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Abstract

This paper considers a durable object that is repeatedly resold

among a potential buyers that trade bilaterally, so that markets are

thin at any point in time. The results highlight di�erences between

possible contracting environments which, in practice, have become

especially important as record keeping technologies improve. Tradi-

tional ownership, where each owner sets a price unilaterally, leads to

reduction in trade through markups; opportunities for future resale

increase these ine�ciencies relative to one time sales. Markups decline

over time as resale opportunities decline. Fixed percentage perpetual

royalties paid to the �rst owner, as mandated in some countries, are

counterproductive; they lower the �rst owner's value. By constrast,

a dynamic contract designed to maximize pro�ts of the �rst owner

achieves e�ciency in all but the �rst sale, despite not achieving full

surplus extraction at any point. The �rst sale is distorted exactly as a

one time sale, which is a smaller distortion than any transaction under

traditional ownership. The dynamic contract can be interpreted as

nonlinear perpetual royalties, a form of payment that has increasingly

been discussed especially in digital art markets as record keeping tech-

nologies improve. Such price discrimination can increase e�ciency,

especially in resale transactions.
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1 Introduction

This paper studies a perfectly durable object that is repeatedly traded be-
tween people with di�erent independent private valuations of the object.
Buyer arrivals are infrequent, so the market is thin to the point of only be-
ing bilateral and only occasional. Di�erent contractual arrangements are
considered in order to explore how the availability of dynamic contracting
arrangements impacts the structure and e�ciency of allocations.

Examples that �t this description of trade include markets from many
forms of intellectual property to complicated �nancial securities that are
traded on OTC markets. Perhaps the most natural example of a market
similar to the one modelled here is an art market. In practice, more com-
plicated ownership structures are available due to the ability of information
technology to keep records of ownership. The paper shows that advanced
recordkeeping can enhance both rewards for creators, which can be important
in the intellectual property interpretation, and e�ciency of allocations. Per-
petual royalties, which apply on every transfer, have been proposed in such
markets, and used especially for digital art, based on new recordkeeping tech-
nologies including ones that can be decentralized through the blockchain.1

The nonlinear contract developed here can be interpreted as perpetual roy-
alties. By contrast, a more traditional ownership structure of posted prices
by successive owners is less e�cient than static trade. This ine�ciency is not
easily remedied by simple royalties; in fact forced linear royalties on the next
sale, as is mandated in some jurisdictions by law, is counterproductive to
both e�ciency and providing rewards for creators of the good.2 Increasingly
such contracts can be written for a variety of goods, tangible and intangi-
ble, and can incorporate more complicated rules for transactions than simple
royalties. This paper studies the role of these contracts.

The model delivers several results on the e�ciency of trade in these mar-
kets, and the impact that contracting opportunities can have on creators (i.e.

1See https://news.artnet.com/market/swizz-beatz-sothebys-artist-royalties-1355674.
Such rights might be conferred via non-fungible tokens (NFTs), especially (but not
only) for digital art. More generally, web3 �smart contracts� encoded in blockchain
allow complicated contracts between many parties (see https://ethereum.org/en/smart-
contracts/.).

2Simple royalties have been used in markets from art to soccer players, commonly called
a sell-on clause, and such payments go at least as far back as payments made on transfer
of feudal land.
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initial owners). In a market with simple posted prices and no royalties, re-
sale opportunities for buyers make sellers more selective, e�ectively increas-
ing markups as measured by the probability of sale per bilateral meeting.
Enhancing contracts with the possibility of �xed or linear royalties on the
next transaction can create new ine�ciencies including the possibility that
objects move from higher valuation to lower valuation consumers in equilib-
rium. Subsidy is preferred by sellers to royalties, so �xed positive royalties,
as has been instituted in some jurisdictions in art markets, are counterpro-
ductive for artists. In a fully-nonlinear contracting environment to maximize
the value of the �rst owner, the usual monotone virtual valuation assumption
implies that only the �rst sale is distorted; subsequent transactions occur ef-
�ciently. The �rst sale is distorted exactly as a one time sale, which is a lower
distortion than in a simple ownership economy where prices are posted by
each owner. These payments can be interpreted as a market with history de-
pendent payments between buyers, as well as perpetual royalties paid to the
initial owner which are positive at every history. In other words, nonlinear
but positive perpetual royalties are possible, pro�table for initial sellers, and
increase e�ciency, provided su�cient recordkeeping and control over future
transactions is possible. The e�ciency of subsequent transactions is some-
what surprising given that full extraction is never achieved; the sequential
nature of the price discrimination is what makes the model di�erent from the
distorted allocations in classic problems of second degree price discrimination
like Mussa and Rosen (1978).

These results come from analyzing three di�erent contracting structures.
A benchmark environment of traditional ownership mimics ownership with
posted prices, and no royalties to prior owners. Markov equilibrium can be
described by a recursion, which allows a direct comparison to the static prob-
lem: resale opportunities discourage trade at any meeting. Then a version
of the model is considered where the full nonlinear contract is not available,
but owners can encourage or discourage future transactions by collecting a
royalty (or paying a subsidy) on a future transaction. The optimal choice is
a subsidy. The intuition is that a subsidy, together with a price that induces
some marginal type to buy, pays less to all higher types since the higher types
hold the object longer, and therefore wait longer to sell. Because the subsidy
can extract surplus from inframarginal types, it is bene�cial to sellers. This
is of note for several reasons. First, some jurisdictions (for instance France)
mandate positive royalties paid to the original owner for future transactions
in some markets; others (like Canada) are considering similar rules. The
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results suggest these rules may be counterproductive for sellers. Moreover,
many real world contracts for things like ebooks do the opposite: they make
resale more di�cult.3

Although actual subsidies to future transactions might face additional
problems (for instance that the buyer could pretend to make a transaction
right away, by transacting with themselves or a fake account), it shows that
the motive here is for sellers to encourage future transactions. To understand
the limits of this force, the paper then considers more sophisticated contracts
that map histories of ownership into prices in a possibly nonlinear way. The
contract is remarkably simple: static distortion on the �rst sale, and e�ciency
thereafter. Since there are always distortions greater than static under simple
ownership, the second degree price discrimination unambiguously increases
e�ciency. The intuition is similar to an optimal auction with constraints:
bidders can only be assigned units of time that occur after their arrival.4

One can think of the choice of contractual form as being driven by changes
in technology, but the model has policy implications concerning what sorts
of contracts should be allowed. In economies without complicated contracts
where ownership is sold at a �xed price, objects like books and art are subject
to the doctrine of copyright exhaustion, which limits the ability of owners to
control further use (or sale) of the object after it is transacted. The applica-
tion of these ideas in digital markets is an active policy question; in Europe,
there is discussion over whether the sale of things like ebooks should be sub-
ject to the doctrine of �rst sale, which would limit sellers ability to restrict
buyers use of the product.5 A central question of this paper is how these
more complicated contracting environments impact e�ciency, which bears
on questions like the e�ciency implications of the exhaustion doctrines, and
the modern world's ability to avoid exhaustion through ownership structures
more complicated than were commonly used previously. The model suggests
that such policies may have e�ciency concerns when sellers can encourage,
rather than discourage, future transactions, but that very rich contracts may
avoid this concern. On the other hand, in a simpler environment, there is no

3This suggests that the motivations may not be enhancing trade on the item in question,
but perhaps reducing competition between the used good and a new good for sale by the
same seller, as suggested in the used goods literature.

4Like an optimal auction, monotone virtual valuations guarantee that higher types are
always allocated as much as possible. Consistent with this intuition, without monotonicity
of virtual valuations, e�ciency disappears.

5See Oprysk (2020)
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e�ciency motive for simply taxing future sales and exhaustion may prevent
interference in used markets by sellers that compete with their own used
products.

Section 2 introduces the physical environment; Section 3 describes op-
timal utilitarian allocation as a benchmark. Then Section 4 considers a
repeated ownership structure, where a sequence of owners post prices. Then
the contracting space is modi�ed to allow the seller to take a share (includ-
ing a negative share, a subsidy) of future sales, as has been observed in art
markets. Finally, Section 5 considers a full nonlinear contract devised by the
�rst owner.

