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Abstract

Are consumers in the marketplace aware of their behavioral biases? Which biases can be
profitably exploited by firms? I answer these questions in the context of a widely regulated form of
price discrimination: rebates that require active redemption. I show theoretically how to recover
consumers’ subjective beliefs about their biases—that prevent them from redeeming the rebate—
from aggregate demand responses to rebates, redemption reminders, and a simple discount that
does not require redemption. In a large-scale field experiment with a major online retailer, I
find that consumers correctly increase demand when the firm offers a redemption reminder, but
they fail to reduce demand when the firm increases the hassle required to redeem. Structural
estimates reveal that, while consumers are almost fully sophisticated about the probability of
forgetting to redeem the rebate, they vastly underestimate the hassle of redeeming it by 20 EUR

per consumer. Exploiting this misperception increases the profitability of rebates by 150%.
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“These companies are only offering the illusion of a rebate to the many people like me who never
get around to claiming it. Because of such thick sludge, redemption rates for rebates tend to be low,

’»

vet the lure of the rebate still can stimulate sales—call it "buy bait.

- Richard H. Thaler, 2018

1 Introduction

Growing evidence in psychology and economics shows that behavioral anomalies affect consumption
choices. Consumers might ignore shrouded shipping costs when purchasing products online, they
might over-borrow once they have a credit card, or they might fail to cancel expensive subscriptions
when the hassle of cancellation seems large. Are consumers able to anticipate these behavioral
shortcomings? Answering this question is of fundamental importance because it determines whether
consumers can avoid environments that try to exploit them. A consumer who is aware of her
inattention might avoid online shops that shroud shipping costs. She might decide not to get a credit
card if she is aware of her time inconsistency. And she might avoid subscriptions if she anticipates the
hassle required to get out of the contract. Consumer sophistication about their behavioral tendencies
also determines whether firms can profitably exploit behavioral biases, whether biases actually lead
to systematic mistakes, and whether consumer protection regulation is justified.

While there is some laboratory evidence that measures consumers’ beliefs about their behavioral
biases, there is little evidence as to whether consumers in the marketplace are sophisticated. I provide
a revealed-reference test of consumer sophistication from a “natural field experiment” (Harrison and
List 2004): real market participants make choices in their natural environment, not knowing they are
being observed by a researcher. The experiment is conducted with one of Europe’s largest furniture
and homeware retailers and gathers choices from over 600,000 consumers. The study leverages an
ideal setting that is often criticized for exploiting behavioral biases and, for that reason, is widely
regulated by consumer protection laws: online rebates that require active redemption. In these
promotions, consumers are offered a price discount, but the discount is only applied to the purchase
value if consumers enter the promotion code into a field on the checkout page of the webshop.!

This setting is interesting because consumers may fail to claim the rebate for two reasons. First,
they may forget, because reminders to redeem are typically not provided. It is often argued that

this friction, which I refer to as “inattention,” may be a source of profits for firms. Second, even if

I Digital rebates are a major promotion tool in online shopping and quantitatively important. Industry experts estimate
that the total value of digital rebates that have been redeemed was 47 billion USD in the United States in 2017 (Juniper
Research 2021). This number is projected to increase to 91 billion USD in 2022. Digital rebates account for around
80% of all rebates in terms of redemption value, superseding traditional promotions such as mail-in rebates. Although
redemption barriers may be lower for digital rebates than for traditional mail-in rebates, a less obvious point is whether
consumer sophistication varies between these rebate types. For instance, consumers may anticipate that rebates with
a larger temporal redemption lag have a lower redemption probability, such that the level of sophistication is similar
between mail-in and digital rebates.



consumers remember rebate redemption, they need to go through the effort of redeeming it, namely
finding and entering the promotion code. The consumer may then fail to redeem also because of
such “hassle costs.” Ex ante underestimation of hassle costs may be another source of profits for the
firm. Distinguishing between these two frictions is also important in light of their starkly different
implications for consumer protection policies: mandating firms to provide reminders to redeem
the rebate would not prevent consumers from making mistakes if they are sophisticated about their
inattention but underestimate hassle costs.? In this case, mandating firms to automatically apply
rebates may be optimal. If, on the other hand, consumers are sophisticated about both inattention
and hassle, rebates may be an efficient form of price discrimination in which more price-elastic
consumers are more likely to redeem the rebate. In this case, restricting firms to use rebates may
reduce welfare. Thus, consumer sophistication about inattention and hassle is at the core of the
debate on whether rebates harm consumers and which regulations are efficient.

The field setting is ideal to study the importance of this issue. The retailer I partner with routinely
offers these rebates, so I can assess whether consumers in the marketplace, who have an opportunity
to learn, are nevertheless unsophisticated with respect to their inattention, hassle costs, or both.

I provide both reduced-form and structural tests of consumer sophistication. The reduced-
form test relies on three treatments that I randomize in the store: 1) a standard rebate (“rebate”
henceforth), 2) a rebate in which a salient reminder to redeem is announced at the outset (“reminder”
henceforth), and 3) a simple price reduction that does not require redemption (“discount” henceforth).
If consumers anticipate their inattention, then a reminder should make more consumers willing to
buy because the reminder increases the redemption probability. Thus, demand should be greater
in “reminder” than in “rebate.” Similarly, if consumers anticipate hassle costs, demand should be
greater in “discount” than in “reminder” because, in the latter, consumers are attentive but the hassle
of redemption still discourages some from redeeming the rebate.

I find that consumers are, in fact, sophisticated about their inattention. While the redemption
rate is 10 percentage points larger with a reminder, the reminder also increases the demand response
to a rebate by around 45%. This is “model-free” evidence that consumers attach positive value to
the reminder and, therefore, are aware of their inattention to some degree.

The picture is very different for hassle costs. I find that there is no significant difference in the
demand responses to “discount” and “reminder”, even though the actual redemption probability
is 20 percentage points lower for “reminder” than for “discount.” This implies that, despite hassle
costs being large, there is full naiveté about them.

These reduced-form results tell us that consumers anticipate their inattention to some degree
but not by how much. Based on a pre-registered structural model, I show that it is possible to

quantify consumers’ subjective beliefs about both inattention and hassle costs simply by comparing

2Reminders may still yield welfare gains to rational consumers by reducing the transaction costs of paying attention.
See Farhi and Gabaix (2020) and Rodemeier and Loschel (2022) for theoretical frameworks and empirical evidence of
the efficiency effects of informational interventions.



demand responses to the treatment variation. The perceived probability of remembering rebate
redemption is identified by comparing the demand elasticity with and without reminder (i.e., “rebate”
vs. “reminder”). I estimate that this perceived probability is around 73%. The true probability
can be identified by the effect of the reminder on redemption and is estimated to be 78%. Since
perceived and true values are roughly equal, I conclude that consumers almost fully anticipate their
inattention when deciding whether to buy. I show that this finding replicates at higher stakes as |
exogenously vary the rebate value.

Perceived hassle costs are zero because the demand response to “reminder” is equal to that of
“discount.” I show that true hassle cost felt by the consumers can be estimated using the minimum
increase in rebate value at which all consumers redeem the rebate when they are reminded to do so.
Using exogenous variation in rebate value, I estimate that hassle costs are around 20 EUR. This is a
substantial amount, given that consumers only need to find and enter a promotion code. The large
number may represent a cognitive bias instead of neoclassical effort costs. Once consumers made it
to the checkout, they might exaggerate the hassle required to go back and find the rebate code, or
they might focus too much on the instant gratification of finishing the purchase (see, K6szegi and
Szeidl 2013 for a model consistent with this explanation).

The magnitude is economically large: I find that the optimal demand response to rebates of fully
sophisticated consumers would only be 30% of the observed treatment effect.

Further, there is little heterogeneity in treatment effects based on observables. This is important
because rebates could be a socially-efficient form of price discrimination if more price elastic
consumers have higher redemption probabilities.” However, I find that consumers visiting from
regions with different income levels have fairly homogeneous price elasticities, that are independent
from inattention and hassle costs. These additional results indicate that rebates are unlikely to
constitute a traditional form of price discrimination, but are rather used to exploit naiveté about
hassle costs.

The extent of naiveté about hassle costs has an important implication: firms can introduce hassle
costs, which strongly reduce redemption rates without sacrificing sales. Using detailed data on
markups, I show that the typical rebate is 150% more profitable than an automatically applied
discount of equal value. This effect seems to be entirely driven by consumers not anticipating hassle
costs. Exploiting inattention, by not offering a reminder, has no significant positive effect on profits.
The reason is that consumers anticipate their inattention and reduce demand if the firm does not
offer a reminder.

These results inform consumer protection policies in the US and across the globe. Policymakers

have substantially regulated the features of rebates due to the suspicion that consumers are not

3In equilibrium, this implies a cross-subsidy from consumers with high redemption barriers to consumers with low
barriers. For an example of cross-subsidization with fully rational consumers, see Fisher et al. (2021).



sophisticated.* This paper provides the empirical foundation for these widely used regulatory policies
and substantiates the underlying motivation. An important takeaway is that mandatory reminders
may not be sufficient to protect consumers because naiveté is concentrated around hassle costs rather
than inattention. More invasive regulations that restrict the use of rebates or impose the burden of
redemption on the side of the firm may be called for.

The rest of this paper is structured as follows. Section 2 discusses contributions of this paper to
the literature. In Section 3, I present the design of the field experiment. Reduced-form results are
presented in Section 4. In Section 5, I derive simple sufficient statistics of consumer sophistication
and estimate them with the field data. Section 6 discusses additional mechanisms that can explain

the data. Section 7 concludes.

2 Contributions to the Literature

This paper makes four contributions. First, it provides the first test of consumer sophistication
from a natural field experiment. The experiment leverages a popular platform in which rebates
are frequently offered, and I observe how actual market participants respond to them. Two prior
studies have provided clean tests of sophistication about redemption behavior but relied on laboratory
experiments. Ericson (2011) lets students choose between two future payments, where one payment
is certain and the other payment is only received if the subject remembers to send an email to the
author 5 months later. A multiple price list elicits a lower bound for subject’s perceived probability
of sending the email. While this lower bound corresponds to 76%, only 53% of subjects end up

sending the email, providing evidence of consumer naiveté. Tasoff and Letzler (2014) run a related

4In the US, the Federal Trade Commission warns consumers to not be “‘baited’ by rebates that never arrive” (Federal
Trade Commission 2020). The regulation of these promotions lies in the responsibility of each state. The Connecticut
“Unfair Trade Practices Act” allows firms to advertise a price net of the rebate only if the rebate is immediately applied
(Connecticut Unfair Trade Practices Act Regulations 2004). The “Unfair Trade Practice and Consumer Protection Act”
in Rhodes Island explicitly states that the burden of rebate redemption should be on the side of the retailer if prices are
advertised net of the rebate (Rhode Island General Laws 2016). California, Maryland, and New Jersey have similar
regulations that illustrate the regulators’ concerns that consumers may be naive about their probability of redeeming.

3 An additional policy that this paper does not speak to is mandatory information provision about hassle costs. Firms
could be mandated to warn consumers that redemption is more cumbersome than many consumers assume ex ante. It
is unclear, however, whether these warnings would be able to fully de-bias consumer beliefs about hassle costs and
how these warnings could be implemented in practice. Note also that firms have a lot of control over the shopping
environment and could, therefore, frequently change the details of the redemption procedure in a way that is difficult to
inform consumers about concisely.



experiment in which students need to file a mail-in form rather than send an email. Subjects’ lower
bound is 79% but only 30% of subjects eventually mail in the form.®’

The field experiment conducted in my study improves upon this work by studying whether
naiveté generalizes to actual market settings. For instance, one may argue that subjects in the prior
studies are overconfident because they have no experience with the particular redemption procedure.
Prior work also documents that market experience can eliminate certain behavioral biases (List
2011).% The rebate used in my study is the standard promotion used by the firm and its competitors
and therefore exists in a long-run general equilibrium. One important takeaway from this study is,
therefore, that also consumers in the marketplace are partially naive.’

The second contribution is the insight that while both inattention and hassle costs are substantial
frictions, consumers anticipate their inattention while they severely underestimate hassle costs. A
particular novel result is that seemingly minor hassle costs cause substantial, but fully unanticipated,
disutility to consumers. The results also advance our general understanding of which behavioral
biases consumers are aware of. My structural estimates on perceived and true inattention can
be used to quantify parameters of leading models on (rational) inattention (Bordalo, Gennaioli,
and Shleifer 2013, K&szegi and Szeidl 2013, Matéjka and McKay 2015, Matéjka 2015, Matéjka
2016, Caplin, Dean, and Leahy 2017, Mackowiak, Matéjka, and Wiederholt 2021) and memory
(Bordalo, Gennaioli, and Shleifer 2020). The small number of prior studies that identify structural
parameters of agents’ sophistication about their behavioral biases mostly do so in the context of
present bias (Acland and Levy 2015, Augenblick and Rabin 2019, Allcott et al. 2022, Bai et al.
2017, Chaloupka IV, Levy, and White 2019).! A recent paper by Miller, Sahni, and Strulov-Shlain
(2022) investigates sophistication regarding future inertia in canceling newspaper subscriptions
and finds that subscription demand is larger, but not large enough, when an automatic cancellation
feature is offered. Different from my study, they do not distinguish between various sources of
naiveté. The source of naiveté turns out to be important in my setting as consumers are well aware
of their inattention but fully ignorant of their hassle costs, resulting in different welfare and policy

implications. Another paper by Bronchetti et al. (2022) elicits subjects’ valuation for a reminder

% An information treatment and an email reminding subjects to file the form neither increase redemption nor do they
alter beliefs.

"Prior work in marketing indicates that subjects overestimate their redemption probability, but the elicitation methods
rely on non-incentivized survey questions in which subjects are asked how often they forget to redeem rebates (Jolson,
Wiener, and Rosecky 1987, Silk 2004). Self-reported and non-incentivized predictions may suffer from several reporting
biases that have been documented in the literature (see, e.g., Cummings, Harrison, and Rutstrom 1995, List and Gallet
2001). In fact, Ericson (2011) shows that unincentivized statements on subjective redemption probabilities differ
substantially from lower bounds elicited in the multiple price list.

