

p=mu(g) —m7(p,q), i=1,...,n

By definition of mu;, the first-order condition above can also be expressed as

p=muv(g), i=1,...,n,

which are the first order conditions for Walrasian demands in the economy
with utilities v;. Since the second-order conditions in both cases are satisfied
by Assumption 1, the first-order conditions show that the market clearing price

and allocation in both equilibria are the same.

We will now prove that sincere bidding is an ex-post perfect equilibrium. The
proof considers two cases regarding the prior history of play in the clock auc-

tion.
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First, we examine agents’ incentives on the equilibrium path of play, where

the demands revealed before the subgame was all sincere.

Assuming that all but player j continue to play sincerely, bidder j’s payoff is
path-independent in the following sense. At any counterfactual allocation ¢,
the stop-off price p_;(¢) is uniquely defined by the sincere demands of other
players. Moreover, her payment to the auctioneer is equal to the marginal tax
m;(p—;(z), z) plus p_;(x), integrated over x € [0, ¢]. The optimality condition
is, therefore

mu;(q) = m7;(p,q) +p

p=mv(g), i=1,...,n, i#]

which yields p = mwv;(¢;) by the definition of the v; functions. Player j’s payoff
is aligned with the social surplus in the virtual economy, which is maximized

by playing sincerely. Thus, sincere play is a Nash equilibrium of the subgame.

Second, we consider incentives off the equilibrium path, where traders reported

non-sincerely before this subgame.

Assuming that all but player j continue to play sincerely, bidder j’s payoff is
path-independent, but her actions are constrained by the demands revealed

before the subgame.

These payoffs are monotonically decreasing in the distance from the conjec-
tured allocation. Thus, she finds it optimal to play as close to the sincere
demand as possible. Therefore, sincere play is a Nash equilibrium of the sub-

game.

Proof of Proposition 2

Observe first that, in every subgame, and independently of the history of play,
the no-spoilers policy with the full support assumption implies that, from the
bidder’s perspective, the stop-off price can be anywhere in the currently played

range of prices.

To be precise, if the reported demand differs from the sincere at any price p*
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in this range, for at least one “strategy” of the auctioneer, consistent with the
history, p* becomes the stop-off price.?” The payoff of the bidder would then
be strictly smaller than if she was playing sincerely. Thus, insincere bidding

can not weakly dominate.

We will now prove that there is an order of elimination that yields sincere

bidding.

The proof is by induction over the auction rounds, counting from the final

round.

Assume that, in the final round, the strategy of agent ¢ differs from her sincere
strategy at a price p*. Since the stop-off price can be anywhere, this strategy
is dominated in the event that the stop-off price is equal to exactly p*. Thus,

all strategies other than sincere ones are weakly dominated in the final round.

Consider a non-final round, and suppose we eliminated insincere bidding for
all subsequent rounds. The same argument then applies to the range of prices

in the current round as for the final round.
Thus, all strategies other than sincere ones have been eliminated.
We will now prove that no order of elimination eliminates the sincere strategy.

Assume that there exists an order of elimination that eliminates a sincere strat-
egy. Consider the earliest instance in this order and the first round (starting
from the end of the auction) of such elimination. By construction, in the
current round and in the rounds that follow, no sincere strategies have been

eliminated yet.?8

Consider now the sincere strategy in this subgame. Since the stop-off price
can be anywhere, the sincere strategy dominates all remaining strategies again.

Thus, the sincere strategy can not be dominated in this subgame.

2TWith the full support assumption, the auctioneer participates, as if he was a bidder,
but he does it non-strategically.

281f sincere bidding constitutes an ex-post equilibrium in the subgame, it can not be
eliminated strictly but still could be eliminated weakly.
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Thus, no order of elimination eliminates the sincere strategy.

Appendix B Proofs for Section IV

We will use two different notions of spillover. We will refer to the spillover
defined in the main body of the paper as type-1 spillover. Type-2 spillover is

a special case of type-1 spillover.

Definition 10. For agent i, there is type-2 spillover into the forward auction
if, additionally to being type-1 spillover, ¢_;(p~) = q; .(p™), and into the reverse
auction if, additionally to being type-1 spillover, ¢*,(p*) = q;fc(er).

