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Abstract

A large and growing body of empirical literature seeks to estimate state-dependent impulse responses

of output growth to financial shocks. However, state-dependence when the state is a function of the

outcome variable is particularly problematic in the conventional local projections framework, poten-

tially leading to biased estimates. By combining quantile regression with local projections in a potential

outcomes framework, this paper structurally identifies the causal impulse responses of unconditional

quantiles of output growth to financial shocks. These impulse responses are state-dependent, but esti-

mating them does not require the problematic inclusion of an endogenous state-variable into the model.

Applying our novel framework shows that financial shocks - whether pertaining to credit risk or volatility

- cause large output losses, but only in a low growth environments.
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1 Introduction

Relatively small financial shocks that occur when the economy is vulnerable can trigger financial crises

causing large and protracted losses to output, consumption and investment. At the same time, similar

shocks occurring during “good times” often prove innocuous. Macrofinance literature explains this state-

dependence in theoretical models via occasionally binding constraints on financial intermediation (He and

Krishnamurthy 2019) and the interaction of shocks with bank balance sheet conditions (Gertler, Kiyotaki,

and Prestipino 2019). A large and growing body of empirical literature seeks to estimate state-dependent

impulse responses of output growth to financial shocks. However, state-dependence when the state is a

function of the outcome variable is particularly problematic in the conventional local projections framework,

potentially leading to biased estimates (Gonçalves et al. 2023).

The conventional approach for estimating a state-dependent impulse response uses a variant of local

projections that includes a state-dummy interaction. Gonçalves et al. (2023) show that this approach fails

when the state-dummy is endogenous. In applied work, it is common to define the state based on the value

of the outcome variable at time t − 1. In particular, this approach has been used to study how the effect

of (financial, monetary or government spending) shocks on output depends on whether they occur during

recessions or expansions. Unfortunately, defining the state-dummy as a function of the outcome variable

means that it is probably endogenous. Moreover, this approach requires the researcher to pick a threshold

when constructing the dummy variable. The chosen threshold is often arbitrary and the estimated state-

dependent impulse responses are sensitive to this choice. Finally, note that this approach rules out a probable

scenario in which the propagation of a time-t shock depends on future states, rather than just on the state

at time t− 1.

In this work we propose a state-dependent estimation approach based on quantile regression. Quantile

regression naturally estimates the state-dependent effects of covariates when the state is a mapping from the

outcome variable. In a time-series setting, low sample quantiles of the outcome variable map to periods with

low realizations of the outcome variable (relative to its sample distribution). Quantile regression estimates

quantile specific intercept and slope coefficients, allowing for the effects of covariates to vary along the

distribution of the outcome variable. Therefore, the slope coefficients from a quantile regression estimated

for a low quantile will capture the effect of the covariates on the outcome variable in these low state periods.

We identify the causal conditional and unconditional quantile impulse responses (QIRs) by combining

generalized quantile regression of Powell (2020) with local projections of Jordà (2005) in a potential outcomes

framework. The distinction between effects on conditional versus unconditional quantiles of the outcome
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variable is crucial for the interpretation of the estimated QIRs as state-dependent impulse responses. Main-

taining the desired state-dependent interpretation, while including control variables for the purposes of causal

identification, is possible because the generalized quantile regression of Powell (2020) distinguishes between

treatment and control variables. In addition, our framework combines other desirable properties. It is based

on a definition of QIRs that makes direct comparisons with mean impulse responses possible. Causal iden-

tification of QIRs can be achieved using controls (including timing restrictions) and instrumental variables,

and does not require a first-stage Structural Vector Autoregression model to identify the structural shocks.

Estimation can be done using software packages already available in the Stata SSC archive.

We apply our novel framework to the US data to revisit the effect of financial shocks on economic growth.

In both the conditional and unconditional models, we control for; macroeconomic, financial and monetary

policy variables to recover the causal effect. Regardless of the conditioning set, low unconditional quantiles

of growth always relate to periods of low growth relative to its sample distribution. In contrast, given our

set of controls, low conditional quantiles are periods when growth was under-performing given the prevailing

macroeconomic, financial and monetary conditions. Our unconditional QIRs can be understood as showing

how financial shocks propagate in low versus high growth states. Our findings show that financial shocks -

whether pertaining to credit risk or volatility - cause large output losses, but only in low growth environments.

Our findings suggest that the heterogeneity in the effects of financial shocks across states of the economy is

larger than previously thought. We find persistent output losses of 2% points from a one standard deviation

credit risk shock in low growth states, with the median state losses of only 0.5% points, and no losses in the

high growth states.

Various methods of identifying and estimating structural QIRs have been proposed in the literature.

