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Abstract

In several markets, such as the magazine or restaurant market, firms choose

prices for a longer time horizon than product content, which can be varied

more flexibly. In this paper, we analyze the pricing and content choices

of competitive firms in such a setting. We consider a two-stage game in

which two firms first choose prices and then locations on the Hotelling line,

allowing for differences in firms’ costs. We derive the complete solution for

moderate differences in cost. At equilibrium, firms choose pure strategies

at the price stage and mix in terms of location, with the more efficient firm

locating closer to the middle. For sufficiently symmetric production costs,

any subgame-perfect equilibrium involves mixing at both stages.
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1 Introduction

Product differentiation is one of the most important and long-standing concepts in Industrial

Organization, dating back at least to Hotelling (1929) and Chamberlin (1933). Indeed,

in almost all markets, firms have the choice to offer products that are different to their

competitors’. A classic framework to study horizontal product differentiation is Hotelling’s

(1929) model, in which two firms compete for consumers distributed on a line and a consumer’s

location represents her preferences over the offered products.1 Firms choose where to locate

on the line, which is equivalent to the product variant the firm offers. This framework is the

workhorse model to study location choices by firms.

Many influential papers (e.g., d’Aspremont et al., 1979; Mullainathan and Shleifer, 2005)

consider a move order where firms first make their location choices and then compete in

prices. This move order is often motivated by the reasoning that prices may be more flexible

to adjust than product characteristics or content (e.g., Tirole, 1988), which implies that the

decision which product variant to offer is a more long-term decision than the choice which

price to set.2

However, there are markets that do not fit into this category. In these markets, product

variants can be changed more flexibly compared to prices. This holds in all markets where

prices are widely advertised and known to consumers well in advance of purchase, which

makes it costly for firms to change them. Product characteristics, on the other hand, can

only be found out by consumers shortly before the purchasing decision and vary over time,

which implies that a firm’s price level is a more long-term decision than the product variant.

Consider, for instance, the market for magazines. In this market, depending on publication

frequency, publishers weekly or bi-weekly choose the content of an issue (e.g., cover page,

1The framework for modelling vertical differentiation—i.e., firms offer variants with different qualities

and consumers have different preferences for quality—were developed later by e.g., Mussa and Rosen (1978),

Gabszewicz and Thisse (1979), and Shaked and Sutton (1982).
2In these papers, under some conditions, firms choose maximal differentiation at equilibrium, that is,

they position themselves at opposite ends of the Hotelling line, to dampen price competition.
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headlines, stories, etc.). Prices are usually very stable over time, as documented by e.g.,

Willis (2006). A similar phenomenon can be observed for restaurants. Lunch menus often

change every day or week, whereas prices in a dish category are unchanged for relatively

long time periods. Also, in the market for simple art—e.g., posters or printed t-shirts—

the poster or t-shirt variant on offer changes frequently, whereas prices are adjusted rarely.

Interestingly, as mentioned by Anderson and de Palma (1992), also the often-cited example

for Hotelling’s (1929) model with two ice-cream vendors choosing their locations on a beach

perhaps better fits to a situation of price-then-location choice as opposed to the reverse order

of moves.

In this paper, we analyze the price-then-location game in Hotelling’s (1929) classic

framework. Although—as explained in the examples above—such a competitive situation

is relevant in several markets, to the best of our knowledge, the game has not been solved

so far. As shown in previous literature—e.g., Anderson and de Palma (1992) and Aragonès

and Palfrey (2002)—the game is difficult to analyze as it does not have a pure-strategy

equilibrium. The contribution of our paper is to, first, provide a full solution for the case

in which firms are relatively asymmetric (i.e., the difference in their production costs is

sufficiently large). Interestingly, we find that the resulting subgame-perfect equilibrium

involves randomization only between location choices, but a pure-strategy equilibrium in the

pricing stage. In addition, if firms are relatively symmetric, we are able to provide bounds

on the firms’ payoffs in the location stage, which allows us to show that mixing will then

occur in both stages in equilibrium.

To be specific, we consider a price-then-location game on a Hotelling line: Two firms with

potentially different production costs simultaneously choose their prices, and, after observing

both prices, simultaneously choose their locations. Consumers are uniformly distributed on

the line. After prices and locations are set, each consumer chooses her preferred firm, taking

into account price differences and transport costs.

At the location stage, whenever firms set different prices, the equilibrium is in mixed-

strategies (unless the price difference is extreme). If price differences between firms are
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moderate, we are able to characterize the equilibrium in closed form. In this location

equilibrium, the firm setting the lower price randomizes its location close to the middle,

while the other firm randomizes close to the boundaries of the line. The firm that enters the

location stage with a competitive advantage thereby protects the center and obtains a large

demand. The firm with a disadvantage can only secure some demand by choosing locations

close to the boundaries.

For small price differences, we cannot characterize the equilibrium in closed form. However,

we show equilibrium existence and we are able to provide bounds for equilibrium demand.

In addition, we establish that the equilibrium demands are continuous. In particular, when

approaching the case with equal prices, each firms obtains half of the demand.

Equipped with these results, we are then able to fully characterize the subgame-perfect

equilibrium of the game for sufficiently asymmetric production costs between firms. We find

that it features pure strategies at the pricing stage, with the more efficient firm choosing a

lower price. The lower price provides the more efficient firm with a head start advantage for

the location stage. It randomizes its location close to the middle, while the less efficient firm

randomizes closer to both boundaries.

If firms are less asymmetric in terms of production costs, there is no equilibrium in pure

strategies at the pricing stage. Intuitively, even if firms are fully symmetric, a symmetric

pure-strategy equilibrium cannot occur. First, if prices were relatively high, a firm can

profitably deviate by reducing its price, as the demand elasticity is very high for small

price differences. Second, if prices were close to production cost, a firm can profitably

deviate by setting a higher price and then benefit from the mixed-strategy equilibrium in

the location stage, where also the disadvantaged firm obtains positive demand in expectation.

We establish the existence of a mixed equilibrium in both stages in this case.

1.1 Related Literature

Anderson and de Palma (1992) introduce our setting and find that no subgame-perfect

equilibrium exists if firms are symmetric in costs and restricted to pure strategies. In
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particular, in subgames after both firms choose moderately different prices, no pure-strategy

equilibrium exists. Our results for symmetric costs extend their findings: even when mixing

is allowed at the location stage, there is no equilibrium in pure strategies at the pricing stage.

However, we show that if firms are sufficiently asymmetric, the subgame-perfect equilibrium

exhibits pure strategies at the pricing stage.

In Aragonès and Xefteris (2012), two office-motivated politicians compete in an election

by choosing a political location on the Hotelling line. One politician has a head start in terms

of popularity. Their model resembles our second stage, with two main differences. First,

they consider quadratic instead of linear transport costs. Second and more importantly,

the main results are obtained for a sufficiently large number of voters—an assumption that

helps to obtain a concave payoff function—whereas our setting would be equivalent to that

of a single voter. Aragonès and Xefteris (2012) obtain equilibria in which the advantaged

politician locates exactly in the middle, while the disadvantaged politician mixes between

two points that are equidistant from the middle.

Aragonès and Palfrey (2002) also consider a one-stage model with location-based competition

between two politicians where one of them has a head start – analogous to the second stage

of our model. However, they focus on the case with a finite number of locations, and

determine properties of the resulting mixed-strategy equilibrium. As an extension, they

analyze continuous locations and show that only a mixed strategy equilibrium exists. For

large enough head starts, we provide a characterization of this mixed strategy equilibrium.

Additionally, we endogenize the head start by adding the pricing stage before the location

stage.

The seminal paper by d’Aspremont et al. (1979) analyzes a symmetric location-then-price

model under quadratic transport costs. This assumption leads to a pure-strategy equilibrium

in both stages, in which firms choose maximal differentiation in location. Osborne and

Pitchik (1987) consider linear transport costs in the location-then-price model and find that

only a mixed-strategy equilibrium exists in the pricing stage. Using numerical techniques,

they are able to determine that pure- and mixed strategy equilibria can exist in the first stage
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(location) and provide a characterization of them.3 In the location-then-price model, the

distinction between linear and quadratic (i.e., convex) transport costs is crucial for whether

a pure- or a mixed-strategy equilibrium exists. As we will explain, in the price-then-location

model, instead, a mixed-strategy equilibrium in the location stage emerges regardless of the

assumption on the transport costs.4

In terms of idea, Ganuza and Hauk (2006) consider a similar setting where two competing

firms first choose effort instead of price and then compete in location on the second stage.