8n addition to experience, market institutions may attenuate the extent to which cognitive biases distort equilibrium
outcomes (Enke, Graeber, and Oprea 2022).

Generalizability may, of course, always be attenuated by the fact that firms can design the shopping environment in
different ways, such that the presented results do not translate to competitor shops. However, the redemption procedure
of the rebate in this study is the standard practice of both the firm and of most of its competitors.

107 5schel, Rodemeier, and Werthschulte (2022) study whether “soft” commitments such as self-set goals can reduce
time inconsistency.



using a multiple price list. While average willingness to pay is positive, valuations are still below
the true returns of being attentive. This provides evidence that subjects in the study are not fully
rational in allocating attention.

The third contribution of this paper is to provide evidence that firms have an incentive to exploit
the lack of sophistication. I find that profits more than double relative to automatically applied
discounts. The fact that these rebate promotions exist in equilibrium implies that firms offering
rebates are not driven out of the market due to competition. This is consistent with the theoretical
prediction that competition does not eliminate exploitation when at least some consumers are naive
(Gabaix and Laibson 2006). In this context, the paper also provides empirical evidence for the
theoretical literature on firm practices of exploiting consumer naiveté (DellaVigna and Malmendier
2004, Grubb 2009, Heidhues and Kd&szegi 2010, Kdészegi 2014, Heidhues and Kdészegi 2015,
Heidhues, K&szegi, and Murooka 2016, Heidhues, K&szegi, and Murooka 2016, Heidhues and
K&szegi 2017, Heidhues, Koszegi, and Murooka 2021, Heidhues, Koster, and K&szegi 2020).!"
Most theory papers on naiveté-based exploitation are motivated by descriptive facts of real-world
contracts or common anecdotes, but hard empirical evidence is scarce. DellaVigna and Malmendier
(2006) use observational data on gym memberships to show that many members lose money by
choosing flat-rate contracts, likely because they overestimated their gym attendance ex ante. Grubb
and Osborne (2015) estimate a structural model of cellular plan choice with observational data and
find that consumers choose too risky plans because they underestimate the variance of future calling
behavior.'?

Different from prior studies, this paper provides evidence from a natural field experiment and
offers both reduced-form and structural identification of sophistication.!? Exploiting naiveté is
distinct from well-studied firm practices of shrouding fixed product surcharges, as empirically
analyzed in the context of shipping surcharges (Hossain and Morgan 2006, Brown, Hossain, and
Morgan 2010), and hidden fees of cinema tickets (Dertwinkel-Kalt, Koster, and Sutter 2020).
Shrouding surcharges simply makes a part of the total price less salient, but the actual price for a
given product remains the same for all consumer types. Different from shrouding, rebates price
discriminate: the price of the same good is different for, e.g., attentive and inattentive consumers. In
the shrouding literature, consumers only make one choice: whether to buy or not. In the context
of rebates, consumers make two choices: whether to buy and whether to redeem conditional on
buying. Consumers do not simply make mistakes because costs are not salient but because they do

not correctly predict their own behavior (i.e., rebate redemption).

T Akerlof and Shiller (2015) discuss many anecdotes of naiveté-based exploitation.

12Gottlieb and Smetters (2012) argue—based on stylized facts and a theoretical model—that demand for life insurance
plans with high cancellation fees is best explained by consumers who do not correctly anticipate future liquidity needs.
Ausubel (1991) hypothesizes that a likely explanation for high interest rates in credit card markers is that consumers
underestimate their probability of borrowing.

BGilpatric (2009) develops a theoretical model to study the implications of time inconsistency for rebate redemption
rates and firm profits.



As a fourth and final contribution, the paper provides a novel identification strategy, which point-
identifies consumers’ subjective behavioral biases based on observed demand responses. Instead of
relying on willingness to pay elicitations with multiple price lists, this study identifies consumer
beliefs from observed demand responses to rebates.'* This allows me to explicitly test whether the
demand response to rebates is excessively high. The identification strategy extends Chetty, Looney,
and Kroft (2009)’s influential sufficient statistics approach to identifying behavioral biases. The
novelty is to show that, by observing two choice margins (demand and rebate redemption), one may
identify not only the behavioral bias but also consumers’ beliefs about this bias. The approach may

be applied more generally to any setting in which two or more choices require some consistency.

3 Field Experiment

3.1 Cooperation with Online Retailer

The field experiment is implemented in cooperation with a major online retailer for furniture and
homeware in the European Union. The retailer operates online stores in the majority of European
countries and sells a large variety of products. The main experiment presented in this paper is
implemented among consumers in Germany in 2020. Two pilot studies with smaller samples and
fewer treatments precede this main experiment. '3

All interventions designed for this study intend to make consumers better off relative to the
standard rebate policy of the firm. Treatments either increase attention toward rebate redemption or
intend to eliminate all redemption frictions simultaneously. The firm typically offers rebates that
need to be actively redeemed during the checkout in the webshop.

It is important to highlight that the cooperating firm does not use any uncommon promotion
practices but rather follows the standard pricing policies in the industry. Claimable rebates are a
ubiquitous form of price promotion in online shopping and can be found in virtually every major

webshop.

3.2 Design

I first discuss the experimental design and then show how it can be used to identify consumer
sophistication about inattention and hassle costs. Figure 1 illustrates the design. Upon visiting the

shop’s website, the subject is randomized into one of eight experimental cells with equal probability.

“Different to prior studies which identify lower bounds of the subjective redemption probabilities, the sufficient
statistics approach used in this paper identifies point estimates.

15The first pilot was implemented in the United Kingdom in 2018 with a sample size of 19,811 consumers. The
second pilot was implemented with 52,302 consumers in Germany in 2019. The pilot studies involve fewer treatments
and more specific target groups. A description of the pilot studies and the results are presented in Appendix B.

All pilot studies have been pre-registered at the AEA RCT Registry.



Figure 1: Experimental Design

Group A:
10% Discount,
Automatic
Redemption

Group B:
10% Rebate,
Active Redemption

Group C:
15% Rebate,

Active Redemption

Group D:
Control
(no discount)

B.1

B.2

C.1

C2

w/o Reminder

w/ Reminder

w/o Reminder

w/ Reminder

B.2a B.2b
w/0 w/
Announcement Announcement

C.2a C.2b
w/o w/
Announcement Announcement

Note: This figure illustrates the experimental design. Subjects are randomized into one of eight groups with equal
probability upon visiting the website.

Subjects are individually identified and remain in the same experimental condition on follow-up

visits.!® The experimental cells can be categorized into four main groups: A, B, C, and D. Subjects

in group A receive an automatically applied discount of 10% on all products. In group B, subjects

receive the same price reduction, but only if they actively claim the rebate during checkout. Group

C is structured the same way as group B, but the rebate value is 15% instead of 10%.

Groups B and C involve several subgroups: B.1 is the standard rebate used in online shopping.

Subjects need to find the rebate code and redeem it during checkout. In B.2, subjects receive the

same rebate but are also offered a reminder to redeem the rebate during checkout. In group B.2b,

subjects also receive an announcement of the reminder the moment they visit the website. Thus,

subjects can anticipate that they will be attentive at the end. Subjects in B.2a do not receive the

announcement.

Group D serves as the control group. Subjects in this group are not offered a promotion.

16 A5 is standard in online shopping experiments, the firm uses the HTTP cookie to individually identify subjects.



3.2.1 A Reduced-Form Test of Sophistication

How does the design allow for a test of consumer sophistication about inattention and hassle costs? 1
distinguish between a “model-free”, reduced-form test and a structural test that relies on a quasi-linear
utility function. The reduced-form test is very general and tells us whether consumers anticipate
inattention and hassle costs overall. The structural test complements the reduced-form evidence
by quantifying whether consumers anticipate these biases sufficiently; i.e., it tells us the degree of
consumer sophistication. In this section, I connect the experimental design to the reduced-form test.
In Section 35, I present the structural model.

I refer to the probability of buying at the shop as “demand.” A simple comparison of differences
in the demand responses between treatment A and B.1 is sufficient to conclude whether consumers
anticipate a lower redemption probability in B.1. Whenever the redemption rate is lower in B.1,
the demand response to B.1 (relative to control) should also be lower than the demand response
to A. The reason is that any decrease in the redemption rate implies a lower expected value of the
promotion. As long as marginal utility of money is positive, a rebate should be valued less than the
discount.

We can even test whether marginal utility of money is positive by comparing demand and
redemption between the 10%- and 15%-rebate.

We can study inattention as a redemption friction by comparing differences in redemption rates
between B.1 and B.2. If inattention matters, we would expect more consumers to redeem when they
are reminded to do so. If consumers anticipate that they might forger about rebate redemption, the
buying probability must be higher in group B.2b than in group B.1. The reason is that the reminder
increases the redemption rate and, thereby, the expected value of the promotion. Since consumers
in group B.2b know they will receive a reminder, more subjects should decide to buy than in the
condition without the reminder.

Treatment B.2b is the treatment of interest to study consumer sophistication about inattention
because it tells us the demand response to a fully-anticipated reminder. Treatment B.2a, on the other
hand, is not produced by theoretical predictions and was mostly implemented due to interest from
the side of the firm.

The role of hassle costs can be studied by comparing group A with group B.2b. Since consumers
should be attentive in B.2b, any remaining difference in redemption rates compared to the auto-
matically applied discount should be attributed to hassle costs. If consumers also anticipate that
hassle costs reduce the redemption rate, demand must be higher in group A than in group B.2b. Put
differently, if hassle costs are a redemption friction, then sophisticated consumers must positively
value the feature that automatically redeems the rebate.

Finally, we are able to quantify which redemption friction consumers perceive as affecting them
more. Imagine, for instance, that the demand response to a rebate with anticipated reminder (B.2b)

is only slightly smaller than the demand response to a discount (A), but it is much larger than that to



a rebate without a reminder (B.1). This observation implies consumers perceive their inattention to

be a more severe redemption friction than hassle costs.

3.3 Treatment Details

Group A (10% off, automatic redemption): The promotion banner in Figure 2a is displayed at
the top of the browser, saying “Only for a short period of time: 10% off everything.” An information
icon next to this text informs visitors that the discount will be automatically applied at the checkout.
Subjects can then browse through the online store and add products to their shopping basket. The
banner is present on every page of the website and cannot be blocked by pop-up blockers.

Once subjects click on the shopping basket, they see the checkout page presented in Figure
4. On the checkout page, another banner is displayed telling subjects that the discount has been
automatically applied. At the center left of the page is a field into which the promotion code has
already been entered. An additional small pop-up box above the promotion-code field tells subjects
that the code has already been applied. The actual promotion code and some product descriptions
have been censored with black bars to protect the anonymity of the company.

Note that even though the discount is automatically applied, it can still be invalidated by actively
deleting the promotion code from the field. This may happen on purpose or by accident. For
example, subjects that have an alternative promotion, such as a gift card, may delete the discount
code in order to enter the code of the gift card. The reason is that only one price promotion can be
applied per purchase, so that the consumer needs to decide which code to use. There may also be
technical issues related to the device or browser of the subject. The redemption rate will therefore
not equal 100%, but will be around 90%. However, because subjects are randomly assigned to the
treatments, idiosyncrasies that reduce the redemption rate below 100% are also present in the other

experimental conditions and, therefore, do not threaten the internal validity of the experiment.

Group B (10% off, active redemption): The banner in group B is shown in Figure 2b and
includes the same text as the banner in group A. However, instead of the information icon, a hyperlink
says, “Go to rebate”. If subjects click on the hyperlink, they are forwarded to another subpage of
the website shown in Figure 3. The text on the subpage informs consumers that they need to copy
the rebate code shown on the page and enter it into the respective field during checkout. Subjects
only get 10% off their purchase value if they read the text to find the rebate code, copy it onto their
clipboard, and remember to paste it into the rebate redemption field on the checkout page.

Subjects in group B can be divided into the following three experimental subgroups.

Group B.1 (without reminder): Subjects in this treatment are not reminded to redeem the
rebate during the checkout process. An example of the checkout page is shown in Figure 5a and

does not involve any reference to the rebate. To redeem the rebate, subjects must enter the rebate

10



Figure 2: Examples of Promotion Banners

Only for a short time: 10 % off everything* @

4 (15748 The rebate will be automatically
o everything redeemed during checkout.

(a) Banner in Group A: 10% Discount, Automatic Redemption

Only for a short time: 10 % off everything* » Go to rebate

(b) Banner in Groups B.1 and B.2a: 10% Rebate, Active Redemption

Only for a short time: 10 % off everything* > Go to Ebate

©® We will remind you again during checkout to
redeem the rebate.

(c) Banner in Groups B.2b: 10% Rebate, Active Redemption with Announcement of Reminder

Note: This figure shows an English translation of the banners displayed in the experimental groups A, B.1, B2.a, and
B2.b.

code into the respective field located below the list of products. The total purchase price is then

reduced by the size of the rebate. If subjects do not enter the code, the rebate is not applied.

Group B.2a (with reminder): Subjects receive the same treatment as in group B.1 but are
offered an additional, very salient reminder during the checkout process. Together with the website
designers, we decided to choose a reminder that would capture subjects’ attention as much as possible
while not being so invasive that it could discourage consumers from finishing the purchase. Figure
5b shows a red banner displayed on the checkout page, which tells subjects not to forget rebate
redemption. In addition, a large, flashing pop-up box just above the promotion code field highlights
the field and tells subjects to enter the rebate code here. The pop-up takes up substantial space and
is an uncommon feature during the checkout process that should raise attention. By construction,
both the banner and the pop-up could not be blocked by pop-up blockers. While it can never be
assured that every consumer paid attention, these salient interventions should make it very likely

that consumers internalized the reminder.

