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1 Introduction

Patent policy aims at stimulating innovation by granting temporary exclusive rights to innovators at

the cost of reduced competition. Balancing this classic patent policy tradeoff between competition

and innovation incentives is at the core of the Drug Price Competition and Patent Term Restoration

Act of 1984 (aka the Hatch-Waxman Act) which, one the one hand, lengthened effective terms of

new drug patents but, on the other hand, introduced a mechanism for generic firms to challenge

those patents before their expiration. In this paper we estimate the effects of effective patent length

and scope on such patent challenging using two quasi-experimental approaches. We find that one

year increase in effective patent length increases the probability of a successful patent challenge by

roughly five percentage points. We also find a negative effect of broader patent scope on successful

patent challenging. We then match our estimates of these effects with a model of patent policy with

costly imitation. Collectively, our results suggest that a policy with shorter and broader patents for

pharmaceuticals would increase welfare.

The U.S. pharmaceutical industry provides a well-defined setting to assess the effects of patent

policy on the imitation of patented innovations: The Hatch-Waxman Act introduced generic drug

applications with Paragraph IV (PIV) certifications. In such an application a generic firm certifies

noninfringement or invalidity of a new drug patent, allowing the U.S. Food and Drug Administra-

tion (FDA) to authorize generic entry before the patent expires. We use this setting to measure the

probability of a successful PIV patent challenge by a generic entrant. To estimate the impact of

effective patent length on this PIV patent challenge probability, we exploit two patent law reforms

inducing quasi-experimental variation across patents in their effective terms depending on the pros-

ecution time at the U.S. Patent and Trademark Office (USPTO): The Agreement on Trade-Related

Aspects of Intellectual Property (TRIPS) of 1994 changed the statutory patent term from 17 years

from the grant date to 20 years from the first filing date. Subsequently the American Inventors

Protection Act (AIPA) of 1999 significantly expanded the patent term adjustments (PTAs), which

compensate for delays in patent prosecution. We show how the two reforms affected the effective

terms of patents with grant lags exceeding three years, whereas the effective terms of patents with

shorter grant lags were hardly changed.

Using difference-in-differences (DiD) regressions, we find that TRIPS decreased the effective
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terms of patents prosecuted at least three years by 17 percent, compared to other patents. This

shorter effective patent length reduced the probability of PIV patent challenge around 8–10 per-

centage points. In contrast, AIPA increased the effective terms of patents with the long prosecution

lags by 10 percent, which in turn increased the probability of PIV patent challenge by seven per-

centage points. These results, together with supporting evidence from ordinary least squares (OLS)

regressions, suggest a positive effect of longer patent duration on PIV patent challenges.

Using various measures of patent scope and OLS regressions, we also find evidence of broader

patent scope reducing the probability of PIV patent challenge. To address the endogeneity of patent

scope, we develop instrumental variables (IV) for multiple claim-based scope measures by exploiting

differences in the propensity of patent examiners to grant broader or more claims. The evidence from

our IV regressions – though inconclusive given the lack of fully randomized examiner assignment

(see Righi and Simcoe, 2019) – implies that broader patent scope wards off patent challenges:

For example, a 10 percent increase in the number of related chemical compounds or process steps

(Markush groups) in the first independent claim decreases the probability of PIV patent challenge

by approximately two percentage points.

Our empirical results are in line with the theory of costly imitation pioneered by Gallini (1992)

suggesting that shorter but broader patents would increase welfare. In particular, our results cor-

roborate the prediction of the theory according to which longer patent term is an inefficient way

to promote new drug development since it increases successful challenges to new drug patents, thus

diluting its positive effect on the originators’ innovation incentives and causing unnecessary imita-

tion costs. To assess Gallini’s (1992) policy prescription in more detail, we use our data moments in

a variant of the costly imitation model. In our model the prospect of obtaining a patent incentives

new drug development. Patent expiration enables generic entry resulting in savings for consumers

and a loss of profit for the originator firm. There is a possibility of early generic entry via a PIV

patent challenge, whose costs are affected by patent scope. Optimal patent policy must balance

incentives to develop new drugs, and costs and consumer savings from generic entry.

Based on the DiD and IV estimates, we extrapolate the elasticity of PIV patent challenge with

respect to effective patent length and scope to be around 3 and −1, respectively. Using either of

these elasticity estimates in our model, we can calibrate the effects of changes in patent length and

scope on innovation and welfare. Irrespective of the elasticity estimate we use, the result confirms
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Gallini’s (1992) prediction that shorter patent length, which is compensated for originators by

broader scope, would increase welfare. This conclusion is at odds with the way Hatch-Waxman

Act balances competition and innovation incentives in the pharmaceutical industry. Naturally our

straightforward approach, while allowing an analysis of pharmaceutical patent policy without a

need to collect or estimate difficult-to-obtain information on, e.g., R&D costs, and private and

social value of new drugs, may render the precise policy assessment sensitive to model details (as

discussed in Sections 7 and 8).

Literature. Our work adds to the empirical literature on the effects of patent policy–for surveys,

see, e.g., Moser (2013) and Sampat (2018). Our empirical approach is inspired by Abrams (2009)

and Kyle and McGahan (2012) who study the effects of TRIPS on innovation in the pharmaceutical

industry, and by Sakakibara and Branstetter (2001) who study the effects of patent claim scope.

Quian (2007), Lerner (2009) and Gilchrist (2016), too, find evidence that supports Gallini (1992)’s

theory. We differ from these studies, e.g., in that we consider imitation as an outcome variable, the

effects of AIPA, and patent policy structure. We also draw on Kuhn and Thompson (2019), Sampat

and Williams (2019), Farre-Mensa et al. (2020) and Feng and Jaravel (2020) who develop similar

examiner-leniency IVs as we do. Unlike these papers, we use examiner variation to validate widely

used claim-scope measures in their effectiveness to prevent patent challenging by generic entrants.

Methodologically, our policy evaluation is similar in spirit to the sufficient statistics approach

(Chetty, 2009; Kleven, 2021). We estimate the effects of effective patent length and scope on patent

challenging and use these estimates to recover patent challenging elasticities for our patent policy

analysis. Here, related papers are Denicolò (2007) and Budish et al. (2016) who use estimates from

earlier literature to construct innovation elasticities for their analyses of patent policy.

Our work also relates to the mature theoretical literature on the optimal design of patent length

and scope, dating back to the seminal works of Nordhaus (1969, 1972). This literature – see Denicolò

(1996) for a synthesis – characterizes the conditions in which making patent protection "shorter-

but-broader" or "longer-but-narrower" would increase welfare. In particular, Wright (1999) isolates

imitation elasticities as key determinants of the optimal design of patent length and scope. We use

quasi-experimental estimates to measure similar imitation elasticities to make policy recommenda-

tions.
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2 Data

The FDA is our source of the data concerning patents protecting new drugs, successful patent

challenges by generic entrants, and characteristics of new drugs. We obtain information on further

patent characteristics from the USPTO and the European Patent Office (EPO). We next explain

how we construct the variables used in our main empirical analyses. Online Appendix A.1 contains

further details of our data construction.

2.1 Identifying New Drug Patents

We construct our sample of new drug patents from 2001 – 2013 annual editions of the Orange Book,

which lists patents protecting FDA approved new drugs and their expiration dates. Our sample thus

excludes drug patents that expired before 2001 and patents of drugs whose marketing authorization

expired before 2001. Sample truncation arising from the exclusion of these old patents is hardly

biasing our estimates since PIV patent challenges only began to grow in the late 1990s (Figure 1).

A more serious truncation bias is likely to stem from the patents with long grant lags filed at

the end of our observation period, since such patents were still pending in 2013. To mitigate this

truncation bias, we only use patents filed before 2009. Our results are similar without this sample

restriction. Long grant lags could also cause a reverse distortion at the beginning of our observation

period if a patent was filed before 1980, but our data contains only 14 such patents. We also drop

all patents with grant lags exceeding five years in robustness analyses. Our final sample consists of

3517 new drug patents granted between 1980 – 2013 and listed in the Orange Book for 1484 FDA

approved new applications.

2.2 Identifying Successful Challenges of New Drug Patents

Under the Hatch-Waxman Amendments, a generic firm can seek FDA approval to enter the market

before the expiration of an originator firm’s patent by filing a drug application with a PIV certi-

fication that the patent is invalid or noninfringed by the generic product. The generic firm must

notify the originator firm of its PIV application. If the originator does not sue the generic for patent

infringement within 45 days from notification, or sues but the court rules in favor of the generic or

issues no ruling within 30 months, the FDA can authorize generic entry before the patent expires.
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In this case, the PIV patent challenge is successful. In contrast, if the court verdict favors the

originator firm, the PIV patent challenge fails, and the FDA is unable to authorize generic entry

until the patent expires. See, e.g., Branstetter et al. (2016), for more details of the PIV patent

challenge process.

Our outcome of interest is an indicator for whether a new drug patent listed in the Orange Book

has successfully been challenged by a generic entrant at least once. We thus focus on successful PIV

challenges of new drug patents, rather than challenge attempts. This focus follows the outcome

of costly imitation in Gallini’s (1992) theory and the empirical literature on entry (e.g., Ciliberto

and Elie, 2021). To identify the successfully challenged new drug patents, we first obtain a list

of approved generic drugs with a PIV certification from the FDA. To match these PIV approved

generic drugs with associated challenged patents, we read their FDA approval letters. Some of the

approval letters are available from the Drugs@FDA database. We obtain more approval letters by

submitting the Freedom of Information Act requests to the FDA. Even though we fail to identify

challenged patents for all PIV approved generic drugs, we show in Online Appendix A.1 that there

is little measurement error in our outcome variable. For example, the probability of a successful

PIV patent challenge at the active ingredient level is almost the same regardless of whether it is

calculated based on PIV approved generic drugs or our granular patent challenge information.

Figure 1 depicts the number of new drug patents challenged by generic entrants in our sample

by the year of generic drug approval. If we observe multiple successful PIV challenges to the same

new drug patent, we use the one with the earliest generic drug approval date. While using a

different measure, Figure 1 confirms the finding documented by, e.g., Branstetter et al. (2016) that

PIV patent challenges became de facto possible only after a series of well-known legal and policy

changes at the turn of the millennium.
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Figure 1: Successfully PIV Challenged New Drug Patents.

Notes: The figure shows the number of new drug patents that have successfully been challenged via PIV certifications
by the year of generic drug approval by the FDA. We use the challenge with the earliest generic drug approval date
in the case of several successful challenges to the same patent.

2.3 Measuring Effective Patent Length

We measure the effective length of a new drug patent – the period when a patent is in force and

protects an approved new drug – by subtracting from the expiration date of the patent either its

grant date or the approval date of a drug protected by the patent, whichever date is later. If the

patent protects several new drugs, we use the earliest approval date. We use the USPTO Patent

Examination Research Dataset (PatEx) to determine patent grant dates and the Orange Book to

identify the dates of patent expirations and new drug approvals.

This effective patent length varies for three reasons. First, its starting date depends on whether

the FDA drug approval or the USPTO patent grant comes later and is hence affected by approval

and grant lags. The USPTO grant lags may also affect effective patent length even when it runs

from the FDA approval date. For example, originators may wait for core patent grants before

entering clinical trials (see, e.g., Budish et al., 2015). Second, legal reforms changed patent terms

in the United States during our observation period. Third, various patent-specific term extensions

and adjustments separately compensate for the FDA and USPTO lags. We explain these patent

term reforms and USPTO term adjustments in Section 4.1.1

1The Hatch-Waxman term extensions compensating for the FDA delays, while counted in effective patent length,
are less pertinent to our work as we are unaware of exogenous sources of variation that could be used in identification
in our data (see, e.g., Grabowski and Vernon, 2000, for the details of these term extensions).

6



2.4 Measuring Patent Scope

We identify several measures of patent claim scope from the USPTO Patent Claims Research

Dataset. We use the number of the phrases "selected from" in the first independent claim as a

proxy for the number of "Markush groups". Such Markush groups, ubiquitous in drug patents, are

lists of functionally equivalent alternatives and thus capture alternative variants of a drug protected

by a patent, for example, substitutable chemical compounds or process steps. A common and ac-

ceptable form of a Markush group is “...selected from the group consisting of A, B, and C.”.2 We

also calculate the number of "or" in the first independent claim, since the conjunction "or" might

also be used to introduce variants of a drug protected by a patent.

Similarly, we calculate the number of words in the first independent claim. Some studies (e.g.,

Kuhn and Thompson, 2019; Marco et al., 2019; Akcigit and Ates, 2023; Lerner et al., 2021) use

claim length as an inverse proxy for patent scope. However, Kuhn and Thompson (2019) argue that

the use of Markush groups reverses this inverse relationship between claim length and scope in the

case of pharmaceutical patents. Following, e.g., Lanjouw and Schankerman (2001, 2004) and Marco

et al. (2019), we also use the number of independent claims as a proxy for patent scope.

In the light of the costly imitation theory we view patent scope as a determinant of patent

strength (Shapiro, 2003) in the sense that broader scope should make PIV patent challenges more

difficult – see Section 6 for an explicit definition. Whether or not patent scope or its proxies

work in this fashion is ultimately an empirical question. We focus on patent claim scope since its

legal foundation is clear: the purpose of patent claims is to mark the boundaries of patent rights

(e.g., Merges and Nelson, 1990; Freilich, 2015). Patent claim scope is also at the center of PIV

patent challenges. For example, some new drug patents can relatively easily be designed around by

replacing one compound or process step with a slightly different one that serves the same function

but is uncovered by patent claims. However, if claims are broader or interpreted more broadly

by the courts, designing around becomes more difficult (Tang, 2013; Voet, 2016). Moreover, claim

scope measures allow us to formulate patent-examiner specific instruments in an attempt to validate

these scope measures as affecting successful PIV patent challenges (see Section 5).
2Using the phrase "consisting of" as a proxy for a Markush group gives similar results. For more details of Markush

groups and their construction, see, e.g., Kuhn and Thompson (2019), Wagner et al. (2022), and the USPTO Manual
of Patent Examining Procedure (9th edition) §803.02 https://www.uspto.gov/web/offices/pac/mpep/s803.html#
d0e98237 and §2117 https://www.uspto.gov/web/ohffices/pac/mpep/s2117.html (accessed June 22, 2023).
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Besides claim scope measures, we create indicators measuring whether a patent in our data

covers an active ingredient, a method of use, or some other pharmaceutical invention such as drug

formulation. We infer these patent types from the abstracts and claims of patents by using text

pattern recognition algorithm and manual verification (see Online Appendix A.1). Active ingredient

patents are more likely to provide stronger protection against PIV patent challenges than other new

drug patents (Hemphill and Sampat, 2012).

We also use the Orange Book to create indicators measuring whether or not a patent in our

sample protects a drug with new chemical entity (NCE), orphan drug, or pediatric exclusivity. Such

exclusivity is granted by the FDA upon approval of a new drug. While not strictly measuring patent

scope, exclusivity works in a similar fashion as patents by making generic entry substantially more

difficult as it prevents generics from using originators’ clinical trials data. This data exclusivity

period varies across drugs and hence, it is also related to the length of protection (see, e.g., Gaessler

and Wagner, 2022). New clinical investigation, NCE and orphan drug exclusivity last, respectively,

three, five, and seven years. Pediatric drugs may get six months of exclusivity on the top of other

exclusivity periods and patent term.