However, they limit the decision at each stage to two possible actions. Our techniques might

prove useful in extending their setting and similar other settings to continuous action spaces.

2 Model

Consider a model with two firms i = 1, 2. In stage 1, each firm chooses a price pi ∈ R+. In

stage 2, after observing both prices, each firm chooses a location li ∈ [0, 1] on the Hotelling

line. A pure strategy of firm i is thus given by si = (pi, li(p1, p2)). A mixed strategy σi(si)

is a probability distribution over the pure strategies.

There is a mass one of consumers whose location is uniformly distributed on the Hotelling

line. The utility of a consumer located at l when buying from firm i is v− t|l− li|−pi, where

v is the gross utility from consuming the good and t > 0 is the consumer’s transport cost.5

We assume that v is large enough so that the market is covered in equilibrium.6

3Xefteris (2013) also considers the case with linear transport costs but supposes, in contrast to Osborne

and Pitchik (1987), that a firm’s profit in case it is a monopolist goes to infinity. He shows that this feature

gives rise to a pure-strategy equilibrium, in which minimal differentiation occurs.
4de Palma et al. (1985) analyze the case in which price and location is chosen at the same time. They find

that if consumers perceive firms to be sufficiently heterogeneous, all firms choose to locate at the center, and

prices are above marginal costs. Instead, if the heterogeneity between firms is only small, no pure-strategy

equilibrium exists.
5The utility specification implies that transport costs enter linearly. We discuss the case of quadratic

transport cost in Section 3.
6If t = 0, we are in the standard Bertrand model, and if t→∞, stage 2 converges to the Hotelling (1929)

model, in which prices are absent. The assumption of full market coverage is standard in the related literature;
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Therefore, consumer l buys from Firm 1 if

p1 + t|l − l1| < p2 + t|l − l2|

and from Firm 2 if the above inequality is reversed. Unless otherwise stated, an indifferent

consumer chooses each firm with equal probability.

Firms have constant marginal costs ci, where ci ≥ cj ≥ 0. The payoff of firm i is

πi = (pi − ci)Di(pi, pj, li, lj), where Di(pi, pj, li, lj) is the mass of consumers which buys

from firm i given price and location choices. Each firm maximizes its expected payoff. Our

solution concept is subgame-perfect Nash equilibrium.

3 Equilibrium Analysis - Location Choices

In what follows, we denote the price difference weighted by the inverse of transport costs by

d = 1
t
(p2 − p1). This weighted price difference serves as a head start for the firm with the

lower price, w.l.o.g. Firm 1. If the distance between locations l1 and l2 is smaller than d,

Firm 1 obtains the entire demand. If the distance is larger than d, there is a cutoff between

l1 and l2 and Firm 2 receives the demand on their side of the cutoff. Figure 1 illustrates two

cases.

Formally, if there are no ties, for d > 0 the demand function of Firm 1 is given by:

D1(l1, l2, d) =


1 for |l1 − l2| < d

l1+d+l2
2

for l2 − l1 > d

1− l1−d+l2
2

for l1 − l2 > d.

and the demand function of Firm 2 is given by 1−D1(l1, l2, d).

As the prices are given from stage 1, maximizing (expected) demand Di yields the same

solution as maximizing (expected) profit πi = (pi − ci)Di as long as pi > ci. Thus, to keep

see, e.g., d’Aspremont et al. (1979) for the location-then-price model and Aragonès and Xefteris (2012) in a

political economy setting, where the assumption means that each voter casts a vote with probability 1.
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0 1/2 1

l1 = 0.1

l1 + d = 0.3

l1+d+l2
2 = 0.6

l2 = 0.9

(a) Distance between l1 and l2 is larger than d.

0 1/2 1

l1 = 0.5

l2 = 0.6

l1 + d = 0.7

(b) Distance between l1 and l2 is smaller than d.

Figure 1 Examples for demand faced by the two firms depending on the distance between their

locations. The solid line shows which consumers are served by Firm 1; the dashed line shows Firm

2’s demand. In the examples, the difference in prices (weighted by the inverse of the transport

cost) is d = 0.2.

notation simple, we write the maximization problem in terms of demand Di. Furthermore,

D1 + D2 = 1, i.e., demand maximization is a constant-sum game and we thus obtain

uniqueness of the derived equilibrium demands.

To proceed with our analysis, we successively analyze all cases in which d ≥ 0. The

analysis is exhaustive as analogous symmetric arguments with firm labels reversed apply for

d ≤ 0.

Case 1: d = 0

If p1 = p2, i.e., d = 0, we are back to the textbook model in which l1 = l2 = 0.5 is the

unique equilibrium (this result relies on random tie-breaking). The demand of each firm is

0.5 and the profit is πi = pi−ci
2

.

Case 2: d ≥ 0.5

Firm 1 can attract all consumers by locating at l1 = 0.5. Thus, in any equilibrium

π1 = p1 − c1 and π2 = 0.7

Case 3: d ∈ [dcrit, 0.5)

For d below 0.5, Firm 1 can no longer guarantee to win by locating at l1 = 0.5. However,

if d is sufficiently large (i.e., above a threshold value denoted by dcrit), we are still able

to fully characterize the equilibrium. This equilibrium is in mixed strategies, which makes

7For d = 0.5, a tie occurs when l1 = 0.5 and l2 = 0 or l2 = 1. Yet, only consumers at 0 or 1 affected by

the tie. Thus, the mass of affected consumers is zero.
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Figure 2 Equilibrium CDFs F1(l1) and F2(l2) for d = 0.25.

the construction of the equilibrium substantially more complicated than in the previous

cases. The following proposition states the expected equilibrium profits and formula for the

threshold value dcrit.

Proposition 1. Suppose d ∈ [dcrit, 0.5), where dcrit ≈ 0.1914 is the solution to

1

2
+ (1− 2d)(

9

8
−
√

1− 2d√
1− 4d

) =
5− 10d

16
.

The equilibrium demands are D1 = 11+10d
16

and D2 = 5−10d
16

.

In the appendix, we derive the equilibrium distributions F1 and F2 in closed form. We

provide a graphical illustration in Figure 2. To construct the distributions, we set up a

differential equation for each firm that keeps the payoff change equal to zero inside the

supports. We then verify that there are no profitable deviations outside the support, such

as Firm 2 deviating to the middle. The difficult part is to guess the respective supports and

find the appropriate mass points of Firm 2.

As the figure shows, Firm 1 randomizes continuously between locations that are symmetrically

distributed around 1
2
. Firm 2 randomizes on a disconnected support which is also symmetric

around 1
2
. In particular, denote the lower bound of Firm 1’s distribution by l1 and its upper

bound by l̄1. Then, Firm 2’s lower bound is l1 − d and its upper bound is l̄1 + d, but Firm

2 does not randomize on the interval (1
2
− d, 1

2
+ d).
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We are able to fully characterize the equilibrium for d ≥ dcrit due to the following reason:

For these values of d, we can show that in equilibrium l1 + d > 1
2
− d. The inequality implies

that for each location of Firm 1 in its mixing range, Firm 2 only gets demand on one side

of the line. For instance, if Firm 2 locates to the left of the middle, then for any point in

the equilibrium distribution of Firm 1, only consumers located between 0 and the marginal

consumer buy from Firm 2, which implies that Firm 2’s demand is on a connected interval.8

Firm 2’s demand for l2 ∈ (l2,
1
2
− d) is therefore

D2(l2) =

∫ 1−d−l2

l2+d

l1 − d+ l2
2

dF1(l1).

In this case, there is a single demand segment, which allows us to explicitly solve the

differential equation and determine the equilibrium distributions.

The intuition behind the equilibrium distributions is as follows: Firm 1 can ensure a

demand of at least 1
2

+ d by locating in the middle. At equilibrium, Firm 1 extends its

expected demand further by randomizing close to the middle. The randomization of Firm

1 is symmetric around 1
2

to be unpredictable. In particular, Firm 1 deters Firm 2 from

choosing a location close to the middle and makes Firm 2 indifferent between more distant

locations. For these locations, Firm 2 faces a trade-off: locating closer to the middle increases

the chance of getting no demand (when Firm 1’s location is too close), but also increases the

demand whenever Firm 1 locates further away. The randomization of Firm 1 is chosen such

that the two effects offset each other.

