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Abstract

Nonexistence of a pure-strategy Nash equilibrium is a notorious problem in price-quantity
games. What drives this problem is the presence of spillover demand, i.e., demand coming
from competitors’ unserved customers. We argue that such demand spillovers may stem
from a strong implicit assumption that costs associated with obtaining a product are sunk
and do not affect consumers’ future payoffs. We relax this assumption by considering a
more general class of cost functions. This is shown to admit a pure-strategy equilibrium
that coincides with the Bertrand price equilibrium.
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“No problem is so formidable that you cannot walk away from it.” (Charles Schulz)

1 Introduction

In the classical models of Cournot quantity competition and Bertrand price competition, a pure-

strategy Nash equilibrium exists under mild conditions.1 The same cannot be said for models

where sellers compete in prices and quantities. Nonexistence of an equilibrium is indeed a per-

sistent problem in price-quantity games. At the heart of this problem is the presence of spillover

demand, i.e., indirect demand coming from competitors’ unserved customers. At a candidate

equilibrium, this creates an incentive for firms to hike their price and act as a monopolist on

their residual demand curve. In this paper, we argue that such demand spillovers may stem from

*We appreciate the comments of Marco Marini, Rogério Mazali and participants at the MLSE seminar and
Oligo Workshop at Maastricht University. The usual disclaimer applies.

�Department of Quantitative Economics, Maastricht University, the Netherlands.
�Department of Organisation, Strategy, and Entrepreneurship, Maastricht University, the Netherlands.
§Department of Quantitative Economics, Maastricht University, the Netherlands.
1See, e.g., Vives (1999) for a detailed discussion.
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A Sunk Cost Paradox 2

a strong implicit assumption that costs associated with obtaining a product are sunk and do not

affect consumers’ future payoffs.

To fix ideas, consider the story of a buyer named Brainy. Brainy lives in a house surrounded by

one hundred bakeries and Brainy wants bread. At the set prices, he prefers bakery 1 to bakery

2 and bakery 2 to bakery 3, et cetera. Moreover, since Brainy is starving, he prefers any baker

to staying home. After arriving at bakery 1, he learns that all bread is sold out. He then moves

to bakery 2 where, again, there is no bread left. The story is no different at bakery 3: all shelves

are empty. This continues until he finally arrives at bakery 100 to discover that all bread is gone.

Tired and hungry he returns home empty-handed and falls asleep on his couch.

One may accuse Brainy of being naive or admire his persistence. Either way, within the context

of the story, he arguably did not do that much wrong. Unlike what it may seem, he in particular

did not fall prey to the so-called sunk cost fallacy, which states that individuals have a greater

tendency to continue a behavior or endeavor once they have invested effort, money, or time.2

Instead, once having learned that a bakery was out of bread, he updated his information and,

considering all investments sunk, simply went for the next-best alternative. And yet, Brainy’s

journey seems neither likely, nor optimal. Indeed, most people would probably have stopped

their quest for bread at a much earlier stage and settle for rice, stew or a snack with beer for

that matter.

What is (implicitly) assumed in the preceding tale is that: (i) all costs of visiting a particular

bakery are sunk once incurred, and (ii) such investments have no effect on the (expected) payoffs

from the remaining alternatives. The first is very much conceivable. After all, transportation

and related costs are often not recoverable. The second seems far less plausible, however. For

instance, within a given time frame (e.g., a day), one typically has to perform a variety of

different tasks. The more time spent on one task, ceteris paribus, the less time and energy there

is left to properly complete others. That is, bygones may be bygones, but nevertheless feed

into future payoffs and, therefore, potentially also affect the preference ranking over remaining

alternatives.3 After having visited, say, two bakeries, one can imagine Brainy to reevaluate his

options and prefer going home to trying a third.

2This sunk cost fallacy is frequently referred to as sunk cost effect as introduced by Thaler (1980). For an
extensive analysis and discussion of the sunk cost effect and the related Concorde effect, see Arkes and Blumer
(1985) and Arkes and Ayton (1999), as well as the references therein.

3Contrary to conventional wisdom, McAfee, Mialon and Mialon (2010) argue that it may be rational to react
to sunk costs because of informational content, reputational concerns, or financial and time constraints.
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With this in mind, we analyze price-quantity competition in a spatial duopoly model, allowing

for the possibility that costs to obtain a product are sunk, but nevertheless affect future payoffs.

Specifically, as the story of Brainy illustrates, this may significantly reduce spillover demand

and, therefore, potentially provide a solution to the nonexistence problem. We derive conditions

under which there exists a pure-strategy Nash equilibrium and show that it coincides with the

equilibrium in a price-only model. Price-quantity competition may thus yield Bertrand outcomes

when consumers’ preference ranking over remaining alternatives is affected by preceding sunk

investments.

The nonexistence problem was formulated for the first time in the pioneering work of Edgeworth

(1922, 1925). Ever since, scholars have explored several directions to address this problem. One

is to allow for randomized strategies. A mixed-strategy Nash equilibrium indeed exists under

relatively weak assumptions.4 Another is to consider different information and timing structures.

For instance, pure-strategy equilibria commonly exist in sequential-move price-quantity games.5

Finally, there is work that considers arguments for why spillover demand for higher-priced firms

may be limited. Dixon (1990), for instance, argues that it may be costly to turn customers away.

This provides an incentive for firms to meet additional demand in case a competitor would raise

its price. Similarly, Dixon (1992) assumes that suppliers select a price and a quantity they are

willing to sell at that price. This also effectively reduces residual demand for higher-priced firms.

These and related works all identify supply side factors that may limit demand spillovers. By

contrast, our focus is on the demand side; the (un)avoidable costs for rationed customers.6

The next section introduces the model. Sections 3 and 4, respectively, consider the price and

price-quantity versions of the model. This serves as a benchmark for the main analysis in

Section 5 and Section 6, which establish existence and offer a characterization of a price-quantity

equilibrium without and with spillover demand, respectively. Section 7 concludes. All proofs are

relegated to the Appendix.

4See Maskin (1986). In a variety of different price-quantity games, the presence of a mixed-strategy equilibrium
is shown by Levitan and Shubik (1972), Dixon (1984), Gertner (1986), van den Berg and Bos (2017), Tasnádi
(2004, 2020), Montez and Schutz (2021), amongst many others.

5See Boyer and Moreaux (1987, 1988, 1989) and, more recently, Yousefimanesh, Bos and Vermeulen (2023).
6A notable exception is Tasnádi (1999) who shows there exists a pure-strategy Nash equilibrium in a

homogeneous-good Bertrand-Edgeworth model when demand is sufficiently elastic.
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2 Model

We conduct our study in the context of a spatial duopoly model as developed by Hotelling (1929).

Suppliers produce a homogeneous good at common marginal cost c > 0 and are located at the

endpoints of a unit interval [0, 1]. Without loss of generality, we assume that firm 1 is located

at 0 and firm 2 is located at 1. Demand comes from consumers who are uniformly distributed

along the interval with a density that is normalized to one. Each consumer either purchases one

unit of the good or does not buy. Gross utility from consumption is v and production potentially

creates value, i.e., v > c.

To facilitate the ensuing analysis, it is useful to distinguish between direct and indirect demand.

Firm i’s direct demand comprises all customers who have a strict preference for firm i’s product

at the set prices. Firm i’s indirect demand comes from its rival’s unserved customers who prefer

consuming firm i’s product to some outside option. We here formally introduce direct demand.

