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Abstract

We consider search markets where consumers’ preferences may change during
the search process. Some consumers are unbiased, i.e. they are fully aware that
their preferences will change in the future. However, other consumers are (fully)
projection biased, i.e., they believe that their current preferences will remain the
same in the future. We show that if the fraction of unbiased consumers is sufficiently
large, higher search costs can lead to lower market prices. When search costs
become higher, both types of consumers search less, which increases the market
power of firms, but the unbiased consumers who do not search are more price
sensitive than the projection-biased consumers. Thus, higher search costs may
motivate firms to lower their prices to capture the demand of unbiased consumers.
Furthermore, when consumers in a current “hot” state decide to buy immediately
or to continue searching and buy in a future “cold” state, higher search costs can
increase both consumer welfare and social welfare by correcting for excessive search
by projection-biased consumers.
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1 Introduction
Consumers are often unable to search frequently due to time or physical constraints,
and by the next time they have the opportunity to search, their preferences may have
changed. In addition, evidence from various disciplines (see the literature review below)
suggests that people have projection bias: they tend to overestimate the degree to which
their future preferences will be similar to their current preferences.

To gain insight into the impact of changing preferences and projection bias on con-
sumer search behavior and firm pricing, we develop a consumer search model in which
consumers’ preferences change during the search process. A fraction α of consumers are
unbiased in that they correctly perceive that their future preferences will change. How-
ever, the remaining 1 − α of consumers are (fully) projection biased, i.e., they wrongly
believe that their future preferences will be the same as their current preferences.

When consumers in a current “cold” state decide whether to buy immediately or
to continue their search and purchase in a future “cold” state, only those consumers
whose match value with the product they have learned about is sufficiently low will
continue their search, as in the standard search model (e.g. Wolinsky, 1986; Anderson
and Renault, 1999). In contrast to the standard model, we find that if the proportion
of unbiased consumers is sufficiently large, higher search costs can lead to lower market
prices. The main difference is that if the state becomes colder after the search process,
consumers receive less benefit from the product if they search and return to the first
product. This is an additional cost from searching that would not exist if preferences did
not change. In contrast to projection-biased consumers, unbiased consumers correctly
perceive this additional cost from searching; hence, their equilibrium demand is less price
sensitive. Moreover, since this effect is larger for consumers whose match value with the
first product is higher, the higher the search cost, the less price sensitive the demand of
unbiased consumers will be. Thus, higher search costs may motivate firms to lower prices
if there are enough unbiased consumers.

Furthermore, we find that if there are enough projection-biased consumers and if the
post-search state is sufficiently cold relative to the pre-search state, an increase in search
costs improves both consumer welfare and social welfare. Projection-biased consumers
search too much relative to the socially efficient level because they incorrectly predict
that the post-search state will be the same as the pre-search state. Thus, if this over-
search problem is severe enough for projection-biased consumers, increasing search costs
improves welfare.

When the post-search state is hotter than the pre-search state, the search behavior
itself may differ significantly from the classical search model for unbiased consumers,
as opposed to (fully) projection-biased consumers who are completely unaware of the
difference between the post-search and pre-search states. In fact, we find that consumers’
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search decisions may not be monotone in the match value with their first product. As
the post-state becomes hotter after the search process, consumers receive more benefits
from the product if they search and return to the first product. This is the benefit from
searching that would not exist if preferences did not change, and this benefit is greater
for consumers whose match value with the first product is higher. In other words, if the
post-search state is hot enough relative to the pre-search state, consumers with a lower
match value to the first product will have less incentive to continue searching.

Increasing preferences also introduce stronger incentives for firms to raise prices as
search costs fall. Lower search costs reduce the match value to the first product of
marginal consumers who are indifferent between searching and not searching. Thus, if
the post-search state is hot enough relative to the pre-search state, their demand becomes
less price sensitive, thus motivating firms to raise prices.

A central research question in the consumer search literature is how a change in
consumers’ search costs affects competition outcomes, including firms’ equilibrium profits
and the resulting social welfare. In classical models of consumer search (e.g. Wolinsky,
1986; Anderson and Renault, 1999), an increase in search costs generally leads to higher
equilibrium prices, higher firm profits, and lower social welfare. The basic logic is this:
because consumers must incur costs to learn the price of each firm, those who visit one
firm and stay (the fresh demand) are less price-sensitive than those who also visit its
competitor(s) and learn their prices. A higher search cost discourages consumers from
searching for another firm, thus creating more fresh demand for each firm, which raises its
price to further capture that demand. Moreover, although a higher search cost reduces
the total volume of searchers, it increases the cost of each search, which is dominant and
causes a welfare loss.

The standard argument that higher search costs lead to higher equilibrium prices
is challenged by several subsequent papers that focus on the order of search. Among
others, Haan, Moraga-González and Petrikaitė (2018) examine a duopoly model in which
products have two attributes of match value, one of which is revealed before search and
the other after costly search. Choi, Dai and Kim (2018) consider a more general model
in which firms’ prices are announced in advance and products’ match values are to be
discovered. The basic idea is that if firms reveal some product attributes before the
search starts, the search order will be directed. Then, higher search costs can lower the
equilibrium prices because less future search motivates each firm to lower its price before
the search starts. In addition, Bar-Isaac, Caruana and Cuñat (2012) incorporate firms’
product design (whether a broad market design or a niche design) and find a similar
result. A lower search cost may increase firms’ prices by motivating firms to choose
the niche design and target the fringe market. These papers have similar results that
equilibrium prices increase with search costs, but they are based on Varian (1980), which
assumes that consumers know some of the attributes (the price or the matching value) of
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the product. This paper, on the other hand, is based on Wolinsky (1986), which assumes
that consumers do not know either the price or the matching value of a product.

2 The Model
The model is based on Wolinsky (1986). The market consists of a unit mass of consumers
and two firms, indexed by i ∈ {A,B}. Each firm produces at zero cost and there is no
discounting.

The utility of each consumer (excluding search costs) from buying firm i ∈ {A,B}
product at price pi is given by

ui = λkvi − pi.

The coefficient λk captures each consumer’s taste for products in k ∈ {n, l}, i.e., “now”or
“later.”Moreover, vi is the match value attached by this consumer to firm i’s product,
which distributes according to a distribution G(·) with a differentiable density g(·) over
[v, v]. The consumers are assumed to have sufficiently negative outside options u0 < 0 so
that they always buy either product (i.e., the market is fully covered).

There are two types of consumers. A fraction α of the consumers are projection-
biased, i.e., they wrongly believe in period n that they will continue to have λl = λn in
period l. The remaining (1− α) of the consumers are unbiased, i.e., they correctly believe
in period n that their preference will be based on λl in period l. We assume that although
α is publicly known, the firms cannot distinguish which consumers are projection-biased.