However, to the best of our knowledge we are the first to develop a framework for the estimation of uncon-

ditional QIRs in the presence of control variables. Chavleishvili and Manganelli (2019) achieve identification

by imposing timing restrictions on a recursive quantile vector autoregressive model. As such, the QIRs they

obtain are defined as responses to quantile shocks (ratio between a demeaned random variable and its quan-

tile). Montes-Rojas (2019) and D. J. Lee, Kim, and Mizen (2021) use the mean-based Vector Autoregression

model to identify a structural shock since their multivariate quantile models are reduced-form. Moreover, the

QIR proposed by Montes-Rojas (2019) describes the cumulative impact of a series of shocks, not a one-off

shock, because persistent realizations of lower (or upper) quantiles are assumed in its construction. Han,

Jung, and J. H. Lee (2019) and Jung and J. H. Lee (2022) study QIRs in models where the quantile itself is

autoregressive, as in the CAViaR model of Engle and Manganelli (2004). This however is computationally
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expensive. In the applied literature, Mumtaz and Surico (2015) study the heterogeneity in the transmission

mechanism of monetary policy across stages of the business cycle. They estimate the structural QIRs using

a quantile autoregressive-distributed lag model of Galvao, Montes-Rojas, and Park (2013) using lags of the

monetary policy shock of Romer and Romer as observable structural shocks.

The remainder of the paper is structured as follows. Section 2 introduces the main ideas developed in

the paper by way of an illustrative example. In the example, we consider a simplified potential outcomes

model for the quantile treatment effect and a simple data generating process with dependence. Section 3

introduces the structural model that allows us to identify the causal unconditional and condtional QIRs.

We focus on causal identification and interpretation of the estimated impulse responses, we close the section

by explaining how to compare our QIRs with conventional mean impulse responses. Section 4 contains our

empirical findings. We begin by introducing our dataset and explaining the variables capturing credit and

volatility risks. We then present and discuss our main findings. Section 5 concludes.

2 Illustrative example

Before introducing our framework for identification of QIRs, we consider a simpler problem of identifying a

contemporaneous Quantile Treatment Effect (QTE). Let Y be a scalar outcome variable of interest and let D

be a scalar treatment variable. Assume that Y has a potential outcome Y (d) that is the value Y would have

taken had treatment status D = d been observed. As such observed Y ≡ Y (D). Further assume that Y (d)

has a linear structural quantile function S(τ | d) = α(τ) + dβ(τ), where τ 7→ S(τ | d) is non-decreasing on

[0, 1] and left-continuous. S(τ | d) describes the quantile of Y (d) obtained by fixing D = d and independently

sampling U(d) ∼ Uniform[0, 1]: Y (d) = α(U(d)) + dβ(U(d)). Our object of interest is:

QTE(δ) = S(τ | D = d0 + δ)− S(τ | D = d0) = β(τ)δ (1)

which measures how the τ quantile of Y changes when the treatment “dose” is increased by δ from some

baseline level d0. Notice that the assumption of linearity of the structural quantile function means that the

QTE is linear in δ and does not depend on the initial level of d0. Identification of the QTE is challenging in

non-experimental settings if there is dependence between the disturbance U and the observed treatment D.

Consider a family of data generating processes that take the form Y = (α + Dβ)U∗, where D and U∗

are possibly dependent scalar random variables. If (α+Dβ) > 0 ∀D ∈ D, then for any fixed D = d, Y is a
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monotonically increasing transformation of U∗ and:

S(τ | D = d) = α(τ) + dβ(τ) = [α+ dβ]QU∗(τ) (2)

where QU∗(τ) is the τ quantile of U∗. If U∗ is independent of D then a simple quantile regressions of Y on

D will recover β(τ) = βQU∗(τ) and give us an unbiased estimate of the QTE. However, when U∗ and D

are statistically dependent recovering the QTE becomes difficult, even in cases where the dependence works

through observable variables that could be included as additional covariates.

To illustrate the challenges associated with identification of the QTE, consider an example data gener-

ating process with dependence on observables. We think of Dt and Yt as observable stationary time series

representing financial conditions and output growth respectively. We think of Et
iid∼ Uniform(0, 0.5) and

Vt
iid∼ Uniform(0, 0.5) as unobservable structural shocks to Dt and Yt respectively.

Yt =
1 +Dt−1

2
[(1− ρ)Vt + (1 + ρ)Yt−1] (3)

Dt−1 = Et−1 + Vt−1 (4)

The structural parameter of interest is QTE(δ) = δβ(τ) = δ
2QU∗(τ), where U∗

t = (1 − ρ)Vt + (1 + ρ)Yt−1.

Note that Vt−1 is a source of endogeneity of Dt−1 as it enters into the non-additive error term via Yt−1. We

set ρ = 0.25. Estimating how the effect of D varies depending on the state U∗ is not feasible using Least

Squares. To see this we can rewrite equation 3 as:

Yt =
1− ρ

2
Dt−1Vt +

1 + ρ

2
Yt−1 +

1 + ρ

2
Dt−1Yt−1 +

1− ρ

2
Vt (5)

making it clear that identifying the coefficient on the interaction between Dt−1 and unobservable Vt is not

possible.

