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Abstract

This paper analyzes how overconfidence affects behavior in elimination contests. We fo-
cus on two-stage elimination contests with four players. In the first-stage, the players
are matched pairwise, and each pair competes in one semifinal. In the second-stage,
the first-stage winners compete in the final. An overconfident player overestimates his
winning probability in each pairwise interaction. Our findings reveal a nuanced interplay
between overconfidence and effort exertion. An overconfident player expends less effort
in the final stage than a rational rival. However, this pattern can be inverted in the
semifinal, where an overconfident player can exert more effort than a rational rival. We
also uncover that an overconfident player can have the highest equilibrium probability of
winning an elimination contest. Our results offer a novel perspective on the promotion of
overconfident individuals to CEO positions. They also highlight that large increases in
executive compensation can render the pursuit of CEO positions exceptionally appealing
to overconfident individuals.
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1 Introduction

Elimination contests are a common feature in politics, organizations, sports, and academia.
In politics, politicians compete for top positions in the party, and those who reach promi-
nent positions in the party compete to become high-level government officials. In or-
ganizations, employees compete for promotion to manager, and managers compete for
promotion to a chief executive officer position. In academia, PhDs compete to be hired
as assistant professors, and assistant professors compete for tenure. In tennis and many
other sports, players compete in elimination contests.

Overconfidence is one of the most widely documented biases in judgment and has been
detected both in the laboratory and in the field.1 Overconfidence has consequences for
economic behavior in labor markets (Spinnewijn 2013, Spinnewijn 2015, Köszegi 2014,
Santos-Pinto and de la Rosa 2020). A large proportion of CEOs is overconfident and CEO
overconfidence affects corporate decisions (Malmendier and Tate, 2005, 2008, 2015). It
remains an open research question why do these overconfident CEOs obtain their jobs in
the first place.

In this paper we analyze how overconfidence, conceptualized as overestimation of abil-
ity, affects behavior in elimination contests. We are interested in finding answers to the
following questions. How does overconfidence affect effort provision in the different stages
of an elimination contest? Is an overconfident player more or less likely to win an elimina-
tion contest than a rational player? What are the welfare implications of overconfidence
for the players and for the contest designer? How does overconfidence alter the optimal
prize structure chosen by the contest designer?

To address these questions we consider a two-stage elimination contest with four play-
ers. In the first stage, the players are matched pairwise, and each pair competes in one
semifinal. The first-stage winners go on to the second stage of the contest and compete
against each other in the final. The winner receives prize w1, the runner-up prize w2, and
the first-stage losers receive nothing, with w1 > w2 ⩾ 0.

In each pairwise interaction the players choose their efforts simultaneously to maximize
their expected utilities. The probability of winning a pairwise interaction depends on
the efforts of both players through Alcalde and Dahm’s (2007) contest success function
(CSF).2 Player are homogeneous, except for their confidence levels. This allow us to
zero in on the impact of overconfidence on players’ incentives to exert effort. Finally, we
assume an overconfident player has a correct perception of the prizes and cost of effort
but overestimates the impact of his effort on his winning probability in each pairwise
interaction. Furthermore, an overconfident player’s bias is observable by his rivals.

Section 3 analyzes an elimination contest with four rational players. Proposition 1
characterizes its equilibrium which serves as a benchmark to which we compare all our
results. When the four players are rational the elimination contest is symmetric and
hence each player has 1/4 probability of being the winner.

Section 4 considers an elimination contest with one overconfident player and three
rational players. This configuration describes scenarios where a minority of players is
overconfident and allows us to study the effects of overconfidence in the simplest possible
way. Proposition 2 demonstrates that an overconfident player always exerts less effort in
a final than a rational rival. Intuitively, the (mis)perceived advantage of the overconfident

1Moore and Healy (2008) distinguish between three types of overconfidence: overestimation of one’s skill (absolute
overconfidence), overplacement (relative overconfidence), and excessive precision in one’s beliefs (miscalibration or overpre-
cision).

2This CSF allows us to derive closed form solutions for the players’ efforts, winning probabilities, continuation values,
and expected utilities at each stage of the contest. Section 2 explains Alcalde and Dahm’s (2007) CSF in detail. Section 6
shows that our main results extend to Tullock’s (1980) CSF.
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player leads him to lower his effort. The rational player, anticipating the overconfident
player will lower his effort, also lowers her effort but not as much. Hence, both players
exert less effort in the final than if both were rational. Proposition 2 also shows that both
players’ perceived expected utility of the final increases in the bias of the overconfident
player. Hence, the bias makes reaching the final more attractive for an overconfident
player and for a rational rival.

Proposition 3 shows that an overconfident player can exert higher effort in a semifinal
than a rational rival. In a semifinal, a player chooses the level of effort at which the per-
ceived marginal benefit equals the marginal cost. The perceived marginal benefit is the
product of the perceived marginal probability of winning the semifinal and the perceived
continuation value (a player’s perceived expected utility of the final before knowing the
identity of his rival in the final). As Rosen (1986) first hinted at, overconfidence has
two effects on a player’s incentives to exert effort in a semifinal. On the one hand, the
bias lowers the perceived marginal probability of winning the semifinal which motivates
an overconfident player to lower effort. We label this the complacency effect of over-
confidence. On the other hand, the bias raises the perceived continuation value which
motivates an overconfident player to raise effort. We label this the encouragement effect
of overconfidence. When the encouragement (complacency) effect dominates, the over-
confident player exerts higher (lower) effort at equilibrium in the semifinal. Proposition 3
also shows that two conditions have to be met for the encouragement effect to dominate.
First, the prize spread needs to be sufficiently large. Second, the overconfident player’s
bias cannot be too high. Propositions 2 and 3 generate the model’s main testable predic-
tion: an overconfident player always exerts less effort in a final than a rational rival but
can exert higher effort in a semifinal than a rational rival.

Proposition 4 reveals that the presence of an overconfident player in one of the semi-
finals of an elimination contest has a spillover effect on the efforts in the other semifinal.
In the semifinal with two rational players, each player has an incentive to exert higher
effort than if all players in the contest were rational. This happens because the winner of
this semifinal will face an overconfident rival in the final with positive probability. This
raises the rational players’ continuation value due to the higher expected utility of the
final.

Proposition 5 shows that the overconfident player can be the one with the highest
equilibrium probability of winning the elimination contest. Three conditions have to be
met for this to be the case. First, the role that effort plays in determining the winning
probabilities must be sufficiently high. Second, the prize spread needs to be sufficiently
large. Third, the overconfident player’s bias needs to be small.

Section 5 studies an elimination contest with two overconfident players and two rational
players. We assume the overconfident players have different biases and consider two types
of seedings: (i) the overconfident players are seeded in the same semifinal, and (ii) the
overconfident players are seeded in different semifinals. Proposition 6 demonstrates that
in a final featuring two overconfident players, the more confident player always exerts
lower effort, and both players exert lower efforts than if both were rational. Proposition
7 reveals that when two overconfident players are seeded in the same semifinal, both
can exert higher efforts than if both were rational. Proposition 8 shows that when two
overconfident players are seeded in different semifinals, both can exert higher efforts than
their rational rivals. Propositions 6, 7, and 8 collectively underscore that the findings
derived for an elimination contest with one overconfident and three rational players extend
to an elimination contest with two overconfident and two rational players, irrespective of
the seeding.

Section 6 analyzes the welfare implications of overconfidence for the players and the
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contest designer. To do that we consider an elimination contest with one overconfident
player and three rational players. Proposition 9 shows the overconfident player can gain
from his bias. The rational player seeded in the same semifinal as the overconfident
player losses (gains) when the overconfident player exerts higher (lower) effort. The
rational players seeded in the same semifinal always gain. Proposition 10 shows that
while overconfidence always lowers aggregate effort in the final stage it can either raise or
lower aggregate effort in the semifinals stage. This result implies that we are unable to
state general conditions under which overconfidence lowers or raises the contest designer’s
welfare measured as the players’ aggregate effort in the two stages.

Section 7 considers how the contest designer should set prizes when players are over-
confident and her goal is to maximize players’ aggregate efforts in the two stages. To
answer this question we assume players are homogeneous and the contest designer has a
fixed prize budget she can allocate to either the winner or the runner-up. Proposition
11 shows that the contest designer chooses a winner-take-all prize structure when players
are risk neutral. In contrast, when players are risk-averse, the optimal prize structure
involves multiple prizes with the winner receiving most of the prize money and a smaller
part being assigned to the runner-up. Finally, Proposition 11 shows that an increase in
players’ overconfidence, leads the contest designer to allocate an increasingly higher share
of the prize budget to the winner.

Section 8 discusses three extensions of the model which demonstrate the robustness of
our findings. It starts by showing that our main results extend to a two-stage elimination
Tullock contest. Subsequently, it shows our main results also hold when the overconfident
player’s bias is not observable by the rational players. Next, it shows our main results
extend to a three-stage elimination contest with eight players. Finally, it discusses the
impact of underconfidence on a two-stage elimination contest with one underconfident
and three rational players. It uncovers that the underconfident player exerts less effort
than his rational rivals during the final and the semifinal stages of an elimination contest.
Hence, the underconfident player is the one with the lowest equilibrium probability of
winning the elimination contest.

Our study relates to four strands of literature. First, it contributes to the literature on
CEO overconfidence. Empirical evidence documents that a substantial share of CEOs are
overconfident (for a review see Malmendier and Tate, 2015). The seminal contribution to
this literature is Malmendier and Tate (2005, 2008) who measure CEO overconfidence as
the tendency to hold stock options longer before exercise. Malmendier and Tate (2015)
use this measure together with additional controls and find that approximately 40 percent
of CEOs of companies listed in the Standard & Poor’s 1500 index are overconfident.

The literature on CEO overconfidence offers two main explanations for why overcon-
fident managers are promoted to CEO positions. Goel and Thakor (2008) study tourna-
ments where risk-averse managers compete for promotion to become CEO by choosing the
level of risk of their projects. Some managers are rational while others are overconfident.
An overconfident manager underestimates project risk which increases the propensity to
take risky projects (e.g. R&D activities). Some of the more risky projects will be suc-
cessful and hence, the higher risk taking of overconfident managers will improve their
chances of promotion to CEO. According to Van den Steen (2005), CEO overconfidence
can serve as a commitment device that helps attract and retain employees that share the
same values as the CEO.

Our results provide a new explanation for why overconfident managers are promoted
to CEO positions. One can think of reaching a CEO position as winning a series of labor
promotions in which managers compete based on performance to move up the corporate
ladder. Our model predicts that if the prize spread over the corporate ladder is large,
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then moderately overconfident managers can be more likely to be promoted to a CEO
position than rational ones. This happens because moderately overconfident managers
will exert more effort than rational ones (e.g., by working longer hours) in the early
stages of their careers due to the encouragement effect of overconfidence. The larger the
prize spread between the compensation of a low level manager and that of a CEO, the
greater the encouragement effect. Hence, our results highlight the role that large increases
in executive compensation (Murphy 2013) can have in rendering the pursuit of a CEO
position extremely attractive to overconfident individuals.

Second, our study contributes to the large literature on gender gaps in the labor
market. Empirical evidence documents gender gaps in wages and in top business posi-
tions. For instance, in 2022 women in the US earn 82 percent of their male counterparts
(Kochhar 2023) and women represent only 6 percent of top business executives in the
US (Keller et al. 2022). The wage gender gap is larger in high skilled work, and much
of it seems to be caused by gaps in promotions (Blau and DeVaro 2007, Blau and Kahn
2017, Bronson and Thoursie 2020). Laboratory experiments show that gender differences
in confidence and risk attitudes can account for gender gaps in behavior in tournaments
and contests (Niederle and Vesterlund 2007, Kamas and Preston 2012, Gillen et al. 2019,
Price 2020, Buser et al. 2021, van Veldhuizen 2022).

Our findings show that the large executive compensation spreads coupled with higher
male confidence can make competing for a top business position much more attractive
for male candidates. We also predict that much of the gender gap in promotions will
take place early in workers’ careers. This could place women at a further disadvantage
besides the negative effects of childbirth and child-rearing (Bertrand et al. 2010, Goldin
and Katz 2011, Goldin 2014).3

Third, our study also contributes to the theoretical literature on overconfidence, tour-
naments, and contests. Santos-Pinto (2010) shows how firms can optimally set tour-
nament prizes to exploit workers’ overconfidence, defined as overestimation of ability.
Ludwig et al. (2011) show that an overconfident player, defined as someone who under-
estimates the cost of effort, exerts more effort than a rational player in a Tullock contest.
Santos-Pinto and Sekeris (2023) study how confidence gaps affect effort provision and
entry in Lazer-Rosen tournaments and Tullock contests. They find, among other things,
that the more confident player exerts lower effort in a Tullock contest. All of these studies
focus on one-shot tournaments and contests. To the best of our knowledge, ours is the
first theoretical study on the impact of overconfidence on a two-stage elimination contest.

Finally, our study contributes to the literature on elimination contests. The seminal
contribution is Rosen (1986) who shows how to optimally set prizes in a multiple stage
elimination contest. There are many studies on elimination contests regarding different
aspects, such as the discouragement effects in multi-stage contests (Konrad, 2012), op-
timal prize setting (Mago et al, 2013; Cheng et al, 2019; Coehn et al, 2018; Moldovanu
and Sela, 2006), optimal contest structure (Gradstein and Konrad, 1999; Moldovanu and
Sela, 2006; Fu and Lu, 2018; Hou and Zhang, 2021), heterogeneity in abilities (Rosen,
1986; Brown and Minor, 2014) and seeding (Groh et al, 2012). Our paper expands this
strand of literature by considering a new dimension: heterogeneity in confidence levels.

The paper is organized as follows. Section 2 sets-up the model. Sections 3, 4, and
5 study an elimination contest with four rational players, one overconfident and three
rational players, and two overconfident and two rational players, respectively. Section
6 considers the welfare implications of overconfidence. Section 7 shows how the con-

3Many studies suggest that gender gap varies with culture (Gneezy et al, 2003 and 2009; Booth and Nolen, 2009 and
2014). In societies where gender equality is more promoted, gender gaps become less significant in many areas, including
entry and performance in a competitive environments. Differences in work environment, characteristics of professions, and
education also affect the magnitude of gender gaps.
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test designer should set prizes when players are overconfident. Section 8 discusses the
extensions. Section 9 concludes the paper. All proofs are in the Appendix.

2 Set-up

Consider a two-stage elimination contest with four players. In the first stage, the players
are matched pairwise, and each pair competes in one semifinal. The first-stage winners
go on to the second stage of the contest and compete against each other in the final. The
winner receives prize w1, the runner-up receives prize w2, and the first-stage losers receive
nothing, with w1 > w2 ⩾ 0.

The players choose their efforts simultaneously to maximize their expected utilities in
each pairwise interaction. The effort of player i is denoted by ei. Players derive utility
u(w) from prize w ⩾ 0, where u′(w) > 0, u′′(w) ⩽ 0, and u(0) = 0. Players have linear
cost of effort, i.e., c(ei) = cei, with c ≥ 1, and ei ⩾ 0. The probability of winning
a pairwise interaction depends on the efforts of the two players through Alcalde and
Dahm’s (2007) contest success function. Letting pij denote player i’s winning probability
when paired with j, we have

pij =

{
1− 1

2
(
ej
ei
)α if ei ⩾ ej

1
2
( ei
ej
)α if ei ⩽ ej

Under this CSF a player’s winning probability is increasing in effort. When players
exert the same effort, each has a 50 percent chance of winning. The player who exerts
more effort is the favorite, having a winning probability higher than 1/2 and his rival is
the underdog. The parameter α determines how sensitive the CSF is to effort. When
α = 0 the CSF is completely insensitive to effort and we obtain the extreme case of a
(fair) lottery. As α increases, the CSF becomes more sensitive to effort, and the contest
becomes more deterministic until the extreme case of an all-pay auction is reached when
α → ∞. We assume 0 < α ≤ 1 which implies that each stage of the elimination contest
has a unique pure strategy Nash equilibrium.

This CSF has several desirable properties. First, it is homogeneous of degree zero in
players’ efforts. Second, it is piecewise continuous which makes the first-order conditions
solvable. Third, as mentioned by Alcalde and Dahm (2007), it yields a very tractable
model for multi-stage games as the equilibrium efforts and payoffs of the subgames can be
easily computed and plugged into earlier stages of the game. These properties, together
with the linear cost function, allow us to derive close-form solutions for the equilibrium
efforts and payoffs.

We assume an overconfident player has a correct perception of the prizes and cost
of effort but overestimates the impact of his effort on his winning probability in each
pairwise interaction. This definition of overconfidence is in line with Santos-Pinto (2008,
2010) and Santos-Pinto and Sekeris (2023). Letting λi denote player i’s level of confidence
and p̃ij player i’s perceived winning probability when paired with j we have:

p̃ij =

{
1− 1

2

eαj
λie

α
i

if λie
α
i ⩾ eαj

1
2

λie
α
i

eαj
if λie

α
i ⩽ eαj

(1)

We assume λi ⩾ 1, meaning that a player can be either rational (λi = 1) or overconfident
(λi > 1). We see from (1) that an overconfident player holds a higher perceived winning
probability than his true winning probability for any given efforts. On Figure 1, we depict
the true (solid blue curve) and the perceived (solid red curve) winning probabilities of an
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overconfident player with λi = 1.5. We set α = 0.9 and ej = 1. We see that the true and
perceived winning probabilities are increasing in effort. Note that when player i’s effort
is identical to j’s, i.e., ei = ej = 1, player i’s true winning probability is 1/2.

Figure 1: True and Perceived Winning Probabilities

The bias also affects an overconfident player’s perceived marginal winning probability.
Letting mgp̃ij = ∂p̃ij/∂ei denote player i’s perceived marginal winning probability when
paired with j, it follows from (1) that

mgp̃ij =





α
2λi

eαj

eα+1
i

if λie
α
i ⩾ eαj

α
2
λi

eα−1
i

eαj
if λie

α
i ⩽ eαj

(2)

On Figure 2, we depict the true (solid blue curve) and the perceived (solid red curve)
marginal winning probabilities of an overconfident player with λi = 1.5. As before, we set
α = 0.9 and ej = 1. We see that the true and perceived marginal winning probabilities
are decreasing in effort. Furthermore, the perceived marginal winning probability of an
overconfident player is less (greater) than his true marginal winning probability when his
effort is high (low).
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Figure 2: True and Perceived Marginal Winning Probabilities

The solution concept is Subgame Perfect Nash Equilibrium. We solve the elimination
contest via backwards induction and determine the equilibrium of the second-stage (the
final) before we determine equilibrium in the first-stage (the semifinals). To be able to
compute the equilibrium taking into account that players can hold mistaken beliefs we
assume: (i) a player who faces a biased opponent is aware that the latter’s perception (and
probability of winning) is mistaken, (ii) each player thinks that his own perception (and
probability of winning) is correct, and (iii) both players have a common understanding of
each other’s beliefs, despite their disagreement on the accuracy of their opponent’s beliefs.
Hence, players agree to disagree about their perceptions (and winning probabilities). This
approach follows Heifetz et al. (2007a, 2007b) for games with complete information, and
Squintani (2006) for games with incomplete information.4 Finally, we assume that each
player not only knows the confidence level of his direct rival in the semifinal but also the
confidence levels of the other two potential rivals in the other semifinal.5

In a final between players i and j, player i chooses the level of effort ei that maximizes
his perceived expected utility:

Ẽf (Uij) = p̃fiju(w1) + (1− p̃fij)u(w2)− cei

subject to the participation constraint Ẽf (Uij) ≥ 0, where p̃fij is player i’s perceived
winning probability in a final against j. Hence, the first-order condition of player i in a
final against j is given by:

mgp̃fij[u(w1)− u(w2)] = c. (3)

Since
∂2p̃fij
∂e2i

< 0,

4These assumptions are consistent with the psychology literature on the “Blind Spot Bias” according to which individuals
believe that others are more susceptible to behavioral biases than themselves (Pronin et al. 2002, Pronin and Kugler 2007).

5In Section 8 we discuss what happens when overconfidence is unobservable.
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we have
∂2Ẽf (Uij)

∂e2i
< 0,

and the second-order condition is satisfied.
Let Rf

i (ej) denote player i’s best response in the final obtained from (3). Lemma 1
describes the shape of player i’s best response in the final.

Lemma 1 Rf
i (ej) is quasi-concave in ej and reaches a maximum at λie

α
i = eαj .

Lemma 1 tells us that the players’ best responses in the final are non-monotonic. Given
high effort of the rival, a player reacts to an increase in effort of the rival by decreasing
effort; given low effort of the rival, a player reacts to an increase in effort of the rival by
increasing effort.

Lemma 2 describes how player i’s best response in the final changes with his overcon-
fidence parameter λi.

Lemma 2 An increase in player i’s overconfidence λi leads to a contraction of his best
response in the final, ∂Rf

i /∂λi < 0, for eαj < λie
α
i , and to an expansion of his best re-

sponse in the final, ∂Rf
i /∂λi > 0, for eαj > λie

α
i . Moreover, the maximum value of player

i’s best response in the final is independent of player i’s overconfidence.

Lemma 2 characterizes how overconfidence shifts a player’s best response in the final.
For a high effort of the rival, an increase in confidence raises player i’s effort level, while for
low effort of the rival, an increase in confidence lowers player i’s effort level. Moreover,
the maximal value taken by player i’s best response in the final is independent of his
overconfidence bias.

Now consider the semifinals stage. Let players i and h be paired up in one semifinal
and players j and k be paired up in the other semifinal. If player i wins his semifinal, then
i faces j in the final with probability psjk and k in the final with probability pskj = 1− psjk.
Hence, player i’s perceived expected utility of the final before knowing the identity of

his rival in the final is psjkẼ
f (Uij) + pskjẼ

f (Uik). Therefore, player i’s perceived benefit of
winning his semifinal, or player i’s perceived continuation value ṽi, is:

ṽi = psjkẼ
f (Uij) + pskjẼ

f (Uik).

In the semifinal between players i and h, player i chooses the level of effort ei that
maximizes his perceived expected utility:

Ẽs(Uih) = p̃sihṽi − cei.

subject to the participation constraint Ẽs(Uih) ≥ 0, where p̃sih is player i’s perceived
winning probability in a semifinal against h. Hence, the first-order condition of player i
in a semifinal against h is given by:

mgp̃sihṽi = c. (4)

Since
∂2p̃sih
∂e2i

< 0,

we have
∂2Ẽs(Uih)

∂e2i
< 0,
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and the second-order condition is satisfied.
Let Rs

i (eh) denote player i’s best response in the semifinal obtained from (4). It can
be inferred from equations (3) and (4) that the shape of player i’s best response in the
semifinal closely mirrors that of his best response in the final. However, Lemma 3 shows
that the impact of overconfidence on player i’s best response in the semifinal diverges
from the final.

Lemma 3 If player i’s perceived continuation value ṽi increases in his overconfidence
λi, ∂ṽi/∂λi > 0, then an increase in player i’s overconfidence leads to a contraction of
his best response in the semifinal, ∂Rs

i/∂λi < 0, for eαj < λie
α
i and ∂ṽi/∂λi < ṽi/λi,

otherwise, it leads to an expansion of his best response in the semifinal, ∂Rs
i/∂λi > 0.

Moreover, the maximum value of player i’s best response in the semifinal increases in
player i’s overconfidence.

Lemma 3 characterizes how overconfidence shifts a player’s best response in the semi-
final. It shows that if player i’s perceived continuation value increases in overconfidence,
then an increase in player i’s overconfidence contracts his best response in the semifinal
for low effort of the rival when the elasticity of the perceived continuation value with
respect to bias is smaller than 1. Otherwise, an increase in player i’s overconfidence
expands his best response in the semifinal. Moreover, if player i’s perceived continuation
value increases in his overconfidence, then the maximal value taken by player i’s best
response in the semifinal is increasing in his overconfidence bias.

Let Pi denote player i’s probability of winning the elimination contest. Pi is the
product of player i’s probability of winning his semifinal and winning the final before
knowing the identity of his rival in the final:

Pi = psih(p
s
jkp

f
ij + pskjp

f
ik).

We denote the four players as 1, 2, 3, and 4 from now on. Players 1 and 2 are paired
in one semifinal and players 3 and 4 are paired in the other semifinal.

3 Four Rational Players

This section characterizes the equilibrium of an elimination contest with four rational
players. This serves as a benchmark to which we compare all our results.

Proposition 1 In a final with two rational players, the equilibrium effort is

ef =
α

2c
[u(w1)− u(w2)],

the equilibrium winning probability is

pf =
1

2
,

and the equilibrium expected utility is

E
f
(U) =

1− α

2
u(w1) +

1 + α

2
u(w2).

In a semifinal of a two-stage elimination contest with four rational players, the equilibrium
effort is

es =
α

2c

[
1− α

2
u(w1) +

1 + α

2
u(w2)

]
,
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the equilibrium winning probability is

ps =
1

2
,

and the equilibrium expected utility is

E
s
(U) =

1− α

2

[
1− α

2
u(w1) +

1 + α

2
u(w2)

]
.