Each consumer visits firm i ∈ A,B with equal probability in period n with equal
probability and learns its match value vi and price pi. Then the consumer decides whether
to visit the next firm in period l to discover its product’s match value and price, which
incurs a cost s > 0. The consumers can return to the firm they have previously visited
without incurring any returning cost. We assume that each consumer stops searching if
indifferent.

2.1 Benchmark: Consistent Taste

We first consider a benchmark case and let consumers have a consistent taste. That is,
λn = λl = 1. As well known from a standard search model, consumers’ decision-making
follows the stopping rule that anyone with vi larger than the reservation value v̇(pi, ṗ)

buys firm i’s product immediately given firm j’s equilibrium price ṗ, where

v̇(pi, ṗ, s) =

{
vi|s =

∫ v

vi−(pi−ṗ)

(v − (vi − (pi − ṗ)))dG(v)

}
.
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Suppose that v̇(ṗ, ṗ, s) ∈ (v, v), firm i’s demand function is given by

Di(pi, ṗ, s) =
1

2

{
(1−G(v̇(pi, ṗ, s))) +

∫ v̇(ṗ,ṗ,s)

v

(1−G (vj + (pi − ṗ))) dG(vj)

+

∫ v̇(pi,ṗ,s)

v

G (vi − ((pi − ṗ))) dG(vi)

}
.

(1)

The first line denotes the demand of those who visit firm i and immediately buy there
without a further search (the fresh demand), and the second line denotes the demand
of those who have visited both firms and know both prices (the return demand). Firm
i’s profit maximization problem is characterized by maxpi πi(pi, ṗ, s) = piD(pi, ṗ, s). The
increasing hazard rate assumption (i.e., 1−G(v) is logconcave in v) is sufficient to guar-
antee the quasi-concavity of firms’ profit function (Anderson and Renault, 1999). In the
symmetric equilibrium, the equilibrium price is derived from the first-order condition as
follows:1,2

Di(ṗ, ṗ, s) + ṗ∂piDi(ṗ, ṗ, s) = 0

where ∂piDi(ṗ, ṗ, s) = −
∫ v̇(ṗ,ṗ,s)

v

g(v)dG(v)︸ ︷︷ ︸
the price effect

−1

2
(1−G(v̇))g(v̇)∂pi v̇(ṗ, ṗ, s)︸ ︷︷ ︸

the search effect

< 0.

Some important properties regarding consumers’ equilibrium reservation value v̇(ṗ, ṗ, s)

are summarized as follows:

Remark 1 (1) ∂pi v̇(ṗ, ṗ, s) = 1; (2) ∂sv̇(ṗ, ṗ, s) = −1/(1−G(v̇)) < 0.

Looking at the slope of the demand function, an increase in firm i’s price reduces its
demand via two effects:
(1) The price effect: an increase pi discourages the purchase of those who know both
firms’ prices (those who first visit firm j or firm i);
(2) The search effect: an increase pi increases consumers’ reservation value for an addi-
tional search, which reduces firm i’s fresh demand.3

The search effect comprises the price sensitivity of the reservation value (∂pi v̇(ṗ, ṗ, s)) and
the reservation value sensitivity of the fresh demand (G′(v̇) = g(v̇)).

Processing comparative statics of search cost on the symmetric equilibrium price
1For exposition simplicity, we sometimes drop the variables of a function when doing so does not

bring ambiguity.
2We will denote by ∂xif the partial derivative of function f with respect to its argument xi: if

f = f(x1...Xn) ∂xif = ∂f/∂xi; Similarly, ∂2
xixj

f = ∂2f/∂xi∂xj , and so forth.
3Of course, an increase in v̇ would mean a larger return demand for firm i, but since some of the

return demand ultimately buys from firm j, the aggregate effect of the increase of v̇ on firm i’s ’demand
is negative. Therefore, the overall decrease in the fresh demand is discounted by 1−G(v̇).
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yields:
dṗ

ds
= −

ṗ∂2
pis
Di(ṗ, ṗ) + ∂sDi(ṗ, ṗ)

∂2
pipi

πi(ṗ, ṗ)
.

We then have4

Sign[
dṗ

ds
] = Sign[∂2

pis
Di(ṗ, ṗ, s)],

where ∂2
pis
Di(ṗ, ṗ, s) = − ∂sv̇(ṗ, ṗ, s)︸ ︷︷ ︸

<0

g(v̇)2

−1

2

[
−g(v̇)2 + (1−G(v̇)g′(v̇))

]
∂sv̇(ṗ, ṗ, s)︸ ︷︷ ︸

<0

∂pi v̇(ṗ, ṗ, s)︸ ︷︷ ︸
=1

+(1−G(v̇))g(v̇) ∂2
pis
v̇(ṗ, ṗ, s)︸ ︷︷ ︸
=0

 .

The way an increase in search cost affects the equilibrium price is in the same direction
as how it affects the demand function’s slope. First, an increase in search cost does not
change the price sensitivity of the reservation value since ∂pi v̇(ṗ, ṗ, s) = 1. However, since
there are less consumers who go searching and know both firms’ prices, the price effect is
weakened. Moreover, when g′(·) is sufficiently large (as implied by the increasing hazard
rate of G(·)), a higher search cost reduces consumers’ reservation value of searching, which
weakens the search effect. To summarize, a higher search cost weakens both the price
effect and the search effect, making the demand faced by firm i less price sensitive.

Observation 1 When consumers have a consistent taste, a higher search cost increases
the symmetric equilibrium price.

Regarding social welfare, we first derive the total surplus as follows:

˙TS(v̇, s) =

∫ v

v̇

vidG(vi) +

∫ v̇

v

(∫ vi

v

vidG(vj) +

∫ v

vi

vjdG(vj)

)
dG(vi)−G(v̇)s.

Processing comparative statics of the search cost s on ˙TS yields

d ˙TS

ds
= ∂v̇ ˙TS(v̇, s)︸ ︷︷ ︸

=0

∂sv̇(ṗ, ṗ, s) + ∂s ˙TS(v̇, s) = −G(v̇).

Since consumers can always optimally adjust their stopping rule when confronting a
change in search cost, the envelope theorem suggests that a higher search cost does not
affect the total surplus by changing the reservation value. Therefore, the impact a higher
search cost has on the total surplus is negative: It causes a higher social loss given a

4∂2
pipi

πi(ṗ, ṗ, s) < 0 from the second-order condition and ∂sDi(ṗ, ṗ, s) = 0.
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certain number of searchers (i.e., G(v̇)).

Observation 2 When consumers have a consistent taste, a higher search cost decreases
the total surplus.