This stylized data generating process is meant to capture some prominent features of the likely true data

generating process linking financial conditions with output. Namely, financial conditions D affect output Y

with a lag, and are themselves a function of the contemporaneous structural financial shock E and structural

macroeconomic shock V . Moreover, the effect of lagged financial conditions depends on the present structural

macroeconomic shock as well as lagged macroeconomic conditions. Finally, akin to the financial accelerator

equation found in numerous macrofinance models following Bernanke, Gertler, and Gilchrist (1999) seminal

paper, the relationship is multiplicative.

6



Simulating this data generating process and attempting to recover the QTE demonstrates the inadequacy

of the standard quantile regression for this task. As shown in table 1, quantile regression that ignores the

dependence of D fails to recover the QTE. Perhaps more surprisingly adding a lagged value of Y into the

regression equation, in an attempt to control for the dependence of D, makes the situation worse. This

is because including lagged Y as an additional variable means that the estimated parameter on D only

captures the interaction between D and V , rather than the interaction between D and U∗. The generalized

quantile regression of Powell (2020) performs better, as it includes the lagged value of Y to account for the

dependence of D without changing the interpretation of the estimated parameter. The last two columns are

only feasible to estimate if we could observe the structural shock E, in which case using it as an instrument

for D further improves identification. Note that we use no knowledge of the functional form of the data

generating process (expressed in equations 3 & 4) to recover the QTE using the regressions reported in table

1.

τ QTE(δ = 1) QR(D) QR(D,L(Y)) GQR IVQR IVGQR
0.10 0.84 1.07 1.34 1.07 0.90 0.93

(0.20) (0.16) (0.19) (0.29) (0.27)
0.25 1.08 1.32 1.44 1.28 1.12 1.16

(0.23) (0.16) (0.20) (0.31) (0.27)
0.50 1.44 1.67 1.48 1.57 1.47 1.53

(0.31) (0.16) (0.24) (0.39) (0.29)
0.75 1.93 2.15 1.47 1.99 1.99 2.05

(0.50) (0.15) (0.34) (0.62) (0.42)
0.90 2.52 2.71 1.40 2.52 2.66 2.71

(0.88) (0.15) (0.59) (1.13) (0.79)

Table 1: Simulation results with T = 500 (100 burn-off) and 1, 000 iterations. Estimated coefficients on
Xt at five quantile levels τ ∈ {0.10, 0.25, 0.50, 0.75, 0.90} reported with Standard Errors in brackets below.
Column QTE(δ = 1) reports the true value of the targeted causal parameter with δ = 1. Column QR(D)
reports results from quantile regression (Koenker and Bassett 1978) of Yt on Xt. Column QR(D,L(Y))
reports results from quantile regression (Koenker and Bassett 1978) of Yt on {Dt, Yt−1}. Column GQR
reports results from generalized quantile regression (Powell 2020) of Yt on Dt as treatment with Yt−1 as a
control variable. Column IVQR reports results from instrumental variable quantile regression (Chernozhukov
and Hansen 2013) of Yt on Dt using Et as an instrument. Column IVGQR reports results from generalized
quantile regression (Powell 2020) of Yt on Dt as treatment using Et as an instrument and Yt−1 as a control.

3 Model

Let Yt+h be the outcome variable of interest, measuring the cumulative log growth rate in Y from t − 1

to t + h, where h ∈ {0, 1, 2, . . . ,H} and H is our maximum horizon of interest. Let Dt denote a scalar

treatment variable, and collect contemporaneous and lagged control variables into W⊤
t = (W1 t, . . . ,Wp t).
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Define Zt as an instrumental variable for the treatment variable Dt. We are interested in the dynamic

response of Yt+h to Dt over the horizon H, i.e. the impulse response. Specifically we want to estimate the

quantile impulse response which is the dynamic response of a given τ quantile of the distribution of Yt+h.

Furthermore, we distinguish between the unconditional quantile impulse response (ucQIR) which pertains to

the quantile of the unconditional distribution of Yt+h, and the conditional quantile impulse response (cQIR)

which pertains to the quantiles of the conditional distribution of Yt+h | Wt. This is in contrast to a mean

impulse response which is the dynamic response of the expectation of the distribution of Yt+h, and for which

the distinction between conditional and unconditional expectation is unnecessary due to the Law of Iterated

Expectations. In particular, the Law of Iterated Expectations allows us to rewrite a model for the conditional

mean E[Y | X] = Xβ as E[E[Y | X]] = E[Y ] = E[X]β, meaning that δβ captures the effect of increasing X

by δ on both the conditional and the unconditional expectation of Y .

To analyze structural quantile impulse responses we build on the potential outcomes framework of Powell

(2020) by adapting it to fit our time series setting. In doing so, we follow the notation of Angrist, Jordà,

and Kuersteiner (2018). We first present the model in a general form, which allows for identification using

instruments, and which distinguishes between control variables in Wt and the treatment variable Dt. Then,

we explain how to adapt the framework for identification of the conditional QIR, which makes no distinction

between treatment and control variables. We also show how to perform identification by controls (without

using the instrumental variable Zt) in both the unconditional and conditional case. We briefly discuss how

to estimate our model and how to obtain the confidence intervals presented in the results section. Lastly,

we discuss how to interpret the estimated quantile impulses responses, and how to compare them to mean

impulse responses estimated using local projections and Vector Autoregressions.