The distribution of Firm 2 is also symmetric around 1
2
. Firm 2 chooses a two-fold strategy.

On the one hand, placing mass close to the middle, i.e., at 1
2
− d and 1

2
+ d, makes it

more attractive for Firm 1 to locate close to the middle. On the other hand, a continuous

randomization away from 1
2

makes it more attractive for Firm 1 to locate farther away from

1
2
. Again, the distribution of Firm 2 is such that the effects cancel each other out.

The equilibrium just described exists if Firm 1’s advantage over Firm 2 is sufficiently

large (i.e., d is high enough). When d becomes smaller (i.e., below dcrit), Firm 1 does not

8Similarly, if Firm 2 locates to the right of the middle, then for any point in the distribution of Firm 1,

only consumers located to the right of the middle buy from Firm 2.
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”protect” the middle sufficiently any longer with the distribution above, i.e., Firm 2 would

want to deviate to l2 = 0.5. This leads us to the next case.

Case 4: d ∈ (0, dcrit)

Suppose that for small d firms were to use similar distributions as in Case 3 with l1 = l2+d.

Then, in contrast to Case 3, for sufficiently small d, we would obtain l1 + d < 1
2
− d. As

Firm 2 randomizes up to 1
2
− d, this would lead to a change in the demand function of Firm

2 for l2 ∈ (l1 + d, 1
2
− d), as Firm 2 would also get a positive demand when Firm 1 is below

l2 − d. More formally, the demand for l2 ∈ (l1 + d, 1
2
− d) would be

D2(l2) =

∫ 1−d−l2

l2+d

l1 − d+ l2
2

dF1(l1) +

∫ l2−d

l2+d

(
1− l1 + l2 + d

2

)
dF1(l1),

where the second term has not been present in Case 3.

To tackle this problem, we could use the above new demand function for the indifference

condition on the given interval. If we take the same approach as before and set the derivative

of the demand function equal to zero, the change in payoff depends on F1(l2+d) and f1(l2+d)

as before. However, due to fact that there are two demand segments, it additionally depends

on F1(l2− d) and f1(l2− d). Intuitively, this requires an increased density of Firm 1 close to

the middle and thus a shortened interval on which Firm 1 randomizes.

Mathematically, this type of equation is called a linear neutral delay differential equation

(linear NDDE) or differential-difference equation - a differential equation which depends both

on past and present values of the function as well as the derivative; see, e.g., Myshkis (1951)

and Bellman and Cooke (1963) for early seminal results. Instead of an initial (boundary)

condition as in an ordinary differential equation (here F1(l1)), a history function describing

the delay term needs to be specified (here F1(l2 − d)). In our case, a natural candidate for

the history function is the distribution which forms an equilibrium for slightly larger d; i.e.,

the solution in Case 3 on the aforementioned interval [l1, l1 +d], where no delay term occurs.

Unfortunately, closed-form solutions to NDDE’s are difficult to obtain. A numerical

approach led to an oscillating density (see Figure 3 for an illustration), which is typical of

the solution to such equations; e.g., see Ladas and Ficas (1986).9 The main problem in

9Baye et al. (1994) obtain a mildly related result with an oscillation in f for the discrete all-pay auction.
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Figure 3 Illustration of an oscillating density, based on numerical results for the linear NDDE.

showing that such a profile is indeed an equilibrium is that we cannot verify that the payoff

of Firm 2 is maximized for any l2 ∈ [l1,
1
2
− d] in this case due to the lack of a closed-form

solution.

In addition, a second problem arises when d is below dcrit: Firm 1 needs more ”protection”

of the middle, i.e., Firm 1 might set a small mass point at 1
2
, which would further complicate

the derivation of a closed-form solution for some d. We thus leave the derivation of a closed-

form solution for future research.

We note that the problem which prevents us from obtaining an analytical solution—i.e.,

that the demand consists of two segments which gives rise to the NDDE—does not depend

on the linearity of the transport cost but would also occur of transport costs were e.g.

quadratic. For small values of d, the demand function of Firm 2 at a point l2 still has two

parts when considering all locations in the distribution function of Firm 1, which leads to a

NDDE. Therefore, the reason why it is difficult to construct an equilibrium in the price-then-

location game is different from that in a location-then-price game. In the latter case, as was

shown by d’Aspremont et al. (1979) and Osborne and Pitchik (1987), the demand function

is not concave with linear transport cost, but can be made concave with quadratic transport

costs. Instead, in the price-then-location game, The source of the problem of obtaining a

closed-form solution is different and occurs independently of the functional form of transport

Yet, the delay difference equation in their paper is due to the tie-breaking rule on a discrete strategy space.

We are not aware of similar results for games on continuous strategy spaces.
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Figure 4 Plot of the equilibrium demand of Firm 1 depending on d. The dashed line uses our lower

bound for d > 0, while the solid line uses the upper bound.

cost.

We proceed by providing an equilibrium existence result from the literature. In a second

step, we provide bounds on the equilibrium payoffs on the seconds stage, i.e., equilibrium

demands. These bounds will be crucial for our partial characterization of an equilibrium on

the pricing stage.

Lemma 2 (Theorem 5 in Aragonès and Palfrey, 2002). The location game admits a Nash

equilibrium in mixed strategies.

Note that whenever an equilibrium exists, all other equilibria are payoff-equivalent by the

constant-sum nature of the game. Moreover, the equilibrium payoffs satisfy Π∗1(d) = Π∗2(−d).

Endowed with the existence and uniqueness of equilibrium demands, we derive bounds

on these demands in Lemmas 7 and 8 of the appendix. To do so, we fix a (suboptimal)

strategy of one firm and compute the supremum payoff which the other firm can obtain

against that strategy. This provides an upper bound on the equilibrium demand of the rival

as we analyze a constant sum game. Figure 4 illustrates the bounds for different d.

The corresponding construction in the appendix is tedious as it uses different bounds for

different sub-regions of [−dcrit, dcrit]. Furthermore, note that the lower bound and the upper

bound converge to 1
2

as d→ 0 and to the equilibrium demands as d→ dcrit.
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The continuity at d = 0 is not obvious ex-ante. To derive it, in Lemma 9 in the appendix,

we construct a continuous distribution for the disadvantaged firm such that the support of

the distribution converges to 1
2

as d→ 0. At the same time, the derivative of each bound as

d → 0+ tends to infinity, i.e., at d = 0, the demand is extremely sensitive to small changes

in d (and hence prices). As we shall see in the next section, this property upsets a potential

pure-strategy equilibrium on the pricing stage when firms are symmetric.

4 Equilibrium Analysis - Pricing

Remember that d = 1
t
(p2 − p1) captures difference in prices weighted by the inverse of the

transport cost. From the second stage, we have demands for |d| ≥ dcrit and bounds for

|d| < dcrit. We use these cases to derive some equilibria depending on the cost parameters

c1, c2 and t.

Without loss of generality, let c2 − c1 ≥ 0. Firms maximize profits in the first stage,

given their production costs ci, the consumer’s transport cost t, and equilibrium location

strategies in the second stage. Depending on these parameters, we can characterize different

equilibria in the first stage.

Case 1: Large differences in production cost

For large enough cost differentials (or conversely, low enough transport costs), Firm 1

prices aggressively enough such that Firm 2 cannot attract any consumers when pricing

at marginal cost. Firm 1 (the firm with lower production costs) attracts all consumers by

locating in the middle at the location stage.

Proposition 3. Suppose c2 − c1 ≥ 2.1t. Then there exists a subgame-perfect equilibrium

where p1 = c2 − t
2

and p2 = c2. The equilibrium profits are π1 = p1 − c1 and π2 = 0.