3 Changing Taste and Projection Bias
We now discuss how consumers’ changing taste and their projection-bias issue affects the
well-known results of a standard search model. In the symmetric equilibrium, all firms
set the same price p∗, and consumers expect all firms which they have not visited will
charge p∗. Thus, after visiting firm i and learning its price and match value (pi, vi), when
expecting firm j to charge p∗, the consumer stops searching if and only if the payoff from
buying product i immediately is no less than the expected payoff from visiting firm j,
i.e.,

λnvi − pi︸ ︷︷ ︸
buys from i immediately

≥ −s+

∫ v

vi− ∆
λl

(λlvj − p∗)dG(vj)︸ ︷︷ ︸
visits j and buys from j

+G

(
vi −

∆

λl

)
(λlvi − pi)︸ ︷︷ ︸

visits j but returns to i

if the consumer is unbiased, where ∆ ≡ pi − p∗, and

λnvi − pi︸ ︷︷ ︸
buys from i
immediately

≥ −s+

∫ v

vi− ∆
λn

(λnvj − p∗)dG(vj)︸ ︷︷ ︸
visits j and buys fromj

+G

(
vi −

∆

λn

)
(λnvi − pi)︸ ︷︷ ︸

visits j but returns to i

if the consumer has projection bias.
Notice that the projection-biased consumers in period n wrongly evaluates their payoff

in period l, based on their current taste λn instead of their true future taste λl (Loewen-
stein, O’Donoghue and Rabin, 2003). For simplicity, we let λn = 1 and denote λl by
λ > 0 but ̸= 1. Then we can rearrange the above inequalities as follows:

s ≥ λ

∫ v

vi−∆
λ

(
vj −

(
vi −

∆

λ

))
dG(vj)− (1− λ)vi ≡ hi(vi,∆) (2)

for unbiased consumers and

s ≥
∫ v

vi−∆

(vj − (vi −∆))dG(vj) ≡ ĥi(vi,∆) (3)

for project-biased consumers, where we denote the expected net gain from searching by
hi(vi,∆) for unbiased consumers and ĥi(vi,∆) for projection-biased consumers. For the
unbiased consumers, their utility of searching one more firm consists of their expected
incremental value (the first term) being adjusted by their changing future taste (the
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second term). When λ < 1, consumers downward adjust their future taste; When λ > 1,
they upward adjust it. For the projection-biased consumers, because they wrongly predict
their future taste would stay the same as now, their expected utility of searching for one
more firm consists of their expected incremental value only and disregard the adjustment
term.

Since ĥi(vi,∆) is strictly decreasing in vi,5 the boundary condition ĥi(v,∆) < s <

ĥi(v,∆) ensures an (interior) cutoff match value (denoted by v̂∗) exists for the projection-
biased consumer such that anyone with vi < v̂∗ searches. We, therefore, say v̂∗ is the
reservation value for a projection-biased consumer. For the unbiased consumers, because
of the adjustment term, hi(vi,∆) is decreasing in vi for λ < 1 but is U-shaped when
λ > 1.6 Let v∗ and v∗ (with v∗ < v∗) be the two roots of hi(vi,∆) = s, which represent
the lower and higher reservation values for the unbiased consumers. Based on whether
one or both of these two reservation values are within the support (v, v), we have three
types of stopping rules, which are summarized by the lemma below:

Lemma 1 For the projection biased consumers, suppose ĥi(v,∆) < s < ĥi(v,∆). Then,
we have the stopping rule that anyone with match value vi < v̂∗(pi, p

∗, s) ∈ (v, v) continues
to search, where v̂∗(pi, p

∗, s) solves s = ĥi(vi,∆).
For the unbiased consumers, we have three types of stopping rules:

Type-1: if hi(v,∆) < s < hi(v,∆), anyone with vi ∈ (v, v∗(pi, p
∗, s)) continues to search;

Type-2: if λ > 1 and hi(v,∆) < s < hi(v,∆), anyone with vi ∈ (v∗(pi, p
∗, s), v) continues

to search;
Type-3: if λ > 1 and minvi∈(v,v) hi(vi,∆) < s < min{hi(v,∆), hi(v,∆)}, anyone with
vi ∈ (v, v∗(pi, p

∗, s)) ∪ (v∗(pi, p
∗, s), v) continues to search.

v∗(pi, p
∗, s) and v∗(pi, p

∗, s) is the two roots that solve s = hi(vi,∆) for vi ∈ (−∞,∞).

The type-1 stopping rule for the unbiased consumers is consistent with the projection-
biased consumers and with the benchmark model. That is, anyone with a sufficiently high
match value of firm i stops. The type-2 stopping rule is the opposite. That is, anyone
with a sufficiently high match value keeps searching. This irregular case happens when
consumers’ future tastes grow higher. The net benefit of search would always increase
because search one more time would bring a consumer at least (1−λ)vi (the incremental
benefit when that consumer finally returns to firm i), which increases in vi.

5Differentiating ĥi(vi,∆) with respect to vi yields − (1−G(vi −∆)) < 0.
6When λ > 1, ∂2

vivihi(vi,∆) = λg(vi,∆) > 0.
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3.1 Market Equilibrium

Next, we the symmetric equilibrium. Using v∗(pi, p
∗, s), v∗(pi, p∗, s) and v̂∗(pi, p

∗, s), the
demands of the projection-biased and unbiased consumers faced by firm i are given by

di(pi, p
∗, s)

=



1

2

{
(1−G(v∗(pi, p

∗, s))) +

∫ v∗(p∗,p∗,s)

v

(
1−G

(
vj +

∆

λ

))
dG(vj)

+

∫ v∗(pi,p∗,s)

v

G

(
vi −

∆

λ

)
dG(vi)

}
, under the type-1 stopping rule,

1

2

{
G(v∗(pi, p

∗, s) +

∫ v

v∗(p∗,p∗,s)

(
1−G

(
vj +

∆

λ

))
dG(vj)

+

∫ v

v∗(pi,p∗,s)

G

(
vi −

∆

λ

)
dG(vi)

}
, under the type-2 stopping rule,

1

2

{
(G(v∗(pi, p

∗, s)−G(v∗(pi, p
∗, s)) +

∫ v

v∗(p∗,p∗,s)

(
1−G

(
vj +

∆

λ

))
dG(vj)

+

∫ v

v∗(pi,p∗,s)

G

(
vi −

∆

λ

)
dG(vi) +

∫ v∗(p∗,p∗,s)

v

(
1−G

(
vj +

∆

λ

))
dG(vj)

+

∫ v∗(pi,p∗,s)

v

G

(
vi −

∆

λ

)
dG(vi)

}
, under the type-3 stopping rule,

d̂i(pi, p
∗) =

1

2

{
(1−G(v̂∗(pi, p

∗, s))) +

∫ v̂∗(p∗,p∗,s)

v

(
1−G

(
vj +

∆

λ

))
dG(vj)

+

∫ v̂∗(pi,p∗,s)

v

G

(
vi −

∆

λ

)
dG(vi)

}

and the total demand faced by firm i is Di(pi, p
∗, s) = αd̂(pi, p

∗, s) + (1 − α)di(pi, p
∗, s).