Group B.2b (with reminder and announcement of reminder): This group features an addi-
tional information treatment that explicitly announces the reminder at the start of the website visit.
The announcement is shown in Figure 2c. The promotion banner is identical to the one in group

B.2a but is now accompanied by a pop-up box telling subjects that they will be reminded to redeem
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Figure 3: Subpage with Rebate Code in Group B.1, B.2a and B.2b

Get 10% off everything* now
only from 11.05 to 24.05.2020

0 Copy the rebate code and paste it into the shopping cart.
o Your rebate code: || | N

off everything*

Note: This figure shows an English translation of the subpage showing the rebate code in experimental groups B.1,
B2.a, and B2.b.

during the checkout process. Thus, subjects can anticipate that they will be attentive at the end.!”

Group C (15% off, active redemption): This group is structured in the same way as group B,
but subjects receive a 15% instead of a 10% rebate. Comparing behavior in group C to group B
allows us to identify demand and redemption elasticities with respect to rebate value. This becomes

particularly important for the structural estimation in Section 5.

Group D (no promotion): No banner is displayed at the top of the browser, and subjects are

not offered a rebate. They simply see the status quo of the website without any price promotions.

!7Just as the reminder, the announcement could not be blocked by pop-up blockers.
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Figure 4: Checkout Page in Group A: Automatic Redemption

10 % off everything: The rebate has been redeemed! ' v

Shopping Cart
} Rebate code _ has been applied.

Products Unit price Quantity Final Price

LT _ 27,90 € - 3 + 83,70 €
o, The rebate has been automatically
redeemed for you!

' R 837€
Rebate code _ X Discount (10% Rebate)
m Earn PAYBACK points ()
Earn points o
Shipping costs Germany e Free shipping
incl. 19 % VAT 1203 €
Total 75,33 €

Note: This figure shows an English translation of the checkout page in experimental group A.
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Figure 5: Checkout Pages in B-Groups

Shopping Cart
Products Unit price Quantity Final Price
e 27,90 € - 3 + 83,70 €
MUY Earn PAYBACK points
Rebate code Apply o

Earn points o

Shipping costs Germany v ree shipping

incl. 19 % VAT
Total

1338 €

83,70€

(a) Checkout Page in Group B.1: No Reminder

Don't forget: Save 10% off everything* now > Go to rebate

Shopping Cart

Products

UL _ 27,90 € = 3 + 83,70 €
10% Insert rebate code now and save!
off averything

IOEER Y Earn PAYBACK points
Rebate code Apply L

Unit price Quantity Final Price

Earn points o

Shipping costs Germany v

ree shipping

incl. 19 % VAT
Total

1338¢€

83,70€

(b) Checkout Page in Group B.2a and B.2b: With Reminder

Note:

This figure shows an English translation of the checkout pages in experimental groups B.1, B.2a and B.2b.
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3.4 Sample

I observe a total of 816,662 website visits by 601,471 individually identified subjects. Table 1 reports
summary statistics for each of the eight experimental groups. Each group consists of around 75,000
subjects who visit the website using one of three possible devices.'® Approximately 35% visit the
website using a desktop, 56% use a mobile phone, and 9% use a tablet. These fractions are balanced
across all experimental groups, providing confidence in successful randomization.

The four variables at the bottom of the table do not need to balance because they are potentially
endogenous to the treatment variation. The average subject in the control group makes around 1.35
website visits. As the discount size increases, the number of website visits tends to increase slightly.
The average buying probability in the control group equals 1.8% and is substantially larger in any of
the treatment groups. The redemption probability is zero in the control group by construction and
close to 90% in group A, in which the rebate is redeemed automatically. Redemption probabilities
are dramatically lower once the rebate needs to be actively redeemed, as they fall to between 53%
and 72% depending on the experimental condition.

In the next section, I estimate and discuss average treatment effects on a number of outcomes

capturing consumer behavior and firm profits.

'SAdding up all observations in Table 1 results in 601,805 instead of 601,471 observations, because there are 334
follow-up purchases; i.e., some consumers buy more than once.
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4 Reduced-Form Estimates

4.1 Consumer Behavior

Figure 6 plots the redemption and buying probability for each treatment condition. For expositional
purposes, I first pool the two reminder groups with and without announcement of the reminder into
one group for each rebate size. The right ordinate depicts the buying probability, while the left
ordinate shows the redemption probability conditional on buying.

Table 2 complements Figure 6 by showing estimated average differences in the buying and
redemption probability across treatments. All coeflicients are multiplied by 100 to ease readability.
The empirical specification that produces the coefficients in column 1 for the buying probability is a

linear probability model of the following form:

Buy; = ¢1 + aA+ 1B + (1C; + &, (1)

where Buy; is an indicator equal to 1 if subject « made at least one purchase and 0 otherwise. The
buying probability in the control group equals ¢;. The indicator A equals one if subject ¢ was offered
the automatically-applied discount, and zero otherwise. The column vectors B; and C; indicate
whether subjects received a 10%- or 15%-rebate, respectively, and each include interaction terms
with the reminder and the announcement of the reminder. Average treatment effects are given by «,
[y and (. &; is the residual.

Estimated differences in the redemption probability are shown in column 2. The empirical

specification is the following linear probability model:

Redeem; = ¢g + 5B, + (5C; + v, (2)

where Reedem; equals 1 if subject ¢ redeemed the rebate, and 0 otherwise. I exclude control
group subjects from the estimation because they could not redeem the rebate by construction of the
experimental design. The regression constant, ¢-, is the redemption probability in group A, in which
the discount is automatically applied. The coefficients in 3, and (, measure average differences in
the redemption probability across rebate treatments. ; denotes the unobserved residual of subject i.
Since the rebate is only redeemed if the subject decides to buy, only the subsample of observations
who ended up making a purchase is included in the estimation.

The control group has a buying probability of 1.8%. The treatment group that receives an
automatically applied 10% discount has a substantially larger buying probability of 2.2%. The
difference constitutes an increase of 22% relative to control and is highly statistically significant
(p < 0.01). The redemption probability is close to 90% and implies that idiosyncratic noise
reduces the redemption probability by around 10 percentage points. As previously discussed, the

reason the redemption probability does not exactly equal 1 may be attributable to some consumers
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using alternative gift cards, or to device- and browser-specific technical issues. Because these
unobservables should be balanced by random treatment assignment, they only affect the levels of

but not the differences between the redemption probabilities across experimental conditions.

Figure 6: Buying and Redemption Probabilities
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Note: This figure shows the buying probability for the entire sample and the redemption probability conditional on
buying. The error bars represent standard errors. Reminder treatments with and without announcement are pooled
for each discount size.
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Table 2: Differences in Buying and Redemption Probabilities

(D (2)
Buying Probability (in %) Redemption Probability (in %)
A: 10%, discount 0.392*** 87.727**
(0.075) (0.844)
B: 10%, rebate 0.298*** -34.7734***
(0.073) (1.519)
x reminder 0.133* 9.985***
(0.078) (1.769)
X announcement -0.089 5.088***
(0.079) (1.706)
C: 15%, rebate 0.472%** -30.810***
(0.075) (1.478)
x reminder 0.142* 12.184***
(0.080) (1.635)
X announcement -0.034 3.162**
(0.081) (1.533)
D: Control 1.806***
(0.050)
Joint effect of reminder 0.138** 11.131%**
(0.056) (1.202)
Joint effect of announcement -0.061 4.078***
(0.056) (1.142)
Regression constant D A
N 601,805 11,872

Inattention

19

Note: This table reports average treatment effects from the OLS regressions specified in equations 1 and 2. The joint
effects of the reminder and the announcement are estimated from an alternative regression in which the respective
treatments at the 10%- and 15%-rebate are pooled into one variable. Robust standard errors are in parentheses and
clustered at the subject level. *,** ***: significant at p < 0.1, p < 0.05, p < 0.01, respectively.

Requiring consumers to actively claim the rebate is associated with a sharp and statistically highly
significant (p < 0.01) drop in the redemption probability of 35 percentage points for the 10%-rebate
(group B.1). If the firm offers a reminder at checkout (B.2), the redemption probability rises again,
by 10 percentage points (p < 0.01). This result is consistent with the notion that limited memory
accounts for a large share of redemption frictions: simply reminding consumers of redemption

during checkout is associated with a substantial and highly significant increase in redemption rates.



When the rebate value is 15%, the reminder is associated with an even larger increase in redemption
rates by 12 percentage points (p < 0.01)."

A comparison of the buying probability with and without a reminder in Figure 6 reveals a
remarkable degree of consumer anticipation about their inattention. The movement in the buying
probabilities in groups B.1 and B.2 mirrors the movement in the redemption probabilities. Adding a
reminder to the rebate causes an additional increase in the buying probability of 0.13 percentage
points (B.1 vs. B.2)—a large incremental effect of 45% relative to B.1. The same behavioral pattern
is replicated for the treatment groups that receive a 15% discount. The reminder causes an additional
increase in the buying probability of 0.14 percentage points (C.1 vs. C.2)—a relative treatment
effect of 30%. The treatment effects are direct evidence of consumer sophistication about inattention:
consumers are aware they might forget to redeem the rebate and reduce their buying probability
relative to a scenario in which they will be attentive due to a reminder.

Regression results in Table 2 show that the reminders are individually significant at the 10%-level.
Their joint average effect, reported at the bottom of the table, equals 0.14 percentage points and is
significant at the 5%-level.

Overall, the results provide reduced-form evidence that consumers anticipate their inattention

when responding to a price reduction in the form of a rebate.

Hassle Costs

The effect of hassle costs on the redemption rate is identified by the difference in redemption
between group A and group B.2. The active redemption requirement causes a large reduction
in the redemption rate by approximately 25 percentage points (p < 0.01) in comparison to the
automatically applied discount—a relative decrease of 28%. This provides reduced-form evidence
that, by revealed preference, hassle costs are a substantial redemption friction.

Because we see no difference in the buying probability between A and B.2, there is no indication
of differential sorting of consumers. Therefore, the difference in redemption rates should be the
causal treatment effect of hassle costs on redemption.

The fact that we do not observe an effect of hassle costs on the buying probability implies that
consumers are fully naive about hassle costs. If consumers anticipated hassle costs, we would see
a substantial drop in the buying probability as we move from group A to group B.2. However,
consulting Figure 6, we see that there is no significant difference in demand between A and B.2.
The buying probability is only 0.05 percentage points smaller for B.2 than for A, and this difference

is statistically indistinguishable from zero. The important takeaway from these results is that the

19Recall again that these differences do not necessarily constitute the causal treatment effect, because the reminder
may also affect the type of consumers sorting into the pool of buyers. I address the concern of sample selection in more
detail in Section 4.4.
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demand response to rebates is too large because consumers do not anticipate the hassle of rebate
redemption.?”

The reduction in the redemption probability caused by hassle costs is more than twice as large as
the reduction associated with removing the reminder. Differences in the buying probability instead
suggest that consumers perceive inattention as a more important friction to rebate redemption than
hassle costs. These results are suggestive evidence of a perverse correlation between perceived and
true redemption frictions: consumers are less sophisticated about behavioral biases that cause larger

losses to their welfare. This result is also found in the two pilot studies.

Announcement of the Reminder

As documented in column 1 of Table 2, the announcement has no statistically significant effect on
demand, neither for the 10%- nor the 15%-rebate. The joint effect, reported at the bottom of the
table, is not significant either.?! One reason there is no incremental effect of the announcement is
that even subjects that do not get the announcement can still easily realize that the shop offers a
reminder. The reason is that the typical subject browses to the shopping basket frequently during
their visit and thereby sees the reminder. Therefore, for these subjects, the announcement may not
provide additional information and does not change behavior.

An interesting observation is that the announcement increases redemption rates by 5.1 percentage
points (p < 0.01) and 3.2 percentage points (p < 0.05) for the 10%- and 15%-rebate, respectively.
This may suggest that the announcement increased attention to the reminder, which in turn increased
redemption rates. In appendix F, I analyze browsing behavior and show that announcing the reminder
causes consumers to visit the rebate page more often and view the reminder more frequently.

The takeaway from this is that redemption rates in B.2b and C.2b are more likely to reflect
behavior under full attention than those in B.2a and C.2a, respectively. I will therefore use the former

empirical moments for the structural estimation.??

20Note that the failure of consumers to reduce demand when the firm introduces hassle costs cannot be explained
by the objection that consumers may simply not care about a price reduction. This interpretation is inconsistent with
the observation that consumers buying probability increases as the stakes increase from a 10%- to a 15%-rebate.
Thus, consumers clearly respond to price reductions and should, therefore, also reduce demand when the redemption
probability exogenously falls.

2INote that both coefficients, while not significant, are negative. To understand why the announcement may have
a (small) negative effect, note that the effect should be governed by the consumers’ prior beliefs regarding the type
of rebate the firm is offering. If consumers’ prior belief is that the rebate is automatically applied, the announcement
implicitly tells them that the rebate needs to be actively redeemed. In this case, we expect a negative effect on demand
because some consumers learn that obtaining the promotion requires effort. The negative coefficients may suggest that,
without the announcement, some consumers confuse a rebate with an automatically-applied discount, i.e., they expect
no hassle costs.

22 As specified in the pre-analysis plan, the relevant treatment to identify perceived inattention is the reminder with
announcement. The reminder without announcement was mainly implemented because the firm was interested in testing
its effect.
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4.2 Heterogeneity

I analyze heterogeneity in treatment effects to separate the role of neoclassical price discrimination
from naiveté-based exploitation. For neoclassical price discrimination, we would expect to observe
correlated heterogeneity in redemption probabilities and price elasticities, such that the firm could
charge higher prices from consumers with lower price elasticities. This would require that less
price-elastic consumers face larger redemption frictions. Conversely, rebates cannot price discrimi-
nate between preference types if price elasticities are homogeneous because then elasticities are
independent of redemption frictions. Understanding heterogeneity in treatment effects is, therefore,
crucial in separating the role of neoclassical price discrimination from naiveté-based exploitation.

