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Abstract

We propose testing conditional moment restrictions (CMRs) using Chi-squared (χ2)
testing procedures. After partitioning the data into cells, χ2 tests assess whether
the discrepancy between the observed means of a generalized residual with the ex-
pected vectors of zeroes, under the null, within each cell arose by chance. This
is equivalent to test regression specifications by comparing the average response
variable with the expected mean under the null within each cell. In contrast to
existing omnibus procedures, χ2 tests offer straightforward implementation and ex-
hibit a standard limit null distribution, ensuring accurate size. To enhance the
power of the tests, we propose different partitioning algorithms that leverage infor-
mation about the null hypothesis and, if specified, the alternative hypotheses. We
show that even when the partition depends on the data, under mild restrictions on
the complexity of the partitioning algorithm, the tests limit null distribution re-
mains standard. Montecarlo simulations show the good performance of the χ2 tests
compared to omnibus proposals, particularly in high-dimensional environments and
against high-frequency alternatives. Our proposed tests offer practical advantages
of implementation ease but also exhibit robust statistical properties, making them
highly effective in various scenarios.
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1 Introduction

Typically, conditional moment restrictions (CMR) arise from the analysis of tautological

models entailing parametric specifications of some conditional moment. Models defined

by CMRs include models where regression and heteroskedasticity are simultaneously pa-

rameterized without restrictions on the distribution, models identified by instrumental

variables (see, e.g., Newey [1990]), non-linear simultaneous equations models, transfor-

mation models like the Box-Cox transformation or the accelerated failure time model (see

Horowitz [1996], for instance), hazard models, to mention but a few. Testing the correct-

ness of the posited conditional moment specification is a fundamental preliminary step

for valid inferential claims about the model parameters.

Tests for regression specifications are the most common application of CMR testing

in the literature. In these, given a random sample {Yi, Xi}ni=1 from a response variable Y

and a dx-dimensional vector of explanatory variables X, the aim consists of validating a

parametric specification of the regression function, m(x) = E [Y |X],

H0 : m = mθ0 a.s. for some θ0 ∈ Θ

where mθ(·) is a parametric specification of m(·) indexed by elements of a suitable pa-

rameter space Θ ⊂ Rdθ .

There is a vast literature of tests for H0 building upon omnibus tests for probability

distribution model specifications, which we broadly categorize into two classes: minimum-

distance tests and tests based on smoothers.

The formers compare an empirical integrated measure of the regression function,

M̂0(x) = n−1
∑n

i=1 Yiτ(Xi, x), with its version imposing the restrictions under the null,

M̂θ(x) = n−1
∑n

i=1mθ(Xi)τ(Xi, x), where τ(·, x) is a properly chosen kernel function.

The most common choice of τ(·, x) in the literature have been the indicator function,

τ(X, x) = I[−∞,x](X) (see, e.g., Stute [1997], Koul and Stute [1999], Li et al. [2003],

among many others) and the exponential function, τ(X, x) = exp(ix′X), where i =
√
−1

denotes the imaginary unit (see Bierens [1982] and Bierens [1990]).

Tests based on smoothers, instead, compare a non-parametric estimate of the regres-
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sion function m̂(x) with the model under the null; see Eubank and Spiegelman [1990],

Hardle and Mammen [1993], Fan and Li [1996], Koul and Ni [2004], Guerre and Lavergne

[2005], Li et al. [2016] for some examples. González-Manteiga and Crujeiras [2013] re-

views the developments of the two approaches for testing regression specifications, while

Delgado et al. [2006] extend them to general CMR testing.

These tests have their strength and limitations. The main advantage is the omnibus

property for which the tests have theoretical power against any deviation from the null.

However, they suffer from several limitations that restrict their use in practice.

Minimum-distance tests have been shown to possess local power only against alterna-

tives in an unknown finite-dimensional space (see Escanciano [2009]). They suffer from

the curse of dimensionality and have limited power toward high-frequencies alternatives

(Durbin and Knott [1972]). Their limit null distribution is non-pivotal, and obtaining

critical values requires using bootstrap techniques (Stute et al. [1998]).

Smoother-based tests are also ineffective in high-dimensional environments due to

the curse of dimensionality, they have trivial power against alternatives approaching the

null at the parametric rate, and the size properties depend in practice on the choice of

the smoothing parameter. Despite having pivotal limit null distribution, they are often

implemented with bootstrap techniques.

In the context of testing probability distributions, there is a third approach that

has been overlooked within the framework of regression specification (or CMR) testing.

This approach involves the use of Chi-squared (χ2) tests. Essentially, if the variable X

takes values from a finite set, X say, and the parameter θ0 is known (i.e., under simple

hypothesis), one can test H0 by comparing the average value of Y for each x ∈ X with

mθ0(x). In the case of general covariates, χ2 tests expand on this principle by partitioning

the data into cells and evaluating whether the difference between the observed average Y

and the corresponding expected average within each cell, under the specification in the

null, can be attributed to chance.

Unlike the other two approaches, χ2 tests are expressed in familiar terms for applied

econometrician, they are easy to implement and possess standard limit null distribution

with excellent size accuracy.

Under mild restrictions on the partitioning algorithm complexity, the asymptotic prop-
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erties of the test remain unchanged even when the cells’ partition boundaries depend ran-

domly on the data. Indeed, the main feature of χ2 tests is the dependence of the set of

detectable alternatives on the chosen classes, which motivates incorporating information

about the model in the partitioning procedure. We consider, for instance, partitioning the

data along the distribution of fitted values where the relationship between the residuals

and the fitted values changes sign. Testing with this partitioning formalizes the statistical

practice of looking at the residual-fitted values scatter plot to determine model misspec-

ification (Tsai et al. [1998]). Montecarlo simulations show that χ2 tests using this parti-

tioning method outperform minimum-distance tests, particularly against high-frequencies

deviations from the null. We also consider the partitioning through Neyman-Pearson

classes (see Greenwood and Nikulin [1996] and Balakrishnan et al. [2013]) resulting from

the points in X where the model under the null and the alternative cross. If the alter-

native is unspecified, the partitioning can be done using a non-parametric estimate of

m(·) and splitting over the points where m̂(x) − m(x) = 0. χ2 tests built in this way

are, in some sense, hybrid tests exploiting the information of the smoothers to aggregate

residuals rather than generating them, as with smoothers-based tests. We show that such

tests respond to optimality criteria.

The structure of the paper is as follows: In the next section, we introduce the tests for

regression specifications. The regression framework allows a natural interpretation of the

tests and drastically reduces the notational burden required for the more general case; in

Section 3, we discuss the asymptotic properties of the tests under general dependence of

the partition cells boundaries from the data; in Section 4, we introduce a set of partitioning

algorithms designed to enhance the power of the tests. These are based on a lower-

dimensional projection of the data, such as to avoid the curse of dimensionality and

improve the ability of the tests to detect departures from the null; in Section 5, we

analyze the behavior of the tests against Pitman’s local alternatives. The main focus of

the discussion is how the partition choice (and the number of cells) influence the sensitivity

of the tests in detecting deviations from the null hypothesis; in Section 6, we present a

Monte Carlo study that the finite sample performances of the proposed χ2 tests. This

study demonstrates the practical effectiveness of the tests in various scenarios; in the last

section, we extend the tests to general CMR. The extension only requires a few additional
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adjustments.