Hereafter are some explanations of the compositions of the demand function. We take
the projection-biased consumers’ demand function d̂i(pi, p

∗, s) as an example. The com-
position of the unbiased consumers’ demand function di(pi, p

∗, s) can be explained simi-
larly. The first term in the curly brackets represents the fresh demand. A project-biased
consumer visits firm i first with probability 1/2 and buys its product immediately if
vi ≥ v̂∗(pi, p

∗, s). Moreover, a project-biased consumer visits firm j first with probability
1/2 and chooses to search if vj < v̂∗(p∗, p∗, s) (recall that firm j charges p∗, and consumers
expect all firms that they have not visited to charge p∗), and then chooses to buy from
firm i after learning (vi, vj, pi, p

∗, s) if λvi − pi ≥ λvj − p∗ or vi ≥ vj +
∆
λ

. The third term
represents the demand by a projection-biase consumer who returns to firm i. A consumer
visits firm i first with probability 1/2 and chooses to search if vi < v̂∗(pi, p

∗, s), and then
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chooses to buy from firm i after learning (vi, vj, pi, p
∗) if λvi−pi ≥ λvj−p∗ or vj ≤ vi− ∆

λ
.

Given the price p∗ charged by the other firm, firm i sets pi to maximize πi =

piDi(pi, p
∗, s). The first-order condition is given by

Di(pi, p
∗, s) + pi∂piDi(pi, p

∗, s) = 0, (4)

from which we have the symmetric equilibrium price p∗. The following assumptions
ensure the existence of the symmetric equilibrium.

Assumption A1.
(1) When λ < 1, s ∈ (0, hi(v, 0));
(2) When λ > 1, s ∈

(
max{0,minvi∈(v,v) hi(vi, 0)},min{ĥi(v, 0),max{h(v, 0), hi(v, 0)}}

)
.

Assumption A2.
Define

γ(v) ≡
(
1− 1− λG(v)

1−G(v)

2

λ
− (1− λ)2

λ(1− λG(v))(1−G(v))

)
g(v)2

1−G(v)
.

• For small α,

(1) Under the type-1 stopping rule for the unbiased consumers (which prevails when
s ∈ (hi(v, 0), hi(v, 0)) ), ∀v ∈ (v, v), g′(v) > γ(v);

(2) Under the type-2 stopping rule for the unbiased consumers (which prevails when
λ > 1 and s ∈ (hi(v, 0), hi(v, 0)) ), ∀v ∈ (v, v), g′(v) < γ(v);

(3) Under the type-3 stopping rule for the unbiased consumers (which prevails
when λ > 1 and minvi∈(v,v) hi(vi, 0) < s < min{hi(v, 0), hi(v, 0)} ), ∀v ∈ (v, v),
g′′(v) < γ′(v);

• For large α, v ∈ (v, v), g′(v) >
(
1− 2

λ

) g(v)2

1−G(v)
;

A1 ensures that the equilibrium reservation values v∗, v∗ and v̂∗ satisfy the boundary
conditions provided in Lemma 1. A2 guarantees the quasi-concavity of firms’ profit
function in both cases where the fraction of projection-biased consumers is either small
or large. We establish that p∗ is the symmetric equilibrium price and v∗ and v̂∗ are the
interior reservation values under the following two assumptions:

Lemma 2 Under A1 and A2, the symmetric equilibrium price is given by p∗ in (??), and
the equilibrium reservation value for projection-biased consumers is given by v̂∗ ∈ (v, v),
and that for unbiased consumers is given by (1) v∗ ∈ (v, v) under the type-1 stopping rule,
(2) v∗ ∈ (v, v) under the type-2 stopping rule, and (3) v∗, v∗ ∈ (v, v) under the type-3
stopping rule, respectively.
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Proof. See Appendix.

Some important properties regarding consumers’ equilibrium reservation values are
summarized as follows:

Lemma 3 Consider a symmetric equilibrium in which the equilibrium reservation val-
ues for unbiased and projection-biased consumers are given by Lemma 1. Then, these
reservation values have the following properties:

(1) For the projection biased consumers: ∂pi v̂
∗(p∗, p∗, s) = 1, ∂sv̂∗(p∗, p∗, s) = −1

1−G(v̂∗)
<

0, ∂2
pis
v̂∗(p∗, p∗, s) = 0.

(2) For the unbiased consumers: ∂piv
∗(p∗, p∗, s) = 1−G(v∗)

1−λG(v∗)
> 0, ∂sv

∗(p∗, p∗, s) =
−1

1−λG(v∗)
< 0, ∂2

pis
v∗(p∗, p∗, s) = (1−λ)g(v∗)

[1−λG(v∗)]3
> 0 if λ < 1; ∂piv

∗(p∗, p∗, s) = 1−G(v∗)
1−λG(v∗)

< 0,
∂sv

∗(p∗, p∗, s) = −1
1−λG(v∗)

> 0, ∂2
pis
v∗(p∗, p∗, s) = (1−λ)g(v∗)

[1−λG(v∗)]3
> 0.

Recall that the equilibrium reservation match values in (2) and (3) are such that the search
cost s equals the search benefit, i.e., hi for unbiased consumers and ĥi for projection-biased
consumers. For the projection-biased consumers, since they wrongly ignore their changing
future tastes, the search benefit ĥi decreases in the match value from the current visiting
firm, vi. Then, as consistent with the benchmark model, firm i’s higher price pi or a
lower search cost s, both of which increase the search benefit, which requires firm i to
offer a higher match value vi to compensate the consumers to make them stop searching.
Moreover, consistent with the benchmark model, a change in search cost does not affect
the price sensitivity of reservation value.

However, the unbiased consumers correctly anticipate their changing future tastes.
As summarized in Lemma 1, when the stopping rule is characterized by the reservation
value v∗, a sufficiently high match value of firm i leads the unbiased consumers to stop
searching. Then, either firm i’s higher price or a lower search cost leads to a higher
reservation value such that a consumer who initially visits firm i must be compensated
with a higher match value vi to make he/her stop. On the contrary, when the stopping
rule is characterized by the reservation value v∗, consumers’ future tastes are higher.
Then, an unbiased consumer stops searching when firm i offers a sufficiently low match
value.7 Then, either firm i’s higher price or a lower search cost strengthens consumers’
incentives to search for one more firm, so the reservation value must become lower such
that only the one with a sufficiently low value vi is willing to stop.