While the type-1 spillover focuses on the informational content of the residual
supply curves in the opposite market, the type-2 also checks whether these
residual supply curves are equal to cliched ones. In the latter case, spillover
will be accompanied by a transaction at the current price. However, if the
auctioneer chooses to conceal the spillover, the agent will not be informed
about this transaction in a timely fashion, which undermines the credibility of
the auction. Thus, type-2 spillover can be considered more serious and harder

to conceal than type-1 spillover.
We begin with the analog of Lemma 1 for type-2 spillovers.

Lemma 5. For any clock prices pt < p~: there can be type-2 spillover into at

most one auction (forward or reverse).

Since type-2 spillover is a special case of type-1 spillover, by Lemma 1 and
Lemma 5, the number of agents experiencing type-2 can only be one of the
following: (0,0), (1,0), (0,1), (24,0), (0,2+), but not (1,1) as with type-1

spillovers, see Appendix B for details.

Proposition 7. Let agents play continuous and weakly monotone sincere de-
mands, and there exists a stop-off price p* such that the market clears. Then,

*

for any starting prices p; < p* < py, there exist a weakly monotone path

py(t),p_(t) connecting (pg,py) with (p*,p*) continuously.
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(11

I (0,3) or (3,0)

B (0,2) or (2,0)
(0,1) or (1,0)

(0,0)

reverse price clock p

forward price clock p* forward price clock p*

Figure 6: Illustration of the number of type-1 (left figure) and type-2
(right figure) spillovers, for three agents with revealed demands equal to
o(4 —p),o(2 —2p),0(5 — p); where o(z) = ﬁ — 1. The stop-off price
is in the bottom-right corner.

The path consists of two parts. In the first part, the number of agents expe-
riencing type-2 spillover decreases monotonically to zero. In the second part,

there is still no such agents.

The price path described in Proposition 7 is the same as the one used for
Proposition 3 and illustrated in Figure 4. Because type-2 spillovers can not
happen simultaneously in both auctions, when the path reaches the boundary
of the region with (1, 1) type-1 spillovers, it automatically eliminates all type-
2 spillovers. This means that, unlike type-1 spillovers, type-2 spillovers can
always be decreased monotonically along the price path, which is a consequence
of the fact that the latter are less frequent. Another way of thinking about it
is that the set of prices with no type-2 spillovers is guaranteed to contain the
stop-off price, which was not true for type-1 spillovers. See Figure 6 for an

illustration.

45



On the practical side, when the price is in the region with (1,1) type-1 spillovers,
we can refine the adaptive clock policy, which is otherwise indifferent between
the two clocks. Namely, while we can not minimize type-1 spillovers, we can
minimize type-2 spillovers by moving the clock that did not produce the type-2

spillover.

Finally, if the starting prices are sufficiently far away from the stop-off price,
a continuous price path exists that has no type-2 spillovers. Such prices exist

under mild conditions.

Corollary 4. Let agents play continuous sincere demands that are unbounded
(from both below and above) on the real line, and there ezists a stop-off price
p* such that the market clears. Then, there exist starting prices p; < p* <
Py, and a weakly monotone path p, (t),p_(t) connecting (pg,py) with (p*, p*)

continuously and without type-2 spillovers.

Proof of Lemma 1

Proof. To the contrary, assume that at some prices p* < p~, there is type-1
spillover into both auctions, and, at the same time, there is type-1 spillover
for more than one agent. This means that there exist two agents ¢ # j such
that:

() <q ), ¢ (@) <q;p).

Using the definition of the residual supply, we can pair these inequalities:

DG < @)+ ) <)) ¢t )

k#i,5 k#i,5

which contradicts the fact that g, (p7) < ¢ (p™) for all k. ]

Proof of Lemma 5

Proof. To the contrary, assume that at some prices p™ < p~, there is type-

2 spillover into both auctions. Then, it is also a type-1 spillover and, by
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Lemma 1, it is a spillover for the same agent. However, no agent can clinch in

both auctions simultaneously, which is a contradiction. O]

Proof of Proposition 3

Proof. Consider the domain of prices (p,p~) € [pg,p*] x [p*,py] and de-
note the subset of prices that have = type-1 spillovers into the forward and y

spillovers into the reverse auctions by .Sy ,.