2.5 Other Patent and Drug Characteristics

We measure several other patent characteristics. We collect backward and forward patent citations

from the USPTO Patent Full-Text and Image Database (PatFT), and patent family sizes from the

Open Patent Services of the EPO. Citations and family size are common indicators of patent value

(Lanjouw and Schankerman, 2004; Gambardella et al., 2008). Backward citations could also serve as

proxy for patent scope: for example, careful documentation of prior art can make a patent difficult to

invalidate on the grounds of failure to disclose prior art (Lanjouw and Schankerman, 2001; Harhoff

and Reitzig, 2004). However, a high number of backward citations may also indicate a patent

protecting an incremental invention, which could make the patent less lucrative for PIV patent

challenges. From PatEx, we identify patents filed as continuation, continuation-in-part or divisional

applications. Such "continuing patents" may differ from other patents across various dimensions

(Lemley and Moore, 2004) that may affect propensity to encounter PIV patent challenges. We also

retrieve the main three-digit U.S. Patent Classification (USPC) number and the filing year of each

patent in our sample from PatEx.
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We also measure several other characteristics of the drugs protected by each patent in our data.

We determine from the Orange Book whether a patent protects a drug that is available as a capsule,

an injection, a tablet, or as some less common form. Some dosage forms may be easier, e.g., to

manufacture, distribute, or use by consumers (Hemphill and Sampat, 2011), which could affect

generics’ incentives to launch PIV patent challenges. From the Drugs@FDA database, we identify

whether a patent protects a drug priority reviewed by the FDA. Such priority reviews may reflect

drug value. Finally, we identify from the Orange Book the first FDA-approved active ingredient

and the latest exclusivity expiration year of drugs related to each patent.

2.6 Summary Statistics

Table 1 reports the summary statistics for our sample of 3517 new drug patents. Over 17 percent

of these patents have been successfully challenged via PIV certifications. Effective patent length is

on average 12.6 years, varying from a month to 20 years. Using related measures, Grabowski and

Vernon (2000), Hemphill and Sampat (2012), and Gilchrist (2016) report average new drug patent

lengths of 11.7, 15.9 and 11.8 years, respectively.

A new drug patent has three independent claims on average. An average first independent

claim contains 1 Markush group, 3 conjuctions "or", and 117 words. The measures of claim scope,

citations and family size have highly skewed distributions. We therefore log transform all these

count variables in our regressions. In the case of zero-valued observations, we simply add one before

logging the variable, since using an inverse hyberbolic sine transformation yields similar results.

3 Evidence from Ordinary Least Squares Regressions

We set out to test the key predictions of Gallini’s (1992) costly imitation theory: an increase in

effective patent length increases the probability of a successful patent challenge, whereas broadening

patent scope decreases it. We first estimate the following OLS regression using our patent-level data:

1[PIV challengeit] = αr + β log(Effective lengthi) + γr′Xi + δrt + εrit, (1)

in which 1[PIV challengeit] is an indicator variable equaling one if new drug patent i filed in year t is

successfully challenged via a PIV certification, log(Effective lengthi) is the natural logarithm of the
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Table 1: Summary Statistics for New Drug Patents.

Mean Std. Dev. Min Max N
PIV challenge 0.171 0.377 0 1 3517
Effective length 12.586 3.931 0.096 20 3517
Markush groups 0.704 4.151 0 112 3485
Conjuctions "or" 3.256 9.572 0 184 3485
Words 116.890 153.337 1 2197 3485
Independent claims 3.187 3.840 1 92 3488
NCE exclusivity 0.374 0.484 0 1 3517
Orphan drug exclusivity 0.123 0.328 0 1 3517
Pediatric exclusivity 0.177 0.382 0 1 3517
Method patent 0.311 0.463 0 1 3517
Active ingredient patent 0.226 0.419 0 1 3517
Forward citations 35.705 57.889 0 1297 3517
Backward citations 34.065 63.209 0 1005 3517
Patent family size 13.418 12.031 1 51 3511
Continuing patent 0.589 0.492 0 1 3517
Priority review 0.078 0.269 0 1 3517
Tablet 0.384 0.486 0 1 3517
Capsule 0.160 0.366 0 1 3517
Injectable 0.195 0.397 0 1 3517

Notes: This table reports summary statistics for our sample of 3517 new drug
patents. PIV challenge equals 0 if a patent has never been successfully challenged
via a PIV certification, and 1 otherwise. Effective length is measured in years and
defined as "Expiration date - max{Grant date, Drug approval date}". The third,
fourth and fifth row depict the number of Markush groups (i.e., the number of the
expressions "selected from"), conjunctions "or", and words, respectively, in the first
independent claim. Each exclusivity indicator equals 1 if a patent covers a drug that
has been awarded the corresponding exclusivity. The indicators Method patent and
Active ingredient patent equal 1 if a patent protects a method of use and an active
ingredient, respectively. The indicators Tablet, Capsule, and Injectable equal 1 if the
drug protected by a patent has the corresponding dosage form. The Priority review
indicator equals 1 if the drug protected by a patent has been priority reviewed by the
FDA. The Continuing patent indicator equals 1 if a patent is filed as a continuation,
a continuation-in-part or a divisional application. Independent claims, Backward
citations, Forward citations, and Patent family size give the number of independent
claims included in a patent in our sample, of earlier patents cited by a patent in our
sample, of later patents citing a patent in our sample, and of countries where the
same patent in our sample has been filed, respectively.
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effective length of patent i, the vector Xi includes measures of patent scope and other characteristics

except for patent filing year fixed effects, which control for time trends in patent challenging and

are captured by δrt . We cluster standard errors at the level of patents protecting the same active

ingredient, since challenge decisions can be correlated if multiple patents cover the same new drug.

Table 2 presents estimates from various specifications of the model (1). In column (1), we

presents the estimates for effective patent length from a specification without Xi. The specification

in column (2) adds into Xi characteristics of the drugs protected by each patent: dosage form, the

type of FDA exclusivity, and fixed effects for exclusivity expiration year to account for a possible

negative bias in our length estimates due to different exclusivity periods.

Finally, column (3) adds patent characteristics: the log number of Markush groups in the first

independent claim, indicators for method, active ingredient, and continuing patents; log forward

and backward citations; log patent family size, and fixed effects for the main U.S. patent class to

control for technology specific idiosyncrasies in patent challenging.

We find a statistically and economically significant relationship between the probability of PIV

patent challenge and effective patent length. The estimated coefficient in column (1) implies that

doubling the effective term of a patent is associated with a 13 percentage point increase in the

probability of PIV patent challenge. The relationship becomes economically weaker but remains

statistically significant after adding various controls – see columns (2) and (3) of Table 2.

Table 2 shows a negative, but statistically insignificant, relationship between the probability of

PIV patent challenge and the number of Markush groups. Using other measures of claim scope as

an alternative for the Markus groups yields similar results, except that the number of conjunctions

"or" in the first independent claim gets a statistically significant negative coefficient (see Table A3

in Online Appendix A.3. Estimates for the other measures of the difficulty of patent challenging

suggest stronger associations: The probability of PIV patent challenge is over six percentage points

lower for patents covering active ingredients, and three percentage points lower for patents covering

new methods of use compared to patents protecting, say, new drug formulations. Furthermore,

the probability of PIV patent challenge is around eight to nine percentage points lower for patents

protecting drugs with NCE or orphan drug exclusivity than for patents protecting drugs with

no exclusivity or with clinical investigation exclusivity of shorter duration. In contrast, pediatric

exclusivity appears to be associated with an increase in the probability of PIV patent challenge.
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Pediatric exclusivity works differently from other exclusivities as it is added to other exclusivity

periods and patent term.

The negative estimate of the effect of backward citations might support a negative association

of the probability of PIV patent challenge with patent scope, but it could also suggest a positive

association with patent value. This positive association between the probability of PIV patent

challenge and patent value is also supported by the positive and statistically significant coefficients

of patent family size, priority review indicator, and indicators for common orally administered

dosage forms (tablet and capsule).

Overall the findings from the OLS regressions suggest that the probability of PIV patent chal-

lenge positively correlates with effective patent length and negatively with patent claim scope and

other measures of difficulty of patent challenging. However, while we attempt to control for, e.g.,

drug and patent value, these results may still be driven by unobserved heterogeneity.
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Table 2: Probability of Successful PIV Patent Challenge and Patent Characteristics: OLS Estimates.

(1) (2) (3)
log(Effective length) 0.129 0.069 0.065

(0.015) (0.013) (0.013)
New chemical exclusivity -0.091 -0.075

(0.025) (0.026)
Orphan drug -0.093 -0.092

(0.024) (0.025)
Pediatric exclusivity 0.087 0.086

(0.035) (0.035)
Priority review 0.179 0.178

(0.046) (0.047)
Tablet 0.181 0.183

(0.027) (0.028)
Capsule 0.106 0.112

(0.034) (0.035)
Injectable -0.041 -0.033

(0.024) (0.024)
log(Markush groups+1) -0.012

(0.012)
Method patent -0.029

(0.017)
Active ingredient patent -0.063

(0.021)
log(Forward citations+1) 0.003

(0.007)
log(Backward citations + 1) -0.021

(0.008)
log(Patent family size) 0.010

(0.006)
Continuing patent 0.024

(0.015)
Filing year FE × × ×
Exclusivity expiry year FE × ×
USPC FE ×
Mean dep. variable 0.171 0.171 0.173
Observations 3517.000 3517.000 3483.000
R-squared 0.065 0.224 0.237

Notes: This table reports coefficients from OLS regressions of the probability
of successful PIV patent challenge on effective patent length, measures of
patent scope, and controls. FE stands for fixed effects. Standard errors, in
parentheses, are clustered at the level of patents protecting the same drug.
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4 Effect of Patent Length

In Section 4.1, we describe how two patent policy reforms, TRIPS of 1994 and AIPA of 1999,

affected the effective lengths of patents depending on their grant lags and filing date. In Section

4.2, we estimate the effects of the reforms and the resulting changes in effective patent length on

the probability of PIV patent challenge using difference-in-differences regressions.

4.1 Patent Term Reforms in the United States and Pharmaceutical Patents

Prior to TRIPS, the United States had a 17-year standard patent term counting from the grant

date. TRIPS introduced a 20-year standard patent term measured from the filing date pertaining

to patents filed on and after June 8, 1995. For patents filed prior to June 8, 1995, the standard

patent term was changed to either the new 20-year term from filing or the old 17-year term from

the grant, whichever expires later. Patents that were issued prior to June 8, 1978, were kept in the

old 17-year term regime, but our sample includes no such old patents.

This change in the standard patent term due to TRIPS treats patents differently depending on

whether or not they are granted within three years from filing: Patents granted within three years

from filing receive the same 20-year standard term from filing regardless of whether or not they are

filed before or after TRIPS. In contrast, patents with grant lags exceeding three years filed before

TRIPS received the 17-year standard term from the grant date, which fully compensates for grant

lags. But similar patents filed after TRIPS receive the 20-year standard term from filing, thus losing

some of effective protection time.

To compensate patentees for this loss in effective patent life because of delays in the USPTO

approval process, TRIPS also introduced PTAs (which were initially called patent term extensions).

These PTAs only apply to patents filed after TRIPS, and can add a maximum of five years to the

patent term. The USPTO calculates the length of a PTA automatically, taking into account only

certain delays caused by the USPTO itself. Initially eligible delays were limited but, subsequently,

AIPA expanded the list of reasons which may give rise to PTAs for patents filed on and after May

29, 2000. In particular, AIPA introduced compensation for grant lags exceeding three years, thus

mitigating the adverse impact of TRIPS on the effective length of patents with grant lags exceeding

threeg years.
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We determine PTAs and grant lags for our sample of drug patents from PatEx. Panels A and B

of Figure 2 document how PTAs were rare and short before AIPA, which increased their provision

and length substantially. The share of patents with a PTA rises from 2 percent in 1996 to 66 percent

in 2005 (panel A). The average PTA length increases from less than a month in 1996 to around

15 months in 2005 (panel B). Even after AIPA, the increase in the length of PTAs was gradual,

reflecting increasingly slow patent prosecution at the USPTO in the early years of the millenium

(panel C). (The long grant lags observed in the early years in panel C are a consequence of the

truncation of our sample discussed in Section 2.1.)
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Figure 2: USPTO Grant Lags and PTAs of Pharmaceutical Patents.

Notes: Panel A of this figure shows the share of new drug patents in our sample with a USPTO PTA by patent
filing year. Panel B shows the average length of a PTA in our sample by patent filing year, including patents without
PTAs. Panel C figure shows the average grant lag of new drug patents in our sample by patent filing year.

Comparing panels A and B with panel C indicates that PTAs fail to fully compensate for the

adverse impact of TRIPS on the effective length of new drug patents with long grant lags, especially

before AIPA. To confirm this suggestion, we regress effective patent length on grant lag separately
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for the periods of pre-TRIPS, between TRIPS and AIPA, and post-AIPA. Figure 3 shows the results:

Before TRIPS, effective patent length is relatively invariant to grant lag. TRIPS disproportionately

shortens the effective length of patents prosecuted over three years, especially before AIPA, which

partially restores the effective length of such patents.
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Figure 3: Effective Patent Length Before and After TRIPS and AIPA.

Notes: This figure shows OLS estimates and 95 percent confidence intervals of the raw data relationships between
effective patent length (in the y-axis) and patent grant lag (in the x-axes). We estimate the relationships separately
for three time periods: The pre-TRIPS period includes patents filed before June 8, 1995, the period between TRIPS
and AIPA includes patents filed between June 8, 1995 and May 29, 2000, and the post-AIPA period includes patents
filed on or after May 29, 2000. Patents with grant lags exceeding five years are binned together (denoted by "5-" on
the x-axis). In each regression, the comparison group consists of patents granted less than 1.5 years from the filing
date. Each dot shows the averages of the x- and y-axes variables within each equal-sized bin.

According to the costly imitation theory, these changes in the effective length of patents with

long grant lags should be matched by a decrease in the probability of PIV patent challenge especially

between TRIPS and AIPA. Consistent with this prediction, Figure 4 indicates that between TRIPS

and AIPA, the probability of PIV patent challenge is lower for patents prosecuted over three years

compared to patents with shorter grant lags. There is no similar difference between the two patent

groups in other periods. These patterns in PIV patent challenges and grant lags motivate our

research design.
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Figure 4: Probability of Successful PIV Patent Challenge by Patent Filing Year and Grant Lag.

Notes: This figure shows the probability of successful PIV patent challenge by patent filing year. The dashed and
solid lines depict the groups of patents with a grant lag more and less than three years, respectively. Patents filed
before the end of year 1990 are binned together (denoted by "-1990" on the x-axis). Those oldest patents in our
sample encounter only few successful PIV patent challenges with no systematic difference depending on the grant lag.

4.2 Difference-in-Differences Estimations and Results

We estimate the following DiD model using our patent-level data:

1[PIV challengeit] = αs + β11[Grant lagi ≥ 3years] (2)

+β21[Grant lagi ≥ 3years]× 1[Post-TRIPSi]

+β31[Grant lagi ≥ 3years]× 1[Post-AIPAi] + γs′Xi + δst + εsit,

in which 1[Grant lagi ≥ 3years] is an indicator variable equaling one if patent i has at least a three-

year grant lag, 1[Post-TRIPSi] is an indicator variable equaling one if the filing date of patent i is

on or after June 8, 1995, and 1[Post-AIPAi] is an indicator variable equaling one if the filing date

of patent i is on or after May 29, 2000. The coefficients of interest, β2 and β3, measure changes in

the probability of PIV patent challenge after TRIPS and AIPA, respectively, for patents prosecuted

at least three years (treatment group), compared to other patents (control group).
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Table 3: Probability of Successful PIV Patent Challenge, Effective Patent Length, and Patent Law
Changes by Patent Grant Lag.