Moreover, different from the benchmark model and the case of projection-biased con-
sumers, for the unbiased consumers, a change in search cost affects the price sensitivity
of reservation value. When the stopping rule is characterized by v∗, a higher search cost

7As mentioned, in this case, when firm i offers a sufficiently high match value, the benefit of search
stems from the fact that not buying immediately leads to one’s higher taste. Then, a higher match value
means a larger search benefit because all consumers can at least costlessly return to firm i they have
visited.
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leads to a lower reservation value, making the marginal consumer indifferent between
searching or stopping more sensitive to a change in firm i’s price. On the contrary, when
the stopping rule is characterized by v∗, a higher search cost leads to a higher reservation
value, making the marginal consumer less sensitive to a change in firm i’s price.

3.2 Symmetric Equilibrium Price

We now discuss how a change in search cost affects the symmetric equilibrium prices.
Following the logic of the benchmark model, we have8

Sign[
dp∗

ds
] = Sign[∂2

pis
Di(p

∗, p∗, s)].

That is, a higher search cost increases (decreases) the symmetric equilibrium price if and
only if it makes the demand less( more) price-sensitive.

The slope of firm i’s demand function comprises the price sensitivity of the projection-

8From (4), dp∗

ds = −∂2
pis

Di(p
∗,p∗,s)+∂sDi(p

∗,p∗,s)

∂2
pipi

π(p∗,p∗,s) . Substiting ∂sDi(p
∗, p∗, s) = 0 and ∂2

pipi
π(p∗, p∗, s) <

0 leads to our arguments below.
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biased consumers and the unbiased ones, which is given by

∂piDi(p
∗, p∗, s) = α∂pi d̂i(p

∗, p∗, s) + (1− α)∂pidi(p
∗, p∗, s),

where ∂pi d̂i(p
∗, p∗, s) = −1

λ

∫ v̂∗

v

g(v)2dv︸ ︷︷ ︸
the price effect

−1

2

{
(1−G (v̂∗))g(v̂∗) ∂pi v̂

∗(p∗, p∗, s)︸ ︷︷ ︸
=1

}
︸ ︷︷ ︸

the search effect

,

∂pidi(p
∗, p∗, s) =



−1

λ

∫ v∗

v

g(v)2dv︸ ︷︷ ︸
the price effect

−1

2
{(1−G (v∗))g(v∗)∂piv

∗(p∗, p∗, s)}︸ ︷︷ ︸
the search effect

under the type-1 stopping rule,

−1

λ

∫ v

v∗
g(v)2dv︸ ︷︷ ︸

the price effect

+
1

2
{(1−G (v∗))g(v∗)∂piv

∗(p∗, p∗, s)}︸ ︷︷ ︸
the search effect

under the type-2 stopping rule

−1

λ

(∫ v∗

v

g(v)2dv +

∫ v

v∗
g(v)2dv

)
︸ ︷︷ ︸

the price effect

−1

2


(1−G (v∗))g(v∗)∂piv

∗(p∗, p∗, s)

+(1−G (v∗))g(v∗)∂piv
∗(p∗, p∗, s)

︸ ︷︷ ︸
the search effect

under the type-3 stopping rule.

(5)

As in the benchmark model, an increase in firm i’s price generates the price effect and
the search effect, which reduces the demand of the two types of consumers. Specifically,
in the price effect, a higher pi discourages both types of consumers from buying firm i’s
products after searching both firms; in the latter effect, a higher pi increases consumers’
reservation value for an additional search, which discourages both types of consumers
from buying immediately from firm i. In the presence of consumers’ changing tastes, an
increase in search cost would subtly alter the strength of these two effects, which leads
to findings contradicting our benchmark model.

We find that the symmetric equilibrium price does not necessarily increase in the
search cost.

Proposition 1 Suppose A1 and A2 hold. Define

Γ(v) ≡ 1− λG(v)

(1−G(v))2

{
(1−G(v))[2− λ(1 +G(v))]

(1− λG(v))2
− 2

λ

}
g(v)2.

The symmetric equilibrium prices fall with the search cost ( dp∗/ds < 0) if the fraction of

12



unbiased consumers is sufficiently large (α is sufficiently small) and if any of the following
conditions holds:
(1) when the unbiased consumers follow the type-1 stopping rule, they have a lower future
taste (λ < 1) and g(v) falls sufficiently fast at v = v∗ such that g′(v∗) < Γ(v∗) < 0;
(2) when the unbiased consumers follow the type-2 stopping rule, they have a higher future
taste (λ > 1) and g(v) increases sufficiently slow at v = v∗ such that g′(v∗) > Γ(v∗) > 0;
(3) when the unbiased consumers follow the type-3 stopping rule, they have a higher future
taste (λ > 1) and g(v) falls sufficiently fast at v = v∗ but increases sufficiently slow at
v = v∗ such that g′(v∗) < Γ(v∗) < 0 and g′(v∗) > Γ(v∗) > 0.

If none of these conditions holds, the symmetric equilibrium price rises with the search
cost.

Proof. See Appendix.

Our benchmark model (as well as other standard search models such as Wolinsky
(1986) and Anderson and Renault (1999)) demonstrates that when consumers have con-
sistent future tastes, firms’ symmetric equilibrium price increases in the search cost if
and only if the distribution function of consumers’ match value has an increasing haz-
ard rate property.9 Proposition 1 differs from the following two aspects: (1) for λ < 1,
Γ(v∗) < − g(v∗)2

(1−G(v∗))
, so a higher search cost increases the symmetric equilibrium price

even when G(v) has a decreasing hazard rate property; (2) for λ > 1, Γ(v∗) > − g(v∗)2

(1−G(v∗))
,

so a higher search cost decreases the symmetric equilibrium price even when G(v) has an
increasing hazard rate property.

The intuition behind Proposition 1 stems from how the projection-biased and unbiased
consumers’ price sensitivities are affected by the increase in search cost. We first see the
case of unbiased consumers. When the future taste becomes lower (λ < 1), the unbiased
consumers follow the type-1 stopping rule. An increase in search cost reduces the number
of searchers who ultimately know both firms’ prices, weakening each firm’s incentive to
undercut the rival. Hence, the price effect becomes weaker, which motivates each firm
to increase its price.10 However, the increase in search cost affects the search effect in
the opposite direction. It first increases the price-sensitivity of the reservation value
(i.e., d|∂piv∗(p∗, p∗, s)|/ds = ∂2

pis
v∗(p∗, p∗, s) > 0). The reason is that a higher search

cost lowers consumers’ reservations for search, making them care more about a marginal
change in price. Moreover, under condition (1) in Proposition 1, a lower reservation
value v∗, caused by a higher search cost, increases g(v∗), meaning that the marginal
effect a change in the reservation value has on the fresh demand grows stronger (i.e.,
d|∂v∗(1 − G(v∗))|/ds = d|g(v∗)|/ds > 0). Therefore, an increase in search cost would,

9As mentioned by Zhou (2011), although a symmetric equilibrium price may decrease in search cost
when the match value’s PDF has a decreasing hazard rate property, the symmetric equilibrium itself will
fail to exist.