3.1 Unconditional QIR

The role of the potential outcomes framework presented below, is to make explicit the assumptions that give

rise to the moment conditions used to recover the causal effect from observational data.

Assumption 1 (Potential Outcomes). For a fixed t and h, potential outcome Yt,h(d) is defined as the value

that Yt+h would have taken had Dt = d been observed.

Assumption 2 (Linearity). Yt,h(d) has a structural quantile function Sh(τ | d) = αh(τ) + dβh(τ), where

τ 7→ Sh(τ | d) is non-decreasing on [0, 1] and left-continuous.

Assumption 3 (Conditional Independence). Yt,h(d) ⊥ Zt | Wt. Potential outcomes Yt,h(d) are conditionally
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(on Wt) independent of the instrument Zt.

Assumption 4 (Selection). Dt = ω(Zt,Wt, Vt), for some unknown function ω and an unobservable Vt.

Assumption 5 (Rank Similarity). P [Yt,h(d) ≤ Sh(τ | d) | Zt,Wt, Vt] = P [Yt,h(d
′) ≤ Sh(τ | d′) | Zt,Wt, Vt],

∀d, d′.

Assumption 6 (Observability). We observe Yt+h := Yt,h(Dt), Dt,Wt, Zt.

Assumption 1 is a standard definition of a potential outcome adapted to the time series setting. Notice

that it implicitly assumes that potential outcomes are not allowed to depend on the full treatment path. In

other words, each h−step ahead causal effect is only allowed to depend on time t treatment status, excluding

dependence on the path of treatment between t and t + h. Assumption 2 states that the quantile function

that specifies the data generating process behind the potential outcome variable is linear. Sh(τ | d) describes

the quantile of the potential outcome variable Yt,h(d) obtained by fixing Dt = d and independently sampling

Ut,h(d) ∼ Uniform[0, 1], i.e. Yt,h(d) = αh(Ut,h(d))+dβh(Ut,h(d)). The disturbance term Ut,h(d) accounts for

differences in potential outcomes across observationally equivalent time periods. Ut,h(d) can be interpreted

as a rank-variable, as by construction events Yt,h(d) ≤ Sh(τ | d) and Ut,h(d) ≤ τ are equivalent. Assumptions

3, 4 and 5 are key causal identification assumptions that allow us to recover the causal effect of treatment

on the quantiles of the outcome variable. Assumptions 3 states that conditional on observables Wt, the

instrumental variable Zt is independent of the potential outcomes. This assumption allows for Wt to provide

information about the outcome distribution of Yt,h(d), meaning that the distribution of the unconditional

rank variable Ut,h(d) can depend on controls Wt. Assumption 4 models the process determining treatment

status as a function of the instrument and controls, plus an unobservable term Vt which is a potential source

of treatment endogeneity. Assumption 5 states that the distribution of Ut,h(d) is the same across treatment

states d, this allows for rankings of potential outcomes to vary across treatment states d but only in an

asystematic way.

We define the τ -th causal unconditional quantile impulse response to a time-t treatment d = δ as:

ucQIRτ (h, δ) = Sh(τ | d = d0 + δ)− Sh(τ | d = d0) = βh(τ)δ (6)

This causal unconditional QIR describes how the quantile of the potential outcome variable Yt,h(d) differs

when treatment status is d = d0 + δ compared to its value under a counter-factual treatment status d =

d0. The fundamental problem of causal inference is that we only observe one realization of Yt,h(d) (i.e.
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Yt+h = Yt,h(Dt)), and thus we cannot compute the casual treatment effect Yt,h(d0 + δ) − Yt,h(d0). This is

usually addressed by recovering the average treatment effect E[Yt,h(d0 + δ)− Yt,h(d0)]. However, this paper

seeks to recover the quantile treatment effect, more specifically the ucQIR which is the dynamic quantile

treatment effect over horizon H. This is because we are interested in studying the heterogeneity in the effect

of treatment across quantiles of the outcome variable, which is “averaged-out” by the average treatment

effect.

Before stating the moment conditions used to recover the ucQIR, we reformulate the Theorem 1 from

Powell (2020) except for our linear, time series setting.