Case 2: Medium differences in production cost

As cost differences become smaller, Firm 1 no longer finds it optimal to completely shut

down the demand of Firm 2. Instead, Firm 1 allows some competition by raising prices, but

still gets a larger share of the market.
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Proposition 4. Suppose c2 − c1 ∈ [xcrit, 2.1t), with xcrit < 1.35t. Then there exists a

subgame-perfect equilibrium with pure strategies on the pricing stage. In equilibrium, we

have p1 = 1
3
(2c1 + c2) + 9

10
t, and p2 = 1

3
(c1 + 2c2) + 7

10
t. Equilibrium payoffs are π1(p1, p2) =

(27t+10(c2−c1))2
1440t

and π2 = (21t−10(c2−c1))2
1440t

.

The proposition allows us to make a number of observations. First, from an economic

point of view, having an equilibrium in pure strategies on stage 1 and in mixed strategies

on stage 2 is appealing. Given the pricing decision of the rival, even if a firm could change

short-term prices before choosing the location, it would not be willing to do so. For instance,

competing restaurants keep their pricing strategies unchanged over a longer time horizon,

but vary their lunch dishes (location) over time.

Second, both firms’ prices are above marginal costs, allowing them to make positive

profits in equilibrium. Thus, in contrast to Case 1 and the standard model of Bertrand

competition, the less cost-efficient firm is now able to benefit from the differentiation in

location. In particular, large differences in costs lead to relatively small differences in prices.

For example, for t = 1, cost differences have to be between 1.35 and 2.1 to maintain an

equilibrium with price differences between 0.19 and 0.5.

Third, both firms’ profits are increasing in transport costs. Intuitively, higher transport

costs decrease the competitive pressure on the other price component. At the same time, as

transport costs increase, larger differences in production costs are necessary to maintain an

equilibrium in this range.

Fourth, from a consumer’s point of view, an increase of transport costs implies a double

burden: first, the direct burden of the higher cost and second an additional price increase

by both firms due to lower competitive pressure.

When the difference in production costs increases, price differences also increase. Thus,

more consumers choose the more efficient firm in equilibrium. A first intuition might suggest

that this increases the expected difference in location to the preferred firm. However, the

following proposition shows that this is not necessarily the case:
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Proposition 5. The expected location difference to the preferred firm is non-monotone in

the production cost difference.

Intuitively, this is driven by the effect of different prices on behavior on the location stage.

When 1
t
(p2 − p1) = d ≥ 0.5, the advantaged Firm 1 locates at l1 = 0.5 which minimizes

location difference for cases with only one firm. For d < 0.5, the second firm obtains a share

of the market as well. In this case, there are two counteracting effects. On the one hand, the

second firm might generate a new option for the consumers, thereby (weakly) reducing the

distance to their own location. On the other hand, the advantaged firm does not locate in

the middle any more, as it tries to be unpredictable for the disadvantaged firm. With some

probability, the advantaged firm remains a monopolist, but at a less attractive location.

Case 3: Small or no differences in production cost

When firms are (approximately) symmetric in terms of production cost, a pure strategy

equilibrium on the pricing stage cannot be sustained any more.

Proposition 6. Let c1 = c2 + ε. Then there exists an ε′ > 0 such that if ε ∈ [0, ε′), the game

has no subgame-perfect equilibrium in which both firms play a pure strategy in stage 1.

The most intuitive candidate for an equilibrium in pure strategies on the pricing stage

when c1 = c2 would be a symmetric pricing p1 = p2. Analyzing potential deviations from the

symmetric pricing profile is analogous to the analysis of deviations in a Bertrand game with

differentiated goods. Note that in our case the demand is not exogenously given, but taken

from the equilibrium on the second stage. The literature on differentiated Bertrand games

discusses whether symmetric prices do or do not form a Nash equilibrium and provides

conditions on the demand elasticity; see e.g., Bester (1992). In particular, for symmetric

prices to form a Nash equilibrium, the demand elasticity needs to be finite and sufficiently

small as the price difference goes to 0. In our case, for both bounds on demand function, the

demand elasticity tends to infinity as d → 0. Thus, a small downward deviation in prices

results in a large gain in demand, thereby upsetting a potential symmetric equilibrium. This

is illustrated in Figure 5, which shows that the demand increase from a marginal reduction

of p1 at p1 = p2 is very steep.
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Figure 5 Plot of Firm 1’s equilibrium demand depending on p1, for the given equilibrium play in

stage 2 and p2 = 0.65 and t = 1. The dashed graph uses the lower bound above 0.65, while the

solid graph uses the upper bound.

Let us summarize the potential equilibria in the pricing stage from this section. When

production cost differences are large, the more cost-efficient firm chooses a price that cuts

the demand of the less efficient firm to zero. For moderate differences, the more efficient firm

accommodates some demand of the less efficient firm. Both firms choose pure strategies on

the pricing stage and mixed strategies in the resulting location game. When production cost

differences are small, there is no longer a pure strategy equilibrium on the pricing stage, i.e.,

equilibria involve mixing on both stages.

5 Conclusion

In this paper, we analyze the price-then-location model in Hotelling’s classical framework.

We provide a closed-form characterization of the second stage when the price differences is

sufficiently large, which—to the best of our knowledge—has not been solved so far. Our

discussion identifies the technical problems in finding a closed-form solution when the price

difference is small. These problems are different compared to the ones that arise in the

location-then-price game and cannot be solved with changing assumptions on transport

costs. We nevertheless derive payoff bounds for that case.
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We also show that if firms are sufficiently heterogeneous, a full characterization of the

subgame-perfect equilibrium is possible. In this equilibrium, firms play a pure strategy in

the pricing stage but mix at the location stage. Instead, if firms are more symmetric, mixing

occurs at both stages in equilibrium due to a high demand elasticity for approximately

symmetric prices. A complete solution of this case would require a complete solution of the

location stage. We leave this problem for future research.

From an economic point of view, the price-then-location model is a natural description

in applications where price is a more long-term decision variable, whereas product variant

(location) can be changed more often. Examples abound, including newspapers, lunch menus

in restaurants, or the market for simple art. Arguably the timing is even more realistic in the

famous toy example of ice-cream vendors on the Hotelling beach. In line with the long-term

nature of the pricing decision, our pure-strategy solution on the pricing stage is particularly

appealing: even if firms had the option of costlessly changing their price upon observing

their rival’s price prior to the location stage, they would not do so. This is in line with

infrequent changes in prices, but frequent changes in ”location” (i.e., characteristics) for

t-shirts, magazines, or lunch menus.

Our results also provide a contribution to the political economy literature. Specifically,

our stage 2 location game is identical to the continuous strategy case of Downsian voting

with a favored candidate, first discussed in Aragonès and Palfrey (2002). They describe the

solution to the continuous case as ”a natural next step”, which has not been taken. We have

provided a closed-form characterization for the case when favoritism is sufficiently large.

In the political economy context, stage 1 could be seen as investments into building a

reputation of competence on issues with broad consensus (valence issues) as discussed in

Stokes (1963), where the politician who is considered more competent at the valence issues

gets a head start in the campaign. In that interpretation, the ”transport cost” on stage 2

represent the importance of the valence dimension to voters, relative to the distance of the

politicians to the own position. To further pursue this approach, one might consider different

cost and payoff functions for a politician.
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6 Appendix

Proof of Proposition 1: We construct equilibrium distribution functions with the following

properties: Firm 1 randomizes continuously (with a density f1) on an interval [l1, 1− l1] and

Firm 2 randomizes continuously on two intervals, [l1−d, 12 −d] and [1− (1
2
−d), 1− (l1−d)],

and places point mass at 1
2
− d and 1− (1

2
− d). For this construction to be an equilibrium,

we need to show that any point in the randomization of one firm is a best response to the

distribution chosen by the other firm.

Moreover, each of the constructed distributions is symmetric around 1
2
. Thus, it suffices

to check payoffs for locations such that either li ≥ 1
2

or li ≤ 1
2
, as the other half of the interval

follows by symmetry.

Finally, recall that for pi > ci maximizing expected demand is equivalent to maximizing

profit in the second stage, and we therefore write the maximization problems in terms of

demand.