In a final featuring two rational players, equilibrium is reached when both exert the
same effort, resulting in an equal winning probability for each player. The equilibrium
effort in the final increases in u(w1) − u(w2), in α, and decreases in c. Similarly, in a
semifinal featuring two rational players, equilibrium is reached when both exert the same
effort, resulting in an equal winning probability for each player. The equilibrium effort
in the semifinal is smaller than the equilibrium effort in the final for all α ∈ (0, 1] when
u(w1) > 3u(w2). Finally, we have

P = pspf =
1

4

When all players are rational the elimination contest is symmetric and hence each has
1/4 probability of being the winner.

4 One Overconfident Player and Three Rational Players

This section characterizes the equilibrium of an elimination contest with one overconfident
player and three rational players. Throughout we assume player 1 is overconfident with
λ1 > 1 and players 2, 3, and 4 are rational with λ2 = λ3 = λ4 = 1.

4.1 Final

We start by analyzing the impact of overconfidence on the final. Since players 3 and 4
are identical, we consider a final with an overconfident player 1 and a rational player 3
without loss of generality.

Proposition 2 In a final between an overconfident player and a rational player, the
equilibrium effort of the overconfident player is

ef1 =
α

2c
λ
− α+1

2α+1

1 [u(w1)− u(w2)],

and the equilibrium effort of the rational player is

ef3 =
α

2c
λ
− α

2α+1

1 [u(w1)− u(w2)]

with ef1 < ef3 < ef . The perceived equilibrium winning probability of the overconfident
player is

p̃f13 = 1−
1

2
λ
− α+1

2α+1

1 ,

and the true equilibrium winning probabilities are

pf13 =
1

2
λ
− α

2α+1

1
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pf31 = 1−
1

2
λ
− α

2α+1

1

with p̃f13 > pf31 > 1/2 > pf13. The perceived equilibrium expected utility of the overconfident
player is

Ẽf (U13) = u(w1)−
1 + α

2
λ
− α+1

2α+1

1 [u(w1)− u(w2)]

and the equilibrium expected utility of the rational player is

Ef (U31) = u(w1)−
1 + α

2
λ
− α

2α+1

1 [u(w1)− u(w2)],

with Ẽf (U13) > Ef (U31) > E
f
(U).

Proposition 2 shows that an overconfident player always exerts less effort in a final
than a rational rival. This result is intuitive. In the final, the overconfident player chooses
the level of effort at which the perceived marginal benefit of effort equals the marginal
cost and the rational player chooses the level of effort at which the marginal benefit of
effort equals the marginal cost. Hence, in the final, the players’ equilibrium efforts satisfy

mgp̃f13[u(w1)− u(w2)] = c,

and
mgpf31[u(w1)− u(w2)] = c.

An increase in confidence leads to a drop in the overconfident player’s perceived
marginal probability of winning the final mgp̃f13. As a result, he lowers effort to save
on costs of effort. The rational player, anticipating the overconfident player will lower his
effort, also lowers her effort but not as much. Hence, both players exert lower effort than
if both were rational. At equilibrium, the perceived winning probability of the overconfi-
dent player is greater than 1/2 whereas his true winning probability is less than 1/2 given
the lower equilibrium effort. Intuitively, the overconfident player, given his (mis)perceived
advantage, thinks, mistakenly, he can reduce his effort without endangering his prospects
of success.

Proposition 2 also shows that the overconfident player’s perceived equilibrium expected
utility of the final increases in his bias. This happens due to two channels. First, an
increase in the bias raises the overconfident player’s perceived probability of winning the
final. Second, an increase in the bias lowers the overconfident player’s cost of effort.
Furthermore, Proposition 2 shows that the rational player’s equilibrium expected utility
of the final increases in the overconfident player’s bias. An increase in the overconfident
player’s bias raises the rational player’s probability of winning the final and lowers his
cost of effort. Hence, an increase in an overconfident player’s bias makes reaching the
final more attractive not only for the overconfident player but also for a rational rival.
Note also that, at equilibrium, the overconfident player’s perceived expected utility of
the final is greater than that of the rational player.6

Figure 3 illustrates Proposition 2. It depicts the best responses and equilibrium efforts
in a final where α = 0.9 and [u(w1)−u(w2)]/c = 2. The best response of a rational player
1 is depicted in solid red and the best response of a rational player 3 in solid blue. The
equilibrium when players 1 and 3 are rational is depicted by point E at the 45 degree

6As the overconfident player’s bias converges to infinity, the efforts of both players converge to zero, the overconfident
player’s perceived probability of winning the final converges to 1, his true probability of winning the final converges to
zero, his perceived equilibrium expected utility of the final converges to the winner’s prize u(w1) and so does the rational
player’s equilibrium expected utility of the final.
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line. The best response of an overconfident player 1 with λ1 = 1.2 is depicted in dotted
red. The equilibrium when player 1 is overconfident and player 3 is rational is depicted
by point E ′ above the 45 degree line. In the final, overconfidence shifts the best response
of player 1 inwards for low values of effort of player 3 and outwards for high values of
effort of player 3.

Figure 3: Best Responses and Equilibrium Efforts in the Final

4.2 Semifinals

We now analyze the impact of overconfidence on the two semifinals. We start with the
semifinal with overconfident player 1 and rational player 2. Next, we consider the semi-
final with rational players 3 and 4.

Proposition 3 Consider a semifinal between an overconfident player and a rational player
of a two-stage elimination contest where player 1 is overconfident and players 2, 3, and
4 are rational.
(i) If u(w1)−u(w2)

u(w2)
> 2(1+2α)

α(1+3α)
and λ1 < λ̂ where λ̂ is given by 1+α

2
u(w1)−u(w2)

u(w1)
= λ̂−1

λ̂−λ̂
−

α+1
2α+1

,

then the equilibrium efforts and winning probabilities satisfy es1 > es > es2 and p̃s12 > ps12 >
1/2 > ps21.
(ii) If either u(w1)−u(w2)

u(w2)
⩽ 2(1+2α)

α(1+3α)
or λ1 ⩾ λ̂, then the equilibrium efforts and winning

probabilities satisfy es1 ⩽ es2 ⩽ es and p̃s12 > ps21 ⩾ 1
2
⩾ ps12.

Proposition 3 shows that an overconfident player exerts higher effort in a semifinal

than a rational rival when the prize spread is sufficiently large, u(w1)−u(w2)
u(w2)

> 2(1+2α)
α(1+3α)

,

and overconfidence is not too extreme, λ1 < λ̂. When either of these two conditions is
not met, the overconfident player exerts less effort in the semifinal than a rational rival.
This result, together with Proposition 2, provides the model’s main testable implication,
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namely, that an overconfident player always exerts less effort in a final than a rational
rival but can exert higher effort in semifinal than a rational rival.

In a semifinal, the overconfident player chooses the level of effort at which the perceived
marginal benefit mgp̃s12ṽ1 equals the marginal cost c, and the rational player chooses the
level of effort at which the marginal benefit mgps21v2 equals the marginal cost c. Hence,
in a semifinal, the players’ equilibrium efforts satisfy

mgp̃s12ṽ1 = c, (5)

and
mgps21v2 = c. (6)

Differentiating (5) and (6) and solving for ∂es1/∂λ1 we find how the overconfident
player’s equilibrium effort changes in his bias

∂es1
∂λ1

=
mgp̃s12
λ1

∂mgp̃s12
∂λ1

λ1

mgp̃s12
+ ∂ṽ1

∂λ1

λ1

ṽ1

−
∂mgp̃s12
∂e1

+
∂mgp̃s12
∂e2

∂mgps21
∂e1

∂mgps21
∂e2

, (7)

where the sign of the denominator in equation (7) is positive.7 In equation (7), the term

εmgp̃s12,λ1 =
∂mgp̃s12
∂λ1

λ1

mgp̃s12
, (8)

represents the elasticity of the perceived marginal probability of winning the semifinal
with respect to the bias. Meanwhile, the term

εṽ1,λ1 =
∂ṽ1
∂λ1

λ1

ṽ1
, (9)

represents the elasticity of the perceived continuation value with respect to the bias.
Hence, the sign of ∂es1/∂λ1 depends on the signs of these two elasticities.

The proof of Proposition 3 shows that at equilibrium λ1e
α
1 ⩾ eα3 which, together

with (2), implies that the elasticity of the perceived marginal probability of winning the
semifinal with respect to the bias is

εmgp̃s12,λ1 = −
α

2λ2
1

eα2
eα+1
1

λ1

α
2λ1

eα2
eα+1
1

= −1. (10)

The overconfident player’s perceived continuation value is

ṽ1 = u(w1)−
1 + α

2
λ
− α+1

2α+1

1 [u(w1)− u(w2)]

Hence, the elasticity of the perceived continuation value with respect to the bias is

εṽ1,λ1 =
(α + 1)2

2(2α + 1)

1

u(w1)
u(w1)−u(w2)

λ
α+1
2α+1

1 − 1+α
2

. (11)

We see from (10) and (11) that the bias has two effects on the overconfident player’s
incentives to exert effort in a semifinal. On the one hand, an increase in the bias lowers
the overconfident player’s perceived marginal probability of winning the semifinal which
motivates him to lower effort. We label this the complacency effect of overconfidence.

7In the Appendix we derive equation (7) and show that its denominator is positive.
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On the other hand, an increase in the bias raises the overconfident player’s perceived
continuation value which motivates him to raise effort. We label this the encouragement
effect of overconfidence. When εṽ1,λ1 > (<)1 the encouragement (complacency) effect
dominates, and the overconfident player exerts higher (lower) effort in the semifinal than
the rational player.

Equation (10) shows that the size of the complacency effect is -1 and equation (11)
shows that the size of the encouragement effect decreases in the bias and converges to
zero when the bias converges to infinity (as λ1 → ∞ we have ṽ1 → u(w1)). Hence, when
the bias is small, i.e., λ1 is close to 1, a necessary condition for the encouragement effect
to dominate is that εṽ1,λ1 > 1 at λ1 = 1. Setting λ1 = 1 in (11) this is equivalent to
u(w1)−u(w2)

u(w2)
> 2(1+2α)

α(1+3α)
. Thus, the encouragement effect dominates when the prize spread is

sufficiently large and the bias is close to 1. As the bias increases, the size of the encour-
agement effect decreases and converges to zero while the size of the complacency effect is
fixed at -1. Hence, there exists an upper bound for the bias above which the complacency

effect dominates. Figure 4 depicts in light green the values of
(
α, u(w1)−u(w2)

u(w2)

)
that satisfy

u(w1)−u(w2)
u(w2)

> 2(1+2α)
α(1+3α)

.

Figure 4: Values of
(
α,

u(w1)−u(w2)
u(w2)

)
where

u(w1)−u(w2)
u(w2)

>
2(1+2α)
α(1+3α)

Figure 5 illustrates result (i) in Proposition 3. It depicts the best responses and
equilibrium efforts in a semifinal of an elimination contest where u(w1) = 11.25, u(w2) =

1.25, α = 0.9, and c = 1. Note that these parameter values imply λ̂ = 4.4606 and satisfy
u(w1)−u(w2)

u(w2)
> 2(1+2α)

α(1+3α)
. The best response of a rational player 1 is depicted in solid red

and that of a rational player 2 in solid blue. Point E at the 45 degree line depicts the
equilibrium when players 1 and 2 are rational. The best response of an overconfident
player 1 with λ1 = 1.1 is depicted in dashed red. Point point E ′ below the 45 degree
line depicts the equilibrium when player 1 is overconfident with λ1 = 1.1 and player
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2 is rational. Since the encouragement effect dominates, overconfidence shifts the best
response of player 1 outwards for all values of effort of player 2.

Figure 5: Best Responses and Equilibrium Efforts in a Semifinal where
u(w1)−u(w2)

u(w2)
>

2(1+2α)
α(1+3α) and λ1 < λ̂

Figure 6 illustrates result (ii) in Proposition 3. It depicts the best responses and
equilibrium efforts in a semifinal of an elimination contest where u(w1) = 11.25, u(w2) =
1.25, α = 0.9, and c = 1. The best response of an overconfident player 1 with λ1 = 7 is
depicted in dashed red. Point point E ′ above the 45 degree line depicts the equilibrium
when player 1 is overconfident with λ1 = 7 and player 2 is rational. Since the complacency
effect dominates, overconfidence shifts the best response of player 1 inwards for low values
of effort of player 2 and outwards for high values of effort of player 2.
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Figure 6: Best Responses and Equilibrium Efforts in a Semifinal where either
u(w1)−u(w2)

u(w2)
⩽ 2(1+2α)

α(1+3α) or

λ1 ⩾ λ̂

Next, we characterize the equilibrium of the semifinal with rational players 3 and 4.

Proposition 4 In a semifinal between two rational players of a two-stage elimination
contest where player 1 is overconfident and players 2, 3, and 4 are rational, the equilib-
rium efforts and winning probabilities satisfy es3 = es4 > es and ps34 = ps43 = 1/2.

Proposition 4 shows that the presence of an overconfident player in one of the semifinals
of an elimination contest has a spillover effect on the equilibrium effort in the other
semifinal. In the semifinal with two rational players, both players has an incentive to exert
higher effort when player 1 is overconfident than if player 1 were rational. This happens
because the winner of the semifinal with two rational players will face the overconfident
player 1 in the final with probability ps12 and this leads to a higher continuation value
than if player 1 were rational.

4.3 Equilibrium Winning Probabilities

We now consider how overconfidence affects each player’s equilibrium probability of win-
ning the elimination contest. We are interested in knowing whether the overconfident
player 1 can have the brighter prospects throughout the elimination contest. The win-
ning probability of overconfident player 1 is

P1 = ps12(p
s
34p

f
13 + ps43p

f
14) = ps12p

f
13,
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where the second equality follows from pf13 = pf14. The winning probability of rational
player 2 is

P2 = ps21(p
s
34p

f
23 + ps43p

f
24) = ps21

1

2
,

where the second equality follow from ps34 + ps43 = 1 and pf23 = pf24 = 1/2. The winning
probabilities of rational players 3 and 4 are

P3 = P4 = ps34(p
s
12p

f
31 + ps21p

f
32) =

1

2

[
ps12(1− pf13) + (1− ps12)

1

2

]
.

Since the overconfident player 1 has an equilibrium probability of winning the final pf13
that is less than 1/2, a necessary condition for him to have the highest equilibrium win-
ning probability is that his equilibrium probability of winning the semifinal ps12 is greater
than 1/2. In other words, the overconfident player must exert higher effort in his semifinal
than the rational player 2. When this is the case, rational player 2 has an equilibrium
probability of winning which is less than 1/4 since ps21 = 1− ps12 < 1/2. Regardless of the
identity of the winner of the semifinal between players 1 and 2, rational players 3 and
4 have an equilibrium winning probability greater than 1/4 since they have a positive
probability of facing the overconfident player 1 in the final. Hence, in equilibrium, the
overconfident player 1 has the highest winning probability when P1 > P3 = P4 which,
from the equations above, is equivalent to 6ps12p

f
13 − ps12 − 1 > 0.

Proposition 5 In a two-stage elimination contest where player 1 is overconfident and
players 2, 3, and 4 are rational, if α >

√
97−5
12

and u(w1)−u(w2)
u(w2)

> 2(4α+5)
6α2+5α−3

, then there

exist λ1 ∈ (1, λ̂) for which the overconfident player has the highest equilibrium winning
probability, i.e., P1 > P3 = P4 > 1/4 > P2.

Proposition 5 shows that, in equilibrium, the overconfident player can have the high-
est probability of winning the elimination contest. Moreover, for this to be the case
three conditions need to be met. First, the CSF’s effort sensitivity parameter α must be

greater than
√
97−5
12

≈ 0.404. Hence, the role that effort plays in determining the winning
probabilities must be sufficiently high. Second, the utility prize spread needs to be suffi-

ciently large, u(w1)−u(w2)
u(w2)

> 2(4α+5)
6α2+5α−3

. Third, the overconfidence bias must be low. Figure

7 depicts in light green the values of
(
α, u(w1)−u(w2)

u(w2)

)
that satisfy the two inequalities in

Proposition 5.
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Figure 7: Values of
(
α,

u(w1)−u(w2)
u(w2)

)
where α >

√

97−5
12 and

u(w1)−u(w2)
u(w2)

>
2(4α+5)

6α2+5α−3

5 Two Overconfident Players and Two Rational Players

This section studies the equilibrium of an elimination contest with two overconfident
players and two rational players. We assume the two overconfident players differ in their
confidence levels. This setup enables us to assess if our prior findings remain applicable
when two overconfident players encounter each other, either in the final or the semifinal.

Now, there are two possible seedings: (i) the overconfident players are seeded in the
same semifinal, and (ii) the overconfident players are seeded in different semifinals. These
two types of seeding induce different results and hence we study them separately.

5.1 Final

When the overconfident players are seeded in the same semifinal, the final will be played
between an overconfident and a rational player and we can apply Proposition 2. In con-
trast, when the overconfident players are seeded in different semifinals, the final can have
two overconfident players. Hence, we start by characterizing the equilibrium of a final
with two overconfident players. Without loss of generality we consider a final between
players 1 and 3 with λ1 > λ3 > 1.

Proposition 6 In a final between two overconfident players, the equilibrium effort of
the more overconfident player is

ef1 =
α

2c
λ
− α+1

2α+1

1 λ
− α

2α+1

3 [u(w1)− u(w2)]

and the equilibrium effort of the less overconfident player is

ef3 =
α

2c
λ
− α

2α+1

1 λ
− α+1

2α+1

3 [u(w1)− u(w2)]
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with ef1 < ef3 < ef . The perceived equilibrium winning probabilities are

p̃f13 = 1−
1

2
λ
− α+1

2α+1

1 λ
− α

2α+1

3

p̃f31 = 1−
1

2
λ
− α

2α+1

1 λ
− α+1

2α+1

3

with p̃f13 > p̃f31 > 1/2. The equilibrium winning probabilities are

pf13 =
1

2
λ
− α

2α+1

1 λ
α

2α+1

3

pf31 = 1−
1

2
λ
− α

2α+1

1 λ
α

2α+1

3

with pf13 < 1/2 < pf31. The perceived equilibrium expected utilities are

Ẽf (U13) = u(w1)−
1 + α

2
λ
− α+1

2α+1

1 λ
− α

2α+1

3 [u(w1)− u(w2)],

Ẽf (U31) = u(w1)−
1 + α

2
λ
− α

2α+1

1 λ
− α+1

2α+1

3 [u(w1)− u(w2)],

with Ẽf (U13) > Ẽf (U31) > E
f
(U).

Proposition 6 shows that in a final between two overconfident players, the more over-
confident player exerts lower effort at equilibrium. As we have seen, the bias lowers
an overconfident player’s perceived marginal probability of winning the final. The more
overconfident a player is, the higher is the drop in his perceived marginal probability of
winning the final. Hence, the more overconfident player exerts lower effort at equilibrium.
Both players exert lower effort than if both were rational. Each player perceives he has a
winning probability greater than 1/2 but, in fact, only the less overconfident player has a
true winning probability greater than 1/2. The perceived expected utility of each player
is increasing in his own bias as well as in the rival’s bias.

5.2 Overconfident players seeded in the same semifinal

Assume players 1 and 2, seeded in one semifinal, are overconfident with λ1 > λ2 > 1
and players 3 and 4, seeded in the other semifinal, are rational with λ3 = λ4 = 1. Note
that, under this seeding, the final will involve an overconfident and a rational player and
hence we can apply Proposition 2. Note also that since the two rational players are iden-
tical, they exert equal efforts in the semifinal and hence, each has an equal probability of
winning it. This means that the identity of winner of the semifinal between two rational
players does not affect the overconfident players’ behavior in their semifinal. However,
since the overconfident players’ biases differ, the identity of winner of the semifinal be-
tween two overconfident players matters for the effort choices of the rational players in
their semifinal. Taking this into account, we start by solving the equilibrium of the semi-
final with two overconfident players.

Proposition 7 Consider the semifinal between two overconfident players of a two-stage
elimination contest where the overconfident players 1 and 2 are seeded in one semifinal,
the rational players 3 and 4 are seeded in the other semifinal, and λ1 > λ2 > 1 = λ3 = λ4.

(i) If u(w1)
u(w1)−u(w2)

2
1+α

⩽ λ

(α+1)2

α(2α+1)
2 −λ

−
3α+2
2α+1

1

λ
α+1
α

2 −λ−1
1

, then the equilibrium efforts and winning probabil-

ities satisfy es1 > es2, e
s
1 > es, and p̃s12 > ps12 > 1/2 ⩾ p̃s21 > ps21.
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(ii) If λ

(α+1)2

α(2α+1)
2 −λ

−
3α+2
2α+1

1

λ
α+1
α

2 −λ−1
1

⩽ u(w1)
u(w1)−u(w2)

2
1+α

<

λ1

λ

α+1
2α+1
2

− λ2

λ

α+1
2α+1
1

λ1−λ2
, then the equilibrium efforts and

winning probabilities satisfy es1 > es2 > es and p̃s12 > ps12 > 1/2 > ps21.

(iii) If u(w1)
u(w1)−u(w2)

2
1+α

⩾ max




λ1

λ

α+1
2α+1
2

− λ2

λ

α+1
2α+1
1

λ1−λ2
,
λ

(α+1)2

α(2α+1)
2 −λ

−
3α+2
2α+1

1

λ
α+1
α

2 −λ−1
1


, then the equilibrium efforts

and winning probabilities satisfy es1 ⩽ es2 and p̃s12 > p̃s21 > ps21 ⩾ 1/2 ⩾ ps12.

Proposition 7 reveals that in a semifinal with two overconfident players, both players
can exert higher efforts than if both were rational. It also shows that the identity of the
player who exerts the highest effort depends on the prize spread, on the confidence gap,
λ1 − λ2, and the bias of the less overconfident player 2.

Part (i) tells us that the more overconfident player 1 exerts higher effort at equilibrium
when the prize spread is large and the confidence gap is moderate.8 Part (ii) tells us that
the more overconfident player 1 exerts higher effort at equilibrium when the prize spread
is moderate, the confidence gap is small, and the bias of the less overconfident player 2
is low. In this case both players exert higher effort than if both were rational.9 Finally,
part (iii) tells us that the less overconfident player 2 exerts higher effort at equilibrium
when either the prize spread is small, or the confidence gap is large, or the confidence
gap is small and the bias of the less overconfident player 2 is large.

Figure 8 illustrates result (ii) in Proposition 7. It depicts the best responses and
equilibrium efforts in a semifinal of an elimination contest where u(w1) = 11, u(w2) = 1,
c = 1, and α = 0.9. Point E depicts the equilibrium when both players are rational.
Point E ′ below the 45 degree line depicts the equilibrium when player 1 is overconfident
with λ1 = 1.18, and player 2 is overconfident with λ2 = 1.07. These parameter values
satisfy the two inequalities in (ii) and hence the more overconfident player 1 exerts higher
effort at equuilibrium than the less overconfident player 2.

8When the confidence gap becomes increasingly large, i.e., λ1 → ∞, the right hand side of the inequality in part (i)

converges to λ
−

α+1

2α+1

2 < 1. When the confidence gap becomes increasingly small, i.e., λ1 → λ2, the right hand side of the

inequality in part (i) also converges to λ
−

α+1

2α+1

2 which is less than 1. Hence, since the left hand side of the inequality in
part (i) is greater than 1, the inequality cannot be satisfied when the confidence gap is either too large or too small. These
two limits are computed in Lemma 4 in the Appendix.

9When λ1 → ∞, the right hand side of the second inequality in part (ii) converges to λ
−

α+1

2α+1

2 which is less than 1.
Hence, since the left hand side of the second inequality in part (ii) is greater than 1, the second inequality in part (ii) cannot
be satisfied when the confidence gap is large. When λ1 → λ2, the left hand side of the first inequality in (ii) converges

to λ
−

α+1

2α+1

2 which is less than 1 and the right hand side of the second inequality converges to 3α+2
2α+1

λ
−

α+1

2α+1

2 . Hence, the

two inequalities in (ii) can be satisfied when the confidence gap becomes increasingly small as long as the bias of the less
overconfident player 2 is low. These two limits are computed in Lemma 4 in the Appendix.
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Figure 8: Best Responses and Equilibrium Efforts in a Semifinal with Two Overconfident Players

The equilibrium of the semifinal with two rational players is similar to that derived
in Proposition 4 and is relegated to Lemma 5 in the Appendix. The main difference
is that now the continuation value of the rational players takes into account the fact
that the overconfident players exert different efforts and hence have different winning
probabilities. Still, regardless of the identity of the winner of the semifinal between the
two overconfident players, the rational players will have a higher continuation value than
if all players were rational. Each rational player knows she will meet an overconfident
player in the final which makes reaching the final more attractive. Hence, in the semifinal
with two rational players, the equilibrium effort is higher than if all players were rational.

Proposition 7 also shows that, except for a knife-hedge parameter configuration, one
of the two overconfident players has a probability of winning his semifinal that is greater
than 1/2. Moreover, some confidence gaps will generate quite large gaps between ps12 and
ps21. We also know that given the equal equilibrium effort, each rational player has an
equal probability of winning his semifinal. This means that there will exist parameter
configurations where an overconfident player is the one with the highest equilibrium
probability of winning the elimination contest.

Hence, the findings obtained for an elimination contest with one overconfident and
three rational players extend to an elimination contest where two overconfident players
are seeded in one semifinal and two rational players are seeded in the other semifinal.