2 Chi-Squared Tests for CMR

Let {Zi}ni=1 = {Yi, Xi}ni=1 be an i.i.d sample from the R1+dx-valued random vector Z =

(Y,X) with distribution P , where Y is the response variable and X is the dx-th di-

mensional vector of explanatory variables with support X ⊂ Rdx . If E [Y 2] < ∞, the

associated regression function, m(x) := E[Y |X = x], is well-defined and characterizes the

(a.s.) optimal predictor of Y , in a mean square error sense. In this section, we analyze

the problem of testing that m(·) belongs to a class of parametric regression functions,

H0 : m ∈ {mθ : θ ∈ Θ}, (1)

for a suitable parameter space Θ ⊂ Rdθ . Thus, under H0, there exists a θ0 ∈ Θ such that

∫
A

Y dP =

∫
A

mθ0(X)dP for all A ∈ σ(X) (2)

where σ(X) is the sigma-field generated by X. Recall that (2) is the definition of the

regression function for the specification inH0 (e.g., see definition 34.1 in Billingsley [2013]),

which is equivalent to the following orthogonality conditions,

H0 :

∫
A

εθ0(Z)dP = 0 for all A ∈ σ(X),

with εθ(z) = y −mθ(x) denoting the regression error.

Intuitively, if X takes value in a finite set, and θ0 is known (i.e. under simple hypoth-

esis), one can test H0 by simply comparing the average value of Y for each x ∈ X with

mθ0(x). For any type of covariates, once the data is partitioned into L cells, say, the χ2

test assess whether the difference between the expected and observed averages in each cell

arose by chance.

Let C be a class of measurable sets in X from which the cells of each partition are

drawn, and denote as D the class of partitions of X comprised of L sets from C (L is fixed
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for all n); that is,

D =

{
γ = (γ1, ..., γL) ∈ CL :

L⋃
l=1

γl = X , γl
⋂

γf = ∅, ∀l ̸= f

}
, (3)

where γl and γf denote sets of the partition γ. Troughout, we denote as Iγ(x) =

(Iγ1(x), ..., IγL(x))′ the vector of indicator functions over the sets of γ.

The building block of the χ2 test statistics is the standardized vector of differences

between the sample averages of Y (observed averages) and the corresponding average

imposing the specification under H0 in each cell,

Φ̂γ(θ) =
√
n
(
µ̂0

γ − µ̂γ(θ)
)
=

√
n


µ̂0
1 − µ̂1(θ)

·

·

µ̂0
L − µ̂L(θ)

 , (4)

where µ̂0
l =

∫
γl
M̂0(dx) = n−1

∑n
i=1 YiIγl(Xi) and µ̂l(θ) =

∫
γl
M̂θ(dx) = n−1

∑n
i=1mθ(Xi)Iγl(Xi)

are the empirical integrated regression function and its version under the null, respectively,

evaluated at γl.

Of course, tests based on (4) are not omnibus but designed for detecting deviations

from H0 of the type,

H1(γ) : µ
0
γ − µγ(θ) ̸= 0 for all θ ∈ Θ,

where µ0
γ = E [Y Iγ(X)] and µγ(θ) = E [mθ(X)Iγ(X)]. In other words, they have trivial

power when the average difference between m(·) and mθ(·) in each cell is zero (despite

m ̸= mθ a.s.). The partitions, therefore, cover a fundamental role in implementing the test

and provide a flexible tool to exploit the information given by the model or additional in-

formation available to the researcher. One, for instance, might consider Neyman-Pearson

cells (Balakrishnan et al. [2013]) resulting from the points in X where the model under the

null and a pre-specified alternative parametrization of m(·) meet (see Example 1 below).

Under the pre-specified alternative, Neyman-Pearson classes maximize the difference be-

tween m(·) and mθ(·) in each cell.
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Example 1 (Neyman-Pearson Classes, Balakrishnan et al. [2013])

Consider testing the linear model mθ0(Xi) = θ00 +Xiθ01 against the alternative specifica-

tion,

H1 : m̃θ0(Xi) = θ00 + θ01Xi + θ02 sin

(
50Xi

2π

)
where θ0 is a known vector. Neyman-Pearson classes split X over the points where

θ02 sin
(
50Xi

2π

)
= 0. As a result, under H1, mθ0(·) is strictly bigger or strictly smaller

than m̃θ0(·) within each cell, and most cell-specific errors have the same sign, implying

that the average error of a single cell is larger than the average error over the union of

two contiguous cells (in absolute terms). As a matter of fact, in this example, the average

error of (any) two contiguous cells is close to zero.

Figure 1: The graph depicts a random draw from the model under H1

with θ∗0 = (1, 1, 1). The green lines depict the points where the
model under the null (blue line) and under the alternative (red
line) meet.

Under simple hypothesis, i.e. when θ0 is known, by the central limit theorem, under

the null,

Σ̂γ(θ0)
−1/2Φ̂γ(θ0)

d−→ N(0, IL),

where Σ̂γ(θ) = n−1
∑n

i=1 ε
2
θ(Zi)Iγ(Xi)Iγ(Xi)

′ estimates

Σγ,0 := Avar
(
Φ̂γ(θ0)

)
= E

[
ε2θ0(Z)Iγ(X)Iγ(X)′

]
= diag{σ2

0,1, ..., σ
2
0,L}, (5)
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under H0, with σ
2
0,l = σ2

l (θ0), and σ
2
l (θ) = nE (µ̂0

l − µ̂l(θ))
2
= E [ε2θ(Z)Iγ(Xi)].

Thus, taking for granted that ρl = E [Iγl(X)] > 0 for all l, under H0,

χ̂2

γ,0(θ0)
d−→ χ2

L,

where

χ̂2

γ,0(θ) = Φ̂γ(θ)
′Σ̂γ(θ0)

−1Φ̂γ(θ) = n
L∑
l=1

(µ̂0
l − µ̂l(θ))

2

σ2
l

(6)

When θ0 is unknwon, the criterion in (6) suggests the following minimum distance

estimator (hereafter, grouped GMM estimator),

θ̂γ,θ̃ = argmin
θ∈Θ

χ2
γ,θ̃

(θ) (7)

where

χ̂2

γ,θ̃(θ) = Φ̂γ(θ)
′Σ̂γ(θ̃)

−1Φ̂γ(θ) = n
L∑
l=1

(µ̂0
l − µ̂l(θ))

2

σ̂2
l (θ̃)

,

σ̂2
l (θ) = n−1

∑n
i=1 ε

2
θ(Zi)Iγl(Xi), and θ̃ is some initial

√
n-consistent estimator of θ0.

Henceforth, we drop the dependence on θ̃.

The estimator θ̂γ , analogous to the limited information estimator (or multinomial

maximum-likelihood estimator) of the χ2 test developed by Pearson [1900] and Fisher

[1925] for goodness-of-fit distribution model checking (see Cramér [1946]), is a non-linear

GLS on the aggregated data,

θ̂γ =

[
L∑
l=1

µ̂◦
l (θ̃)µ̂

◦
l (θ̃)

′

σ̂2
l (θ̃)

]−1 L∑
l=1

µ̂◦
l (θ̃)µ̂

0
l

σ̂2
l (θ̃)

with µ̂◦
l (θ) = n−1

∑n
i=1 ∇mθ(Xi)Iγl(Xi) and ∇mθ̄ = d/dθmθ|θ=θ̄. It belongs to the class of

minimum-distance estimators considered by Koul and Ni [2004], with the main difference

that the regressogram is used instead of kernels (and the weighting for heteroskedasticity

to improve efficiency). Indeed, it is straightforward to see that,

χ̂2

γ(θ) = n
L∑
l=1

(
µ̂0
l

ρ̂l
− µ̂l(θ)

ρ̂l

)2
(

σ̂l(θ̃)
ρ̂l

)2 = n
L∑
l=1

(µ̄0
l − µ̄l(θ))

2

σ̄2
l (θ̃)

,
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where ρ̂l = n−1
∑n

i=1 Iγl(Xi) is the empirical measure of the l-th cell, and µ̄0
l , µ̄l(θ), and

σ̄2
l (θ̃) are the respective regressogram estimates of m(x), mθ(x), and Var(εθ0|X = x) for

each x ∈ γl. Under suitable regularity conditions and the null H0,

√
n(θ̂γ − θ0)

d−→ N

(
0,
[
µ◦

γ,0(Σγ,0)
−1µ◦′

γ,0

]−1
)
,

where µ◦
γ,0 = µ◦

γ(θ0), with µ◦
γ(θ) = (µ◦

1(θ), ..., µ
◦
L(θ))

′ and µ◦
l (θ) = E [µ̂◦

l (θ)] denoting the

matrix of partial derivatives of µγ(θ).