As documented in the pre-analysis plan, I analyze heterogeneous treatment effects for different
income groups. I consider income a reasonable proxy to separate consumer types because price
elasticities are partially determined by marginal utility of income and because prior research has
documented heterogeneity in behavioral biases across income groups (e.g., Lockwood 2020).%

I use two different datasets on income that vary in their level of aggregation. First, I obtain
zip-code level income data, and merge it with each subject based on the approximate location from
which the subject is visiting. This information is provided by the firm.?* Since zip-code level income
data is not available for every zip code, and some subjects use browser settings that hide their origin,
income data can be merged to a sub-sample of 420,857 subjects.” Second, I use more aggregated,
state-level income data and merge it to each subject based on the state from which they are visiting
the website. This considerably reduces the loss of observations and results in a sample of 582,629
subjects. In the main part of the paper I discuss results for the larger sample and provide results
from the zip-code level dataset in Appendix C. Both analyses show quantitatively similar results and
yield the same conclusion.?®

I construct a dummy variable equal to one if a subject visits from a region with an income equal
to or above the sample median, and zero otherwise.?’ I then extend the regressions in equation 1
and 2 by adding the dummy variable and interacting it with the treatment variables. Results are
documented in Table 3.

The first important observation is that there is no statistically significant heterogeneity in the
demand response to an automatically-applied discount. While low-income consumers are 0.065

percentage points more likely to respond to the price reduction than high-income consumers, this

2In unreported regressions, I also analyze heterogeneity based on voting shares for the main political parties in
Germany. I find little robust evidence for significant heterogeneity in price elasticities.

2*Income data comes from the Institute of Economics and Social Sciences (“Wirtschafts- und Sozialwissenschaftliche
Institut™).

25 As pre-registered, I already reduce the loss of observation by merging income data based on the first 4 digits of the
5-digit zip code.

26 The use of zip-code level data has been pre-registered, while the use of state-level income data has not. I added the
state-level income data to increase the sample size.

YTFollowing the pre-registration, I calculate the median based on the income distribution of the sample, not based on
the income distribution of the German population.
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difference is both economically and statistically small. The redemption rates are 3.5 percentage
points lower for high-income consumers, suggesting that idiosyncrasies affecting redemption are
slightly more relevant for high-income consumers.

None of the coefficients that interact the income dummy with the treatment variables is statistically
significant. This is true for interaction effects on both demand and redemption behavior. Unreported
regressions separating the sample based on income quartiles rather than the median also show no
heterogeneous treatment effects.?

These results show no clear rationale to use rebates to price-discriminate between income groups,
as price elasticities are roughly homogeneous. Instead, rebates are more likely to be a profitable
promotion because consumers are naive about hassle costs.

It is important to highlight that there may be other idiosyncratic correlations between preferences
and redemption probabilities that this analysis does not capture. To fully understand the role of
heterogeneity for rebate promotions, I would require knowledge of the joint distribution of price
elasticities and redemption probabilities. Since this distribution obviously remains unobserved, I

have to resort to pre-registered observable characteristics of consumers.

28] pre-registered to analyze heterogeneity based on income quartiles, as well.
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Table 3: Heterogeneity by Income

(1 (2)
Buying Probability (in %) Redemption Probability (in %)
A: 10%, discount 0.429*** 89.568***
(0.106) (1.063)
B: 10%, rebate 0.283*** -35.956***
(0.103) (2.076)
x reminder 0.055 12.223%**
(0.093) (2.153)
C: 15%, rebate 0.497*** -33.209***
(0.107) (2.025)
x reminder 0.019 14.842***
(0.098) (2.043)
D: Control 1.802%**
(0.071)
Above median income 0.039 -3.489**
(0.102) (1.705)
Interaction effects:
A: 10%, discount x above median income -0.065
(0.153)
B: 10%, rebate x above median income 0.042 2.564
(0.149) (3.069)
X reminder 0.076 0.601
(0.135) (3.064)
C: 15%, rebate x above median income -0.001 4.463
(0.153) (2.979)
x reminder 0.173 -2.242
(0.141) (2.897)
N 582,629 11,613

Note: This table reports treatment effects for consumers from regions with an income below and above the sample
median. Robust standard errors are in parentheses and clustered at the subject level. *,** ***: significant at p < 0.1,
p < 0.05, p < 0.01, respectively.

4.3 Effect on Firm Profits

Are rebates more profitable for the firm than automatically-applied discounts? This is not a trivial

question if consumers are sophisticated because then low redemption rates also imply lower demand
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responses to rebates than to discounts. The firm provides me with rich data on markups for each
product offered in the online store. Based on the data, I calculate profits for each website visitor in
the experiment. In addition, I calculate the total value of the shopping basket before any promotion
has been applied, for each subject. This variable, therefore, equals revenue plus the value of any
promotion that has been applied.

Table 4 reports the percentage change in shopping basket value and profits for each treatment
relative to control group profits. Column 1 shows that there is no difference in the shopping basket
value between the automatically applied discount (A) and the equivalent rebate (B). Both promotions
increase the value of the shopping basket by around 20% (p < 0.01). Thus, the average subject
chooses the same value of goods with a rebate as with a discount, even though the discount is only
redeemed half of the time. This is why in column 3, the increase in profits is more than twice as
large for the rebate (+9.3%) than for the discount (+3.7%).2° While the coefficient for the discount is
not significant, the coefficient for the rebate is marginally significant (p < 0.07). Overall, effects on
the shopping basket value can be measured more precisely since effects are (trivially) larger, while
standard errors are roughly the same. The difference in magnitudes is large: simply changing the
promotion details by requiring consumers to redeem the rebate may increase the profitability of the
promotion by 150%. This statement is subject to the limitation that confidence intervals of profit
effects are relatively large. However, the equality in revenues between discount and rebate, together
with the low redemption rate of 53% for the rebate reported in the previous section, implies that
profits must be larger for the rebate than for the discount.

The positive profit effect of the rebate relative to the discount seems to be entirely driven by
the fact that consumers underestimate hassle costs, not inattention. The reminder (columns 2 and
4) has no significant—and in particular no negative—effect on profits. Put differently, exploiting
inattention (by not reminding consumers to redeem) offers no significant benefit for the firm.>* The
reason that not reminding consumers does not increase profits is that, even though this reduces
redemption, it also reduces demand because consumers anticipate their inattention. Thus, it is
consumers’ naiveté about hassle costs that makes rebates overall more profitable than discounts.

In conclusion, simple and costless changes in the promotion feature have substantial effects on
firm returns because of consumers’ partial naiveté. These results rationalize firm practices referred
to as buy baits or “sludges” (Thaler 2018) more generally and provide empirical evidence for the

theoretical literature on naiveté-based exploitation (e.g., Heidhues and K&szegi 2017).

20One might be tempted to interpret the positive coefficient of A on profits as suggestive evidence that the firm has
not set prices optimally. However, note that we only observe effects on profits within the experimental time frame. The
effects of a permanent price reduction on long-term profits are not observed.

3Since the coefficient is even positive, this may suggest that offering a reminder increases profits.
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Table 4: Shopping Basket Value and Profits

Shopping Basket Value Profits
(in % to control) (in % to control)
(1) (2) (3) 4)

A: 10%, discount 19.814***  19.814*** 3.707 3.707
(6.822) (6.822) (6.121)  (6.121)

B: 10%, rebate 20.364**  18.040***  9.272* 8.175
(5.238) (6.795) (5.055) (6.459)

x reminder 3.491 1.648
(6.260) (5.722)

C: 15%, rebate 32.403**  28.278"** 11.853** 11.225*
(5.295) (6.584) (4.999)  (6.098)

x reminder 6.170 0.939
(6.198) (5.300)
N 601,805 601,805 601,805 601,805

Note: This table reports average treatment effects on the value of the shopping basket and on profits. Both outcome
variables are in percent relative to control group values. The shopping basket value is gross of the potential price
reduction. Robust standard errors are in parentheses and clustered at the subject level. *,** ***: significant at p <
0.1, p < 0.05, p < 0.01, respectively.

4.3.1 Effects on Consumer Loyalty

An important caveat of the previous analysis should be made explicit. The data only allows us
to draw conclusions about the short-term effects of the treatments on profits. This limitation is
a potential concern because exploiting consumer biases may have negative long-term effects on
the probability of returning to the shop. Even consumers who are naive in the short term might
realize they are being exploited in the long term and, as a result, decide not to return to the store. In
Appendix E, I investigate dynamic effects of redemption frictions on the probability of returning
to the store. I find no significant negative effects on customer loyalty. However, the time period in
which I observe the sample is relatively short and, as a result, follow-up purchases tend to be rare in
the data. However, note that even if long-term effects on customer loyalty could be negative, they
do not seem sufficiently large to drive firms out of the market. As previously mentioned, both the
cooperating firm and the majority of large online retailers frequently offer these types of rebates,

indicating that the use of buy baits persists in a long-run equilibrium.
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4.4 Addressing Sample Selection

Before moving to the estimation of the structural parameters of sophistication, I address a potential
concern related to systematic sorting of subjects into the subsample of buyers. Because the treatments
may affect the type of subjects that select into the pool of buyers, differences in the redemption
probability may not have a causal interpretation. Selection is not a concern for the identification of
the treatment effect of hassle costs on redemption rates, because there is no evidence that hassle
costs affect the buying probability. Thus, the experiment identifies the causal effect of hassle costs
on redemption without additional assumptions. The conclusion that hassle costs are large and fully
unanticipated remains valid. However, the effect of the reminder on redemption rates may not be
identified because the buying probability responds to the reminder. This could indicate systematic
sorting of consumers.

A large literature in econometrics has developed techniques to address bias resulting from sample
selection building on the influential work in Heckman (1976) and Heckman (1979). A consensus in
the literature is that convincing identification in these models requires a credible exclusion restriction:
a variable that does not directly affect the outcome of interest but affects whether subjects select
into the sample.

Internet Outages as Exclusion Restriction. I address the potential bias resulting from sample
selection by estimating a fully parametric selection model with an arguably credible exclusion
restriction: regional and temporal variation in sudden internet outages. The exclusion restriction
requires that internet outages affect the redemption probability only indirectly through their effect
on the buying probability. I view this assumption as a plausible one: an internet outage reduces the
probability to redeem because it simply cuts people off from access to the online shop—so they
cannot buy—but not because of other channels.

Using this exclusion restriction, I estimate a selection model with normally distributed residuals
and a binary dependent variable for both the selection and outcome equation, as first formulated by
Van de Ven and Van Praag (1981). Monte Carlo simulations show that when these distributional
assumptions are violated, the model still performs well in many cases as long as a valid exclusion
restriction exists (Cook and Siddiqui 2020). A challenge with sample selection models is high
levels of collinearity between treatment regressors and the correction term. To reduce the level of
collinearity, I allow for heterogeneous effects of outages on demand by interacting the instrument
with income. I provide a detailed discussion about this model in Appendix G, where I elaborate on
the dataset on internet outages, the construction of the exclusion restriction, and the estimation of
the selection model.

Before estimating the selection model, I first analyze whether internet outages have a significant
effect on the buying probability. Table 5 provides results from a linear probability model of the buying

decision on internet outages and the treatments. Column 1 only includes the instrument, whereas
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Table 5: Effect of Internet Outages on Buying Probability

Buying Probability (in %)

(D (2)

Internet Outage -0.180*** -0.180***
(0.052) (0.052)

A: 10%, discount 0.393***
(0.075)

B: 10%, rebate 0.298***
(0.073)

x reminder 0.134*
(0.078)

X announcement -0.089
(0.079)

C: 15%, rebate 0.472%**
(0.075)

X reminder 0.142*
(0.080)

X announcement -0.034
(0.081)

Constant 2.227%** 1.836***
(0.021) (0.051)

N 601,805 601,805

Note: This table reports average treatment effects from a linear probability model of internet outages and treatment
indicators on the buying probability. Column 1 only includes internet outages as a regressor, and column 2 adds the
experimental treatments. Robust standard errors are in parentheses. *,** *#*: gignificant at p < 0.1, p < 0.05, p <
0.01, respectively.

column 2 adds the experimental treatments. Major internet outages cause an economically large
and highly statistically significant decrease in the buying probability by 8.3%, or 0.18 percentage
points. The addition of experimental treatments in column 2 does not affect the coeflicient of the
instrument. This finding is reassuring because it indicates the exclusion restriction is not correlated

with the experimental treatments—a result we expect due to random treatment assignment.

Treatment Effects on Redemption Corrected for Selection. Table 6 reports the main estimation
results. The log-likelihood value is —61,309 and corresponds to the global maximum, as I show in
the appendix. The correlation between residuals is 0.42, which would imply that unobservables that

increase the buying probability also increase the redemption probability. Two independent linear

28



probability models would then overestimate the redemption probability because subjects with a
systematically larger likelihood of redeeming have selected into the subsample of buyers.

However, there is no indication of significant sample selection bias: the coefficient showing
Fisher’s Z-transformation of the correlation between residuals is not statistically significantly different
from zero. This implies that, given joint normality of residuals, the simple OLS regression in equation
2 identifies the causal treatment effects on redemption.

The treatment coeflicients are also similar to the ones of the two OLS models with independent
residuals. The effect of hassle costs, as identified by B.2b, equals a reduction in the redemption
probability by 25 percentage points and is, therefore, the same as in the OLS model. The (announced)
reminder increases the redemption rate by 4 percentage points, i.e., less than in the model with
independent residuals. Overall, the treatment coefficients are fairly similar to the treatment effects
estimated in the main part of the paper, indicating the degree of selection bias is small if the model

is correctly specified.’!

3IStandard errors are substantially larger in the selection model due to collinearity with the correction term—a
well-known issue in sample selection models. See Appendix G for a more detailed discussion.
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Table 6: Estimation Results from Sample Selection Model

Redemption Probability (in %)

B.1: 10%, w/o reminder -36.696*
(20.252)
B.2a: 10%, w/ reminder -28.982**
(12.967)
B.2b: 10%, w/ reminder+announce -25.277F
(9.748)
C.1: 15%, w/o reminder -34.017*
(17.881)
C.2a: 15%, w/ reminder -23.661**
(9.348)
C.2b: 15%, w/ reminder+announce -21.068***
(7.630)
0 0.416
0.441)
Fisher’s Z-transformation 0.443
(0.533)
Log likelihood -61308.62
N 510,207

Note: This table reports estimation results from the sample selection model in equation 45. Control group subjects are
excluded from the estimation because they cannot redeem by construction. The correlation between intensive and
extensive margin residuals is denoted by p. Fisher’s Z transformation is the inverse hyperbolic tangent of p and
asymptotically normally distributed. Standard errors are in parentheses. *,** **%*: significant at p < 0.1, p < 0.05,
p < 0.01, respectively.