Distribution of Firm 1

Let us write down the demand of Firm 2 from choosing a strategy l2 ∈ [l2,
1
2
− d]. If

l1 ≥ 1
2
− 2d, Firm 2 only obtains a positive demand if l1 > l2 + d. In this case, we obtain

D2(l2) =

∫ 1−d−l2

l2+d

f1(l1)
l1 − d+ l2

2
dl1

We further know that the demand of Firm 2 has to be constant for every l2 contained in

its randomization. Thus:

D′2(l2) =

∫ 1−d−l2

l2+d

1

2
f1(l1)dl1 − l2f1(l2 + d) = F1(1− d− l2)− F1(l2 + d)− 2l2f1(l2 + d) = 0

Using F1(1− d− l2) = 1 and rearranging, we obtain the following differential equation:

f1(l2 + d) =
1− F1(l2 + d)

2l2
.

Let l1 = l2 + d. Solving the differential equation yields:
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F1(l1) = 1 +
c√

2d− 2l1

for l1 ∈ [l1,
1
2
]. Imposing the boundary condition F1(

1
2
) = 1

2
, we find the constant c and

obtain

F1(l1) = 1−

√
1
2
− d

2
√
l1 − d

.

In the next step, we calculate l1 as the value of l1 s.t. F (l1) = 0. We obtain l1 = 6d+1
8

.

This implies that the inequality l1 ≥ 1
2
− 2d is fulfilled for all d ≥ 3/22. Since 3/22 < dcrit,

our starting assumption holds for all d > dcrit. Summing up the previous calculations and

imposing symmetry, we obtain the distribution

F ∗1 (l1) =



0 for l1 ≤ 6d+1
8

1−
√

1
2
−d

2
√
l1−d

for l1 ∈ (6d+1
8
, 1
2
)

√
1
2
−d

2
√
1−l1−d

for l1 ∈ [1
2
, 1− 6d+1

8
)

1 for l1 ≥ 1− 6d+1
8
.

Now consider Firm 2’s demand given F ∗1 —denoted by D2(l2|F ∗1 )—for any l2 ∈ [0, 1
2
]. We

need to distinguish cases depending on the value of d. First suppose l1 = 6d+1
8
≥ 1

2
− d, or

equivalently d ≥ 3
14

. In this case, Firm 2 can only obtain a positive demand if l1 > l2 + d.

We obtain

D2(l2|F ∗1 ) =



∫ 1
2
1+6d

8

√
1
2
−d

4(l1−d)
3
2

l1+l2−d
2

dl1 +
∫ 7−6d

8
1
2

√
1
2
−d

4(1−l1−d)
3
2

l1+l2−d
2

dl1 for l2 ∈ [0, 1−2d
8

]∫ 1
2

l2+d

√
1
2
−d

4(l1−d)
3
2

l1+l2−d
2

dl1 +
∫ 7−6d

8
1
2

√
1
2
−d

4(1−l1−d)
3
2

l1+l2−d
2

dl1 for l2 ∈ (1−2d
8
, 1
2
− d]

max{
∫ 7−6d

8

l2+d

√
1
2
−d

4(1−l1−d)
3
2

l1+l2−d
2

dl1, 0} for l2 ∈ (1
2
− d, 1

2
].

The first interval consists of locations such that Firm 2 wins with positive probability

against any location in the randomization of Firm 1. The second interval with l2 ∈ [1−2d
8
, 1
2
−
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d] describes Firm 2’s demand in the support of its equilibrium strategy. The third interval

considers higher locations, where a location of Firm 2 close to 1
2

leads to a payoff of zero.

For d ∈ [dcrit, 3
14

), a location of Firm 2 which is close to 1
2

entails a positive probability

to win if Firm 1 chooses a location close to l1, as l1 is now smaller than 1
2
− d. This leads to

a fourth interval in the demand function:

D2(l2|F ∗1 ) =



∫ 1
2
1+6d

8

√
1
2
−d

4(l1−d)
3
2

l1+l2−d
2

dl1 +
∫ 7−6d

8
1
2

√
1
2
−d

4(1−l1−d)
3
2

l1+l2−d
2

dl1 for l2 ∈ [0, 1−2d
8

]∫ 1
2

l2+d

√
1
2
−d

4(l1−d)
3
2

l1+l2−d
2

dl1 +
∫ 7−6d

8
1
2

√
1
2
−d

4(1−l1−d)
3
2

l1+l2−d
2

dl1 for l2 ∈ (1−2d
8
, 1
2
− d]∫ 7−6d

8

l2+d

√
1
2
−d

4(1−l1−d)
3
2

l1+l2−d
2

dl1 for l2 ∈ (1
2
− d, 14d+1

8
]∫ l2−d

1+6d
8

√
1
2
−d

4(l1−d)
3
2

(1− l1+l2+d
2

)dl1 +
∫ 7−6d

8

l2+d

√
1
2
−d

4(1−l1−d)
3
2

l1+l2−d
2

dl1 for l2 ∈ (14d+1
8
, 1
2
]

We first compute Firm 2’s demand for l2 ∈ [1−2d
8
, 1
2
− d] and then show that it is weakly

higher than demand for all other l2 ≤ 1
2
. Solving the integrals and simplifying, we get

D2(l2|F ∗1 ) =

√
1
2
− d

4
√

1
2
− d

(
1

2
− d− l2)−

√
l2

4
√
l2

(l2 + d− d− l2)

+

√
1
2
− d

4
√

1− d− 7−6d
8

(
7− 6d

8
− l2 + 3d− 2)−

√
1
2
− d

4
√

1− d− 1
2

(
1

2
− l2 + 3d− 2)

=
1

8
(1− 2d− 2l2) +

1

16
(3− 6d+ 4l2)

=
5

16
(1− 2d)

which is constant in l2.

We now move on to show that Firm 2’s demand in the support of its strategy is higher

than for all possible deviations. The demand is increasing on the first interval as the number

of consumers served increases for any l1 in the support of Firm 1. On that interval, the

maximum 5
16

(1− 2d) is thus reached at l2 = 1−2d
8

.

Demand on the third interval, for l2 >
1
2
− d can be rewritten to
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D2(l2|F ∗1 ) =

√
1
2
− d

4
√

1− d− 7−6d
8

(
7− 6d

8
− l2 + 3d− 2

)
−

√
1
2
− d

4
√

1− 2d− l2
(4d− 2)

=

√
1
2
− d

8

(
8d− 4√

1− l2 − 2d
+

9− 18d+ 8l2√
2− 4d

)
which is strictly decreasing in l2 for d ∈ [dcrit, 3

14
).

Recall that the fourth interval exists only if d < 3
14

. To show that Firm 2 does not have

a profitable deviation in this interval, we show that its demand in this interval is increasing

in l2 and that the demand at l2 = 1
2

is weakly below its equilibrium demand. The partial

derivative of Firm 2’s demand in the fourth interval is equal to

D′2(l2|F ∗1 ) =

√
1
2
− d(1− 2d)

4(1− l2 − 2d)
3
2 (l2 − 2d)

3
2

((1− l2 − 2d)
3
2 − (l2 − 2d)

3
2 )

which is greater than 0 in the given interval. To see this, first note that the fraction is

positive for any l2 > 2d, which is true as d < 3
14

. The difference in the brackets is positive if

l2 ∈ [2d, 1
2
) and d < 1

4
, which finishes the argument. We now check that the demand from

deviating to l2 = 1
2

is below 5
16

(1− 2d). The deviation demand can be written as

D2(
1

2
|F ∗1 ) =

1

2
+ (1− 2d)(

9

8
−
√

1− 2d√
1− 4d

) <
5

16
(1− 2d)

This inequality holds for all d > dcrit ≈ 0.1914.

Distribution of Firm 2

We start by writing down the demand of Firm 1, D1, from choosing a strategy inside its

support, i.e., l1 ∈ [l2 + d, 1
2
], assuming Firm 2 also places mass at 1

2
− d and 1

2
+ d and that

l1 ≥ 1
2
− 2d:
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D1(l1) =

∫ l1−d

l2

f2(l2)(1−
l1 + l2 − d

2
)dl2 +

∫ 1
2
−d

l1−d
f2(l2)dl2 +m2(

1

2
− d) +m2(

1

2
+ d)

l1 + d+ l2
2

+

∫ 1−l2

1
2
+d

f2(l2)
l1 + d+ l2

2
dl2

Using m2(
1
2

+ d) = 1
2
−
∫ 1

2
−d

l2
f2(l2)dl2, we take the derivative and set it equal to zero, as

Firm 1’s demand needs to be constant on the interval on which it randomizes.