Outcome PIV PIV PIV PIV PIV log(Effective
challenge challenge challenge challenge challenge length)

(1) (2) (3) (4) (5) (6)
Grant lag ≥3 years -0.021 0.016 0.026 0.021 0.022 0.044

(0.027) (0.025) (0.025) (0.026) (0.028) (0.028)
Grant lag ≥3 years,
Post-TRIPS -0.080 -0.114 -0.106 -0.099 -0.100 -0.171

(0.042) (0.039) (0.039) (0.044) (0.041) (0.043)
Grant lag ≥3 years,
Post-AIPA 0.072 0.084 0.072 0.066 0.072 0.100

(0.041) (0.037) (0.037) (0.042) (0.039) (0.045)
Mean dependent variable 0.171 0.171 0.173 0.167 0.177 2.457
Observations 3517 3517 3483 2998 3066 3517
R-squared 0.045 0.221 0.234 0.234 0.240 0.020
Filing year FE × × × × × ×
Drug controls × × × ×
Exclusivity expiration year FE × × × ×
Patent controls × × ×
USPC FE × × ×
Excluded filing years None None None 1995, None None

2000
Grant lag Any Any Any Any ≤ 5 yrs Any

Notes: This table reports estimates of the effects of TRIPS and AIPA on the probability of successful PIV patent challenge and
effective patent length. Columns (1)–(5) show coefficients from an OLS regression of the PIV challenge indicator and column (6)
of log(Effective length) on three indicators for patents with a grant lag exceeding three years and controls. FE stands for fixed
effects. Drug controls include the indicators NCE exclusivity, Orphan drug exclusivity, Pediatric exclusivity, Priority review,
Capsule, Injectable, and Tablet. Patent controls include log(Markush groups+1), log(Backward citations+1), log(Forward
citations+1), log(Patent family size), and the indicators Active ingredient patent, Method patent, and Continuing patent.
The samples in columns (4) and (5) exclude patents filed in years 1995 and 2000 and patents with a grant lag exceeding five
years, respectively. Standard errors, in parentheses, are clustered at the level of patents protecting the same active ingredient.

Column (1) of Table 3 reports coefficients from a regression that uses the full sample of new

drug patents but only controls for filing year fixed effects. Patents prosecuted at least three years

experience an eight percentage point reduction in the probability of PIV patent challenge after

TRIPS initially, compared to other patents. AIPA almost neutralizes this effect: the corresponding

increase in the probability of PIV patent challenge is seven percentage points after AIPA.

Column (2) of Table 3 reports results after controlling for characteristics of the drugs protected

by the patents in our sample, including the exclusivity expiration year fixed effects. Column (3)

shows results from a specification that further controls for patent characteristics, including the main

U.S. patent class fixed effects. These two specifications attempt to account for potential differences

between the treatment and control groups stemming from observable characteristics, unobserved
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heterogeneity, and possible compositional changes over time across these groups. Adding these

controls makes the effects of TRIPS and AIPA stronger and more precisely estimated compared to

column (1).

We also estimate the DiD model of equation (2) using a sample that excludes patents filed

in 1995 and 2000. This sample restriction attempts to address the potential anticipation effects

of the TRIPS and AIPA reforms. For example, applicants expecting a decrease in patent terms

due to TRIPS could have advanced patent filing and, analogously, applicants expecting an increase

in patent terms due to AIPA could have postponed filing. The coefficient estimates from this

regression, reported in column (4) of Table 3, remain similar to the baseline estimates, suggesting

no clear anticipation effects. The coefficient β3 is, however, less precisely estimated, perhaps due to

a smaller sample.

Next, we estimate the DiD model using a sample of patents prosecuted within five years. This

sample restriction further mitigates concerns arising from possible compositional changes in the

treatment group. For example, long grant lags observed in the first and the last years of our data

increase the number of patents falling into the treatment group (see panel C of Figure 2). This

restriction also excludes the patents for which the five-year maximum length of PTAs is binding.

The results from this estimation reported in column (5) are similar to the baseline results.

Finally, column (6) confirms the raw data relationships described by Figure 3: Using DiD

regressions (when only controlling for patent filing year fixed effects), we find that TRIPS decreases

the effective length of patents prosecuted at least three years by 17 percent (2 years compared to the

mean of 12.6 years), whereas AIPA increases the effective patent length by 10 percent. As shown by

columns (1)–(5), these changes in effective patent length following TRIPS and AIPA coincide with,

respectively, a 8–11 percentage point decrease and a 7–8 point increase in the probability of PIV

patent challenge. Overall, these results are consistent with the costly imitation theory suggesting

that the probability of PIV patent challenge is increasing with effective patent length.

Robustness. While we use a rich set of controls, and while the raw data trends presented in

Figure 4 suggest otherwise, the DiD estimates of the effects of TRIPS and AIPA might nonethe-

less reflect differential pre-trends in the probability of PIV patent challenge between treated and

untreated patents. To mitigate this concern, we estimate an event study specification detailed in

Online Appendix A.2. The results show no pre-trend in the outcome. The event study estimates
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are also consistent with the DID estimates, suggesting a decrease in the probability of PIV patent

challenge between TRIPS and AIPA.

We make many other robustness checks in Online Appendix A.2. To address the concern that

longer patent duration would increase PIV patent challenges even if these challenges were random,

we control for the length of exposure of a patent to PIV patent challenges. We also show that

the estimated effects on the probability of PIV patent challenge cannot be explained by differential

changes in patent scope or value after TRIPS and AIPA, nor by the introduction of provisional

applications in 1995. As mentioned, multiple patents can cover the same new drug and we therefore

cluster standard errors at the level of patents covering the same active ingredient to allow for

unobservables in their PIV patent challenges to be correlated. We additionally identify the chain

of patents covering the same new drug and exclude some or all but one of the patents in the chain.

When we estimate equation (2) using different subsamples and specifications, the effects of TRIPS

and AIPA only become stronger and more precisely estimated.

We also find additional evidence of longer effective patent length encouraging PIV patent chal-

lenges: TRIPS disproportionately shortened effective terms of continuing patents, leading to a

more negative estimate of β2 using the sample of these patents. Finally, we document how AIPA

also mandated earlier disclosure of patent applications and discuss how this change may affect the

interpretation of effective patent length in the post-AIPA period.

5 Effect of Patent Scope

In identifying the effect of a change in patent scope on PIV patent challenges we cannot resort to

an ideal experiment of random assignment of scope over patents. Inspired by Kuhn and Thompson

(2019), Sampat and Williams (2019), Farre-Mensa et al. (2020), and Feng and Jaravel (2020) we

instead develop IVs for patent scope based on the "leniency” of patent examiners. Our approach

exploits the differences across examiners in their propensity to grant broader or more claims as a

source of variation in patent scope, together with the assignment of patent applications to examiners

at the USPTO. Previous research (e.g., Cockburn et al., 2003; Lemley and Sampat, 2012) indicates

differences in the examiners’ decision making which translates into different patent outcomes. Since

patent prosecution typically consists of several rounds of claim rejections and modifications re-
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quired by an examiner (Kuhn and Thompson, 2019; Marco et al., 2019), systematic differences

across examiners plausibly generate systematic differences in patent claim scope. Furthermore,

prosecution-history estoppel enhances the role of patent examination in affecting new drug patent

claim scope at the core of PIV patent challenges (Tang, 2013).

The second stage of our two-stage least squares (2SLS) analysis consists of estimations of equa-

tion (1) using instrumented scope measures. We instrument four measures of scope of a new drug

patent: the number of independent claims, the numbers of Markush groups, conjunctions "or" and

words in the first independent claim (the last measure follows Kuhn and Thompson, 2019). For each

scope measure xijt of new drug patent i reviewed by examiner j and filed in year t, we construct

the corresponding instrument zijt as

zijt =

t−1∑
τ=τ j

njτ∑
k=1

xkjτ

t−1∑
τ=τ j

njτ

, (3)

in which xkjτ is the scope measure of patent k reviewed by examiner j and filed in year τ , njτ

is the number of patents reviewed by examiner j in filing year τ , and τ j is the earliest filing year

of any patent reviewed by examiner j. Hence, zijt gives the "examiner j’s historical average" –

the cumulative average of a scope measure over all patents assigned to examiner j up to one year

preceding filing year t of new drug patent i. Although we include the previous new drug patents

granted by examiner j in zijt, we exclude their parents and continuations, which are usually assigned

to the same examiner (Righi and Simcoe, 2019).

Table 4 shows marked variation across the examiners of our sample patents in granting broader

or more claims. For example, the average number of words in the first independent claim is 147, but

the toughest examiner only allows 11 words on average, whereas the most lenient examiner allows

456 words on average. This variation unlikely arises from a small sample size: as also shown by

Table 4, the average number of patents reviewed by an examiner is 626.
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Table 4: Heterogeneity Across Examiners in Patent Measures.

Mean Std. Dev. Min Max
Examiner average of Markush groups 0.786 1.037 0.000 7.000
Examiner average of conjunctions "or" 3.633 4.100 0.000 21.737
Examiner average of words 147.115 59.068 11.000 455.776
Examiner average of independent claims 2.397 0.443 1.000 4.455
Patents reviewed by an examiner 625.515 660.926 1 3653

Notes: This table reports summary statistics for 579 examiners who have reviewed the new
drug patents in our sample. Each of the first four rows shows summary statistics for a
examiner-specific patent scope measure, averaging over all patents reviewed by an examiner
of a new drug patent in our sample. The last row shows summary statistics for the number
of patents reviewed by an examiner of a new drug patent in our sample.

In the first-stage of our 2SLS analysis, we regress each claim scope measure on the corresponding

instrument and controls. In the main 2SLS specifications, we control for the same patent and drug

characteristics as in column (3) of Table (2) except for the instrumented claim scope measure. While

some of these controls (e.g., patent filing year and U.S. patent class fixed effects) may also capture

examiner specialization, we also add USPTO Technology Center fixed effects. Technology Centers

are responsible for examination in broad technological areas. Each Technology Center typically

contains a few dozen Art Units, which are groups of examiners specializing in narrow technology

areas. Within a Technology Center, a patent application is assigned to an Art Unit and finally to

an examiner. Since we only observe a small number of new drug patents per Art Unit, we use Art

Unit fixed effects only in robustness analysis.

The exclusion restriction in our setting holds if, conditional on covariates, examiners’ propensity

to grant broader claims is uncorrelated with such application characteristics, e.g., drug or patent

value or quality, that correlate with PIV patent challenges. The validity of this exclusion restriction

is supported by a growing literature (e.g., Lemley and Sampat, 2012; Sampat and Williams, 2019;

Kuhn and Thompson, 2019; Farre-Mensa et al., 2020; Feng and Jaravel, 2020) although, e.g., Righi

and Simcoe (2019) are more critical. These previous studies indicate that examiner assignment is

independent of application characteristics at the time of filing. For example, examiner assignment

is based on the last digit of the application number in Art Units. Such assignment plausibly implies

that examiner characteristics are uncorrelated with the value or quality of applications. While Righi

and Simcoe (2019) show that examiners specialize in narrow technology fields, they find no evidence
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of more valuable or broader applications being allocated to certain examiners. Moreover, since our

new drug patents form a relatively homogeneous technology field, examiners might be less likely to

be specialized within this sample. Nevertheless, the validity of this exclusion restriction is debatable

and our IV results must be interpreted cautiously.

Table 5 reports the 2SLS regression results. The first stage coefficients of panel B and F-

statistics suggest strong instruments. Estimates of the instrumented scope measures of panel A

suggest a negative effect of broader patent scope on the probability of PIV patent challenge: A 10

percentage increase in the Markush groups in the first independent claim decreases the probability

of PIV patent challenge some two percentage points. A higher number of Markush groups may thus

indicate broader scope by reflecting a higher number of variants of the drug protected by the patent.

The number of conjuctions "or", which might also reflect different variants of the drug protected by

the patent, has a smaller effect. Additional words in the first independent claim perform similar to

Markush groups, supporting a positive relationship between claim length and scope in the case of

pharmaceutical patents as argued by Kuhn and Thompson (2019). These coefficients of the scope

measures are statistically significant but smaller in magnitude compared to the OLS estimates

reported in Table A3 in Online Appendix A.3. Such an upward bias in the OLS estimates could

arise, e.g., if originators seek broader protection for more valuable drugs which, at the same time,

attract more PIV patent challenges.

The question of whether or not the number of independent claims is a useful proxy for patent

claim scope has been debated in the literature (see, e.g., Kuhn and Thompson, 2019 and Marco

et al., 2019 for different points of view). Our coefficient estimate of the number of independent claims

is close to zero in magnitude and statistically insignificant, suggesting that additional independent

claims in a pharmaceutical patent fail to protect against PIV patent challenges.
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Table 5: Probability of Successful PIV Patent Challenge and Patent Scope: IV Estimates.

(1) (2) (3) (4)
PANEL A: Second stage estimates
Instrumented variables:
log(Markush groups+1) -0.220

(0.090)
log(Conjunctions "or"+1) -0.105

(0.052)
log(Words) -0.237

(0.095)
log(Independent claims) 0.069

(0.132)
PANEL B: First stage estimates
Instruments:
log(Examiner historical average of Markush groups+1) 0.239

(0.048)
log(Examiner historical average of conjunctions "or"+1) 0.225

(0.034)
log(Examiner historical average of words) 0.238

(0.062)
log(Examiner historical average of independent claims) 0.242

(0.073)
Observations 3445 3445 3445 3447
First stage F-statistic 25.286 44.860 14.523 10.934
Technology Center FE × × × ×
Filing year FE × × × ×
Drug controls × × × ×
Exclusivity expiration year FE × × × ×
Patent controls × × × ×
USPC FE × × × ×

Notes: This table reports 2SLS estimates of the effects of patent scope on the probability of successful PIV
patent challenge. Panel A shows the main coefficient from the second stage regressions of the PIV challenge
indicator on the instrumented scope measures and controls. Panel B shows the main coefficient from the first stage
regressions of the scope measures on the corresponding instruments and controls. The first stage F-statistic test
is on the excluded instruments. FE stands for fixed effects. Drug controls include the indicators NCE exclusivity,
Orphan drug exclusivity, Pediatric exclusivity, Priority review, Capsule, Injectable, and Tablet. Patent controls
include log(Effective length), log(Backward citations+1), log(Forward citations+1), log(Patent family size), and
the indicators Active ingredient patent, Method patent, and Continuing patent. We use a full sample of new
drug patents for the regressions, and construct the instruments using data on all granted patents reviewed by the
examiners of these new drug patents. Robust standard errors are reported in parentheses.

Robustness. The IV regression results appear to suggest that broadening patent claim scope

hampers PIV patent challenges. We assess the robustness of the results to specification changes in

Online Appendix A.3. The results remain unchanged when we exclude control variables (Table A4)

or include of an additional control for trends varying with the Technology Center (Table A5).
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We also use Art Unit fixed effects instead of Technology Center fixed effects (Table A6). The

number of patents per Art Unit is typically small, only 21 on average. Reflecting this challenge, the

point estimates from these specifications, while similar in magnitude, are less precise than from the

main specifications. Only the coefficient of the number of words remains statistically significant.

We have also experimented with modified instruments. Our results do not change if we ex-

clude all new drug patents reviewed by examiner j from zijt, or if we allow τ to run from τ j to

min{τ̄j , 2009}, in which τ̄j is the last filing year of any patent reviewed by examiner j, and only im-

pose k ̸= i in equation (3). Also, using two alternative measures of scope, the numbers of characters

and the phrase "consisting of" in the first independent claim, and corresponding alternative instru-

ments, yields similar IV regression results. Our results are also robust to using a binary variable of

whether or not there is at least one Markush group in the first independent claim.