5 Structural Model and Estimation

5.1 A Simple Model of Consumer Responses to Rebates

The reduced-form results show that consumers exhibit some degree of sophistication regarding their
inattention but are fully naive about their hassle costs. To further quantify the degree of perceived
and true inattention and hassle costs, respectively, I provide structural estimates of the underlying
choice parameters. I develop a simple model of consumer behavior and derive an empirical test of
consumer sophistication. The model has been pre-registered and directly produced the experimental
design.?

To reduce complexity, I model a lump-sum rebate instead of an ad valorem rebate. A lump-sum

rebate is less involved to model because its monetary value does not depend on the purchase value.

32The notation in the pre-registration model is less concise. The model predictions are the same.
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However, I show in Appendix A.4 that an extended model with an ad valorem rebate yields the same
results (i.e., Proposition 1) as a model with a lump sum rebate.

In the most concise version of the model, the consumer faces two choices.>* First, she chooses
where to buy, b € {0, 1}, where b = 1 means she buys at a location I call “the store,” and b = 0
means she chooses the outside option. The outside option may represent one or multiple competitors
of the store, but it may also mean the consumer does not buy anywhere. The store offers a rebate of
value s that is only applied if the consumer actively redeems it.

Second, she decides whether to claim the rebate conditional on buying at the store. Let her
rebate redemption choice be represented by r € {0, 1}, where r = 1 means she redeems and r = 0
means she does not redeem.

Consumers may not redeem the rebate because the hassle of redemption is too large or because
they forget to redeem. Claiming the rebate causes hassle costs ¢, such as searching for the rebate
code and entering it into a respective promotion code field. Consumer’s probability of remembering
rebate redemption is given by 0 € [0, 1].

I allow for the possibility that the consumer is not perfectly aware of these frictions when deciding
whether to buy at the store. Let ¢ and 6 be the consumer’s perceived hassle costs and probability
of remembering to redeem the rebate, respectively. The difference between the perceived and true
values of inattention and hassle costs measures the degree of sophistication. A consumer is said
to be sophisticated about her redemption frictions if and only if 6 = 6 and ¢ = c. She is naive if
0+60=1andc+#¢é=0.

We can characterize consumer behavior as a two-stage decision process and solve it backward.
Given that the consumer decides to buy at the store and remembers rebate redemption, she chooses

r = 1, if and only if

§—c2> K, (3)

where « is an idiosyncratic taste parameter affecting the redemption decision. In the field
experiment, x can represent various unobserved factors. For example, x may represent the value of
an alternative gift card the consumer has received as a birthday present. In the online shop, only one
promotion code can be used during purchase, so the consumer must use either the rebate or the gift
card. The value of the gift card then becomes the opportunity cost of redeeming the rebate.

Denote r* = r(s, ¢, k) as the redemption choice the consumers will actually make conditional on
being attentive. Analogously, 7 = (s, ¢, k) denotes the expected redemption decision conditional
on being attentive.

When the consumer chooses whether to buy at the store, she takes into account expected

3In Appendix A.4, I extend the model by a third stage in which the consumer also decides which goods to buy.
This extension does not affect the predictions of the model. In Appendix C, I also extend the model by introducing
heterogeneity in inattention and hassle costs and discuss implications for the empirical identification.
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redemption frictions. Denote the outside option utility she gets from not buying at the store by e.
Then, she chooses b = 1 if and only if the perceived expected utility from buying at the store exceeds
the utility from the outside option:
0[i(s — &)+ (1 —F)k] + (1 — 0)k > e. (4)
The left-hand side of equation 4 consists of three parts. First, if she remembers rebate redemption
and decides to redeem, she expects to receive s — ¢. Second, if she remembers the rebate but decides
not to redeem it, she receives . Third, if she forgets about the rebate, she receives r, as well.**
Weighting each of these states of the world by their respective perceived probability gives the

expected utility of buying at the store. The consumer buys whenever this exceeds e.

5.1.1 A Note on Learning and Commitment

In this simplified model, consumers commit to a buying decision and then redeem the rebate. In the
experiment, consumers have the chance to reverse their buying intention when they learn during
browsing about the difficulty of redeeming the rebate. In other words, initially naive consumers
may appear sophisticated in the data because their buying and redemption choices are correctly
aligned due to learning. Generally, this should be the relevant measure of sophistication: Only
consumers who, even after the possibility of learning while browsing, make inconsistent buying
and redemption choices are estimated to be naive. Consumers who make consistent choices are
identified as sophisticated.

Thus, the present model identifies the welfare-relevant definition of sophistication because it
uses the final consumption choice as the input. The process of how exactly consumers learn while

browsing is a distinct but interesting avenue for future research.

5.2 Aggregating Consumer Choices

To aggregate individual behavior, let the idiosyncratic taste parameters follow an atomless joint
distribution Gk, €). The marginal distributions are denoted by H () and F'(¢). The true probability

of redeeming the rebate (unconditional on buying), denoted R(s, 0, ¢), is given by

R(s,0,¢) = 0 / " dH (). )

The probability of buying at the store, denoted B(s, 6 , ¢), can be written as

34 Alternatively, one can also assume that she does not get « if she forgets to redeem the rebate. The same predictions
in Proposition 1 can be derived under this alternative assumption. However, the requirement of the approximation in
Proposition 1 that 1 — 6 is relatively small becomes more binding.
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/ /SH(M)H F(e|k)dH (k //dF dH(), (6)

share of buyers expectmg to redeem share of buyers expectmg not to redeem

which consists of the share of buyers who expect to redeem and the share of buyers who do not
expect to redeem.

Both the buying and redemption probabilities depend on the size of the rebate. However, the
redemption probability is determined by the true redemption frictions, whereas the buying probability

is a function of the consumers’ beliefs about these frictions.

5.3 Testable Predictions of Consumer Sophistication

In order to measure whether consumers correctly anticipate redemption frictions, we need to identify
perceived and true values for inattention and hassle costs: é, 0, ¢ and c.>> Proposition 1 shows that
we can empirically identify these parameters through the treatments used in the experiment that,
respectively, create variation in i) the probability of remembering rebate redemption, ii) the hassle
required to redeem, and iii) the rebate value. These are “sufficient statistics:” reduced-form treatment
effects that approximate structural parameters of interest (Chetty 2009).

To establish this result, I introduce some additional notation. Let A.R denote the effect of
eliminating hassle costs on the redemption probability. Analogously, A:B denotes the change in the

buying probability in response to the elimination of perceived hassle costs.

Proposition 1. Perceived inattention and perceived hassle costs can be approximated by reduced-

form treatment effects on demand.:

. 2B(s,0

jr 2500 )
5:B(s,1,¢)
A:B(s,1

on BB 1.0 ®)
aB(SvlaC)

True inattention and true hassle costs can be approximated by reduced-form treatment effects on

330ne might think that the subjective redemption probability, denoted R(s, é, ¢), could be simply identified by
comparing the demand response to a rebate with the demand response to a simple price reduction. Intuitively, if a2 USD
rebate increases demand by the same amount as a 1 USD price reduction, then the subjective redemption probability
might be approximately 0.5. However, as I show in Appendix A.2, this strategy, while intuitive, only identifies R(s, 0, ¢)
under an implicit, and potentially strong, assumption on the distribution of marginal consumers. Proposition 1 does not
require this assumption and is more general.
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the redemption rate:

R(s,0,c)

0 = 9
R(s,1,¢) ©)
AR(s,1,c (10)

R
(s, 1)

Consumers are sophisticated if and only if
5:B(5,0,6) _ R(s.0,c) (an
%B s,1,¢ R(s,1,c¢)
and
A:B(s,1,¢)  A.R(s,1,¢c) (12)

2 B(s,1,6)  ZR(s,1,¢)

The approximations in equations 7 and 8 each require that F'(¢|x) is approximately linear on the
interval [A(s — &) + (1 — 0)k, s — ¢ for all k. This approximation is more accurate when perceived
inattention, 1 — 0, is relatively small, or when « is close to s — ¢, or when both conditions apply.
Obviously, it is also accurate when the demand function for a given , which is 1 — F'(¢|x), is
approximately linear over the respective interval, for each k. Approximate linearity in F'(¢|x) assures
that the density of consumers at the margin is roughly equal across treatment conditions, which is
a common assumption in the sufficient statistics literature.*® Equation 8 and 10 are also not exact
because they are first-order approximations of perceived and true hassle costs, respectively.

Equation 7 says that perceived inattention is approximated by the ratio of two treatment effects
on the buying probability caused by a small change in the rebate size. The numerator is the treatment
effect under perceived inattention, é, whereas the denominator is the effect under perceived full
attention. Equation 7 has a very intuitive interpretation. It tells us that if a rebate with a reminder
increases demand by twice as much as a rebate without a reminder, then consumers’ perceived
probability of remembering rebate redemption in the absence of the reminder is 6 =~ 0.5.

Empirically, I identify 0 by comparing the difference in the buying probability between the 10%-
and 15%-rebate groups with and without inattention. Specifically, a linear approximation of the
numerator in equation 7 is identified by comparing group B.1 with C.1, whereas for the denominator,
we need to compare group B.2b with C.2b. Obviously, to identify the buying probability under fully
anticipated attention, that is, under 0 = 1, we need to use the empirical moments from the treatment

groups in which the reminder is explicitly announced at the outset.

0f 1 — B is large, or F'(¢|x) is highly nonlinear, then structural parameter estimates can be biased by differences in
the share of consumers at the margin. More generally, the sufficient statistics approach typically requires that the density
of marginal consumers is approximately the same across conditions. For example, the widely used assumption that the
demand function for a good is locally linear implies that the CDF of valuations for that good is locally linear.
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Perceived hassle costs are identified in a similar way. The numerator in equation 8 is the treatment
effect on the buying probability of fully eliminating the hassle of rebate redemption, given that the
store already offers a reminder. Since ¢ has a money metric, this treatment effect on the buying
probability in the numerator needs to be scaled by the demand derivative with respect to the rebate
value. The intuition behind equation 8 is also simple. Money-metric hassle costs equal the necessary
change in the rebate value that would cause the same increase in the buying probability as a complete
elimination of hassle costs would generate. For example, if the buying probability increases by one
percentage point to a 10 EUR increase in rebate value, but by two percentage points in response to
the elimination of hassle costs, then perceived hassle costs equal approximately 20 EUR.

Comparing demand under automatic redemption (A) to demand under the rebate that requires
active redemption and includes an anticipated reminder (B.2b) identifies AB(s, 1, ¢). The denomi-
nator in equation 8 is approximated by comparing the demand increase induced by increasing the
rebate value. Since the rebates in the experiment are ad valorem rather than lump sum, s in the
theory section translates to s = ¢ x y in the experiment, where ¢ € {10%, 15%} is the ad valorem
rebate and y is the average purchase value in the treatment group that receives the automatically
applied discount (i.e., group A).*’

The true redemption frictions are identified through behavioral responses in the redemption
rate caused by the treatments. The true probability of remembering rebate redemption is simply
the ratio of the redemption probability with and without a reminder. This is straightforward from
equation 5. Since I observe these moments at two different rebate values in the experiment, the
design overidentifies inattention. Inattention could be identified by taking the ratio of redemption
rates in groups B.1 and B.2b or by the rates in groups C.1 and C.2b. As I show in the appendix, a
third way of identifying inattention is through a comparison of redemption elasticities with respect
to the rebate value.

True hassle costs are identified analogously to perceived hassle costs. They are equal to the
minimum increase in rebate value necessary to generate the same increase in the redemption rate that
the elimination of hassle costs would generate. This is a simple measure of compensating variation.

To identify true hassle costs empirically, I first use the difference between group A and group
B.2b for the numerator. Then, I scale this effect by the treatment effect of increasing the rebate value
by 1 EUR under full attention, as can be linearly approximated from a comparison between group
B.2b and group C.2b.

The identification strategies of the true redemption frictions parallel Chetty, Looney, and Kroft
(2009), who identify inattention to sales taxes by comparing demand elasticities with and without a
treatment increasing the salience of taxes. However, different from their work, my approach allows

for the identification of both the behavioral bias and the degree of consumer sophistication about

37See Appendix A.4 for a formal proof. For the estimation, I use the median instead of the mean to adjust for outliers
in the revenue distribution. The median purchase value in group A is 96 EUR.
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this bias. This is possible because I observe two, instead of one, choice margin, and the choices
need to be internally consistent.

Consumers are sophisticated when the perceived and true values for each redemption friction are
equal, which yields the empirically testable predictions in equations 11 and 12. These predictions are
straightforward and only rely on reduced-form treatment effects. Proposition 1 therefore provided
us with a recipe for the experimental design in Figure 1.

Finally, note that many treatment effects in Proposition 1 are derivatives. Empirically, however,
we can only observe non-marginal changes. Therefore, we require demand and redemption to be
locally linear in s, which is a common assumption when estimating demand functions.*® The identi-
fication of true inattention using equation 9 is more general as it neither relies on an approximation

nor does it involve derivatives.

5.4 Estimation

I'estimate the sufficient statistics derived in Proposition 1 using a two-step GMM estimator. Appendix
A.5 provides the derivation of the moment conditions.

Table 7 reports the estimation results. Differences in the buying probability across treatments
imply that consumers’ subjective probability of remembering rebate redemption is 73%. Their true
probability of remembering is 78% and is, therefore, close to consumers’ expectations. Recall that
Proposition 1 only requires these point estimates to be approximately equal. Therefore, we can
conclude that consumers may well be sophisticated about their inattention because their buying and
redemption choices are approximately consistent.