D′1(l1) =

∫ 1−l2

1
2
+d

1

2
f2(l2)dl2−

∫ l1−d

l2

1

2
f2(l2)dl2−f2(l1−d)(l1−d)+

1

2

(
1

2
−
∫ 1

2
−d

l2

f2(l2)dl2

)
= 0

This can be simplified to

D′1(l1) =
1

4
−
∫ l1−d

l2

1

2
f2(l2)dl2 − f2(l1 − d)(l1 − d) = 0

Solving the integral, we get

D′1(l1) =
1

4
− 1

2
F2(l1 − d) +

1

2
F2(l2)− f2(l1 − d)(l1 − d) = 0

Using the boundary condition F2(l2) = 0 gives us the following differential equation

f2(l1 − d) =
1
2
− F2(l1 − d)

2(l1 − d)

Let l2 = l1 − d to get

f2(l2) =
1
2
− F2(l2)

2l2

Solving the differential equation gives us

F2(l2) =
1

2
+

c√
l2
.

Using the boundary condition F2(l2) = F2(l1−d) = F2(
1−2d
8

) = 0, we can find c = −
√
1−2d
4
√
2

.

This gives us F2(l2) on [1−2d
8
, 1
2
− d):
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F2(l2) =
1

2
−
√

2− 4d

8
√
l2

.

Then find m2(
1
2
− d) = 1

2
−
∫ 1

2
−d

1−2d
8

f2(l2)dl2 = 1
4

or alternatively say F2(
1
2
− d) = 0.5.

Summing up the previous calculations and imposing symmetry, we obtain

F ∗2 (l2) =



0 for l2 ≤ 1−2d
8

1
2
−
√
2−4d
8
√
l2

for l2 ∈ (1−2d
8
, 1
2
− d)

1
2

for l2 ∈ [1
2
− d, 1

2
+ d)

1
2

+
√
2−4d

8
√
1−l2

for l2 ∈ [1
2

+ d, 1− 1−2d
8

)

1 for l2 ≥ 1− 1−2d
8
.

Using Firm 2’s distribution, we can now calculate Firm 1’s demand, D1(l1|F ∗2 ), and show

that it is constant on the support of its mixed strategy, [6d+1
8
, 1 − 6d+1

8
]. Firm 1’s demand

for l1 in (1+6d
8
, 0.5] is:10

D1(l1|F ∗2 ) =

∫ l1−d

1−2d
8

√
2− 4d

16l
3
2
2

(1− l1 − d+ l2
2

) dl2 +

∫ 1
2
−d

l1−d

√
2− 4d

16l
3
2
2

dl2 +m2(
1

2
− d)

+m2(
1

2
+ d)

l1 + d+ 1
2

+ d

2
+

∫ 7+2d
8

1
2
+d

√
2− 4d

16(1− l2)
3
2

l1 + d+ l2
2

dl2.

Solving the integrals and using m2(
1
2

+ d) = 1
4
, this can be simplified to

D1(l1|F ∗2 ) =
1

32

(
17 + 6d− 8l1 −

4
√

2− 4d√
l1 − d

)
+

1

8

√
2− 4d√
l1 − d

+
2l1 + 4d+ 1

16
+

3 + 6d+ 4l1
32

=
11 + 10d

16

10Here we use random 50− 50 tie-breaking for l1 = 0.5.
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Consider Firm 1’s demand for l1 ∈ [0, 1
2
], given F ∗2 . We need to distinguish two cases

depending on the value of d. First, suppose 1
2
− 2d < 0, or equivalently, d > 1

4
. In this case,

for any l1 ≤ l1, Firm 1 wins for sure against all l2 <
1
2
. We obtain

D1(l1|F ∗2 ) =


1
2

+ 1
4

l1+d+ 1
2
+d

2
+
∫ 7+2d

8
1
2
+d

√
2−4d

16(1−l2)
3
2

l1+l2+d
2

dl2 for l1 ∈ [0, 6d+1
8

)

11+10d
16

for l1 ∈ [6d+1
8
, 1
2
].

The demand is increasing on [0, 6d+1
8

] (and continuous on the boundaries) as the second

and third summand are strictly increasing in l1 and first summand is constant.

For d ∈ [dcrit, 1
4
), there is a third interval: for small l1, Firm 1 does no longer win with

certainly anymore if l2 <
1
2
. We obtain

D1(l1|F ∗2 ) =



∫ l1+d
1−2d

8

√
2−4d

16l
3
2
2

dl2 +
∫ 1

2
−d

l1+d

√
2−4d

16l
3
2
2

l1+d+l2
2

dl2 + 1
4

l1+d+ 1
2
−d

2
+ x for l1 ∈ [0, 1

2
− 2d)

1
2

+ x for l1 ∈ [1
2
− 2d, 6d+1

8
)

11+10d
16

for l1 ∈ [6d+1
8
, 1
2
],

where x = 1
4

l1+d+ 1
2
+d

2
+
∫ 7+2d

8
1
2
+d

√
2−4d)

16(1−l2)
3
2

l1+l2+d
2

dl2 is the payoff Firm 1 gets for l2 > 1
2
.

Again, for l1 ∈ [0, 6d+1
8
− 2d), the demand is increasing as every summand is non-decreasing

and some summands are increasing. The demand is continuous at 6d+1
8

, which completes the

proof.
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Demand Bounds for Small d

We now derive the upper and lower bounds used in Figures 4 and 5, for small d = p2−p1
t

,

i.e., for small differences in prices, or - equivalently - for large transport costs t.

Lemma 7. The equilibrium demand of the advantaged firm is bounded from below by

D∗1(d) = D∗2(−d) ≥



1 for d ≥ 0.5

11+10d
16

for d ∈ [dcrit, 0.5)

1− 1
16

(1− 2d)(5 +m1(2 +m1)) for d ∈ [d′, dcrit)

1− 3−
√

d(d3−6d+6)−2d(2+d)

2(3+d)
for d ∈ [0, d′)

with m1 = 53(dcrit)3 − 53d3 and d′ ≈ 0.136069.

Proof. To derive a lower bound on the demand the advantaged firm (for the rest of the proof

Firm 1 w.l.o.g.) can achieve, we derive the supremum demand Firm 2 can get, given some

strategy of Firm 1. By the constant sum property of the game, this automatically gives us

a lower bound on the equilibrium demand of Firm 1. We vary the distribution of Firm 1

depending on d.

We start with finding a payoff bound for d slightly below dcrit. Remember, that at

d = dcrit deviating to l2 = 1
2

becomes optimal for Firm 2. Firm 1 can make it less attractive

for Firm 2 to play l2 = 1
2

by placing mass at 1
2

itself. Suppose Firm 1 puts mass m1 > 0 on

l1 = 1
2

and otherwise randomizes in a similar way as in the equilibrium for larger d, described

in Proposition 1. Such a mass point m1 needs to be sufficiently high for positive d to make

the deviation to l2 = 1
2

unattractive, and converge to zero for d → dcrit. One point which

fulfills this condition is m1 = 53(dcrit)3 − 53d3 ≈ 0.371 − 53d3. This yields the following

distribution for Firm 1:
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F1(l1) =



0 for l1 ≤ l1

1−
√

1
2
−d(1+m1)

2
√
l1−d

for l1 ∈ (l1,
1
2
)

√
1
2
−d(1+m1)

2
√

(1−l1)−d
for l1 ∈ [1

2
, 1− l1)

1 for l1 ≥ 1− l1.

with l1 = 1
2
((1 − 2d)(m1

2
+ 1

2
)2 + 2d) and m1 = 53(dcrit)3 − 53d3. The corresponding

demand faced by Firm 2 when playing a distribution between l2 and 1
2
− d for l2 <

1
2

(and

symmetrically for l2 >
1
2
) is then given by

D2(l2|F1(l1)) =

∫ 1
2

l2+d

−

√
1
2
− d(1 +m1)

4(l1 − d)3/2
l1 − d+ l2

2
dl1 +

m1

1
2
− d+ l2

2
+

∫ 1−l1

1
2

−

√
1
2
− d(1 +m1)

4(1− l1 − d)3/2
l1 − d+ l2

2
dl1

=
1

16
(1− 2d)(5 +m1(2 +m1))

We need to check for which d this is better for Firm 2 than playing l2 = 1
2

for sure. The

demand that can be obtained by this deviation is given by

D2(l2 =
1

2
|F1(l1)) =2

∫ 1
2
−d

l1

−

√
d− 1

2
(m1 + 1)

4(d− l1)3/2

(
1−

(
l1 + d+ 1

2

)
2

)
dl1

=
13 + (1− 2d)m1(m1 + 2)− 18d

8
− (1− 2d)(m1 + 1)

√
1− 2d√
1− 4d

which is smaller than the demand Firm 2 can obtain by choosing any l2 ∈ (l2,
1
2
− d).