10In mathematics, we have d
(
− 1

λ

∫ v∗

v
g(v)2dv

)
/ds > 0.
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adversely, strengthen the search effect brought by a marginal change in price, which
dominates the weakened price effect, motivating firm i to reduce its price.

When the future taste becomes higher (λ > 1) and the unbiased consumers follow the
type-2 stopping rule, as in the case of consumers’ lower future tastes discussed above,
an increase in search cost reduces the number of searchers who know both firms’ prices,
therefore weakening the price effect and motivating each firm to increase its price.11

Notice that the price effect is less important here compared with the case of consumers’
lower future tastes because the future match value is more focused, so the searchers care
less about a marginal change in price.12 Regarding the search effect, an increase in search
cost now lowers the price-sensitivity of the reservation value (i.e., d|∂piv∗(p∗, p∗, s)|/ds =
−∂2

pis
v∗(p∗, p∗, s) < 0). The reason is that under the type-2 stopping rule, a higher search

cost increases consumers’ reservations for search, making them care less about a marginal
change in price. However, under condition (2) in Proposition 1, a higher reservation value
v∗, caused by a higher search cost, would lead to a large increase in g(v∗), meaning that
the change in fresh demand is sufficiently drastic when the reservation value changes
marginally (i.e., d|∂v∗(1−G(v∗))|/ds = d|g(v∗)|/ds > 0). Therefore, an increase in search
cost would, adversely, strengthen the search effect brought by a marginal change in price,
which dominates the weakened price effect, motivating firm i to reduce its price.13

For the projection-biased consumers, since they wrongly neglect their change in future
tastes, their stopping rule is consistent with the benchmark model wherein there are no
changing tastes in the first place. Therefore, a higher search cost increases the symmetric
equilibrium price. To summarize the intuition behind Proposition 1, an increase in search
cost makes both the projection-biased and unbiased consumers search less and buy earlier.
The increased fresh demand of the projection-biased consumers is less price-sensitive,
whereas that of the unbiased consumers could be more price sensitive. Proposition 1
provides the condition under which a higher search cost motivates firms to lower their
prices to capture the fresh demand of the increasingly price-sensitive unbiased consumers.

3.3 Welfare Analysis

Define the total surplus TS as
11In mathematics, we have d

(
− 1

λ

∫ v

v∗ g(v)2dv
)
/ds > 0.

12In mathematics, the coefficient of the price effect is larger than unit when λ < 1 but less than unit
when λ > 1.

13The intuition of Proposition 1 when the unbiased consumers follow the type-3 stopping rule is a
combination of the type-2 and type-3 stopping rules.
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TS∗ = αt̂s+ (1− α)ts∗,

where t̂s
∗
(v̂∗(p∗, p∗, s), s) =

∫ v

v̂∗
vdG(v) + λ

∫ v̂∗

v

(∫ v

v

vdG(x) +

∫ v

v

xdG(x)

)
dG(v)

−G(v̂∗)s,

ts∗(p∗, p∗, s) =



= ts∗1(v∗(p∗, p∗, s), s) =

∫ v

v∗
vdG(v)

+λ

∫ v∗

v

(∫ v

v

vdG(x) +

∫ v

v

xdG(x)

)
dG(v)−G(v∗)s

under the type-1 stopping rule,

= ts∗2(v∗(p∗, p∗, s), s) =

∫ v∗

v

vdG(v)+

λ

∫ v

v∗

(∫ v

v

vdG(x) +

∫ v

v

xdG(x)

)
dG(v)− (1−G(v∗))s

under the type-2 stopping rule

= ts∗3(v∗(p∗, p∗, s), v∗(p∗, p∗, s), s) =

∫ v∗

v∗
vdG(v)

+λ

∫ v

v∗

(∫ v

v

vdG(x) +

∫ v

v

xdG(x)

)
dG(v)

+λ

∫ v∗

v

(∫ v

v

vdG(x) +

∫ v

v

xdG(x)

)
dG(v)− (G(v∗) + (1−G(v∗))s

under the type-3 stopping rule.

(6)

The total surplus comprises the convex combination of the projection-biased consumers’
gross utility (t̂s∗(·)) and that of the unbiased consumers (ts∗(·)). The first and second
terms in t̂s

∗
(·) respectively represent projection-biased consumers’ gross utility from not

searching (the first term) and from searching (the second term). The third term represents
the total search cost. The explanation for ts∗(·) follows a similar logic.

How an increase in s affects the total surplus is determined by how it affects the
projection-biased and unbiased consumers, respectively. Regarding the unbiased con-
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sumers, processing comparative statics of s on ts∗(·) yields,

dts∗(p∗, p∗, s)

ds
=



= ∂v∗ts
∗1(v∗(p∗, p∗, s), s)︸ ︷︷ ︸

=0

∂sv
∗(p∗, p∗, s) + ∂sts

∗1(·) = −G(v∗)

under the type-1 stopping rule,

= ∂v∗ts
∗1(v∗(p∗, p∗, s), s)︸ ︷︷ ︸

=0

∂sv
∗(p∗, p∗, s) + ∂sts

∗2(·) = −(1−G(v∗))

under the type-2 stopping rule

= ∂v∗ts
∗3(v∗(p∗, p∗, s), v∗(p∗, p∗, s), s)︸ ︷︷ ︸

=0

∂sv
∗(·)

+ ∂v∗ts
∗3(v∗(p∗, p∗, s), v∗(p∗, p∗, s), s)∂s︸ ︷︷ ︸

=0

v∗(·) + ∂sts
∗3(·)

= −(G(v∗) + (1−G(v∗))

under the type-3 stopping rule.

(7)

A change in search cost affects the unbiased consumers’ gross utility by two channels:
first, it motivates consumers to change their reservation values in response, and second,
it changes the total loss stemming from the search. Notice that whichever stopping
rule the unbiased consumers are following, since they can correctly anticipate the future
changing tastes, they can adjust the reservation value of search in response to the change
in search cost. In other words, an increase in search cost induces an optimal adjustment
of reservation value by unbiased consumers, which does not affect the total surplus.
However, an increase in search cost induces a higher total loss, which is the only negative
impact on the total surplus.