By contrast, consumers vastly underestimate the hassle costs of redeeming the rebate. Since
the buying probability hardly responds to an introduction of hassle costs, the perceived hassle only
equals 1 EUR. However, the strong drop in the redemption probability implies hassle costs are a
significant redemption friction equal to approximately 21.16 EUR. This number seems large given
that consumers only need to find and enter a rebate code. A potential explanation is that hassle costs
also represent the time and effort required to understand how exactly redemption is done and where
to find the necessary rebate code. This process may be more challenging for subjects with lower
levels of digital literacy, such as more senior citizens. However, the large number may also directly
represent cognitive biases. Consumers might overvalue the hassle required to go back and find the
rebate code, or they might focus too much on the instant gratification of finishing the purchase (see,
e.g., K&szegi and Szeidl 2013). Alternatively, consumers may have an aversion to complexity, as
documented in recent work by Oprea (2020), and opt for the most simple action.

Finally, note that there may be a potential upward bias because the estimated parameter is only a

linear approximation of hassle costs. If demand is highly convex in rebate value as we move from a

381n fact, the previously mentioned requirement that F'(¢|x) is locally linear for each « implies that demand is locally
linear.
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Table 7: Structural Estimates

Extensive Margin Intensive Margin
Inattention and Hassle Costs:
0 0.730 *
(0.390)
¢ (in EUR) 1.002
(1.380)
0 0.784 ***
(0.014)
c (in EUR) 21.156 ***
(5.289)
Other Parameters:
Ba 0.004 ***
(0.001)
6B1 0.003 ***
(0.001)
BB2 0.003 ***
(0.001)
655} 0.018 ***
(0.001)
TA 0.877 ***
(0.011)
dh(s.1.c) 0.009 ***
(0.003)
N 451,239 8,365

Note: This table reports estimation results from the GMM estimations specified in equations 32 and 33. Standard
errors are in parentheses. *,** ***: significant at p < 0.1, p < 0.05, p < 0.01, respectively.

10%- to a 15%-rebate, then the presented estimate is too large and represents an upper bound of the
true hassle costs. While true hassle costs are smaller than estimated in this case, they are still far
above perceived hassle costs, which are statistically indistinguishable from zero.

Overall, the large difference between perceived and actual hassle costs yields the conclusion that
the average consumer does not fully anticipate the (potentially cognitive) struggle of redemption

when deciding to make a purchase, and underestimates it by up to 20.16 EUR.

How large is counterfactual demand if consumers were fully sophisticated?*® Since ¢ = 21€
and ¢ = 1€, consumers respond to the 10 EUR rebate the same way sophisticated consumers would

respond to a rebate with a value of 31 EUR. The sophisticated demand response to a rebate with

1t might seem intuitive to simply substitute ¢ = ¢ = 21.16 EUR into A;B(s, 1,¢) ~ é% to find the optimal

demand response under sophistication, i.e., to find A.B(s, 1, ¢). However, this approach does not yield the correct
result because the demand derivative itself depends on c (see proof of Proposition 1 in the Appendix to verify).
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reminder is, therefore, only around 1/3 of the observed treatment effect: % = 0.11. The
sophisticated demand response to a 10 EUR rebate without a reminder is lower because inattention
becomes an additional redemption friction. The optimal demand response of sophisticated con-
sumers to such a rebate can be found by multiplying the sophisticated demand response to a rebate
with reminder by the true probability of being attentive: w x 0.78 = 0.086. Thus, the observed
treatment effect of the standard rebate in B.1 on demand, Sp 1 = 0.298, is % — 1 = 235% too
large. Conversely, the optimal demand response of fully sophisticated consumers is only around

30% of the observed treatment effect.

In sum, both reduced-form and structural results point to a substantial misperception of the
effort related to rebate redemption. This misperception lures consumers into making a purchase
even though the hassle of obtaining the discount turns out to be too large to be worthwhile. The
presented results, therefore, substantiate the motive for consumer protection laws that limit the use

of claimable rebates.

6 Additional Mechanisms

I discuss a number of alternative mechanisms that may affect the interpretation of the data, as well

as the identification of the structural parameters.

Risk preferences and loss aversion. Demand may be more elastic to price reductions than to
rebates with the same expected value because consumers are averse to risk and losses. First, con-
sumers’ utility of income may be concave, which implies classical risk-averse preferences. Second,
consumers may be loss-averse, meaning the disutility of losing a monetary amount significantly
exceeds the utility of a monetary gain of equal size.

Loss aversion is arguably a more relevant factor in my empirical setting than risk aversion
because the rebate value is relatively small. For reasonable degrees of risk aversion, even risk-averse
consumers should behave risk neutral over small gambles (Rabin 2000).

Both risk and loss aversion would have the same directional effect on the empirical estimates.
In particular, introducing risk and loss aversion provides two additional reasons why consumers
should respond even less to the rebate than to the automatically-applied discount. The previously
presented estimates imply that the demand response to a rebate is already excessively high under the
assumption of risk neutrality and no loss aversion. If consumers are risk- and loss-averse, then the
demand response of sophisticated consumers should be even lower than previously discussed. Thus,
extending the model to capture an aversion to risk and losses would further strengthen the qualitative

conclusion that the demand response to rebates is too large because consumers overestimate their
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redemption probability. As a consequence, the implication for consumer protection regulation would
remain unchanged.

An important limitation is that the structural estimates would change. The presented estimates
in the previous section would overstate the degree of consumer sophistication because the model
calculates a counterfactual demand response under full sophistication that is too large for risk- and

loss-averse consumers.

Social preferences. Existing evidence in the literature on social preferences indicates that sub-
jects exhibit altruistic and reciprocal preferences (e.g., Fehr and Géchter 1998). Even sophisticated
consumers who would benefit from rebate redemption might decide not to buy at the store because
they consider rebates an unfair marketing practice. Consumers may also receive direct disutility
from a firm’s attempt to exploit their own or other consumers’ behavioral tendencies.

Introducing a distaste for exploitation to the model would have the same directional effect as the
introduction of risk and loss aversion: it provides another reason why consumers should respond
less to a rebate than to an automatically-applied discount. This model extension would, therefore,
not affect the qualitative conclusion that demand overreacts to rebates. However, it would increase

the magnitude of that overreaction.

7 Conclusion

This paper studies consumers’ sophistication about their own behavioral tendencies in the context
of large-scale rebate promotions. I develop both model-free and structural tests of consumer
sophistication about inattention and hassle costs. I then take these tests to a natural field experiment
and estimate consumer sophistication and its economic implications, using choices from hundreds
of thousands of consumers.

I find that consumers anticipate their inattention but are almost fully naive with respect to hassle
costs. As a result, claimable rebates cause an excessive increase in the buying probability because
consumers do not fully anticipate the hassle of redemption. Exploiting consumer naiveté is an
impressive lever of profit and may increase rebate returns by 150%.

Results have important implications for the policy debates around the regulatory framework that
limits the use of rebate promotions in many countries across the world. I provide the first evidence
from a natural field experiment that tests whether rebates harm consumers by causing them to make
systematically distorted buying decisions. The evidence indicates that the regulators’ qualitative
intuition is correct and that consumer protection laws may have large positive effects on consumer
welfare.

A limitation of the study is that it cannot draw conclusions regarding supply-side responses to

regulatory interventions. For instance, it is unclear whether a ban on claimable rebates would result
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in a long-run equilibrium in which firms do not offer price promotions at all instead of offering
frictionless discounts. Future research can make important contributions by studying firm responses
to various policy counterfactuals in order to obtain a complete picture of the economic implications

of consumer protection regulation.
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Online Appendix: Not for Publication

A Mathematical Appendix

A.1 Proof of Proposition 1

The probability of buying at the store can be written as

R s—&  pO(s—&)+(1—0)k K
B(s,@,é):/ / ' f(elli)deh(li)dli—l—/ / f(e|r)deh(k)dk. (13)

For convenience, let Q(s, 0, ¢, k) = fé(sféH(l*é)'{ f(e|lx)deh(k) and M (k) = [ f(€|r)deh (k).
Then,

9 B(s,d,¢) Q(s,é,a,s—é)+/ : —aQ(S’;’C’ %) i — M(s — &)
S
/Sé 8@(3,9,6, K) ik

— ),¢,s—¢) — M(s—é
Q(s,@,c,s ¢) (s cl—i— 95

which implies
%B(s, 0,¢)
5B(s,1,¢)

D>
%

(14)

~ A~

The approximation requires that f(e|«) is roughly constant on [#(s — ¢) + (1 — 6)k, s — ¢ for all &.

Next, I derive sufficient statistics for perceived hassle costs. To a first-order approximation,

A:B(s,0,¢) ~ AagB(s, 0,¢).
C
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If the treatment fully eliminates hassle costs, then A¢ = 0 — ¢, and to first order:

o _DeB(s,0,0) (15)
2 B(s,0,¢)
2 B(s,0,¢)

To go from the first to the second line, I have used the fact that

O i a a  [TP0Q(s, 0,6, k) .
8—63(3,9,0) =Q(s,0,¢,s c)+/ 5% dk — M(s —¢)
0 »
= —%B<S7Q7C).

This proves the first part of the proposition. To derive the sufficient statistics for the true

redemption frictions, recall that the unconditional redemption probability is given by

m&aqze/ dH (x). (17)
It immediately follows that
R(s,0,c)
0=—"—"-. 1
R(s. 1.0 e

An alternative way to identify 6 relies on a comparison of redemption elasticities with and without

inattention. Note that a very small change in the rebate size changes the redemption probability by

OR(s,0
% = Oh(s — o),
which implies that
OR(s,0,c)
_ Os
= Shisia (19)
Os

Hassle costs can be approximated to first order by

A R(s,0,c)
e~ = OR(s,0,c) (20)
Jdc
A.R(s,0,c)
- OR(s,0,c) (21)
Js
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where I have used the fact that

OR(s,0,c)
Y Oh(s — c)
_OR(s,0,¢)

O0s

Recall that consumers are sophisticated if and only if f=0andé=c. Comparing equation 14

with equation 18, and equation 16 with equation 21, implies consumers are sophisticated if and only
if

~ 22
2 B(s,1,¢)  R(s,1,¢) @2)
and
A:B(s,1,¢ A R(s, 1,
(s Ac) - R(s,1,c (23)
5-B(s,1,¢) 5 R(s,1,c
This completes the proof. ]

A.2 Identifying the Subjective Redemption Probability from Demand Re-

sponses to Rebates and Price Reductions

An intuitive approach to identifying the subjective redemption probability might be comparing the
demand response to a rebate with the demand response to a price reduction. As explained in the main
text, the intuition would be that a 2 USD rebate with R(s, 0 ,¢) = 0.5 should increase demand by the
same amount as a 1 USD reduction in price. In my empirical setting, we could then simply compare
the demand response to the typical rebate with the demand response to the automatically applied
discount. In the notation of the model, we simply invert the relationship above and approximate
R(s, 0, ¢) by the ratio of demand responses:

OB(s,0,8)
R(s,0,¢) = 83(2;70) . (24)
0s

However, as can be verified below, this identification strategy relies on an implicit and potentially
strong assumption about the distribution of marginal consumers.

Formally, the claim is that the following relationship can be used to identify R(s, 0, ¢):
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A

0B(s,1,0) ~ . 0B(s,0,¢)
——— = X R(s,0,¢) = ————= 25
9, <Rl 00 =5 (25)
— / F(s|r)h(k)dr x é/ h(k)dr =6 f(s — é|r)h(r)dr (26)
<~ f(s|k < s)Pr(k < s) R(s, é,é) = éf(s — ¢k <s—¢)Pr(k<s—2¢) (27)
marginal consTxrrners intending marginal cons?urners intending
to redeem in absence of frictions to redeem in presence of frictions

Thus, this equality only holds under a special distributional property, which depends both on ¢
and . The left-hand side consists of two parts. The first part is the density of consumers who think
they will redeem the rebate in the absence of redemption frictions (0 =1, & = 0) and who, at the
same time, are at the margin to the automatically applied rebate, i.e., have ¢ = s. The second part is
simply the subjective redemption probability. The right-hand side is the density of consumers who
both think they redeem the rebate in the presence of redemption frictions and are marginal to this
rebate. Thus, the equation says that the density of marginal consumers thinking they redeem in the
absence of redemption frictions, weighted by the subjective redemption probability, must equal the
density of marginal consumers thinking they redeem in the presence of redemption frictions. The
subjective redemption probability can only be identified if the condition in equation 27 holds. The
identification strategy in Proposition 1 does not require this additional assumption and is, therefore,

more general.

A.3 Model with Heterogeneity in Redemption Frictions

In the main part of the paper, behavioral frictions are homogeneous. In this section, I introduce
heterogeneity in perceived and true inattention and hassle costs, respectively. I show that, when
they are independent of the taste parameters, perceived and true inattention are still identified by the
same aggregate demand elasticities in Proposition 1. By contrast, hassle costs are only identified if
they are roughly homogeneous.

It is important to highlight that heterogeneity only affects the identification of the structural
parameters, not the reduced-form test of sophistication explained in Section 3.2.1 in the main part
of the paper.

To introduce heterogeneity in inattention, let Lé(é) and P (#) denote the marginal distributions
of perceived and true inattention, respectively. Assume that both distributions are smooth and
that perceived and true inattention are independent of the idiosyncratic taste parameters, ~ and e.
B (é) and R(f) are now the buying and redemption probability for a given realization of 6 and 0,
respectively.

The effect of a small change in the rebate value on aggregate demand is therefore
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E = / 33(3, 0,¢)dLy(0). (28)

0s 0s

aB(s,é,é)]

Using the same derivation to arrive at equation 14, it follows that the expectation of perceived

inattention can be identified by aggregate demand elasticities:

E [%B(s,é,é)}
2 B(s,1,¢)

~

E[0] ~

(29)

Similarly, using equation 18, it immediately follows that the expectation of true inattention is

identified by aggregate redemption probabilities:

E[R(s,0,c)]
R(s,1,c¢)

These results show that perceived and true inattention are identified by the same aggregate

E 0] = (30)

buying and redemption behavior as in Proposition 1.