1.1 Literature

1.1.1 Resale Markets

This paper complements the recent work of Condorelli et al. (2021), which
is perhaps the paper with the closest setup to this one in terms of study-
ing repeated resale of a durable object to a sequence of owners.The physical
environment di�ers in that, in their model, each owner can only contact a
�xed set of potential buyers, and cannot wait for more, whereas this paper
highlights the trade-o� between waiting and higher prices. Transactions are
therefore useful in their model both to reallocate the object to higher valua-
tions, and to �nd more buyers. Their focus is on e�ciency as the frequency
of trade grows; that e�ciency trivially arises here because future contracting
possibilities are indepenent of transactions.

Classic models of second hand markets (for instance Waldman (1993);
Hendel and Lizzeri (1999); Gavazza (2011); Hendel and Lizzeri (2015)) focus
on thick markets, where trade occurs because of changes in relative values,
especially due to depreciation. Although these models do allow market fric-
tions in the form of transaction wedges, they do not explicitly model those
frictions the way this model does. Those models were designed especially
to think about markets for things like cars and airplanes and shoe machines
rather than goods that trade in thinner markets, which leads to new reasons
for trade. Another paper in this space is Stolyarov (2002), which has a similar
preference structure to the one used here, but will constant opportunities to
trade, potentially at cost. One of the key elements of those papers is that the
original seller plans to sell many units, and as a result may want to interfere
in used markets that could compete with their sales of new goods. Many
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models of used goods point to a potential downside of this record keeping, as
interference in used markets; for instance, whereas books were once sold only
as physical items, ebooks are not; along with that has come much more com-
plicated terms and conditions surrounding these items.6 This paper focuses
on the potential bene�ts of recordkeeping.7

Second hand markets have been considered explicitly in price discrimina-
tion strategies. Early examples include Swan (1972), who focuses on dura-
bility choice as a mechanism. Anderson and Ginsburgh (1994) further this
line to consider a thick market for second hand goods, with transaction costs,
and how a monopolist can price discriminate in the face of such a market.
Beccuti and Moller (2021) study how a �rm can price discriminate via time
of holding the object, which is similar to what the separating contract does
here, but without commitment and when sellers are more patient than buy-
ers. The holding time can be thought of as a resale decision; contracts sort
by whether the good is sold or leased.8

6Ebooks �purchased� from Amazon are in fact not really owned but rather licensed.
These licensing agreements replacing ownership extends even to things like software in a
car. These sorts of licensing �terms and conditions� apply to many items we buy; even a
new car does not entitle the owner to unconstrained ownership of the software that the
car's computer uses.

7There is a long debate in the legal literature about the bene�ts to the �rst sale doctrine,
which is designed to reduce interference, and to what extent it is useful to allow contracts
that avoid its.Legal scholars including Hovenkamp (2010) and Katz (2014) have discussed
the potential merits and drawbacks of licensing contracts that avoid exhaustion in the
digital context, but without the ability to analyze what such contracts might look like for
long lived assets. This paper follows in the tradition of Waldman (2015) in deriving such
tradeo�s from an explicit model. This model abstracts from the usual interference concern,
although in several places interference provides a natural contrast to the results here:
whereas here dynamic contracting possibilities encourage future transfers, interference
generally discourages them, to further the monopolist's future sales of similar products to
other buyers. Therefore the model provides no rationale for justi�cation of interference in
used markets for the purpose of limiting future transactions. Moreover, at least for simple
leasing contracts, our model provides no scope for the seller to improve their position with
leasing relative to selling, so we study a di�erent force that may be relevant in modern
digital markets but not in cases previously studied. Weyl and Zhang (2022) study a
related tradeo� in ownership rights: what is the best way to resolve the tension between
delivering surplus to initial owners (who may in turn use that as an incentive to invest)
versus markups that result from their continued ability to dictate use.

8Mechanisms with resale include models of auctions with resale such as Zheng (2002);
Hafalir and Krishna (2008) In those models there is potentially an ex-post allocation
question for some mechanisms, but all of the potential owners are present throughout.
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1.1.2 Price Discrimination

The comparison of the traditional ownership structure to the dynamic con-
tract belongs to the large literature on the e�ciency of price discrimination.
Pigou (1920)and Robinson (1933) highlighted that although perfect price dis-
crimination increases e�ciency, other forms of price discrimination may or
may not. The strand of literature they started was, for the case of static third
degree price discrimination that started their investigation, reinvigorated by
Schmalensee (1981) and Varian (1985).9 The contrast between royalties and
the fully optimal contract shows that adding a �bit� of price discrimination
can have qualitatively di�erent implications from full second degree contract.
Here the dynamic contract turns out to have important similarities to static
second degree price discrimination, as cast in Mussa and Rosen (1978).

Dynamic price discrimination has a long history. While this model is quite
di�erent, there is a relationship between this work and the classic work on
dynamic price discrimination with durable goods that dates to Coase (1972).
The commitment case, which most closely matches the price discrimination
contract constructed here, was formalized by Stokey (1979). In that model
there is pooling; Salant (1989) highlights the contrast between those envi-
ronments, where costs are essentially linear, with Mussa and Rosen (1978),
where costs are assumed to be strictly convex, and separation occurs.

In this paper, costs are endogenous and the result of an opportunity cost
of foregone transactions in the future, and turn out to be strictly convex
due to the nature of the opportunity costs of foregoing future transactions.
10 Strict concavity arises endogenously because increasing allocations both
takes away future opportunities, and makes the marginal type that will have
the object allocated to them in the future higher. This opportunity cost of
future allocation is the di�erence between this model and standard models
of price discrimination.11 A long literature on dynamic contracting focuses

Here, the fundamental friction is that bidders come in sequence.
9This analysis was extended to competitive environments for instance in Holmes (1989)

and Corts (1998). More recently contributions include Armstrong and Vickers (2001),
Aguirre et al. (2010), and Vickers (2020).

10A very important case, but less related to this paper, is the durable goods monopolist
without commitment. See for instance Stokey (1981); Bulow (1982).

11Conlisk et al. (1984) introduced the arrival of further buyers into durable goods
monopoly pricing. With commitment power, because the logic of Salant (1989) applies,
there is no change in the Stokey result: prices are constant. Another important feature is
that valuations �uctuate as new consumers arrive. In the durable goods case, Biehl (2001)
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on the case where buyers are always present but information arrives to those
buyers over time. A general structure for those contracts is described in
Bergemann and Valimaki (2010); Pavan et al. (2014); further development
of these ideas includes Eso and Szentes (2017); Battaglini and Lamba (2019)

Another strand of price discrimination papers that uses waiting to pur-
chase as a discrimination tool when buyers must contract without fully know-
ing their valuation, for instance as is done with advanced purchase agreements
made before consumption for instance in airline markets. Examples include
Courty and Hao (2000), who show that in such contracts the nature of the
buyer's uncertainty shapes the contract they are o�ered. Chen (2008) con-
siders the possibility that the same buyer arrives repeatedly, so that price
discrimination with time is related to increasing information for sellers about
buyers' valuations from repeated purchases.

2 Environment

There is an in�nite horizon of continuous time. There is a single, indivisible,
perfectly durable private good, and a sequence of people who could eventually
posses it. Everyone discounts the future at a rate normalized to one. At
Poisson rate λ > 0, an opportunity for the current holder to trade with a
new person arrives.12 A person's type θ ≥ 0 describes their �ow utility per
unit of time they have the good. Every person draws their valuation from a
common, known distribution F (θ). Valuations are private information but
everything else is publicly observable. Trading opportunities are temporary:
trade between two people must be taken at the time of arrival, or never.13

Money can also be transacted between parties; the details of how the outcome

studies a two period model with changing buyer valuation and Deb (2011) studies an in�-
nite horizon model where values change at most once; both �nd prices that rise over time.
Garrett (2016) incorporates both buyers that arrive over time and whose values change
over time continuously, and shows that cyclical prices are possible with commitment. A
key di�erence from this paper and those is that in those models there isn't a dynamic
allocation of the good to solve; the monopolist can produce more of the good to sell to
more buyers, and the question is what time paths do this job most e�ciently.