Observe first that Lemma 1 implies that S11 24 = & and Say 14 = . Thus,
any point in the price domain belongs to either Sy, Si4,0, S11 or Spo. For
simplicity, assume that the starting prices do not belong to Sy ¢, in other words,

there is at least one spillover.

The price path connecting (pg, py ) with (p*, p*) will have two parts. The first
part is a straight line, and the second part goes along the boundary of either

So,1+ or Si4, see Figure 4. To construct the price path, consider three cases.

Case 1: If the starting prices are in 514 o, we first advance the forward clock till
it reaches the boundary of S1, . After that we move along the path (p*(p), p)

where

p(p)= sup {z:(x,p)e Sito}-

z€[pg ,p*]
Case 2: If the starting prices are in Sy 14, we first advance the reverse clock till
it reaches the boundary of Sy ;.. After that we move along the path (p,p~(p))

where

p (p) = inf ]{x t(p,x) € Soa+}-

ze[p*,py
Case 3: If the starting prices (pg,py ) are in S; 1, any of the aforementioned

trajectories will work.

We argue that along the first part of the trajectory, the number of agents ex-
periencing spillovers is weakly decreasing. Indeed, on the one hand, advancing
the forward (reverse) clock does not increase the number of spillovers in the

forward (reverse) auction. On the other hand, the number of spillovers in the

47



reverse (forward) auction is fixed at 0 by construction.

The function p*(.) does not have to be continuous. However, if it is monotone,
we can connect the (at most countably many) points of discontinuity to obtain
a monotone and continuous path p*(¢),p~(¢). It remains to show that p*(.)
is weakly monotone and that, along this path, the number of agents that

experience spillover is at most one.

Monotonicity: Assume that p*(py) = pi, that is, (p7,p7) belongs to the
closure of Si4 9. Now, pick any p, < p;. When the clock prices move from
(pf,p7) to (pf,py), the number of spillovers in the reverse auction can not
increase, while the number of spillovers in the forward auction is already at
0. Thus, (p7,p;) belongs to the closure of Sy, as well, thus p*(py) = py.

Consequently, p*(p) is weakly monotone.

Finally, observe that Si; ¢ does not intersect with Spo by Lemma 1. Thus, it
can only share a boundary with Sy 1, So1 and Sp. In either case, the number

of agents experiencing spillovers is at most one. O

Proof of Proposition 7 and Corollary 4

The same exact path constructed in the proof of Proposition 3 works here,
because when on the boundary between S ; and Sa4 o, or 511 and Sy 2., there

are no type-2 spillovers.

Finally, since ¢;7, ¢;” are unbounded, there exist starting prices such ¢; (pg) > 0
and ¢; (py) < 0 for all i. Then q;fc = ¢;. = 0 for all 7, that is, there are no
type-2 spillovers.

Appendix C Proofs for Section V

Proof of Lemma 2

Fix 6_; and consider two mutually exclusive cases. Suppose first that the set

of types excluded from trade is empty. Then the claim holds trivially.
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Suppose that it is not empty. Let f; be a type excluded from trade. By
,0_;)) =0.

Next, the net surplus functions s; are absolutely continuous, a.e. differentiable

definition of net utility, %ﬂi(éi, qz(él

and
ié(é._ 0_;) < i~.(§. (0;,0_,)) < ié(é,Jr 0_;)
aeisz 1 V=) T aezuz 27% 1y YV —1 ~= aeisz 1ty Y=/

where 2-5,(0;—,0_;) and 2-5;(0;+,0_;) are left-hand and right-hand partial

derivatives respectively, see Theorems 1,2 in Milgrom and Segal (2002).

Next, at points of differentiability, we can write:

5 0 i 0;,q(0 "9 0
50 = 2 0ua0) = | 0.2

thus §; is convex in 6; by monotonicity of ¢; in ; and single-crossing of ;.

Finally, since [%%(éi—, 0_.), %&(0}—%, 6_;)] contains 0 at the type excluded

from trade, by the necessary first-order conditions, 0; is also the worst-off type.