A detailed specification of indirect demand is provided in Section 4.

Consider some given price pair, (p1, p2), and suppose that transportation costs are linear and

given by t > 0 per unit of distance. As is well-known, t has a broad interpretation and captures

the degree of (spatial) product differentiation. Someone located at x ∈ [0, 1] then makes one of

the following choices:

� H: Stay home. This gives utility ux(h) = 0.

� F1: Buy firm 1’s product at a price of p1. This gives utility ux(1) = v − tx− p1.

� F2: Buy firm 2’s product at a price of p2. This gives utility ux(2) = v − t(1− x)− p2.

These three options induce an equal number of ‘indifference points’. In the following, let z1

indicate the location of consumers who are indifferent between H and F1, i.e., uz1(1) = 0.

Likewise, z2 is the location of consumers who are indifferent between H and F2, i.e., uz2(2) = 0.

Last, let z3 be the location of consumers who are indifferent between F1 and F2, i.e., uz3(1) =

uz3(2). It can be easily verified that:

z1 =
v − p1

t
, z2 = 1− v − p2

t
, and z3 =

p2 − p1 + t

2t
.

Note that z3 = 1
2 when p1 = p2, i.e., at equal prices, buyers who are indifferent between F1 and

F2 are located precisely in the middle.
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Firm 1’s direct demand, D1 = D1(p1, p2), can now be defined as the length of an interval of

locations x for which ux(1) is highest:

I1 = {x ∈ [0, 1] | ux(1) ≥ ux(h) and ux(1) ≥ ux(2)}.

If I1 = [0, 1], then D1 = 1, and if I1 = ∅, then D1 = 0. For the interior cases, D1 = min{z1, z3}.

Direct demand for firm 2 is defined in a similar fashion.

In what follows, it is assumed that p1 < v and p2 < v so that u0(1) > 0 and u1(2) > 0. Hence,

a firm does not select too high a price in that all buyers prefer H (staying home) to purchasing

from this seller. Using the properties of z3 = p2−p1+t
2t , we can then distinguish four different

market configurations:

� Predatory pricing

� Monopolistic pricing

� Market-sharing pricing

� Competitive pricing

Let us now discuss each of these in turn.

PREDATORY PRICING. A price pair (p1, p2) is predatory if either z3 < 0, or z3 > 1. If z3 < 0,

then firm 2 is the predator. In this case, for a given price p1, p2 is low enough to ensure that

even consumers located at x = 0 prefer F2. Thus, D1 = 0 and D2 = 1. Conversely, if z3 > 1,

then firm 1 is the predator. In this case, D1 = 1 and D2 = 0.

Figure 1 depicts a situation in which z3 < 0, which is equivalent to u0(1) < u0(2). The condition

z3 > 1 is equivalent to u1(2) < u1(1).

firm 1 firm 2

ux(2)

ux(1)

Figure 1: Predatory pricing illustrated.
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MONOPOLISTIC PRICING. A price pair (p1, p2) is monopolistic if uz3(1) < 0. In this case, both

firms set a price so high that some consumers prefer to stay home. In terms of direct demand,

it holds that D1 = z1 and D2 = 1− z2.

Figure 2 illustrates a monopolistic pricing regime.

firm 1 firm 2

ux(1) ux(2)

Figure 2: Monopolistic pricing illustrated.

MARKET-SHARING PRICING. A price pair (p1, p2) is market-sharing when uz3(1) = 0. In

this case, all consumers buy and each seller has a strictly positive market share. In particular,

customers located at z3 are indifferent between the three options: H, F1, and F2. Hence,

z1 = z2 = z3 and, therefore, D1 = z3 and D2 = 1− z3.

Market-sharing pricing is illustrated in Figure 3 below.

firm 1 firm 2

ux(1) ux(2)

Figure 3: Market-sharing pricing illustrated.

COMPETITIVE PRICING. A price pair (p1, p2) is competitive when 0 ≤ z3 ≤ 1 and uz3(1) > 0.

Comparable to market-sharing pricing, firms set their price in such a way that both face demand

and all consumers purchase either from firm 1 or from firm 2. The difference is that customers
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located at z3 obtain a strictly positive utility. That is, uz3(1) = uz3(2) > 0. Moreover, as with

market-sharing pricing, D1 = z3 and D2 = 1− z3.

A competitive pricing situation is shown in Figure 4.

firm 1 firm 2

ux(1) ux(2)

Figure 4: Competitive pricing illustrated.

Note that with predatory pricing, market-sharing pricing and competitive pricing it holds that

D1 + D2 = 1 (i.e., the market is covered). Yet, with predatory pricing, one firm captures the

entire market, whereas both receive demand in the other two cases. The next result provides a

definition of a predatory price pair.

Lemma 2.1 A price pair (p1, p2) is predatory precisely when |p1 − p2| > t.

In the following, our focus is on the remaining three market configurations, i.e., it is assumed

that |p1 − p2| ≤ t. Lemma 2.2 specifies the partition.

Lemma 2.2 Suppose that |p1 − p2| ≤ t. A price pair (p1, p2) is:

[A] Monopolistic, precisely when p1 + p2 > 2v − t.

[B] Market-sharing, precisely when p1 + p2 = 2v − t.

[C] Competitive, precisely when p1 + p2 < 2v − t.

Observe that B, even though it is a boundary case between monopolistic and competitive pricing,

applies to a range of prices. Indeed, there are many price pairs for which the total price (i.e.,

p1 + p2) equals 2v − t.7

7A detailed analysis is provided in Bacchiega and Fedele (2022), which refers to the market-sharing case as
monopolistic duopoly.
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3 Price Competition: A Benchmark

Let us now use the model laid out in the preceding section to study price competition. This serves

as a useful benchmark for the analysis of price-quantity competition in the ensuing sections.

In case of price competition, firms simultaneously select prices and meet the demand forthcom-

ing to them at the set prices. Firm i’s objective is then to maximize the following profit function:

Πi(pi, pj) = (pi − c) ·Di(pi, pj), i ∈ {1, 2} and i ̸= j.

where D1 = min{z1, z3} and D2 = 1 −max{z2, z3} is the direct demand for firm 1 and firm 2,

respectively.

The next definition specifies the applied solution concept.

Definition 3.1 A price pair (p1, p2) is a price equilibrium if p1 is a best-response of firm 1

to p2 and p2 is a best-response of firm 2 to p1.

In deriving the best-response functions, it is useful to distinguish between the following three

regions. Define:

� A = {pi ≤ v | 3v < c+ 2t+ 2pi}, and

� B = {pi ≤ v | 3v ≥ c+ 2t+ 2pi and c+ 3t+ 3pi ≥ 4v}, and

� C = {pi ≤ v | c+ 3t+ 3pi < 4v}.

It is clear that when firm i’s price is in region A or C, then it is not in region B and vice versa.

Moreover, it can be easily verified that its price cannot be in region A and C simultaneously.8

The regions are thus mutually exclusive and completely partition a firm’s strategy space [0, v].

We now have all the ingredients to precisely specify the best-responses.