However, the projection-biased consumers wrongly neglect their changing future taste,
so they cannot optimally adjust their reservation value when confronting an increase in
search cost. Processing comparative statics of s on t̂s

∗
(·) yields

dt̂s
∗
(v̂∗(p∗, p∗, s), s)

ds
= ∂v̂∗ts

∗(v̂∗(p∗, p∗, s), s)∂sv̂
∗(p∗, p∗, s) + ∂sts

∗(·),

where ∂v̂∗ts
∗(v̂∗(p∗, p∗, s), s) = −(1− λ)g(v̂∗)

(
v̂∗G(v̂∗) +

∫ v

v̂∗
xdG(x)

)
.

Notice that ∂v̂∗ts
∗(·) < 0(> 0) when λ < 1(> 1), meaning that when consumers’ future

taste becomes lower, the reservation value v̂∗ is above the welfare-maximizing level and
the projection-biased consumers search too much, whereas when the future taste grows
higher, the reservation value v̂∗ is below the welfare-maximizing level, and the projection-
biased consumers search too less. Following this logic, a higher search cost lowers the
reservation value v̂∗, which discourages projection-biased consumers from searching too

16



much when they should buy now (i.e., when λ < 1), which generates a welfare-improving
effect. We summarize our findings in the following proposition:

Proposition 2 suppose A1 and A2 hold. The total surplus increases with the search cost
if (1) the fraction of projection-biased consumes is sufficiently large, (2) the consumers’
future taste grows lower, and (3) the search cost is either sufficiently small or sufficiently
large. Specifically, for a sufficiently large α and for any λ < 1, there exists s and s such
that dTS∗/ds > 0 for s < s and s > s.

Proof. See Appendix.

When the future taste grows lower, a projection-biased consumer who eventually buys
the first product after exploring the second product will have reduced preferences in the
future and will regret not buying that product earlier. A higher search cost benefits
some of such kind of consumers to correct their delayed purchase, at the expense of the
remaining projection-biased consumers who still over-search and pay higher costs. The
social benefit outweighs the social loss when s is sufficiently small such that an increase
in s drastically reduces the reservation value v̂∗ such that a sufficiently large number of
projection-biased consumers are made to purchase earlier,14 or when s is sufficiently large
such that the number of projection-biased consumers who still over-search is sufficiently
small.

4 Conclusion
In everyday life, consumers often do not have easy access to product categories and
therefore cannot frequently search for their favorite products. Due to this lack of search
opportunities, consumers may change their tastes during the search process. Moreover,
while some consumers can correctly predict their taste change, others may incorrectly
project their current taste onto their future taste due to psychological failures.

In this study, we develop a search model to capture consumers’ changing tastes for
products and their projection bias when search opportunities are scarce. In the standard
search model based on Wolinsky (1986), higher search costs increase the market power
of firms, raising their equilibrium prices and reducing social welfare.

However, we found that in the presence of a change in consumer preferences, an
increase in search costs does not necessarily lead to higher prices or a decrease in social
welfare. The logic is that higher search costs reduce search and increase each firm’s
fresh demand, but if consumers correctly anticipate changes in their preferences (i.e.,
are unbiased), their increased fresh demand may be more price-sensitive. Thus, if the
proportion of unbiased consumers is sufficiently large, higher search costs may motivate

14From Lemma 3, ∂2
ss|v̂∗(p∗, p∗, s)| = −1/(1−G(v̂∗))3 < 0.
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firms to lower prices to target price-sensitive consumers. On the other hand, projection-
biased consumers are aware of changing preferences and may search too much or too
little relative to the socially optimal level. Thus, if the proportion of projection-biased
consumers is sufficiently large, and if consumers’ future preferences decline sufficiently,
high search costs can correct for the social losses due to over-search.

Conventional wisdom from standard search models suggests that changes in search
efficiency always have opposite effects on the firm and the consumers. That is, if a change
in search efficiency benefits one, it must harm the other. Our results suggest otherwise.
If the fraction of unbiased consumers is sufficiently large, improving search efficiency
can lead to a Pareto improvement, but if the fraction of projection-biased consumers is
sufficiently large, it can reduce the welfare of all parties in society.

Appendix
Derivation of the slope of the demand function.

∂Di(pi, p
∗)

∂pi
(A1)

= −α

2

{
g(v̂∗(pi, p

∗))
dv̂∗(pi, p

∗)

dpi
+

1

λ

∫ v̂∗(p∗,p∗)

v

g

(
vj +

∆

λ

)
dG(vj)

}

− 1− α

2

{
g(v∗(pi, p

∗))
dv∗(pi, p

∗)

dpi
+

1

λ

∫ v∗(p∗,p∗)

v

g

(
vj +

∆

λ

)
dG(vj)

}

+
α

2

{
G

(
v̂∗(pi, p

∗)− ∆

λ

)
g(v̂∗(pi, p

∗))
dv̂∗(pi, p

∗)

dpi
− 1

λ

∫ v̂∗(pi,p∗)

v

g

(
vi −

∆

λ

)
dG(vi)

}

+
1− α

2

{
G

(
v∗(pi, p

∗)− ∆

λ

)
g(v∗(pi, p

∗))
dv∗(pi, p

∗
j)

dpi
− 1

λ

∫ v∗(pi,p∗)

v

g

(
vi −

∆

λ

)
dG(vi)

}
.
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Proof of Lemma 2. We show that p∗ satisfies the second-order condition: ∂2Di(pi,p
∗)

∂(pi)2
pi+

∂Di(pi,p
∗)

∂pi
< 0 at pi = p∗, which is always satisfied if ∂2Di(pi,p

∗)
∂(pi)2

∣∣∣
pi=p∗

< 0. It follows that

∂2Di(pi, p
∗)

∂(pi)2

= −α

2

{
g′(v̂∗)(∂pi v̂

c∗)2 + g(v̂∗)
d∂pi v̂

∗

dpi

}
− 1− α

2

{
g′(v∗)(v∗1)

2 + g(v∗)
dv∗1
dpi

}
+

α

2

{
g(v̂∗)2∂pi v̂

c∗
(
∂pi v̂

∗ − 2

λ

)
+G (v̂∗) g′(v̂∗)(∂pi v̂

∗)2 +G (v̂∗) g(v̂∗)
dv̂∗1
dpi

}
+

1− α

2

{
g (v∗)2 v∗1

(
v∗1 −

2

λ

)
+G (v∗) g′(v∗)(v∗1)

2 +G (vc∗) g(v∗)
dv∗1
dpi

}
= −α

2

{
(1−G (v̂∗))

(
g′(v̂∗)(∂pi v̂

∗)2 + g(v̂∗)
d∂pi v̂

∗

dpi

)
− g(v̂∗)2∂pi v̂

∗
(
∂pi v̂

∗ − 2

λ

)}
− 1− α

2

{
(1−G (v∗))