Proof of Lemma 3

Equation (9) shows that ¢;(6;,0_;) is continuous in #; and bounds it’s slope
away from zero. Thus, ¢;(0;,0_;) is guaranteed to cross 0 at some type 6; € R,
in other words, tet(6_;) is non-empty, for any 6_; in the support. Next, by
formula (4)
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where 0* € tet(0_;). Recalling that, in a v-optimal mechanism, infyce, 5;(0},0_;) =

0

0; 0;
ti(0) = J iﬂ(m, q(z,0_;))dx — J iﬂ(m, q(z,0_;))dx =

f* dx e 00

0; 0 . 0,
= J a_qu(a:;Q’L('Taefl))dql(ajaefz) = muz(‘r,ql<x7972)>dqz(x7971)
0* 0%

Finally, we get formula (10) via monotone change of variables from z to
qi_ l(x ) 871)

Proofs of Lemma 3 with alternative versions of As-

sumption 4

Version 1: v; are identical, I} are identical.

Proof. To the contrary, assume that for some realization of types 6_;, trader
¢ only trades strictly positive quantities. Define a type z = min;.; 0;, and
observe that it belongs to the support of each agent. Consequently, we can

say that ¢;(z,0_;) > 0.

Furthermore, the allocation can not decrease if we lower the types of traders
Jj # i. Consequently, we can say that ¢;(z,...,z) > 0. But this can not be true
because any p € mu;(z,0) solves the first-order conditions in the symmetric

case. O

Version 2: for any ¢ and p € R, there exist a type z in the support such that
p € mu;(z,0).

Proof. Pick a trader i, and fix a profile of types 6_;. Next, consider the econ-

omy without trader ¢, that is, solve a system of first-order conditions
This solution exists for some p.
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Next, pick a type z in the support, such that p = mv;(z,0). By construction,
1 is excluded from trade in the original economy with the profile of types
(Z, 971> . ]

Proof of Proposition 4 and Corollary 1

We want to prove that agents face the same menus ¢;(¢) in both the auction
and the optimal mechanism. For that, it suffices to show that the integrand
in (10) coincides with the one in (11) for any ¢(¢) # 0.

Using the left-hand side of (12) we first write that
mT(p*i(:E)a iL‘) + p,Z(l') = mul(él(p*l(x)a .1'), 1’)

Second, we combine the right-hand side of (12) with the definition of the

residual supply curve

p-i(z) = mvz‘(éz’(ﬁ—i(x)aﬁf)»x)
p,z(ﬂf) = mvj(ﬁj, Qj), VJ #* 7
T + Zj;éi q; = 0.

The latter can be recognized as the system of first-order conditions for the
optimal mechanism, given that x is the allocation of agent i and 6_; are the

types of others. Thus éi(p_i(x), x) and ¢ !(z,0_;) coincide and, therefore,
mu(6:(p—i(x), x), x) = mui(q~ (x,0-:), 7),

which completes the proof. Finally, Corollary 1 follows from formulas (13) and
(14).
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Appendix D Proofs for Section VI

Proof of Lemma 4

The boundedness of the expected net surplus comes from the fact that, on the
one hand, the net surplus is nonnegative by IR, and on the other hand, the
sum of net surpluses can not exceed the sum of net utilities at the efficient

allocation
5i(0:,0-) =0, ) 5(0;,0-;) <) i;(0;,0-;) < >, C0),
J J J

therefore 3,(6;, 0_;) < >; C(0;) for any ¢ in the support, and thus §3;(z,0_;)dF;(2)
is majorized by §C(2)dFi(2) + 35;.; C(0;) < oo for all §_; in the support.

Proof of Proposition 5, Corollary 2 and Corollary 3

Recall that our objective is

fJZU (00~ 5000 are)| [Tame). @

J#i

where §;(0;,0_;) = Se; ) (z, q(z,0_;))dx and 0 is either one of the types ex-

cluded from trade, or the end of support, or +00.%

For exposition, we will only consider the most difficult case with full support
and when, conditional on some #_;, agent i can be both a buyer and a seller,
depending on the realization of 6;, in other words, 6} is the type excluded from
trade.