6 A Model

Overall, our empirical results support the claims of Gallini’s (1992) costly imitation theory according

to which longer patent terms increase the probability of a successful patent challenge and broader

scope reduces it. While these results alone are informative for patent policy design, we construct a

variant of the costly imitation model with flexible cost functions to explore policy implications for

the pharmaceutical industry.

6.1 Assumptions

Consider a pharmaceutical market with an originator drug producer (firm B) and a generic drug

producer (firm G). The originator firm can invest in developing a new drug, automatically protected

by a patent. The generic firm can invest in challenging the new drug patent. Ex ante licensing is

not possible.

Some of these simplifying assumptions reflect industry practices. For example, originators tend

to rely on patents (see, e.g., Hall et al., 2014), partly because of the mandatory disclosure stipulated

by the Hatch-Waxman Act significantly limits the originators’ possibilities to use secrecy (Tang,

2013). There is also little evidence of generic entry via licensing prior to PIV patent challenges. On

the contrary, our data, as also, the results e.g., in Higgins and Graham (2009), Hemphill and Sampat
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(2011) and Branstetter et al. (2016), show that PIV patent challenges occur frequently. However,

although the Hatch-Waxman Act awards the first generic entrant via a PIV patent challenge a

180-day exclusivity period during which no further generic entry is allowed, there may in practice

be many generic entrants. Allowing many generic challengers would complicate the model without

necessarily changing its empirical implications.3

The success Yf : {0, 1} → {0, 1}, f = B,G, of the firm f ’s investment has a Bernoulli distribution

with parameter pf ∈ [0, 1]. Time t ∈ [0,∞) is continuous but, for brevity, we assume that the firms

act sequentially at t = 0 (as in Gallini, 1992) by directly choosing the their success probabilities

pf . (Alternatively, we may think that the firms choose an investment from a collection of projects

indexed by pf .) The associated investment cost functions Cf : [0, 1] → [0,∞) are twice continuously

differentiable with the standard properties ∂Cf/∂pf > 0 and ∂2Cf/∂p
2
f > 0 for pf > 0, and Cf (0) =

∂Cf (0)/∂pf = 0. The cost functions are sufficiently convex to satisfy second-order conditions.

Gallini (1992) only allows for fixed costs.

We consider two patent policy variables, length T ∈ [0,∞) and scope b ∈ [0,∞). Following a

common practice (see Budish et al., 2015, for an exception), we assume that a marketing authoriza-

tion and a patent are granted to a new drug simultaneously upon the investment success realization

yB = 1 at t = 0, from which patent length is counted. Hence, T reflects effective patent length.

Following Gallini (1992), we assume that if a new drug patent expires at t = T , then ∂CG(pG, b)/∂b >

0 for t < T and b = 0, with CG(pG, 0) = 0 ∀pG, for t ≥ T – see Maurer and Scotchmer (2002)

for a rationale for this modeling of patent scope. In words, a broader patent makes imitation via

successful patent challenging more difficult whereas the patent expiration makes imitation costless.

For example, developing a noninfringing substitute could become more difficult with broader new

drug patent claims that cover, e.g., variants of the drug through Markush groups (see Sections 2.4

and 5). Some imitation costs stemming from the FDA approval process and associated litigation

may also be related to the scope of new drug patents. In Allergan, Inc v. Exela Pharmasci, Inc, for
3With one generic challenger, we do not need to differentiate between successful non-infringement and invalidity

challenges. A generic firm has a stronger incentive to file an infringement challenge since the challenged patent is
still valid and enforceable against other generics. The prior work (see, e.g., Gallini, 1992; Wright, 1999; Maurer and
Scotchmer, 2002) suggest that allowing multiple entrants via non-infringement challenges would not qualitatively
change the results (unless there is substantial cross-ownership between the originator and generic entrants – see
Newham et al., 2018). If generic entry occurs via invalidation rather than non-infringement, however, then a waiting
game among generics might arise (Henry and Ponce, 2011). But in our context the 180-day exclusivity period dilutes
the generics’ incentives to wait.
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example, the Federal Circuit found Exela’s design-around formulation sufficiently different to avoid

infringement of Allergan’s patent, but the same difference prompted the FDA to request Exela to

perform expensive bioequivalence studies (Voet, 2016). Higgins and Graham (2009) report the av-

erage cost of a PIV patent challenge to be $5 million. While the assumption of costless post-patent

entry is made for simplicity, the Hatch-Waxman Act greatly reduced the costs and lags of generic

entry after patent expiration (see, e.g., Grabowski and Vernon, 2000; Tang, 2013).

After the realizations yf ∈ {0, 1} of Yf , f = B,G, the firms compete in the market. The net

cash flow from selling a drug is π̃N ∈ [0,∞), in which subscript N ∈ {0, 1, 2} denotes the number

of competing drugs in the market. The pharmaceutical market will exist only if yB = 1; otherwise

N = 0 and π̃0 = 0. Conditional on yB = 1, our assumptions imply that N = 1 only if t < T and

yG = 0; otherwise N = 2. As usually, π̃1 > 2π̃2. (The assumption of equal net cash flows upon

generic entry can be relaxed at the cost of complicating the notation.)

Reminiscent of Wright (1999), the shape of CG(pG, b) turns out to be a key determinant of our

patent policy evaluation. We introduce the following definitions:

ϵp(pG) := pG
∂2CG/∂p

2
G

∂CG/∂pG
, (4)

and

ϵb(pG) := pG
∂2CG/(∂pG∂b)

∂CG/∂b
. (5)

The elasticity of the marginal cost of patent challenging, ϵp(pG), provides a measure of the convexity

of the generic’s cost function. The convexity itself implies that ϵp(pG) > 0 at least for pG ∈ (0, 1)

and, for simplicity, we make ϵp(pG) > 0 ∀pG. In turn, ϵb(pG) is the elasticity of the impact of patent

scope on patent challenging costs. Since ∂CG/∂b > 0, the sign of ϵb(pG) is given by the sign of

∂2CG/(∂pG∂b).

Assumption 1. ∂2CG
∂pG∂b > 0.

According to Assumption 1, the effect of patent scope on patent challenging costs is the stronger

the easier is patent challenging. In Online Appendix A.4 we relax Assumption 1 and find counterin-

tuitive effects. For example, if ∂2CG/(∂pG∂b) < 0, the probability of a successful patent challenge

increases with patent challenging costs and scope, which is not only odd but also against our empir-
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ical results. Unsurprisingly, this assumption is often implicit in the costly imitation models. Also,

our results concerning patent length are independent of Assumption 1 (see Online Appendix A.4).

We consider a two-stage game in which the originator firm first chooses pB(b, T ) ∈ [0, 1]. In the

second stage, after observing yB, the generic firm chooses pG(yB, b, T ) ∈ [0, 1], which results in the

outcome yG. The firms collect their payoffs depending on the realizations of Yf , f = B,G, and patent

length T . Denote the firm f ’s expected profit by Πf . A subgame perfect equilibrium of this game is a

pair (p∗B, p
∗
G(yB(pB))) such that for yB(pB) ∈ {0, 1}, p∗G(yB(pB)) = argmaxpG∈[0,1]ΠG(pG, yB(pB))

and p∗B = argmaxpB∈[0,1]ΠB(pB, p
∗
G(yB(pB))). In what follows, we present the main arguments

leading to our results, relegating to Appendix 1 their technical proofs.

6.2 Equilibrium Analysis

Consider the second stage of the game after the realization of YB. Clearly, if yB(pB) = 0, new drug

market fails to arise, and p∗G = 0. We therefore focus on the subgame in which the market exists,

(p∗B, p
∗
G(yB(pB) = 1)), and suppress the argument yB(pB) for brevity.

Given yB(pB) = 1 the generic firm’s problem can be expressed as

max
pG∈[0,1]

ΠG = pG

∞∫
0

e−rtπ̃2dt+ (1− pG)

∞∫
T

e−rtπ̃2dt− CG(pG, b), (6)

in which r ∈ (0,∞) denotes the firms’ common discount rate. The first integral on the right-hand

side of equation (6) captures the generic’s profits if, with probability pG, it successfully challenges

the new drug patent. The second integral captures the profits if, with probability 1 − pG, the

patent challenge fails and the generic entry is postponed until the patent expiration.4 The last term

captures the costs of patent challenging.

Using π2 := π̃2/r we can write the first-order condition for the problem (6) as

(
1− e−rT

)
π2 −

∂CG(p
∗
G, b)

∂pG
= 0. (7)

Equation (7) identifies for each patent policy (b, T ) ∈ [0,∞)2 a unique probability that the new
4As Tang (2013, p.1083) writes "...the generic manufacturer can decide to push market entry before the patent

expires by filing a PIV challenge...Even if it loses the PIV challenge, it can still market its drug immediately after
the patent expires..."
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drug patent is successfully challenged. We may hence consider a new drug patent “probabilistic”

(Lemley and Shapiro, 2005), with the endogenous strength of 1 − p∗G(b, T ). As shown by equation

(7) the mapping p∗G(b, T ) is qualitatively invariant to many model details. On the other hand,

modifications to the model quantitatively affecting p∗G(b, T ) should be reflected to our empirical

estimation results.5 Proposition 1 establishes the main properties of the mapping p∗G(b, T ).

Proposition 1: Increasing patent length or narrowing patent scope increases the probability of a

successful PIV patent challenge.

Proposition 1 reproduces the standard results arising from the models of patent policy with costly

imitation like ours: Longer patent duration makes waiting for patent expiration less attractive and

hence encourages patent challenging, whereas broader patent scope discourages patent challenging

by increasing its costs.

In the first stage the originator firm chooses pB. The private value of an approved new drug is

V P (T, p∗G(b, T )) =

T∫
0

e−rt [(1− p∗G (b, T )) π̃1 + p∗G (b, T ) π̃2] dt+

∞∫
T

e−rtπ̃2dt, (8)

in which p∗G (b, T ) is determined by equation (7). The first integral on the right-hand side of equation

(8) depicts the originator’s profits when its new drug patent is in force. The originator will retain

market exclusivity if the generic’s patent challenge fails (the first term in the square brackets) but

will encounter competition if the challenge succeeds (the second term in the square-brackets). The

second integral expresses the originator’s profits after the patent expiration.

The originator firm’s problem can be expressed as

max
pB∈[0,1]

ΠB = pBV
P (T, p∗G(b, T ))− CB(pB),

in which V P (T, p∗G(b, T )) is given by equation (8) and the last term captures the costs of developing
5Even equation (7) in itself is fairly resilient to some changes in model details. For example, assuming that a

generic’s profit flow is smaller when t ≥ T than when t < T makes both a PIV patent challenge and waiting for
patent expiration less lucrative, and these effects tend to cancel out each other: Consider, e.g., free entry after patent

expiration which drives profits to zero. Then the generic’s problem maxpG∈[0,1] ΠG = pG

T∫
0

e−rtπ̃2dt − CG(pG, b)

leads to the same first-order condition (7).
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a new drug. The first-order condition for this problem is

V P (T, p∗G(b, T ))−
∂CB(p

∗
B)

∂pB
= 0. (9)

Equations (7) and (9) determine the unique subgame perfect equilibrium (p∗B, p
∗
G) in which new

drug market arises (yB(pB) = 1).

To facilitate the analysis of patent policy, we define

ϕ(pG) := ϵp(pG)−
pG

1− pG
, (10)

in which ϵp(pG) > 0 is defined by equation (4). Then, we have the following result:

Proposition 2: Broader patent scope increases incentives to develop new drugs. Increasing (de-

creasing) patent length increases incentives to develop new drugs if ϕ(p∗G) > 0 (ϕ(p∗G) < 0).

Propositions 1 and 2 suggest, as is intuitive, that the sign of ∂p∗B/∂b is the reverse of the sign

of ∂p∗G/∂b: broader patent scope makes successful patent challenging more difficult which in turn

enhances incentives to develop new drugs.

In contrast, an increase in patent length has both a direct and an indirect effect on incentives to

develop new drugs. The direct effect is positive: given the generic’s incentive for patent challenging,

the originator’s market exclusivity lasts longer in expectation. The indirect effect via p∗G is negative:

longer patent duration enhances incentives for patent challenging. Hence, an increase in patent

length can have a positive or a negative effect on incentives to develop new drugs depending on

whether the direct or indirect effect dominates, which in turn depends on the sign of ϕ(p∗G).
6

However, the case ϕ(p∗G) < 0 is not only counterintuitive but also unlikely: If ϕ(p∗G) < 0, the

originator would have an incentive to shorten the effective length of its patent. Moreover, as shown

in Section 7, our empirical results suggest ϕ(p∗G) > 0.
6 With mild additional assumptions (∂ϕ/∂pG < 0 and limT→∞ ϕ(p∗G(T )) < 0), these direct and indirect effects

of patent length would create the inverted-U relationship between patent length and innovation incentives (with the
peak at some T ′ solving ϕ(p∗G(T

′)) = 0), which has been discovered in the literature (see, e.g., Horowitz and Lai,
1996; Takalo, 1998; Gallini, 2002; Quian, 2007).
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6.3 Welfare Analysis

Denote welfare flow from a new drug by w̃N ∈ [0,∞) when N ∈ {0, 1, 2} drugs compete in the

market. As usual, w̃2 > w̃1 > w̃0 = 0. Analogous to the private value of a new drug given by

equation (8), we can write the social value of an existing new drug as

V S(b, T ) =

T∫
0

e−rt [(1− p∗G (b, T )) w̃1 + p∗G (b, T ) w̃2] dt (11)

+

∞∫
T

e−rtw̃2dt− CG(p
∗
G(b, T ), b),

in which p∗G(b, T ) is identified by equation (7). The first and second integral on the right-hand side

of equation (11) give welfare from a new drug before and after its patent expires, respectively. The

last term captures the generic’s patent challenging cost.

We formulate the patent policy problem as follows:

max
b∈[0,∞), T∈[0,∞)

V S(b, T ) (12)

subject to

p∗B (b, T ) = pB.

This often-used formulation (see, e.g., Gallini, 1992; Dubois et al., 2022) seeks to characterize an

optimal patent policy reform that minimizes welfare distortions while keeping incentives to innovate

unchanged at a desired level pB. For our purpose, the formulation is especially useful as we are

aiming at matching its results with the local effects identified in Section 4 and 5, which do not

necessarily hold globally.

Recalling that ϵb(pG) > 0, the solution to the problem (12) can be expressed as follows:

Proposition 3: i) If ϵb(p
∗
G) > ϕ(p∗G) > 0, reducing patent length and increasing scope is

efficient; ii) If ϕ(p∗G) < 0, reducing both patent length and scope is efficient; iii) If ϕ(p∗G) > ϵb(p
∗
G),

increasing patent length and reducing scope is efficient.

If ϵb(p∗G) > ϕ(p∗G) (parts i) and ii) of Proposition 3), long-lived patents are inefficient irrespective
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of the sign of ϕ(p∗G). This result is familiar from the models of costly imitation. In our context, long

patent duration is ineffective in promoting new drug development, since it also increases incentives

for patent challenging.

When shorter patent length is desirable, the sign of ϕ(p∗G) suggests optimal changes to patent

scope. If ϕ(p∗G) > 0 (part i)), shorter patent length has an adverse effect on incentives to develop new

drugs, which should be compensated for originators by making new drug patents broader. If ϕ(p∗G) <

0 (part ii)), shorter patent length has a positive effect on incentives to develop new drugs, and patents

can be made narrower without jeopardizing new drug development. Thus the sign of ϕ(p∗G) also

determines whether patent length and scope are "substitutable" or "complementary" policy tools

with regard to new drug development (see Belleflamme and Peitz, 2015, for the terminology).