5.3 Overconfident players seeded in different semifinals

We continue to assume players 1 and 2 are seeded in one semifinal and players 3 and 4 are
seeded in the other semifinal. However, we now assume players 1 and 3 are overconfident
with λ1 > λ3 > 1, and players 2 and 4 are rational with λ2 = λ4 = 1.
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In the semifinal between players 1 and 2, the continuation values are

ṽ1 = ps34Ẽ
f (U13) + (1− ps34)Ẽ

f (U14)

= u(w1)−
1 + α

2

(
1− ps34 + ps34λ

− α
2α+1

3

)
λ
− α+1

2α+1

1 [u(w1)− u(w2],

and

v2 = ps34E
f (U23) + (1− ps34)E

f (U24)

= u(w1)−
1 + α

2

(
1− ps34 + ps34λ

− α
2α+1

3

)
[u(w1)− u(w2].

In the semifinal between players 3 and 4, the continuation values are

ṽ3 = ps12Ẽ
f (U31) + (1− ps12)Ẽ

f (U32)

= u(w1)−
1 + α

2

(
1− ps12 + ps12λ

− α
2α+1

1

)
λ
− α+1

2α+1

3 [u(w1)− u(w2],

and

v4 = ps12E
f (U41) + (1− ps12)E

f (U42)

= u(w1)−
1 + α

2

(
1− ps12 + ps12λ

− α
2α+1

1

)
[u(w1)− u(w2].

The four expressions above shows us that the continuation values of players seeded in
one semifinal depend on the equilibrium winning probabilities of players seeded in the
other semifinal. As the equilibrium efforts of one semifinal cannot be solved separately
from those of the other semifinal, the equilibrium efforts in the semifinals are jointly
determined by the four first-order conditions mgp̃s12ṽ1 = c, mgps21v2 = c, mgp̃s34ṽ3 = c,
and mgps43v4 = c.

Still, the findings in Proposition 3 can be applied to both semifinals. In other words,
we know that in both semifinals there exist parameter configurations where the overcon-
fident player exerts higher effort than the rational player. Our next result shows that this
is indeed the case.

Proposition 8 Consider the semifinals of a two-stage elimination contest where over-
confident player 1 and rational player 2 are seeded in one semifinal, overconfident player
3 and rational player 4 are seeded in the other semifinal, and λ1 > λ3 > 1 = λ2 = λ4. If
u(w1)−u(w2)

u(w2)
> 2(1+2α)

α(1+3α)
and u(w1)

u(w1)−u(w2)
2

1+α
< 1

λ1−1

(
λ1 − λ

− α+1
2α+1

1

)
λ
− α

α+1

3 and u(w1)
u(w1)−u(w2)

2
1+α

<

1
λ3−1

(
λ3 − λ

− α+1
2α+1

3

)
λ
− α

α+1

1 , then the equilibrium efforts and winning probabilities satisfy

es1 > es2, e
s
3 > es4, p

s
12 > 1/2 > ps21, and ps34 > 1/2 > ps43.

Proposition 8 shows that in an elimination contest where two overconfident players
are seeded in different semifinals, the overconfident players can exert higher effort at
equilibrium than their rational rivals. This happens when the prize spread is sufficiently
large and the overconfident players are not too confident. In this case, each overconfident
player has a higher probability of winning his semifinal than his rational rival.

Hence, the results found for an elimination contest with one overconfident player and
three rational players also extend to an elimination contest where one overconfident and
one rational player are seeded in each semifinal.
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6 Welfare

This section studies the effects of overconfidence on the welfare of the players and of
the contest designer. The analysis focuses on a two-stage elimination contest with one
overconfident and three rational players.

6.1 Players

To evaluate the impact of overconfidence on player i’s welfare we consider how overcon-
fidence changes player i’s equilibrium expected utility in the semifinal with players i and
h which is given by

Es(Uih) = psih

[
pfijE

f (Uij) + pfikE
f (Uik)

]
− cesi ,

where esi is player i’s equilibrium effort in the semifinal with h, psih is player i’s equilibrium
winning probability in the semifinal with h, and the term inside parenthesis is player i’s
equilibrium continuation value.

Proposition 9 Consider a two-stage pairwise elimination contest with one overcon-
fident player and three rational players.
(i) If u(w1)−u(w2)

u(w2)
> 2(2α+1)

α(3α+1)
, then there exist λ1 ∈ (1, λ̂) for which Es(U12) > E

s
(U).

(ii) If u(w1)−u(w2)
u(w2)

> 2(2α+1)
α(3α+1)

and λ1 < λ̂, then Es(U21) < E
s
(U), otherwise, Es(U21) ⩾

E
s
(U).

(iii) Es(U34) = Es(U43) > E
s
(U).

Part (i) shows that if the prize spread is large enough, then there exist (small) over-
confidence levels where the equilibrium expected utility of the overconfident player 1 in
the semifinal with rational player 2 is higher than if all players were rational. Part (ii)
shows that if the prize spread is large enough and overconfidence is not too extreme,
then the equilibrium expected utility of the rational player 2 in the semifinal with the
overconfident player 1 is lower than if all players were rational. Finally, part (iii) shows
that the equilibrium expected utility of each of the rational players seeded in the same
semifinal is higher than if all players are rational.

6.2 Contest Designer

We assume the welfare of the contest designer is increasing in the players’ aggregate ef-
fort, the sum of the efforts in the two-stages of the contest.

Proposition 10 Consider a two-stage pairwise elimination contest with one overcon-
fident player and three rational players.
(i) The equilibrium aggregate effort in a final with players i and j satisfies efi + efj ⩽ 2ef .

(ii) If u(w1)−u(w2)
u(w2)

> 2(2α+1)
α(3α+1)

and α < 1
2
, then there exist λ1 ∈ (1, λ̂) such that the equilib-

rium aggregate effort in the semifinals stage satisfies
∑4

i=1 e
s
i > 4es.

Part (i) shows that the equilibrium aggregate effort in the final stage is less than or
equal to the equilibrium aggregate effort in a final with two rational players. This result
follows directly from Propositions 1 and 2. The impact of overconfidence on aggregate
effort in the semifinals stage is harder to characterize. We know from Proposition 3
that in the semifinal with one overconfident and one rational player two situations can
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emerge. If the prize spread is high enough, u(w1)−u(w2)
u(w2)

> 2(2α+1)
α(3α+1)

, and overconfidence is

not too extreme, λ1 < λ̂, the overconfident player’s equilibrium effort is higher than if he
were rational and the rational player’s equilibrium effort is lower than if she were facing a
rational rival. In all other cases, both players’ equilibrium efforts are less than if all players
were rational. We also know from Proposition 4 that in the semifinal with two rational
players equilibrium efforts go up since both players have a higher continuation value of
winning their semifinal. Still, part (ii) shows that overconfidence raises aggregate effort in
the semifinals stage when the prize spread is high enough, α < 1/2, and the overconfident
player’s bias is small. This result implies that it is unclear whether overconfidence lowers
or raises players’ aggregate efforts in the two stages. As a consequence, we are unable
to provide general conditions under which overconfidence unambiguously lowers or raises
the contest designer’s welfare.

7 Optimal Prize Structure

This section analyzes how the contest designer should optimally choose the prize struc-
ture of the contest when players are overconfident. We assume the overall prize money is
fixed and consider that the goal of the contest designer is the maximization of aggregate
incentives, defined as the sum of efforts provided by all players across the two stages of
the contest (this is a natural objective of the contest designer, see Sisak 2009). We also
assume the four players are homogeneous, that is, all hold the same overconfidence bias.
Finally, we assume W units are available as the total prize money, hence W = w1 + w2.

Proposition 11 Consider a two-stage elimination contest with four identical players
with an overconfidence bias equal to λ ⩾ 1.
(i) If players are risk-neutral, then the optimal prize structure is the winner-take-all, i.e.,
w1 = W and w2 = 0.
(ii) If players are risk-averse, then the optimal prize structure solves W = w1 + w2 and

u′(w1)

u′(w2)
=

α
λ

2− α
λ

. (12)

Proposition 11 shows how the optimal prize structure depends on the players’ risk
attitudes and overconfidence. Part (i) shows that the contest designer allocates all of the
prize money to the winner of the final when the players are rational and risk-neutral. This
result is in line with Fu and Lu (2012) and Stracke et al. (2014) who show, in the context
of a pyramid Tullock contest and of a two-stage elimination Tullock contest, respectively,
that a winner-take-all prize structure maximizes aggregate effort when players are rational
and risk-neutral. The novel result in part (i) is that the optimal prize structure is also
the winner-take-all when players are overconfident and risk-neutral.

Part (ii) shows that when the players are rational and risk-averse, the optimal prize
structure involves multiple prizes with the winner of the final receiving most of the prize
money and a smaller part being assigned to the runner-up. This result is in line with
Krishna and Morgan (1998) findings in the context of two-stage elimination Lazer-Rosen
tournament with rational and risk-averse players. The novel result in part (ii) is that
when players are overconfident and risk-averse, an increase in overconfidence leads the
contest designer to allocate an increasingly larger share of the prize money to the winner
of the final. The contest designer, exploits the players’ overconfidence by shifting pay
from w2 to w1 given that the bias leads the players to overestimate the probability of
gaining prize w1 and underestimate the probability of gaining prize w2. This result is
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in line with Santos-Pinto (2010) who finds, in the context of a one-shot Lazear-Rosen
tournament, that the tournament designer can exploit players’ overconfidence by raising
the prize spread.

8 Extensions

This section discusses four extensions of the model. It starts by showing that most of
the results extend to a two-stage elimination Tullock contest. Next, it shows all of our
results hold when the overconfident player’s rivals cannot observe his bias. After that, it
shows our results also extend to a three-stage elimination contest. Finally, it describes
the impact of underconfidence on a two-stage elimination contest.

8.1 Two-Stage Elimination Contest with Tullock CSF

In a two-stage elimination contest where the players’ winning probabilities are determined
by Tullock’s (1980) CSF, player i’s probability of winning when paired with j is

pij =

{
q(ei)

q(ei)+q(ej)
if q(ei) + q(ej) > 0

1
2

if q(ei) + q(ej) = 0

where the function q(ei), often referred to as the impact function (Ewerhart 2015), satisfies
q(0) ⩾ 0, q′(ei) > 0, and q′′(ei) ⩽ 0.10 Following Santos-Pinto and Sekeris (2023), an
overconfident player i’s perceived probability of winning when paired with j is

p̃ij =

{
λiq(ei)

λiq(ei)+q(ej)
if λiq(ei) + q(ej) > 0

1
2

if λiq(ei) + q(ej) = 0

where λi > 1. Hence, in a final between an overconfident player 1 and a rational player
3, the equilibrium efforts (ef1 , e

f
3) satisfy

λ1q
′(ef1)q(e

f
3)

[λ1q(e
f
1) + q(ef3)]

2
[u(w1)− u(w2)] = c, (13)

and
q′(ef3)q(e

f
1)

[q(ef1) + q(ef3)]
2
[u(w1)− u(w2)] = c. (14)

It is not possible to solve (13) and (14) explicitly for the equilibrium efforts in the final.
Nevertheless, Santos-Pinto and Sekeris (2023) characterize the equilibrium of a one-shot
Tullock contest between two overconfident players. In the Online Appendix we show that
the results of Santos-Pinto and Sekeris (2023) also apply to a one-shot Tullock contest
between one overconfident player and one rational player. Namely, the overconfident
player exerts less effort than the rational player, and both players exert less effort than
if both were rational. Furthermore, the equilibrium efforts of both players decrease in
the overconfident player’s bias. Hence, the equilibrium efforts in the final of a two-stage
elimination Tullock contest satisfy the same qualitative properties as those in the final of
a two-stage elimination Alcalde and Dham (2007) contest.

Let us now turn our attention to the semifinals of a two-stage elimination Tullock
contest. In the semifinal between an overconfident player 1 and a rational player 2, the

10When q(ei) = eαi , where 0 < α ⩽ 1, the parameter α determines how sensitive the CSF is to effort.
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equilibrium efforts (es1, e
s
2) satisfy

λ1q
′(es1)q(e

s
2)

[λ1q(es1) + q(es2)]
2
ṽ1 = c,

and
q′(es2)q(e

s
1)

[q(es1) + q(es2)]
2
v2 = c,

The Online Appendix shows that the overconfident player’s perceived continuation value
ṽ1 increases in his bias. Hence, overconfidence has an encouragement effect in the semifinal
of a two-stage elimination Tullock contest. The complacency effect is given by

∂mgp̃s12
∂λ1

λ1

mgp̃s12
= −q(es2)q

′(es1)
λ1q(e

s
1)− q(es2)

(λ1q(es1) + q(es2))
3

λ1

λ1q(es2)q
′(es1)

(λ1q(es1)+q(es2))
2

= −
λ1q(e

s
1)− q(es2)

λ1q(es1) + q(es2)
.

(15)
It follows from (15) that there is a complacency effect when λ1q(e

s
1) > q(es2). Hence, the

effect of overconfidence on the equilibrium efforts in a semifinal of a two-stage elimination
Tullock contest will depend on the sizes of the encouragement and complacency effects.

8.2 Unobservability of Overconfidence

Our results also extend to an elimination contest where the overconfident player’s rivals
cannot observe his bias. In the Online Appendix we characterize the equilibrium of a final
between an overconfident player and a rational player who is unaware of the overconfident
player’s bias. In this case, the rational player exerts the benchmark equilibrium effort ef .
The overconfident player chooses a best response to ef given his mistaken beliefs, i.e., he
chooses the level of effort e that solves mgp̃f (e, ef )[u(w2) − u(w1)] = c. In equilibrium,
the overconfident player exerts less effort than the rational player in the final. Note
that since the rational player does not lower her effort, the overconfident player lowers
his effort by less than when the rational player is aware of the overconfident player’s
bias. An increase in the bias raises the overconfident player’s perceived probability of
winning the final and lowers his cost of effort. Hence, an increase in the bias raises
the overconfident player’s perceived equilibrium expected utility of the final. We also
characterize the equilibrium of a semifinal between an overconfident player and a rational
rival who is unaware of the overconfident player’s bias. Once again, we show that if the
prize spread is sufficiently large and the bias is not too high, the overconfident player
exerts more effort than the rational player in the semifinal. In the semifinal between two
rational players, overconfidence no longer leads to an increase in equilibrium effort due to
the unobservability of bias. Finally, we show that there exists conditions under which the
overconfident player has the highest equilibrium probability of winning the elimination
contest.

8.3 Elimination Contest with Three Stages

Our results also hold in a three-stage elimination contest. In the Online Appendix we
study a three-stage elimination contest with eight players. In the third-stage, the eight
players are matched pairwise and each pair competes in one of the four quarterfinals. The
third-stage winners move on to compete in the second-stage. The winner of the contest
receives prize w1, the runner-up prize w2, the second-stage losers receive prize w3, and
the third-stage losers receive nothing, with w1 > w2 > w3 ⩾ 0.
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We fully characterize the equilibrium of the quarterfinal between an overconfident
and a rational player in a three-stage elimination contest with one overconfident player
and seven rational players. We find that, regardless of the overconfident player exerting
more or less effort than a rational rival in the semifinals stage, an overconfident player’s

perceived expected utility of the semifinal Ẽs(U) is greater than the benchmark E
s
(U).

Hence, in a quarterfinal, an overconfident player has a higher perceived continuation value
ṽq than the benchmark vq. This implies that overconfidence always has an encouragement
effect in the quarterfinals stage. Moreover, depending on the parameters of the model,
the encouragement effect can dominate the complacency effect.11

8.4 Underconfidence

In the Online Appendix we characterize the equilibrium of a two-stage elimination con-
test with one underconfident player and three rational players. The underconfident player
underestimates the impact of his effort on his winning probability in each pairwise inter-
action, i.e., he has a bias λ ∈ (0, 1). We find that an underconfident player exerts less
effort than a rational rival in the final. An increase in the underconfident player’s bias
(a decrease in λ) has two opposite effects on his perceived equilibrium expected utility
of the final. On the one hand, it lowers the underconfident player’s perceived probability
of winning the final. On the other hand, it lowers the underconfident player’s cost of
effort. The former effect dominates and an underconfident player’s perceived equilibrium
expected utility of the final decreases in his bias. This, in turn, implies that undercon-
fidence has a double negative effect in the semifinal. First, it lowers the underconfident
player’s perceived continuation value as it makes reaching the final less attractive. Sec-
ond, it lowers the underconfident player’s perceived marginal probability of winning the
semifinal. Hence, an underconfident player exerts less effort than a rational rival in a
semifinal. The presence of an underconfident player has a spillover effect on effort pro-
vision in the semifinal between the two rational players since the probability of facing
an underconfident player in the final raises their continuation values. These results im-
ply that the underconfident player has the lowest equilibrium probability of winning the
elimination contest.

9 Conclusion

Our findings reveal a nuanced interplay between overconfidence and effort exertion in a
two-stage elimination contest. An overconfident player expends less effort in the final
stage than a rational rival. However, this pattern can be inverted in the semifinals stage,
where an overconfident can exert more effort than a rational rival.

In the final stage, an overconfident player always exerts lower effort at equilibrium
than a rational player. The (mis)perceived advantage of the overconfident player leads
him to think, mistakenly, he can reduce his effort without endangering his prospects of
success. The rational player, aware of the rival’s bias, also lowers her effort but not as
much. Hence, the bias unambiguously lowers the overconfident player’s probability of
winning the final.

Overconfidence also changes how the players’ assess the attractiveness of the final. The
overconfident player’s perceived expected utility of the final increases in his bias. This

11The spillover effect is always present in the quarterfinals among the rational players who won’t meet the overconfident
player until the final. However, this is not true for the quarterfinal among the two rational players who have the chance of
meeting the overconfident player in the semifinal. The continuation values of these two players compared to the benchmark
depends on whether the overconfident player or the rational player exerts higher effort in the semifinal. The spillover effect
only exists if the rational player has a higher equilibrium winning probability than the overconfident player in the semifinal.
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happens due to two channels. First, the overconfident player overestimates his probability
of winning the final. Second, the overconfident player anticipates, correctly, he needs to
exert lower effort in the final. The rational player’s expected utility of the final increases
with the overconfident players’ bias. She has a higher probability of winning the final and
anticipates, correctly, she needs to exert lower effort in the final. Hence, overconfidence
makes reaching the final more attractive not only for an overconfident player but also for
a rational player.

In the semifinals stage, the bias has two opposite effects on an overconfident player’s
incentives to exert effort. On the one hand, it leads to a decrease in the overconfident
player’s perceived marginal probability of winning the semifinal. On the other hand, it
raises the overconfident player’s perceived continuation value due to the higher expected
utility of moving on to the final. The first effect discourages an overconfident player from
exerting effort whereas the second effect encourages him to exert effort. If the encourage-
ment (complacency) effect dominates, an overconfident player exert higher (lower) effort
at equilibrium in a semifinal than a rational player.

The encouragement effect dominates when two conditions are met. First, the prize
spread needs to be sufficiently large. Second, the overconfident player’s bias cannot be
too high. The intuition behind these two conditions is as follows. The higher is the prize
spread, the higher is the continuation value, and the higher is the encouragement effect.
As the overconfident player’s bias increases, the increase in the encouragement effect gets
smaller whereas the increase in the complacency effect gets larger. Hence, there exists an
upper bound for the bias above which the complacency effect dominates.

Our results also reveal that the presence of an overconfident player in an elimina-
tion contest has a spillover effect on the effort provision of the semifinal with rational
players. This result is straightforward. The presence of an overconfident player in the
contest makes reaching the final more attractive for rational players and hence they have
incentives to exert higher effort in their semifinal.

Next, we consider how the overconfident player’s bias affects his equilibrium probability
of winning the elimination contest. We find that the overconfident player can be the one
with the highest probability of winning the elimination contest. For this to be the case
three conditions have to be met. First, the role that effort plays in determining the
winning probabilities must be sufficiently high. Second, the prize spread needs to be
sufficiently large. Third, the overconfident player’s bias needs to be small.

Our results contribute to the literature on labor market promotions and overconfidence.
More particularly, they contribute to the literature on CEO overconfidence. They provide
a novel explanation for why overconfident individuals are promoted to CEO positions,
namely, exerting higher efforts at the early stages of their careers. In addition, our results
highlight the role that increases in executive compensation (interpreted as increases in the
prize spread) can have in making elimination contests more attractive to overconfident
individuals.

Future work might study elimination contests where players are not only heterogeneous
in their confidence levels but also in terms of their abilities. When an overconfident player
has a lower ability than a rational player, overconfidence might not only increase a player’s
perceived continuation value but also his perceived marginal probability of winning a final
and a semifinal. Future work can also study how the contest designer should optimally
set prizes in the presence of overconfident players.
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Appendix

Proof of Lemma 1

The best response of player i in the final, Rf
i (ej), is defined by (3). Hence, the slope of

the best response of player i in the final is given by

−

∂R
f
i

∂ej

∂R
f
i

∂ei

= −

∂2Ẽf (Uij)

∂ei∂ej

∂2Ẽf (Uij)

∂e2i

= −





α2

2λi

e
α−1
j

e
α+1
i

[u(w1)−u(w2)]

−(1+α) α
2λi

eα
j

e
α+2
i

[u(w1)−u(w2)]
= − α

1+α
ei
ej

if λie
α
i > eαj

−α2

2
λi

e
α−1
i

e
α+1
j

[u(w1)−u(w2)]

−(1−α)α
2
λi

e
α−2
i
eα
j

[u(w1)−u(w2)]

= α
1−α

ei
ej

if λie
α
i < eαj

Therefore, the sign of the slope of player i’s best response in the final is positive for
λie

α
i > eαj and negative for λie

α
i < eαj . This implies that Rf

i (ej) increases in ej for
λie

α
i > eαj , reaches the maximum at λie

α
i = eαj , and decreases in ej for λie

α
i < eαj .

Proof of Lemma 2

Player i’s best response in the final is defined by (3). Hence, we have

∂Rf
i

∂λi

=





− α
2λ2

i

eαj

eα+1
i

[u(w1)− u(w2)] if λie
α
i > eαj

α
2

eα−1
i

eαj
[u(w1)− u(w2)] if λie

α
i < eαj

We see that ∂Rf
i /∂λi < 0 for λie

α
i > eαj and ∂Rf

i /∂λi > 0 for λie
α
i < eαj . Substituting

eαj = λie
α
i into equation (3) and denoting the maximal effort that i is willing to invest in

the final by efmax
i we obtain

α

2λi

λi(e
fmax
i )α

(efmax
i )α+1

[u(w1)− u(w2)] = c

or
efmax
i =

α

2c
[u(w1)− u(w2)].

This implies that the value of ei corresponding to the maximum value of player i’s best
response in the final, efmax

i , does not depend on λi.

Proof of Lemma 3

Player i’s best response in the semifinal is defined by (4). Hence, we have

∂Rs
i

∂λi

=





− α
2λ2

i

eαj

eα+1
i

ṽi +
α
2λi

eαj

eα+1
i

∂ṽi
∂λi

= α
2λ2

i

eαj

eα+1
i

(
−ṽi + λi

∂ṽi
∂λi

)
if λie

α
i > eαj

α
2

eα−1
i

eαj
ṽi +

α
2
λi

eα−1
i

eαj

∂ṽi
∂λi

= α
2

eα−1
i

eαj

(
ṽi + λi

∂ṽi
∂λi

)
if λie

α
i < eαj

(16)
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It follows from (16) that if ∂ṽi
∂λi

> 0, then
∂Rs

i

∂λi
> 0 for λie

α
i < eαj . That is, if the overcon-

fident player’s perceived continuation value increases in overconfidence, then an increase
in overconfidence expands the overconfident player’s best response in the semifinal for
high effort of the rival.

It also follows from (16) that if ∂ṽi
∂λi

> 0 and ∂ṽi
∂λi

λi

ṽi
< 1(> 1), then

∂Rs
i

∂λi
< 0(> 0) for

λie
α
i > eαj . That is, if the overconfident player’s perceived continuation value increases in

overconfidence and the elasticity of the perceived continuation value with respect to the
bias is less (greater) than 1, then an increase in overconfidence contracts (expands) the
overconfident player’s best response in the semifinal for low effort of the rival.

Substituting eαj = λie
α
i into equation (4) and denoting the maximal effort that i is

willing to invest in the semifinal by esmax
i we obtain

α

2λi

λi(e
smax
i )α

(esmax
i )α+1

ṽi = c

or
esmax
i =

α

2c
ṽi.

Hence, if ∂ṽi
∂λi

> 0, then efmax
i increases in λi.

Proof of Proposition 1

The final stage

pf13 =

{
1− 1

2

eα3
eα1

if eα1 ⩾ eα3
1
2

eα1
eα3

if eα1 ⩽ eα3

pf31 =

{
1− 1

2

eα1
eα3

if eα3 ⩾ eα1
1
2

eα3
eα1

if eα3 ⩽ eα1

Rational player 1 max Ef (U13) = pf13[u(w1)− u(w2)] + u(w2)− ce1

=





(
1− 1

2

eα3
eα1

)
[u(w1)− u(w2)] + u(w2)− ce1 if eα1 ⩾ eα3

1
2

eα1
eα3
[u(w1)− u(w2)] + u(w2)− ce1 if eα1 ⩽ eα3

Rational player 3 max Ef (U31) = pf31[u(w1)− u(w2)] + u(w2)− ce3

=





(
1− 1

2

eα1
eα3

)
[u(w1)− u(w2)] + u(w2)− ce3 if eα3 ⩾ eα1

1
2

eα3
eα1
[u(w1)− u(w2)] + u(w2)− ce3 if eα3 ⩽ eα1

There are 2 cases.