(
g′(v∗)(v∗1)

2 + g(v∗)
dv∗1
dpi

)
− g (v∗)2 vc∗1

(
v∗1 −

2

λ

)}
= −α

2

{
(1−G (v̂c∗)) g′(v̂c∗) + g(v̂c∗)2

(
2

λ
− 1

)}
(A2)

− 1− α

2

(1−G(vc∗))2

(1− λG(vc∗))2

{
(1−G(vc∗))g′(vc∗) +

(1− λ)2g(vc∗)2

λ(1−G(vc∗))(1− λG(vc∗))

+
(1− λG(vc∗))g (vc∗)2

(1−G(vc∗))

(
2

λ
− 1−G(vc∗)

1− λG(vc∗)

)}

where the last equality holds by d∂pi v̂
c∗

dpi
= 0 and dvc∗1

dpi
= (1−λ)2g(vc∗)

λ(1−λG(vc∗))3
.15 It follows that

(1−G)g′ +
(1− λ)2g2

λ(1−G)(1− λG)
+

(1− λG)g2

(1−G)

(
2

λ
− 1−G

1− λG

)
> (1−G)g′ +

(1− λG)g2

(1−G)

(
2

λ
− 1−G

1− λG

)
> (1−G)g′ + g2

(
2

λ
− 1

)

where the second inequality holds by 1 − λG > 1 − G. Therefore, ∂2Di(p
∗,p∗)

∂(pi)2
< 0 holds

under A2 because the expressions in both of the curly brackets in (A2) are positive. □

15By Footnote ??, d∂pi
v̂∗(pi,p

∗)

dpi
= 0 and dv∗

1 (pi,p
∗)

dpi
=

∂v∗
1

∂v∗
∂v∗(pi,p

∗)
∂pi

+
∂v∗

1

∂pi
=

(1−λ)2g(vi−∆
λ )

λ(1−λG(vi−∆
λ ))

3

∣∣∣∣
vi=v∗(pi,p∗

j )

.
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Proof of Proposition 1. We have

dδ(v∗, v̂∗, v∗1)

ds

= −α

2

{
(1−G(v̂∗))g′(v̂∗) +

(2
λ
− 1

)
g(v̂∗)2

}dv̂∗

ds

− 1− α

2

{2

λ
g(v∗)2 + [(1−G(v∗))g′(v∗)− g(v∗)2]vc∗1

} dv∗

ds
− 1− α

2
(1−G(v∗))g(v∗)

dv∗1
ds

=
α

2

{
g′(v̂∗) +

(2
λ
− 1

) g(v̂∗)2

1−G(v̂∗)

}
+

1− α

2

{
2

λ
g(v∗)2 + [(1−G(v∗))g′(v∗)− g(v∗)2]

1−G(v∗)

1− λG(v∗)

}
1

1− λG(v∗)

− 1− α

2

(1− λ)(1−G(v∗))g(v∗)2

(1− λG(v∗))3

=
α

2

{
g′(v̂∗)− Γ(v̂∗)

}
+

1− α

2

{
g′(v∗)− Γ(v∗)

} (1−G(v∗))2

(1− λG(v∗))2

where Γ(v) ≡
(
1 − 2

λ

)
g(v)2

1−G(v)
and the second equality holds by v∗1 = 1−G(v∗)

1−λG(v∗)
, dv̂∗

ds
=

− 1
1−G(v̂∗)

, dv∗

ds
= − 1

1−λG(v∗)
, dv̂∗1

ds
= 0, and dv∗1

ds
= −(1−λ)g(v∗)

(1−λG(v∗))2
dv∗

ds
= (1−λ)g(v∗)

(1−λG(v∗))3
.

First, g′(v̂∗)− Γ̂(v̂∗) > 0 holds by A2. Second, v̂∗ and v∗ are independent of α by (2)
and (3). Thus, if g′(v∗) − Γ(v∗) < 0, dp∗

ds
< 0 holds for sufficiently small α. Finally, A2

and g′(v∗)− Γ(v∗) < 0 require Γ(v∗) < Γ(v∗), which holds if G(v∗) < 2+λ−
√
4+4λ−7λ2

4λ
. □

Proof of Proposition 2. It follows from (2) and (3) that v̂∗ is independent of λ and

dv∗

dλ
= −

∂hi(v
∗,p∗,p∗)
∂λ

∂hi(vi,p∗,p∗)
∂vi

∣∣∣
vi=v∗

=
v∗G(v∗) +

∫ v

v∗
xdG(x)

1− λG(v∗)
> 0.

dTS∗

ds
> 0 if and only if

s+ v̂∗ − λ

(
v̂∗G(v̂∗) +

∫ v

v̂∗
xdG(x)

)
︸ ︷︷ ︸

≡L(v̂∗,λ)

>
1−G(v̂∗)

αg(v̂∗)
{αG(v̂∗) + (1− α)G(v∗)}︸ ︷︷ ︸

≡R(v̂∗,v∗(λ))

.

Since dR(v̂c∗,v∗(λ))
dλ

= ∂R(v̂c∗,v∗(λ))
∂v∗

dv∗

dλ
= (1 − α)g(v∗)1−G(v̂∗)

αg(v̂∗)
dv∗

dλ
> 0, it follows that L(v̂∗, λ)

is decreasing in λ, whereas R(v̂c∗, v∗(λ)) is increasing in λ. Thus, it remains to show
L(v̂∗, λ = λ(s)) > R(v̂c∗, v∗(λ = λ(s))) and L(v̂∗, λ = 1) < R(v̂c∗, v∗(λ = 1)) to ensure
the existence of λ(s) ∈ (λ(s), 1) stated in the proposition.

We then have

L(v̂∗, λ) = (1− λ)

(
v̂∗G(v̂c∗) +

∫ v

v̂∗
xdG(x)

)
.
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At λ = 1, we have v̂∗ = v∗ and L(v̂∗, 1) = 0 < R(v̂∗, v̂∗) = 1−G(v̂∗)
αg(v̂∗)

G(v̂∗).
At λ = λ(s), we have v∗(λ(s)) = v, yielding R(v̂∗, v) = 1−G(v̂∗)

g(v̂∗)
G(v̂∗). It follows from

Lemma 3 that v̂∗ is continuous and decreasing in s and v̂∗ = v at s = 0. Moreover, we
have

L(v̂∗ = v, λ(s)) = (1− λ(s))v > R(v̂∗ = v, v∗(λ(s))) = 0.

Therefore, together with continuity of L(v̂∗, λ(s)) and R(v̂c∗, v∗(λ(s))) in v̂∗ and s, it
follows that L(v̂∗, λ(s)) > R(v̂∗, v∗(λ(s))) for sufficiently small s. □
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