Nonetheless, even in the presence of costly imitation, narrower and longer-lived patents could

be efficient as suggested by part iii) of Proposition 3. If ϵb(p∗G) is small, broader patent scope has

only a relatively small impact on patent challenging but a relatively large impact on its costs. Thus,

distortions caused by broader patents can even be larger than distortions caused by longer patents.

Coming up with a sensible cost function generating this outcome is, however, difficult.

Example 1. Assume that the generic firm has a constant elasticity cost function

CG(pG, b) =
c(b)pηGG
ηG

, (13)

in which ηG > 1. Assume that the constant c(b) ≥ 0. scaling the cost function is increasing patent

scope, ∂c/∂b > 0. Then, Assumption 1 and, consequently, Propositions 1 and 2 hold.

Equations (4) and (13) imply ϵp = ηG − 1 and, hence, we can rewrite equation (10) as

ϕ(pG) = ηG − 1

1− pG
. (14)

Applying equation (13) in the definition (5) yields ϵb = ηG. As a result, ϵb > ϕ(pG). Thus,

by Proposition 3, shortening patent length would be desirable irrespective of the sign of ϕ(pG).

However, to complete the policy analysis, we should determine whether ϕ(pG) is positive or negative.

32



7 Implications for Pharmaceutical Patent Policy

Our empirical evidence suggests that longer effective patent length increases the probability of

successful PIV patent challenge, as predicted by Proposition 1 of our theoretical model. This effect

weakens the efficiency of patent length as a policy tool to promote new drug development. Our

evidence also supports the prediction of Proposition 1 about the negative effect of broader patent

scope on PIV patent challenges. According to the original Gallini’s (1992) model, these results

alone would be enough make shorter but broader pharmaceutical patents optimal. Our model using

more flexible innovation and imitation cost functions suggests that this conclusion is plausible but

not foregone. To push our policy analysis further we resort, in the spirit of the sufficient statistics

approach, to the elasticity formulas developed Section 6.

Proposition 3 suggests that to evaluate the welfare effects of pharmaceutical patent policy

changes, we only need to compare ϕ(p∗G) := ϵp(p
∗
G) − p∗G/(1 − p∗G) to zero and ϵb(p

∗
G). The sign

of ϕ(p∗G) tells us whether incentives to develop new drugs are increasing or decreasing in patent

length, and also whether patent length and scope are substitutable or complementary policy tools.

In turn, the sign of ϕ(p∗G)− ϵb(p
∗
G) tells us whether increasing patent length causes larger or smaller

distortions than increasing patent scope.

In our data the average probability of PIV patent challenge is 0.17 (see Table 1), which directly

provides an estimate of p∗G. We develop two alternative approaches to recover ϵp(p
∗
G), the elasticity

of the generic firms’ marginal cost function (see equation (4)): one based on the estimated elasticity

of PIV patent challenge with respect to effective patent length, ξT (pG) := (∂pG/pG)/(∂T/T ), and

another on the corresponding elasticity with respect to patent scope, ξb(pG) := (∂pG/pG)/(∂b/b).

Recovering ϵp(p
∗
G) via Patent Length Estimates. In Appendix 2, we show that ϵp(pG) can

be written as

ϵp(p
∗
G) =

e−rT rT

(1− e−rT )ξT (p∗G)
. (15)

Hence, to calculate ϵp(p
∗
G), we need values for r, T and ξT (p

∗
G). We set T = 12.59 corresponding

the average effective patent length in our data (see Table 1), and r = 0.03 following the value used

by Schankerman and Schuett (2022). (We have also experimented with r = 0.05, which is used e.g.,

by Judd et al. (2012) in a similar context.) To obtain a value for ξT (p
∗
G), we compare estimates of
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β2 of equation (2) in columns (1)–(5) of Table 3 to the average probability of PIV patent challenge,

0.17. This comparison suggests that TRIPS reduced the rate of PIV patent challenge by 47 − 65

percent. These figures, and the estimated effect of TRIPS on effective patent length (−17 percent)

reported in column (6) of Table 3, suggest that ξT could be between 47/17 and 65/17. We use the

mean value of this range and set ξT = 3.29. Inserting ξT = 3.29, r = 0.03, and T = 12.59 into

equation (15) gives ϵp ≈ 0.25.

Recovering ϵp(p
∗
G) via Patent Scope Estimates. Our level-log regressions imply that an

estimate of ξb(p∗G) can directly be obtained by dividing an estimated coefficient of a log scope measure

by the average probability of PIV patent challenge, 0.17. The statistically significant coefficient

estimates of the IV regressions (columns (1)–(3) of Panel A of Table 5) suggest ξb ∈ [−0.65,−1, 41].

Using the average value of this range, we set ξb = −1.03. To link ξb(p
∗
G) with ϵp(p

∗
G), we assume that

the generic’s cost function has the constant elasticity form of equation (13), and further stipulate

that c(b) = cb. Using this functional form, we show in Appendix 2 that ϵp = −1/ξb. Thus, setting

ξb = −1.03 gives ϵp ≈ 0.97.

Effect of Patent Length on Incentives to Develop New Drug. We have two alternative

ways to calculate ϵp(p
∗
G): using ξT (p

∗
G) yields ϵp = 0.25, whereas using ξb(p

∗
G) yields ϵp = 0.97.

Assuming that these calculations mean that ϵp ∈ [0.25, 0.97], and setting p∗G = 0.17 yields ϕ(p∗G) ∈

[0.05, 0, 77]. The marginal cost of PIV patent challenge thus appears to be sufficiently inelastic to

keep innovation incentives in the pharmaceutical industry increasing in patent length, which also

implies that patent length and scope are substitutes with regard to those innovation incentives.

Evaluating Patent Policy. To complete the evaluation of patent policy, we should assess

whether ϕ(p∗G) is larger or smaller than ϵb(p
∗
G), the elasticity of the effect of patent scope on patent

challenging costs (equation (5)). We estimate ϵb(p
∗
G) similarly to ξb(p

∗
G). In Appendix 2, we show

that ϵb = 1−1/ξb. Using ξb = −1.03 gives ϵb ≈ 1.97. Thus, ϵb(p∗G) appears to be clearly larger than

our estimates of ϕ(p∗G). In sum, our results suggest ϵb(p
∗
G) > ϕ(p∗G) > 0, confirming the intuitive

argument for the desirability of shorter but broader pharmaceutical patents.

Robustness. Our empirical results provide estimates of the elasticities of PIV patent challenge

with respect to effective patent length and scope, ξT (p
∗
G) and ξb(p

∗
G). The sufficient statistics

approach we use to turn these estimated elasticities into policy prescriptions may be sensitive to

some assumptions. While all our estimates of ξb(p∗G) suggest that ϕ(p∗G) is firmly positive but below
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ϵb(p
∗
G), we use here a functional form assumption which we cannot test.

If we instead use the estimates of ξT (p
∗
G) in our policy analysis, we need no functional form

assumption but ϕ(p∗G) turns out to be close to zero (while positive). As a result, our policy conclusion

is sensitive to some estimation results (and to the chosen value for r): If we use the estimated effects

of AIPA on effective patent length instead of those of TRIPS, we will obtain somewhat higher values

of ξT (p∗G) and hence lower values of ϕ(p∗G). Using our largest estimate of the effect of AIPA from

Table 3 makes ξT (p
∗
G) sufficiently high to render ϕ(p∗G) slightly negative.

Nonetheless, we consider the case ϕ(p∗G) < 0 unlikely. For example, if ϕ(p∗G) < 0, originators

would have an incentive to find means (e.g., licensing or other contractual solutions) to shorten the

effective lengths of their patents. In line with this argument, we show in Online Appendix A.3 how

originators shy away from continuing patents with long grant lags after TRIPS and argue that such

a behavior is consistent with ϕ(p∗G) > 0 but not with ϕ(p∗G) < 0. Moreover, the estimated effects

of AIPA are somewhat ambiguous because of the earlier disclosure of patent applications in the

post-AIPA period (see Online Appendix A.2). We conclude that ϕ(p∗G) is likely to be smaller than

ϵb(p
∗
G), but hardly negative. Finally, even if ϕ(p∗G) were negative, our conclusion of the desirability

of shorter pharmaceutical patent lives would remain unchanged.

8 Conclusion

We estimate the effects of patent policy in the U.S. pharmaceutical industry by using data on new

drug patents and their challenges by generic entrants. Using DiD regressions exploiting patent term

reforms and IV regressions exploiting patent examiner leniency differences, we find that successful

PIV patent challenges increase with the effective length of new drug patents and decrease with their

scope. According to the costly imitation theory, these results create an argument for shortening

patent length, while making their scope broader to restore incentives to develop new drugs. We

confirm this policy prescription by matching our data moments with a patent policy model with

costly imitation.

Our empirical results should as such be valuable for the design of pharmaceutical patent policy.

For example, our DiD regression results provide insights into the debate on pharmaceutical patent

length (see, e.g., Budish et al., 2015; Dubois et al., 2022) by pointing out that longer patent terms
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can have adverse effects besides reduced consumer surplus. Our IV regression results in turn show

that Markush claiming can potentially be used to ward off PIV patent challenges. A future work

should build on Wagner et al. (2022) to study the effects of Markush claiming in more detail. Wider

applications of the doctrine of equivalents or means-plus-function clauses could constitute another

way to broaden the claim scope of drug patents to restrict PIV patent challenges, as proposed by

Tang (2013).

When we turn our estimated elasticities into precise policy recommendations, we resort to some

strong assumptions. For example, we abstract away from cumulative innovation – see Galasso

and Schankerman (2015, 2018) and Sampat and Williams (2019) for the effects of the existence of

patents on follow-on innovation. Nonetheless, characterizing the patent policy tradeoff at the heart

of the Hatch-Waxman Act in the classic stand-alone innovation framework should constitute the

first step towards understanding of the effects drug patent policy also when innovation is cumula-

tive. Moreover, long patent duration tends to create additional harmful effects in the presence of

cumulative innovation besides those captured by our work (Boldrin and Levine, 2004; Bessen and

Maskin, 2009). Our model also ignores pay-for-delay and other patent litigation settlements (e.g.,

Hovenkamp and Lemus, 2018; Jacobo-Rubio et al., 2020) However, those settlements in so far they

delay generic entry should make successful PIV patent challenges less beneficial for the society and

the case for shorter but broader pharmaceutical patents stronger.
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Appendix

A.1 Proofs

Proof of Proposition 1: Applying the implicit function theorem to equation (7) yields

∂p∗G
∂T

=
re−rTπ2

∂2CG/∂p2G
> 0 (16)

and
∂p∗G
∂b

= −∂2CG/∂pG∂b

∂2CG/∂p2G
< 0, (17)

in which the inequalities follow from ∂2CG/∂p
2
G > 0 and Assumption 1. □

Proof of Proposition 2: Using the implicit function theorem in equation (9) together with
∂2CB/∂p

2
B > 0 imply that the signs of ∂p∗B/∂b and ∂p∗B/∂T are given by the signs of ∂V P /∂b and

∂V P /∂T , respectively. Then, differentiating equation (8) with respect to b and using the definition
πN := π̃N/r yield

∂V P

∂b
= −

(
1− e−rT

)
(π1 − π2)

∂p∗G
∂b

, (18)

in which ∂p∗G/∂b < 0 by Proposition 1. The claim concerning patent scope follows.
Similarly, differentiating equation (8) with respect to T gives

∂V P

∂T
= (π1 − π2)

[
re−rT (1− p∗G)−

∂p∗G
∂T

(1− e−rT )

]
. (19)

After using equations (4), (7), and (16), we can rewrite this equation as

∂V P

∂T
=

re−rT

ϵp
(π1 − π2)ϕ(p

∗
G)(1− p∗G), (20)

in which ϕ(pG) is defined by equation (10). Thus the sign of ∂V P /∂T is given by the sign of ϕ(p∗G).
The claim concerning patent length follows. □

Proof of Proposition 3: Using equation (9), which determines p∗B (b, T ), in applying the implicit
function theorem to equation (12) yields

∂T

∂b
= − ∂V P /∂b

∂V P /∂T
. (21)

We may now re-express the planner’s problem as maxb∈[0,∞) V
S(b, T (b)). Differentiating V S(b, T (b))
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with respect to b gives
dV S

db
=

∂V S

∂b
+

∂V S

∂T

∂T

∂b
. (22)

After substituting equations (18) and (20) for equation (21), we get

∂T

∂b
=

(1− e−rT )ϵp
re−rT (1− p∗G)ϕ(p

∗
G)

∂p∗G
∂b

. (23)

Let wN := w̃N/r. Then, differentiating equation (11) with respect to b gives

∂V S

∂b
=

[(
1− e−rT

)
(w2 − w1)−

∂CG

∂pG

]
∂p∗G
∂b

− ∂CG

∂b
. (24)

Similarly, for T we get

∂V S

∂T
= −re−rT (1− p∗G) (w2 − w1) +

[(
1− e−rT

)
(w2 − w1)−

∂CG

∂pG

]
∂p∗G
∂T

,

which can be rewritten after some algebra by using equations (4), (7), (10), and (16) as

∂V S

∂T
=

−re−rT

ϵp
[(w2 − w1)ϕ(p

∗
G)(1− p∗G) + p∗Gπ2] . (25)

After using equations (23)–(25), and some algebra, equation (22) can be written as

dV S

db
= −

∂p∗G
∂b

[
∂CG

∂pG
+

(
1− e−rT

)
π2p

∗
G

ϕ(p∗G)(1− p∗G)

]
− ∂CG

∂b
.

By using equations (4), (5), (7), (10), and (17), this expression can be further rewritten as

dV S

db
=

∂CG

∂b

[
ϵb(p

∗
G)

ϕ(p∗G)
− 1

]
. (26)

Since ∂CG/∂b > 0 by assumption, the sign of dV S/db is given by the sign of the term in the square
brackets of equation (26).

An optimal patent policy reform is characterized by the signs of equations (23) and (26). Equa-
tion (26) tells us the optimal direction of patent scope and equation (23) tells us the direction
where patent length needs to be adjusted to compensate a change in patent scope. As to the sign
of equation (23), Proposition 1 implies that ∂p∗G/∂b < 0. As a result, the sign of ∂T/∂b is given
by the sign of −ϕ(p∗G). As to the sign of equation (26), recall first the implication of Assumption 1
that ϵb(p

∗
G) > 0. Thus, if ϕ(p∗G) < 0, the term in the square brackets of equation (26) is definitely

negative and dV S/db < 0. If ϕ(p∗G) > 0, then the first term in the square brackets of equation
(26) is positive. Then the term in the square brackets is negative if ϵb(p∗G) < ϕ(p∗G), and positive if
ϵb(p

∗
G) > ϕ(p∗G).
To sum up: i) If ϵb(p∗G) > ϕ(p∗G) > 0, ∂T/∂b < 0 and dV S/db > 0. Increasing patent scope and
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reducing length is efficient; ii) If ϕ(p∗G) < 0, ∂T/∂b > 0 and dV S/db < 0. Reducing both patent
scope and length is efficient; iii) If ϕ(p∗G) > ϵb(p

∗
G), ∂T/∂b < 0 and dV S/db < 0. Reducing patent

scope and increasing length is efficient. □

A.2 Elasticity Calculations for Section 7

Recall from Section 7 the definitions

ξj(pG) :=
∂pG
∂j

j

pG
, j ∈ {b, T} . (27)

We now prove the claims of Section 7 concerning the relation of ξj(p∗G) to ϵp(p
∗
G) of equation (4),

and to ϵb(p
∗
G) of equation (5).