We now try improve the lower bound on the equilibrium demand of Firm 1 for very small

d to obtain the last part of our bound. We want to find a distribution such that Firm 2

29



is indifferent between playing l2 and l2 = 1
2
. Suppose Firm 1 plays a uniform distribution

around 1
2

with continuous support on (1
2
− a(d), 1

2
+ a(d)), and mass d

2
on the edges of the

support. Such mass placed at the ends of the distribution ensures that Firm 2 does not want

to play a location l2 ∈ (l2,
1
2
). This distribution is formally described by

F1(l1) =


0 for l1 ∈ [0, 1

2
− a)

2a+d−1
4a

+ (1−d)
2a

l1 for l1 ∈ (1
2
− a, 1

2
+ a)

1 for l1 ∈ (1
2

+ a, 1]

with a =

√
d(d3−6d+6)−d

d+3
.

We derive a(d) such that Firm 2 is indifferent between playing l2 and 1
2
. In the calculation,

we assume that ties are broken in favor of player 2 at l2 as we are interested in the supremum

payoff player 2 can get.

In particular, Firm 2’s demand when playing l2 = 1
2

is given by

D2(l2 =
1

2
|F1(l1)) =2

(∫ 1
2
+a

1
2
+d

1− d
2a

l1 − d+ 1
2

2
dl1 +

d

2

1
2

+ a− d+ 1
2

2

)

=
a2(d+ 1)− 2a(d− 1)− d (d2 − 3d+ 2)

4a

At the same time, Firm 2’s demand when playing l2 = l2 = l1−d against the distribution

above is given by

D2(l2 =
1

2
− a− d|F1(l1)) =

(
−a− d+ 1

2

)
+
(
1
2
− d
)

2

Setting these two demands equal and re-arranging yields a =

√
d(d3−6d+6)−d

d+3
, which yields

the second part of the demand bound

D2(l2 =
1

2
|F1(l1)) =

3−
√
d (d3 − 6d+ 6)− 2d(2 + d)

2(3 + d)
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To finish the proof, we need to verify that it is not better for Firm 2 to play some

l2 ∈ (l2, l2 + 2d). Firm 2’s demand for these l2, given Firm 1’s distribution is given by

D2(l2|F1(l1)) =

∫ 1
2
+a

l2+d

1− d
2a

l1 − d+ l2
2

dl1 +
d

2

(1
2

+ a)− d+ l2

2

=
(1− d)(2a− 2d− 2l2 + 1)(2a− 2d+ 6l2 + 1)

32a
+
d
(
1
2

+ a− d+ l2
)

4

Solving the first order condition yields l′2 = 1
6

(
1− 2a

d−1 − 2d
)

at which demand is maximized.

We check for which d a deviation to l′2 > l2 would be profitable. Note that as D2(l2|F1(l1))

jumps upwards at l2 = l2, we need to compare Firm 2’s demand given these two strategies

and cannot simply find the d for which l′2 < l2. Using a as derived above, we derive Firm 2’s

demand of playing l2 = l′2, which yields

D2(l
′
2|F1(l1)) =

1

24(d− 1)(d+ 3)
(
d−

√
d (d3 − 6d+ 6)

)×
(

9 + d6 + 12d5 − 12d4 − 66d3 − 4
(

10
√
d (d3 − 6d+ 6) + 9

)
d+

12
√
d (d3 − 6d+ 6) + 94d2 + 14

√
d7 (d3 − 6d+ 6) + 12

√
d5 (d3 − 6d+ 6)

)
Finally, we check for which d, Firm 2’s demand at l2 = l2 is higher than its demand from

playing l′2, which is true for d < 0.145271. For small d, Firm 1’s payoff is therefore bounded

from below by

D1(d) ≥ 1−D2(l2|F1(l1)) = 1−
3−

√
d (d3 − 6d+ 6)− 2d(2 + d)

2(3 + d)

It is straightforward to verify that given this strategy, we have limd→0+ D
′
1(d) = ∞. As

a last step, we calculate that the two demand bounds intersect at d ≈ 0.136069.

Lemma 8. The equilibrium demand of the advantaged firm is bounded from above by
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D∗1(d) = D∗2(−d) ≤



1 for d ≥ 0.5

11+10d
16

for d ∈ [ 3
22
, 0.5]

3
8

+ 9d
4

+ (1
4

+ d
2
)
√

3 + 2
2d−1 for d ∈ [0.0522, 3

22
]

1
2
− 3

4
d1.5 + d

2
+ 3

4

√
d for d ∈ [0, 0.0522]

Proof. We do the reverse to derive the upper demand bound. We calculate the supremum

demand Firm 1 can get for a given strategy of Firm 2. As with the lower bound, what is a

(reasonably) good strategy for Firm 2 depends on d.

The case with d ≥ dcrit is the equilibrium case described above. For d < dcrit, suppose

Firm 2 uses a similar strategy as in Proposition 1, i.e., placing probability mass on 1
2
− d

(and symmetrically on 1
2

+d), with the same randomization below 1
2
−d. The corresponding

distribution becomes

F2(l2) =



0 for l2 ≤ 1−2d
8

1
2
−
√
2−4d
8
√
l2

for l2 ∈ [1−2d
8
, 1
2
− d)

1
2

for l2 ∈ [1
2
− d, 1

2
+ d)

1
2

+
√
2−4d

8
√
1−l2

for l2 ∈ [1
2

+ d, 1− 1−2d
8

)

1 for l2 ≥ 1− 1−2d
8
.

For d ≥ 3
22

, we obtain 1−2d
8
≥ 1

2
− 3d, i.e., the payoff of Firm 1 is computed as in

Proposition 1. When d is smaller, l2 would be below 1
2
− 3d. This would change the payoff

computation for Firm 1 as for l1 below 1
2
− 2d, Firm 1 would not obtain a demand of 1

against l2 = 1
2
− d. In this case, Firm 2 places mass on 1

2
− 3d (and 1

2
+ 3d) as well.11 This

leads to the distribution:

11Note that π1(l1) jumps upward at l1 = 1
2 − 2d for all d ∈ [0, 3

22 ], i.e., Firm 1 has no profitable downward

deviation.
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F2(l2) =



0 for l2 ≤ 1
2
− 3d

1
2
−
√
2−4d
8
√
l2

for l2 ∈ [1
2
− 3d, 1

2
− d)

1
2

for l2 ∈ [1
2
− d, 1

2
+ d)

1
2

+
√
2−4d

8
√
1−l2

for l2 ∈ [1
2

+ d, 1− 1
2

+ 3d)

1 for l2 ≥ 1
2

+ 3d.

The maximal demand that Firm 1 can get against this distribution is given in the third

case of the demand bound.

Finally, we provide a better bound for very small d. Suppose Firm 2 randomizes uniformly

on the interval l2 ∈ [1
2
−
√
d, 1

2
+
√
d]. The best Firm 1 can do is to put all mass on l1 = 1

2
,

which leads to the demand in the fourth case of the demand bound. For d ∈ [0, 0.0522),

straightforward computation shows that this is a better strategy for Firm 2 than the one

described above.

Lemma 9. The equilibrium payoff is continuous at d = 0.

Proof. At d = 0, the equilibrium payoff is equal to 0.5. Firm 1 can guarantee a payoff of

0.5 + d for any d ≥ 0 by choosing l1 = 0.5. As such, it suffices that as d → 0+, Firm 2

has a strategy that guarantees a limit payoff of 0.5. It is readily verified that the uniform

distribution on l2 ∈ [1
2
−
√
d, 1

2
+
√
d] which we used for the payoff bound guarantees a limit

payoff of 1
2

of Firm 2 as d→ 0.

Proof of Propositions 3 and 4: Suppose a pricing equilibrium exists in which d ∈ [dcrit, 0.5).