{
eα1 ⩾ eα3
eα1 ⩽ eα3

1. equilibrium efforts
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(1) case 1: eα1 ⩾ eα3

Player 1 max Ef (U13) =
(
1− 1

2

eα3
eα1

)
[u(w1)− u(w2)] + u(w2)− ce1

Player 3 max Ef (U31) =
1
2

eα3
eα1
[u(w1)− u(w2)] + u(w2)− ce3

F.o.c

[e1]
α
2

eα3
eα+1
1

[u(w1)− u(w2)]− c = 0

[e3]
α
2

eα−1
3

eα1
[u(w1)− u(w2)]− c = 0

S.o.c

[e1]
α
2
(−α− 1)

eα3
eα+2
1

[u(w1)− u(w2)] < 0

[e3]
α
2
(α− 1)

eα−2
3

eα1
[u(w1)− u(w2)] < 0

Solve F.O.C , we get e1 = e3 =
α
2c
[u(w1)− u(w2)]

(2) case 2: eα1 ⩽ eα3

The same as the previous case.

Thus the unique equilibrium is ef = ef1 = ef3 = α
2c
[u(w1)− u(w2)],

2. winning probabilities

The true winning probabilities are

pf = pf13 = pf31 =
1

2

3. expected utilities of final

E
f
(U) = Ef (U13) = Ef (U31) =

1

2
[u(w1) + u(w2)]− c

α

2c
[u(w1)− u(w2)]

=
1− α

2
u(w1) +

1 + α

2
u(w2)

Since 0 < α ⩽ 1, we have E
f
(U) ⩾ 0. The participation constraints are satisfied.

The semifinals stage

1. continuation values

Using the expected utility of the final, we can get the continuation values of each
player in the semifinal.
The continuation value of player 1 is given by

v1 = ps34E
f (U13) + ps43E

f (U14)

= E
f
(U)

=
1− α

2
u(w1) +

1 + α

2
u(w2)
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Since all 4 players are identical,

v = v1 = v2 = v3 = v4 =
1− α

2
u(w1) +

1 + α

2
u(w2).

2. equilibrium efforts in the semifinal

Using the extension of the equilibrium result in the final, we can get that

es = es1 = es2 = es3 = es4 =
α

2c
v =

α

2c

[
1− α

2
u(w1) +

1 + α

2
u(w2)

]

3. true winning probabilities

ps = ps12 = ps21 = ps34 = ps43 =
1

2

4. expected utilities of semifinal

E
s
(U) =

1

2
v − c

α

2c
v =

1− α

2
v =

1− α

2

[
1− α

2
u(w1) +

1 + α

2
u(w2)

]

Since 0 < α ⩽ 1, we have E
s
(U) ⩾ 0. The participation constraints are satisfied.

5. the prize spread that satisfies es < ef

es < ef ⇐⇒
α

2c

[
1− α

2
u(w1) +

1 + α

2
u(w2)

]
<

α

2c
[u(w1)− u(w2)]

⇐⇒ (1− α)u(w1) + (1 + α)u(w2) < 2[u(w1)− u(w2)]

⇐⇒ (3 + α)u(w2) < (1 + α)u(w1)

⇐⇒
u(w1)

u(w2)
>

3 + α

1 + α

Since α ∈ (0, 1] this inequality is satisfied for all α when u(w1) > 3u(w2).

Proof of Proposition 2

The perceived winning probabilities of the players are:

p̃f13 =

{
1− 1

2

eα3
λ1e

α
1

if λ1e
α
1 ⩾ eα3

1
2

λ1e
α
1

eα3
if λ1e

α
1 ⩽ eα3

pf31 =

{
1− 1

2

eα1
eα3

if eα3 ⩾ eα1
1
2

eα3
eα1

if eα3 ⩽ eα1

Overconfident player 1 max Ẽf (U13) = p̃f13[u(w1)− u(w2)] + u(w2)− ce1

=





(
1− 1

2

eα3
λ1e

α
1

)
[u(w1)− u(w2)] + u(w2)− ce1 if λ1e

α
1 ⩾ eα3

1
2

λ1e
α
1

eα3
[u(w1)− u(w2)] + u(w2)− ce1 if λ1e

α
1 ⩽ eα3
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Rational player 3 max Ef (U31) = pf31[u(w1)− u(w2)] + u(w2)− ce3

=





(
1− 1

2

eα1
eα3

)
[u(w1)− u(w2)] + u(w2)− ce3 if eα3 ⩾ eα1

1
2

eα3
eα1
[u(w1)− u(w2)] + u(w2)− ce3 if eα3 ⩽ eα1

There are 4 cases.





λ1e
α
1 ⩾ eα3 and e3 ⩾ e1

λ1e
α
1 ⩾ eα3 and e3 ⩽ e1

λ1e
α
1 ⩽ eα3 and e3 ⩾ e1

λ1e
α
1 ⩽ eα3 and e3 ⩽ e1

Since λ1 > 1, the fourth case is impossible.

1. equilibrium efforts

(1) case 1: λ1e
α
1 ⩾ eα3 and e3 ⩾ e1

Player 1 max
(
1− 1

2

eα3
λ1e

α
1

)
[u(w1)− u(w2)] + u(w2)− ce1

Player 3 max
(
1− 1

2

eα1
eα3

)
[u(w1)− u(w2)] + u(w2)− ce3

F.o.c

[e1]
α
2λ1

eα3
eα+1
1

[u(w1)− u(w2)]− c = 0

[e3]
α
2

eα1
eα+1
3

[u(w1)− u(w2)]− c = 0

S.o.c

[e1]
α
2λ1

(−α− 1)
eα3

eα+2
1

[u(w1)− u(w2)] < 0

[e3]
α
2
(−α− 1)

eα1
eα+2
3

[u(w1)− u(w2)] < 0

Solve F.O.C , we get

e1 =
α

2c
λ
− α+1

2α+1

1 [u(w1)− u(w2)]

e3 =
α

2c
λ
− α

2α+1

1 [u(w1)− u(w2)]
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Check the conditions λ1e
α
1 ⩾ eα3 and e3 ⩾ e1:

λ1e
α
1 ⩾ eα3 ⇐⇒ λ1

(
α

2c
λ
− α+1

2α+1

1

)α

⩾
( α

2c
λ
− α

2α+1

1

)α

⇐⇒

( α

2c

)α
λ
− (α+1)α

2α+1
+1

1 ⩾
( α

2c

)α
λ
− α2

2α+1

1

⇐⇒ λ
− (α+1)α

2α+1
+1+ α2

2α+1

1 ⩾ 1

⇐⇒ λ
− α+1

2α+1

1 ⩾ 1

⇐⇒
α + 1

2α + 1
⩾ 0

e3 ⩾ e1 ⇐⇒
α

2c
λ
− α

2α+1

1 ⩾ α

2c
λ
− α+1

2α+1

1

⇐⇒ λ
− α

2α+1

1 ⩾ λ
− α+1

2α+1

1

⇐⇒ λ
1

2α+1

1 ⩾ 1

⇐⇒
1

2α + 1
⩾ 0

The conditions are always satisfied.

(2) case 2: λ1e
α
1 ⩾ eα3 and e3 ⩽ e1

Player 1 max
(
1− 1

2

eα3
λ1e

α
1

)
[u(w1)− u(w2)] + u(w2)− ce1

Player 3 max 1
2

eα3
eα1
[u(w1)− u(w2)] + u(w2)− ce3

F.o.c

[e1]
α
2λ1

eα3
eα+1
1

[u(w1)− u(w2)]− c = 0

[e3]
α
2

eα−1
3

eα1
[u(w1)− u(w2)]− c = 0

divide the two F.O.C , we get

e3
e1

= λ1 > 1

which contradicts the condition that e3 ⩽ e1

(3) case 3: λ1e
α
1 ⩽ eα3 and e3 ⩾ e1

Player 1 max 1
2

λ1e
α
1

eα3
[u(w1)− u(w2)] + u(w2)− ce1

Player 3 max
(
1− 1

2

eα1
eα3

)
[u(w1)− u(w2)] + u(w2)− ce3

F.o.c

[e1]
αλ1

2

eα−1
1

eα3
[u(w1)− u(w2)]− c = 0

[e3]
α
2

eα1
eα+1
3

[u(w1)− u(w2)]− c = 0
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divide the two F.O.C , we get

e3
e1

=
1

λ1

< 1

which contradicts the condition that e3 ⩾ e1

Thus the unique equilibrium is

ef1 =
α

2c
λ
− α+1

2α+1

1 [u(w1)− u(w2)]

ef3 =
α

2c
λ
− α

2α+1

1 [u(w1)− u(w2)]

where λ1e
α
1 > eα3 and e3 > e1.

We show that ef1 < ef and ef3 < ef :

ef1 < ef ⇐⇒
α

2c
λ
− α+1

2α+1

1 [u(w1)− u(w2)] <
α

2c
[u(w1)− u(w2)]

⇐⇒ λ
− α+1

2α+1

1 < 1

ef3 < ef ⇐⇒
α

2c
λ
− α

2α+1

1 [u(w1)− u(w2)] <
α

2c
[u(w1)− u(w2)]

⇐⇒ λ
− α

2α+1

1 < 1

2. equilibrium winning probabilities

The true winning probabilities are

pf13 =
1

2

(
ef1

ef3

)α

=
1

2

(
λ
− 1

2α+1

1

)α

=
1

2
λ
− α

2α+1

1

pf31 = 1− pf13 = 1−
1

2
λ
− α

2α+1

1

The overconfident player 1’s perceived winning probabilities are

p̃f13 = 1−
1

2

(ef3)
α

λ1(e
f
1)

α

= 1−
1

2

(
α
2c
λ
− α

2α+1

1 [u(w1)− u(w2)]
)α

λ1

(
α
2c
λ
− α+1

2α+1

1 [u(w1)− u(w2)]

)α

= 1−
1

2

(
λ
− α

2α+1

1

)α

λ1

(
λ
− α+1

2α+1

1

)α

= 1−
1

2
λ
− α+1

2α+1

1
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We show that p̃f13 > pf31 >
1
2
> pf13:

p̃f13 > pf31 ⇐⇒ 1−
1

2
λ
− α+1

2α+1

1 > 1−
1

2
λ
− α

2α+1

1

⇐⇒
1

2
λ
− α

2α+1

1 >
1

2
λ
− α+1

2α+1

1

⇐⇒ λ
1

2α+1

1 > 1

pf31 >
1

2
⇐⇒ 1−

1

2
λ
− α

2α+1

1 >
1

2

⇐⇒ λ
− α

2α+1

1 < 1

pf13 <
1

2
⇐⇒ 1− pf31 <

1

2

⇐⇒ pf31 >
1

2

3. expected utilities of final

Ẽf (U13) = p̃f13u(w1) + (1− p̃f13)u(w2)− cef1

=

(
1−

1

2
λ
− α+1

2α+1

1

)
u(w1) +

1

2
λ
− α+1

2α+1

1 u(w2)−
α

2
λ
− α+1

2α+1

1 [u(w1)− u(w2)]

= u(w1)−
1 + α

2
λ
− α+1

2α+1

1 [u(w1)− u(w2)]

Ef (U31) = pf31u(w1) + (1− pf31)u(w2)− cef3

=

(
1−

1

2
λ
− α

2α+1

1

)
u(w1) +

1

2
λ
− α

2α+1

1 u(w2)−
α

2
λ
− α

2α+1

1 [u(w1)− u(w2)]

= u(w1)−
1 + α

2
λ
− α

2α+1

1 [u(w1)− u(w2)]

We show that Ẽf (U13) > Ef (U31) > E
f
(U):

Ẽf (U13) > Ef (U31)

⇐⇒ u(w1)−
1 + α

2
λ
− α+1

2α+1

1 [u(w1)− u(w2)] > u(w1)−
1 + α

2
λ
− α

2α+1

1 [u(w1)− u(w2)]

⇐⇒ −
1 + α

2
λ
− α+1

2α+1

1 [u(w1)− u(w2)] > −
1 + α

2
λ
− α

2α+1

1 [u(w1)− u(w2)]

⇐⇒ λ
− α

2α+1

1 > λ
− α+1

2α+1

1

Ef (U31) > E
f
(U)

⇐⇒ u(w1)−
1 + α

2
λ
− α

2α+1

1 [u(w1)− u(w2)] > u(w1)−
1 + α

2
[u(w1)− u(w2)]

⇐⇒ −
1 + α

2
λ
− α

2α+1

1 [u(w1)− u(w2)] > −
1 + α

2
[u(w1)− u(w2)]

⇐⇒ 1 > λ
− α

2α+1

1

Since E
f
(U) ⩾ 0, the participation constraints of both players are satisfied.
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Proof of Proposition 3

1. Continuation values

Using Proposition 2, we can get the continuation values of each player.

Overconfident player 1:

ṽ1 = ps34Ẽ
f (U13) + ps43Ẽ

f (U14)

Since player 3 and 4 are identical, Ẽf (U13) = Ẽf (U14)

ṽ1 = u(w1)−
1 + α

2
λ
− α+1

2α+1

1 [u(w1)− u(w2)]

Since Ẽf (U13) > E
f
(U), we can get ṽ1 > v.

Rational player 2:

v2 = ps34E
f (U23) + ps43E

f (U24)

Since players 3 and 4 are identical, Ef (U23) = Ef (U24)

v2 =
1− α

2
u(w1) +

1 + α

2
u(w2) = v

2. The equilibrium efforts and winning probabilities

Player 1 max Ẽs(U12) = p̃s12ṽ1 − ce1

=





(
1− 1

2

eα2
λ1e

α
1

)
ṽ1 − ce1 if λ1e

α
1 ⩾ eα2

1
2

λ1e
α
1

eα2
ṽ1 − ce1 if λ1e

α
1 ⩽ eα2

Player 2 max Es(U21) = ps21v2 − ce2

=





(
1− 1

2

eα1
eα2

)
v2 − ce2 if e2 ⩾ e1

1
2

eα2
eα1
v2 − ce2 if e2 ⩽ e1

There are 4 cases.





λ1e
α
1 ⩾ eα2 and e2 ⩽ e1

λ1e
α
1 ⩾ eα2 and e2 ⩾ e1

λ1e
α
1 ⩽ eα2 and e2 ⩾ e1

λ1e
α
1 ⩽ eα2 and e2 ⩽ e1

Since λ1 > 1, the fourth case is impossible.
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(1) case 1: λ1e
α
1 ⩾ eα2 and e2 ⩽ e1, which corresponds to proposition 3 (i).

Player 1 max
(
1− 1

2

eα2
λ1e

α
1

)
ṽ1 − ce1

Player 2 max 1
2

eα2
eα1
v2 − ce2

F.o.c

[e1]
α
2λ1

eα2
eα+1
1

ṽ1 − c = 0

[e2]
α
2

eα−1
2

eα1
v2 − c = 0

S.o.c

[e1]
α
2λ1

(−α− 1)
eα2

eα+2
1

ṽ1 < 0

[e2]
α
2
(α− 1)

eα−2
2

eα1
v2 < 0

Solve the two F.O.C , we get

e1 =
α

2c
λα−1
1 (ṽ1)

1−α(v2)
α

e2 =
α

2c
λα
1 (ṽ1)

−α(v2)
α+1

e2
e1

= λ1
v2
ṽ1

Check the conditions λ1e
α
1 ⩾ eα2 and e2 ⩽ e1:

1○ λ1e
α
1 ⩾ eα2

As long as e1 ⩾ e2 is satisfied, λ1e
α
1 ⩾ eα2 is satisfied.

2○ e2 ⩽ e1

e1 ⩾ e2 ⇐⇒
e1
e2

⩾ 1

⇐⇒ λ
− 1

2α+1

1 (ṽ1)
1

2α+1 (v2)
− 1

2α+1 ⩾ 1

⇐⇒

(
ṽ1
λ1v2

) 1
2α+1

⩾ 1

⇐⇒
ṽ1
λ1v2

⩾ 1

⇐⇒

(
u(w1)

u(w1)−u(w2)
− 1+α

2
λ
− α+1

2α+1

1

)
[u(w1)− u(w2)]

λ1

[(
u(w1)

u(w1)−u(w2)
− 1+α

2

)
[u(w1)− u(w2)]

] ⩾ 1

⇐⇒
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1 ⩾ λ1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)
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Let

f(λ1) =

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

)
− λ1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)

we can easily get that f(λ1 = 1) = 0 and f(λ1 → ∞) < 0.

f ′(λ1) =
(1 + α)2

2(2α + 1)
λ
− α+1

2α+1
−1

1 −

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)

f ′(λ1) ⪋ 0 ⇐⇒
(1 + α)2

2(2α + 1)
λ
− α+1

2α+1
−1

1 ⪋
(

u(w1)

u(w1)− u(w2)
−

1 + α

2

)

⇐⇒
(1 + α)2

2α + 1

u(w1)− u(w2)

(1− α)u(w1) + (1 + α)u(w2)
⪋ λ

α+1
2α+1

+1

1

⇐⇒

[
(1 + α)2

2α + 1

u(w1)− u(w2)

(1− α)u(w1) + (1 + α)u(w2)

] 1
α+1
2α+1+1

⪋ λ1

Let g(α) =
[
(1+α)2

2α+1
u(w1)−u(w2)

(1−α)u(w1)+(1+α)u(w2)

] 1
α+1
2α+1+1

a) g(α) ⩽ 1

if g(α) ⩽ 1, then f ′(λ1) < 0 always holds. Which means f(λ1) < 0
always holds, thus e1

e2
< 1 always holds.

g(α) ⩽ 1 ⇐⇒
(1 + α)2

2α + 1

u(w1)− u(w2)

(1− α)u(w1) + (1 + α)u(w2)
⩽ 1

⇐⇒
(1 + α)2

2α + 1
⩽ (1− α)u(w1) + (1 + α)u(w2)

u(w1)− u(w2)

⇐⇒ (1 + α)2[u(w1)− u(w2)] ⩽ (2α + 1)[(1− α)u(w1) + (1 + α)u(w2)]

⇐⇒ (α + 3α2)u(w1) ⩽ (2 + 5α + 3α2)u(w2)

⇐⇒
u(w1)

u(w2)
⩽ 2 + 5α + 3α2

α(1 + 3α)

⇐⇒
u(w1)

u(w2)
− 1 ⩽ 2 + 5α + 3α2

α(1 + 3α)
− 1

⇐⇒
u(w1)− u(w2)

u(w2)
⩽ 2(1 + 2α)

α(1 + 3α)

When u(w1)−u(w2)
u(w2)

⩽ 2(1+2α)
α(1+3α)

, the condition e1 ⩾ e2 is never satisfied given

that λ1 > 1.

b) g(α) > 1

if g(α) > 1, then

f ′(λ1)





> 0 whenλ1 <
[
(1+α)2

2α+1
u(w1)−u(w2)

(1−α)u(w1)+(1+α)u(w2)

] 1
α+1
2α+1+1

< 0 whenλ1 >
[
(1+α)2

2α+1
u(w1)−u(w2)

(1−α)u(w1)+(1+α)u(w2)

] 1
α+1
2α+1+1
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We now show that if u(w1)−u(w2)
u(w2)

> 2(1+2α)
α(1+3α)

, then there exists a unique

threshold λ̂ > 1 where f(λ1) = 0, that is,

u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1 = λ1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)

which is equivalent to

u(w1)−
1 + α

2
λ̂− α+1

2α+1 [u(w1)−u(w2)] = λ̂

[(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)
[u(w1)− u(w2)]

]
.

To see this is the case, we rearrange the equality as

u(w1)−
1 + α

2
λ̂− α+1

2α+1 [u(w1)−u(w2)] = λ̂

[
u(w1)−

1 + α

2
[u(w1)− u(w2)]

]
,

or
1 + α

2
[λ̂− λ̂− α+1

2α+1 ][u(w1)− u(w2)] = (λ̂− 1)u(w1),

or
1 + α

2

u(w1)− u(w2)

u(w1)
=

λ̂− 1

λ̂− λ̂− α+1
2α+1

. (17)

Since α ∈ (0, 1] and u(w1) > u(w2), the left-hand side of (17) takes a

value in the interval (0, 1). The right-hand side of (17) is increasing in λ̂

for λ > 1, its limit when λ̂ → 1 is 2α+1
3α+2

, and its limit when λ̂ → ∞ is 1.

Hence, the threshold λ̂ exists and is unique provided that

1 + α

2

u(w1)− u(w2)

u(w1)
>

2α + 1

3α + 2
.

It is easy to show that this inequality is equivalent to

u(w1)− u(w2)

u(w2)
>

2(1 + 2α)

α(1 + 3α)
.

Therefore, if u(w1)−u(w2)
u(w2)

> 2(1+2α)
α(1+3α)

, then there exists a unique value for λ̂,

greater than 1, that satisfies (17). This, in turn, implies:

f(λ1)





> 0 whenλ1 < λ̂

= 0 whenλ1 = λ̂

< 0 whenλ1 > λ̂

e1 − e2





> 0 whenλ1 < λ̂

= 0 whenλ1 = λ̂

< 0 whenλ1 > λ̂

The condition e1 ⩾ e2 is only satisfied when u(w1)−u(w2)
u(w2)

> 2(1+2α)
α(1+3α)

and

λ1 ⩽ λ̂. And e1 > e2 is only satisfied when u(w1)−u(w2)
u(w2)

> 2(1+2α)
α(1+3α)

and

λ1 < λ̂.
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Therefore the solution

e1 =
α

2c
λα−1
1 (ṽ1)

1−α(v2)
α

e2 =
α

2c
λα
1 (ṽ1)

−α(v2)
α+1

only applies when u(w1)−u(w2)
u(w2)

> 2(1+2α)
α(1+3α)

and λ1 < λ̂.

(2) case 2: λ1e
α
1 ⩾ eα2 and e2 ⩾ e1, which corresponds to proposition 3 (ii).

Player 1 max
(
1− 1

2

eα2
λ1e

α
1

)
ṽ1 − ce1

Player 2 max
(
1− 1

2

eα1
eα2

)
v2 − ce2

F.o.c

[e1]
α
2λ1

eα2
eα+1
1

ṽ1 − c = 0

[e2]
α
2

eα1
eα+1
2

v2 − c = 0

S.o.c

[e1]
α
2λ1

(−α− 1)
eα2

eα+2
1

ṽ1 < 0

[e2]
α
2
(−α− 1)

eα1
eα+2
2

v2 < 0

Solve F.O.C , we get

e1 =
α

2c
λ
− α+1

2α+1

1 (ṽ1)
α+1
2α+1 (v2)

α
2α+1

e2 =
α

2c
λ
− α

2α+1

1 (ṽ1)
α

2α+1 (v2)
α+1
2α+1

e2
e1

= λ
1

2α+1

1 (ṽ1)
− 1

2α+1 (v2)
1

2α+1

Check the conditions λ1e
α
1 ⩾ eα2 and e2 ⩾ e1:

1○ λ1e
α
1 ⩾ eα2

λ1e
α
1 ⩾ eα2 ⇐⇒

λ1e
α
1

eα2
⩾ 1

⇐⇒ λ
α+1
2α+1

1 (ṽ1)
α

2α+1 (v2)
− α

2α+1 ⩾ 1

Since λ1 > 1 and ṽ1 > v2, the inequality is always satisfied. Therefore
λ1e

α
1 > eα2 always holds when λ1 > 1.