Let us start with the relationship between ξT (p
∗
G) and ϵp(p

∗
G). Using the first-order condition

(7) to eliminate π2 from equation (16) allows us to rewrite equation (16) as

∂p∗G
∂T

=
re−rT

(1− e−rT )

∂CG/∂pG
∂2CG/∂p2G

.

Multiplying both sides of this equation by T/p∗G gives

∂p∗G
∂T

T

p∗G
=

e−rT rT

(1− e−rT )

∂CG/∂pG
p∗G∂

2CG/∂p2G
.

By using the definitions of the elasticities (4) and (27) this equation can be rewritten as

ξT (p
∗
G) =

e−rT rT

(1− e−rT )ϵp(p∗G)
,

i.e.,

ϵp(p
∗
G) =

e−rT rT

(1− e−rT )ξT (p∗G)
.

This equation equals equation (15) of Section 7.
To link ξb(p

∗
G) with ϵp(p

∗
G), we assume that the generic firm’s cost function is specified by

equation (13), and further stipulate that c(b) = cb. Then, equation (13) can be expressed as
CG(pG, b) = cbpηGG /ηG. Using this cost function in equation (7) yields after some algebra

p∗G (b, T ) =

[(
1− e−rT

)
π2

cb

] 1
ηG−1

. (28)

Differentiating equation (28) with respect to b gives

∂p∗G
∂b

= −1

b

(
1

ηG − 1

)[(
1− e−rT

)
π2

cb

] 1
ηG−1

.
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Using equation (28) and multiplying both sides of the equation above by b/p∗G gives

∂p∗G
db

b

p∗G
=

1

1− ηG
,

which may be rewritten by using equation (27) as

ηG = 1− 1

ξb
. (29)

Using equation (13) in equation (4) yields ϵp = ηG−1 which, according to equation (29), is equivalent
to ϵp = −1/ξb, as claimed in Section 7. Our claim in Section 7 that ϵb = 1 − 1/ξb directly follows
from equation (29) and Example 1 of Section 6 in which we show that ϵb = ηG.
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Online Appendix

Online A.1 Data Construction

In this appendix we describe the details of our data sources and variable construction. We also
address the issue of missing observations in the outcome variable.

Online A.1.1 Identifying FDA Approved New Drugs and Their Patents: Orange Book
and Drugs@FDA

The main data for our empirical analysis comes from the FDA’s publication Approved Drug Products
with Therapeutic Equivalent Evaluations, commonly known as the Orange Book. We use the annual
editions 21–33 (corresponding years 2001–2013) of the Orange Book. The editions 21–32 in electronic
format were received from the FDA through a Freedom of Information Act (FOIA) request. The
33rd edition was downloaded from the FDA web-pages. The Orange Book digital publications
consist of product, patent, and exclusivity data files. The product file identifies each drug with an
FDA application number and, among others, lists information on active ingredient, dosage form,
strength, producer, trade name and approval date. The patent file lists the patents included in
each drug application. If a drug is covered by the FDA exclusivity the type of exclusivity and its
latest expiration date are listed in the exclusivity file. Using the drug application numbers we first
combine the Orange Book data files into one, and then link it with the early 2014 release of the
Drugs@FDA database, Application and Product Tabs.7

The unit of observation in our analysis is a new drug patent. By definition, only new medicines,
New Drug Applications (NDAs), may be listed in the Orange Book with corresponding patent
information. Each patent thus protects an NDA. To account for the characteristics of NDAs, we
aggregate drug application level data into the patent level observations. For example, if a patent
protects a drug in a tablet form, we assign value one to the patent level indicator variable Tablet.
The indicator variables for two other common drug forms, Capsule and Injectable, are calculated
similarly. Some patents protect several active ingredients listed in the Orange Book. So we identify
the first FDA-approved active ingredient protected by a given patent. We also identify the first
FDA approval date of an NDA protected by a patent.

New chemical and orphan drug exclusivities are marked in the Orange Book by the codes "NCE"
and "ODE", respectively. Using these codes, we construct the indicator variables New chemical
exclusivity and Orphan drug exclusivity measuring whether or not a patent protects a drug with
new chemical or orphan drug exclusivity.

A drug receives pediatric exclusivity if its producer has conducted clinical trials and proved
efficacy and safety of its drug for children. In this case, additional six month of exclusive marketing
rights are added to all existing patents and exclusivities covering the drug (21 U.S.C. § 355a(b)). A

7The latest releases of the Orange Book and Drugs@FDA are available, respectively, at https://
www.fda.gov/Drugs/InformationOnDrugs/ucm129662.htm and https://www.fda.gov/Drugs/InformationOnDrugs/
ucm079750.htm (accessed April 2, 2020).
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patent listed for an application with pediatric exclusivity has is recorded twice in the Orange Book:
first, with the original patent number and its corresponding original expiration date, and second,
with the original patent number followed by a "*PED" mark and a new expiration date six months
later than the original one. Based on "*PED" designations, we assign value one to the indicator
variable Pediatric exclusivity if the patent protects a drug with pediatric exclusivity. Using the
Orange Book, we also compute the latest FDA exclusivity year for each patent, and identify the
patent expiration date.

We identify priority reviewed drugs from the Drugs@FDA database. Priority reviewed drugs
are assessed by the FDA faster as they, if approved, would represent significant improvements over
available therapy, and thus might be particularly valuable. During our data period, such drugs were
marked by a letter "P" or "P*" in the Therapeutic Potential column of the Drugs@FDA Application
Tab. Based on these codes, we construct the indicator variable Priority measuring whether or not
a patent protects a drug that was priority reviewed by the FDA.

Online A.1.2 Identifying Successful Patent Challenges: Abbreviated New Drug Appli-
cation Approval Letters and Orange Book

We measure successful PIV challenges to new drug patents. In a PIV patent challenge, a generic
firm seeks to enter prior to the expiration of a new drug patent by filing an Abbreviated New Drug
Application (ANDA) to the FDA containing a certification that the new drug patent is invalid or
noninfringed by the generic drug (21 U.S.C. § 355(j)(2)(A)(vii)(IV)). To construct the outcome
variable, we first obtain the list of the approved ANDAs containing PIV certifications from the
FDA through a FOIA request. To link this list with patent numbers, we seek the FDA’s letters
approving these ANDAs. Each originator drug is usually protected by multiple patents, and these
approval letters specify all originator drug patents that have successfully been challenged. Some of
the letters are readily available from the FDA web-pages through the Drugs@FDA search engine.
To collect more letters, we submit FOIA requests to the FDA. The data collection process has been
slow, since the FDA only accepts a few FOIAs per month.

We read each approval letter and record patent numbers together with corresponding PIV cer-
tifications mentioned in the letters. Using patent numbers, we then link the data on PIV patent
challenges from ANDA approval letters to the data on all new drug patents listed in the Orange
Book. Some patents are challenged by multiple generics, so we calculate the earliest PIV ANDA
approval date for each patent from the Orange Book files. We then construct our outcome variable,
PIV patent challenge, as an indicator which equals one if a new drug patent has successfully been
challenged via PIV certification at least once.

PIV patent challenges by definition only concern patents before they expire. However, six
patents in our sample are listed in the FDA approval letters as challenged through PIV certification
even though the patents expired before the approval of the first generic drug. We classify them as
non-challenged, but the results do not change if we assign them as challenged.

Missing Observations in PIV Challenged Patent Numbers. Some of the PIV challenged
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patent numbers are missing from our dataset. The FDA provided us with a list of 1020 ANDAs
containing PIV certifications and we have collected the 677 approval letters for these ANDAs. There
are thus 343 ANDAs in our sample for which the exact numbers of challenged patents are missing.

While we continue to file the FOIA requests to the FDA to update our data, we believe that
our estimation sample is comprehensive enough to allow for an accurate measurement of both our
outcome variable, PIV patent challenge, and its timing: First, when filing the FOIA requests to the
FDA, we randomize over the target ANDA approval letters. Since the FDA sends us exactly what
we ask for, each month we receive approval letters of several randomly chosen ANDAs and add
the challenged patent numbers from these letters to our sample. For some time now, our outcome
variable of interest, PIV patent challenge, has remained virtually unchanged as we add missing
patent numbers. Second, to measure PIV patent challenge correctly, we only have to observe one
of potentially many successful challenges of a new drug patent.

Third, we aggregate the challenges to the active ingredient level, and measure whether or not
we observe both 180-day generic exclusivity and a PIV challenged patent for each challenged active
ingredient. That 180-day exclusivity is granted to the first filer of an ANDA and reliably measures
the first successful PIV patent challenge of an active ingredient. ANDAs which have received 180-
day exclusivity are marked by "PC" designation in the Orange Book. Our sample includes 1009
unique active ingredients and 150 of them are associated with ANDAs holding 180-day exclusivity.
Out of those 150 active ingredients, we fail to observe a PIV challenged patent number only in 13
cases. Hence, the probability of PIV patent challenge of a drug is almost the same (0.15 versus
0.14) regardless of whether it is calculated based on the 180-day exclusivity or our granular patent
challenge information. The probability of PIV patent challenge is also fairly similar at the active
ingredient level and at the patent level (0.15 versus 0.17), despite the different units of observation
(see Table 1 for the patent-level summary statistics). Fourth, when looking at those 150 PIV patent
challenged active ingredients, the average year of the first PIV patent challenge is in practice the
same regardless of whether we calculate it based on the earliest approval date of generic drugs
with 180-day exclusivity or based on the earliest approval date of generic drugs with non-missing
challenged patent numbers. We thus also appear to measure the timing of (the first) PIV patent
challenge reliably.

Online A.1.3 Measuring Effective Patent Length, Grant Lags, PTAs, and Some Patent
Characteristics: USPTO PatEx and Orange Book

Effective Patent Length. Our primary measure of the effective length of patent i is

Effective lengthi = Expiration datei −max{Grant datei,Drug approval datei},

in which Expiration datei is the date when patent i expired, Drug approval datei is the date when
the FDA approved the first of potentially many new drugs protected by patent i, and Grant datei
is the date when the USPTO issued patent i. We identify patent grant dates from the Application
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Data Tab of the USPTO PatEx, and the FDA approval and patent expiration dates from the product
and patent files of the Orange Book. The expiration dates take into account various patent term
extensions and adjustments that compensate for regulatory delays at the FDA and at the USPTO
separately.

Patent Grant Lags. The grant lag of patent i is calculated as

Grant lagi = Grant datei − Filing datei,

in which Filing datei is the date on which USPTO received the application that was subsequently
issued as patent i. Like grant dates, we identify patent filing dates and application numbers from
the Application Data Tab of PatEx.

PTAs. We use patent application numbers to collect PTAs from the Patent Term Adjustment
Tab of PatEx. Compensations for patent term forgone due to the USPTO regulatory delays are
labeled as patent term extensions for patents filed after the adoption of TRIPS on June 8, 1995 but
before the implementation of AIPA, on May 29, 2000, after which the compensations are labeled as
patent term adjustments.8 For brevity and following the variable label in the PatEx files, we call
both of these term modifications PTAs.

Other Patent Characteristics from PatEx. We assign the value one to the continuing
patent indicator if a patent has been filed as a continuation, a continuation-in-part or a divisional
application. We identify this information using application numbers from the Continuity Data
Tab of PatEx where continuation, continuation-in-part and divisional applications are recorded as
"CON", "CIP" and "DIV", respectively.

We use the Application Data Tab of PatEx to retrieve the USPC numbers and examiners’ Art
Unit codes. We identify the Technology Centers from the first two digits of the Art Unit codes.
As the number of patents and their examiners in some Technology Centers is small, we combine
patents prosecuted in the Technology Centers that have issued less than 100 new drug patents into
one group (with 188 patents).

Online A.1.4 Measuring Claim Scope: USPTO Patent Claims Research Dataset

Our measures of patent claim scope are the numbers of Markush groups (as proxied by the phrase
"selected from"), conjunctions "or" and words in the first independent claim, and the number of
independent claims in each patent. The data on these measures of claim scope is available from the
USPTO Patent Claims Research Dataset and we link it to our main dataset using patent numbers.

We instrument these measures of claim scope with the "examiner’s historical average" calculated
according to equation (3). To construct the instruments, we first identify the examiners of new drug
patents from the Application Tab of PatEx. We then find all patents reviewed by these examiners
and link the data using the patent number to the USPTO Patent Claims Research Dataset. Finally,
we identify the scope outcomes for all granted patents reviewed by these examiners.

8See, e.g., https://www.uspto.gov/web/offices/pac/mpep/s2720.html and https://www.uspto.gov/web/
offices/pac/mpep/s2730.html (accessed April 3, 2020).
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Online A.1.5 Measuring Method and Active Ingredient Patents: Google Patent

We combine text recognition algorithms and manual verification to identify method and active
ingredient patents. Our classification approach employs the texts of the abstracts and first claims
of patents. We collected the full texts of patent abstracts and the first claims using Google Patent
Search Engine and data scrapping algorithms (written in Python using BeautifulSoup and urlib2

packages.)
Method patents covering drugs mostly pertain to the method of use of a drug or the ultimate in-

tended effect of a patented chemical. Typically the first claim of a method patent begins with a word
"method" or "process". For example, the first claim of the USPTO patent number 4870105 begins
with: "A method for inhibiting gastrointestinal absorption ...". Hence, we assign the the method
patent indicator equal to one, if the first claim of the patent begins with the words "method" or
"process". We manually verified texts of multiple patents to ensure the accuracy of the assignment.

We assign the value one to the active ingredient indicator if the first claim of a patent pertains
a chemical formula. We classify the first claim as a chemical formula when its first four symbols are
a combination of single letters, dashes, commas or digits, for example, "N,N" or "R-R". The active
ingredient indicator also equals one if the first three words of the first claim indicate a chemical
compound and its variations. Word combinations used in chemical compound patents are, e.g.,
"composition of matter", "compound", "chemical compound", "antiviral compound", "amine", and
"peptide". We also identify patents claiming solid forms (crystallines) of compounds, derivatives
of compounds, and some other cases based as active ingredient patents. In identifying the active
ingredient patents, we used Python package re and relied on regular expressions.

Manual checks suggest that the patents in our sample not classified as methods nor active
ingredients mostly pertain to drug delivery systems, devices, or formulations.

Online A.1.6 Measuring Backward and Forward Citations: USPTO PatFT

We collect the data on forward and backward citations from PatFT using a Python algorithm. We
define the number of backward citations as the number of patent documents (including foreign)
listed on under the headline "References Cited" of our sample patent, and the number of forward
citations as the number of the U.S. issued patents mentioning our sample in their "References
Cited" list. Forward citation data was collected from PatFT using "Referenced By" retrieval tool
in October 2017.

Online A.1.7 Measuring Patent Family: EPO Open Patent Services

Various definitions of patent family are used in the literature. One commonly used definition of
patent family (see, e.g., Lanjouw and Schankerman, 2004; Sampat and Williams, 2019) is the number
of distinct countries where the same patent has been filed. We follow this definition and construct
patent family size as follows: We first collect the "DOCDB simple patent families" of the new drug
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patents in our sample from the Open Patent Services of the EPO in October 2017 9. To collect the
data, we used an algorithm and the Application Programming Interface granted to authors by the
EPO. (The algorithm is written in Python using epo_ops and xml packages).