Proposition 3.2 Consider a price pair (pi, pj), i = 1, 2 and i ̸= j. For a given pj, the best-

8To see this, suppose that pi ∈ C so that c+3t+3pi < 4v. It then holds that 2c+6t+6pi < 8v. Since c ≤ v,
it then also holds that 3c+ 6t+ 6pi < 9v and, therefore, c+ 2t+ 2pi < 3v. Thus, if pi ∈ C, then pi /∈ A.
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response BRi(pj) of firm i to pj is given by:

BRi(pj) =



v + c

2
if pj ∈ A.

2v − t− pj if pj ∈ B.

c+ t+ pj
2

if pj ∈ C.

The next Lemma shows that if a price pair is a price equilibrium, then both prices must be part

of the same region.

Lemma 3.3 For i ∈ {1, 2} and i ̸= j:

[1] If pi ∈ A and pj ∈ C, then (pi, pj) is not a price equilibrium.

[2] If (pi, pj) is a price equilibrium and pj ∈ B, then pi ∈ B.

The following result identifies under what conditions a price equilibrium is in region A, B, or C.

Lemma 3.4 Let (p1, p2) be a price equilibrium.

[1] If p1, p2 ∈ A, then p1 = p2 = v+c
2 and v < c+ t.

[2] If p1, p2 ∈ B, then p1 + p2 = 2v − t and c+ t ≤ v ≤ c+ 3
2 t.

[3] If p1, p2 ∈ C, then p1 = p2 = c+ t and c+ 3
2 t < v.

Finally, we conclude this section with three theorems showing existence of a price equilibrium

for all feasible values of v, c, and t.

Theorem 3.5 If v < c+ t, then there is a unique price equilibrium given by:

(p∗1, p
∗
2) = (

v + c

2
,
v + c

2
).

In this case, there is monopolistic pricing and p∗1 = p∗2 ∈ A.

Theorem 3.6 If c+ t ≤ v ≤ c+ 3
2 t, then there is a line segment of price equilibria given by:

(p∗1, p
∗
2) = (2v − t− λ, λ),

where λ is such that:

max{3v + 3c, 8v − 6t− 2c} ≤ 6λ ≤ min{4v + 2c, 9v − 6t− 3c}.

In this case, there is market-sharing pricing and p∗1, p
∗
2 ∈ B.
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Theorem 3.7 If c+ 3
2 t < v, then there is a unique price equilibrium given by:

(p∗1, p
∗
2) = (c+ t, c+ t).

In this case, there is competitive pricing and p∗1 = p∗2 ∈ C.

In sum, for any constellation of v, c, and t, price equilibria can be of one type only: A, B, or C.

Furthermore, for the cases A and C, the price equilibrium is unique, whereas in case of B there

is a whole range of asymmetric price equilibria.

4 Price-Quantity Competition

Armed with the above price competition benchmark, we now direct our attention to competition

in prices and quantities. In the following, firms are supposed to simultaneously select a price

and a level of supply. A key difference with the price-only model is that sellers are not restricted

to picking a price-production pair on their demand function. This, in particular, means that

suppliers may not meet their demand in which case (part of) the unserved customers may switch

to the rival. That is, firms potentially face indirect (or spillover) demand.9

Firm i’s objective is then to maximize the following profit function:

Πi(pi, qi, pj , qj) = pi · si(pi, qi, pj , qj)− c · qi, i ∈ {1, 2} and i ̸= j,

where sales, si = min{qi, di(pi, pj , qj)}, is the minimum of its supply and demand. Specifically,

firm i’s total demand is given by di(pi, pj , qj) = Di(pi, pj) + Ei(pi, pj , qj), where Ei is indirect

(or spillover) demand. It is assumed that information is imperfect in that consumers observe

prices, but not the available supplies.10 As with price competition, a buyer located at x chooses

between H, F1, and F2 to maximize its utility. If (s)he is not served, (s)he returns home and

chooses between the remaining two options. The spillover demand function Ei captures the part

of rationed customers that prefers visiting a second seller.

Note that, for a given price combination (p1, p2), total demand equals direct demand when pricing

is either monopolistic or market-sharing. To see this, suppose that firm j produces to meet its

9For a discussion of the role of spillover demand in price-quantity competition, see Friedman (1988) and Bos
and Vermeulen (2021a, 2021b).

10With perfect information, consumers observe both prices and quantities. In that case there is no spillover
demand since a customer can anticipate whether (s)he will be served and directly go to a seller that has a product
available or stay home instead.
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demand at the set prices, i.e., qj = Dj(pi, pj). In this case, firm i can create a shortage at

firm j’s site by raising its price. Although such a shortage is a necessary condition for spillover

demand, it is not sufficient. Indeed, when pricing is monopolistic or market-sharing, unserved

customers prefer H to Fi and, therefore, will not visit firm i. In other words, the presence of

demand spillovers (Ei > 0) requires pricing to be competitive, i.e., uz3(1) = uz3(2) > 0.

Let us then suppose that (p1, p2) is competitive. To specify demand in case of rationing, it is

assumed that the time of arrival is inversely related to distance. That is, customers located at 0

or 1 are served first and the ones located at z3 latest. This can be interpreted literally, i.e., it

takes time to travel through space. Alternatively, the preference for a particular seller is stronger

the closer a consumer is to that seller. That is, the most eager ones are served first. Taking firm

1’s perspective, there are then basically two possibilities. If q2 ≥ D2(p1, p2) = 1 − z3, then all

consumers in [z3, 1] are served by firm 2. By contrast, if q2 < D2(p1, p2) = 1−z3, then consumers

in the (non-degenerate) interval [z3, 1− q2] are not served by firm 2.11 These consumers return

home and reconsider their options, stay home or visit firm 1. The mirror version provides firm

2’s perspective.

In analyzing this model, we employ the following solution concept.

Definition 4.1 A pair of price-quantity combinations ((p1, q1), (p2, q2)) is a price-quantity

equilibrium if (p1, q1) is a best-response by firm 1 to (p2, q2) and (p2, q2) is a best-response by

firm 2 to (p1, q1).

The next result specifies a best-response property, namely that firms produce to meet their

demand.

Lemma 4.2 Let (pj , qj) be a strategy of firm j. If (pi, qi) is a best-response of firm i ̸= j to

(pj , qj), then qi = di(pi, pj , qj).

Hence, akin to the price-only model, any equilibrium solution is on the demand curve.12 In fact,

as the following result shows, any price-quantity equilibrium coincides with a price equilibrium.

Theorem 4.3 If ((p1, q1), (p2, q2)) is a price-quantity equilibrium, then (p1, p2) is a price equi-

librium. Moreover, q1 = D1(p1, p2) and q2 = D2(p1, p2).

11Recall that we disregard the option of predatory pricing so that 0 ≤ z3 ≤ 1.
12It is noteworthy that this is a very robust result in the literature on price-quantity competition with continuous

demand. Indeed, it has been shown in a variety of different price-quantity models, including Alger (1979, Theorem
3.1), Friedman (1988, Lemma 3), Benassy (1989, Theorem 1), Canoy (1996, Lemma 1), and, more recently, Bos
and Vermeulen (2021a, Lemma 2). Taking an evolutionary perspective, Khan and Peeters (2015) shows that this
outcome may also emerge when sellers imitate the most profitable industry player.
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We have provided a complete characterization of price equilibria in Section 3. To determine

all price-quantity equilibria, it therefore suffices to evaluate which price equilibria remain an

equilibrium in the price-quantity game.