The minimized criterion, which we refer to as a χ̂2 test statistics,

χ̂2

γ := min
θ∈Θ

χ̂2

γ(θ) = χ̂
2

γ(θ̂γ), (8)

is a J-test on the set of the L, out of the many, orthogonality conditions implied by the

null,

E
[
m(X)Iγl(X)

]
= E

[
mθ0(X)Iγl(X)

]
for all l ∈ {1, 2, .., L}.

Thus, under the null H0, and for L > dθ,

χ̂2

γ

d−→ χ2
L−dθ

.

The χ̂2 test has a simple implementation: after estimating Σ̂γ(θ̃), one has to minimize

the quadratic criterion and compare it with the appropriate quantile of the limit null

distribution. However, the grouped GMM estimator requires global identification of θ0

from the set of partitioned moments and the necessary order condition L > dθ. In cases

where dθ is large and n is relatively small, the asymptotic nature of the test hampers the

use of too fine partitions, rendering the χ2 test impractical.

Of course, it is also well motivated, as suggested in classical goodness-of-fit χ2 tests

(e.g. Nikulin [1973]), to verify the null using the Wald testing principle based on Φ̂γ(θ̃)

for some other
√
n-consistent estimator θ̃,

Ŵγ(θ̂) := Φ̂γ(θ̃)Âvar
−
(
Φ̂γ(θ̃)

)
Φ̂γ(θ̃), (9)
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where Âvar−
(
Φ̂γ(θ̃)

)
is a consistent estimator of some generalized inverse of Avar

(
Φ̂γ(θ̃)

)
.

Therefore, under the null and regularity conditions,

Ŵγ(θ̃)
d−→ χ2

rank(Avar(Φ̂γ(θ̃))).

The Wald test allows the use of any
√
n consistent estimator of θ0, including minimum-

distance estimators such as the one of Domı́nguez and Lobato [2004]. Notably, these

estimators do not require any additional identification assumptions beyond those already

provided by the null hypothesis.

Taking for granted the asymptotic linearity of the estimator (see Assumption 3 in the

next section), the covariance matrix of Φ̂γ(θ̃) is characterized as,

Avar
(
Φ̂γ(θ̃)

)
=
[
IL −µ◦′

γ,0

]Σγ,0 Cγ,0

C ′
γ,0 L0

 IL

−µ◦
γ,0

 , (10)

where Cγ,0 = E [εθ0(Z)Iγ(X)lθ0(Z)
′], L0 = E [lθ0(Z)lθ0(Z)

′], and lθ0(·) is the influence

function of θ̃.

When Avar
(
Φ̂γ(θ̃)

)
is full rank (e.g., if εθ0(·)Iγ(·) and lθ0(·) have linearly independent

components), the Wald test can be performed on any finite splitting of the data. In this

case, a valid choice of Âvar−
(
Φ̂γ(θ̃)

)
is given by the inverse of the plug-in estimator,

Ŵγ(θ̃) =
[
IL −µ̂◦

γ(θ̃)
] Σ̂γ(θ̃) Ĉγ(θ̃)

Ĉγ(θ̃)
′ L̂(θ̃)

 IL

µ̂◦′
γ (θ̃)

 , (11)

where µ̂◦
γ(θ) = (µ̂◦

1(θ), ..., µ̂
◦
L(θ)), Ĉγ(θ) = n−1

∑n
i=1 lθ(Zi)εθ(Zi)Iγ(Xi)

′, and L̂(θ) =

n−1
∑n

i=1 lθ(Zi)lθ(Zi)
′.

In the event that the covariance matrix is rank deficient, if the Moore-Penrose inverse of

Ŵγ(θ̃), denoted as Ŵ+
γ (θ̃), has rank converging in probability to the one of Avar

(
Φ̂γ(θ̃)

)
,

then Ŵ+
γ (θ̃)

p−→ Avar+
(
Φ̂γ(θ̃)

)
(Theorem 2 of Andrews [1987]). However, this need not

be the case (see, e.g., Schott [2016] page 222-224) and more complex methods might be

required.

Notice that the estimation of the covariance matrix, when Avar
(
Φ̂γ(θ̃)

)
is full rank,
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can be avoided by using a random normalizing weighting matrix, as in Kuan and Lee

[2006] (see also Kiefer et al. [2000] for an early reference). Similarly, the over-identification

test of Lee et al. [2014] provides a robust version of the χ̂2 test which does not require

estimating Σ̂γ(θ̃) (and, thus, θ̃). In these cases, the limit null distribution is non-standard

but pivotal.

In practice, however, the partition depends randomly on the data. This is the case,

for instance, when the partition imposes approximately the same number of observa-

tions in each cell or when the cell boundaries depend on the unknown model parameters.

Extending the convergence of the statistics above to these cases requires restricting the

complexity of the partitioning algorithm, as we discuss in the next section.

3 Data-dependent Cells

When studying the large sample behavior of the statistics, it is crucial to address the

inherent influence of the data on the selection of cells (Watson [1959]). Moore and Spruill

[1975] were among the first to address this concern in the distribution model check liter-

ature providing a rigorous derivation of the null distribution of χ2 tests with rectangular

data-dependent cells. In a more general setting, Pollard [1979] established the result for

cells of arbitrary form by utilizing a central limit theorem for empirical measures and An-

drews [1988] extended the methodology to conditional distribution testing. In this section,

we provide a similar result for the more general CMR testing framework. Specifically, we

show that the grouped GMM estimator and the tests keep standard limit distribution

when the partition is built with data-dependent cells.

To state the convergence results in a self-contained fashion, we list a minimal set

of assumptions consisting of smoothness conditions and restrictions on the partitioning

algorithm complexity.

Assumption 1 (a) {Zi = (Yi, X
′
i)

′}ni=1 is a sequence of i.i.d. random vectors with

E|Yi| < ∞; (b) E
[
ε2θ0
]
< C, with C < ∞; (c) Θ is a compact subset of Rdθ and θ0 is an

interior point of Θ.
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Assumption 2 mθ(·) is twice continuously differentiable in a neighborhood Θ0 of θ0,

with Θ0 ⊂ Θ. The gradient, ∇mθ(·) = d/dθmθ(·), is bounded by a square-integrable

function R(·) such that supθ∈Θ0
|∇(j)mθ(·)| ≤ R(·) for all j ∈ {1, .., dθ}, where ∇(j) denotes

the j-th partial derivative, and E [R(X)2] <∞.

Assumption 3

(a) The estimator θ̃ satisfies the following asymptotic expansion under the null,

√
n(θ̃ − θ0) =

1√
n

n∑
i=1

lθ0(Zi) + op(1)

where E [lθ0(Z)] = 0 a.s., and L0 = E [lθ0(Z)lθ0(Z)
′] is a finite and non-singular

matrix.

(b) The vector-valued function lθ(·) is twice continuously differentiable in a neighborhood

Θ0 of θ0 with first partial derivatives bounded by a square-integrable function R2(·)

such that supθ∈Θ0
|∇(j)lθ(·)| ≤ R2(·) for all j ∈ {1, .., dθ} and E [R2(Z)

2] <∞.

Assumptions 1 and 2 are common in the model check literature with omnibus tests (see

Stute and Zhu [2002], for instance). Compared to papers developing χ2 tests based on

probability model (e.g., Tauchen [1985]), we require slightly higher smoothness condition

of the regression function but leave completely unrestricted the data distribution. As-

sumption 3(a) holds for most of the estimators used in practice, such as least square or

GMM estimators, as well as for identification-robust minimum-distance estimators. While

Assumption 3(b) is a technical requirement for the consistency of the plug-in estimator

Ŵγ(θ̃).

We also state the necessary global identification and finite-variance conditions for the

consistency and asymptotic normality of the grouped GMM estimator.