A "DOCDB simple patent family" may contain multiple patents from one patent office since
it, e.g., includes continuing patents in addition to their parent patents. To solve the problem, we
count the unique countries based on the country codes, which are the two letters preceding patent
numbers retrievable from the Open Patent Services (e.g., Canadian patents contain a prefix CA,
Japanese JP, Finnish FI, etc.). Thus, even if the DOCDB simple patent family lists several patents
with the country code JP, we count Japan in our family size variable only once.

Online A.2 Patent Length Estimations: Robustness

Online A.2.1 Event Study

We estimate the following event study specification using the same controls as in the DiD specifi-
cation in column (3) of Table 3:

1[PIV entryit] = α+ β11[Grant lagi ≥ 3years] (A1)

+
4∑

l=−5,l ̸=−1

µl1[Grant lagi ≥ 3years]× 1[t− 1995 ∈ {2l, 2l + 1}]

+µ−61[Grant lagi ≥ 3years]× 1[t− 1995 < −10]

+µ51[Grant lagi ≥ 3years]× 1[t− 1995 > 9] + γ′Xi + δt + εit.

In equation (A1), 1[t − 1995 ∈ {2l, 2l + 1}] is an indicator variable equaling one if the difference
between the filing year t of patent i and the implementation year of TRIPS is either 2l or 2l + 1

years. To estimate the event study coefficients µl around TRIPS, we thus bin observations into
two-year periods to improve the precision of estimates (the average number of patents per filing
year is only 103 with a standard deviation of 74). We also bin the largest leads and the largest lags,
respectively, as shown by the third and fourth rows of equation (A1). The first lead l = −1, i.e.,
patents filed one and two years before TRIPS, is excluded as a normalization. The coefficients µl

for l ≤ −2, l = 0, 1, 2 and l ≥ 3 capture, respectively, possible pre-trends in the outcome, the effects
of TRIPS, and the the effect of AIPA.

We report the event study estimates in Figure A1. The x-axis shows the number of years between
patent filing and the implementation of TRIPS in 1995. Five years after TRIPS corresponds to the
implementation of AIPA in 2000. The event study estimates are consistent with the DiD estimates
but more imprecise: they suggest a decrease in the probability of PIV patent challenge between
TRIPS and AIPA on average. There appears to be no statistically significant pre-trend in the
outcome.

9https://www.epo.org/searching-for-patents/helpful-resources/first-time-here/patent-families/docdb.html (ac-
cessed April 24, 2020)
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Figure A1: Event Study Estimates.

Notes: This figure shows event study coefficient estimates and 90 percent confidence intervals of the effects of TRIPS
and AIPA on the probability of successful PIV patent challenge. The coefficients are estimated for each two-year
period, rather than each year, due to a small number of patents per filing year (103 on average with a standard
deviation of 74). The x-axis shows the number of years between patent filing and the implementation of TRIPS in
1995. Five years after TRIPS corresponds to the implementation of AIPA in 2000. The horizontal line represents
the omitted coefficient for one and two years before TRIPS. The specification includes the same controls as the one
in column (3) of Table 3. Standard errors are clustered at the level of patents protecting the same active ingredient.

Online A.2.2 Other Impacts of TRIPS and AIPA

Besides the changes affecting effective patent length described in Section 4.1, TRIPS and AIPA
introduced other changes to the U.S. patent law. We next analyze some of these other changes that
could affect the credibility or interpretation of our results concerning the effect of effective patent
length on the probability of PIV patent challenge.

Provisional Patent Applications. TRIPS introduced a provisional patent application as a
simplified version of a regular utility patent application. Provisional applications include no claims
nor description of prior art, are not subject to examination, and automatically expire after one
year (35 U.S.C. § 111 (b)). The purpose of a provisional application is to give priority rights on
invention without starting the patent clock: If a regular utility patent application is filed for the
same invention before the expiration of its provisional application, the priority date is the provisional
application date but the patent term is calculated from the utility patent application date.

A threat to our identification might arise if the use of provisional applications varies across
patents depending on their prosecution time. To address this concern, we first create the provisional
application indicator which equals one if a patent claims the priority date of a provisional application.
We identify these patents based on the "PRO" designations listed in the Continuity Data Tab of
PatEx. We then estimate the DiD model of equation (2) using the provisional application indicator
as the dependent variable.

The results reported in column (1) of Table A1 suggest no systematic relationship between the
probability of a patent claiming the priority date of a provisional application and its grant lag in the
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different policy regimes. Another robustness check confirms this conclusion: when we estimate the
specification in equation (2) using a sample excluding all patents with the provisional application
indicator equal to one, the effects of TRIPS and AIPA, reported in column (1) of Table A2 in the
next subsection, become stronger and more precisely estimated than in Table 3.

Table A1: Patent Characteristics and Patent Law Changes by Patent Grant Lag.

Outcome Provi- Conti- log(Markush Active log(Public log(Family log(Backward
sional nuing groups+1) ingredient length) size) citations+1)
(1) (2) (3) (4) (5) (6) (7)

Grant lag ≥3 years 0.000 0.076 0.030 0.001 -0.081 -0.174 0.385
(0.000) (0.030) (0.038) (0.033) (0.013) (0.091) (0.078)

Grant lag ≥3 years,
Post-TRIPS 0.024 -0.138 -0.032 -0.012 -0.088 0.013 0.140

(0.030) (0.055) (0.054) (0.041) (0.023) (0.141) (0.123)
Grant lag ≥3 years,
Post-AIPA 0.019 -0.193 -0.036 -0.063 0.294 0.216 -0.078

(0.045) (0.052) (0.058) (0.037) (0.026) (0.140) (0.133)
Mean dep. variable 0.214 0.589 0.247 0.226 2.777 1.905 2.760
Observations 3517 3517 3485 3517 3517 3511 3517
Filing year FE × × × × × × ×

Notes: This table reports estimates of the effects of TRIPS and AIPA on patent characteristics. Columns (1)–(7) show
coefficients from an OLS regression of the Provisional application indicator, the Continuing patent indicator, log(Markush
groups+1), the Active ingredient patent indicator, log(Public length), log(Patent family size), and log(Backward citations+1),
respectively, on three different indicators for patents with at least a three-year grant lag and filing year fixed effects (FEs).
Standard errors, in parentheses, are clustered at the level of patents protecting the same active ingredient.

Continuing Patents. In the case of continuing patents, which represent close to 60 percent
of our sample (see Table 1), TRIPS had an impact on effective patent length besides those effects
discussed in Section 4.1. Before TRIPS, the terms of continuing patents and other patents were
calculated in the same way, implying that continuing patents typically expired later than their
(earlier-filed) parent patents. After TRIPS, continuing patents expire simultaneously with their
parent patent (35 U.S.C. §154 (a)(2)). Thus, TRIPS shortened the effective patent length of contin-
uing patents more than that of other patents, and this shortening is stronger for continuing patents
prosecuted over three years. As a result, long patent prosecution times might incentivize originators
to opt for separate patent applications instead of continuing applications after TRIPS. Supporting
this idea, patents with long prosecution lags are less likely to be continuing after TRIPS, compared
to other patents in our sample, as shown in column (2) of Table A1.

A smaller share of continuing patents in the post-TRIPS period of our sample has several
implications: First, it implies a stronger variation in effective patent length stemming from the
variation in patent grant lags. Second, since continuing patent applications might be used as a tool
to make patent protection stronger (see, e.g., Lemley and Moore 2004), it raises the concern that
our baseline estimates of the effect of TRIPS on patents with long prosecution lags would partially
reflect narrower patent protection. To address this concern, we estimate the DiD model of equation
(2) using a sample of continuing patents. The results, reported in column (2) of Table A2, support
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our main result of the positive impact of longer effective patent terms on the probability of PIV
patent challenge: the effects of TRIPS and AIPA on the patents prosecuted at least three years are
stronger than in any other specification. The results in columns (3), (4), and (7), discussed at the
end of the subsection, also mitigate the concern that potentially narrower patent protection in the
post-TRIPS period would be driving our main results.

Third, taken together, the results in columns (2) of Tables A1 and A2 suggest that TRIPS
made continuing patents with long grant lags less valuable for originators even if it simultaneously
reduced the threat of PIV patent challenges to these patents. We interpret these results as reflecting
the strong negative effect of TRIPS on the effective length of continuing patents with long grant
lags. Then, by revealed preference, the results also support our policy conclusion of Section 7 that
f(p∗G) > 0 is more likely than f(p∗G) < 0: if f(p∗G) were negative, we should have observed the
proportion of continuing patents to increase in the post-TRIPS period.

Disclosure of Patent Applications. AIPA affected disclosure of patent applications (see, e.g.,
Johnson and Popp 2003). Prior to AIPA, patent applications were not published before they were
issued. AIPA harmonized disclosure in the United States with international standards according to
which a pending patent application is published 18 months after its filing date. For patents with
long grant lags, the resulting loss in secrecy can be substantial, whereas patents granted (and, by
implication, published) within 18 months loose little. Earlier disclosure of a patent application may
lengthen the effective time for patent challenging, and hence affect the interpretation of our results
concerning the effect of AIPA.

To evaluate the effects of AIPA on patent information disclosure in our setting, we measure the
new drug patent length beginning from its disclosure. We define the public length of patent i filed
in year t as

Public lengthit =



Expiration datei − Grant datei,

if 1[Grant lagi≥18 months]× 1[Post-AIPAi] = 0

Expiration datei − Filing datei + 18 months,

if 1[Grant lagi≥18 months]× 1[Post-AIPAi] = 1,

in which the indicator variable 1[Grant lagi≥18 months] gets, analogous to 1[Grant lagi≥3 years]
of equation (2), value one if the grant lag of patent i is at least 18 months.

Our calculation provides a crude measure of the effect of AIPA on public patent length. For
instance, the calculation ignores the disclosure of the U.S. inventors’ international applications
after 18 months prior to AIPA, the exception to the post-AIPA publication requirement concerning
applicants who waive the possibility of international patenting (35 U.S.C. § 122 (b)(2)(B)(i)), and
the requirement that the filing date of patent i should be measured from its earliest filing date in
the post-AIPA period (35 U.S.C. § 122 (b)(1)(A)).

We then estimate the DiD model of equation (2) using log(Public lengthi) as the dependent
variable. Column (5) of Table A1 reports the results. Compared to the estimate reported in column
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(6) of Table 3, the coefficient estimate of the term 1[Grant lagi≥3 years] × 1[Post-AIPAi] is now
larger. While this result may arise from the imprecise measurement of public length, it may also
indicate that an increase in public length partially contributes to the estimated positive effect of
the longer effective patent length on the probability of PIV patent challenge. Overall, however,
estimates of the effects of TRIPS and AIPA depending on grant lags reported in column (6) of
Table 3 and column (5) of Table A1 are similar.

Other Changes due to TRIPS and AIPA. Finally, we explore whether our results con-
cerning the differential impacts of TRIPS and AIPA on the probability of PIV patent challenge
depending on grant lags could be explained by simultaneous differential changes in patent scope or
value induced by various patent law modifications of TRIPS and AIPA. In this respect, estimates
reported columns (3), (4), (6), and (7) of Table A1 are comforting: we observe no clear impacts of
TRIPS and AIPA on the relationship between grant lags and patent scope or value, as measured by
the number of Markush groups in the first independent claim, the proportion of active ingredient
patents, patent family size, and the number of backward citations.

Online A.2.3 Other Subsamples and Specifications

Table A2 provides results from the estimation of the DiD model of equation (2) using different
subsamples and specifications. We report estimates using a sample that excludes patents claiming
the priority date of a provisional application in column (1) and using a sample that only includes
continuing patents in column (2).

The results in column (3) are generated by a sample that excludes all other new drug patents
sharing the common parent application except for the latest one. We identify the excluded patents
using information on parent applications from the Continuity Data Tab of PatEx. In column (4)
the results arise from a sample that only includes patents protecting drugs for which we observe
FDA exclusivity. These patents might be more valuable or, as our results of Table (2) indicate,
more difficult to challenge than patents protecting drugs for which we observe no FDA exclusivity.
We observe no exclusivity if a patent protected drug did not have one or if its exclusivity expired
before 2001. Also, when constructing fixed effects for the latest FDA exclusivity expiry year, we
group together patents protecting drugs without observed exclusivity.

Column (5) reports estimates from a model that, analogous to survival models, includes fixed
effects to control for the length of exposure of a patent to PIV patent challenges. In this specification
we, in addition to a full set of other controls, include an indicator measuring the time (in years)
between the grant date of a patent and its expiration date or the earliest successful PIV patent
challenge date. whichever is earlier. Finally, we estimate a model allowing for richer interactions
between grant lags and patent policy reforms, and report the results in column (6).

The signs and magnitudes of the coefficient estimates reported in Table A2 are similar to those
coefficients reported in columns (1)–(5) of Table 3. If anything, the effects of TRIPS and AIPA
are now stronger and more precisely estimated. Coefficients of the additional interaction terms
involving patents with a grant lag exceeding five years reported in Column (6) are imprecisely
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estimated, possibly because we have only 417 such patents in our sample.

Table A2: Probability of Successful PIV Patent Challenge and Patent Law Changes by Patent
Grant Lag: Robustness Analysis.

(1) (2) (3) (4) (5) (6)
Grant lag ≥3 years 0.025 0.030 0.016 0.032 0.040

(0.025) (0.029) (0.029) (0.031) (0.024)
Grant lag ≥3 years,
Post-TRIPS -0.123 -0.180 -0.126 -0.118 -0.132

(0.041) (0.052) (0.044) (0.046) (0.035)
Grant lag ≥3 years,
Post-AIPA 0.089 0.154 0.105 0.087 0.090

(0.044) (0.051) (0.041) (0.039) (0.030)
Grant lag 3-5 years 0.023

(0.027)
Grant lag 3-5 years,
Post-TRIPS -0.102

(0.041)
Grant lag 3-5 years,
Post-AIPA 0.075

(0.039)
Grant lag > 5 years 0.033

(0.039)
Grant lag > 5 years,
Post-TRIPS -0.117

(0.071)
Grant lag > 5 years,
Post-AIPA 0.065

(0.063)
Mean dependent variable 0.179 0.176 0.167 0.180 0.173 0.173
Observations 2731 2054 2627 2668 3478 3483
R-squared 0.233 0.268 0.210 0.262 0.385 0.234
Exposure length FE ×
Filing year FE × × × × × ×
Drug controls × × × × × ×
Exclusivity expiration year FE × × × × × ×
Patent controls × × × × × ×
USPC FE × × × × × ×
Sample No prior Continuing Latest FDA Full Full

provisional filed exclusivity
Notes: This table reports estimates of the effects of TRIPS and AIPA on the probability of successful PIV patent
challenge. Columns (1)–(5) show coefficients from an OLS regression of the PIV challenge indicator on three and
column (6) on five indicators for patents with at least a three-year grant lag and controls. FE stands for fixed
effects. Drug controls include the indicators New chemical exclusivity, Orphan drug exclusivity, Pediatric exclusivity,
Priority review, Capsule, Injectable, and Tablet. Patent controls include log(Markush groups+1), log(Backward
citations+1), log(Forward citations+1), log(Patent family size), and the indicators Active ingredient patent, Method
patent, and Continuing patent. In columns (1)–(4) the samples exclude patents claiming the priority date of a
provisional application, first-filed patents covering the same invention, all but the latest-filed patents covering the
same invention, and patents protecting drugs without (observed) FDA exclusivity, respectively. Standard errors, in
parentheses, are clustered at the level of patents protecting the same active ingredient.
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Online A.3 Patent Scope Estimations: Robustness

Table A3 reports estimates of various claim scope measures from the OLS model of equation (1).
Column (1) shows an estimate using the specification of column (3) in Table (2). We then replace
the number of Markush groups in the first independent claim with alternative measures of patent
claim scope: the number of the conjunction "or" in the first independent claim (column (2)), the
number of words in the first independent claim (column (3)), the number of independent claims
(column (4)). Only the coefficient estimate in column (2) suggests a statistically significant negative
relationship between the probability of PIV patent challenge and patent scope. When compared
with our IV estimates from Table (5), there appears to be an upward bias in most of these OLS
estimates.