The next result shows that the monopolistic and market-sharing price equilibria survive the

extension of the strategy space.13 That is, the monopolistic and market-sharing equilibrium

outcomes in the price game are also equilibrium outcomes in the price-quantity game. In these

cases, firms that compete in price and quantity effectively behave as if they compete in price

alone.

Theorem 4.4 If (p1, p2) is a monopolistic or market-sharing price equilibrium, then

((p∗1, q
∗
1), (p

∗
2, q

∗
2)) = ((p1, D1(p1, p2)), (p2, D2(p1, p2)))

is a price-quantity equilibrium.

The same does not hold for the competitive price equilibrium, however.

Theorem 4.5 If (p1, p2) is a competitive price equilibrium, then

((p1, q1), (p2, q2)) = ((p1, D1(p1, p2)), (p2, D2(p1, p2)))

is not a price-quantity equilibrium.

5 A Competitive Price-Quantity Equilibrium

In the preceding section, we showed there is a price-quantity equilibrium with monopolistic or

market-sharing pricing, but not when pricing is competitive. The logic underlying this nonexis-

tence result is similar to the one underlying the Edgeworth paradox. At the candidate equilib-

rium, which is the equilibrium outcome in the price-only game (Theorem 4.3), firms produce to

meet their demand. Since production precedes sales, this creates an incentive to increase prices.

A firm, by raising its price, induces a shortage at the rival’s site. More customers prefer the

rival’s product after the price hike, but this competitor is de facto capacity-constrained. Ra-

tioned customers then spill over to the higher-priced firm, which meets the residual demand at

the higher price. In turn, this creates an incentive for the lower-priced firm to raise its own price,

thereby starting a new Edgeworth price cycle.

13This closely resembles Somogyi (2020) who shows the existence of a pure-strategy equilibrium in a Bertrand-
Edgeworth duopoly with sufficiently differentiated goods.
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Although the argument for nonexistence of a pure-strategy equilibrium is in itself sound, there

is something peculiar about it. In the above model, all costs incurred by a rationed customer

are taken to be sunk and, in particular, do not affect future payoffs. Indeed, consider a buyer

located at x and suppose that (s)he prefers F2 to F1 and F1 to H. If this buyer is not served

by firm 2, then (s)he spills over to firm 1. The fact that (s)he did not obtain the preferred

product neither changed the preference ranking over the remaining alternatives (F1 and H), nor

their (expected) payoffs. While this is clearly a possibility, in many situations it seems more

plausible to assume that future payoffs are affected and, therefore, potentially also their relative

ranking. For example, as illustrated by the introductory example, a consumer may well get

tired and hungry by moving from one shop to another. Also, there typically are opportunity

costs and these can change over time. Unserved consumers may therefore not only update their

information, but additionally reconsider and reevaluate their options.

To take account of this possibility, we assume in the following that rationed customers face

different costs of transportation. Specifically, consider those who are not served by firm 2 at

some given q2 under competitive pricing, i.e., all buyers located at x ∈ [z3, 1 − q2]. For these

customers, the cost of visiting firm 1 is then given by C(x), with C(0) = 0, C ′(x) > 0 and

C ′′(x) ≥ 0.14 A rationed customer located at x thus obtains a utility of Ux(1) = v − C(x)− p1

when buying from firm 1. Let Z be the unique solution to Ux(1) = ux(h), i.e., Z is defined by

the equation v − C(Z) − p1 = 0. This allows to distinguish three cases: (1) If Z < z3, then

E1 = 0, (2) If Z > 1− q2, then E1 = 1− q2 − z3, and (3) If Z ∈ [z3, 1− q2], then E1 = Z − z3.

As D1 = z3, firm 1’s demand is then given by:

d1(p1, p2, q2) =


z3 if Z < z3

Z if z3 ≤ Z ≤ 1− q2

1− q2 if Z > 1− q2,

or, equivalently, d1 = min{z, 1 − q2}, with z = max{z3, Z}.15 Firm 2’s demand, d2(p1, p2, q1),

has a similar structure.

To fix ideas, suppose that C(x) = a · x2 + r · x. The utility function of a rationed customer

located at x when buying from firm 1 is then given by Ux(1) = v − p1 − a · x2 − r · x. The next

result provides conditions under which there exists a unique price-quantity equilibrium.

14Note that this includes the linear cost structure of Section 4 as a special case.
15Note that within the context of Section 4, C(x) = t · x. In that case, Z = z1. Since with competitive pricing

it holds that z3 ≤ z1, the formulation for total demand simplifies to d1 = min{z1, 1− q2}.
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Proposition 5.1 Suppose that c+ 3
2 t ≤ v ≤ c+ 2t and C(x) = a · x2 + r · x. If a+ 4 · r ≥ 8 · t,

then

((p∗1, q
∗
1), (p

∗
2, q

∗
2)) = ((c+ t,

1

2
), (c+ t,

1

2
))

is the unique price-quantity equilibrium.

Next, let us offer sufficient conditions for the existence of a competitive price-quantity equilibrium

with the generalized cost function C(x). To that end, suppose that firm 1 raises its price by an

amount ∆ ≥ 0 from the competitive equilibrium price p1 = c+ t to p′1 = c+ t+∆ and let zp be

firm 1’s market share at which its profit equals its price equilibrium profit t
2 :

zp =
t

2(t+∆)
.

Observe that firm 1’s market share is less than 50 percent and that zp = 1
2 at ∆ = 0. Finally,

we define two functions of ∆: F (∆) = C(zp) and L(∆) = v − c− t−∆.

The next result provides sufficient conditions for the existence of a competitive price-quantity

equilibrium.

Theorem 5.2 Suppose that c+ 3
2 t < v. If L(∆) ≤ F (∆), then there exists a competitive price-

quantity equilibrium.

If L(∆) ≤ F (∆), then rationed customers find it too costly to visit a second seller. Hence, and

unlike the situation described in Theorem 4.5 above, hiking the price from c + t is no longer

profitable since it does not create sufficient spillover demand.

Let us conclude this section with a simple, illustrative example.

EXAMPLE

Suppose that c + 3
2 t < v and that C(x) = r · x. Hence, Z = v−c−t−∆

r , zp = t
2·(t+∆) , and

F (∆) = r · t
2·(t+∆) . We show there is a price-quantity equilibrium precisely when (v−c)2 ≤ 2 ·r ·t.

By Theorem 5.2, there is a competitive price-quantity equilibrium when L(∆) ≤ F (∆), or:

2 · (t+∆) · (v − c− t−∆) ≤ r · t.

Since the LHS is quadratic in ∆, and the RHS is constant, it is sufficient to check the inequality

for the maximum of the LHS, ∆∗ = v−c−2t
2 :

2 · (t+∆∗) · (v − c− t−∆∗) ≤ r · t,



A Sunk Cost Paradox 15

which is equivalent to

2 · (2t+ 2 ·∆∗) · (2v − 2c− 2t− 2 ·∆∗) ≤ 2 · r · t,

or

(v − c) · (v − c) ≤ 2 · r · t.

Thus, there is a price-quantity equilibrium precisely when (v − c)2 ≤ 2 · r · t.

6 Price-Quantity Equilibrium with Spillover Demand

In the previous section, we have shown there exists a competitive price-quantity equilibrium

when the prospective costs for rationed consumers to still obtain the product are sufficiently

high. In this section, we explicitly allow for demand spillovers. Specifically, we consider spillover

demand for any deviation from the candidate equilibrium and show that, also in these cases,

there may be a competitive price-quantity equilibrium.