2○ e2 ⩾ e1
We have already seen in case (1) that e2 ⩾ e1 is satisfied when either
u(w1)−u(w2)

u(w2)
⩽ 2(1+2α)

α(1+3α)
or λ1 ⩾ λ̂.
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Therefore the solution

e1 =
α

2c
λ
− α+1

2α+1

1 (ṽ1)
α+1
2α+1 (v2)

α
2α+1

e2 =
α

2c
λ
− α

2α+1

1 (ṽ1)
α

2α+1 (v2)
α+1
2α+1

only applies when either u(w1)−u(w2)
u(w2)

⩽ 2(1+2α)
α(1+3α)

or λ1 ⩾ λ̂

(3) case 3: λ1e
α
1 ⩽ eα2 and e2 ⩾ e1

Player 1 max 1
2

λ1e
α
1

eα2
ṽ1 − ce1

Player 2 max [1− 1
2
( e1
e2
)α]v2 − ce2

F.o.c

[e1]
αλ1

2

eα−1
1

eα2
ṽ1 − c = 0

[e2]
α
2

eα1
eα+1
2

v2 − c = 0

divide the two F.O.C , we get

e2
e1

=
v2
λ1ṽ1

< 1

which contradicts the condition that e2 ⩾ e1

Therefore, the equilibrium in this semi-final:

(1) When u(w1)−u(w2)
u(w2)

> 2(1+2α)
α(1+3α)

and λ1 < λ̂, which corresponds to Proposition 3 (i)

es1 =
α

2c
λα−1
1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

)1−α

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)α

[u(w1)− u(w2)]

es2 =
α

2c
λα
1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

)−α

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)1+α

[u(w1)− u(w2)]

where es1 > es2.

ps21 =
1

2

(
es2
es1

)α

=
1

2

(
λ1v2
ṽ1

)α

=
1

2
λα
1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

)−α(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)α
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ps12 = 1− ps21

= 1−
1

2
λα
1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

)−α(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)α

p̃s12 = 1−
1

2

(es2)
α

λ1 (es1)
α

= 1−
1

2
λ−1
1

[
λ1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

)−1(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)]α

= 1−
1

2
λα−1
1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

)−α(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)α

(2) When either u(w1)−u(w2)
u(w2)

⩽ 2(1+2α)
α(1+3α)

or λ1 ⩾ λ̂, which corresponds to Proposition

3 (ii).

es1 =
α

2c
λ
− α+1

2α+1

1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

) α+1
2α+1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

) α
2α+1

[u(w1)− u(w2)]

es2 =
α

2c
λ
− α

2α+1

1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

) α
2α+1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

) α+1
2α+1

[u(w1)− u(w2)]

where λ1 (e
s
1)

α > (es2)
α and es1 ⩽ es2.

ps12 =
1

2

(
es1
es2

)α

=
1

2

[
λ
− 1

2α+1

1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

) 1
2α+1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)− 1
2α+1

]α

=
1

2
λ
− α

2α+1

1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

) α
2α+1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)− α
2α+1

ps21 = 1− ps12

= 1−
1

2
λ
− α

2α+1

1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

) α
2α+1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)− α
2α+1
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p̃s12 = 1−
1

2

(es2)
α

λ1 (es1)
α

= 1−
1

2
λ−1
1 λ

α
2α+1

1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

)− α
2α+1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

) α
2α+1

= 1−
1

2
λ
− α+1

2α+1

1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

)− α
2α+1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

) α
2α+1

3. equilibrium efforts compared to benchmark

(1) Proposition 3 (i): when u(w1)−u(w2)
u(w2)

> 2(1+2α)
α(1+3α)

and λ1 < λ̂

We show that es1 > es > es2:

es1 > es ⇐⇒
es1
es

> 1

⇐⇒

α
2c
λα−1
1 ṽ1

1−αvα2
α
2c
v

> 1

⇐⇒

(
ṽ1
λ1v2

)1−α

> 1

es2
es

⇐⇒
es2
es

> 1

⇐⇒

α
2c
λα
1 (ṽ1)

−α (v2)
α+1

α
2c
v

> 1

⇐⇒

(
λ1v2
ṽ1

)α

> 1

Since ṽ1
λ1v2

> 1, we can get es1 > es and es2 < es.

(2) Proposition 3 (ii): when either u(w1)−u(w2)
u(w2)

⩽ 2(1+2α)
α(1+3α)

or λ1 ⩾ λ̂

We show that es1 ⩽ es2 ⩽ es:

Since we already showed that es1 ⩽ es2 is satisfied under this condition, we only
have to show es2 ⩽ es.

es2 ⩽ es ⇐⇒
α

2c
λ
− α

2α+1

1 ṽ
α

2α+1

1 v
α+1
2α+1

2 ⩽ α

2c
v

⇐⇒
α

2c
λ
− α

2α+1

1 ṽ
α

2α+1

1 v
α+1
2α+1

2 ⩽ α

2c
v2

⇐⇒ ṽ
α

2α+1

1 ⩽ λ
α

2α+1

1 v
α

2α+1

2

⇐⇒ ṽ1 ⩽ λ1v2

which always holds, thus es1 ⩽ es2 ⩽ es always holds.

4. perceived and true winning probabilities compared to benchmark
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(1) Proposition 3 (i): when u(w1)−u(w2)
u(w2)

> 2(1+2α)
α(1+3α)

and λ1 < λ̂

We show that ps21 <
1
2

and p̃s12 > ps12 >
1
2
:

ps21 <
1

2
⇐⇒

1

2

(
es2
es1

)α

<
1

2

⇐⇒ es2 < es1

ps12 = 1− ps21 >
1

2

p̃s12 > ps12 ⇐⇒ 1−
1

2

(
es2
λ1es1

)α

> 1−
1

2

(
es2
es1

)α

⇐⇒ λ1 > 1

(2) Proposition 3 (ii): when either u(w1)−u(w2)
u(w2)

⩽ 2(1+2α)
α(1+3α)

or λ1 ⩾ λ̂

We show that ps12 ⩽ 1
2
, ps21 ⩾ 1

2
and p̃s12 >

1
2
:

ps12 ⩽
1

2
⇐⇒

1

2

(
es1
es2

)α

⩽ 1

2

⇐⇒ es1 ⩽ es2

ps21 = 1− ps12 ⩾
1

2

p̃s12 >
1

2
⇐⇒ 1−

1

2

(
es2
λ1es1

)α

>
1

2

⇐⇒
es2
λ1es1

< 1

⇐⇒
λ
− α

2α+1

1 (ṽ1)
α

2α+1 (v2)
α+1
2α+1

λ
α

2α+1

1 (ṽ1)
α+1
2α+1 (v2)

α
2α+1

< 1

⇐⇒ λ
− 2α

2α+1

1 (ṽ1)
− 1

2α+1 (v2)
1

2α+1 < 1

⇐⇒ λ
− 2α

2α+1

1

(
v2
ṽ1

) 1
2α+1

< 1

5. Participation constraints
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(1) When u(w1)−u(w2)
u(w2)

> 2(1+2α)
α(1+3α)

and λ1 < λ̂

Ẽs(U12) = p̃s12ṽ1 − ces1
> ps12ṽ1 − ces1

=

(
1−

1

2
λα
1 (ṽ1)

−α (v2)
α

)
ṽ1 − c

α

2c
λα−1
1 (ṽ1)

1−α (v2)
α

= ṽ1 −
1

2
λα
1 (ṽ1)

1−α (v2)
α
−

α

2
λα−1
1 (ṽ1)

1−α (v2)
α

> ṽ1 −
1

2
λα
1 (ṽ1)

1−α (v2)
α
−

1

2
λα−1
1 (ṽ1)

1−α (v2)
α

> ṽ1 −
1

2
λα
1 (ṽ1)

1−α (v2)
α
−

1

2
λα
1 (ṽ1)

1−α (v2)
α

= ṽ1 − λα
1 (ṽ1)

1−α (v2)
α

= (ṽ1)
1−α

[
(ṽ1)

α
− λα

1 (v2)
α

]

> 0

Es(U21) = ps21v2 − ces2

=
1

2
λα
1 (ṽ1)

−α (v2)
α v2 − c

α

2c
λα
1 (ṽ1)

−α (v2)
α+1

=
1

2
λα
1 (ṽ1)

−α (v2)
1+α

−
α

2
λα
1 (ṽ1)

−α (v2)
α+1

=
1− α

2
λα
1 (ṽ1)

−α (v2)
1+α

⩾ 0

(2) When either u(w1)−u(w2)
u(w2)

⩽ 2(1+2α)
α(1+3α)

or λ1 ⩾ λ̂

Ẽs(U12) = p̃s12ṽ1 − ces1

Since p̃s12 >
1
2
, ṽ1 > v and es1 < es, we can get that Ẽs(U12) > E

s
(U) ⩾ 0.

Es(U21) = ps21v2 − ces2

=

(
1−

1

2
λ
− α

2α+1

1 (ṽ1)
α

2α+1 (v2)
− α

2α+1

)
v2 − c

α

2c
λ
− α

2α+1

1 (ṽ1)
α

2α+1 (v2)
α+1
2α+1

= v2 −
1

2
λ
− α

2α+1

1 (ṽ1)
α

2α+1 (v2)
α+1
2α+1 −

α

2
λ
− α

2α+1

1 (ṽ1)
α

2α+1 (v2)
α+1
2α+1

= v2 −
1 + α

2
λ
− α

2α+1

1 (ṽ1)
α

2α+1 (v2)
α+1
2α+1

= (v2)
α+1
2α+1

(
(v2)

α
2α+1 −

1 + α

2
λ
− α

2α+1

1 (ṽ1)
α

2α+1

)

⩾ 0
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Derivation of equation (7)

The two FOCs in the semifinal are

∂p̃s12(e1, e2, λ1)

∂e1
ṽ1(λ1) = c

∂ps21(e1, e2)

∂e2
v2 = c

Total differentiation gives us
(
∂2p̃s12(e1, e2, λ1)

∂e21
de1 +

∂2p̃s12(e1, e2, λ1)

∂e1∂e2
de2 +

∂2p̃s12(e1, e2, λ1)

∂e1∂λ1

dλ1

)
ṽ1(λ1)

+
∂p̃s12(e1, e2, λ1)

∂e1

∂ṽ1(λ1)

∂λ1

dλ1 = 0

(
∂2ps21(e1, e2)

∂e2∂e1
de1 +

∂2ps21(e1, e2)

∂e22
de2

)
v2 = 0

or(
∂2p̃s12(e1, e2, λ1)

∂e21

de1
dλ1

+
∂2p̃s12(e1, e2, λ1)

∂e1∂e2

de2
dλ1

+
∂2p̃s12(e1, e2, λ1)

∂e1∂λ1

)
ṽ1(λ1)+

∂p̃s12(e1, e2, λ1)

∂e1

∂ṽ1(λ1)

∂λ1

= 0

(
∂2ps21(e1, e2)

∂e2∂e1

de1
dλ1

+
∂2ps21(e1, e2)

∂e22

de2
dλ1

)
v2 = 0

Solving the second equation for de2
dλ1

we obtain

de2
dλ1

= −

∂2ps21(e1,e2)

∂e2∂e1

∂2ps21(e1,e2)

∂e22

de1
dλ1

Replacing in the first equation we obtain

∂2p̃s12(e1, e2, λ1)

∂e21

de1
dλ1

−
∂2p̃s12(e1, e2, λ1)

∂e1∂e2

∂2ps21(e1,e2)

∂e2∂e1

∂2ps21(e1,e2)

∂e22

de1
dλ1

+
∂2p̃s12(e1, e2, λ1)

∂e1∂λ1


 ṽ1(λ1)

+
∂p̃s12(e1, e2, λ1)

∂e1

∂ṽ1(λ1)

∂λ1

= 0

Let’s solve this equation for de1
dλ1

de1
dλ1


∂2p̃s12(e1, e2, λ1)

∂e21
−

∂2p̃s12(e1, e2, λ1)

∂e1∂e2

∂2ps21(e1,e2)

∂e2∂e1

∂2ps21(e1,e2)

∂e22


 ṽ1(λ1)

= −
∂p̃s12(e1, e2, λ1)

∂e1

∂ṽ1(λ1)

∂λ1

−
∂2p̃s12(e1, e2, λ1)

∂e1∂λ1

ṽ1(λ1)

or

de1
dλ1

= −

∂2p̃s12(e1,e2,λ1)

∂e1∂λ1
ṽ1(λ1) +

∂p̃s12(e1,e2,λ1)

∂e1

∂ṽ1(λ1)
∂λ1(

∂2p̃s12(e1,e2,λ1)

∂e21
−

∂2p̃s12(e1,e2,λ1)

∂e1∂e2

∂2ps21(e1,e2)

∂e2∂e1
∂2ps21(e1,e2)

∂e22

)
ṽ1(λ1)

= −

∂mgp̃s12
∂λ1

ṽ1(λ1) +mgp̃s12
∂ṽ1(λ1)
∂λ1(

∂mgp̃s12
∂e1

−
∂mgp̃s12
∂e2

∂mgps21
∂e1

∂mgps21
∂e2

)
ṽ1(λ1)
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The denominator has to be negative, that is,

Ds =
∂mgp̃s12
∂e1

−
∂mgp̃s12
∂e2

∂mgps21
∂e1

∂mgps21
∂e2

< 0

Note that in a semifinal where the overconfident player exerts more effort than the rational
player we have λ1e

α
1 > eα2 and e2 < e1. This implies that in the semifinal we have

mgp̃s12 =
∂p̃s12(e1, e2, λ1)

∂e1
=

α

2λ1

eα2
eα+1
1

mgps21 =
∂ps21(e1, e2)

∂e2
=

α

2

eα−1
2

eα1

This implies
∂mgp̃s12
∂e1

=
∂2p̃s12(e1, e2, λ1)

∂e21
= −(α + 1)

α

2λ1

eα2
eα+2
1

∂mgp̃s12
∂e2

=
∂2p̃s12(e1, e2, λ1)

∂e1∂e2
=

α2

2λ1

eα−1
2

eα+1
1

∂mgps21
∂e2

=
∂2ps21(e1, e2)

∂e22
= (α− 1)

α

2

eα−2
2

eα1

∂mgps21
∂e1

=
∂2ps21(e1, e2)

∂e2∂e1
= −

α2

2

eα−1
2

eα+1
1

Hence, we have

Ds =
∂mgp̃s12
∂e1

−
∂mgp̃s12
∂e2

∂mgps21
∂e1

∂mgps21
∂e2

= −(α + 1)
α

2λ1

eα2
eα+2
1

−
α2

2λ1

eα−1
2

eα+1
1

−α2

2

eα−1
2

eα+1
1

(α− 1)α
2

eα−2
2

eα1

= −(α + 1)
α

2λ1

eα2
eα+2
1

+
α3

2λ1(α− 1)

eα−1
2

eα+1
1

eα−1
2

eα+1
1

eα−2
2

eα1

= −(α + 1)
α

2λ1

eα2
eα+2
1

+
α3

2λ1(α− 1)

eα2
eα+2
1

=
α

2λ1

[
− (α + 1) +

α2

(α− 1)

]
eα2
eα+2
1

= −
α

2λ1

1

1− α

eα2
eα+2
1

< 0

In a semifinal where the overconfident player exerts less effort than the rational player
we have λ1e

α
1 > eα2 and e2 > e1. This implies that in the semifinal we have

mgp̃s12 =
∂p̃s12(e1, e2, λ1)

∂e1
=

α

2λ1

eα2
eα+1
1
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mgps21 =
∂ps21(e1, e2)

∂e2
=

α

2

eα1
eα+1
2

∂mgp̃s12
∂e1

=
∂2p̃s12(e1, e2, λ1)

∂e21
= −(α + 1)

α

2λ1

eα2
eα+2
1

∂mgp̃s12
∂e2

=
∂2p̃s12(e1, e2, λ1)

∂e1∂e2
=

α2

2λ1

eα−1
2

eα+1
1

∂mgps21
∂e2

=
∂2ps21(e1, e2)

∂e22
= −(α + 1)

α

2

eα1
eα+2
2

∂mgps21
∂e1

=
∂2ps21(e1, e2)

∂e2∂e1
=

α2

2

eα−1
1

eα+1
2

Hence, we have

Ds =
∂mgp̃s12
∂e1

−
∂mgp̃s12
∂e2

∂mgps21
∂e1

∂mgps21
∂e2

= −(α + 1)
α

2λ1

eα2
eα+2
1

−
α2

2λ1

eα−1
2

eα+1
1

α2

2

eα−1
1

eα+1
2

−(α + 1)α
2

eα1
eα+2
2

= −(α + 1)
α

2λ1

eα2
eα+2
1

+
α3

2λ1(α + 1)

eα−1
2

eα+1
1

eα−1
1

eα+1
2

eα1
eα+2
2

= −(α + 1)
α

2λ1

eα2
eα+2
1

+
α3

2λ1(α + 1)

eα2
eα+2
1

=
α

2λ1

[
− (α + 1) +

α2

(α + 1)

]
eα2
eα+2
1

This is negative as long as

α + 1 >
α2

α + 1
or

(α + 1)2 > α

which is true.

Proof of Proposition 4

1. Continuation values:

Rational player 3:

v3 = ps12E
f (U31) + ps21E

f (U32)

= ps12

[
u(w1)−

1 + α

2
λ
− α

2α+1

1 [u(w1)− u(w2)]

]
+ ps21

[
1− α

2
u(w1) +

1 + α

2
u(w2)

]
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Rational player 4:

v4 = ps12E
f (U41) + ps21E

f (U42)

= ps12

[
u(w1)−

1 + α

2
λ
− α

2α+1

1 [u(w1)− u(w2)]

]
+ ps21

[
1− α

2
u(w1) +

1 + α

2
u(w2)

]

Note that since Ef (U31) = Ef (U41) > E
f
(U) = Ef (U32) = Ef (U42), we have v3 =

v4 > v.

2. The equilibrium

(1) When u(w1)−u(w2)
u(w2)

> 2(1+2α)
α(1+3α)

and λ1 < λ̂

es3 = es4 =
α

2c
v3

=
α

2c

[
ps12

[
u(w1)−

1 + α

2
λ
− α

2α+1

1 [u(w1)− u(w2)]

]
+ ps21

[
1− α

2
u(w1) +

1 + α

2
u(w2)

]]

where

ps12 = 1− 1
2
λα
1

(
u(w1)

u(w1)−u(w2)
− 1+α

2
λ
− α+1

2α+1

1

)−α (
u(w1)

u(w1)−u(w2)
− 1+α

2

)α
.

ps34 = ps43 =
1

2

(2) When either u(w1)−u(w2)
u(w2)

⩽ 2(1+2α)
α(1+3α)

or λ1 ⩾ λ̂

es3 = es4 =
α

2c
v3

=
α

2c

[
ps12

[
u(w1)−

1 + α

2
λ
− α

2α+1

1 [u(w1)− u(w2)]

]
+ ps21

[
1− α

2
u(w1) +

1 + α

2
u(w2)

]]

where

ps12 =
1
2
λ
− α

2α+1

1

(
u(w1)

u(w1)−u(w2)
− 1+α

2
λ
− α+1

2α+1

1

) α
2α+1 [

u(w1)
u(w1)−u(w2)

− 1+α
2

]− α
2α+1

.

ps34 = ps43 =
1

2

We show that es3 = es4 > es holds in both (1) and (2):

es3 = es4 > es ⇐⇒
α

2c
v3 >

α

2c
v

⇐⇒ v3 > v

3. Participation constraint

Es(U34) = ps34v3 − ces3 =
1

2
v3 − c

α

2c
v3

=
1− α

2
v3

⩾ 0

Es(U43) = Es(U34) ⩾ 0
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Proof of Proposition 5

1. When u(w1)−u(w2)
u(w2)

> 2(1+2α)
α(1+3α)

and λ1 < λ̂

(1) P1

P1 = pf13p
s
12

=
1

2
λ
− α

2α+1

1

[
1−

1

2
λα
1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

)−α(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)α
]

Let

f(λ1) = P1 −
1

4
.

We can get

f(λ1 = 1) =
1

2
×

1

2
−

1

4
= 0

f(λ1 = λ̂) =
1

2
λ̂− α

2α+1 ×
1

2
−

1

4
< 0

f(λ1) can also be written as the following:

f(λ1) =
1

2
λ
− α

2α+1

1

−
1

4
λ
α− α

2α+1

1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)α(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

)−α

−
1

4

Taking derivative of f(λ1) we obtain

f ′(λ1) = −
1

2

α

2α + 1
λ
− α

2α+1
−1

1 −
1

4

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)α

[(
α−

α

2α + 1

)
λ
α− α

2α+1
−1

1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

)−α

+ λ
α− α

2α+1

1 (−α)

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

)−α−1

(
−
α + 1

2

)(
−

α + 1

2α + 1

)
λ
− α+1

2α+1
−1

1

]
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f ′(λ1 = 1) = −
1

2

α

2α + 1
−

1

4

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)α
[(

α−
α

2α + 1

)(
u(w1)

u(w1)− u(w2)

−
1 + α

2

)−α

− α

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)−α−1
α + 1

2

α + 1

2α + 1

]

= −
1

2

α

2α + 1
−

1

4

[
α−

α

2α + 1
− α

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)−1
α + 1

2

α + 1

2α + 1

]

= −
1

2

α

2α + 1
−

1

4

[
α

(
2α

2α + 1
−

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)−1
α + 1

2

α + 1

2α + 1

)]

= −
1

2

α

2α + 1
−

1

4

[
α

2α + 1

(
2α−

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)−1
α + 1

2
(1 + α)

)]

= −
1

2

α

2α + 1

[
1 +

1

2

(
2α−

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)−1
α + 1

2
(1 + α)

)]

f ′(λ1 = 1) and 1+ 1
2

(
2α−

(
u(w1)

u(w1)−u(w2)
− 1+α

2

)−1
α+1
2

(1 + α)

)
has the opposite

sign.

When 1 + 1
2

(
2α−

(
u(w1)

u(w1)−u(w2)
− 1+α

2

)−1
α+1
2

(1 + α)

)
< 0, f ′(λ1 = 1) > 0.

And since

1 +
1

2

(
2α−

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)−1
α + 1

2
(1 + α)

)
< 0

⇐⇒ 2α−

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)−1
α + 1

2
(1 + α) < −2

⇐⇒ 2α + 2 <

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)−1
α + 1

2
(1 + α)

⇐⇒ 2 <

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)−1
α + 1

2

⇐⇒ 4

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)
< 1 + α

⇐⇒ 4 +
4u(w2)

u(w1)− u(w2)
< 3 (1 + α)

⇐⇒
4u(w2)

u(w1)− u(w2)
< 3 (1 + α)− 4

⇐⇒
4u(w2)

u(w1)− u(w2)
< 3α− 1

f ′(λ1 = 1) > 0 is only satisfied when α > 1
3

and u(w1)−u(w2)
u(w2)

> 4
3α−1

.
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We show 4
3α−1

> 2(2α+1)
α(3α+1)

:

4

3α− 1
>

2(2α + 1)

α(3α + 1)
⇐⇒ 4α (3α + 1) > 2(2α + 1) (3α− 1)

⇐⇒ 12α2 + 4α > 12α2 + 2α− 2

⇐⇒ 2α + 2 > 0

Thus we know that under the conditions α > 1
3

and u(w1)−u(w2)
u(w2)

> 4
3α−1

, f(λ1)

is positive when λ1 is small and close to 1. Therefore there exist parameter
configurations where the overconfident player’s equilibrium winning probability
P1 is higher than the benchmark.

(2) P2

We show that P2 <
1
4
:

P2 = pf23p
s
21

=
1

2
ps21

<
1

2
×

1

2
=

1

4

(3) P3 and P4

We show that P3 = P4 >
1
4
:

P3 = P4 = ps12p
f
31p

s
34 + ps21p

f
32p

s
34

= ps12p
f
31

1

2
+ ps21

1

2

1

2

= ps12p
f
31

1

2
+ (1− ps12)

1

2

1

2

= ps12

(
pf31

1

2
−

1

4

)
+

1

4

> ps12

(
1

2

1

2
−

1

4

)
+

1

4
=

1

4

(4) compare P1 and P3

P1 − P3 = pf13p
s
12 − ps12p

f
31p

s
34 − ps21p

f
32p

s
34

= pf13p
s
12 − ps12p

f
31p

s
34 − (1− ps12) p

f
32p

s
34

= pf13p
s
12 −

1

2
ps12p

f
31 −

1

2

1

2
(1− ps12)

= pf13p
s
12 −

1

2
ps12

(
1− pf13

)
−

1

4
(1− ps12)

=
3

2
pf13p

s
12 −

1

4
ps12 −

1

4

The sign of P1 − P3 is the same as the sign of 6pf13p
s
12 − ps12 − 1

Let f(λ1) = 6pf13p
s
12 − ps12 − 1

f(λ1 = 1) = 6×
1

2
×

1

2
−

1

2
− 1 = 0
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f(λ1 = λ̂) = 6×
1

2
λ̂− α

2α+1 ×
1

2
−

1

2
− 1 < 0

f(λ1) = 3λ
− α

2α+1

1

[
1−

1

2
λα
1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

)−α(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)α
]

−

[
1−

1

2
λα
1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

)−α(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)α
]
− 1

= 3λ
− α

2α+1

1 −
1

2
λα
1

(
3λ

− α
2α+1

1 − 1

)(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

)−α

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)α

− 2

f ′(λ1) = −3
α

2α + 1
λ
− α

2α+1
−1

1 −
1

2

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)α

[(
3

(
−

α

2α + 1
+ α

)
λ
− α

2α+1
+α−1

1 − αλα−1
1

)(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

)−α

+ λα
1

(
3λ

− α
2α+1

1 − 1
)
(−α)

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

)−α−1

1 + α

2

α + 1

2α + 1
λ
− α+1

2α+1
−1

1

]
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f ′(λ1 = 1) = −3
α

2α + 1
−

1

2

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)α

[(
3

(
−

α

2α + 1
+ α

)
− α

)(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)−α

− 2α

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)−α−1
1 + α

2

α + 1

2α + 1

]

= −3
α

2α + 1
−

1

2

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)α

[(
2α− 3

α

2α + 1

)(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)−α

− 2α

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)−α−1
1 + α

2

α + 1

2α + 1

]

= −3
α

2α + 1
−

1

2

(
2α− 3

α

2α + 1

)

+ α

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)−1
1 + α

2

α + 1

2α + 1

= −
3

2

α

2α + 1
− α + α

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)−1
1 + α

2

α + 1

2α + 1

= α

(
−
3

2

1

2α + 1
− 1 +

1 + α

2

α + 1

2α + 1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)−1
)

f ′(λ1 = 1) > 0 ⇐⇒ −
3

2

1

2α + 1
− 1 +

1 + α

2

α + 1

2α + 1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)−1

> 0

⇐⇒
1 + α

2

α + 1

2α + 1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)−1

>
3

2

1

2α + 1
+ 1

⇐⇒

1+α
2

α+1
2α+1

3
2

1
2α+1

+ 1
>

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)

⇐⇒

(α+1)2

2(2α+1)

3+2(2α+1)
2(2α+1)

>

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)

⇐⇒
(α + 1)2

(4α + 5)
>

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)

⇐⇒
(α + 1)2

(4α + 5)
+

α− 1

2
>

u(w2)

u(w1)− u(w2)

⇐⇒
2 (α + 1)2 + (α− 1) (4α + 5)

2 (4α + 5)
>

u(w2)

u(w1)− u(w2)

⇐⇒
6α2 + 5α− 3

2 (4α + 5)
>

u(w2)

u(w1)− u(w2)

This is satisfied when α > −5+
√
97

12
and u(w1)−u(w2)

u(w2)
> 2(4α+5)

6α2+5α−3
.
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We show 2(4α+5)
6α2+5α−3

> 2(2α+1)
α(3α+1)

:

2 (4α + 5)

6α2 + 5α− 3
>

2(2α + 1)

α(3α + 1)
⇐⇒

4α + 5

6α2 + 5α− 3
>

2α + 1

α(3α + 1)

⇐⇒ (4α + 5)α(3α + 1) > (2α + 1)
(
6α2 + 5α− 3

)

⇐⇒ 12α3 + 19α2 + 5α > 12α3 + 16α2 − α− 3

⇐⇒ 3α2 + 6α + 3 > 0

Thus we know that under the conditions α > −5+
√
97

12
and u(w1)−u(w2)

u(w2)
> 2(4α+5)

6α2+5α−3
,

f(λ1) is positive when λ1 is small and close to 1. Therefore there exist parameter
configurations where the overconfident player’s equilibrium winning probability
P1 is higher than that of the rational player in the other semi-final P3.