Assumption 2’ (a) Σγ,0 is positive definite; (b) E [m(X)Iγ ] = E [mθ(X)Iγ ] if and only

if θ = θ0; (c)
[
µ◦

γ,0(Σγ,0)
−1µ◦′

γ,0

]−1
is non-singular.

Following Pollard [1979] and Andrews [1988], the data-dependent partitions are mod-

eled as random functions over a class of properly restricted measurable sets (other ap-

proaches, like the one of Tauchen [1985], postulate the dependence of cells trough a
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finite dimensional parameter). Specifically, we equip C with the topology generated

by the L2(Fx) semi-norm, Fx being the distribution of X under P , and give D the

corresponding product topology. This means that two set C1, C2 in X are close if

Fx(C1∆̃C2) is small, where Fx(C) =
∫
C
dFx and ∆̃ denotes the symmetric difference

operator, C1∆̃C2 = C1 ∪ C2\C1 ∩ C2. Then, for each sample size n, the corresponding

partition is given by a measurable mapping γ̂ from the underlying probability space to D

converging in probability to some fixed partition of cells γ in D; that is, for all ϵ > 0,

P
(
Fx(γ̂l∆̃γl) > ϵ

)
−→ 0 as n −→ ∞, for all l = 1, 2, ..., L.

Assumption 4 γ̂
p−→ γ for some fixed set of cells γ ∈ D

Crucially, deriving the limit null distribution requires bounding the complexity of the

partitions employed for the test construction. We do so by assuming that the cells are

drawn from a class with finite Vapnik-Cervonenkis (VC) dimension.

Assumption 5 C is a VC class of sets.

The assumption is convenient because is independent of the data distribution but general

enough for the purpose at hand. For instance, algorithms generating a finite number of

straight edges and the class of hyper ellipsoids are VC classes. Furthermore, unions, inter-

sections, differences, and complements of VC classes are also VC classes (Andrews [1988]

and Pollard [1984] provide a thorough discussion, see also Section 2.6 in Van Der Vaart

[1996]). A less stringent condition, assumes C being a Donsker class for the underly-

ing probability measure (Pollard [1979]). While allowing for a wider range of admissible

partitioning, Donsker assumptions are harder to verify in practice.

The following theorems show that the asymptotic distribution of the grouped GMM

estimator and of the test statistics are unaffected by data-dependent cells. All the proofs

are relegated to the appendix.

Theorem 1 Let Assumptions 1, 2, 2’, 4, 5 hold. Then, under the null hypothesis H0,

√
n(θ̂γ̂ − θ0)

d−→ N

(
0,
[
µ◦

γ,0(Σγ,0)
−1µ◦′

γ,0

]−1
)
,
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Theorem 2 Let Assumptions 1, 2, 4, 5, and the null hypothesis H0 hold. Then,

(a) Under Assumption 2’ and L > dθ,

χ̂2

γ̂

d−→ χ2
L−dθ

.

(b) Under Assumption 3,

Ŵγ̂(θ̃)
d−→ χ2

rank(Avar(Φ̂γ(θ̃))).

If we further restrict the cells’ dependence from the data, the χ̂2 test, the Wald test,

and the grouped GMM estimator with random cells are asymptotically equivalent to their

fixed cell counterparts.

Theorem 3 Under Assumptions 1 to 5 and the null hypothesis H0, if

√
nE [εθ0(Z)(Iγ̂(X)− Iγ(X)] = op(1), (12)

then,
√
n(θ̂γ̂ − θ̂γ) = op(1), χ2

γ̂ = χ2
γ + op(1), and Ŵγ̂(θ̃) = Ŵγ(θ̃) + op(1).

The restriction in equation (12) holds automatically when the partitioning depends

only on the vector of covariates, as is the case for any unsupervised clustering method (see

chapter 14 of Hastie et al. [2009]), or if it is independent of the data used for testing, such

as when the partitioning algorithm is trained on a subset of the total observations. We

illustrate some partitioning procedures in the next section, where we discuss partitioning

based on unsupervised clustering and model-based methods, exploiting the information

on the null and about pre-specified alternatives.

4 Partitioning Procedures

The first method presented below is an algorithm for splitting multi-variate data through

the union of statistically equivalent blocks (SEB) (Gessaman [1970]). Other algorithms,

such as the division in cubic cells or k nearest neighbor clustering are equally valid choices.

The SEB algorithm is simple to apply and agrees with the statistical practice of dividing

the data into equiprobable cells (see Greenwood and Nikulin [1996]) when testing against
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Figure 2: SEB partitioning of random sample from a bivariate standard
normal with S = 2.

unknown probability distributions. We discuss its application to non-parametric and

model-based projections of the data. The aim of these methods is double: on the one

hand splitting on projections allows to reduce the curse of dimensionality; on the other

hand we expect better power properties by incorporating the CMR and information about

possible departures from the null to make the classes.

4.1 Statistically Equivalent Blocks (SEB)

Let X denote the data matrix, with rows given by {Xi}ni=1, of dimension n × dx; the

procedure consists of sequentially sorting the observations based on the value of each

column and grouping them at each iteration in S blocks, S > 1. After the initial sorting,

the marginal support is split into S blocks containing ⌊n/S⌋ observations. In the second

step, the observations in the s-th block are sorted based on the second column and then

again split into S blocks. Proceeding in the obvious fashion, the algorithm generates a

partition of the data with a total number of cells, L, equal to Sdx . As the number of

cells rises exponentially with dx, applying directly the procedure to X is problematic for

large or moderate dimension of the covariates set. Even for small choices of S, the final

partition may be too fine for the validity of the test’s asymptotic approximation.

To avoid excessively fine partitions, the data can be split by running the SEB algorithm

on lower-dimensional projection of the data. There are several techniques to reduce the
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dimension of a matrix, classified into linear and non-linear methods, depending on the

type of projection involved. The formers include Principal Components analysis (PCA),

Linear Discriminant Analysis, Singular Value Decomposition, etc. The latters Kernel

PCA, Multidimensional Scaling, Isomapping, etc.

We briefly describe the PCA method, which is employed in the Montecarlo simulations

of the last section. Let X̃ be the re-scaled version of X where each value is standardized by

the mean and variance of the column and consider the dx×q matrix Vq containing the first

q eigenvectors of X̃X̃′ (meaning the eigenvectors associated to the q largest eigenvalues).

Using the projection of X̃ on the first q principal components,

Zq = X̃Vq,

and the fact that Vq is orthornormal, VqV
′
q = Id, we determine the q-dimensional reduction

of X̃ as,

X̃q = ZqV
′
q .

When q = dx, the approximation is exact, X̃ = X̃q.

4.2 Fitted Values Method

Testing H0 is equivalent to checking that mθ0(·) is the best predictor of Y in a mean-

square error sense. If the model is correctly specified, the vector of residuals, {εθ̃(Zi)}ni=1,

resembles the vector of errors, {εθ0(Zi)}ni=1, and, thus, tends to be mean-independent from

the vector of optimal predictors {mθ̃(Xi)}ni=1. However, when the model is misspecified,

irregularities in the relationship between the two variables arise. For instance, if we fit a

linear model when the relationship between Y and X is quadratic, Y = X2 + ϵ say, the

resulting relationship between {εθ̃(Zi)}ni=1 and {mθ̃(Xi)}ni=1 will also be quadratic; that

is, εθ̃(Zi) = (mθ̃(Xi)/θ̃)
2 −mθ̃(Xi) + ϵi. More in general, if the relationship between Y

and X is non-linear, the residuals depends non-linearly on the fitted values.

This suggests a simple strategy to incorporate the information of the model under

the null in the partitioning algorithm. After estimating the unknown parameters θ0,

the data is split along the vector of fitted values by looking at the scatter plot and
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cutting (approximately) over the points where the relationship between εθ̃(·) and mθ̃(·)

changes sign. The procedure is based on the statistical practice of looking at the residual-

fitted values scatter plot to investigate model misspecification (e.g. Tsai et al. [1998]).