Tables (A4)–(A6) report the results from our exploration of 2SLS estimates of patent scope
measures. Tables (A4) and (A5) show that the results reported in Table (5) are robust, respectively,
to the exclusion of control variables, and to the inclusion of the interaction of Technology Center
fixed effects with filing year fixed effects, which controls for Technology Center specific trends. Table
(A6) reports estimates from a regression in which we replace Technology Center fixed effects with
Art Unit fixed effects. The number of patents per Art Unit is small, only 21 on average. Even if we
group Art Units with less than 10 patents into one group of 266 patents, coefficients of the scope
measures become less precisely estimated (although remaining similar in magnitude) than in Table
(5). The only scope measure generating statistically significant effects is the number of words in
the first independent claim.

Our results are robust to using the following alternative measures of claim scope: the number of
claims, and the numbers of characters and the phrase "consisting of" in the first independent claim,
with the last measure being an alternative proxy for a Markush group (see Section 2.4). We have
also experimented with a binary variable of whether or not there is at least one Markush group
in the first independent claim without changing the results. We omit these regression results for
brevity.
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Table A3: Probability of Successful PIV Patent Challenge and Patent Scope: OLS Estimates.

(1) (2) (3) (4)
log(Markush groups+1) -0.013

(0.012)
log(Conjunctions "or"+1) -0.020

(0.007)
log(Words) -0.001

(0.007)
log(Independent claims) -0.009

(0.008)
Mean dependent variable 0.173 0.173 0.173 0.173
Observations 3483 3483 3483 3485
R-squared 0.242 0.241 0.243 0.241
Technology Center FE × × × ×
Filing year FE × × × ×
Drug controls × × × ×
Exclusivity expiration year FE × × × ×
Patent controls × × × ×
USPC FE × × × ×

Notes: This table reports coefficients from OLS regressions of the probabil-
ity of successful PIV patent challenge on scope measures and controls. FE
stands for fixed effects. Drug controls include the indicators New chemi-
cal exclusivity, Orphan drug exclusivity, Pediatric exclusivity, Priority re-
view, Capsule, Injectable, and Tablet. Patent controls include log(Effective
length), log(Backward citations+1), log(Forward citations+1), log(Patent
family size), and the indicators Active ingredient patent, Method patent,
and Continuing patent. Standard errors, in parentheses, are clustered at
the level of patents protecting the same active ingredient.
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Table A4: Probability of Successful PIV Patent Challenge and Patent Scope:
Robustness of IV Estimates to Exclusion of Control Variables.

(1) (2) (3) (4)
log(Markush groups+1) -0.244

(0.071)
log(Conjunctions "or"+1) -0.095

(0.030)
log(Words) -0.484

(0.233)
log(Independent claims) -0.154

(0.123)
Mean dependent variable 0.173 0.173 0.173 0.173
Observations 3447 3447 3447 3449
First-stage F-statistic 41.446 127.960 5.417 15.264
Technology Center FE × × × ×
Filing year FE × × × ×
USPC FE × × × ×

Notes: This table reports coefficients from 2SLS regressions of the
probability of successful PIV patent challenge on instrumented scope
measures and controls. The instruments are the cumulative averages
of the scope measures of all patents reviewed by the examiner of a new
drug patent, until one year preceding the filing year of the new drug
patent. The first stage F-statistic tests is on the excluded instruments.
FE stands for fixed effects, respectively. Robust standard errors are in
parentheses.
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Table A5: Probability of Successful PIV Patent Challenge and Patent Scope:
Robustness of IV Estimates to Technology Center Specific Trends.

(1) (2) (3) (4)
log(Markush groups+1) -0.218

(0.091)
log(Conjunctions "or"+1) -0.101

(0.052)
log(Words) -0.219

(0.091)
log(Independent claims) 0.062

(0.132)
Mean dependent variable 0.173 0.173 0.173 0.173
Observations 3445 3445 3445 3447
First-stage F-statistic 24.520 43.897 14.769 10.592
Technology Center FE × Filing year FE × × × ×
Drug controls × × × ×
Exclusivity expiration year FE × × × ×
Patent controls × × × ×
USPC FE × × × ×

Notes: This table reports coefficients from 2SLS regressions of the probability of
successful PIV patent challenge on instrumented scope measures and controls. The
instruments are the cumulative averages of the scope measures of all patents reviewed
by the examiner of a new drug patent, until one year preceding the filing year of the
new drug patent. The first stage F-statistic tests is on the excluded instruments. FE
stands for fixed effects. Drug controls include the indicators New chemical exclusivity,
Orphan drug exclusivity, Pediatric exclusivity, Priority review, Capsule, Injectable,
and Tablet. Patent controls include log(Effective length), log(Backward citations+1),
log(Forward citations+1), log(Patent family size), and the indicators Active ingredi-
ent patent, Method patent, and Continuing patent. Robust standard errors are in
parentheses.

15



Table A6: Probability of Successful PIV Patent Challenge and Patent Scope:
Robustness of IV Estimates to Art Unit Fixed Effects.

(1) (2) (3) (4)
log(Markush groups + 1) -0.257

(0.214)
log(Conjunctions "or"+1) -0.073

(0.065)
log(Words) -0.190

(0.077)
log(Independent claims) 0.117

(0.172)
Mean dependent variable 0.173 0.173 0.173 0.173
Observations 3445 3445 3445 3447
First-stage F-statistic 6.202 30.447 18.815 6.669
Art Unit FE × × × ×
Filing year FE × × × ×
Drug controls × × × ×
Exclusivity expiration year FE × × × ×
Patent controls × × × ×
USPC FE × × × ×

Notes: This table reports coefficients from 2SLS regressions of the probabil-
ity of successful PIV patent challenge on instrumented scope measures and
controls. The instruments are the cumulative averages of the scope mea-
sures of all patents reviewed by the examiner of a new drug patent, until
one year preceding the filing year of the new drug patent. The first-stage
F-statistic tests is on the excluded instruments. FE stands for fixed effects.
Drug controls include the indicators New chemical exclusivity, Orphan drug
exclusivity, Pediatric exclusivity, Priority review, Capsule, Injectable, and
Tablet. Patent controls include log(Effective length), log(Backward cita-
tions+1), log(Forward citations+1), log(Patent family size), and the indi-
cators Active ingredient patent, Method patent, and Continuing patent.
Robust standard errors are in parentheses.
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Online A.4 Results Without Assumption 1

As the main text characterize results for the case ∂2CG/(∂pG∂b) > 0, we here focus on the case
∂2CG/(∂pG∂b) ≤ 0. The proofs of Proposition 1 and 2 imply that if ∂2CG/∂pG∂b = 0, changes in
patent scope have no impact on the firms’ incentives and, if ∂2CG/(∂pG∂b) < 0, an increase in patent
scope increases incentives for patent challenges and reduces incentives for new drug development.
The results of Proposition 1 and 2 concerning the effect of patent length remain unaffected.

We next analyse the optimal structure of patent policy for ∂2CG/(∂pG∂b) ≤ 0, implying that
ϵb ≤ 0. We first consider the case ∂2CG/(∂pG∂b) < 0, before moving to the case ∂2CG/(∂pG∂b) = 0.

When ∂2CG/(∂pG∂b) < 0, the counterpart to Proposition 3 can be expressed as follows:

Proposition A1: Assume that ∂2CG/(∂pG∂b) < 0. Then, i) if ϵb < ϕ(p∗G) < 0, reducing patent
length and increasing patent scope is efficient; ii) If ϕ(p∗G) > 0, reducing both patent length and scope
is efficient; iii) If ϕ(p∗G) < ϵb, reducing patent scope and increasing patent length is efficient.

Proof: The proof follows the proof of Proposition 3. The efficient structure of patent policy
is still characterized by the signs of equations (23) and (26). As before, equation (26) tells us the
optimal direction of patent scope and equation (23) tells us the direction in which patent length
needs to be adjusted so as to compensate the change in patent scope.

But now ∂2CG/(∂pG∂b) < 0 and, consequently, the proof of Proposition 1 implies that ∂pG/∂b >
0. Thus, equation (23) shows that the sign of ∂T/∂b is given by the sign of f(p∗G).

Note next from equation (26), that if ϕ(p∗G) > 0, then dV S/db < 0 because ϵb < 0. If ϕ(p∗G) < 0,

the first term in the square brackets of equation (26) is positive. Then the term in the square
brackets is positive if ϵb < ϕ(p∗G)ϕ(p

∗
G), implying dV S/db < 0.

To sum up: i) If ϵb < ϕ(p∗G) < 0, ∂T/∂b < 0 and dV S/db > 0. Increasing patent scope and
reducing length is efficient; ii) If ϕ(p∗G) > 0, ∂T/∂b > 0 and dV S/db < 0. Reducing both patent
scope and length is efficient; iii) If ϕ(p∗G) < ϵb, ∂T/∂b < 0 and dV S/db < 0. Reducing patent scope
and increasing length is efficient. □

Recall that if ∂2CG/(∂pG∂b) < 0, an increase in patent scope has counterintuitive effects: Even
if an increase in patent scope continues to make patent challenging more expensive, it has a positive
effect on incentives for patent challenging and, consequently, a negative impact on incentives to
develop new drugs. With this observation, the explanation of Proposition A1 is analogous to the
one of Proposition 3.

Finally, let us consider the case ∂2CG/(∂pG∂b) = 0, implying that ϵb = 0. To simplify the
analysis, we use a standard relationship between welfare flow and market structure and define wN :=

NπN + csN in which NπN and csN are industry profits and consumer surplus (when N ∈ {0, 1, 2}
drugs compete in the market), respectively. Furthermore, define T ′ := argmax p∗B(T ) and assume for
the moment that the conditions stipulated in footnote 6, ∂ϕ/∂pG < 0 and limT→∞ ϕ(p∗G(T )) < 0,
hold. Then T ′ is a finite and strictly positive unique solution to ϕ(p∗G(T

′)) = 0. Under these
assumptions, we get the following result:
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Proposition A2: Assume that ∂2CG/(∂pG∂b) = 0. Then, patents should have a minimum
scope. The optimal patent duration is given by T ∗ := argmaxT W (T ) = p∗B (T )V S(T )−CB(p

∗
B(T )).

in which T ∗ < T ′.

Proof: We may write the total (ex ante) welfare from a new drug as

W (b, T ) = p∗B (b, T )V S(b, T )− CB(p
∗
B(b, T )) (A2)

in which p∗B (b, T ) and V S(b, T ) are given by equations (9) and (11), respectively, and CB(pB(b, T ))

is the originator’s cost of developing a new drug.
Differentiate next W (b, T ) from equation (A2) with respect to b. Since ∂2CG/(∂pG∂b) = 0,

∂p∗B/∂b = 0. As a result, the sign of ∂W (b, T )/∂b is given by the sign of ∂V S/∂b. Since ∂p∗G/∂b = 0,
equation (24) implies that ∂V S/∂b = −∂CG/∂b < 0. Thus, it is optimal to have as narrow patents
as possible.

Since ∂p∗B/∂b = 0, equation (23) implies that ∂T/∂b = 0. As a result, T is the only relevant
dimension of the patent policy, and the socially optimal T is given by T ∗ := argmaxT W (T ). We
next characterize the circumstances under which T ∗ < T.

With the the help of equation (9), the first-order condition for the optimal T can be written as

∂W

∂T
=

∂p∗B (T )

∂T

[
V S(T )− V P (T )

]
+ p∗B (T )

∂V S(T )

∂T
= 0. (A3)

Let us first prove that V S(T )−V P (T ) > 0, i.e., that the social value of a new drug is larger than its
private value. If V P (T ) ≥ V S(T ), the issue of the patent policy design would be moot. However,
since the social value of the new drug includes the costs of patent challenging, the question of
whether V S(T ) > V P (T ) holds is not trivial.

Using xN := x̃N/r, x = w, π, in subtracting equation (8) from equation (11) yields

V S(T )− V P (T ) (A4)

=
(
1− e−rT

)
[(1− p∗G (T )) (w1 − π1) + p∗G (T ) (w2 − π2)] + e−rT (w2 − π2)− CG(p

∗
G(T )).

From equation (6) we observe that ΠG(p
∗
G(T )) ≥ 0 implies that

(
1− e−rT

)
π2p

∗
G (T ) ≥ CG(p

∗
G(T )).

Approximating the right-hand side of equation (A4) downwards by substituting
(
1− e−rT

)
π2p

∗
G (T )

for CG(pG(T )
∗) gives

V S(T )− V P (T )

≥
(
1− e−rT

)
[(1− p∗G (T )) (w1 − π1) + p∗G (T ) (w2 − 2π2)] + e−rT (w2 − π2) > 0,

in which the last inequality follows from wN = NπN + csN .
Next, we evaluate ∂W/∂T at T = T ′. Then, ϕ(p∗G(T

′)) = 0, and equation (25) implies that
∂V S(T ′)/∂T < 0. From the proof of Proposition 2 we also observe that when ϕ(p∗G(T

′)) = 0,
∂p∗B(T

′)/∂T = 0. As a result, equation (A3) shows that ∂W (T ′)/∂T < 0.
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Assume then that i) ∂2W/∂T 2 < 0 for all T so that the problem is well-behaving. Assume
further that ii) ∂W (0)/∂T > 0. A sufficient condition for ii) is ∂p∗B (0) /∂T > p∗B (0) . To see this,
note first from equation (7) that p∗G(0) = 0. Then, when evaluating ∂W/∂T at T = 0 by using
equations (25) and (A4) we get

∂W (0)

∂T
=

∂p∗B (0)

∂T
(w2 − π2)− p∗B (0) r (w2 − w1) ,

in which, as indicated by equations, (8), (9), and (19), ∂p∗B (0) /∂T > 0 and p∗B (0) > 0. Clearly,
w2 − π2 > r (w2 − w1) .

If both conditions i) and ii) hold, then there exists exactly one solution for equation (A3) in
the range where T ∈ (0, T ′) and this solution characterizes the maximum. Note for completeness,
that if condition ii) fails to hold, but condition i) holds, then the optimal policy is to set T ∗ = 0.

If condition i) fails to hold, then there may be multiple solutions to equation (A3). If condition ii)
nonetheless holds, there must at least be one local maximum in the range where T ∈ (0, T ′). □

The explanation of Proposition A2 is the following: Since ϵb = 0, changes in patent scope have
no impact on incentives for new drug development, and an increase in patent scope only increases
patent challenging costs with no welfare benefits. As a result, it is optimal to have narrow patents.

When changes in patent scope have no impact on incentives for new drug development, patent
length becomes the only relevant patent policy tool. The social planner faces the classic Nordhausian
patent length design problem with the twist that an increase in patent length increases incentives
to challenge new drug patents, creating wasteful costs of patent challenging. Under some plausible
restrictions on functional forms, the optimal length lies in the range (0, T ′) in which patent length
has a positive impact on incentives to develop new drugs and adverse impact on social welfare for
a given level of drug development incentives.

Note that the proof of Proposition A2 is based on the assumptions guaranteeing that a finite
T ′ solving ϕ(p∗G(T

′)) = 0 exists. However, if no such T ′ exists, then Proposition A2 holds trivially
since in that case T ′ → ∞.
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