2. When either u(w1)−u(w2)
u(w2)

⩽ 2(1+2α)
α(1+3α)

or λ1 ⩾ λ̂

(1) P1

Since player 3 and player 4 are identical, the equilibrium winning probability of
player 1 is

P1 = pf13p
s
12

<
1

2
×

1

2
=

1

4

(2) P2

P2 = pf23p
s
21

=
1

2
ps21

>
1

2
×

1

2
=

1

4

(3) P3 and P4

P3 = P4 >
1
4

still holds.

Proof of Proposition 6

The perceived winning probabilities of the players are:

p̃f13 =

{
1− 1

2

eα3
λ1e

α
1

ifλ1e
α
1 ⩾ eα3

1
2

λ1e
α
1

eα3
ifλ1e

α
1 ⩽ eα3

p̃f31 =

{
1− 1

2

eα1
λ3e

α
3

ifλ3e
α
3 ⩾ eα1

1
2

λ3e
α
3

eα1
ifλ3e

α
3 ⩽ eα1

Overconfident player 1 max Ẽf (U13) = p̃f13[u(w1)− u(w2)] + u(w2)− ce1
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=





(
1− 1

2

eα3
λ1e

α
1

)
[u(w1)− u(w2)] + u(w2)− ce1 if λ1e

α
1 ⩾ eα3

1
2

λ1e
α
1

eα3
[u(w1)− u(w2)] + u(w2)− ce1 if λ1e

α
1 ⩽ eα3

Overconfident player 3 max Ẽf (U31) = p̃f31[u(w1)− u(w2)] + u(w2)− ce3

=





(
1− 1

2

eα1
λ3e

α
3

)
[u(w1)− u(w2)] + u(w2)− ce3 if λ3e

α
3 ⩾ eα1

1
2

λ3e
α
3

eα1
[u(w1)− u(w2)] + u(w2)− ce3 if λ3e

α
3 ⩽ eα1

There are 4 cases.





λ1e
α
1 ⩾ eα3 and λ3e

α
3 ⩾ eα1

λ1e
α
1 ⩾ eα3 and λ3e

α
3 ⩽ eα1

λ1e
α
1 ⩽ eα3 and λ3e

α
3 ⩾ eα1

λ1e
α
1 ⩽ eα3 and λ3e

α
3 ⩽ eα1

Since λ1 > λ3 > 1, the fourth case is impossible.

1. equilibrium efforts

(1) case 1: λ1e
α
1 ⩾ eα3 and λ3e

α
3 ⩾ eα1

Player 1 max
(
1− 1

2

eα3
λ1e

α
1

)
[u(w1)− u(w2)] + u(w2)− ce1

Player 3 max
(
1− 1

2

eα1
λ3e

α
3

)
[u(w1)− u(w2)] + u(w2)− ce3

F.o.c

[e1]
α
2λ1

eα3
eα+1
1

[u(w1)− u(w2)]− c = 0

[e3]
α
2λ3

eα1
eα+1
3

[u(w1)− u(w2)]− c = 0

S.o.c

[e1]
α
2λ1

(−α− 1)
eα3

eα+2
1

[u(w1)− u(w2)] < 0

[e3]
α
2λ3

(−α− 1)
eα1

eα+2
3

[u(w1)− u(w2)] < 0

Solve F.O.C , we get

e1 =
α

2c
λ
− α+1

2α+1

1 λ
− α

2α+1

3 [u(w1)− u(w2)]

e3 =
α

2c
λ
− α

2α+1

1 λ
− α+1

2α+1

3 [u(w1)− u(w2)]
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Check the condition λ3e
α
3 ⩾ eα1 :

λ3e
α
3 ⩾ eα1 ⇐⇒

λ3e
α
3

eα1
⩾ 1

⇐⇒ λ
α

2α+1

1 λ
α+1
2α+1

3 ⩾ 1

Check the condition λ1e
α
1 ⩾ eα3 :

λ1e
α
1 ⩾ eα3 ⇐⇒

λ1e
α
1

eα3
⩾ 1

⇐⇒ λ
α+1
2α+1

1 λ
α

2α+1

3 ⩾ 1

which is always satisfied.

(2) case 2: λ1e
α
1 ⩾ eα3 and λ3e

α
3 ⩽ eα1

Player 1 max
(
1− 1

2

eα3
λ1e

α
1

)
[u(w1)− u(w2)] + u(w2)− ce1

Player 3 max 1
2

λ3e
α
3

eα1
[u(w1)− u(w2)] + u(w2)− ce3

F.o.c

[e1]
α
2λ1

eα3
eα+1
1

[u(w1)− u(w2)]− c = 0

[e3]
α
2
λ3

eα−1
3

eα1
[u(w1)− u(w2)]− c = 0

divide the two F.O.C , we get

e3
e1

= λ1λ3 > 1

which contradicts the condition that λ3e
α
3 ⩽ eα1

(3) case 3: λ1e
α
1 ⩽ eα3 and λ3e

α
3 ⩾ eα1

Player 1 max 1
2

λ1e
α
1

eα3
[u(w1)− u(w2)] + u(w2)− ce1

Player 3 max
(
1− 1

2

eα1
λ3e

α
3

)
[u(w1)− u(w2)] + u(w2)− ce3

F.o.c

[e1]
α
2
λ1

eα−1
1

eα3
[u(w1)− u(w2)]− c = 0

[e3]
α
2λ3

eα1
eα+1
3

[u(w1)− u(w2)]− c = 0

divide the two F.O.C , we get

e3
e1

=
1

λ1λ3

< 1

which contradicts the condition that λ1e
α
1 ⩽ eα3 .

Thus the unique equilibrium is

ef1 =
α

2c
λ
− α+1

2α+1

1 λ
− α

2α+1

3 [u(w1)− u(w2)]
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ef3 =
α

2c
λ
− α

2α+1

1 λ
− α+1

2α+1

3 [u(w1)− u(w2)]

Since λ1 > λ3 > 1, we can get ef1 < ef3 < ef .

2. winning probabilities

The true winning probabilities are

pf13 =
1

2

(
ef1

ef3

)α

=
1

2

(
λ
− 1

2α+1

1 λ
1

2α+1

3

)α

=
1

2
λ
− α

2α+1

1 λ
α

2α+1

3

<
1

2

pf31 = 1− pf13 = 1−
1

2
λ
− α

2α+1

1 λ
α

2α+1

3 >
1

2

The perceived winning probabilities are

p̃f13 = 1−
1

2

(ef3)
α

λ1(e
f
1)

α

= 1−
1

2λ1

(
λ

1
2α+1

1 λ
− 1

2α+1

3

)α

= 1−
1

2
λ
− α+1

2α+1

1 λ
− α

2α+1

3

p̃f31 = 1−
1

2

(ef1)
α

λ3(e
f
3)

α

= 1−
1

2λ3

(
λ
− 1

2α+1

1 λ
1

2α+1

3

)α

= 1−
1

2
λ
− α

2α+1

1 λ
− α+1

2α+1

3

Thus we have

p̃f13 > p̃f31 > pf31 >
1

2
> pf13

3. expected utilities of final

Ẽf (U13) = p̃f13u(w1) + (1− p̃f13)u(w2)− cef1

=

(
1−

1

2
λ
− α+1

2α+1

1 λ
− α

2α+1

3

)
u(w1) +

1

2
λ
− α+1

2α+1

1 λ
− α

2α+1

3 u(w2)

−
α

2
λ
− α+1

2α+1

1 λ
− α

2α+1

3 [u(w1)− u(w2)]

= u(w1)−
1 + α

2
λ
− α+1

2α+1

1 λ
− α

2α+1

3 [u(w1)− u(w2)]
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Ẽf (U31) = p̃f31u(w1) + (1− p̃f31)u(w2)− cef3

=

(
1−

1

2
λ
− α

2α+1

1 λ
− α+1

2α+1

3

)
u(w1) +

1

2
λ
− α

2α+1

1 λ
− α+1

2α+1

3 u(w2)

−
α

2
λ
− α

2α+1

1 λ
− α+1

2α+1

3 [u(w1)− u(w2)]

= u(w1)−
1 + α

2
λ
− α

2α+1

1 λ
− α+1

2α+1

3 [u(w1)− u(w2)]

Since α < 1 and λ1 > λ3 > 1, Ẽf (U13) > Ẽf (U31) > E
f
(U). The participation

constraints are also satisfied.

Proof of Proposition 7

1. Continuation values

Using Proposition 2, we can get the continuation values of each player.
Overconfident player 1:

ṽ1 = ps34Ẽ
f (U13) + ps43Ẽ

f (U14)

Since player 3 and 4 are identical, Ẽf (U13) = Ẽf (U14),

ṽ1 = u(w1)−
1 + α

2
λ
− α+1

2α+1

1 [u(w1)− u(w2)]

We show that ṽ1 > v:

ṽ1 > v ⇐⇒ u(w1)−
1 + α

2
λ
− α+1

2α+1

1 [u(w1)− u(w2)] > u(w1)−
1 + α

2
[u(w1)− u(w2)]

⇐⇒ λ
− α+1

2α+1

1 < 1

Overconfident player 2:

ṽ2 = ps34Ẽ
f (U23) + ps43Ẽ

f (U24)

Since player 3 and 4 are identical, Ẽf (U23) = Ẽf (U24),

ṽ2 = u(w1)−
1 + α

2
λ
− α+1

2α+1

2 [u(w1)− u(w2)] > v

We can easily get ṽ1 > ṽ2:

ṽ1 > ṽ2 ⇐⇒ λ
− α+1

2α+1

1 < λ
− α+1

2α+1

2

Thus we have ṽ1 > ṽ2 > v.

2. The equilibrium

Player 1 max Ẽs(U12) = p̃s12ṽ1 − ce1

=





(
1− 1

2

eα2
λ1e

α
1

)
ṽ1 − ce1 if λ1e

α
1 ⩾ eα2

1
2

λ1e
α
1

eα2
ṽ1 − ce1 if λ1e

α
1 ⩽ eα2
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Player 2 max Ẽs(U21) = p̃s21ṽ2 − ce2

=





(
1− 1

2

eα1
λ2e

α
2

)
ṽ2 − ce2 ifλ2e

α
2 ⩾ eα1

1
2

λ2e
α
2

eα1
ṽ2 − ce2 ifλ2e

α
2 ⩽ eα1

There are 4 cases.





λ1e
α
1 ⩾ eα2 and λ2e

α
2 ⩽ eα1

λ1e
α
1 ⩾ eα2 and λ2e

α
2 ⩾ eα1

λ1e
α
1 ⩽ eα2 and λ2e

α
2 ⩾ eα1

λ1e
α
1 ⩽ eα2 and λ2e

α
2 ⩽ eα1

Since λ1 > λ2 > 1, the fourth case is impossible.

(1) case 1: λ1e
α
1 ⩾ eα2 and λ2e

α
2 ⩽ eα1 , which corresponds to (i) in proposition 7.

Player 1 max
(
1− 1

2

eα2
λ1e

α
1

)
ṽ1 − ce1

Player 2 max 1
2

λ2e
α
2

eα1
ṽ2 − ce2

F.o.c

[e1]
α
2λ1

eα2
eα+1
1

ṽ1 − c = 0

[e2]
αλ2

2

eα−1
2

eα1
ṽ2 − c = 0

S.o.c

[e1]
α
2λ1

(−α− 1)
eα2

eα+2
1

ṽ1 < 0

[e2]
αλ2

2
(α− 1)

eα−2
2

eα1
ṽ2 < 0

Solve the two F.O.C , we get

e1 =
α

2c
λα−1
1 λα

2 (ṽ1)
1−α(ṽ2)

α

e2 =
α

2c
λα
1λ

α+1
2 (ṽ1)

−α(ṽ2)
α+1

e2
e1

=
λ2ṽ2

λ−1
1 ṽ1

Check the conditions λ1e
α
1 ⩾ eα2 and λ2e

α
2 ⩽ eα1 :

1○ λ1e
α
1 ⩾ eα2

When λ2e
α
2 ⩽ eα1 is satisfied, λ1e

α
1 ⩾ eα2 is satisfied.
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2○ λ2e
α
2 ⩽ eα1

λ2e
α
2 ⩽ eα1

⇐⇒ λ2

(
e2
e1

)α

⩽ 1

⇐⇒ λ2

(
λ1λ2ṽ2
ṽ1

)α

⩽ 1

⇐⇒ λα
1λ

α+1
2 (ṽ1)

−α(ṽ2)
α ⩽ 1

⇐⇒ λα+1
2 (ṽ2)

α ⩽ λ−α
1 (ṽ1)

α

⇐⇒ λα
1λ

α+1
2 (ṽ2)

α ⩽ (ṽ1)
α

⇐⇒ λ1λ
α+1
α

2 ṽ2 ⩽ ṽ1

⇐⇒ λ1λ
α+1
α

2

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

2

)
⩽
(

u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

)

⇐⇒

(
λ1λ

α+1
α

2 − 1
) u(w1)

u(w1)− u(w2)
⩽ 1 + α

2

(
λ1λ

α+1
α

− α+1
2α+1

2 − λ
− α+1

2α+1

1

)

⇐⇒
u(w1)

u(w1)− u(w2)

2

1 + α
⩽ λ

(α+1)2

α(2α+1)

2 − λ
− 3α+2

2α+1

1

λ
α+1
α

2 − λ−1
1

Therefore the solution

es1 =
α

2c
λα−1
1 λα

2 (ṽ1)
1−α(ṽ2)

α

es2 =
α

2c
λα
1λ

α+1
2 (ṽ1)

−α(ṽ2)
α+1

only applies when u(w1)
u(w1)−u(w2)

2
1+α

⩽ λ

(α+1)2

α(2α+1)
2 −λ

−
3α+2
2α+1

1

λ
α+1
α

2 −λ−1
1

.

Therefore, in proposition 7 (i), es1 > es2 is always satisfied since λ2e
α
2 ⩽ eα1

and λ2 > 1.

(2) case 2: λ1e
α
1 ⩾ eα2 and λ2e

α
2 ⩾ eα1 , which corresponds to (ii) and (iii) in propo-

sition 7.

Player 1 max
(
1− 1

2

eα2
λ1e

α
1

)
ṽ1 − ce1

Player 2 max
(
1− 1

2

eα1
λ2e

α
2

)
ṽ2 − ce2

F.o.c

[e1]
α
2λ1

eα2
eα+1
1

ṽ1 − c = 0

[e2]
α
2λ2

eα1
eα+1
2

ṽ2 − c = 0

S.o.c

[e1]
α
2λ1

(−α− 1)
eα2

eα+2
1

ṽ1 < 0

67



[e2]
α
2λ2

(−α− 1)
eα1

eα+2
2

ṽ2 < 0

Solve F.O.C , we get

e1 =
α

2c
λ
− α+1

2α+1

1 λ
− α

2α+1

2 (ṽ1)
α+1
2α+1 (ṽ2)

α
2α+1

e2 =
α

2c
λ
− α

2α+1

1 λ
− α+1

2α+1

2 (ṽ1)
α

2α+1 (ṽ2)
α+1
2α+1

e2
e1

=

(
λ−1
2 ṽ2

λ−1
1 ṽ1

) 1
2α+1

Check the conditions λ1e
α
1 ⩾ eα2 and λ2e

α
2 ⩾ eα1 :

1○ λ1e
α
1 ⩾ eα2

λ1e
α
1 ⩾ eα2 ⇐⇒

λ1e
α
1

eα2
⩾ 1

⇐⇒ λ
α+1
2α+1

1 λ
α

2α+1

2 (ṽ1)
α

2α+1 (ṽ2)
− α

2α+1 ⩾ 1

⇐⇒ λ
α+1
2α+1

1 (ṽ1)
α

2α+1 ⩾ λ
− α

2α+1

2 (ṽ2)
α

2α+1

this is always satisfied. Therefore λ1e
α
1 ⩾ eα2 always holds.

2○ λ2e
α
2 ⩾ eα1

λ2e
α
2 ⩾ eα1

⇐⇒ λ2

(
e2
e1

)α

⩾ 1

⇐⇒ λ2

(
λ−1
2 ṽ2

λ−1
1 ṽ1

) α
2α+1

⩾ 1

⇐⇒ λ
α

2α+1

1 λ
α+1
2α+1

2 (ṽ1)
− α

2α+1 (ṽ2)
α

2α+1 ⩾ 1

⇐⇒ λ
α

2α+1

1 λ
α+1
2α+1

2 (ṽ2)
α

2α+1 ⩾ (ṽ1)
α

2α+1

⇐⇒ λα
1λ

α+1
2 ṽα2 ⩾ ṽα1

⇐⇒ λ1λ
α+1
α

2 ṽ2 ⩾ ṽ1

⇐⇒ λ1λ
α+1
α

2

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

2

)
⩾
(

u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

)

⇐⇒

(
λ1λ

α+1
α

2 − 1
) u(w1)

u(w1)− u(w2)
⩾ 1 + α

2

(
λ1λ

α+1
α

− α+1
2α+1

2 − λ
− α+1

2α+1

1

)

⇐⇒
u(w1)

u(w1)− u(w2)

2

1 + α
⩾ λ

(α+1)2

α(2α+1)

2 − λ
− 3α+2

2α+1

1

λ
α+1
α

2 − λ−1
1

Thus λ2e
α
2 ⩾ eα1 is satisfied when u(w1)

u(w1)−u(w2)
2

1+α
⩾ λ

(α+1)2

α(2α+1)
2 −λ

−
3α+2
2α+1

1

λ
α+1
α

2 −λ−1
1

.

Therefore the solution

es1 =
α

2c
λ
− α+1

2α+1

1 λ
− α

2α+1

2 (ṽ1)
α+1
2α+1 (ṽ2)

α
2α+1
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es2 =
α

2c
λ
− α

2α+1

1 λ
− α+1

2α+1

2 (ṽ1)
α

2α+1 (ṽ2)
α+1
2α+1

only applies when u(w1)
u(w1)−u(w2)

2
1+α

⩾ λ

(α+1)2

α(2α+1)
2 −λ

−
3α+2
2α+1

1

λ
α+1
α

2 −λ−1
1

.

When the above condition is satisfied,

es1 − es2





> 0 whenλ−1
1 ṽ1 > λ−1

2 ṽ2

= 0 whenλ−1
1 ṽ1 = λ−1

2 ṽ2

< 0 whenλ−1
1 ṽ1 < λ−1

2 ṽ2

λ−1
1 ṽ1 ⪌ λ−1

2 ṽ2

⇐⇒ λ−1
1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

)
⪌ λ−1

2

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

2

)

⇐⇒
1 + α

2

(
λ
− α+1

2α+1
−1

2 − λ
− α+1

2α+1
−1

1

)
⪌ u(w1)

u(w1)− u(w2)

(
λ−1
2 − λ−1

1

)

⇐⇒
λ
− α+1

2α+1
−1

2 − λ
− α+1

2α+1
−1

1

λ−1
2 − λ−1

1

⪌ u(w1)

u(w1)− u(w2)

2

1 + α

⇐⇒
λ
− α+1

2α+1
−1

2 − λ
− α+1

2α+1
−1

1
λ1−λ2

λ1λ2

⪌ u(w1)

u(w1)− u(w2)

2

1 + α

⇐⇒
λ
− α+1

2α+1

2 λ1 − λ
− α+1

2α+1

1 λ2

λ1 − λ2

⪌ u(w1)

u(w1)− u(w2)

2

1 + α

⇐⇒
1

λ1 − λ2

(
λ1

λ
α+1
2α+1

2

−
λ2

λ
α+1
2α+1

1

)
⪌ u(w1)

u(w1)− u(w2)

2

1 + α

Therefore,

es1 − es2





> 0 when u(w1)
u(w1)−u(w2)

2
1+α

< 1
λ1−λ2

(
λ1

λ
α+1
2α+1
2

− λ2

λ
α+1
2α+1
1

)

= 0 when u(w1)
u(w1)−u(w2)

2
1+α

= 1
λ1−λ2

(
λ1

λ
α+1
2α+1
2

− λ2

λ
α+1
2α+1
1

)

< 0 when u(w1)
u(w1)−u(w2)

2
1+α

> 1
λ1−λ2

(
λ1

λ
α+1
2α+1
2

− λ2

λ
α+1
2α+1
1

)

Combining the condition u(w1)
u(w1)−u(w2)

2
1+α

⩾ λ

(α+1)2

α(2α+1)
2 −λ

−
3α+2
2α+1

1

λ
α+1
α

2 −λ−1
1

we can get

es1 − es2





> 0 when
λ

(α+1)2

α(2α+1)
2 −λ

−
3α+2
2α+1

1

λ
α+1
α

2 −λ−1
1

⩽ u(w1)
u(w1)−u(w2)

2
1+α

< 1
λ1−λ2

(
λ1

λ
α+1
2α+1
2

− λ2

λ
α+1
2α+1
1

)

⩽ 0 when u(w1)
u(w1)−u(w2)

2
1+α

⩾ max




λ1

λ

α+1
2α+1
2

− λ2

λ

α+1
2α+1
1

λ1−λ2
,
λ

(α+1)2

α(2α+1)
2 −λ

−
3α+2
2α+1

1

λ
α+1
α

2 −λ−1
1
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where the first line corresponds to proposition 7 (ii) and the second line corre-
sponds to proposition 7 (iii).

(3) case 3: λ1e
α
1 ⩽ eα2 and λ2e

α
2 ⩾ eα1

Player 1 max 1
2

λ1e
α
1

eα2
ṽ1 − ce1

Player 2 max
(
1−

eα1
λ2e

α
2

)
ṽ2 − ce2

F.o.c

[e1]
αλ1

2

eα−1
1

eα2
ṽ1 − c = 0

[e2]
α
2

eα1
λ2e

α+1
2

ṽ2 − c = 0

divide the two F.O.C , we get

e2
e1

=
ṽ2

λ1λ2ṽ1
< 1

which contradicts the condition that λ1e
α
1 ⩽ eα2

Therefore, the equilibrium in this semi-final is given by:

(1) Proposition 7 (i): when u(w1)
u(w1)−u(w2)

2
1+α

⩽ λ

(α+1)2

α(2α+1)
2 −λ

−
3α+2
2α+1

1

λ
α+1
α

2 −λ−1
1

es1 =
α

2c
λα−1
1 λα

2

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

)1−α

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

2

)α

[u(w1)− u(w2)]

es2 =
α

2c
λα
1λ

α+1
2

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

)−α

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

2

)1+α

[u(w1)− u(w2)]

We show that es1 > es:

es1 =
α

2c

(
λ−1
1 ṽ1

)1−α
λα
2 (ṽ2)

α

>
α

2c
(λ2ṽ2)

1−α λα
2 (ṽ2)

α

=
α

2c
λ2ṽ2

>
α

2c
v = es
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The equilibrium winning probabilities are

ps21 =
1

2

(
es2
es1

)α

=
1

2

(
λ2ṽ2

λ−1
1 ṽ1

)α

=
1

2
λα
1λ

α
2

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

)−α(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

2

)α

ps12 = 1− ps21

= 1−
1

2
λα
1λ

α
2

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

)−α(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

2

)α

p̃s12 = 1−
1

2

(es2)
α

λ1 (es1)
α

= 1−
1

2
λα−1
1 λα

2

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

)−α(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

2

)α

p̃s21 =
1

2

λ2 (e
s
2)

α

(es1)
α

=
1

2
λ2

(
λ2ṽ2

λ−1
1 ṽ1

)α

=
1

2
λα
1λ

α+1
2

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

)−α(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

2

)α

Since es1 > es2, we can get ps12 > 1
2
> ps21. Since λ2 (e

s
2)

α ⩽ (es1)
α, we can get

p̃s21 ⩽ 1
2

.