By exploiting the dependence between the two estimates, partitioning with fitted values

generates large aggregate residuals under the alternative and, thus, boosts the power of the

test. To avoid building irregular cells with high variability in the number of observations,

one can directly apply the SEB algorithm on the vector of fitted values, choosing the

number of cells that maximize the aggregated residual (see Example 2 below). In the

Montecarlo simulations of the next section, we show that tests built with this technique

are very sensible to deviations from the null.

Example 2 (SEB on fitted values)

In this example, we consider testing the null of linearity mθ(Xi) = 1 + θ′Xi when the

model is generated by high-frequency deviations around the slope,

Y = θ′01Xi + 1.2 sin

(
50X ′

iθ02
2π

)
+ σ(Xi)ϵ

where, ϵ ∼ N(0, 1), σ(Xi) = (exp(X1 + X2 + X3)/E [exp(X1 +X2 +X3)])
1/2, Xi =

(Xi,1, ..., Xi,5), and θ01, θ02 are vectors of ones. The scatter plots below show the relation-

ship between the residuals and the fitted values under the null (left panel) and the alterna-

tive model (right panel). The blue line is a non-parametric curve1 fitting E [εθ̃(Z)|mθ̃(X)].

As it happens, under the alternative and for large enough L, the groups generated by the

SEB alghorithm on the vector of fitted values (green lines) spread unevenly around zero

(red line) resulting in larger aggregate residuals.

1The non-parametric fits in Figure 3 and Figure 4 below are obtained using the bin scatter regression
package in R, ’binsreg()’, of Cattaneo et al. [2019]
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Figure 3: Scatter plot of εθ̃(·) versus mθ̃(·) under the null (left panel) and
under the alternative (right panel). The green lines depict the
partitioning trough the SEB alghorithm with L = 7. The blue
line is a non-parametric curve fitting the relationship between
the two variables.

4.3 Neyman-Pearson Classes

Frequently, the researcher’s primary concern is rejecting a subset of deviations critical

for the application at hand. For instance, when estimating Mincer’s earning regression,

it is common to compare it with alternative specifications of the log-income profile (e.g.

Polachek et al. [2008]). Similarly, in the Cox [1972] model, a parsimonious paramet-

ric specification of the baseline hazard is often compared to more flexible models (e.g.

Seetharaman and Chintagunta [2003]).

When the interest is rejecting toward a given alternative parametric specification,

H1 : m(x) = m̃θ∗0
(x) a.s. for some θ∗0 ∈ Θ∗ ⊂ Rdθ∗ ,

we partition the data using Neyman-Pearson classes, splitting over the points where

mθ̃(·) = m̃θ̃∗(·). By doing so, the difference between the average prediction under the

null and the alternative model in each class is the largest possible, making it easier to

detect deviations from the null toward H1.

If, otherwise, the alternative is left unrestricted, we use non-parametric estimators to
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determine the optimal split. To motivate the procedure, notice that H0 is equivalent to,

mθ0(x) = m(x) a.s. for some θ0 ∈ Θ

where m(x) = E [Y |X = x]. Therefore, if a non-parametric estimator of m(·), m̂(·) say, is

available, we implement Neyman-Pearson classes toward the non-parametric alternative

by taking the points x ∈ X where m̂(x)−mθ̃(x) = 0.

Example 3 (Parametric and Non-parametric Neyman-Pearson Classes)

Consider again testing the linear model, mθ0(x) = θ00 + Xiθ01 for some θ0 ∈ Θ, against

either one of the alternatives below,

Ha
1 : m̃θ∗0

(x) = θ∗00 + θ∗01Xi + θ∗02 sin

(
50Xi

2π

)
for some θ∗0 ∈ Θ∗,

Hb
1 : m(x) ̸= mθ for all θ ∈ Θ,

where θ0 and θ∗0 are unknwon vectors. Against Ha
1 (left panel of Figure 4), after obtain-

ing the respective OLS estimates of the model under the null and under the alternative,

Neyman-Pearson classes split over the points x ∈ X where (θ̃00 − θ̃∗00) + (θ̃01 − θ̃∗01)x −

θ̃∗02 sin (50x/2π) = 0. Against Hb
1 (right panel of Figure 4), we partition the data over the

x ∈ X where θ̃00 + θ̃01x = m̂(x), m̂(·) being a non-parametric estimator of the regression

curve.
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Figure 4: Neyman-Pearson classes with parametric (left panel) and non-
parametric (right panel) estimates of the regression function.
The green line depicts the points where the estimates under
the null (blue line) and the estimates under the alternative (red
line) meet. The data is generated under Ha

1 (black line) with
θ∗ = (1, 1, 1).

Notably, the difference m̂(·)−mθ̃(·) is the building block of every omnibus test using

smoothers. Chi-squared tests built with non-parametric Neyman-Pearson classes are, in

some sense, hybrid tests, where the information given by the non-parametric comparison

is used for aggregating the residuals rather than generating them. Indeed, the equivalence,

E [εθ0(Z)|X] = 0 ⇐⇒ E
[(
Y −mθ0(X)

)
I{m(X)−mθ0(X) > 0}

]
=

E
[(
Y −mθ0(X)

)
I{m(X)−mθ0(X) ≤ 0}

]
= 0,

shows that a parametric test against

H1(γθ) : E
[
m(X)I{X ∈ γθ,l}

]̸
= E

[
mθ(X)I{X ∈ γθ,l}

]
for all θ ∈ Θ and some l ∈ {1, 2},

where γθ,1 = {x ∈ X : m(X)−mθ(X) > 0} and γθ,2 = {x ∈ X : m(X)−mθ(X) ≤ 0}, is

an omnibus test for H0. Therefore, as far as the partitioning restrictions of Section 4 hold,

by Theorem 3, a χ2 test based on Φ̂γ̂(θ), where γ̂
p−→ γθ0 and Φ̂γ̂(θ0) = Φ̂γθ0

(θ0) + op(1)

under the null, is omnibus. Notice that condition (12) of Theorem 3, in this case, require
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the estimation of γ̂ on an independent subsample of the data.

5 Power Analysis (WIP)

The power analysis of tests in the GMM class, such as χ2 tests, commonly assumes

a sequence of alternatives, known as Pittman drifts, where the unconditional moments

converge to zero at the parametric rate. More general approaches, like the ones of Tauchen

[1985] and Newey [1985], examine the power properties of the tests under distributional

perturbations using different techniques such as Frechet and Gateaux differentiation.

In this paper, we focus on studying the local power of the test statistics under func-

tional Pittman drift. The objective of our analysis is to investigate how the partition

choice and the number of cells influence the non-centrality parameters and the overall

power of the tests. Specifically, we consider the sequence of local alternatives,

H1,n : m(x) = mθ0(x) +
1√
n
h(x) a.s., (13)

where h(X) is a random variable representing departures from the null hypothesis with

E [h(X)2] <∞, 0 < P (h(X) = 0) < 1, and h(·) is a differentiable function for all x ∈ X .

Under simple hypothesis, after denoting as δ(γ) = (δ1, ..., δL), with δl = E [h(X)Iγl(X)],

the vector of distances between the null and the alternative specification in each cell of

γ, the non-centrality parameter of both the Wald and the χ̂2 test (which are numerically

equivalent under simple hypothesis) is given by,

dγ(Σγ,0) = δ(γ)′(Σγ,0)
−1δ(γ) =

L∑
l=1

δ2l
σ2
0,l

. (14)

The quantity dγ(Σγ,0) can be intuitively understood in geometric terms. It represents the

weighted area between the null specification and m(·), where the weights are determined

by the average level of heteroskedasticity within each cell. In simpler words, the contribu-

tion of a cell to dγ(Σγ,0) is smaller when the within-cell noise is larger. This is because in

such cases, the test is unable to distinguish the misspecification from the inherent noise.