Theorem 1. Suppose Assumptions 1-6 hold ∀h ∈ {0, 1, 2, . . . ,H}. Then ∀h ∈ {0, 1, 2, . . . ,H} and for each

τ ∈ (0, 1):

P[Yt+h ≤ αh(τ) +Dtβh(τ) | Zt,Wt] = P[Yt+h ≤ αh(τ) +Dtβh(τ) | Wt], (7)

P[Yt+h ≤ αh(τ) +Dtβh(τ)] = τ. (8)

Equation 7, states that once we condition on controls Wt, the instrument Zt does not provide additional

information about the probability that the outcome is below its quantile function. Equation 8, ensures that

the quantile function is correctly scaled. Together, equations 7 & 8 imply that the conditional probability

P[Yt+h ≤ αh(τ) +Dtβh(τ) | Wt] is allowed to vary based on covariates Wt, but in expectation it is equal to

the quantile level τ . Theorem 1 gives us two moment conditions for each h ∈ {0, 1, 2, . . . ,H}:

E{Zt[I(Yt+h ≤ αh(τ) +Dtβh(τ))− P (Yt+h ≤ αh(τ) +Dtβh(τ) | Wt)]} = 0 (9)

E[I(Yt+h ≤ αh(τ) +Dtβh(τ))− τ ] = 0 (10)

where I is the indicator function. Estimation using these moment conditions is explained in Powell (2020).

3.2 Conditional QIR

If we are interested in the treatment effect on the conditional quantile of Y we need to estimate a parameter

from a different structural quantile function, namely Sh(τ | d,w) = αh(τ) + dβ̈h(τ) + w⊤θh(τ). Sh(τ | d,w)

describes the quantile of the potential outcome variable Yt,h(d,w) obtained by fixing (Dt = d,Wt = w)

and independently sampling Üt,h(d,w) ∼ Uniform[0, 1], i.e. Yt,h(d,w) = αh(Üt,h(d,w)) + dβ̈h(Üt,h(d,w)) +
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w⊤θ(Üt,h(d,w)). Note that in general β̈h(τ) ̸= βh(τ), even if Dt and Wt are independent. This is because

β̈h(τ) varies along the conditional (on the control covariates in Wt) quantiles of Yt,h(d,w). The mapping

between conditional and unconditional quantiles will depend on the conditioning set Wt, which means that

the interpretation of β̈h(τ) will also depend on what variables are included in Wt. We can think of Ut,h(d) =

ω(Üt,h(d,w),Wt) for some unknown function ω, where Üt,h(d,w) and Ut,h(d) refer to the ranks of Yt,h(d,w)

and Yt,h(d) respectively.

We define the τ -th causal conditional quantile impulse response to a time-t treatment d = δ as:

cQIRτ (h, δ) = Sh(τ | d = d0 + δ, w)− Sh(τ | d = d0, w) = β̈h(τ)δ (11)

Note that our model is general enough to recover the cQIR. We only need to replace Sh(τ | d) with Sh(τ |

d,w) in assumptions 2 & 5, and reformulate assumption 3 as an independence assumption Yt,h(d,w) ⊥ Zt

that says that potential outcomes Yt,h(d,w) are conditionally independent of Zt. The implication of this

rewritten model is that ∀h ∈ {0, 1, 2, . . . ,H} and for each τ ∈ (0, 1):

P[Yt+h ≤ αh(τ)+Dtβ̈h(τ)+W⊤
t θh(τ) | Dt,Wt, Zt] = P[Yt+h ≤ αh(τ)+Dtβ̈h(τ)+W⊤

t θh(τ) | Zt] = τ. (12)

3.3 Identification by controls

So far we have focused on causal identification by instrumental variable Zt. However, the model can be easily

rewritten for identification by controls, by simply setting Zt = Dt. In that case, assumption 4 is trivially

satisfied. The observability assumption 6 loses Zt as it no longer plays any role in the model, we only need

to observe Yt+h := Yt,h(Dt), Dt,Wt.

In the unconditional model identified by controls, assumption 3 becomes Yt,h(d) ⊥ Dt | Wt, which

means that endogeneity of Dt is addressed by assuming that treatment status is conditionally (on controls)

independent of potential outcomes. The implication of this rewritten model for the ucQIR is that ∀h ∈

{0, 1, 2, . . . ,H} and for each τ ∈ (0, 1):

P[Yt+h ≤ αh(τ) +Dtβh(τ) | Dt,Wt] = P[Yt+h ≤ αh(τ) +Dtβh(τ) | Wt], (13)

P[Yt+h ≤ αh(τ) +Dtβh(τ)] = τ. (14)

In the conditional model identified by controls, assumption 3 becomes Yt,h(d) ⊥ Dt,Wt, i.e. we assume
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treatment status and controls are independent of potential outcomes. The implication of this rewritten

model for the cQIR is that ∀h ∈ {0, 1, 2, . . . ,H} and for each τ ∈ (0, 1):

P[Yt+h ≤ αh(τ) +Dtβ̈h(τ) +W⊤
t θh(τ) | Dt,Wt] = τ. (15)

3.4 Estimation and confidence intervals

Our framework naturally lends itself to estimation of the QIRs by local projections. For a fixed quantile

level τ , QIRs are defined as a set of H + 1 coefficients, which can be estimated as the set of coefficients

on the treatment variable Dt from local projections on Yt+h. In particular, depending on whether we are

estimating the ucQIRs or the cQIRs and whether we use the instrument Zt for identification or not, we need

to save the coefficients on Dt from local projections on Yt+h recovered by estimating (separately for each

h ∈ {0, 1, 2, . . . ,H} and for each quantile τ) :