Thus in Proposition 7 (i) we have

p̃s12 > ps12 >
1

2
⩾ p̃s21 > ps21

(2) Proposition 7 (ii) and (iii): when u(w1)
u(w1)−u(w2)

2
1+α

⩾ λ

(α+1)2

α(2α+1)
2 −λ

−
3α+2
2α+1

1

λ
α+1
α

2 −λ−1
1

The equilibrium efforts are

es1 =
α

2c
λ
− α+1

2α+1

1 λ
− α

2α+1

2

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

) α+1
2α+1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

2

) α
2α+1

[u(w1)− u(w2)]

es2 =
α

2c
λ
− α

2α+1

1 λ
− α+1

2α+1

2

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

) α
2α+1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

2

) α+1
2α+1

[u(w1)− u(w2)]
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and the efforts satisfy

es1





> es2 > es when
λ

(α+1)2

α(2α+1)
2 −λ

−
3α+2
2α+1

1

λ
α+1
α

2 −λ−1
1

⩽ u(w1)
u(w1)−u(w2)

2
1+α

< 1
λ1−λ2

(
λ1

λ
α+1
2α+1
2

− λ2

λ
α+1
2α+1
1

)

⩽ es2 when u(w1)
u(w1)−u(w2)

2
1+α

⩾ max




λ1

λ

α+1
2α+1
2

− λ2

λ

α+1
2α+1
1

λ1−λ2
,
λ

(α+1)2

α(2α+1)
2 −λ

−
3α+2
2α+1

1

λ
α+1
α

2 −λ−1
1




1○ Proposition 7 (ii): when
λ

(α+1)2

α(2α+1)
2 −λ

−
3α+2
2α+1

1

λ
α+1
α

2 −λ−1
1

⩽ u(w1)
u(w1)−u(w2)

2
1+α

< 1
λ1−λ2

(
λ1

λ
α+1
2α+1
2

− λ2

λ
α+1
2α+1
1

)

We first show that es1 > es2 > es is satisfied under 1○.

Since es2 = α
2c

(
λ−1
1 ṽ1

) α
2α+1

(
λ−1
2 ṽ2

) α+1
2α+1 and es1 > es2, if both λ−1

1 ṽ1 > v and

λ−1
2 ṽ2 > v are satisfied then we can get es1 > es2 > es.

We show that under the condition of u(w1)
u(w1)−u(w2)

2
1+α

< 1
λ1−λ2

(
λ1

λ
α+1
2α+1
2

− λ2

λ
α+1
2α+1
1

)
,

both λ−1
1 ṽ1 > v and λ−1

2 ṽ2 > v are satisfied:

Let

f(λ1) = λ−1
1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

)

f ′(λ1) = −λ−2
1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

)
+ λ−1

1

1 + α

2

α + 1

2α + 1
λ
− α+1

2α+1
−1

1

= λ−2
1

[
−

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

)
+

1 + α

2

α + 1

2α + 1
λ
− α+1

2α+1

1

]

= λ−2
1

[
1 + α

2

(
α + 1

2α + 1
+ 1

)
λ
− α+1

2α+1

1 −
u(w1)

u(w1)− u(w2)

]

Let g(λ1) =
1+α
2

(
α+1
2α+1

+ 1
)
λ
− α+1

2α+1

1 −
u(w1)

u(w1)−u(w2)
, we can easily get g′(λ1) < 0.

g(λ1 = 1) =
1 + α

2

(
α + 1

2α + 1
+ 1

)
−

u(w1)

u(w1)− u(w2)

g(λ1 → ∞) = −
u(w1)

u(w1)− u(w2)
< 0

(a) When u(w1)−u(w2)
u(w2)

⩽ 2(2α+1)
α(3α+1)

If u(w1)−u(w2)
u(w2)

⩽ 2(2α+1)
α(3α+1)

, then g(λ1 = 1) < 0, g(λ1) ⩽ 0 is always satisfied

and thus f ′(λ1) < 0 always holds. Therefore f(λ1) < f(λ2) < f(1) = v.

This contradicts the condition u(w1)
u(w1)−u(w2)

2
1+α

< 1
λ1−λ2

(
λ1

λ
α+1
2α+1
2

− λ2

λ
α+1
2α+1
1

)

since we showed earlier that this condition is equivalent to f(λ1) > f(λ2)
and es1 > es2.
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(b) When u(w1)−u(w2)
u(w2)

> 2(2α+1)
α(3α+1)

If u(w1)−u(w2)
u(w2)

> 2(2α+1)
α(3α+1)

, then g(λ1 = 1) > 0 and thus

g(λ1) and f ′(λ1)





> 0 whenλ1 <

(
1+α
2 ( α+1

2α+1
+1)

u(w1)
u(w1)−u(w2)

) 2α+1
α+1

< 0 whenλ1 >

(
1+α
2 ( α+1

2α+1
+1)

u(w1)
u(w1)−u(w2)

) 2α+1
α+1

f(λ1)





> v whenλ1 < λ̂

= v whenλ1 = λ̂

< v whenλ1 > λ̂

where λ̂ is as derived in the proposition 3.

When f(λ1) > f(λ2) is satisfied, f(λ1) > f(λ2) > f(1) = f(λ̂) = v
must be true.
If f(λ2) < v, then λ2 > λ̂. And since f ′(λ1) < 0 for ∀ λ1 > λ̂,
f(λ1) < f(λ2) when f(λ2) < v. This contradicts f(λ1) > f(λ2). Thus

when the condition u(w1)
u(w1)−u(w2)

2
1+α

< 1
λ1−λ2

(
λ1

λ
α+1
2α+1
2

− λ2

λ
α+1
2α+1
1

)
is satisfied,

e1 > e2 > es is always true.

The true equilibrium winning probabilities under 1○ are

ps21 =
1

2

(
es2
es1

)α

=
1

2

(
λ−1
2 ṽ2

λ−1
1 ṽ1

) α
2α+1

=
1

2
λ

α
2α+1

1 λ
− α

2α+1

2

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

)− α
2α+1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

2

) α
2α+1

ps12 = 1− ps21

= 1−
1

2
λ

α
2α+1

1 λ
− α

2α+1

2

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

)− α
2α+1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

2

) α
2α+1

Since es1 > es2, we can get ps12 >
1
2
> ps21.

Thus we have p̃s12 > ps12 >
1
2
> ps21.

2○ Proposition 7 (iii): when u(w1)
u(w1)−u(w2)

2
1+α

⩾ max




λ1

λ

α+1
2α+1
2

− λ2

λ

α+1
2α+1
1

λ1−λ2
,
λ

(α+1)2

α(2α+1)
2 −λ

−
3α+2
2α+1

1

λ
α+1
α

2 −λ−1
1




The true equilibrium winning probabilities are
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ps12 =
1

2

(
es1
es2

)α

=
1

2

(
λ−1
1 ṽ1

λ−1
2 ṽ2

) α
2α+1

=
1

2
λ
− α

2α+1

1 λ
α

2α+1

2

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

) α
2α+1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

2

)− α
2α+1

ps21 = 1− ps12

= 1−
1

2
λ
− α

2α+1

1 λ
α

2α+1

2

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

) α
2α+1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

2

)− α
2α+1

Since es1 ⩽ es2, we can get ps21 ⩾ 1
2
⩾ ps12.

The perceived equilibrium winning probabilities under (2) are:

p̃s12 = 1−
1

2

(es2)
α

λ1 (es1)
α

= 1−
1

2
λ−1
1

(
λ

1
2α+1

1 λ
− 1

2α+1

2

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

)− 1
2α+1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

2

) 1
2α+1

)α

= 1−
1

2
λ
− α+1

2α+1

1 λ
− α

2α+1

2

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

)− α
2α+1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

2

) α
2α+1

p̃s21 = 1−
1

2

(es1)
α

λ2 (es2)
α

= 1−
1

2
λ−1
2

(
λ
− 1

2α+1

1 λ
1

2α+1

2

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

) 1
2α+1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

2

)− 1
2α+1

)α

= 1−
1

2
λ
− α

2α+1

1 λ
− α+1

2α+1

2

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

) α
2α+1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

2

)− α
2α+1
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We show that p̃s12 > p̃s21:

p̃s12 > p̃s21

⇐⇒ 1−
1

2
λ
− α+1

2α+1

1 λ
− α

2α+1

2 (ṽ1)
− α

2α+1 (ṽ2)
α

2α+1 > 1−
1

2
λ
− α

2α+1

1 λ
− α+1

2α+1

2 (ṽ1)
α

2α+1 (ṽ2)
− α

2α+1

⇐⇒ λ
− α

2α+1

1 λ
− α+1

2α+1

2 (ṽ1)
α

2α+1 (ṽ2)
− α

2α+1 > λ
− α+1

2α+1

1 λ
− α

2α+1

2 (ṽ1)
− α

2α+1 (ṽ2)
α

2α+1

⇐⇒ λ
1

2α+1

1 λ
− 1

2α+1

2 (ṽ1)
2α

2α+1 (ṽ2)
− 2α

2α+1 > 1

⇐⇒
λ

1
2α+1

1 (ṽ1)
2α

2α+1

λ
1

2α+1

2 (ṽ2)
2α

2α+1

> 1

Thus in Proposition 7 (ii) we have p̃s12 > ps12 >
1
2
> ps21 and in Proposition 7 (iii)

we have p̃s12 > p̃s21 > ps21 ⩾ 1
2
⩾ ps12.

3. Participation constraint

(1) When u(w1)
u(w1)−u(w2)

2
1+α

⩽ λ

(α+1)2

α(2α+1)
2 −λ

−
3α+2
2α+1

1

λ
α+1
α

2 −λ−1
1

Ẽs(U12) = p̃s12ṽ1 − ces1
> ps12ṽ1 − ces1

=

(
1−

1

2
λα
1λ

α
2 (ṽ1)

−α (ṽ2)
α

)
ṽ1 − c

α

2c
λα−1
1 λα

2 (ṽ1)
1−α (ṽ2)

α

= ṽ1 −
1

2
λα
1λ

α
2 (ṽ1)

1−α (ṽ2)
α
−

α

2
λα−1
1 λα

2 (ṽ1)
1−α (ṽ2)

α

> ṽ1 −
1

2
λα
1λ

α
2 (ṽ1)

1−α (ṽ2)
α
−

α

2
λα
1λ

α
2 (ṽ1)

1−α (ṽ2)
α

= ṽ1 −
1 + α

2
λα
1λ

α
2 (ṽ1)

1−α (ṽ2)
α

= ṽ1

[
1−

1 + α

2
λα
1λ

α
2 (ṽ1)

−α (ṽ2)
α

]

= ṽ1

[
1−

1 + α

2

(
es2
es1

)α
]

> 0

Ẽs(U21) = p̃s21ṽ2 − ces2

=
1

2
λα
1λ

α+1
2 (ṽ1)

−α (ṽ2)
α ṽ2 − c

α

2c
λα
1λ

α+1
2 (ṽ1)

−α (ṽ2)
α+1

=
1

2
λα
1λ

α+1
2 (ṽ1)

−α (ṽ2)
1+α

−
α

2
λα
1λ

α+1
2 (ṽ1)

−α (ṽ2)
α+1

=
1− α

2
λα
1λ

α+1
2 (ṽ1)

−α (ṽ2)
1+α

⩾ 0
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(2) When u(w1)
u(w1)−u(w2)

2
1+α

⩾ λ

(α+1)2

α(2α+1)
2 −λ

−
3α+2
2α+1

1

λ
α+1
α

2 −λ−1
1

Ẽs(U12) = p̃s12ṽ1 − ces1

=

(
1−

1

2
λ
− α+1

2α+1

1 λ
− α

2α+1

2 (ṽ1)
− α

2α+1 (ṽ2)
α

2α+1

)
ṽ1 − c

α

2c
λ
− α+1

2α+1

1 λ
− α

2α+1

2 (ṽ1)
α+1
2α+1 (ṽ2)

α
2α+1

= ṽ1 −
1 + α

2
λ
− α+1

2α+1

1 λ
− α

2α+1

2 (ṽ1)
α+1
2α+1 (ṽ2)

α
2α+1

= (ṽ1)
α+1
2α+1

[
(ṽ1)

α
2α+1 −

1 + α

2
λ
− α+1

2α+1

1 λ
− α

2α+1

2 (ṽ2)
α

2α+1

]

> 0

Ẽs(U21) = p̃s21ṽ1 − ces2

=

(
1−

1

2
λ
− α

2α+1

1 λ
− α+1

2α+1

2 (ṽ1)
α

2α+1 (ṽ2)
− α

2α+1

)
ṽ2 − c

α

2c
λ
− α

2α+1

1 λ
− α+1

2α+1

2 (ṽ1)
α

2α+1 (ṽ2)
α+1
2α+1

= ṽ2 −
1 + α

2
λ
− α

2α+1

1 λ
− α+1

2α+1

2 (ṽ1)
α

2α+1 (ṽ2)
α+1
2α+1

= ṽ2

[
1−

1 + α

2
λ
− α

2α+1

1 λ
− α+1

2α+1

2 (ṽ1)
α

2α+1 (ṽ2)
− α

2α+1

]

= ṽ2

[
1−

1 + α

2

(es1)
α

λ2(es2)
α

]

> 0

Lemma 4

lim
λ1→∞

λ
(α+1)2

α(2α+1)

2 − λ
− 3α+2

2α+1

1

λ
α+1
α

2 − λ−1
1

= λ
− α+1

2α+1

2

lim
λ1→λ2

λ
(α+1)2

α(2α+1)

2 − λ
− 3α+2

2α+1

1

λ
α+1
α

2 − λ−1
1

= λ
− α+1

2α+1

2

lim
λ1→∞

λ1

λ
α+1
2α+1
2

− λ2

λ
α+1
2α+1
1

λ1 − λ2

= λ
− α+1

2α+1

2

lim
λ1→λ2

λ1

λ
α+1
2α+1
2

− λ2

λ
α+1
2α+1
1

λ1 − λ2

=
3α + 2

2α + 1
λ
− α+1

2α+1

2
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Proof of Lemma 4

lim
λ1→∞

λ
(α+1)2

α(2α+1)

2 − λ
− 3α+2

2α+1

1

λ
α+1
α

2 − λ−1
1

=
λ

(α+1)2

α(2α+1)

2

λ
α+1
α

2

= λ
− α+1

2α+1

2

lim
λ1→λ2

λ
(α+1)2

α(2α+1)

2 − λ
− 3α+2

2α+1

1

λ
α+1
α

2 − λ−1
1

=
λ

(α+1)2

α(2α+1)

2 − λ
− 3α+2

2α+1

2

λ
α+1
α

2 − λ−1
2

=

λ
− 3α+2

2α+1

2

(
λ

(α+1)2

α(2α+1)
+ 3α+2

2α+1

2 − 1

)

λ−1
2

(
λ

α+1
α

+1

2 − 1
)

= λ
− 3α+2

2α+1
+1

2

λ
2α+1

α

2 − 1

λ
2α+1

α

2 − 1

= λ
− α+1

2α+1

2

lim
λ1→∞

λ1

λ
α+1
2α+1
2

− λ2

λ
α+1
2α+1
1

λ1 − λ2

= lim
λ1→∞

1

λ
α+1
2α+1
2

− λ2

λ
α+1
2α+1+1

1

1− λ2

λ1

=
λ
− α+1

2α+1

2 − 0

1− 0

= λ
− α+1

2α+1

2

Let t = λ1 − λ2,

lim
λ1→λ2

λ1

λ
α+1
2α+1
2

− λ2

λ
α+1
2α+1
1

λ1 − λ2

= lim
t→0

λ2+t

λ
α+1
2α+1
2

− λ2

(λ2+t)
α+1
2α+1

t

= lim
t→0

∂


 λ2+t

λ

α+1
2α+1
2

− λ2

(λ2+t)
α+1
2α+1




∂t
∂t
∂t

= lim
t→0

λ
− α+1

2α+1

2 − λ2

(
− α+1

2α+1

)
(λ2 + t)−

α+1
2α+1

−1

1

=

(
3α + 2

2α + 1

)
λ
− α+1

2α+1

2

Lemma 5

Lemma 5 In the semifinal between two rational players of a two-stage elimination contest
where the overconfident players 1 and 2 are seeded in one semifinal, the rational players

77



3 and 4 are seeded in the other semifinal, and λ1 > λ2 > 1 = λ3 = λ4, the equilibrium
efforts and winning probabilities satisfy es3 = es4 > es and ps34 = ps43 = 1/2.

Proof of Lemma 5

1. Continuation values

Rational player 3:

v3 = ps12E
f (U31) + ps21E

f (U32)

=

[
ps12

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α

2α+1

1

)
+ ps21

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α

2α+1

2

)]

× [u(w1)− u(w2)]

=

[
u(w1)

u(w1)− u(w2)
−

1 + α

2

(
λ
− α

2α+1

2 + ps12

(
λ
− α

2α+1

1 − λ
− α

2α+1

2

))]
[u(w1)− u(w2)]

> v

where ps12 is as derived in the proof of proposition 7.

Rational player 4:

Since player 3 and player 4 are identical,

v4 = v3 > v

2. The equilibrium

(1) When u(w1)
u(w1)−u(w2)

2
1+α

⩽ λ

(α+1)2

α(2α+1)
2 −λ

−
3α+2
2α+1

1

λ
α+1
α

2 −λ−1
1

es3 = es4 =
α

2c
v3

=
α

2c

[
u(w1)

u(w1)− u(w2)
−

1 + α

2

(
λ
− α

2α+1

2

+

(
1−

1

2
λα
1λ

α
2

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

)−α

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

2

)α
)(

λ
− α

2α+1

1 − λ
− α

2α+1

2

))]
[u(w1)− u(w2)]

ps34 = ps43 =
1

2

(2) When
λ

(α+1)2

α(2α+1)
2 −λ

−
3α+2
2α+1

1

λ
α+1
α

2 −λ−1
1

⩽ u(w1)
u(w1)−u(w2)

2
1+α

<

λ1

λ

α+1
2α+1
2

− λ2

λ

α+1
2α+1
1

λ1−λ2
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es3 = es4 =
α

2c
v3

=
α

2c

[
u(w1)

u(w1)− u(w2)
−

1 + α

2

(
λ
− α

2α+1

2

+

(
1−

1

2
λ

α
2α+1

1 λ
− α

2α+1

2

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

)− α
2α+1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

2

) α
2α+1

)(
λ
− α

2α+1

1 − λ
− α

2α+1

2

))]
[u(w1)− u(w2)]

ps34 = ps43 =
1

2

(3) When u(w1)
u(w1)−u(w2)

2
1+α

⩾ max




λ1

λ

α+1
2α+1
2

− λ2

λ

α+1
2α+1
1

λ1−λ2
,
λ

(α+1)2

α(2α+1)
2 −λ

−
3α+2
2α+1

1

λ
α+1
α

2 −λ−1
1




es3 = es4 =
α

2c
v3

=
α

2c

[
u(w1)

u(w1)− u(w2)
−

1 + α

2

(
λ
− α

2α+1

2

+
1

2
λ
− α

2α+1

1 λ
α

2α+1

2

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

) α
2α+1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

2

)− α
2α+1 (

λ
− α

2α+1

1 − λ
− α

2α+1

2

))]
[u(w1)− u(w2)]

ps34 = ps43 =
1

2

Since v3 = v4 > v, es3 = es4 > es is always satisfied.

3. Participation constraint

Es(U34) = ps34v3 − ce3

=
1− α

2
v3

⩾ 0

Es(U43) = Es(U34) ⩾ 0

Proof of Proposition 8

1. Continuation values of each player
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Overconfident player 1:

ṽ1 = ps34Ẽ
f (U13) + ps43Ẽ

f (U14)

= ps34

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1 λ
− α

2α+1

3

)
[u(w1)− u(w2)]

+ ps43

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

)
[u(w1)− u(w2)]

=

[
u(w1)

u(w1)− u(w2)
−

1 + α

2

(
1− ps34 + ps34λ

− α
2α+1

3

)
λ
− α+1

2α+1

1

]
[u(w1)− u(w2)]

Rational player 2:

v2 = ps34E
f (U23) + ps43E

f (U24)

= ps34

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α

2α+1

3

)
[u(w1)− u(w2)]

+ ps43

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)
[u(w1)− u(w2)]

=

[
u(w1)

u(w1)− u(w2)
−

1 + α

2

(
1− ps34 + ps34λ

− α
2α+1

3

)]
[u(w1)− u(w2)]

Overconfident player 3:

ṽ3 = ps12Ẽ
f (U31) + ps21Ẽ

f (U32)

= ps12

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α

2α+1

1 λ
− α+1

2α+1

3

)
[u(w1)− u(w2)]

+ ps21

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

3

)
[u(w1)− u(w2)]

=

[
u(w1)

u(w1)− u(w2)
−

1 + α

2

(
1− ps12 + ps12λ

− α
2α+1

1

)
λ
− α+1

2α+1

3

]
[u(w1)− u(w2)]

Rational player 4:

v4 = ps12E
f (U41) + ps21E

f (U42)

= ps12

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α

2α+1

1

)
[u(w1)− u(w2)]

+ ps21

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)
[u(w1)− u(w2)]

=

[
u(w1)

u(w1)− u(w2)
−

1 + α

2

(
1− ps12 + ps12λ

− α
2α+1

1

)]
[u(w1)− u(w2)]

2. The equilibrium of the semifinal between player 1 and player 2

Player 1 max Ẽs(U12) = p̃s12ṽ1 − ce1

=





(
1− 1

2

eα2
λ1e

α
1

)
ṽ1 − ce1 if λ1e

α
1 ⩾ eα2

1
2

λ1e
α
1

eα2
ṽ1 − ce1 if λ1e

α
1 ⩽ eα2
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Player 2 max Es(U21) = ps21v2 − ce2

=





(
1− 1

2

eα1
eα2

)
v2 − ce2 if e2 ⩾ e1

1
2

eα2
eα1
v2 − ce2 if e2 ⩽ e1

There are 4 cases.





λ1e
α
1 ⩾ eα2 and e2 ⩽ e1

λ1e
α
1 ⩾ eα2 and e2 ⩾ e1

λ1e
α
1 ⩽ eα2 and e2 ⩾ e1

λ1e
α
1 ⩽ eα2 and e2 ⩽ e1

Since λ1 > 1, the fourth case is impossible.

(1) case 1: λ1e
α
1 ⩾ eα2 and e2 ⩽ e1

Player 1 max
(
1− 1

2

eα2
λ1e

α
1

)
ṽ1 − ce1

Player 2 max 1
2
( e2
e1
)αv2 − ce2

F.o.c

[e1]
α
2λ1

eα2
eα+1
1

ṽ1 − c = 0

[e2]
α
2

eα−1
2

eα1
v2 − c = 0

S.o.c

[e1]
α
2λ1

(−α− 1)
eα2

eα+2
1

ṽ1 < 0

[e2]
α
2
(α− 1)

eα−2
2

eα1
v2 < 0

Solve the two F.O.C , we get

e1 =
α

2c
λα−1
1 (ṽ1)

1−α(v2)
α

e2 =
α

2c
λα
1 (ṽ1)

−α(v2)
α+1

e2
e1

= λ1
v2
ṽ1

ps21 =
1

2

(
e2
e1

)α

=
1

2

(
λ1v2
ṽ1

)α
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Check the conditions λ1e
α
1 ⩾ eα2 and e1 ⩾ e2:

As long as e1 ⩾ e2 is satisfied, λ1e
α
1 ⩾ eα2 is satisfied. So we only have to

check e1 ⩾ e2.

e2 ⩽ e1 ⇐⇒
e2
e1

⩽ 1

⇐⇒
1

2

(
e2
e1

)α

⩽ 1

2

⇐⇒
e2
e1

⩽ 1

⇐⇒
v2

λ−1
1 ṽ1

⩽ 1

⇐⇒

u(w1)
u(w1)−u(w2)

− 1+α
2

(
1− ps34 + ps34λ

− α
2α+1

3

)

λ−1
1

[
u(w1)

u(w1)−u(w2)
− 1+α

2

(
1− ps34 + ps34λ

− α
2α+1

3

)
λ
− α+1

2α+1

1

] ⩽ 1

Let

f(ps34) = λ−1
1

[
u(w1)

u(w1)− u(w2)
−

1 + α

2

(
1− ps34 + ps34λ

− α
2α+1

3

)
λ
− α+1

2α+1

1

]

−

[
u(w1)

u(w1)− u(w2)
−

1 + α

2

(
1− ps34 + ps34λ

− α
2α+1

3

)]

Rearrange the terms we can get

f(ps34) = λ−1
1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

)
−

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)

+
1 + α

2

(
λ
− α

2α+1

3 − 1
)(

1− λ
−1− α+1

2α+1

1

)
ps34

Since
(
λ
− α

2α+1

3 − 1
)(

1− λ
−1− α+1

2α+1

1

)
< 0 and ps34 ∈ [0, 1], f(ps34) reaches mini-

mum at ps34 = 1. Thus, e2 ⩽ e1 is always satisfied as long as f(ps34 = 1) ⩾ 0.

f(ps34 = 1) = λ−1
1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

)
−

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)

+
1 + α

2

(
λ
− α

2α+1

3 − 1
)(

1− λ
−1− α+1

2α+1

1

)
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λ−1
1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

)
−

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)

+
1 + α

2

(
λ
− α

2α+1

3 − 1
)(

1− λ
−1− α+1

2α+1

1

)
⩾ 0

⇐⇒

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

)
− λ1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)

+ λ1
1 + α

2

(
λ
− α

2α+1

3 − 1
)(

1− λ
−1− α+1

2α+1

1

)
⩾ 0

⇐⇒
1 + α

2

[
λ1

(
1 +

(
λ
− α

2α+1

3 − 1
)(

1− λ
−1− α+1

2α+1

1

))
− λ

− α+1
2α+1

1

]
⩾ (λ1 − 1)

u(w1)

u(w1)− u(w2)

⇐⇒
1

λ1 − 1

[
λ1

(
λ
−1− α+1

2α+1

1 + λ
− α

2α+1

3 − λ
− α

2α+1

3 λ
−1− α+1

2α+1

1

)
− λ

− α+1
2α+1

1

]
⩾ u(w1)

u(w1)− u(w2)

2

1 + α

⇐⇒
1

λ1 − 1
λ
− α

2α+1

3

(
λ1 − λ

− α+1
2α+1

1

)
⩾ u(w1)

u(w1)− u(w2)

2

1 + α

To ensure e1 > e2 and ps12 > ps21, we need u(w1)
u(w1)−u(w2)

2
1+α

< 1
λ1−1

λ
− α

2α+1

3

(
λ1 − λ

− α+1
2α+1

1

)
.