To begin, consider the candidate equilibrium prices (p1, p2) and suppose that firm 1 raises its

price to p′1 = p1 + ∆. In that case, the new location of consumers who are indifferent between

the two sellers, z′3, is given by:

z′3 =
t−∆

2t
=

1

2
− ∆

2t
.

Customers who are located in the interval [z′3,
1
2 ] then reconsider their first choice (firm 1) and

now approach firm 2 first. Those located in the interval [z′3, Z] visit firm 1 in case they are not

served by firm 2. Figure 5 provides a graphical illustration.

p1

1
2

p1 +∆

z′3

Z

Figure 5: The effect of a price increase from p1 to p′1 = p1 +∆ illustrated.
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Next, note that z′3 ≥ 0 implies 0 ≤ ∆ ≤ t. Moreover, both z′3 and zp (as defined in Section 5)

are decreasing functions of ∆. Specifically, both are equal to 1
2 at ∆ = 0 and, respectively, equal

to 0 and 1
4 at ∆ = t. This is illustrated in Figure 6.

∆

z′3, zp

z′3

zp

t

1
2

1
4

Figure 6: The functions zp(∆) and z′3(∆) illustrated.

Last, let G(∆) = C(z′3) and recall that F (∆) = C(zp). It can be easily verified that F (∆) ≥

G(∆), for all ∆ ∈ [0, t].16

Taking firm 1’s perspective, there is spillover demand when E1 > 0 for some ∆ ∈ [0, t]. That is,

when z′3 < Z for some 0 < ∆ < t so that there is a non-degenerate interval [z′3, Z] of consumers

who approach firm 1 after having visited firm 2 first. Now define:

f(∆) =
E1

1
2 − z′3

=
Z − z′3
1
2 − z′3

.

The function f measures the fraction of rationed customers who, after having visited firm 2

first, approach firm 1. The next result shows the existence of a price-quantity equilibrium in the

presence of spillover demand.

Theorem 6.1 Suppose that Z ≤ zp, for all ∆ ∈ [0, t]. Then, for all ∆ ∈ [0, t], f(∆) ≤ 1
2 .

Moreover, f(∆) → 0 when ∆ → 0.

This finding is illustrated in Figure 7. Since L(∆) ≤ F (∆), there is a competitive price-quantity

equilibrium (Theorem 5.2). At relatively low and high values of ∆, there is no spillover demand.

16Since ∆ ≥ 0, it holds that t2 ≥ (t + ∆) · (t − ∆). Rearranging gives t
2(t+∆)

≥ t−∆
2t

so that zp ≥ z′3, for all

∆ ∈ [0, t]. Since C(x) is an increasing function, it follows that C(zp) ≥ C(z′3), for all ∆ ∈ [0, t].
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In these cases, G(∆) > L(∆) so that customers who are rationed out of firm 2’s product find it

too costly to visit firm 1. For intermediate values of ∆, however, G(∆) < L(∆) so that unserved

consumers prefer firm 1’s product to the outside option.

∆L(∆)

F (∆), L(∆), G(∆)

F (∆)

G(∆)

t

C( 12 )

Figure 7: Price-quantity equilibrium with spillover demand.

Let us conclude this section with two illustrative cases: C(x) = a · x2 + r · x and C(x) = r · x.

Proposition 6.2 Assume C(x) = a ·x2 + r ·x and suppose that c+ 3
2 t ≤ v ≤ c+2t, r < 2t, and

a + 4 · r ≥ 8 · t. If (2 · t − r)2 > 4 · a · (2t + c − v), then there is a ∆ ∈ (0, t) for which there is

spillover demand.

It is worth noting that the conditions in Proposition 6.2 allow for a set of values of full dimension.

To illustrate, all inequalities are strictly satisfied for a = 225, v = 200, c = 5, t = 100, and

r = 150. Consequently, the conditions are still satisfied for sufficiently small changes in any of

these numbers.

Finally, we consider the case where costs are linear: C(x) = r · x.17 The concluding example

in Section 5 shows that equilibrium existence requires (v − c)2 ≤ 2 · r · t. The following result

provides conditions for a price-quantity equilibrium in the presence of spillover demand.

Proposition 6.3 Assume C(x) = r · x and suppose that c + 3
2 t ≤ v and (v − c)2 ≤ 2 · r · t. If

r ≤ 2t, then f(∆) = 0, for all ∆ ∈ [0, t]. If r > 2t, then f(∆) > 0 for at least one ∆ ∈ [0, t]

precisely when v − c− 2t > 0.

For example, there is a price-quantity equilibrium with spillover demand when t = 1, v = 5,

c = 2, and r = 5.

17Note that Proposition 6.2 does not apply, because the conditions are contradictory for the linear case a = 0.
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7 Conclusion

Rational choice theory prescribes that a consumer’s choice among available options should be

guided only by incremental costs and benefits. All sunk costs should be ignored. Within the

context of price-quantity games, such a rational approach may, paradoxically, lead consumers to

behave as if they fall prey to the sunk cost fallacy. In principle, by considering costs associated

with obtaining a product sunk, a rationed customer may prefer to continue shopping ad infinitum.

We have argued that such costs may well be sunk, but nevertheless feed into future payoffs and,

therefore, potentially affect the preference ranking over remaining alternatives. In this paper,

we have taken account of this possibility by considering a more general class of cost functions.

This is shown to admit a pure-strategy Nash equilibrium that coincides with the equilibrium in

a price-only model.
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Appendix: Proofs

Proof of Lemma 2.1

Suppose that firm 2 is the predator so that z3 < 0. Notice that:

z3 < 0 ⇔ p2 − p1 + t

2t
< 0 ⇔ t < p1 − p2.

Hence, firm 2 is the predator when t < p1 − p2. By symmetry, firm 1 is the predator when

t < p2 − p1. Taken together, we conclude that a price pair (p1, p2) is predatory precisely when

|p1 − p2| > t.

Proof of Lemma 2.2

Let (p1, p2) be a price pair with |p1 − p2| ≤ t so that 0 ≤ z3 ≤ 1.

A. A price pair (p1, p2) is monopolistic when uz3(1) < 0. Notice that:

uz3(1) < 0 ⇔ v − t · z3 − p1 < 0 ⇔ v − t · p2 − p1 + t

2t
− p1 < 0 ⇔ p1 + p2 > 2v − t.

We conclude that a price pair (p1, p2) is monopolistic precisely when p1 + p2 > 2v − t.

B. This is comparable to part A. The condition uz3(1) = 0 is equivalent to p1 + p2 = 2v − t.

C. This is comparable to part A. The condition uz3(1) > 0 is equivalent to p1 + p2 < 2v − t.

Proof of Proposition 3.2

In proving this statement, we take firm 1’s perspective. Firm 2’s best-response can be derived

in a similar fashion.

Consider some price p2 ≤ v. We compute the best-response of firm 1 to p2. Let p1 be a best-

response to p2. To begin, we argue that the resulting price pair (p1, p2) is non-predatory. By

contradiction, suppose that (p1, p2) is predatory and that firm 1 is the predator. By Lemma 2.1,

it then holds that p1 < p2 − t and z3 > 1 so that D1 = 1. However, in this case firm 1 could

raise its price to p′1 = p2− t and sell the same amount of goods. Hence, p1 is not a best-response

to p2; a contradiction. By symmetry, a similar argument excludes the possibility that firm 2 is

the predator. We conclude that in any best-response |p1 − p2| ≤ t so that Lemma 2.2 applies.