In this case, payoffs are given by the following functions:

π1(p1, p2) = (p1 − c1)
(

11

16
+

10

16

p2 − p1
t

)
π2(p1, p2) = (p2 − c2)

(
5

16
− 10

16

p2 − p1
t

)
Note that each πi is concave in pi. Maximizing the respective functions and solving for

the Nash equilibrium yields prices p∗1 = 1
3
(2c1 + c2) + 9

10
t, and p∗2 = 1

3
(c1 + 2c2) + 7

10
t.
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To check for which combinations of cost parameters c1, c2 and t the difference in prices is

indeed in the region specified above, we calculate d∗ =
p∗2−p∗1

t
. The resulting d∗ = c2−c1

3t
− 1

5

is increasing in Firm 1’s cost advantage c2 − c1 and decreasing in transport costs t. For

c2 − c1 ∈ [(3
5

+ 3dcrit)t, 21
10
t), we get that d∗ ∈ [dcrit, 0.5).

If, instead, c2 − c1 ≥ 21
10
t, p∗2 would be below c2, which would yield a negative payoff.

Instead, any p2 ≥ c2 leads to a payoff of 0 and, in particular, p2 = c2 is optimal for Firm

2. To determine the best response of Firm 1, we can use the upper bound on its payoff

for small d to obtain that the solution to its optimization problem is p1(p2 = c2) = c2 − t
2
.

For the (weakly lower) real payoff when d is small, the same solution p∗1 is optimal. Firm

2 then has no profitable deviation since any lower price would lead to a non-positive profit

and any larger price would not yield a positive market share in stage 2. Therefore, the

prices p1 = c2 − t
2

and p2 = c2 constitute an equilibrium for c2 − c1 ≥ 21
10
t, which establishes

Proposition 3.

We next turn to the range c2 − c1 ∈ [(3
5

+ 3dcrit)t, 21
10
t). For these cost parameters, the

transport cost-weighted difference in equilibrium prices, d∗ =
p∗2−p∗1

t
, is indeed in the range d ∈

[dcrit, 0.5), that is, the range for which equilibrium prices maximize profits given the assumed

equilibrium behavior in the location stage. To establish that the profit maximizing prices, p∗1

and p∗2, indeed form an equilibrium, we need to check that no firm has a profitable deviation

in the pricing stage. We start by checking whether Firm 2 has a profitable deviation. Note

that any potentially profitable deviation for Firm 2—the firm with the higher price—will

be to a lower price. This might result in d < dcrit, a range for which we only have bounds

on the demands. We therefore use an upper bound for Firm 2’s demand for differences in

prices below dcrit. The range we specify here gives thus a bound for the cost parameter

combinations of c1, c2 and t for which the prices specified in Proposition 4 indeed form an

equilibrium.

We take simple new demand bound for Firm 2 in the form of the straight line connecting

0.5 and Firm 2’s demand at d = dcrit, which can be described by D2(d) ≤ 0.5 − 1.60467d.

Replacing d = p2−p1
t

, substituting Firm 1’s equilibrium price and then maximizing this new
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profit bound yields a best response price pdev2 = 1
3
(c1 + 2c2) + 0.605795t, which is about 0.1

below p∗2. Firm 2’s deviation profit when playing this price against Firm 1’s equilibrium

price is then given by

π1(p
∗
1, p

dev
2 ) ≈ (t− 0.55(c2 − c1))2

1.698t
,

which is smaller than the equilibrium payoff for c2− c1 > ∆ccrit ≈ 1.34819t. This bounds

the cost parameter combinations from below for which prices in Proposition 4 are indeed

optimal. It can easily be verified that Firm 2 cannot gain by deviating to an even smaller

p2 ≤ p∗1, even when assuming that Firm 2 would gain full demand in this case. As a last

step, it is easy to verify that Firm 1 has no profitable deviation using the upper demand

bound described in Lemma 8, which establishes the equilibrium for c2 − c1 ∈ [∆ccrit, 2.1t)

and completes the proof of Proposition 4.

Proof of Proposition 5: Denote the expected location difference to the preferred firm by

E[∆(l)]. We have to distinguish cases based on whether one firm caters to the entire market

or whether the market is split between two firms (as indicated by the two indicator functions).

W.l.o.g. we take l2 ≤ 1
2

again (multiplying the respective probabilities by 2 due to symmetry).

This yields:

E[∆(l)] =1{l1−l2<d}

( ∫ 1
2
−d

l2

∫ l1

l1

(
l21
2

+
(1− l1)2

2

)
2f2(l2)f1(l1)dl1dl2+

2m2(
1

2
− d)

∫ l1

l1

(
l21
2

+
(1− l1)2

2

)
f1(l1)dl1

)
+

1{l1−l2>d}

( ∫ 1
2
−d

l2

∫ l1

l1

(
l22
2

+
(l∗2 − l2)2

2
+

(l1 − l∗2)2

2
+

(1− l1)2

2

)
2f2(l2)f1(l1)dl1dl2+

2m2(
1

2
− d)

∫ l1

l1

(
l22
2

+
(l∗2 − l2)2

2
+

(l1 − l∗2)2

2
+

(1− l1)2

2

)
f1(l1)dl1

)

=

∫ 1
2
−d

l2

∫ l2+d

l1

(
l21
2

+
(1− l1)2

2

)
2f2(l2)f1(l1)dl1dl2+
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2m2(
1

2
− d)

∫ 1
2

l1

(
l21
2

+
(1− l1)2

2

)
f1(l1)dl1+∫ 1

2
−d

l2

∫ l1

l2+d

(
l22
2

+
(l∗2 − l2)2

2
+

(l1 − l∗2)2

2
+

(1− l1)2

2

)
2f2(l2)f1(l1)dl1dl2+

2m2(
1

2
− d)

∫ l1

1
2

(
l22
2

+
(l∗2 − l2)2

2
+

(l1 − l∗2)2

2
+

(1− l1)2

2

)
f1(l1)dl1

=
37d2

64
− 17d

64
+

61

256

where l∗2 = l1−d+l2
2

is the cutoff value beyond which the consumer will go to Firm 1. We

update the integral bounds on the distribution of Firm 1 to resolve the indicator functions.

The total expected location difference is a convex function of d, in the relevant range d ∈

(dcrit, 1
2
). The minimum of the expected location difference is reached at dmintc = 17

74
≈

0.22973. With d→ 1
2

the expected location difference converges to 0.25.

Proof of Proposition 6: Suppose first ε = 0, i.e., c1 = c2 = c. There is no equilibrium with

c > min{p1, p2} as this would lead to negative profits. We distinguish the following cases:

Case 1: p1 = p2

(i) If p1 = p2 = c, both firms make 0 profits. Yet, Firm 1 could deviate and choose

p1 = c+ 0.25t resulting in d = p2−p1
t

= 0.25 with a positive demand and a positive profit for

Firm 1.

(ii) Suppose p1 = p2 > c. Denote the lower bound of Firm 1’s demand by D1LB
. From

the proof of Lemma 7, we know that limd→0+ D
′
1LB

(d) =∞ ≤ limd→0+ D
′
1(d). Thus, Firm 1

has a profitable deviation by slightly decreasing its price.

Case 2: p1 6= p2

Suppose there is an equilibrium with different prices, without loss of generality p2 > p1.

We write D1(p1, p2, t) = 1
2

+∆. Then each firm prefers the own price over matching the price

of the rival and getting half the market. Thus:

p1(
1

2
+ ∆) ≥ p2

2
and

p1
2
≤ p2(

1

2
−∆),
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where the first inequality is the incentive constraint of Firm 1 and the second inequality is

the incentive constraint of Firm 2. Rewritten in terms of ∆, we have

∆ ≥ p2
2p1
− 1

2
and ∆ ≤ 1

2
− p1

2p2

Thus,
1

2
− p1

2p2
≥ p2

2p1
− 1

2
⇐⇒ (p1 − p2)2 ≤ 0,

which leads us to p1 = p2, a contradiction.

The arguments extend in a straightforward way when c1 = c2+ε for ε is sufficiently small:

following the same steps, the difference in prices is of order ε. This leads to a contradiction

for small enough ε due to a large demand elasticity for approximately equal prices.
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