12Continuous time here plays no special role relative to discrete time, except to turn
comparative statics on the discount factor into more easily interpreted arrival rates of
buyers.

13This last assumption is consistent with the usual assumption made in search models.
In two of the three contracting structures, where decisions are monotone, it is without
loss.
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depends on what transfers are allowed is the main topic of Sections 4 and 5.
Money is valued linearly and separably from ownership bene�ts.

Throughout it is assumed that F has a continuous density f . Further,
it is maintained that the support of F is either compact, and normalized
to [0, 1], or is the positive real line with �nite mean. Some results apply to

the case with increasing virtual valuations, i.e. that θ − 1−F (θ)
f(θ)

is increasing;
when that assumption is made, it will be stated explicitly.

3 Full Information Planning Benchmark

Consider a planner who, with full information, maximizes the present dis-
counted value generated by transactions, and observes valuations directly.
Section 5 shows that there exists a contract that can decentralize this alloca-
tion even with private information about types. This problem is simple but
will introduce some of the notation and concepts used in the various market
situations, and provide some relevant intuition. Let the present discounted
value to the planner when the current holder is type θ be W (θ). Since any
strategy for transferring the object returns more when the current holder
of the object is higher, W (θ) is strictly increasing. Since any strategy for
transferring the object has a higher return when the new potential holder
is a higher type, the strategy for transferring the object is clearly a cuto�:
transfer if the new type is above y. The value can be described recursively,
where the object is transferred to a new owner y above the current owner θ:

W (θ) = θ + λmaxy

∫
y

(W (x)−W (θ))f(x)dx

Since W (θ) is increasing the planner can optimize by setting y = θ. The
value can be further described by using the envelope condition:14

Proposition 1. W (θ) is continuous, convex, and di�erentiable withW ′(θ) =
1

1+λ(1−F (θ))

Relevant to the results for nonlinear pricing is that, even if the planner
didn't fully value the object as the people did, at θ per unit of time, but
rather the strictly increasing function w(θ), the value function is increasing
and therefore the logic is the same: transfer whenever someone with higher
valuation arrives.

14Proofs are contained in the appendix.
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Corollary 2. Suppose the planner values ownership at some strictly increas-
ing, di�erentiable w(θ) ≥ 0. Then y(θ) = θ.

Also useful is an alternative view of the planning problem. The problem
can be re-written as

W (θ) = maxddθ + (1− d)W u(Θ(d)) (1)

where the cuto� y is converted to discounted duration d ∈ [ λ
1+λ

, 1] of own-

ership described by d = 1
1+λ(1−F (y))

. Conditional on the cuto�, when a new
arrival is implemented, the planner gets the value conditional on being above
y given by W u:

W u(y) =

∫
y
W (x)f(x)dx

1− F (y)

We can use this formulation to show an important feature ofW u, which again
is true even if we replace the planner's payo� with a strictly increasing w(θ)
instead of θ, and will be useful in characterizing a non-linear pricing example
below. Let y = Θ(d) be the cuto� that delivers d:

Lemma 3. (1− d)W u(Θ(d)) is strictly concave in d

The concavity of this object, which corresponds to the negative of the
opportunity cost of allocating d to the current user, applies for any strictly
increasing w(θ); no concavity assumption is needed. Intuitively, as the plan-
ner allocates the object for longer, there are two e�ects: fewer future owners
are possible (which, for a given marginal owner reduces payo�s linearly) and
the marginal user increases (since more future owners must be excluded) as
d increases, which generates strict concavity.

4 Sequential Ownership

4.1 Traditional Ownership

Suppose that the person holding the object is an owner; owners post a price
p at which they will sell the object. This economy corresponds to what
is termed, in copyright law, the doctrine of exhaustion for physical goods:
future owners are unencumbered by any conditions, and therefore solve the
same problem as the initial owner, but with a possibly di�erent valuation.
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It requires no monitoring after the sale, since the buyer has full ownership
rights including the price posting.

The analysis focuses on Markov policies where the set of acceptable prices
at which to buy, and to set when selling, are a function of the owner's type
alone. Denote by V (θ) the value of owning the good if the owner's type
is θ. This value is inclusive of any revenue from selling the good but does
not include the price paid for the good. Clearly V (θ) is strictly increasing
since, if a higher type were to post a price identical to a lower type's price,
they would make the same revenue from sales, and enjoy more utility in the
meantime. A price is accepted, therefore, if p ≤ V (θ) and can be considered
as equivalent to a marginal type y that buys the object at price p; p = V (y).
The value can then in turn be expressed as

V (θ) = θ + λmaxy(1− F (y))(V (y)− V (θ)) (2)

Usual contraction arguments guarantee existence and uniqueness of V . Since
any equilibria that was Markov as described above would have to satisfy this
recursion, existence and uniqueness come directly from the recursion. The
following characterizes the solution:

Lemma 4. V is strictly increasing and strictly convex with V ′(θ) = 1
1+λ(1−F (y))

=

d(θ) de�ned almost everywhere. Any selection of solutions y(θ) is strictly in-
creasing with y(θ) > θ. When the support is compact, V (1) = 1. When the
support is unbounded, limθ→∞V (θ) = θ.

Convexity of V arises because allocating to higher value types is less
useful when the current owner is relatively low value, since even a slightly
higher type is likely to derive most of their value from selling the object, and
not from the part that depends on the type. Convexity has an immediate
implication for the impact of resale opportunities on the time that objects
are held. Holding time is a useful measure of the distortions arising from
seller market power in this model; holding times will naturally turn out to
be higher than the planner's holding time, and so a natural question is by
how much. Naturally prices will be higher with resale opportunities since the
object can generate more value, so holding time is a more useful measure of
monopoly markup.

For comparison to a case without resale, consider an economy where an
owner with valuation θ has one opportunity to transact with a potential buyer
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with type drawn from F ; no additional trades are possible. This standard
monopoly price solves

ps(θ) = argmaxp(1− F (p))(p− θ) (3)

This is also the choice of cuto� y = ps(θ), and is the cuto� for the dynamic
economy with λ = 0, since in that case V (θ) = θ. When λ > 0, sellers are
more selective (i.e. have a higher cuto� y) than the static solution:

Proposition 5. Suppose λ > 0 and virtual values are increasing. Then for
all θ below the maximum of the support of F , y(θ) > ps(θ).

The intutition for the higher-than-static cuto� comes from convexity of
V . The static problem is equivalent to the dynamic one if V (θ) = θ. In the
problem with resale there are two di�erences: the level of V is higher than
θ because of the gains from resale, and it is convex. Let the linear function
through both V (θ) and V (ps) be V L. The solution to the recursion in (2)
using V L remains y = ps; formally the linear function simpli�es to the case
where the value is simply θ. Intuitively it represents a �xed vertical shift,
plus a change in �units.� The actual function V goes through the same two
values at θ and ps but is more convex than the linear function. This changes
the return to setting a higher cuto�: since the slope is greater than the linear
function at ps, setting a higher y increases the price that can be charged at
a greater rate under the convex V than it does under V L. The return to
holding the object is the same since V (θ) = V L(θ). This therefore leads to a
higher cuto�. This is shown below for the case where θ = 0 for simplicity.

θ1

V (θ)

V L

ps(0)
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When the support is bounded, it is immediate the markups have to be
converging to zero (the static market for θ near 1). But this feature of
declining markups is more general: According to Proposition 4, when the
support of F is unbounded, the markup is converging to the static one as θ
gets large, since V (θ) converges to θ and V ′(θ) converges to one. Long run
markups are at their lowest.