Equation (14) highlights an important trade-off when choosing L. On one hand, the
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non-centrality parameter dγ(Σγ,0) increases as the number of cells grows. Specifically, if

ql ̸= 1 for any l = 1, .., L, the inequality,

δ2l
ql

+
δ2f
qf

≥ (δl + δf )
2

ql + qf
,

demonstrates that dγ(Σγ,0) rises for nested partitions. In other words, as the partition be-

comes finer with more cells, the test becomes more capable of detecting smaller deviations

from the null hypothesis, resulting in increased power.

On the other hand, the power of the test under the alternative hypothesis H1,n de-

creases as the number of cells L increases. This decline in power is due to the higher

variability of the limit null distribution associated with a larger number of cells. As the

number of cells grows, the limit null distribution becomes more spread out, leading to a

higher chance of observing test statistics falling in less extreme regions of the distribution

and, thus, not rejecting.

If instead of the non-centrality parameter, we consider the euclidean norm of the drift,

dγ(IL) = δ(γ)′δ(γ) =
L∑
l=1

δ2l =
L∑
l=1

E [h(X)Iγl(X)]2 ,

then, for any pair δl, δf such that sgn(δl) = sgn(δf ), the inequality (δl + δf )
2 ≥ δ2l + δ2f ,

suggests that an optimal partitioning for dγ(IL) is given by two cells containing the points

where h(x) =
√
n(m(x) −mθ0(x)) takes only positive and negative values, respectively;

that is, the optimal partitioning of d(γ, IL) is given by two Neyman-Pearson classes. Below

we formalize this intuition for the case dx = 1.

Proposition 1 Let dx = 1, then d(δ, IL) = ||µ◦
γ,0|| is maximized by two Neyman-Pearson

classes, γ∗ = {γ∗i }2i=1,

γ∗1 = {x ∈ X : h(x) ≥ 0} γ∗2 = {x ∈ X : h(x) < 0}

This suggests that, in some sense, Neyman-Pearson classes correspond to optimiza-

tion criteria for the non-centrality parameter. Of course, a rigorous optimization result

should account for the dependence of the denominators on the cell boundaries. Doing
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so, has the inevitable consequence of determining splitting conditions that depend on the

heteroskedasticity function.

Under composite hypothesis, ....

6 Montecarlo Study

The data is generated as,

Yi = θ′Xi + 0.8 sin

(
c
∑dx

j=1Xj,i

2π

)
+ σ(Xi)ϵi

where Xi = (X1,i, ..., Xdx,i) the error distributes normally and independent from X, ϵ|X ∼

N(0, 1),

σ2(X) =
g(X)

E[g(X)]
,

and g(X) = ea(X1+X2+X3), with a ∈ {0, 0.5, 1}. The covariates Xj,i are uniformly dis-

tributed with mean zero and variance σx ∈ {1/12, 1}. When σx is large, θ0 is estimated

more precisely but the errors have bigger variance. The parameters a and c control the

level of heteroskedasticity in the errors, with the heteroskedasticity function normalized

such that E[σ2(X)] = 1, and c ∈ {0, 10, 20, 50}, and the deviations from the null hy-

pothesis, respectively. In the null model, we have c = 0, indicating no departures from

linearity. As the value of c increases, the deviations occur at higher frequencies, becoming

harder to distinguish from the sampling error. To avoid excessive computations, under

the alternative, i.e. c ̸= 0, we fix a = 1. The other parameters are set as follows: θ = 1,

where 1 is a dx × 1 vector of ones, n ∈ {100, 200, 500, 1000}, and dx ∈ {5, 10}.

The χ̂2 test is built as described in Section 2 using the grouped GMM estimator,

θ̂γ =

[
L∑
l=1

X̄lX̄
′
l

σ̂2
l (θ̃)

]−1 L∑
l=1

X̄lµ̂
0
l

σ̂2
l (θ̃)

.

where X̄l = n−1
∑n

i=1XiIγl(Xi), and θ̃ is the OLS estimator.

Given our data-generating process, we can easily show that the influence function

of θ̃, lθ0(z) = E [XX ′]−1 xεθ0(z), and εθ0(·)Iγ(z) have linearly independent components
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(however, the independence does not hold when X includes a constant term). Since the

asymptotic variance Avar
(
Φ̂γ(θ̃)

)
is full rank, the Wald test is implemented using the

plug-in estimator Ŵγ(θ̃),

Ŵγ(θ̃) = En
[
εθ̃(Zi)

2Iγ(Xi)Iγ(Xi)
′]− En [Iγ(Xi)X

′
i]En [XiX

′
i]
−1 En [εθ̃(Zi)XiIγ(Xi)

′]−

− En
[
εθ̃(Zi)

2Iγ(Xi)X
′
i

]
En [XiX

′
i]
−1 En [XiIγ(Xi)

′] +

+ En [Iγ(Xi)X
′
i]En [XiX

′
i]
−1 En [εθ̃(Zi)2XiX

′
i]En [XiX

′
i]
−1 En [XiIγ(Xi)

′] .

The two tests are compared with two minimum-distance tests based on marked resid-

uals processes indexed by real vectors (see Stute [1997] and Stute and Zhu [2002]). Let

R1,n(x1) and R2,n(x2) be the marked empirical processes of the residuals respectively

indexed by x1 ∈ Rdx and by x2 ∈ R,

R1,n(x1) =
1√
n

n∑
i=1

(
Yi −X ′

i θ̃
)
I{Xi ≤ x1},

R2,n(x2) =
1√
n

n∑
i=1

(
Yi −X ′

i θ̃
)
I{X ′

i θ̃ ≤ x2}.

The test statistics consist of functionals ψ(·) of R1,n(·) and R2,n(·). In these simulations,

we only consider the Kolmogorov-Smirnov functional,

KS1 = sup
x∈Rdx

|R1,n(x)|,

KS2 = sup
x∈R

|R2,n(x)|.

Since these tests have non-pivotal limiting distribution, we approximate it with a Wild

bootstrap procedure illustrated below (see Stute et al. [1998]):

1. Estimate the model under the null and obtain X ′
i θ̃.

2. Extract X∗
i = Xi and Y

∗
i = X ′

i θ̃ + εθ̃(Zi)V
∗
i , where {V ∗

i }ni=1 is an i.i.d sample from

a distribution which assigns masses (
√
5 + 1)/2

√
5 and (

√
5− 1)/2

√
5 to the points

(1−
√
5)/2 and (

√
5 + 1)/2.
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3. Estimate

R∗
1,n(x) =

1√
n

n∑
i=1

(Y ∗
i − θ∗Xi) I{Xi ≤ x},

R∗
2,n(x) =

1√
n

n∑
i=1

(Y ∗
i − θ∗Xi) I{X ′

i θ̂ ≤ x},

θ∗ being the OLS estimator on the bootstrap sample, and obtain the bootstrap

functionals ψ(R∗
1,n) and ψ(R

∗
2,n).

4. Repeat (2) and (3) B times. The critical point for the nominal level α are given by

the B(1− α)-th order statistics of {ψ(R∗
1,n,b)}Bb=1 and {ψ(R∗

2,n,b)}Bb=1.

In all the simulations we set B = 500 bootstrap repetitions.

We consider partitioning with SEB on the first q principal Components (PSEB) and

SEB on the estimated regression function under the null (FIT). Notice that both type of

partitioning take values in a VC class (see, e.g., Problem 14 on p.152 of Van Der Vaart

[1996]). The PSEB and FIT approaches respectively generate L1 = Sq
1 cells and L2 = S2

cells, S1 and S2 being user-chosen parameters. To make the tests comparable we force

PSEB and FIT to generate the same number of cells in all the simulations. Specifically,

we set S1 = 2, q = ⌈log2(dx + 2)⌉ (⌈x⌉ being the ceiling function), and S2 = Sq
1 , resulting

in L = 8 cells for dx = 5 and L = 16 cells for dx = 10.