1. Suppose that p2 ∈ A. We argue that BR1(p2) =
v+c
2 .

1a. Consider any p1 with p1 > 2v − t− p2. Then, by Lemma 2.2, pricing is monopolistic and
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firm 1’s demand is D1 = z1. In this case, its profits are given by:

Π1 = (p1 − c) · z1 = (p1 − c) ·
(
v − p1

t

)
,

which has its maximum at:

p∗1 =
v + c

2
.

We check whether it indeed holds that p∗1 > 2v−t−p2. Since p2 ∈ A, we know that 3v < c+2t+2p2

and, therefore,

2v − t− p2 <
v + c

2
= p∗1.

We conclude that p∗1 > 2v − t− p2.

1b. Now consider any p1 with p1 ≤ 2v − t − p2. We show that Π1(p1) < Π1(p
∗
1). Since

p1 ≤ 2v − t− p2, pricing is market-sharing or competitive (Lemma 2.2). In these cases, D1 = z3

and z3 ≤ z1. Thus, since p1 ≤ 2v − t− p2 < p∗1, it holds that

Π1(p1) = (p1 − c) · z3 < (p∗1 − c) · z1 = Π1(p
∗
1).

We conclude that p∗1 = v+c
2 is the unique best-response of firm 1 to p2 when p2 ∈ A.

2. Suppose that p2 ∈ C. We argue that BR1(p2) =
c+t+p2

2 .

2a. Consider any p1 with p1 ≤ 2v− t− p2. Then, by Lemma 2.2, pricing is market-sharing or

competitive and D1 = z3. Therefore,

Π1(p1, p2) = (p1 − c) · z3 = (p1 − c) ·
(
t+ p2 − p1

2t

)
,

which has its maximum at:

p∗∗1 =
c+ t+ p2

2
.

We check whether it indeed holds that p∗∗1 < 2v−t−p2. Since p2 ∈ B, we know that c+3t+3p2 <

4v and, therefore,

p∗∗1 =
c+ t+ p2

2
< 2v − t− p2.

We conclude that p∗∗1 < 2v − t− p2.

2b. Now consider any p1 with p1 > 2v−t−p2. We show that Π1(p1) < Π1(p
∗∗
1 ). By Lemma 2.2,

pricing is monopolistic in this case os that D1 = z1 and z1 < z3. Moreover, p∗∗1 < 2v−t−p2 < p1.

So, p∗∗1 ̸= p1. It follows that:

(p1 − c) · z1 ≤ (p1 − c) · z3 < Π1(p
∗∗
1 , p2).
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We conclude that p∗∗1 = c+t+p2

2 is the unique best-response of firm 1 to p2 when p2 ∈ C.

3. Finally, suppose that p2 ∈ B. Notice that c+2t+2p2 ≤ 3v implies p∗1 = v+c
2 ≤ 2v− t− p2,

and that c + 3t + 3p2 ≥ 4v implies p∗∗1 = c+t+p2

2 ≥ 2v − t − p2. In this case, therefore, the

best-response is BR1(p2) = 2v − t− p2.

Proof of Lemma 3.3

[1] Suppose that (pi, pj) is a price equilibrium with pi ∈ A and pj ∈ C. It then holds that

3v < c+ 2t+ 2pi and c+ 3t+ 3pj < 4v. Moreover, by Proposition 3.2, we know that pi =

c+t+pj

2 and pj =
v+c
2 . Substituting pj =

v+c
2 into c+ 3t+ 3pj < 4v and rearranging yields

5c+6t < 5v. Alternatively, substituting pj =
v+c
2 into pi =

c+t+pj

2 yields 4pi = 3c+2t+v.

Substituting this equation into 3v < c+2t+2pi and rearranging yields 5v < 5c+6t, which

contradicts the preceding conclusion that 5c+ 6t < 5v. We conclude that there is no price

equilibrium with pi ∈ A and pj ∈ C.

[2] Suppose that (pi, pj) is a price equilibrium and that pj ∈ B. Then, by Proposition 3.2,

pi = 2v− t−pj and, therefore, pj = 2v− t−pi. Now suppose that pi ∈ A so that pj =
v+c
2

is a best-response. It then holds that:

2v − t− pi = pj =
v + c

2
.

This implies that 3v = c+ 2t+ 2pi, which contradicts pi ∈ A.

Next, suppose that pi ∈ C. Then, by Proposition 3.2, pj =
c+t+pi

2 . Therefore,

c+ t+ pi
2

= pj = 2v − t− pi.

This implies that c+ 3t+ 3pi = 4v, which contradicts pi ∈ C.

Proof of Lemma 3.4

Let (p1, p2) be a price equilibrium.

[1] Suppose that p1, p2 ∈ A. Then, by Proposition 3.2, pi = v+c
2 , i = 1, 2. Moreover, 3v <

c+ 2t+ 2pi. Substituting pi =
v+c
2 into 3v < c+ 2t+ 2pi and rearranging yields v < c+ t.

[2] Suppose that p1, p2 ∈ B. Then, by Proposition 3.2, p1 + p2 = 2v − t. Next, we know that

(p1, p2) is a price equilibrium, and that p1, p2 ∈ B. Since B is convex,

p =
p1 + p2

2
=

2v − t

2
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is also an element of B and, therefore, p = 2v − t− p by Proposition 3.2. Thus, (p, p) is a

price equilibrium. Moreover, since p ∈ B, it holds that 3v ≥ c+2t+2p and c+3t+3p ≥ 4v.

Substituting p = 2v−t
2 into these inequalities and rearranging yields c+ t ≤ v ≤ c+ 3

2 t.

[3] Suppose that p1, p2 ∈ C. Then, by Proposition 3.2, p1 = c+t+p2

2 and p2 = c+t+p1

2 . Solving

for p1 and p2 yields pi = c+ t, i = 1, 2. Moreover, c+3t+3pi < 4v. Substituting pi = c+ t

into c+ 3t+ 3pi < 4v and rearranging yields c+ 3
2 t < v.

Proof of Theorem 3.5

Suppose that v < c+ t. By Lemma 3.4, this leaves

(p1, p2) = (
v + c

2
,
v + c

2
)

as the only equilibrium candidate. It, therefore, suffices to show that (p1, p2) = ( v+c
2 , v+c

2 ) is a

price equilibrium. Let us show that p1 = v+c
2 ∈ A. Using v < c+ t, it holds that:

3v < 2c+ 2t+ v = c+ 2t+ v + c = c+ 2t+ 2p1.

Hence, p1 ∈ A. Furthermore, following Proposition 3.2, p2 = v+c
2 is a best-response to p1 = v+c

2 .

By symmetry, we conclude that (p∗1, p
∗
2) = (v+c

2 , v+c
2 ) is the unique price equilibrium.

Proof of Theorem 3.6

Let (p1, p2) be a price equilibrium and suppose that c + t ≤ v ≤ c + 3
2 t. Therefore, by Lemma

3.4, it holds that p1 + p2 = 2v − t and p1, p2 ∈ B. Choosing λ = p2, we can then write:

(p1, p2) = (2v − t− λ, λ).

It suffices to check for which values of λ it holds that p1 = 2v − t− λ ∈ B and p2 = λ ∈ B. By

the definition of B, we know that p2 = λ ∈ B precisely when:

c+ 3t+ 3λ ≥ 4v and 3v ≥ c+ 2t+ 2λ.