Since resale makes sellers more selective, one might wonder whether in-
creasing λ can ever slow transactions, including the positive e�ect that more
meetings per unit of time makes more transactions for a �xed cuto�. It
cannot: despite sellers being more selective, more frequent meetings unam-
biguously speed up transactions, even though transactions per meeting fall.

Proposition 6. d(θ) is decreasing in λ.

Here the argument uses the recursive characterization directly: the slope
of the value function, which is d(θ), is decreasing in λ by a contraction
argument.15

4.2 Royalties from future sales (and subsidies to future
sales)

When considering price discrimination strategies that might make creators
better o�, one natural starting point is a two-part contract. Here an anal-
ogous two-part contract is one which collects (or pays) both at the time of
sale, and the time of next sale. Such contracts only rely on monitoring the
next transaction, and versions of this structure have been imposed on sellers
for instance under France's �droit du suite� policy.

Suppose that an owner post not just p but also a royalty (where a negative
royalty corresponds to a subsidy) τ paid at the time of the next owner's sale.
Otherwise the economy proceeds as in the the traditional market: each owner
faces an amount τ to be paid to the prior owner and can charge a royalty τ ′

on the next owner of their choosing. For simplicity take the payment to be a

15The model of Condorelli et al. (2021) is used to address the question of whether
frequent meetings lead to e�ciency, which corresponds to increasing λ to in�nity. This is
an interesting question in their model, where transactions are required to generate further
buyers, but is trivially true here: for instance in the compact support case, as λ goes to
in�nity, a cuto� close enough to 1 generates V (θ) arbitrarily close to 1 as λ is made big
enough, and therefore total surplus, which is at least V (θ), is converging to social surplus
W (θ), which cannot exceed one.
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�xed amount, although the appendix extends the analysis to an ad valorem
rate τ on sales revenue, with similar results.

The seller collects p− τ at the time of the sale, and then collects τ ′ at a
date in the future. Let the payo�, net of the royalty they face but excluding
the price they paid, be V (θ, τ). They face the recursive problem

V (θ, τ) = θ+λmaxy,τ ′(1−F (y))(V (y, τ ′)−τ+τ ′
∫
y

s(x, τ ′)f(x|x > y)dx−V (θ, τ))

where p = V (y, τ ′) is the net payo�, and therefore the price p that can be
charged, to the marginal type y. Here the discounting until next sale for a
type θ facing a royalty τ is s(θ, τ) = λ(1−F (y(θ,τ)))

1+λ(1−F (y(θ,τ)))
; s(θ, τ) ∈ [0, λ

1+λ
].

Proposition 7. Suppose that d(θ, τ) < 1. Then the optimal τ ′(θ) < 0, a
subsidy.

The intuition for subsidy can be seen by considering a �xed y and con-
sidering the impact of a subsidy. The marginal consumer is fully extracted
regardless; however, a subsidy is less valuable to higher types who intend
to hold the object longer. Therefore the subsidy serves to extract from in-
framarginal types.16 This channel makes the result di�erent from double
marginalization results: even if the decision rules were �xed for the subse-
quent owner as τ decreases, so that the change in τ doesn't induce more
trade, it would still be the case that the subsidy is better because it price
discriminates across types by virtue of their duration of ownership, which im-
proves extraction for the seller. The notion that royalties may not be good
for rent extraction is counter to the usual intuition that motivates policies
that enforce positive royalties.

This result implies that, for an initial owner with θ less than the maxi-
mum value and τ = 0, it is optimal to subsidize and have y < 1 and τ ′ < 0.
Inductively this implies that trade has subsidy forever almost surely. Subsi-
dies imply a speci�c deviation from the planners problem that cannot occur
under simple ownership. Notice that, if the current owner of some type sets
subsidy −τ ′, then a new owner who draws θ very close to 1 will set y < θ,
since a type that arrives with a type nearly as high as them would be willing

16This intuition implies the result might be reversed if buyers had heterogeneous and
private values of λ; a buyer with high λ would be hit more by a tax for a given level of
θ. Such a model with multi-dimensional heterogeneity is an interesting topic to explore in
the future.
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to pay at least 1, plus they would receive the subsidy. In other words, they
will be willing to sell to someone of a lower type then themselves, due to the
subsidy, leading to the good moving from higher to lower valuations. The
subsidy encourages trade past the point of e�ciency.

It is possible to consider more general subsidies and royalties that apply
more than just to the next sale; the space of such possibilities is large. On
the one hand, a �xed ad valorem subsidy on all future sales runs up against
the same intuition; conditional on a set of marginal types, taxing future sales
does a worse job of extracting from inframarginal types.

Corollary 8. Suppose d(θ, τ) < 1. Then the optimal ad valorem royalty
τ ′(θ) < 0 is a subsidy.

On the other hand it is not a surprise that these subsidies are not observed
in practice; a buyer who could concoct a sham transaction could immediately
collect the subsidy (rather than waiting) and undo all the bene�ts to the
seller. In the next section, a more complicated contract is considered where
both subsequent transactions are encouraged, and the ability of buyers to
work around the encouragement with sham transactions is eliminated.

5 Nonlinear Contracts

This section considers an initial owner who could prescribe allocations to
new arrivals, and payments from those arriving buyers, as a function of their
reported type, and the history of previous reports. Although a great deal of
generality is allowed, a relatively simple structure emerges, where the next
arrival is implemented if it is above a cuto� that depends only on the last
arrival, and the cuto� is equal to the current owner's type, except for the
�rst sale. The �rst sale is distorted exactly like a static, once and for all sale
described in (3).

The initial owner will be termed the seller, and will describe a fully history
dependent mapping from arrivals and reported types into allocation of the
object and prices paid to them. These net payments will later be interpreted
below as coming from payments between holders of the object and royalty
payments for subsequent sales paid to the seller; therefore it is natural to
assume that both the arrival and the reported type is public information,
since it needs to be transmitted via the future holders of the object who may
be the ones that �nd buyers. This makes keeping track of histories simpler,
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and there is nothing payo� relevant for a potential buyer to learn from these
details, conditional on the terms they are being o�ered. In keeping with the
smart contracts and NFT motivation, there is full commitment: all terms
are encoded in the object at time zero.

To describe this allocation, de�ne a history ht that lists the times and
the reported type of the prior transaction. Therefore ht is unchanged except
at moments when a transaction occurs.17 The allocation speci�es, for any
report θt at time t given a history leading up to t of ht−, whether or not to
transact the object and the price the seller receives at this history and report,
subject to a mild measurability condition described below. Suppose a person
arrives at t and is allocated the object, generating history ht. Describe their
possession of the object (if any) as lasting for any history in the collection
H(ht), which is required to be measurable. Let χ() be the indicator function.
The buyer's payo� from buying is

θ

∫
Ehτ |ht(e

−τχ(hτ ∈ H(ht))dτ − p(ht)

Let d(ht) =
∫
Ehτ |ht(e

−τχ(H(ht), hτ )dτ ; this payo� can then be written as
d(ht)θ − p(ht). Since the buyer cares only about d(ht) for any p(ht), from
the standpoint of incentive compatibility the seller can freely substitute any
contract that delivers the same d(ht) for each history and maintain incentive
compatibility at ht.

It is immediate that if a buyer of type θ �nds it optimal to purchase at
some history, then so does any buyer with a higher type, since they would
get a higher payo� from making the same report. Whether the object is
transferred can therefore be described by a measurable function θht(τ) which
is the cuto� type that is implemented at time τ > t starting from a purchase
at history ht if no transaction has occurred. Although this can be a compli-
cated object, it is always equivalent, in payo� to the seller and duration of
ownership for the owners, to a lottery over �xed cuto�s:

Lemma 9. For any θht(τ) there exists a lottery over constant cuto�s ∆θ
that delivers the same future payo� to the planner and duration for anyone
allocated the object.