Identification by Controls Identification by Instrumental Variables
cQIR QR of Koenker and Bassett (1978) IV-QR of Chernozhukov and Hansen (2013)
ucQIR GQR of Powell (2020) GQR of Powell (2020)

We calculate confidence intervals using block bootstrap. This procedure entails re-sampling the data by

randomly drawing blocks of m consecutive observations, using blocks which start at indexes 1, . . . , T −m+1,

before re-estimating the model B times using these pseudo-samples. The confidence intervals are then based

on the distribution of the estimated parameters across the B repetitions of the procedure. Block bootstrap

is more appropriate than stationary bootstrap for time series applications, because re-sampling blocks of

observations preserves the temporal dependence in the data.

3.5 Connection with mean impulse responses

One strength of our chosen definition of the quantile impulse response is its similarity with the definition of

a mean impulse response that many researchers are already familiar with. The mean impulse response of Yt

to an impulse is often defined as:

IR(h, δ) = E[Yt+h | Dt = d0 + δ]− E[Yt+h | Dt = d0]. (16)

By comparing the above with the definitions of the ucQIR and the cQIR expressed in equations 6 & 11,

the similarity should be self-evident. Compared to alternative definitions of the quantile impulse response
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used in the literature, our definition has the following desirable properties making comparisons with mean

impulse responses more direct; it captures the impact of a one-off shock rather than a series of shocks, it

does not rely on quantile specific shocks, it does not require a first-stage Structural Vector Autoregression

model to identify a structural shock.

Having said that, a word of caution is in order when dealing with cumulative quantile impulse responses.

To calculate cumulative impact on growth in the level of the variable of interest (e.g. Industrial Production

IPt) using local projections, the outcome variable is usually transformed to Yt+h = log(IPt+h)− log(IPt−1).

This is also the transformation used in this paper. This transformation is innocuous in the case of the mean

impulse response as linearity of the expectations operators implies:

IR(h, δ) =

h∑
s=0

{E[log(IPt+s)− log(IPt+s−1) | Dt = d0 + δ]− E[log(IPt+s)− log(IPt+s−1) | Dt = d0]} (17)

meaning that the effect on average cumulative growth is equal to the sum of the effects on the consecutive

between period average growth rates. Importantly, the Yt+h = log(IPt+h) − log(IPt−1) transformation is

not as innocuous in the case of quantile impulse responses, as generally QA+B(τ) ̸= QA(τ) +QB(τ) unless

the random variables A and B are comonotonic. For example, the effect on the median annual growth rate

will not generally equal to the sum of the effects on the 12 consecutive median monthly growth rates. This

has implications for how we should interpret cumulative quantile impulse responses. In particular, we should

read the quantile impulse response at horizon h as describing how the τ quantile of the h periods ahead

distribution of cumulative growth is affected by a time-t shock of size δ to Dt.

Plagborg-Møller and Wolf (2021) show that under appropriate assumptions the local projection and

Vector Autoregression impulse responses are equal, up to a constant of proportionality. The presence of

the constant of proportionality comes from the fact that the implicit local projection innovation (after

controlling for the other right-hand side variables) does not have unit variance, unlike the innovations in

a Vector Autoregression model. Plagborg-Møller and Wolf (2021) provide an expression for this constant

of proportionality, which makes it possible to compare the magnitude of the impulse responses estimated

using local projection and Vector Autoregression frameworks. Similarly to the local projection mean impulse

response, the QIR estimated by our model should be interpreted as a response to a δ change in the treatment

variableDt, rather than a response to a unit innovation to the treatment variableDt. Therefore, if we want to

compare the QIRs with mean impulse responses from a local projections, we can simply ignore the constant

of proportionality, and if we want to compare them with impulse responses from a Vector Autoregression we

13



can set δ equal to the constant of proportionality.

4 Empirical Results

4.1 Data

Our monthly dataset covers the US economy from February 1986 to August 2021 (T=427). All of the data

we use in the paper is publicly available, with majority of it contained in the FRED-MD database published

by the St. Luis Fed. We use monthly data to benefit from a larger sample size. Due to the unavailability of

monthly GDP we focus on Industrial Production (IP) as the dependent variable. This is a natural choice,

as IP accounts for the bulk of the variation in output over the course of the business cycle.

Throughout, the dependent variable Yt+h will be defined as the h-months cumulative log growth rate

Yt+h = 100∗[log(IPt+h)−log(IPt−1)]. We multiply the log growth rates by 100 to interpret the QIR in terms

of percentage points. We Z-score normalize the treatment variable Dt to interpret the QIRs as responses to

a one standard deviation increase in treatment “dose”.