It is worth remarking that, in practice, the grouping on fitted values, as discussed in

Section 4, takes the L cuts in the residual-fitted values scatter plot that maximize the

aggregate residuals, while in these simulations we just ”blindly” split using SEB with a

fixed value of L. Thus, the perfomance of the tests using the FIT method are expected

to be suboptimal to an ”eyeballing” partitioning.

Incidentally, the marked residual process indexed by partitions generated with the FIT

method,

Φ̂γ̂(θ̃) = n−1/2

n∑
i=1

I{X ′
i θ̃ ∈ Cl}

[
Yi −X ′

i θ̃
]
,

where
⋃L

l=1Cl = R, is a finite cells version of the process used in the Stute and Zhu [2002]

test.

Table 1 presents the rejection rates under the null hypothesis, revealing that both
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the χ2 tests and the omnibus tests exhibit size bias for small sample sizes, high levels of

heteroskedasticity, and highly volatile regressors. However, as the sample size increases,

the bias tends to diminish for all the tests (with the exception of KS1 with a = 1 and

dx = 10). It is important to note that the validity of the χ2 tests asymptotic approximation

relies on the number of observations within each cell, and therefore observing bias when

testing over L = 16 cells is not surprising. Furthermore, the bias tends to decrease as the

ratio n/L becomes larger, especially for higher degrees of heteroskedasticity. Interestingly,

the χ̂2 test reach the nominal size faster than the Wald test.

In terms of power (Table 2), the χ2 tests with FIT grouping demonstrate superior

performance overall. The second best performing test, KS2, outperforms the Wald test

with FIT grouping only when both σx and n are small. It is worth noting that when σx

is large, the omnibus proposals perform relatively poorly compared to the χ2 tests with

FIT grouping. As is known in the literature, omnibus tests have limited power against

high-frequency alternatives (c = 50), while both the Wald and the χ̂2 with FIT exhibit a

higher probability of detecting the alternative.

The Wald test consistently outperforms the χ̂2 test across all the tested scenarios.

However, it is important to note that the comparison between the two tests is influenced by

their distinct limit null distributions. Intuitively, the Wald test leverages more information

by implicitly incorporating the moments used for estimation, resulting in higher power.

Conversely, the Wald test’s limit null distribution has more degrees of freedom, leading

to lower power. While in our specific setting the trade-off clearly favors the Wald test,

it remains unclear in general which test would perform better. Similar considerations

apply to classical χ2 tests for probability distribution model checking (see, e.g., Moore

and Spruill [1975]).
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Table 1: Size

PSEB FIT

σx n dx a L χ̂2 Ŵ χ̂2 Ŵ KS1 KS2

0.083 100 5 0.0 8 0.044 0.036 0.054 0.052 0.052 0.064

0.083 100 5 0.5 8 0.053 0.037 0.053 0.043 0.056 0.076

0.083 100 5 1.0 8 0.059 0.041 0.059 0.041 0.054 0.055

0.083 100 10 0.0 16 0.050 0.041 0.061 0.025 0.016 0.087

0.083 100 10 0.5 16 0.047 0.034 0.060 0.034 0.015 0.077

0.083 100 10 1.0 16 0.053 0.030 0.056 0.022 0.012 0.076

0.083 200 5 0.0 8 0.039 0.045 0.047 0.043 0.055 0.046

0.083 200 5 0.5 8 0.052 0.045 0.057 0.048 0.058 0.053

0.083 200 5 1.0 8 0.054 0.052 0.044 0.051 0.051 0.062

0.083 200 10 0.0 16 0.034 0.043 0.069 0.052 0.029 0.067

0.083 200 10 0.5 16 0.071 0.050 0.048 0.036 0.020 0.059

0.083 200 10 1.0 16 0.053 0.042 0.062 0.048 0.013 0.073

0.083 500 5 0.0 8 0.044 0.046 0.063 0.049 0.042 0.048

0.083 500 5 0.5 8 0.044 0.047 0.056 0.053 0.057 0.051

0.083 500 5 1.0 8 0.048 0.052 0.052 0.051 0.059 0.053

0.083 500 10 0.0 16 0.048 0.053 0.055 0.057 0.049 0.059

0.083 500 10 0.5 16 0.046 0.056 0.055 0.052 0.045 0.052

0.083 500 10 1.0 16 0.060 0.058 0.052 0.040 0.036 0.054

0.083 1000 5 0.0 8 0.039 0.050 0.051 0.050 0.061 0.062

0.083 1000 5 0.5 8 0.039 0.047 0.048 0.062 0.057 0.061

0.083 1000 5 1.0 8 0.053 0.045 0.056 0.049 0.056 0.056

0.083 1000 10 0.0 16 0.056 0.061 0.056 0.052 0.050 0.058

0.083 1000 10 0.5 16 0.064 0.054 0.048 0.051 0.046 0.041

0.083 1000 10 1.0 16 0.046 0.050 0.043 0.046 0.053 0.042

1 100 5 0.0 8 0.051 0.048 0.040 0.048 0.051 0.057

1 100 5 0.5 8 0.046 0.054 0.050 0.042 0.055 0.062

1 100 5 1.0 8 0.041 0.027 0.030 0.023 0.033 0.060

1 100 10 0.0 16 0.042 0.038 0.060 0.034 0.013 0.059

1 100 10 0.5 16 0.047 0.032 0.054 0.027 0.009 0.081

1 100 10 1.0 16 0.031 0.010 0.036 0.009 0.001 0.069

1 200 5 0.0 8 0.063 0.055 0.042 0.043 0.060 0.059

1 200 5 0.5 8 0.050 0.040 0.053 0.045 0.048 0.049

1 200 5 1.0 8 0.046 0.035 0.044 0.037 0.046 0.057

1 200 10 0.0 16 0.057 0.045 0.054 0.036 0.032 0.068

1 200 10 0.5 16 0.052 0.040 0.053 0.037 0.007 0.063

1 200 10 1.0 16 0.032 0.020 0.035 0.017 0.003 0.062

1 500 5 0.0 8 0.047 0.050 0.046 0.055 0.053 0.056

1 500 5 0.5 8 0.047 0.050 0.056 0.046 0.060 0.052

1 500 5 1.0 8 0.045 0.038 0.032 0.043 0.044 0.044

1 500 10 0.0 16 0.050 0.040 0.057 0.043 0.040 0.062

1 500 10 0.5 16 0.055 0.048 0.046 0.055 0.023 0.061

1 500 10 1.0 16 0.052 0.048 0.032 0.020 0.004 0.057

1 1000 5 0.0 8 0.055 0.065 0.056 0.056 0.056 0.063

1 1000 5 0.5 8 0.051 0.050 0.057 0.075 0.057 0.056

1 1000 5 1.0 8 0.057 0.058 0.055 0.044 0.060 0.061

1 1000 10 0.0 16 0.050 0.050 0.049 0.054 0.043 0.052

1 1000 10 0.5 16 0.050 0.044 0.041 0.039 0.037 0.050

1 1000 10 1.0 16 0.049 0.043 0.048 0.036 0.012 0.047

Estimated size at the nominal level α = 0.05 of the χ̂2 test and Wald
test under PSEB and FIT grouping. σx, n, k, L, respectively denote the
regressors variance, the sample size, the number of covariates, and the
number of cells; a regulates the degree of heteroskedasticity.
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Table 2: Power