17This description excludes from histories dates when an arrival occurs and a report is
made that did not lead to a transaction. Allowing contracts to depend on these events
amounts to allowing for randomization, which is shown below to not be useful to the seller.
It makes notation simpler to not include such arrivals in the history.
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From the sellers standpoint, o�ering di�erent cuto�s at di�erent histories
hτ to a buyer at ht is equivalent to a lottery over those cuto�s. Therefore,
it is su�cient to allow the seller to choose lotteries over cuto�s (which will
imply lotteries over duration for the buyer); it will turn out that such lot-
teries are not optimal, and a deterministic cuto� is optimal. However this
consideration of lotteries shows that the problem is allowing for a rich set
of history dependent rules. In turn, a lottery over cuto�s is equivalent to
a lottery over durations ∆d(x), which is what will be compute the optimal
allocation.

For any cuto�, the payo� to a seller, at the moment a type x arrives
above θ, of choosing a future lotteries over allocation ∆d(x) to those types,
can be written recursively as

Ju(θ) = max∆d(x),p(x)

∫
θ

E∆d(x) (p(x) + (1− d(x))Ju(Θ(d(x)))) f(x|x > θ)dx

where the expectation for lottery ∆d(x) is over durations d(x).18 One can
write this as

Ju(θ) = maxd(x),p(x)

∫
θ

(p(x) + conc ((1− d(x))Ju(Θ(d(x))))) f(x|x > θ)dx

(4)
where conc() is the concave envelope, and d(x) is the expected duration
across lotteries ∆d(x). The use of the notation Ju mirrors the function W u

in the planners problem, which is an analogy that is drawn out throughout
this section. It will turn out that, under the monotone virtual valuation
assumption made below, the function inside the envelope operator is concave,
so the solution is solved with a single cuto�.

Incentive compatibility for type x is

x ∈ argmaxx̂d(x̂)x− p(x̂)

and IR is that p(θ) = d(θ)θ. IC and IR can be replaced, for any increasing
d(x), by choosing the appropriate prices so that p′(x) = d′(x)x:

p(x) = p(θ) +

∫ x

θ

td′(t)dt

18With some abuse of notation, which will quickly disappear.
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Note that (4) is like the classic formulation of Mussa and Rosen (1978),
where C(d) = −conc(1−d)Ju(Θ(d)) and the problem can therefore be written
as

Ju(θ) = maxd(x)

∫
θ

(
d(x)

(
x− 1− F (x)

f(x)

)
− C(d(x)))

)
f(x|x > θ)dx (5)

Where virtual valuations are computed using the conditional distribution but
1−F (x|x>θ)
f(x|x>θ) = 1−F (x)

f(x)
.

The monotone virtual valuation assumption implies that this maximiza-
tion can be solved pointwise independent of θ; the implication, combined
with the fact that the virtual valuations don't depend on the lower cuto�,
is that d(x) does not depend on θ. Since C is concave according to Lemma
3, the solution is monotone in x and IC is satis�ed for the pointwise solu-
tion. Moreover lotteries are irrelevant; a single cuto� for each duration can
be used. Moreover, history impacts allocations only through the cuto� θ and
not through allocations of types that report being above the cuto�. This is
an important feature of Mussa-Rosen contracts generally: if the seller dis-
covers that the buyer is distributed on [θ, 1] instead of [0, 1], but follow the
conditional distribution of F on that interval, the only change in the optimal
contract is that prices shift up by a constant to extract all surplus from the
marginal type θ.

The pointwise problem can be written as

J(θ) = maxdd(w(θ)) + (1− d)Ju(Θ(d))

Because this transformed problem coincides with the modi�ed planning prob-
lem with w(θ) = θ − 1−F (θ)

f(θ)
, it has the same solution:

Proposition 10. Suppose virual valuations are increasing. Then the solution
to (5) is d(x) = 1

1+λ(1−F (x))
.

The price for type x is

p(x) =
θ

1 + λ(1− F (θ))
+

∫ x

θ

xλf(x)

(1 + λ(1− F (x)))2
ds

so that, for incentive compatibility, p′(x) = d′(x)x = xλf(x)
(1+λ(1−F (x)))2

. .
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5.1 Initial d

The initial owner solves, prior to the arrival of the �rst buyer, a di�erent
problem since they can choose a cuto� and know their own type. Their
problem, if their type is θ, is

J0(θ) = maxyθ + λ(1− F (y))(Ju(y)− J0(θ)) (6)

Rewrite the initial choice as

J0(θ) = J(θs)

where w(θs) = θ, i.e. θ = θs− 1−F (θs)
f(θs)

or θ+ 1−F (θs)
f(θs)

= θs, which is the formula
for the static solution ps = θs. Applying the result from Proposition 10, the
optimal initial y0 = θs = ps. The initial owner prices as if solving exactly the
static problem, regardless of λ. The dynamic contract generates e�ciency
on later sales at the expense of earlier ones, but is still more e�cient even in
the �rst transaction than simple ownership when repeated ownership occurs.

5.2 The dynamic contract as perpetual royalties

Although the contract in this section is written as a list of payments to the
original owner, those net transfers can be described in a variety of ways.
One issue with the payments as described in p(x) is that the current holder
doesn't get any compensation when they are forced to transact; they would
prefer to hide forever and get their type, rather than nothing when the buyer
arrives. An alternative is to ask if the payments in the dynamic contract can
be rede�ned with payments to owners when they �sell,� such that they are
at least as well o� transferring the object as not. An additional bene�t of
such an arrangement is that it has a natural interpretation as prices, together
with a (possibly history dependent) perpetual royalty payment or subsidy.

Suppose that the initial owner can describe conditions under which the
object is transferred, but cannot force transactions. Therefore it must be
the case that any transaction includes a payment to the current holder of
at least θ, i.e. their value if they run away with the object and don't trade.
We assume, consistent with how some of these record keeping technologies
work, that one could not legally transfer the object without following the
contract, so subject to the constraint the payments can be made in any way.
Modern contracts like NFTs and ethereum �smart contracts� can ensure that
contracts cannot be made outside of the rules encoded in the object.
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Consider the case where the current owner has type θ. The arriving type
reporting type x pays the buyout θ, a royalty (possibly negative) r(x, θ) to
the �rst owner, and receives, once the next transaction takes place, their own
buyout x. Incentive compatibility requires that the net discounted payments
equal p(x):

θ + r(x, θ)− (1− d(x))x = p(x)

Therefore

r(x, θ) = (x− θ)− (d(x)x− p(x))

This expression has a simple and intuitive interpretation: it is the gain from
the transfer (i.e. x− θ) less the rents that type x gets from their allocation.
Computing

dr/dx = 1− d(x)− (d′(x)x− p′(x))

= 1− d(x) > 0

Since d′(x)x − p′(x) = 0 by the IC constraint for type x. Since r(θ, θ) = 0,
the following characterizes the royalties:

Proposition 11. The royalties r(x, θ) can be written as

r(x, θ) =

∫ x

θ

(1− d(s))ds =

∫ x

θ

λ(1− F (s))

1 + λ(1− F (s))
ds ≥ 0 (7)

This de�nition of payments has (1) payment such that an owner would
(weakly) rather sell than run away and get their type forever, and (2) positive
royalties. Notice that since the net payments of every buyer is p(x), it gen-
erates the same revenue for the seller. Moreover, unlike a subsidy from the
prior section, the structure does not encourage mock transactions. Suppose
that instead of reporting their true type x, the buyer could report, in short
succession, two arrivals, one of type m < x and then one of type x. This
results in the same net payments as reporting x directly: in either case, the
buyer pays θ to the prior owner, and receives (1−d(x))x from the true buyer
that comes after. They are on both sides of the payment of m. In terms
of royalties, instead of paying r(x, θ), the two reports result in payments of
r(m, θ)+r(x,m). But from the integral description in (7), there two amounts
are the same.