Next, consider the case in which hassle costs are heterogeneous. Let L:(¢) and P.(c) denote the
marginal distribution of ¢ and c, respectively, and assume that both distributions are smooth and
independent to the idiosyncratic taste parameters. The aggregate demand response to a change in

perceived hassle costs is approximated to first order by

E [AéB(s,é,a)] ~ /Aé%B(s,é,é)dPé(é), 31)
which is generally not equal to E[A¢|E[2 B(s, 0,¢)]. The demand response for consumer types
with a given ¢ depends on both the type-specific change in their perceived hassle costs and the
type-specific buying elasticity. Since both A¢ and %B(s, 6 , ¢) vary with ¢, the expectation of the
product is not equal to the product of the individual expectations. Thus, we cannot re-arrange terms
and use the same identification strategy as in equation 16. An analogous argument can be made
when true hassle costs are heterogeneous by taking the expectation of both sides of equation 21:
changes in aggregate redemption probabilities are not sufficient to identify expected hassle costs.
In sum, the structural identification strategy of perceived and true inattention is robust to the
introduction of heterogeneity, but hassle costs are only identified structurally if they are approximately
homogeneous. These results hold as long as redemption frictions are independent of the idiosyncratic

taste parameters, i.e., of preferences.
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A.4 Model with Ad Valorem Rebate

Proposition 1 was derived using a lump sum rebate of value s, whereas the experimental design
uses an ad valorem rebate. In this section, I show that the same predictions from Proposition 1 can
be derived with an ad valorem rebate. The difference between the two types of rebates is that it is
more involved to model an ad valorem rebate because the rebate value depends on the endogenous
purchase value of the consumer.

Let ¢ denote an ad valorem rebate. The value of the rebate is given by tp’x where p =
(p',p?%, ..., p’7) is the vector of prices and x = (z!, 22, ..., 27) the consumption vector. Unlike
a lump-sum rebate, an ad valorem rebate changes the optimal consumption vector because it ef-
fectively changes the price of each good. Therefore, we need to model a third margin where the
consumption vector is a function of the rebate.

Let x, be the chosen consumption vector given redemption choices r. Given the consumer buys

at the store and is attentive, she chooses

x, = argmax {v(x) — p'’x+r (tp'x — &)}

X

If she is not attentive, she chooses the same consumption vector as if she was attentive but decided

not to redeem the rebate, i.e. x. The first-order conditions are
ov - ~
— —p +rtp! =0
By p+rty

for every good j.

Given the consumer buys at the store and is attentive, she chooses = 1 if and only if

v(x1) — p'X1 +tp'x1 — ¢ > v(xg) — P'Xo + K

S u(t,é) >k

with u(t, ¢) = v(x1) — p'x1 + tp'x1 — ¢ — (v(X0) — P'Xo0).
She chooses to buy at the store if and only if

~

0 {r (v(x1) — P'x1 + tp'x1 — &) + (1 — 1) (v(xo0) — P'Xo + K)} + (1 - é) {v(x0) — P'xo + K} > .

For convenience, let w; (¢, 0, ¢, k) = 0 {(v(x1) — p'xy + tp'xy — é)}+<1 — é) {v(x0) — p'%x0 + K}
and wo(Kk) = v(xg) — p'xo + k. The probability to buy at the store can be expressed by

R w(t,d)  pwi(t,0,¢,k) wo (k)
B(t,Q,é):/ / f(e|l€)d€h(li)dl€+/ / f(e|r)deh(k)dk.
u(t,é)
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Let Q(t,0,¢, k) = [ f(e|r)deh(r) and M (k) = [“°"™) f(e|r)deh(r). The effect of a very
small change in the rebate value on the buying probability is given by

0
ot

) R “OQ(t,0, ¢ )
9 Bt.4, ):a—?Q(t,Q,é,u)%—/ %d 5 S M ()

) ) oo
_ a_? (Q(t,e,é, u) — M(u)) +/ W%

Note that

~

wy(t,0,¢,u) = 0 (v(x1) — p'x1 +tp'x1 — &)} + (1 — é) {v(x0) — P'x0 + u}

{
=0 {(v(x1) — P'x1 + tP'x1 — &)} + (1 - é) {lv(x1) —p'x1 +tp'xy — €]}
(x1) = p'x1 +tp'xy — ¢

(x

pxo—l—u

Therefore, Q(t,0, ¢, u) — M(u) = 0 and

B, “AQ(t, 0, ¢, k)
— B(t — T\ Y
5 0,¢) = / a "

~

= [P 1.0, )

= /ué ((Ux1 — )aatl + (tp % + pxl)) Flwy(t,0, ¢, k)|k)h(k)ds

—ép’xl/ Flwi(t,0, ¢, r)|Kk)h(k)dxk.

If f is roughly constant on the interval [w; (¢, 0, ¢, K),wi(t,1,¢, k)], then

o N~
2B(t,1,¢

To derive the sufficient statistics for perceived hassle costs, first note that a small change in

perceived hassle costs changes the buying probability by

oc

0 =200.0,c.u0) + / iclulILL VAL Vre)

:—9/ Fwi )
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This implies that

To a first-order approximation,

If A¢ =0 — ¢, then:

A:B(t,0,¢)
 9B(t,0,9)
e
 A:B(t,0,¢)
T T oBuge PXU

ot

~
C

As we can see, both 6 and ¢ are identified in the same way as in Proposition 1 but s is replaced
by tp’x;.
Next, I derive the sufficient statistics for the true redemption frictions. The redemption probability

is given by:

R(t,0,c) = G/U dH (k)

such that inattention is identified by

) R(t.0,0)
"~ R(t,1,¢)
To identify true hassle costs, first note that
OR(t,0,¢)
— 2 = —0h
P (w)
OR(t,0,c _
— (at )(p/X1> 1
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which implies that, to first order,

OR(t,0,¢) Ac
dc

oR(t,0,c), , _
= IR i) e

_ALR(t,0,c)
= CR —BRuse  PX
ot

Q

A.R(t,0,c)

when Ac = —c.

A.5 GMM Estimation
A.5.1 Estimation

To obtain values of the perceived redemption frictions, I estimate the structural parameters by
substituting the regression coeflicients in equation 1 with the structural parameters and then solve a
set of moment conditions.

Denote the buying probability in the control group by 3p. Let the treatment effect on the buying
probability by treatment ¢t € {A, B.1, B.2b,C.1, C.2b} be denoted by ;. As I show below, we can
rewrite these reduced-form treatment effects in terms of the structural parameters. This reformulation

results in the following six moment conditions for demand:

OAs

¢

E

I (Buyi — Ba x A; — Bp, X B.1; — Bp,sB.2b; — ( (Ba — Bp.ap) + 53.1) x C.1;

As
- < ; (Ba — Bp.ab) + 53.21;) X C.2b; — 5D)] =0, (32)
where I, = (4;, B.1;, B.2b;, C.1;,C.2b;, D;) is the 6 x 1 vector of instruments indicating the experi-
mental group of subject 7. The monetary change in the rebate value, As, is calculated by multiplying
the additional five percentage points (of the 15%- relative to the 10%-rebate) by the median shopping
basket value in group A, which is 96 EUR. Thus, As = 4.80 EUR.*’ Since the number of parameters

to be estimated is also six, the model is exactly identified.

Next, true inattention and hassle costs are estimated using moments of redemption behavior.

Again assuming independence between the residuals of the buying and redemption equation, I can

40See Appendix A.4 for a formal proof that it is possible to translate an ad-valorem rebate to a lump-sum rebate in
this way. Instead of the mean, I use the median to adjust for outliers with very large shopping basket values.
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rewrite the reduced-form treatment effect parameters in terms of the underlying structural choice

parameters, which yields the following five moment conditions:

1 1
E|J, (Redeemi — Ty — <9(7‘A — c%) — TA) x B.1; + c%’s’c) x B.2b;
OR(s,1,c¢) OR(s,1,c)
(0 |+ B0 Ng— )| —ra ) x Ol — (LY (As— o)) x 26 || =,
0s Js
(33)

with J; = (A, B.1, B.2b, C.1, C.2b;) denoting the vector of instruments, excluding the control group.
With five moments and four parameters, the model is overidentified and I use a two-step GMM

estimator to find the optimal weight matrix.

A.5.2 Derivation of Moment Conditions

Perceived hassle costs are approximated by

A:B(s, 1,¢) _ Ba— B2

C ~ ~ 34
% ZB(s,1,0)  Beaban B9
As
& Boaw & ; (Ba — Bpaw) + Bp.ap- (35)
Perceived inattention is approximated by
b~ Bea — Bra (36)
Beaw — Bp.aw
& Boa ~ 0 (Boaw — Bpaw) + Bea (37)
~As
=0 z (Ba — Bpa) + Bp.1, (38)

where the last line follows from substituting 5 9, from equation 35.

Under this assumption, true hassle costs are identified by
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_AR(s,1,¢)  —Tew (39)

OR(s,1,c) T OR(s,1,c)
Js Js
OR(s,1
R—L L (40)
0s

(41)

We can insert this into the expression for 7¢9y:

0R(1,¢,s
Tc2b = TB2b + AS—<8 )
s

OR(s,1,c¢)
N Y As —
P (As —¢)
This yields the moment conditions in equation 32.
True inattention can be identified in multiple ways. The first identification strategy relies on the

comparison between redemption probabilities with and without inattention:

R(S,H,C) ~ TB1 +TA
R(s,1,c) ~ TA + TB2b

0:

@TBlze(TAﬁ-Tng)—TA

OR(s,1,¢)

=0(ta —c B ) — Ta.

A second identification strategy of inattention relies on the comparison of demand derivatives

9 — Os
We can insert this condition into the expression for 7¢q:

0
Tc1 — TB1 -+ AS—aR(S, 70)
0s

1
= TB1 + QAS—aR(S’ 76)
Js

B OR(s,1,c¢) OR(s,1,c¢)
=0(ta — CT) Ta+ QAST

— 0|74+ —83(2;1, as—e)| -7
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where in the last line, I have substituted for 75;. Rewriting 73, and 7¢; as above produces the

moment conditions in equation 33.

B Pilot Studies

The first pilot study was implemented between July and August 2018 for a period of three weeks
and with a smaller sample of 13,204 website visitors in the United Kingdom. Different from the
main experiment, the study did not include users with mobile devices and tablets. Only subjects
who used a desktop were randomized into one of the experimental groups. The study only included
a 10%- but not a 15%-rebate. The experiment included the following three treatment groups and
one control group: group A, B.1, B.2a, and D. The treatments in which the reminder was explicitly
announced at the start of the visit (B.2b and C.2b) were not included.

The second pilot study took place in August 2019 for a period of one week and with a larger
sample of 52,302 consumers in the German online shop of the company. Just as in the first pilot
study, the study included only desktop users, and the experimental design consisted of groups A,
B.1, B.2a, and D.

In both pilot studies, the design of the banners and the rebate code differed on some dimensions
compared to the one presented in the main part of the paper. The reason for the divergence is that the
marketing department of the company sometimes changes the promotion design. The experiments I
ran effectively changed certain features of these promotions but not the entire visual design. For
privacy reasons, I cannot display the banners of the pilot studies in this paper. Overall, the conceptual
design of the banners was similar to the banners presented in the main body of the paper.

Table B1 documents the results from linear probability models of the outcomes of interest on
the treatment indicators. The baseline buying probability in the first pilot study with UK customers
is around 3.4%, therefore higher than for the sample analyzed in the main experiment of the paper.
The automatically applied 10%-discount increases the buying probability by around 1.04 percentage
points. Introducing hassle costs lowers this effect to 0.86 percentage points, but the difference in
treatment coeflicients is not statistically significant. Increasing inattention by removing the reminder
further reduces the positive effect of the rebate down to 0.42 percentage points.

Looking at redemption rates, I observe a redemption probability of 95% for subjects who receive
the automatically applied discount. Redemption rates fall much more steeply than in the main
experiment of the paper. The introduction of hassle costs is associated with a decrease of 73
percentage points. Removing the reminder is associated with an additional decrease of 5 percentage
points.

Even though the coeflicients are different than for the main experiment of the paper, the qualitative
results are similar: consumers substantially reduce demand when the firm tries to exploit inattention

and removes the reminder. Hassle costs only slightly, and not significantly, decrease demand even
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though they are a much bigger redemption friction than inattention. Thus, consumers perceive
inattention to be a substantially larger friction than hassle costs, even though the opposite is true.

Another interesting observation is that even though redemption frictions of the rebate appear to
be much larger in this experiment, the demand response to the rebate is also substantially smaller
than in the main experiment: requiring consumers to redeem the rebate reduces the positive effect
of the promotion on demand by 60% (from 1.04 to 0.42 percentage points). Although differences
across experiments are only correlational, this behavior is consistent with the interpretation that
rebates with lower redemption probabilities cause smaller positive effects on demand.

In the second pilot study with subjects in Germany, the baseline buying probability equals
4.9%, and an automatically applied discount increases demand by 0.73 percentage points. Again,
introducing hassle costs has no significantly different effect on demand. The coefficient is even
slightly larger than the one in group A, but the difference in coefficients is likely a result of sampling
variation. Removing the reminder substantially lowers the demand response to the rebate from 0.87
to 0.1 percentage points.

The baseline redemption probability is 77% and falls by 30 percentage points with the introduction
of hassle costs. Removing the reminder has an additional negative effect of 13 percentage points.

Thus, also in this experiment, hassle costs and inattention both reduce redemption rates, but
consumers only anticipate their inattention. While hassle costs are a larger friction than inattention,
consumers believe the opposite.