29At this point, we can not guarantee the existence of the type excluded from trade for
any candidate mechanism.
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By Lemma 4, the improper integral of 3;(.,0_;) f;(.) exists, thus

JOO 5400, 0_)AF(6;) — 11mf (00,0 dF(6:)

i ([ 5(61,0-)dF6) + [ 5(6,6-0d(F (0 - 1)

N=w'J N 0%

Integrating by parts, we get that

J 5(6;,0_;)dF;(6;) + JN 5(0;,0_)d(F;(0;) — 1) =

0F

= f Ha )< J 2l )all(giaQ)dFi(Qi) + 8i(=N,0_3) Fi(=N) + 5;(N,0_)(Fi(N) — 1)
-N
The remainder term §;(—N, 6_;)F;(—N) is majorized for N large enough:

5i(=N,0_) Fi(=N) = 3,(=N,0_,) f T aE() <

—00

—N 0
< | sla0-)dEG) < | s(6,6-04R0) <.

—00 —00

and similarly for §;(N,0_;)(F;(N) — 1), because the net surplus §;(.,6_;) is

positive and convex. Thus,

fooo 5505, 0_)dFY(0;) — J: Mg >£)(0:)E(Qi)ag<ei, G)AF(0:).

We next need to show that the virtual value J is concave and single-crossing

to use the first-order approach.

*J  *u 0 (g >0) - Fi(0 i) P\
000q 000q 00 (01) 608(] B
) —
Ei(

00dq 09 91) 000q F;(0;) 000%q
2 2~ , , 3
o _da g >0 -F) o o

o2 0> Fi(6;) 000q?
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Both properties are guaranteed by Assumption 6. Finally, Corollary 2 and

Corollary 3 follow directly from the formulas above.

Appendix E Proofs for Section VII

Proof of Proposition 6

Observe first that Assumptions 2 and 6 are satisfied for the quadratic utility
and the log-concave distribution with strictly positive density. Assumption 5
requires more work. Observe that the utility of agent i is satiated at point
g = % yielding % Thus, we can take C'(x) := % Since the distribution of

6; has a finite second moment, { C(z)dF;(z) < .

We have proved in Proposition 5 and Corollary 2 that under Assumptions 2,
5 and 6, the profit-maximizing mechanism is v-optimal with v; equal to the
virtual utility (17), such that the premise of Proposition 4 is satisfied. Thus,
the sincere equilibrium in the double clock auction with the marginal tax
m7(p,q) defined by (12) achieves the same allocation and transfer as in the

v-optimal mechanism.

Numerical simulations

To evaluate the welfare in large markets, we simulate 1000 draws of types 6_;
for n = 100 agents, from two distributions: uniform with support on [-1,1], and
truncated logistic distribution with support on [-7,7]. The utility is quadratic
with p = 1.

For every type 6; on a grid, the demands are calculated for each draw of 6_;,

according to the formula below

di(p|0;) = [min(0, ta,s(0;) — p) + max(0, wa,s(0:) —p)],
1— Fi(6;)
Fi(0;)

Yos=(1—a)f+ af— )40, Yas=(1—a)f+ald+
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Figure 7: Exclusion region for two (left) players and three (right) players for a
uniform|-1,1] distribution of types. The latter is in the coordinates £ = 6; — 05,
X = 0 — 03, independent from the value of 65.

where « is the parameter spanning the Pareto frontier (for ¢ = 0), while ¢ is
the parameter spanning the flat-tax family (for & = 0). The worst-off types,
transfers and surplus are calculated for each draw of #_; and each #;. The

results are then weighted by the marginal density of 6;.

The values for the expected utility and profit for the quadratic-tax family are

computed from analytical formulas in Section B..

Optimal mechanisms for small and large n.

In this section, we attempt to characterize the optimal robust mechanism and

plot the exclusion regions for n = 2 and n = 3, as well as n = 0.
Uniform distribution

When the distribution is uniform, ¢1(0) = 260 — 1, ¢;(0) = 20 + 1, thus
di(p|0;) = p* [min(0, 260; + 1 — p) + max(0, 26; — 1 —p)],

and the marginal tax is m7(p, ) = ““42=+1(g > 0). Note that the number of

agents excluded from trade depends on the location of the root of the average
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Figure 8: Exclusion region for two (left figure) players and three (right figure)
players for a logistic distribution of types. The latter is in the coordinates
61, 02 for a fixed 93 = 0.

demand curve and thus can not be explicitly characterized.