Since
λ1−λ

−
α+1
2α+1

1

λ1−1
decreasing in λ1 for λ1 > 1 and its limit when λ1 → 1 is 3α+2

2α+1
,

we can get 1
λ1−1

λ
− α

2α+1

3

(
λ1 − λ

− α+1
2α+1

1

)
< 3α+2

2α+1
. Hence, to satisfy the inequal-

ity u(w1)
u(w1)−u(w2)

2
1+α

< 1
λ1−1

λ
− α

2α+1

3

(
λ1 − λ

− α+1
2α+1

1

)
, we also need u(w1)

u(w1)−u(w2)
2

1+α
<

3α+2
2α+1

, which is equivalent to u(w1)−u(w2)
u(w2)

> 2(2α+1)
α(3α+1)

.

(2) case 2: λ1e
α
1 ⩾ eα2 and e2 ⩾ e1

Player 1 max
(
1− 1

2

eα2
λ1e

α
1

)
ṽ1 − ce1

Player 2 max
(
1− 1

2

eα1
eα2

)
v2 − ce2

F.o.c

[e1]
α
2λ1

eα2
eα+1
1

ṽ1 − c = 0

[e2]
α
2

eα1
eα+1
2

v2 − c = 0

S.o.c

[e1]
α
2λ1

(−α− 1)
eα2

eα+2
1

ṽ1 < 0

[e2]
α
2
(−α− 1)

eα1
eα+2
2

v2 < 0

Solve F.O.C , we get

e1 =
α

2c
λ
− α+1

2α+1

1 (ṽ1)
α+1
2α+1 (v2)

α
2α+1
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e2 =
α

2c
λ
− α

2α+1

1 (ṽ1)
α

2α+1 (v2)
α+1
2α+1

e2
e1

= λ
1

2α+1

1 (ṽ1)
− 1

2α+1 (v2)
1

2α+1

Check the conditions λ1e
α
1 ⩾ eα2 and e2 ⩾ e1:

1○ λ1e
α
1 ⩾ eα2

λ1e
α
1 ⩾ eα2 ⇐⇒

λ1e
α
1

eα2
⩾ 1

⇐⇒ λ
α+1
2α+1

1 (ṽ1)
α

2α+1 (v2)
− α

2α+1 ⩾ 1

Since λ1 > 1 and ṽ1 > v2, λ1e
α
1 > eα2 is always satisfied.

2○ e2 ⩾ e1
e2 ⩾ e1 is always satisfied as long as f(ps34 = 0) ⩽ 0.

f(ps34 = 0) = λ−1
1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

)
−

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)

f(ps34 = 0) ⩽ 0 ⇐⇒
u(w1)

u(w1)− u(w2)

(
λ−1
1 − 1

)
+

1 + α

2

(
1− λ

−1− α+1
2α+1

1

)
⩽ 0

⇐⇒
1 + α

2

(
1− λ

−1− α+1
2α+1

1

)
⩽ u(w1)

u(w1)− u(w2)

(
1− λ−1

1

)

⇐⇒
1− λ

−1− α+1
2α+1

1

1− λ−1
1

⩽ u(w1)

u(w1)− u(w2)

2

1 + α

(3) case 3: λ1e
α
1 ⩽ eα2 and e2 ⩾ e1

Player 1 max 1
2

λ1e
α
1

eα2
ṽ1 − ce1

Player 2 max
(
1− 1

2
( e1
e2
)α
)
v2 − ce2

F.o.c

[e1]
αλ1

2

eα−1
1

eα2
ṽ1 − c = 0

[e2]
α
2

eα1
eα+1
2

v2 − c = 0

divide the two F.O.C , we get

e2
e1

=
v2
λ1ṽ1

< 1

which contradicts the condition that e2 ⩾ e1

3. The equilibrium between player 3 and player 4

Player 3 max Ẽs(U34) = p̃s34ṽ3 − ce3
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=





(
1− 1

2

eα4
λ3e

α
3

)
ṽ3 − ce3 if λ3e

α
3 ⩾ eα4

1
2

λ3e
α
3

eα4
ṽ3 − ce3 if λ3e

α
3 ⩽ eα4

Player 4 max Es(U43) = ps43v4 − ce4

=





(
1− 1

2

eα3
eα4

)
v4 − ce4 if e4 ⩾ e3

1
2

eα4
eα3
v4 − ce4 if e4 ⩽ e3

There are 4 cases.





λ3e
α
3 ⩾ eα4 and e4 ⩽ e3

λ3e
α
3 ⩾ eα4 and e4 ⩾ e3

λ3e
α
3 ⩽ eα4 and e4 ⩾ e3

λ3e
α
3 ⩽ eα4 and e4 ⩽ e3

Since λ3 > 1, the fourth case is impossible.

(1) case 1: λ3e
α
3 ⩾ eα4 and e4 ⩽ e3

Player 1 max
(
1− 1

2

eα4
λ3e

α
3

)
ṽ3 − ce3

Player 2 max 1
2
( e4
e3
)αv4 − ce4

F.o.c

[e3]
α
2λ3

eα4
eα+1
3

ṽ3 − c = 0

[e4]
α
2

eα−1
4

eα3
v4 − c = 0

S.o.c

[e3]
α
2λ3

(−α− 1)
eα4

eα+2
3

ṽ3 < 0

[e4]
α
2
(α− 1)

eα−2
4

eα3
v4 < 0

Solve the two F.O.C , we get

e3 =
α

2c
λα−1
3 (ṽ3)

1−α(v4)
α

e4 =
α

2c
λα
3 (ṽ3)

−α(v4)
α+1

e4
e3

= λ3
v4
ṽ3
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ps43 =
1

2

(
e4
e3

)α

=
1

2

(
λ3v4
ṽ3

)α

Check the conditions λ3e
α
3 ⩾ eα4 and e3 ⩾ e4:

As long as e3 ⩾ e4 is satisfied, λ3e
α
3 ⩾ eα4 is satisfied. So we only have to check

e3 ⩾ e4.

e4 ⩽ e3 ⇐⇒
e4
e3

⩽ 1

⇐⇒
1

2

(
e4
e3

)α

⩽ 1

2

⇐⇒ ps43 ⩽
1

2

⇐⇒
v4

λ−1
3 ṽ3

⩽ 1

⇐⇒

u(w1)
u(w1)−u(w2)

− 1+α
2

(
1− ps12 + ps12λ

− α
2α+1

3

)

λ−1
3

[
u(w1)

u(w1)−u(w2)
− 1+α

2

(
1− ps12 + ps12λ

− α
2α+1

1

)
λ
− α+1

2α+1

3

] ⩽ 1

Let

f(ps12) = λ−1
3

[
u(w1)

u(w1)− u(w2)
−

1 + α

2

(
1− ps12 + ps12λ

− α
2α+1

1

)
λ
− α+1

2α+1

3

]

−

[
u(w1)

u(w1)− u(w2)
−

1 + α

2

(
1− ps12 + ps12λ

− α
2α+1

1

)]

Rearrange the terms we can get

f(ps12) = λ−1
3

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

3

)
−

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)

+
1 + α

2

(
λ
− α

2α+1

1 − 1
)(

1− λ
−1− α+1

2α+1

3

)
ps12

Since
(
λ
− α

2α+1

1 − 1
)(

1− λ
−1− α+1

2α+1

3

)
< 0 and ps12 ∈ [0, 1], f(ps12) reaches mini-

mum at ps12 = 1. Thus, e4 ⩽ e3 is always satisfied as long as f(ps12 = 1) ⩾ 0.

f(ps12 = 1) = λ−1
3

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

3

)
−

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)

+
1 + α

2

(
λ
− α

2α+1

1 − 1
)(

1− λ
−1− α+1

2α+1

3

)
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λ−1
3

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

3

)
−

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)

+
1 + α

2

(
λ
− α

2α+1

1 − 1
)(

1− λ
−1− α+1

2α+1

3

)
⩾ 0

⇐⇒

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

3

)
− λ3

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)

+ λ3
1 + α

2

(
λ
− α

2α+1

1 − 1
)(

1− λ
−1− α+1

2α+1

3

)
⩾ 0

⇐⇒
1 + α

2

[
λ3

(
1−

(
1− λ

− α
2α+1

1

)(
1− λ

−1− α+1
2α+1

3

))
− λ

− α+1
2α+1

3

]
⩾ (λ3 − 1)

u(w1)

u(w1)− u(w2)

⇐⇒
1

λ3 − 1

[
λ3

(
λ
−1− α+1

2α+1

3 + λ
− α

2α+1

1 − λ
− α

2α+1

1 λ
−1− α+1

2α+1

3

)
− λ

− α+1
2α+1

3

]
⩾ u(w1)

u(w1)− u(w2)

2

1 + α

⇐⇒
1

λ3 − 1
λ
− α

2α+1

1

(
λ3 − λ

− α+1
2α+1

3

)
⩾ u(w1)

u(w1)− u(w2)

2

1 + α

To ensure e3 > e4 and ps34 > ps43, we need u(w1)
u(w1)−u(w2)

2
1+α

< 1
λ3−1

λ
− α

2α+1

1

(
λ3 − λ

− α+1
2α+1

3

)
.

Similar to the equilibrium in the semifinal between player 1 and player 2, we

also need u(w1)−u(w2)
u(w2)

> 2(2α+1)
α(3α+1)

.

(2) case 2: λ3e
α
3 ⩾ eα4 and e4 ⩾ e3

Player 1 max
(
1− 1

2

eα4
λ3e

α
3

)
ṽ3 − ce3

Player 2 max
(
1− 1

2

eα3
eα4

)
v4 − ce4

F.o.c

[e3]
α
2λ3

eα4
eα+1
3

ṽ3 − c = 0

[e4]
α
2

eα3
eα+1
4

v4 − c = 0

S.o.c

[e3]
α
2λ3

(−α− 1)
eα4

eα+2
3

ṽ3 < 0

[e4]
α
2
(−α− 1)

eα3
eα+2
4

v4 < 0

Solve F.O.C , we get

e3 =
α

2c
λ
− α+1

2α+1

3 (ṽ3)
α+1
2α+1 (v4)

α
2α+1

e4 =
α

2c
λ
− α

2α+1

3 (ṽ3)
α

2α+1 (v4)
α+1
2α+1

e4
e3

= λ
1

2α+1

3 (ṽ3)
− 1

2α+1 (v4)
1

2α+1

Check the conditions λ3e
α
3 ⩾ eα4 and e4 ⩾ e3:
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1○ λ3e
α
3 ⩾ eα4

λ3e
α
3 ⩾ eα4 ⇐⇒

λ3e
α
3

eα4
⩾ 1

⇐⇒ λ
α+1
2α+1

3 (ṽ3)
α

2α+1 (v4)
− α

2α+1 ⩾ 1

Since λ3 > 1 and ṽ3 > v4, λ3e
α
3 > eα4 is always satisfied.

2○ e4 ⩾ e3
e2 ⩾ e1 is always satisfied as long as f(ps12 = 0) ⩽ 0.

f(ps12 = 0) = λ−1
3

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

3

)
−

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)

f(ps12 = 0) ⩽ 0 ⇐⇒
u(w1)

u(w1)− u(w2)

(
λ−1
3 − 1

)
+

1 + α

2

(
1− λ

−1− α+1
2α+1

3

)
⩽ 0

⇐⇒
1 + α

2

(
1− λ

−1− α+1
2α+1

3

)
⩽ u(w1)

u(w1)− u(w2)

(
1− λ−1

3

)

⇐⇒
1− λ

−1− α+1
2α+1

3

1− λ−1
3

⩽ u(w1)

u(w1)− u(w2)

2

1 + α

(3) case 3: λ3e
α
3 ⩽ eα4 and e4 ⩾ e3

Player 1 max 1
2

λ3e
α
3

eα4
ṽ3 − ce3

Player 2 max
(
1− 1

2
( e3
e4
)α
)
v4 − ce4

F.o.c

[e3]
αλ3

2

eα−1
3

eα4
ṽ3 − c = 0

[e4]
α
2

eα3
eα+1
4

v4 − c = 0

divide the two F.O.C , we get

e4
e3

=
v4
λ3ṽ3

< 1

which contradicts the condition that e4 ⩾ e3.

Proof of Proposition 9

1. Equilibrium expected utility of overconfident player 1 in the semifinal with rational
player 2.
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The equilibrium continuation value of overconfident player 1 is

v1 = pf34E
f (U13) + pf43E

f (U14)

= Ef (U13)

=
1

2
λ
− α

2α+1

1 [u(w1)− u(w2)]−
α

2
λ
− α+1

2α+1

1 [u(w1)− u(w2)] + u(w2)

=

(
1

2
λ
− α

2α+1

1 −
α

2
λ
− α+1

2α+1

1 +
u(w2)

u(w1)− u(w2)

)
[u(w1)− u(w2)]

and his equilibrium expected utility in the semifinal with rational player 2 when
u(w1)−u(w2)

u(w2)
> 2(2α+1)

α(3α+1)
and λ < λ̂ is

Es(U12) = ps12v1 − ces1

=

[
1−

1

2
λα
1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

)−α(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)α
]

(
1

2
λ
− α

2α+1

1 −
α

2
λ
− α+1

2α+1

1 +
u(w2)

u(w1)− u(w2)

)
[u(w1)− u(w2)]

−
α

2
λα−1
1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

)1−α

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)α

[u(w1)− u(w2)]

The benchmark equilibrium expected utility of the semifinal is

E
s
(U) =

1− α

2
v =

1− α

2

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)
[u(w1)− u(w2)]

Let

f(λ1) =
Es(U12)− E

s
(U)

[u(w1)− u(w2)]

=

[
1−

1

2
λα
1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

)−α(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)α
]

(
1

2
λ
− α

2α+1

1 −
α

2
λ
− α+1

2α+1

1 +
u(w2)

u(w1)− u(w2)

)

−
α

2
λα−1
1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

)1−α(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)α

−
1− α

2

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)
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We can easily get that f(λ1 = 1) = 0.

f ′(λ1) =

[
1−

1

2
λα
1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

)−α(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)α
]

(
−
1

2

α

2α + 1
λ
− α

2α+1
−1

1 +
α

2

α + 1

2α + 1
λ
− α+1

2α+1
−1

1

)

+

[
−

1

2

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)α
(
αλα−1

1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

)−α

+ λα
1 (−α)

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

)−α−1
1 + α

2

α + 1

2α + 1
λ
− α+1

2α+1
−1

1

)]

(
1

2
λ
− α

2α+1

1 −
α

2
λ
− α+1

2α+1

1 +
u(w2)

u(w1)− u(w2)

)

−
α

2

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)α
[
(α− 1)λα−2

1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

)1−α

+ λα−1
1 (1− α)

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

)−α
1 + α

2

α + 1

2α + 1
λ
− α+1

2α+1
−1

1

]
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f ′(λ1 = 1) =
1

2

α

2

α

2α + 1
+

[
−
α

2
+

α

2

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)−1
1 + α

2

α + 1

2α + 1

](
u(w1)

u(w1)− u(w2)
−

1 + α

2

)

−
α

2
(α− 1)

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)
−

α

2
(1− α)

1 + α

2

α + 1

2α + 1

=
1

2

α

2

α

2α + 1
−

α

2

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)
+

α

2

1 + α

2

α + 1

2α + 1

−
α

2
(α− 1)

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)
−

α

2
(1− α)

1 + α

2

α + 1

2α + 1

=
α

2

[
1

2

α

2α + 1
−

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)
+

1 + α

2

α + 1

2α + 1

− (α− 1)

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)
− (1− α)

1 + α

2

α + 1

2α + 1

]

=
α

2

[
1

2

α

2α + 1
− α

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)
+ α

1 + α

2

α + 1

2α + 1

]

=
α2

2

[
1

2

1

2α + 1
−

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)
+

1 + α

2

α + 1

2α + 1

]

=
α2

2

[
1

2

1

2α + 1
+

1 + α

2

(
1 +

α + 1

2α + 1

)
− 1−

u(w2)

u(w1)− u(w2)

]

=
α2

2

[
α(3α + 1) + 1

2(2α + 1)
−

u(w2)

u(w1)− u(w2)

]

α(3α+1)+1
2(2α+1)

−
u(w2)

u(w1)−u(w2)
> 0 is satisfied when u(w1)−u(w2)

u(w2)
> 2(2α+1)

α(3α+1)
.

Therefore there exist λ1 ∈ (1, λ̂) for which Es(U12) > E
s
(U).

2. Equilibrium expected utility of rational player 2 in the semifinal with overconfident
player 1.
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(1) When u(w1)−u(w2)
u(w2)

> 2(2α+1)
α(3α+1)

and λ1 < λ̂

Es(U21) = ps21v2 − ces2

=
1

2
λα
1 (ṽ1)

−α (v2)
α v2 − c

α

2c
λα
1 (ṽ1)

−α (v2)
α+1

=
1

2
λα
1 (ṽ1)

−α (v2)
1+α

−
α

2
λα
1 (ṽ1)

−α (v2)
α+1

=
1− α

2
λα
1 (ṽ1)

−α (v2)
1+α

=
1− α

2
λα
1 (ṽ1)

−α (v)1+α

=
1− α

2

(
v

λ−1
1 ṽ1

)α

v

<
1− α

2
v = E

s
(U)

(2) When either u(w1)−u(w2)
u(w2)

⩽ 2(2α+1)
α(3α+1)

or λ1 ⩾ λ̂

Es(U21) = ps21v2 − ces2

=

[
1−

1

2
λ
− α

2α+1

1 (ṽ1)
α

2α+1 (v2)
− α

2α+1

]
v2 − c

α

2c
λ
− α

2α+1

1 (ṽ1)
α

2α+1 (v2)
α+1
2α+1

=

[
1−

1

2
λ
− α

2α+1

1 (ṽ1)
α

2α+1 (v2)
− α

2α+1

]
v2 −

α

2
λ
− α

2α+1

1 (ṽ1)
α

2α+1 (v2)
α+1
2α+1

= v2 −
1 + α

2
λ
− α

2α+1

1 (ṽ1)
α

2α+1 (v2)
α+1
2α+1

= v −
1 + α

2
λ
− α

2α+1

1 (ṽ1)
α

2α+1 (v)
α+1
2α+1

=

[
1−

1 + α

2

(
λ−1
1 ṽ1
v

) α
2α+1

]
v

>
1− α

2
v = E

s
(U)

3. Equilibrium expected utility of rational player 3 (4) in the semifinal with rational
player 4 (3).

Es(U34) = Es(U43) =
1− α

2
v3 =

1− α

2
v4 >

1− α

2
v = E

s
(U).

Proof of Proposition 10

Part (i) follows directly from Propositions 1 and 2. Let’s then prove part (ii). We
know that the equilibrium efforts in the semifinal between the two rational players are
higher than the benchmark, thus the equilibrium aggregate effort in the semifinals stage
is higher than that of the benchmark if the equilibrium total effort of the semifinal with
an overconfident and a rational player is higher than that of the benchmark. We also

know from Proposition 3 that if u(w1)−u(w2)
u(w2)

> 2(2α+1)
α(3α+1)

and λ1 < λ̂, then total effort in the
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semifinal with an overconfident and a rational player is given by

es1 + es2 =
α

2c
λα−1
1 (ṽ1)

1−α(v2)
α +

α

2c
λα
1 (ṽ1)

−α(v2)
α+1

=
α

2c
v
[
λα−1
1 (ṽ1)

1−α(v)α−1 + λα
1 (ṽ1)

−α(v)α
]

Hence, we have

es1 + es2
2es

=
α
2c
v
[
λα−1
1 (ṽ1)

1−α(v)α−1 + λα
1 (ṽ1)

−α(v)α
]

2 α
2c
v

=
1

2

[
λα−1
1 (ṽ1)

1−α(v)α−1 + λα
1 (ṽ1)

−α(v)α
]

Let f(λ) = λα−1
1 (ṽ1)

1−α(v)α−1 + λα
1 (ṽ1)

−α(v)α,

f(λ) = λα−1
1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

)1−α(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)α−1

+ λα
1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

)−α(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)α

We can easily get that f(λ1 = 1) = 2.

f ′(λ1) =

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)α−1
[
(α− 1)λα−2

1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

)1−α

+ λα−1
1 (1− α)

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

)−α
1 + α

2

α + 1

2α + 1
λ
− α+1

2α+1
−1

1

]

+

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)α
[
αλα−1

1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

)−α

+ λα
1 (−α)

(
u(w1)

u(w1)− u(w2)
−

1 + α

2
λ
− α+1

2α+1

1

)−α−1
1 + α

2

α + 1

2α + 1
λ
− α+1

2α+1
−1

1

]
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f ′(λ1 = 1) =

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)α−1
[
(α− 1)

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)1−α

+ (1− α)

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)−α
1 + α

2

α + 1

2α + 1

]

+

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)α
[
α

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)−α

+ (−α)

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)−α−1
1 + α

2

α + 1

2α + 1

]

= (α− 1) + (1− α)
1 + α

2

α + 1

2α + 1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)−1

+ α

− α
1 + α

2

α + 1

2α + 1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)−1

= (2α− 1) + (1− 2α)
1 + α

2

α + 1

2α + 1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)−1

= (1− 2α)

[
−1 +

1 + α

2

α + 1

2α + 1

(
u(w1)

u(w1)− u(w2)
−

1 + α

2

)−1
]

−1 + 1+α
2

α+1
2α+1

(
u(w1)

u(w1)−u(w2)
− 1+α

2

)−1

> 0 is equivalent to u(w1)−u(w2)
u(w2)

> 2(2α+1)
α(3α+1)

.

Thus we have
If α < 1

2
, then f ′(λ1 = 1) > 0.

If α > 1
2
, then f ′(λ1 = 1) < 0.

Therefore, when u(w1)−u(w2)
u(w2)

> 2(2α+1)
α(3α+1)

and α < 1
2
, there exist λ1 ∈ (1, λ̂) such that

es1 + es2 > 2es which implies
4∑

i=1

esi > 4es

Proof of Proposition 11

We know from Proposition 6 that the equilibrium effort in a final between two equally
overconfident players is equal to

ef =
α

2cλ
[u(w1)− u(w2)] .

The perceived expected utility of the final is then given by

Ẽ(U f ) =
1

2
u(w1) +

1

2
u(w2)− c

α

2cλ
[u(w1)− u(w2)]

=
λ− α

2λ
u(w1) +

λ+ α

2λ
u(w2).
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The equilibrium effort in a semifinal between two equally overconfident players is equal
to

es =
α

2cλ
Ẽ(U f )

=
α

2cλ

[
λ− α

2λ
u(w1) +

λ+ α

2λ
u(w2)

]
.

Hence, total effort amounts to

ϵ = 2
α

2cλ
[u(w1)− u(w2)] + 4

α

2cλ

[
λ− α

2λ
u(w1) +

λ+ α

2λ
u(w2)

]

=
α

cλ

[(
2−

α

λ

)
u(w1) +

α

λ
u(w2)

]
.

The problem of the contest designer is to maximize total effort subject to w1 +w2 = W .
Since α ∈ (0, 1] and λ ⩾ 1 the optimal solution to this problem when players are risk
neutral is to set w1 = W and w2 = 0, that is, to allocate all the prize money to the winner
of the final. When players are risk averse this is no longer the case. Substituting the
constraint w2 = W − w1 into the objective function we have the unconstrained problem

max
α

cλ

[(
2−

α

λ

)
u(w1) +

α

λ
u(W − w1)

]

The first-order condition is
(
2−

α

λ

)
u′(w1)−

α

λ
u′(W − w1) = 0.

Rearranging the first-order condition we have

u′(w1)

u′(W − w1)
=

α
λ

2− α
λ

. (18)

Hence, when players are risk averse, the optimal prize structure involves multiple prizes
with the winner of the final receiving most of the prize money and a smaller part being
assigned to the runner-up. Since the right-hand side of (18) is decreasing in λ, it follows
that an increase in overconfidence raises the share of the prize money allocated to the
winner of the final.
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