Although there are many ways to de�ne payments between buyers and the
original monopolist, this one is �minimal� in the sense that it pays as little
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as possible to have the buyer willing to sell when the time comes (which
requires buyouts of at least θ), and buyers are just indi�erent to making
double reports if they were able to. It results in positive royalties at every
history, like perpetual royalties. It looks like payments of regulated prices
equal to your reported type, together with royalties. An important di�erence
from the repeated ownership economy, however, is that the monopolist still
allows only a �xed menu of possible prices to be sold; in the example of
repeated ownership where subsidy was optimal, the future prices of the object
could not be directly controlled. This suggests a role for perpetual royalties
only if future sales can be regulated in this way.

5.3 Social Value and Gains to Sellers

In order to understand the relationship between social value and the gains
sellers can achieve in the optimal contract, this section compares social value
and the seller's initial value at time zero for two parametric examples. To
focus on the pure seller, consider an object that starts with an agent of type
0, as in a typical seller's problem where the object only has value to the
extent that it can generate revenue.

First suppose F (x) is uniform on [0, 1]. The planner's problem can be
solved via the envelope equation:

W ′(θ) =
1

1 + λ(1− θ)

and so, since W (1) = 1,

W (θ) = 1− ln(1 + λ(1− θ))
λ

For comparison to the problem of the seller, w(θ) = 2θ − 1 so the envelope
equation is

J ′(θ) = d(θ)w′(θ) =
2

1 + λ(1− θ)
and so, since J(1) = 1,

J(θ) = 1− 2
ln(1 + λ(1− θ))

λ

A useful comparison between the two is between J0(0), the pure sellers
payo� (i.e. they don't value the object) andW (0), the potential social surplus
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in the same situation, and how it changes with λ. Since increasing λ changes
the total value, it is natural to think of the ratio of the two, i.e.

J0(0)/W (0) = J(1/2)/W (0) =
λ− 2ln(1 + λ/2)

λ− ln(1 + λ)

This is increasing in λ from 1/2 when λ is near zero to 1 when λ gets large.
The latter is immediate from the fact that both must converge to 1 at the
top of the support when the support is compact.19

When the support is unbounded, there is no longer a necessity of equal-
ization of private and social value as λ grows large. Suppose F (θ) = 1−e−γθ.
Then

W ′(θ) =
1

1 + λe−γθ
(8)

so

W (θ) = θ +
ln(1+λe−γθ

γ
)

γ
−
ln( 1

γ
)

γ

= θ + ln(1 + λe−γθ)1/γ

Since w(θ) = θ − 1/γ, J shifts this by 1/γ relative to W , i.e.

J(θ) = θ + ln(1 + λe−γθ)1/γ − 1/γ

But then since type 0 has a static maximizer 1/γ:

J0(0)/W (0) = J(γ)/W (0) =
ln(1 + λe−1)

ln(1 + λ)

This is increasing from e−1 near λ = 0 to 1 as λ grows large. This is not due
to convergence of the levels of the two: the di�erence between them is

W (0)− J0(0) =
1

γ
ln(

1 + λ

1 + λ
e

)

19Obviously the two values are zero at λ = 0, and more generally, for compact support
the di�erence must be zero when λ is zero (since in both cases the object never changes
hands) and zero when λ is large, since both the planner and seller get payo� 1. Computing
the di�erence:

W (0)− J0(0) =W (0)− J(1/2) = 2
ln(1 + λ/2)

λ
− ln(1 + λ)

λ

This has an inverted U shape in λ: the gap between social value and the seller's value �rst
increases then decreases.
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which is increasing and convering to 1/γ as λ grows large. In other words, in
this case faster transactions always increase social welfare by more than they
increase the seller's surplus, but at a slower rate than social surplus grows
with λ.

5.4 Discussion: Non-Monotone Virtual Values

A natural question is what happens in the dynamic contract when virtual
valuations are not monotone. First, it is immediate that e�ciency after �rst
sale cannot be maintained: the e�cient allocations are strictly increasing,
incentive compatibility is slack, which would imply pointwise maximization
and convex costs, but pointwise optimization is not monotone if virtual val-
uations are not. Second, since virtual valuations are maximized at the top
of the distribution, e�ciency is eventually reached; this is di�erent from the
usual �no distortion at the top� since it applies for any region at the top
where virtual valuations are monotone for all higher values, and is consistent
with the idea that e�ciency is greater later in the contract's life, as was true
with monotone virtual valuations.

The standard approach when virtual valuations are not monotone is to
iron. Ironing has slightly di�erent implications here because the allocations
from the ironed values impact both the payo� directly and indirectly though
the endogenous cost function. To see how this manifests itself in this problem,
suppose that virtual valuations have a single interior local maximum at θ1

and a single interior local minimum θ2 > θ1, and then ironed valuations are
de�ned to be equal to the true valuations except on some interval (a, b) where
they are constant. The di�erence from the usual ironing approach is that,
not only are the current payo�s payo�s dependent on the choice of ironing,
but also indirectly via the cost function.

Consider solving (5) with the ironed values. Since the payo� is weakly
increasing, a simple variant of the e�ciency result is immediate: the solution
is equivalent to treating the ironed values as an atom in the distribution of
θ, and the optimal rule is to always transact the object whenever a higher
ironed virtual valuation consumer arrives. This, however, doesn't pin down
the rule in the ironed region, since values are constant; formally, both the
current value and the marginal cost of allocating duration are constant and
coincide. In other words, and rule in (a, b) is equally good at maximizing
ironed virtual valuation when the current owner is in that region.

As usual, a decreasing rule violates IC, and an increasing rule would
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imply IC is slack (and therefore in turn not increasing), so the rule must
be constant; the constant cuto� (and the ironing point itself) must tradeo�
over-rewarding high θ with low virtual valuation, and under-rewarding low θ
with high virtual valuation. So the optimum cuto� is above a and below b.
This implies departures from e�ciency in both directions: near a, the cuto�
is above the e�cient one (i.e. ine�ciently few transactions) and near b it is
below (ine�ciently many transactions, including transactions to worse types
as with the subsidy for the simple royalty case).

Still, outside of the ironed region, there are e�ciency bene�ts from the
more complicated contracts. These bene�ts, including those from perpetual
royalties, suggest a potential downside from exhaustion rules that would limit
such contracts. Subsidy polices might be possible even with exhaustion, since
owner were o�ered only a free (but not negatively priced) option to accept
the subsidy, they would; o�ering them the right, at the same initial price to
own the object without further interaction with the seller is worse for them.
However the e�ciency bene�ts come from controlling future transactions in
a way that would likely run afoul of exhaustion. There is a trade o� between
these bene�ts of dynamic contracts, and the known concern for interference
in used markets.

6 Conclusion

This paper introduced a simple model of repeated transactions in a thin
market, where buyers come along periodically. Although quite abstract, it
highlights the usefulness of dynamic contracts that are now easy to write
in encouraging subsequent transactions. A full dynamic contract has an
interpretation as perpetual royalties, but bundled with pricing limitations on
subsequent owners. Such a contract can achieve e�ciency on all but the �rst
sale, while distorting the �rst sale less than any owner would if they could
not include such complicated terms. This shows both the complexity of such
arrangements, and the potential limitations to them. The e�ciency result
contrasts with repeated sellers such as in Hendel and Lizzeri (1999) where
sellers discourage resale because it competes with their own sales, and with
static problems of price discrimination like Mussa and Rosen (1978) where
monotone virtual valuations do not generate e�ciency.