For example, for just n = 3 agents, the exclusion region follows an elaborate
pattern, see Figure 7. When all three types are close to each other (a light
grey area), nobody is trading. Next, with two significantly opposing types and
a third in the middle (a dark grey area), only opposing types are trading with
each other. Finally, when two types oppose the third, all three players are
trading (black area).

When the number of players grows, the pattern becomes more complicated.
However, the root of the average demand curve will converge in the probability

limit, which is equal to 0. Thus, the limit exclusion region will simply be
0; € [—1/2,1/2].

Logistic distribution

For a logistic distribution, ¢1(0) =60 —1 — e, ¢1(0) = 6 + 1 + €, thus
di(pl6;) = p~ " [min(0, 6; + 1 + €’ — p) + max(0, 6; — 1 — e~ — p)],

and the marginal tax is m7(p,q) = sgn(q) - [1 +w(e_1_39”(‘1)'(”q+”))]. The
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exclusion region for n = 3 follows a pattern similar to that of the uniform
distribution, see Figure 8. In the limiting economy, again, the root of the
average demand curve will be equal to 0. Thus the limit exclusion region is
simply 6; € [—-1 — w(1/e),1 + w(1/e)], where w(z) is the product-logarithm

function.

Illustrative Example with Taxes

Suppose that two agents have the following linear-quadratic utility function
u;(q) = 0;q — 5¢* and marginal utilities mu;(q) = 0; — pg. The auctioneer puts

the following marginal tax m7(p, ¢) in addition to the Vickrey price:

1—I(p+pg), g<Oand —1<p+2¢<3,
m7(p,q) = —%(}H—uq), g>0and —3<p+2¢<1,

1
2
0, otherwise.

This tax function implements an expected-profit maximizing direct mecha-

nism. The optimal direct mechanism shows the sincere demand to be

d(p, ) = min{0, p(0) — p} + max{0, ¥ (0) — p},

90(9):“2% _ 9941, g0(0)=0—1;i—€;§0):29—1,

The residual supply ¢_;(p) is given by ¢_;(p) = —d(p, #_;) and its inverse by

20 — 1 + uq q <0,
p-i(q) =
20 + 1+ ugq q > 0.

The marginal tax evaluated at the residual supply is then

m7(p-i(q),q) = —pg —60—; q#0.
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If an agent has clinched x units until some round and clinches y more during

some round, she pays

T

from that round.

Jy {m7i(p-i(2),2) + p_i(2)} dz =

(y —)(0-i + 1)
(y =)0 —1)

q>0,
q<0,

Let the types of agents be 8; = 0.9 and 6, = —0.7. Thus, in each round, agent
1 pays 0.05- (62 +1) = 0.05- 0.3 and agent 2 pays 0.05- (¢, —1) = 0.05-(—0.1).

The outcome of sincere bidding is described in Table 2.

Round End.s at Demafd at Demafld at Agent | Clinches | Pays Swit'cl.ling
Price P P Decisions
0 (-0.5,0.9) (0.65,0) (0,-0.65) - - - -
1 (-0.4,0.9) (0.6,0) - - - - pt 1
2 (-0.3,0.9) | (0.55,-0.05) - 1 0.05 0.015 pt 1
3 (-0.3,0.8) - (0,-0.6) - - - p |
4 (-0.3,0.7) - (0.05,-0.55) 2 -0.05 -0.01 p~ |
5 (-0.3,0.6) - (0.1,-0.5) 2 -0.05 -0.01 P~
6 (-0.2,0.6) (0.5,-0.1) - 1 0.05 0.015 pt 1
7 (-0.2,0.5) - (0.15,-0.45) 2 -0.05 -0.01 Pl
8 (-0.1,0.5) | (0.45,-0.15) - 1 0.05 0.015 pt 1
9 (0,0.5) (0.4,-0.2) - 1 0.05 0.015 pt 1
10 (0,0.4) - (0.2,-0.4) 2 -0.05 -0.01 Pl
11 (0.1,0.4) | (0.35,-0.25) - 1 0.05 0.015 pt 1
12 (0.1,0.3) - (0.25,-0.35) 2 -0.05 -0.01 p~ |
13 (0.2,0.3) (0.3,-0.3) - 1 0.05 0.015 pt 1
14 (0.3,0.3) (0.3,-0.3) - 2 -0.05 -0.01 -

Table 2: Summary of auction rounds: active side is boldfaced.
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