The first treatment variable Dt we consider measures exogenous movements in credit risk. We will refer

to this variable as credit risk and we define it as the first difference of the monthly Excess Bond Premium

(EBP) of Gilchrist and Zakraǰsek (2012), i.e. Dt = EBPt −EBPt−1. The EBP is the residual credit spread

that cannot be explained by the usual counter-cyclical movements in expected defaults, movements which

account for less than one-half of the variation in corporate bond credit spreads (an empirical observation

known as the “credit spread puzzle”). Credit Spread is the difference in yield of a corporate bond versus a

treasury bond promising the same cash-flow, and as such it measures the credit risk premium demanded by

investors.

The second treatment variable Dt we consider measures volatility surprises in the equity markets. We

will refer to it as volatility risk and we define it as the difference between realized and implied volatility of the

S&P500 index. The volatility implied in an option’s price is widely regarded as the option market’s forecast of

future return volatility over the remaining life of the relevant option. If option markets are efficient, implied

volatility should be an efficient forecast of future volatility, it should subsume the information contained in all

other variables in the market information set in explaining future volatility. If implied volatility is an unbiased

forecast of realized volatility then a regression of the form realizedt = α+βimpliedt+ ϵt should yield α = 0,

β = 1. Assuming that the efficient market hypothesis holds (α = 0, β = 1), Dt = realizedt−impliedt should

give us a time series of volatility that was unexpected by the financial markets (Christensen and Prabhala

14



Figure 1: Time series of the two treatment variables Dt. Top panel plots the normalized first difference of
the monthly Excess Bond Premium. Bottom panel plots the normalized difference between the realized and
implied volatility of the S&P500 index. Grey bands indicate NBER recession dates.

1998).

In the literature, it is often assumed that real variables are slow moving while financial and monetary

variables adjust quickly. For instance, Gilchrist and Zakraǰsek (2012) order the EBP after macroeconomic

variables but before financial markets and monetary policy variables in a Structural Vectror Autoregression

model used to study the effects of EBP shocks on the macroeconomy. We follow the same logic by ordering

our variables as follows: {consumption growth, investment growth, industrial production growth, inflation,

financial variable Dt, S&P500 monthly return, change in the 10 year the ten-year (nominal) Treasury yield,

change in the effective (nominal) federal funds rate}. This ordering implies that Wt must include the

contemporaneous values of the four variables ordered before the treatment variable Dt. Additionally, to

control for the broad state of the economy in the recent past, we include the first two lags of all eight

variables contained in our ordering in Wt. In short, our timing restriction assumption allows that the

treatment variable Dt adjusts within the period to consumption growth, investment growth, industrial

production growth and inflation, but adjusts with a one month’s lag to the stock market return, changes of

the Treasury yields and changes to the Fed’s funds rate.
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4.2 Results

Throughout, we focus on three quantiles τ ∈ {0.1, 0.5, 0.9} representing low growth, median growth and high

growth states respectively. These refer to quantiles of h-periods ahead cumulative growth. To understand

the corresponding growth rates in our sample, figure 2 plots the unconditional quantiles of cumulative IP

growth over the horizon scaled by the number of months that the growth is cumulated over.
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Y
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+

h
(τ
)
÷

(h
+
1)

Figure 2: Cumulative Industrial Production growth quantiles divided by the number of months growth is
cumulated over, i.e. QYt+h

(τ) ÷ (h + 1). Plotted for τ = {0.1, 0.5, 0.9}. Monthly Industrial Production
growth quantiles are: QYt

(0.1) = −0.557, QYt
(0.5) = 0.220, and QYt

(0.9) = 0.853.

Figure 3 shows the recovered ucQIRs of industrial production to a one standard deviation increase in

credit risk. The upper-left panel in figure 3 plots the ucQIRs for the three quantiles on the same axis. It

is clear that the response in the low growth state is much more pronounced than in the other two states.

This is a feature of the data and not of the model, as nothing is restricting the responses of lower quantiles

to be lower than those of the upper quantiles. These findings suggest economically large and statistically

significant (at 90% confidence level) growth losses of about 2% points when a credit risk shock propagates in

a low growth environment. The losses in the median state are considerably smaller at around 0.5% points.

The response in high growth states is muted and not persistent.
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Figure 3: Unconditional QIR with 90% Block Bootstrap CIs (block size m = 7, bootstrap repetitions
B = 500). τ = 0.1 in red, τ = 0.5 in black, τ = 0.9 in blue. δ = 1. Effect size should be read as cumulative
loss to Industrial Production growth (in % pts.) from 1 std. dev. increase in the credit risk shock.

Comparing figure 4 to figure 3 suggests that the relationship between volatility risk and growth is like the

relationship between credit risk and growth. The timing, magnitude and asymmetry in the quantile effects

are similar following increases in volatility risk and credit risk. This is true despite the fact that the sample

correlation coefficient between the two treatment variables is very low (ρ̂ = 0.096).
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Figure 4: Unconditional QIR with 90% Block Bootstrap CIs (block size m = 7, bootstrap repetitions
B = 500). τ = 0.1 in red, τ = 0.5 in black, τ = 0.9 in blue. δ = 1. Effect size should be read as cumulative
loss to Industrial Production growth (in % pts.) from 1 std. dev. increase in the volatility risk shock.