Rearranging gives:

8v − 6t− 2c ≤ 6λ ≤ 9v − 6t− 3c.

Likewise, p1 = 2v − t− λ ∈ B precisely when:

c+ 3t+ 3 · (2v − t− λ) ≥ 4v and 3v ≥ c+ 2t+ 2 · (2v − t− λ).
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Rearranging gives:

3v + 3c ≤ 6λ ≤ 4v + 2c.

Taken together, this gives the range of λ values as specified in the statement.

Proof of Theorem 3.7

Suppose that c+ 3
2 t < v. By Lemma 3.4, this leaves

(p1, p2) = (c+ t, c+ t)

as the only equilibrium candidate. It, therefore, suffices to show that (p1, p2) = (c+ t, c+ t) is a

price equilibrium. Let us show that p1 = c+ t ∈ C. Using c+ 3
2 t < v, it holds that

c+ 3t+ 3p1 = c+ 3t+ 3c+ 3t = 4c+ 6t < 4v.

Hence, p1 ∈ C. Furthermore, following Proposition 3.2, p2 = c+t+p1

2 is a best-response. Substi-

tuting p1 = c+ t gives p2 = c+ t. By symmetry, we conclude that (p∗1, p
∗
2) = (c+ t, c+ t) is the

unique price equilibrium.

Proof of Lemma 4.2

In proving this statement, we take firm 1’s perpsective, which is without loss of generality.

Consider a strategy (p2, q2) of firm 2, and let (p1, q1) be a best-response of firm 1. Suppose

that, by contradiction, q1 < d1. Since a predatory price is not a best-response, firm 1’s demand

is given by d1 = min{z1, z3}. Both z1 and z3 depend continuously on p1. Therefore, one can

increase p1 slightly to p′1 in such a way that still q1 < d′1. The pair (p′1, q1) has the same cost, as

q1 did not change, and the same sales since s′1 = max{d′1, q1} = q1 = s1, but a higher price p′1.

Consequently,

Π′
1(p

′
1, q1) = p′1 · q1 − C1(q1) > p1 · q1 − C1(q1) = Π1(p1, q1).

Thus, (p1, q1) is not a best-response.

Now suppose that q1 > d1. Firm 1’s profit is then Π1 = p1 · d1 − C1(q1). Now take q′1 = d1.

Since C(qi) is strictly increasing, it holds that

Π1(p1, q
′
1) = p1 · d1 − C1(q

′
1) > p1 · d1 − C1(q1) = Π1(p1, q1).

Thus, (p1, q1) is not a best-response. We conclude that in any best-response, a firm produces to

meet its demand.
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Proof of Theorem 4.3

Let ((p1, q1), (p2, q2)) be a price-quantity equilibrium. By Lemma 4.2, we know that q1 = d1 and

q2 = d2.

We show that (p1, p2) is a price equilibrium. Since ((p1, q1), (p2, q2)) is a price-quantity equi-

librium, we know that (pi, qi) is the best-response of firm i to (pj , qj). So, (pi, qi) solves the

maximization problem

max
pi,qi

Πi

By lemma 4.2, qi = di. Hence, pi solves the maximization problem

max
pi,qi

Πi

s.t. qi = di,

which means that pi is a best-response in the price game.

Proof of Theorem 4.4

Let (p1, p2) be a monopolistic or market-sharing price equilibrium. We prove that the strategy

(p1, D1(p1, p2)) is a best-response of firm 1 against the strategy (p2, D2(p1, p2)). One can take

the same steps for firm 2.

Let (p̃1, q̃1) be a best-response of firm 1 against (p2, D2(p1, p2)). We prove that (p̃1, q̃1) =

(p1, D1(p1, p2)).

Since (p̃1, q̃1) is a best-response of firm 1 against (p2, D2(p1, p2)), we know that (p̃1, q̃1) solves:

max
p′
1,q

′
1

Π1 = p′1 · s1 − C(q′1).

For brevity, write q2 = D2(p1, p2). By Lemma 4.2, we then know that q̃1 = d1(p̃1, p2, q2). It then

follows that p̃1 maximizes the profit function:

Π1 = p′1 · d1(p′1, p2, q2)− C(d1(p
′
1, p2, q2)).

However, since pricing is monopolistic or market-sharing, we know that d1(p
′
1, p2, q2) = D1(p

′
1, p2)

for all p′1 and, therefore, that p̃1 maximizes:

Π1 = p′1 ·D1(p
′
1, p2)− C(D1(p

′
1, p2)).

It follows that p̃1 = p1 so that q̃1 = d1(p̃1, p2, q2) = D1(p1, p2).
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Proof of Theorem 4.5

Let (p1, p2) be a competitive price equilibrium. By Theorem 3.7, the competitive price equilib-

rium is (p1, p2) = (c+ t, c+ t). At these prices, direct demand for firm 1 is D1 = 1
2 .

Fix firm 2’s strategy (p2, D2(p1, p2)) = (c + t, 1
2 ). We show that ((p1, D1(p1, p2)) = (c + t, 1

2 ) is

not a best-response of firm 1.

For brevity, write Di = Di(p1, p2) and u = u 1
2
(1). Since the price equilibrium is competitive, we

know that u > 0. Define p′1 = p1 + u. We first argue that s′1 = 1
2 . Notice that

u′
1
2
(1) = v − p′1 − t · 1

2
= v − p1 − u− t · 1

2
= u− u = 0.

So, z′1 = 1
2 . Since q1 = q2 = 1

2 , it follows that d′1 ≥ min{z′1, 1 − q2, q1} = 1
2 = d1. Thus,

s′1 = min{d′1, q1} = 1
2 . Hence,

Π1((p
′
1, D1)(p2, D2)) = p′1 · s′1 − t · q1

= (c+ t+ u) · 1
2
− t · q1

> (c+ t) · 1
2
− t · q1 = Π1((p1, D1)(p2, D2))

Therefore, (c+ t+ u, 1
2 ) is a better reply for firm 1 to (c+ t, 1

2 ) than (c+ t, 1
2 ).

Proof of Proposition 5.1

Suppose that c+ 3
2 t ≤ v ≤ c+2t and that a+4 ·r ≥ 8 · t. Let (p1, q1, p2, q2) be any price-quantity

equilibrium. By Theorem 4.3, it then holds that (p1, p2) is a price equilibrium. As c+ 3
2 t ≤ v, it

follows from Theorem 3.7 that

(p1, p2) = (c+ t, c+ t),

D1 = D2 = 1
2 , and therefore q1 = q2 = 1

2 by Theorem 4.3. Thus, it suffices to show that

((p1, q1), (p2, q2)) = ((c+ t,
1

2
), (c+ t,

1

2
))

is a price-quantity equilibrium. Suppose that firm 2 chooses (p2, q2) = (c+ t, 1
2 ). We argue that

(p1, q1) = (c+ t, 1
2 ) is the unique best-response for firm 1.

Suppose that firm 1 chooses p′1 = p1+∆. If ∆ < 0, then d′1 = D1(p
′
1, p2), which is not a profitable

deviation. Suppose then that ∆ > 0.