The model could be augmented in many ways in the future. One natural
concern in used markets is adverse selection a la Akerlof (1970). Because
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the paper assumes independent private values, this doesn't arise here, but
future research could consider such concerns. Another form of heterogeneity
might be heterogeneity in owners' ability to �nd additional buyers (i.e. λ
in the model). This would likely change considerably the nature of royalty
agreements. Finally, this structure would be a natural one to embed in a
search model in order to think about how equilibrium considerations impact
these contracts.
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Appendix: Proofs

Proof of Lemma 1

Proof. If the support of f is compact, there exists a unique, bounded W (θ)
by usual contraction arguments. In the case where the support is the real
line, the payo� to the planner cannot exceed the payo� from the discounted
return to the current type's consumption plue every future arrival receiving
(there own copy of) the object forever. Since the expected payo� from each
arrival for the planner is the mean of F , the present discounted value of
future arrival is bounded because r > 0. Therefore denote this bound by
W (θ) ≤ θ + c for some �nite c. Then de�ne GW (θ) = W (θ) − θ. Since the
solution to the planners problem is bounded by θ + c, it must be the case
that the solution to the sequence problem can be written this way for some
bounded GW . But

GW (θ) = W (θ)− θ = λmaxy

∫
y

(W (x)−W (θ))f(x)dx

= λmaxy

∫
y

(GW (x) + x−GW (θ)− θ)f(x)dx

Since limy→∞
∫
y
xf(x)dx is bounded as the mean of f is bounded, this maps

bounded, continuous functions from R+to R+ into such functions, and there-
fore usual contraction arguments show that it is the unique such function,
and therefore is one that describes the solution.
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Guess thatW (θ) =
∫ θ

0
1

1+λ(1−F (x))
dx+C. Then it is immediate that y = θ

and, di�erentiating the Bellman equation,

W ′(θ) = 1− λ(1− F (θ))W ′(θ)

=
1

1 + λ(1− F (θ))

which veri�es the guess. Since this is increasing in θ,W is convex as asserted.

Proof of Lemma 3

Proof. Since

(1− d)W u =
λ(1− F (Θ(d)))

1 + λ(1− F (Θ(d)))

∫
Θ(d)

W (x)f(x)dx

1− F (Θ(d))

= λd

∫
Θ(d)

W (x)f(x)dx

the �rst derivative is proportional to (with constant of proportionality λ)∫
Θ(d)

W (x)f(x)dx− d ·W (Θ(d))f(Θ(d))Θ′

or ∫
Θ(d)

W (x)f(x)dx− (1 + λ(1− F (y)))

λ
W (y)

The second derivative can be signed by taking the derivative with respect to
y, since y is increasing in d. It is

−W (y)f(y)−W ′(y)
(1 + λ(1− F (y)))

λ
+W (y)f(y) < 0

since W ′(y) > 0.

Proof of Proposition 4

Proof. Begin with the case where F is compact. Then the fact that V (θ) is
continuous, strictly increasing, greater than θ, with V (1) = 1 follows directly
from contraction arguments: the operator de�ned by the right hand side
of (9) maps continuous, increasing functions greater than θ into (strictly)
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increasing functions, so the �xed point must be strictly increasing. The
choice of y can also be thought of as determining the present discounted
duration of ownership d, where y = Θ(d) is determined from d = 1

1+λ(1−F (y))
;

therefore alternatively we can write

V (θ) = θ + λ(1− F (Θ(d)))(V (Θ(d))− V (θ))

V (θ) = maxddθ + (1− d)V (Θ(d)) (9)

We break the rest into a series of claims. Let the set of maximizers of (9)
be D(θ).

Claim. For all θ < 1 and d ∈ D(θ), 1
1+λ(1−F (θ))

< d < 1

Proof. Since V (θ) > 0, it cannot be that If either d ≤ 1
1+λ(1−F (θ))

, or d = 1,

since then then V (θ) ≤ θ; the seller could do better by selling to some higher
types to get a value that was a convex combination of θ and a higher value.
Therefore y > θ.

Claim. Suppose θ′ > θ. For all d(θ′) ∈ D(θ′) and d(θ) ∈ D(θ′), d(θ′) ≥ d(θ).

Proof. Optimization implies

d(θ′)θ′ + (1− d(θ′))V (Θ(d(θ′))) ≥ d(θ)θ′ + (1− d(θ))V (Θ(d(θ)))

and

d(θ′)θ + (1− d(θ′))V (Θ(d(θ′))) ≤ d(θ)θ + (1− d(θ))V (Θ(d(θ)))

Subtract the second from the �rst:

d(θ′)(θ′ − θ) ≥ d(θ)(θ′ − θ)

so d(θ′) ≥ d(θ).

Claim. V is convex, and strictly convex except on intervals where there is a
constant solution d(θ)

Proof. Let θ = γθh + (1− γ)θl for θh > θl and 0 < γ < 1. Then

V (θh) ≥ V (θ) + d(θ)(θh − θ)
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and
V (θl) ≥ V (θ) + d(θ)(θ − θl)

since at those points the seller could choose the same price, and gain or lose
the di�erence in their value for the duration they held the object. But then

γV (θh) + (1− γ)V (θl) ≥ γ
(
V (θ) + d(θ)(θh − θ)

)
+ (1− γ)

(
V (θ) + d(θ)(θ − θl)

)
= V (θ)

Claim. Suppose V is convex in the problem maxy(1 − F (y))(V (y) − V (θ)).
Then, for all θ, the solution occurs at a point where V (y) is di�erentiable.

Proof. Since V is convex, V (y) always has left (V ′l ) and right hand (V ′r )
derivatives. Increasing and convex V implies that 0 ≤ V ′l (y) ≤ V ′r (y) So the
question is whether it is possible that V ′l (y) < V ′r (y). But for y to be optimal
it must be that

(1− F (y))V ′r (y)− f(y)(V (y)− V (θ)) ≤ 0

and
(1− F (y))V ′l (y)− f(y)(V (y)− V (θ)) ≥ 0

which is not possible if V ′l (y) < V ′r (y). Therefore V ′l (y) = V ′r (y) so the
function is di�erentiable at y.

Claim. V is strictly convex and d is strictly increasing.

Proof. V can only be weakly convex on intervals where the choice of y is con-
stant. But since y occurs at a point of di�erentiability, a necessary condition
for optimality is

(1− F (y))V ′(y)− f(y) (V (y)− V (θ)) = 0 (10)

Since V (θ) is strictly increasing this cannot be satis�ed for any y and two
values of θ.

When the support is unbounded� since V (θ) ≤ W (θ), V (θ) can be
bounded by θ + c. De�ne

VX(θ) = V (θ)− θ = maxd (1− d) (V (Θ(d))− θ)
= maxd (1− d) (VX(Θ(d)) + Θ(d)− θ) (11)
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(11) maps bounded, continuous, positive functions to the same if (1 −
d)Θ(d) can be bounded. But

(1− d)Θ(d) =
λ(1− F (y))

1 + λ(1− F (y))
y

which is bounded since limy→∞(1− F (y))y = 0 when F has �nite mean.
To see that the solution to (11) is the unique solution to (2), and therefore

describes the maximum, de�ne ψ(θ) = θ + maxθVX(θ). Uniqueness follows
from using the ψ norm as described in Duran (2000). Once the Bellman
equation is established, all of the other facts follow exactly as for the case
with compact support. 4

Proof of Proposition 5

Proof. Rewrite the optimality condition (10) as

1− F (y)

f(y)
− V (y)− V (θ)

V ′(y)
= 0

or
1− F (y)

f(y)
− V (y)− V (θ)

(y − θ)V ′(y)
(y − θ) = 0 (12)

where
V (y)− V (θ)

(y − θ)V ′(y)
< 1

since V is strictly convex. Now take any θ < y ≤ ps; then since virtual
valuations are increasing, y − 1−F (y)

f(y)
< ps − 1−F (ps)

f(ps)
= θ so

1− F (y)

f(y)
> y − θ > V (y)− V (θ)

(y − θ)V ′(y)
(y − θ)

so (12) cannot be satis�ed.

Proof of Proposition 6

Proof. To be explicit about the role of λ, write

V (θ, λ) = θ + λmaxy(1− F (y))(V (y, λ)− V (θ, λ))
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or
V (θ, λ) = maxddθ + (1− d)V (Θ(d), λ) (13)

Since, for any y, the right hand side of the �rst equation is higher for higher
λ, it is increasing in λ, V (θ, λ) is increasing in λ as well as θ.

Suppose that the ∂V
∂θ

is decreasing in λ. (Note that at points of non
di�erentiability, this can be stated in terms of directional derivatives both
being decreasing in λ.) Let that be Property P. The following argument
shows that the functional equation operator de�ned by (13) maps functions
with Property P on the right hand side into functions with Property P on
the left hand side. Since Property P forms a complete metric space, the �xed
point of the contraction operator must satisfy Property P.