Lastly, we compare the findings presented above with findings obtained using the conventional state-

dummy local projections approach. In particular, we estimate:

Yt+h = Ht−1[αh(1) + βh(1)Dt + θh(1)W
⊤
t ] + (1−Ht−1)[αh(0) + βh(0)Dt + θh(0)W

⊤
t ] + εt+h, (18)

where Ht−1 is a dummy variable taking value 1 if Yt−1 > 0 (i.e. if monthly IP growth was positive in

pre-treatment period) and 1 otherwise. Estimating the above by Least Squares gives us two state-dependent

impulse responses β̂h(1) and β̂h(0). We also estimate the model without the dummy interaction:

Yt+h = αh + βhDt + θhW
⊤
t + εt+h, (19)
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which gives us the mean impulse response estimate β̂h. Figure 5 compares the results obtained using this

framework with the ucQIRs. Recall that the states in the case of ucQIR refer to the quantiles of h-periods

ahead cumulative growth, and as such are distinct from the definition of the state used in the state-dummy

local projections approach. Therefore, the differences in estimated responses among these two alternative

frameworks are to be expected. Having said that, it is possible to make a few observations.

Firstly, it is reassuring to see that the ucQIRs for the median are broadly similar to the estimated mean

impulse responses. In addition, for the credit risk specification our mean and median impulse responses are of

similar magnitude and shape to the impulse responses of real GDP to EBP shocks estimated by Gilchrist and

Zakraǰsek (2012) using a Structural Vector Autoregression model with quarterly data. Secondly, shocks that

propagate in low-states (captured by the ucQIR for τ = 0.9, red line on left panels) are approximately 50%

more harmful than shocks that occur following a period of negative industrial production growth (captured

by β̂h(0), red line on right panels). Thirdly, our quantile regression based methodology estimates more

asymmetric responses across states, with responses in low growth states being clear outliers compared to

high and median growth state responses.
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Figure 5: Panels in the top row show responses to credit risk, bottom row panels show responses to volatility
risk. Left panels present ucQIRs for τ = 0.1 in red, τ = 0.5 in black, τ = 0.9 in blue. Right panels present
state-dependent mean impulse responses. State = 1 if first lag of monthly IP growth was positive when shock
hit, 0 otherwise. Blue line shows the IR conditional on state = 1 (β̂h(1)), red line shows the IR conditional

on state = 0 (β̂h(0)). Black line, mean impulse response estimated ignoring state-dependence (β̂h).

5 Conclusion

The relationship between financial shocks and the macroeconomy is complex and volatile. Understanding the

theoretical mechanisms driving this relationship is the core ambition of the macrofinance literature. Theory

tells us that the state of the economy when adverse financial shocks occur determine how the shocks will

propagate. This idea has spurred many empirical papers which test it in the data. We offer new evidence

based on a novel causal framework for state-dependence. Our empirical findings corroborate prior work but

also offer new insights. We think that the key distinction between our methodology and the conventional
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approach is that we allow future states to influence the shape of the state-dependent impulse response. This

allows us to capture a higher degree of state-dependence. Although our model is tailored to the empirical

application of interest, it could be readily applied for studying other important macroeconomic questions.

For instance, measuring the state-dependent size of the fiscal multiplier and the transmission of monetary

policy across stages of the business cycle.
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7 Appendix

7.1 Conditional QIR

Here we present the results for the conditional QIRs identified using controls. We control on the same set of

variables Wt as in our main results. The difference is that here we are not distinguishing between treatment

and control variables. We use equation 15 to get H + 1 moment conditions:

E{I[Yt+h ≤ αh(τ) +Dtβ̈h(τ) +W⊤
t θh(τ)]− τ} = 0. (20)

We estimate this using quantile local projections on Yt+h with a standard quantile regression of Koenker

and Bassett (1978). As such impulse responses for low quantiles τ now refer to conditional on Wt quantiles

of Yt+h. Put simply, low quantiles now refer to conditionally on macro/financial/monetary conditions low

growth states. Note that depending on the prevailing conditions, these “low” states may occasionally map

to periods of unconditionally high growth. Therefore, the interpretation of QIRs as state-dependent is not

as straight forward as in the unconditional presented in the main text.
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Figure 6: Conditional QIR with 90% Block Bootstrap CIs (block size m = 7, bootstrap repetitions B =
1, 000). τ = 0.1 in red, τ = 0.5 in black, τ = 0.9 in blue. δ = 1. Effect size should be read as cumulative
loss to Industrial Production growth (in % pts.) from 1 std. dev. increase in the credit risk.
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Figure 7: Conditional QIR with 90% Block Bootstrap CIs (block size m = 7, bootstrap repetitions B =
1, 000). τ = 0.1 in red, τ = 0.5 in black, τ = 0.9 in blue. δ = 1. Effect size should be read as cumulative
loss to Industrial Production growth (in % pts.) from 1 std. dev. increase in the volatility risk.
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