Let zp be the point where firm 1’s profit at p′1 equals its price equilibrium profit. More specifically,

zp is the smallest value of d for which:

Π′
1 = (c+ t+∆) · d− c · d ≥ t

2
= Π∗

1.
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Rewriting yields (t+∆) · d ≥ t
2 and, therefore:

zp =
t

2(t+∆)
.

Consequently, the price equilibrium outcome is a price-quantity equilibrium when the consumers

located at zp have a negative utility when buying from firm 1. We argue that indeed uzp(1) ≤ 0.

A. We first argue that:

a · t2 + 2 · r · t2 + 2 · t · r ·∆ ≥ 4 · t3 + 4 · t2 ·∆,

for all ∆ ≤ t. First note that this is true for any ∆ ≥ 0 when r ≥ 2 · t. Suppose, therefore, that

r ≤ 2 · t. By assumption, a+ 4 · r ≥ 8 · t so that multiplying by t2 and rearranging yields:

a · t2 + 2 · r · t2 − 4 · t3 ≥ 4 · t3 − 2 · r · t2.

So, since r ≤ 2 · t, for any ∆ ≤ t, it holds that:

a · t2 + 2 · r · t2 − 4 · t3 ≥ t ·
(
4 · t2 − 2 · r · t

)
≥ ∆ ·

(
4 · t2 − 2 · r · t

)
.

Rewriting gives the above inequality.

B. Next, notice that |p1 − p2| = ∆. By Lemma 2.1 and Lemma 2.2, it holds that ∆ ≤ t. By

using the inequality under A, we then have that:

a · t2 + 2 · r · t2 + 2 · t · r ·∆ ≥ 4 · t3 + 4 · t2 ·∆ = 4 · (t+∆) · t2 ≥ 4 · (t+∆) · (t2 −∆2).

It follows that:

a · t2 +2 · r · t · (t+∆) = a · t2 +2 · r · t2 +2 · t · r ·∆ ≥ 4 · (t+∆) · (t2 −∆2) = 4 · (t+∆)2 · (t−∆).

Since v ≤ c+ 2t, v − c− t ≤ t and, therefore:

a · t2 + 2 · r · t · (t+∆) ≥ 4 · (t+∆)2 · (t−∆) ≥ 4 · (t+∆)2 · (v − c− t−∆).

Dividing both sides by 4 · (t+∆)2 yields:

a ·
(

t

2(t+∆)

)2

+ r ·
(

t

2(t+∆)

)
≥ v − c− t−∆.

Hence,

a · (zp)2 + r · (zp) ≥ v − c− t−∆,
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which is equivalent to

v − p′1 − C(zp) ≤ 0.

By symmetry, a similar analysis can be conducted for firm 2.

Proof of Theorem 5.2

Suppose that L(∆) ≤ F (∆). Recall that Z is the location of consumers who are indifferent

between staying home or buying at firm 1 at price p′1. Equilibrium existence is then ensured

when Z ≤ zp for any ∆ ∈ [0, t]. This implies a negative utility for buying from firm 1 for

consumers at zp. It, therefore, needs to be checked that Uzp(1) ≤ 0. Substituting gives:

v − c− t−∆− C(zp) ≤ 0,

which is equivalent to L(∆) ≤ F (∆).

Proof of Theorem 6.1

We consider a deviation p′1 = p1 +∆ by firm 1 from the candidate equilibrium price p1 = c+ t.

First, notice that

zp − z′3 =
t

2(t+∆)
− t−∆

2t
=

2t2 − 2(t2 −∆2)

2t(t+∆)
=

∆2

2t(t+∆)
.

Moreover,

1

2
− z′3 =

1

2
− p2 − p′1 + t

2t
=

1

2
−

1
2 − 1

2 −∆+ t

2t
=

1

2
− t−∆

2t
=

∆

2t
.

By assumption, Z < zp, for all ∆ ∈ [0, t]. Therefore,

f(∆) =
Z − z′3
1
2 − z′3

= (Z − z′3) ·
2t

∆
≤ (zp − z′3) ·

2t

∆
=

∆2

2t(t+∆)
· 2t
∆

=
∆

t+∆
≤ 1

2

for all ∆ ∈ [0, t]. Furthermore, it follows that:

f(∆) =
∆

t+∆
=

1
t
∆ + 1

→ 0

as ∆ → 0. Thus, spillover is negligible for small enough price deviations.

Proof of Proposition 6.2

We need to show that Z > z′3. To that end, it is sufficient to show that Uz′
3
> 0. We can rewrite

Uz′
3
> 0

as

v − c− t−∆ > a ·
(
t−∆

2t

)2

+ r · t−∆

2t
,
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which can be rewritten to:

4t2 · (v − c− t−∆) > a · (t−∆)2 + 2 · r · t · (t−∆).

Define:

∆∗ =
t · (a+ r − 2t)

a
.

Notice that 4 ·a+4 ·r > a+4 ·r ≥ 8 · t. So, a+r > 2 · t, which implies that ∆∗ > 0. Furthermore,

since r < 2 · t, it follows that a+ r − 2 · t < a. So, ∆∗ < t. We conclude that 0 < ∆∗ < t.

It then suffices to show that:

4t2 · (v − c− t−∆∗) > a · (t−∆∗)2 + 2 · r · t · (t−∆∗).

Note that:

t−∆∗ = t− t · (a+ r − 2t)

a
=

a · t− a · t− rt+ 2t2

a
=

t · (2 · t− r)

a
.

So, we need to prove that:

4t2 · (v − c− t−∆∗) > a ·
(
t · (2 · t− r)

a

)2

+ 2 · r · t · t · (2 · t− r)

a
.

Multiplication by a
t2 and rearranging yields:

4a · (v − c− t−∆∗) > (2 · t− r)2 + 2 · r · (2 · t− r),

which can be rewritten to:

4 · (a · (v − c− t)− t · (a+ r − 2t)) > (2 · t− r) · (2 · t+ r),

which, in turn, is equivalent to:

4 · (a · (v − c− 2t) + t · (2t− r)) > (2 · t− r) · (2 · t+ r).

This inequality is equivalent to:

4 · a · (v − c− 2t) > (2 · t− r) · (r − 2 · t),

and

(2 · t− r)2 > 4 · a · (2t+ c− v),

which is the condition in the proposition.
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Proof of Proposition 6.3

Notice that f(∆) > 0, for at least one ∆ ∈ [0, t], precisely when U(z′3) > 0, for at least one

∆ ∈ [0, t]. This inequality can be written as:

2t · (v − c− t−∆) > r · (t−∆),

for at least one ∆ ∈ [0, t]. This is equivalent to:

2t · (v − c− t− 1

2
· r) > (2t− r) ·∆,

for at least one ∆ ∈ [0, t]. Since the LHS does not depend on ∆, this is equivalent to

2t · (v − c− t− 1

2
· r) > 0,

for r ≤ 2t. In this case, therefore, f(∆) > 0, for at least one ∆ ∈ [0, 1] precisely when 2v − 2c−

2t− r > 0. However, it then holds that:

2 · t · r ≥ (v − c)2 >

(
t+

1

2
· r
)2

= t2 + t · r + 1

4
· r2,

which implies: (
t− 1

2
· r
)2

< 0.

Hence, in this case, f(∆) = 0, for all ∆ ∈ [0, t].

If r > 2t, then the above inequality is equivalent to:

2t · (v − c− t− 1

2
· r) > (2t− r) · t.

Dividing both sides by 2 · t and rearranging yields v − c− 2t > 0.
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