Although the effects in the pilot studies are quantitatively not the same as the ones presented
in the main experiment, the qualitative results are the same. Differences in point estimates are
to be expected because the samples differed along many dimensions, such as the type of device
consumers used to visit the website, the user’s country of origin, and the year of the experiment.
Other idiosyncratic differences are the visual designs of the promotions created by the marketing

department.
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Table B1: Buying and Redemption Probabilities in Pilot Studies

Pilot Study 1

Buying Probability

(€] (@)

Pilot Study 2

Redemption Probability Buying Probability

3 @

%100 %100 %100 %100
A: 10%, automatic 1.040** 95.172%** 0.728*** 77.166***
(0.481) (1.787) 0.277) (1.558)
B.1: 10%, w/o reminder 0.417 -77.850*** 0.099 -43.376***
(0.460) (3.815) (0.268) (2.416)
B.2a: 10%, w/ reminder 0.862* -72.795%** 0.873*** -30.341%**
(0.472) (3.928) 0.277) (2.393)
D: control 3.403*** 4.889%**
(0.317) (0.189)
Regression constant D A D A
N 13,204 415 52,302 2,140
Country United Kingdom Germany
Year 2018 2019
Sample Desktop users only Desktop users only

Note: This table shows average treatment effects for the two pilot studies that preceded the main experiment in
the paper. Average treatment effects are estimated from a linear probability model of the buying and redemption
probability on the treatment indicators. The control group is excluded in columns 2 and 4 because control group
subjects could not redeem the rebate by construction. Robust standard errors are in parentheses and clustered at the

subject level. *#* ***: gignificant at p < 0.1, p < 0.05, p < 0.01, respectively.
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C Heterogeneity Based on Zip-Code Level Income Data

Table C1: Heterogeneity by Income

(D ()
Buying Probability X100 Redemption Probability x 100
A: 10%, discount 0.452*** 89.509***
(0.125) (1.259)
B: 10%, rebate 0.238** -34.324***
(0.122) (2.493)
x reminder 0.037 12.833***
(0.109) (2.579)
C: 15%, rebate 0.426*** -32.439***
(0.125) (2.434)
X reminder 0.058 14.418***
(0.115) (2.468)
D: Control 1.793***
(0.084)
Above median income 0.069 -1.781
(0.119) (1.947)
Interaction effects:
A: 10%, discount x above median income -0.031
(0.179)
B: 10%, rebate x above median income 0.088 -1.048
(0.175) (3.591)
X reminder 0.066 -0.910
(0.158) (3.619)
C: 15%, rebate x above median income 0.002 4.578
(0.179) (3.486)
x reminder 0.173 -5.025
(0.164) (3.433)
N 420,857 8,305

Note: This table reports treatment effects for consumers from regions with an income below and above the sample
median. Income data is based on the zip-code level, as described in the main part of the paper. Robust standard
errors are in parentheses and clustered at the subject level. *,** ***: gjgnificant at p < 0.1, p < 0.05, p < 0.01,
respectively.
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D Correlation Between Redemption Rates and Spending

Since the rebates used in the experiment are ad valorem, how much a consumer receives as a discount
depends on the shopping basket value. For example, redeeming a 10% rebate translates to a 10 EUR
lump sum rebate for consumers who buy 100 EUR worth of goods but only to a 1 EUR lump sum
rebate for those whose basket value is 10 EUR. It may, therefore, be interesting to know whether
these two consumer types would respond differently to the rebate, as they receive largely different
benefits from it.

The empirical challenge in answering this question is that I do not observe how much each
consumer would have spent without the rebate. If a consumer buys goods for a value of 100 EUR,
this may be the amount she would have spent in the absence of the promotion, but it is likely to be
larger because goods demand may increase with the rebate. In fact, results in Table 4 suggest the
latter as shopping basket values increase with rebates. Thus, it is not possible to identify whether
consumers who have higher shopping basket values in the absence of the rebate exhibit larger
treatment effects to the rebate.

For completeness, I report the correlation between shopping basket value and redemption rates
across treatments. In particular, I re-run regression 2 but interact each treatment with a dummy
that indicates whether the shopping basket value is above the median shopping basket value in the
control group. Table D1 provides results.

In group A, the redemption rate for consumers with high spending is economically and statistically
indistinguishable from consumers with low spending. For the 10% rebate, the redemption rate
is 11 percentage points larger for high-spending consumers. Similarly, it is 8 percentage points
larger for high-spending consumers at the 15% rebate. Interaction terms with the reminder and the
announcement are statistically zero at both the 10%- and 15%-rebate values.

Consistent with basic economic principles, these patterns may suggest that consumers for whom
the (lump sum) value of the rebate is larger are also the ones who are more likely to redeem the
rebate. An alternative interpretation is that the interaction terms are entirely driven by the fact that
rebates cause the shopping basket value to increase and that those who redeem the rebate are also

those who have been induced to buy more.

60



Table D1: Redemption Rates for Consumers with High and Low Shopping Basket Values

ey
Redemption Probability x 100
A: 10% discount 87.558***
(1.207)
B: 10%, rebate -40.061***
(2.139)
X reminder 10.270***
(2.552)
X announcement 3.862
(2.494)
C: 15%, rebate -35.189***
(2.137)
X reminder 11.396***
(2.380)
X announcement 3.500
(2.249)
Above basket value of control group median 0.351
(1.664)
Interaction effects:
B: 10%, rebate x above basket value of control group median 11.006***
(2.999)
X reminder -1.082
(3.495)
X announcement 3.225
(3.354)
C: 15%, rebate x above basket value of control group median 8.435%**
(2.924)
X reminder 1.903
(3.219)
X announcement -0.776
(2.999)
Regression constant A
N 11,872

Note: This table reports results from a linear regression that adds interaction terms between the treatments and a
dummy indicating whether the shopping basket value is above the median shopping basket value of the control
group. Robust standard errors are in parentheses and clustered at the subject level. *,** ***: significant at p < 0.1,
p < 0.05, p < 0.01, respectively.
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E Customer Loyalty

I estimate the effects of the treatment on the probability of buying more than once during the
experimental period. The outcome variable is a dummy equal to 1 if the consumer purchased twice
or more and 0 otherwise. In the regression, the constant represents the mean of group A that received
the automatically applied discount. All treatment coefficients are therefore interpreted relative to an
automatically-applied discount.

Table E1 reports the results. In the group with the automatically applied discount, 2.8% of all
buyers make a second purchase during the experimental period. All other coefficients are statistically
insignificant. There is no clear indication that rebates have a negative effect on customer loyalty
relative to discounts.

However, some effect sizes are relatively large. The standard 10%-rebate (B.1) has a negative
coefficient suggesting that the probability of buying again is 0.51 percentage points lower for a
rebate than for an equivalent discount. Interestingly, the coefficient for the reminder is positive and
almost equal in absolute size to the standard rebate. This could suggest that the negative effect of
the rebate on customer loyalty is completely offset if the firm offers a reminder. The result would
be consistent with the interpretation that consumers are aware of their inattention but remain naive
about hassle costs even after this naiveté has been exploited.

The directional effects are the same for the 15%-rebate but different in magnitude: the negative
effect of the rebate is smaller, while the positive effect of the reminder is also smaller.

Finally, an important result is that the most negative coeflicient is the one of the control group
where subjects did not receive a promotion. This suggests that even though rebates may negatively
affect customer loyalty relative to an automatically applied discount, they still increase customer

loyalty relative to offering no price promotion.
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Table E1: Probability to Buy More Than Once

Probability to buy more than once (in %)

B: 10%, rebate -0.510
(0.557)

x reminder 0.539
(0.557)

X announcement -0.215
(0.572)

C: 15%, rebate -0.438
(0.552)

x reminder 0.158
(0.523)

X announcement -0.282
(0.510)

D: control -0.623
(0.572)
A (constant) 2.842%**
(0.409)

N 13,224

Note: This table reports average treatment effects on the probability of purchasing more than once. The regression
constant is the mean of group A. Robust standard errors are in parentheses. *,** ***: gignificant at p < 0.1, p <

0.05, p < 0.01, respectively.
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F Effect of Announcement on Engagement with the Rebate

Figure F1 plots the probability of visiting the rebate page at least once, that involves the necessary
information about how to redeem the rebate, including the rebate code. For groups B.1, B.2a, and
B.2b, this is the page shown in Figure 3. For groups C.1, C2.a, and C2.b, the page looks the same
but the rebate size is larger. Group A can also visit a rebate page, but the page only informs them
again that the rebate is automatically redeemed and therefore involves no additional information
compared to the information button already provided in the banner.

In group B.1, around 3.6% of website visitors browse to the rebate page. The number is slightly
larger for group B.2a, where 3.9% of subjects visit the rebate page. When the reminder is announced,
this number increases to 6.9%. The announcement also increases the probability of visiting the
rebate page for the 15%-discount. The probability increases from 5.23% (C.2a) to 8.21% (C.2b)
in response to the announcement. The absolute treatment effect of the announcement is highly
statistically significant (p < 0.01) at both rebate sizes and remarkably similar in absolute size across
stakes (around +2.9 percentage points for both rebate values).

Figure F2 plots the probability of visiting the checkout page and provides complementary
evidence. The announcement substantially increases the probability of clicking on the checkout
page and, thereby, viewing the reminder.

Subjects who receive the announcement are, therefore, substantially more likely to engage with

the rebate and pay attention to the reminder.
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Figure F1: Probability to Visit Rebate Page
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Note: This figure shows the probability of visiting the rebate page at least once. The error bars represent standard
errors.
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Figure F2: Probability to Visit Checkout Page
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Note: This figure shows the probability of visiting the checkout page at least once. The error bars represent standard
errors.
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G Sample Selection Model

The selection model uses regional and temporal variation in internet outages as an exclusion restric-
tion. I use publicly available data on internet outages from Heise Online, a platform that documents
user complaints about internet outages received by phone across the country. The dataset includes,
among other variables, the area code and the duration of the outage. For the experimental obser-
vations, I only observe the city of each website visitor and not the area code. To merge internet
outages with the dataset from the experiment, I use geo data from OpenGeoDB to assign each area
code to a respective city. This approach allows me to assign internet outages collected from Heise
Online to website visitors in the experiment.

One could use various approaches to construct a dummy variable that indicates whether a city
experienced a major internet outage. In constructing the variable, I closely follow Miiller and
Schwarz (2020), who have used outages as exogenous variation in a different setting. Specifically,
they study the effect of social media utilization on hate crime and use internet outages as exogenous
variation for access to social media. Following their approach, I count the total number of internet
outages that occurred in the city of the website visitor. Because larger cities will have more internet
outages mechanically, the authors normalize the number of internet outages by the number of
inhabitants of each city, and I follow their approach. I then create a dummy variable that indicates
whether the subject’s area experienced a major internet outage. I define major internet outages
as the 90th percentile of total internet outages normalized by the number of inhabitants. Because
internet outages may also affect whether subjects even appear in my dataset (another level of sample
selection), I only count internet outages that happened after the subject’s first visit to the website
during the experimental period. To avoid that subjects who visit at a later point in time have a lower
number of outages mechanically, I count internet outages for each subject seven days after their
first visit. Thus, even for subjects whose first visit was during the last day of the experiment, the
following seven days are accounted for in terms of outages.

The sample selection model follows the standard setup introduced by Van de Ven and Van Praag
(1981) when the dependent variables of both the selection and the outcome equation are binary. With
some abuse of notation, I denote the buying decision of subject ¢ by b; and her rebate redemption

choice by r;. The utility from buying at the shop is given by

w; = vLi + 1 X; + 15, (42)

where X; is a vector of control variables, including a dummy for the device the subject uses
(desktop, tablet, or smartphone) and date fixed effects. The latent utility component is denoted by 7;.
The vector Z; includes an indicator for each treatment and the instrument indicating whether the city
of subject 7 experiences a major internet outage. In addition, the vector includes interaction terms

between the instrument and the average income of the region from which the subject is visiting.
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Including interaction terms is important because it reduces the degree of collinearity between the
treatment regressors in the outcome equation and the correction term. A high degree of collinearity
is a well-known disadvantage of sample selection models, which causes inflated standard errors.
Collinearity is a particular limitation in my application because all treatments need to appear in both
the selection and outcome equation. Allowing for the effect of internet outages to vary by income
group adds a substantial degree of flexibility and increases precision of the point estimates on the

intensive margin.

Utility from rebate redemption equals

v; = wT; + xX; + G, (43)

where (; is the unobserved utility from rebate redemption and X; includes the same control
variables as on the extensive margin.The vector T; includes the treatment dummies and does not
include internet outages.

Subject ¢’s buying decision is given by

0 otherwise .

Her redemption choice is determined by the intensive margin utility and only observed if she
buys:

lifv, >0andb; =1
r; =4 0ifv;, <Oand b, =1 (44)
0if b, = 0.

Selection arises when cov(n, () # 0. 1 make the standard assumption that each error term
follows a standard normal distribution, n ~ N(0,1) and { ~ N(0, 1), with correlation between the
residuals given by p = corr(n, ). Monte Carlo simulations show that when these distributional
assumptions are violated, the model still performs well in many cases, as long as a valid exclusion
restriction exists (Cook and Siddiqui 2020).

To estimate the parameters of interest, I maximize the well-known form of the log-likelihood

function that can be derived from the model above:
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InL = {biridn®s(Tw, Z7, p) + bi(1 = ;) In[®(Tw) — &a(Tw, Z7; p)] + (1 = bi)riln[®(Z7)

i=1

= Oy(Tw, Zv; p)] + (1 = b)) (1 = 1)In[l — ®(Tw) — (Z7) — Po(Tw, Z7v; p)|}, (45)

where I denote the standard normal distribution by ® and the joint distribution by ®,. If the
correlation between residuals is zero, this likelihood simply equals the sum of the likelihoods of two
independent probit models.

Given the structure of the model, the differences in redemption rates between experimental
conditions, that is, the coefficients in w, have a causal interpretation.

Next, I maximize the likelihood function in equation 45. To ensure I have found the global,
instead of a local, maximum, I estimate the model for various given values of the correlation between
residuals, p, and then compare the log-likelihood values with the one when p is estimated. I estimate
the log-likelihood for given values of the correlation between the residuals using the code developed
by Cook, Newberger, and Lee (2020). Figure G1 reports results by plotting the log-likelihood value
for given values of the correlation. The red dot indicates the global maximum with a log-likelihood
value of —61, 308 and a correlation of residuals of around 0.4. These are exactly the values produced
by the maximum likelihood estimation shown in Table 6 in the main part of the paper. This exercise

confirms that the reported correlation of residuals corresponds to the global maximum.
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Figure G1: Log-Likelihood Values for Given Values of p
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Note: This figure plots the log likelihood of the sample selection model for different correlations of residuals. The red
dot indicates the global maximum.
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