Since solutions are at a point of di�erentiability for any λ, they are char-
acterized by the �rst order condition

θ − V (Θ(d), λ) + (1− d)
dV

dθ
Θ′ = 0

The solution for d is decreasing in λ if the left hand side is decreasing in λ.
Since V is increasing in λ, −V is decreasing. For the second term, Property
P implies that dV

dθ
is decreasing in λ. By direct calculation Θ′ = 1

λd2f(y)

is decreasing in λ. Therefore the LHS is decreasing in λ for any d and
therefore the solution d(θ) is decreasing in λ. Since ∂V

∂θ
= d(θ), this implies

that Property P is indeed satis�ed for any value function generated from
one where Property P holds, and therefore the �xed point of the contraction
operator satis�es property P .

Proof of Proposition 7

Proof. Di�erentiating the Bellman equation, dV (θ,τ)
dτ

= −s(θ, τ). The �rst
order condition for τ ′ is

dV (y, τ ′)

dτ ′
+

∫
y

s(x, τ ′)f(x|x > y)dx = −τ ′
∫
y

ds(x, τ ′)

dτ ′
f(x|x > y)dx

By the envelope condition, dV (θ,τ)
dτ

= −s(θ, τ) ≤ 1, so marginal return to y
is increasing in τ , so y is increasing in τ . This implies that s is decreasing
in τ so the integrand on the right hand side of the �rst order condition is
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negative. But since dV (y,τ ′)
dτ ′

= −s(y, τ ′) the left hand side is

−s(y, τ ′) +

∫
y

s(x, τ ′)f(x|x > y)dx

≤− s(y, τ ′) +

∫
y

s(y, τ ′)f(x|x > y)dx = 0

Therefore τ ′ ≤ 0 to make the RHS negative. Since d(θ, τ) < 1, τ ′ = 0 implies
s(y, 0) > 0, and since y is less than the maximum value of θ the inequalities
must be strict, so τ ′ < 0.

To extend the result to an ad valorem royalty, n owner of type θ facing a
royalty τ and setting y and future royalty τ ′ solves

V (θ, τ) = θ+λmaxy,τ ′(1−F (y)

(
(1− τ)(V (y, τ ′) + τ ′

∫
y

s(x, τ ′)R(x, τ ′)fy(x)dx)− V (θ, τ)

)
Where

R(θ, τ) = V (y(θ, τ), τ ′(θ, τ)) + τ ′(θ, τ)

∫
y(θ,τ)

s(x, τ ′(θ, τ))R(x, τ ′(θ, τ))

The �rst term is the price collected in state θ, τ from the next buyer, p =
V (y, τ ′) and the second term is royalties collected from the future owner.
Alternatively:

V (θ, τ) = θ + λ(1− F (y(θ, τ)) ((1− τ)(R(θ, τ)− V (θ, τ))

= d(θ, τ)θ + (1− τ)s(θ, τ)R(θ, τ)

Then the envelope condition is

V2(θ, τ) = −s(θ, τ)R(θ, τ)

The �rst order condition for τ ′ is

V2(y, τ ′) +

∫
y

s(x, τ ′)R(x, τ ′)f(x)dx+ τ ′
∫
d (s(x, τ ′)R(x, τ ′))

dτ
= 0

In order to follow the same steps as in Proposition 7 we need to show that
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Lemma 12. s(θ, τ)R(θ, τ) is decreasing in θ and τ

Proof. For decreasing in θ, take θ and θ+ with θ+ > θ and suppose that
s(θ+, τ)R(θ+, τ) > s(θ, τ)R(θ, τ). Then by optimality, using

d(θ, τ)θ + (1− τ)s(θ, τ)R(θ, τ) ≥ d(θ+, τ)θ + (1− τ)s(θ+, τ)R(θ+, τ) (14)

and

d(θ+, τ)θ+ +(1− τ)s(θ+, τ)R(θ+, τ) ≥ d(θ, τ)θ+ +(1− τ)s(θ, τ)R(θ, τ) (15)

But then, taking the LHS of the (15) minus the RHS of (14), which must be
greater than the RHS of (15) minus the LHS of the (14):

d(θ+, τ)(θ+ − θ) ≥ d(θ, τ)(θ+ − θ)

so d(θ+, τ) ≥ d(θ, τ), but then clearly (14) is violated since both terms are
larger on the RHS.

Similarly, for decreasing in τ, take τ and τ+ with τ+ > τ . Then by
optimality

d(θ, τ)θ + (1− τ)s(θ, τ)R(θ, τ) ≥ d(θ, τ+)θ + (1− τ)s(θ, τ+)R(θ, τ+)

and

d(θ, τ+)θ + (1− τ+)s(θ, τ+)R(θ, τ+) ≥ d(θ, τ)θ + (1− τ+)s(θ, τ)R(θ, τ)

Taking the LHS of the �rst minus the RHS of the second, which is greater
than the RHS of the �rst minus the LHS of the second:

(τ+ − τ)s(θ, τ)R(θ, τ) ≥ (τ+ − τ)s(θ, τ+)R(θ, τ+)

so s(θ, τ)R(θ, τ) ≥ s(θ, τ+)R(θ, τ+).

Proof of Lemma 9

Proof. Conditional on a cuto�, any continuation plan for new owners as a
function of θ > θht(τ) is equally feasible and doesn't impact duration for
prior innovators given the cuto�; therefore the payo� for the planner cannot
vary with ht for each θ and we can write the expected payo� as ω(θτ ). The
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expected payo� from the next arrival, given a sequence of cuto�s θ(t) is
therefore ∫

e−τgθ(t)(τ)ω(θ(τ))dτ

where gθt(τ) is the probability distribution over next transaction given θ(t).
Duration is ∫

(1− e−τ )gθt(τ)dτ

De�ne the measure µ(θ) for any measurable subset A of [0,1]:

µ(A) =

∫
e−τχ(θ(τ) ∈ A)gθ(t)(τ)dt

so that duration under θ(τ) is d = 1 − µ([0, 1]). This is the (discounted)
measure of instants when cuto�s in A is implemented. We can therefore
write the planner's payo� as ∫

ω(θ)dµ(θ)

Now suppose the seller draws a �xed cuto� from a measure de�ned by

∆(A) =

∫
A

(1/

∫
gθ(t)dt)dµ(θ)

where gθ is the distribution over arrival times for a �xed cuto� θ. Then their
expected payo� is identical to payo� from θ(t):∫

ω(θ)(

∫
gθ(t)dt)d∆(θ) =

∫
ω(θ)dµ(θ)

and duration provided is the same,∫
(1−

∫
fθ(t)dt)d∆(θ) = 1− µ([0, 1]) = d

The �nal step is to show that ∆ is a probability measure. Suppose that
θ(t) is a step function taking on two values, θ1 for [0, t̄] and θ2 for [t̄,∞).
Then, using G() as the cumulative density for g

µ(θ1) = (1−Gθ1(t))

∫
gθ1(t)dt

µ(θ2) = Gθ1(t)

∫
gθ2(t)dt
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and so,

∆([0, 1] =
(1−Gθ‘1(t))

∫
gθ1(t)dt∫

gθ1(t)dt
+
Gθ1(t)

∫
gθ2(t)dt∫

gθ2(t)dt
= 1

The extension to θ(t) that has N steps, i.e. is a simple function, is immediate.
Taking a sequence of simple functions θn(t) → θ(t), with the associated
measures ∆n, then since

∫
d∆n = 1 for all n,

∫
d∆ = ∆([0, 1]) = 1 by

monotone convergence for the measure ∆ de�ned by θ(t).

Proof of Proposition 10

Proof. Since

Ju(θ) =

∫
θ

J(x)f(x)dx/(1− F (θ))

this coincides with (1), except that the planner's payo� θ is replaced with
w(θ). But since that is an increasing function, the choice of d is unchanged.
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