PSEB FIT

σx n dx c L χ̂2 Ŵ χ̂2 Ŵ KS1 KS2

0.083 100 5 10 8 0.127 0.304 0.352 0.595 0.600 0.648

0.083 100 5 20 8 0.153 0.142 0.515 0.683 0.121 0.436

0.083 100 5 50 8 0.054 0.042 0.109 0.116 0.058 0.081

0.083 100 10 10 16 0.081 0.056 0.368 0.356 0.042 0.513

0.083 100 10 20 16 0.055 0.039 0.263 0.260 0.015 0.310

0.083 100 10 50 16 0.054 0.042 0.042 0.038 0.009 0.074

0.083 200 5 10 8 0.206 0.702 0.651 0.980 0.907 0.952

0.083 200 5 20 8 0.283 0.284 0.848 0.993 0.166 0.846

0.083 200 5 50 8 0.069 0.047 0.303 0.416 0.063 0.120

0.083 200 10 10 16 0.112 0.118 0.775 0.949 0.119 0.869

0.083 200 10 20 16 0.045 0.048 0.644 0.890 0.023 0.615

0.083 200 10 50 16 0.058 0.048 0.105 0.120 0.027 0.070

0.083 500 5 10 8 0.357 0.977 0.894 1.000 1.000 1.000

0.083 500 5 20 8 0.468 0.489 0.966 1.000 0.350 1.000

0.083 500 5 50 8 0.044 0.061 0.773 0.951 0.055 0.375

0.083 500 10 10 16 0.207 0.311 0.976 1.000 0.368 1.000

0.083 500 10 20 16 0.050 0.069 0.961 1.000 0.040 0.997

0.083 500 10 50 16 0.049 0.049 0.526 0.749 0.031 0.110

0.083 1000 5 10 8 0.522 1.000 0.956 1.000 1.000 1.000

0.083 1000 5 20 8 0.596 0.602 0.991 1.000 0.648 1.000

0.083 1000 5 50 8 0.058 0.053 0.956 1.000 0.051 0.849

0.083 1000 10 10 16 0.353 0.593 0.996 1.000 0.678 1.000

0.083 1000 10 20 16 0.070 0.067 0.996 1.000 0.061 1.000

0.083 1000 10 50 16 0.052 0.047 0.948 1.000 0.049 0.368

1 100 5 10 8 0.041 0.036 0.666 0.974 0.056 0.146

1 100 5 20 8 0.049 0.031 0.360 0.563 0.047 0.073

1 100 5 50 8 0.045 0.039 0.051 0.041 0.050 0.068

1 100 10 10 16 0.034 0.026 0.474 0.770 0.003 0.117

1 100 10 20 16 0.027 0.026 0.165 0.198 0.001 0.068

1 100 10 50 16 0.035 0.021 0.061 0.032 0.004 0.064

1 200 5 10 8 0.061 0.067 0.853 1.000 0.054 0.240

1 200 5 20 8 0.051 0.043 0.642 0.946 0.052 0.083

1 200 5 50 8 0.037 0.041 0.071 0.072 0.041 0.063

1 200 10 10 16 0.041 0.031 0.824 1.000 0.002 0.161

1 200 10 20 16 0.049 0.033 0.499 0.827 0.006 0.085

1 200 10 50 16 0.049 0.035 0.041 0.050 0.010 0.062

1 500 5 10 8 0.075 0.085 0.956 1.000 0.052 0.751

1 500 5 20 8 0.048 0.040 0.908 0.999 0.042 0.135

1 500 5 50 8 0.046 0.053 0.110 0.178 0.054 0.073

1 500 10 10 16 0.045 0.039 0.976 1.000 0.018 0.414

1 500 10 20 16 0.042 0.031 0.915 0.999 0.016 0.130

1 500 10 50 16 0.044 0.046 0.134 0.176 0.016 0.059

1 1000 5 10 8 0.104 0.113 0.980 1.000 0.060 0.998

1 1000 5 20 8 0.049 0.054 0.972 1.000 0.060 0.267

1 1000 5 50 8 0.046 0.048 0.168 0.360 0.065 0.079

1 1000 10 10 16 0.045 0.043 0.997 1.000 0.030 0.868

1 1000 10 20 16 0.052 0.045 0.992 1.000 0.034 0.198

1 1000 10 50 16 0.047 0.047 0.320 0.615 0.031 0.069

Estimated power at the nominal level α = 0.05 of the χ̂2 test and Wald
test under PSEB and FIT grouping. σx, n, dx, L, respectively denote
the regressors variance, the sample size, the number of covariates, and the
number of cells; c governs departures from the null of linearity.
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7 General CMRs (WIP)

To extend the analysis to general moment restrictions, we introduce a vector of response

variables, Y , taking values in Y ⊂ Rdy , with dy ≥ 1, and a generalized residual vector

(Wooldridge [1990]), εθ(·) : Rdy × Rdx −→ Rdε with εθ(·) = (ε1,θ(·), ..., εdε,θ(·))′, defining

parametric relationships between Y and X. The null hypothesis is defined as before,

∫
A

εθ0(Z)dP = 0 for all A ∈ σ(X). (15)

The generality of this framework allows testing for a wide range of econometric models

such as regression and heteroskedasticity models, transformation models like the Box-Cox

transformation or the accelerated failure time model (see Horowitz [1996], for instance),

simultaneous equation model identified by instrumental variables (Newey [1990]), etc.

When the dimension of the generalized residual is bigger than one, it might be optimal

to consider a partition for each component of εθ(·). In particular, for each j ∈ {1, ..., dε},

let Dj be a class of partitions of X comprised of Lj sets from C (Lj is fixed for all n);

that is,

Dj =
{
γj = (γj,1, ..., γj,Lj

)′ ∈ CLj : ∪Lj

l=1γj,l = X , γj,l ∩ γj,f = ∅, ∀l ̸= f
}
, (16)

We let Eθ(·) be the L̄ × L̄ block diagonal matrix of generalized residuals with main

diagonal elements given by {εj,θ(·)ILj
}dεj=1, where L̄ =

∑
j Lj. If L1 = L2 = · · · = Ldε = L,

then Eθ(·) = diag[εθ(·)] ⊗ IL, where diag[εθ(·)] = diag{ε1,θ(·), ..., εdε,θ(·)} is the dε × dε

diagonal matrix with the components of εθ(·) on the main diagonal and ⊗ denotes the

Kronecker product.

The χ2 test statistics can be expressed as quadratic forms of

Φ̂γ(θ) =
1√
n

n∑
i=1

Eθ(Zi)Iγ(Xi), (17)

where Iγ(·) = (I′γ1
, ..., I′γdε

)′ is the vector of indicator functions over all the partitions.
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The covariance matrices of Φ̂γ(θ0) and Φ̂γ(θ̃) under the null are given by,

Σγ,0 = E [Eθ0(Z)Iγ(X)Iγ(X)′Eθ0(Z)] , (18)

and,

Avar
(
Φ̂γ(θ̃)

)
=
[
IL̄ −µ◦

γ,0

]Σγ,0 Cγ,0

C ′
γ,0 L0

 IL̄

−µ◦′
γ,0

 , (19)

where µ◦
γ,0 = E [∇Eθ0(Z)Iγ(X)] is the Jacobian matrix, C ′

γ,0 = E [Eθ0(Z)Iγ(X)lθ0(Z)
′],

and L0 is defined as before.

As Σγ,0 is not diagonal anymore (unless εθ(·) has orthogonal components and L = 1,

or dε = 1), the advantages of the χ̂2 test, in terms of implementability, are loss in the

general framework. Nonetheless, the χ̂2 test is preferable to the Wald test when the rank

of Avar
(
Φ̂γ(θ̃)

)
is unkown.

[EFFICIENCY CONSIDERATIONS]
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Evarist Giné and Joel Zinn. Some limit theorems for empirical processes. The Annals of

Probability, pages 929–989, 1984.
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A Appendix A

A.1 Lemmas

We first state auxiliary lemmas for the propositions and theorems in the main text. We

let // denote weak convergence on l∞(D) (see definition 13.3 in Van Der Vaart [1996],

hereafter VW), where l∞(D) is the space of all real-valued functions that are uniformly

bounded on D, and d−→ denote convergence of real-valued random variables. Troughout,

to highlight the dependency on the partition, we denote as Φ̂θ(γ) := Φ̂γ(θ) and Φ̂0(γ) :=

Φ̂γ(θ0).

Lemma 1 Under the null H0,

(a) if Assumption 1, 2, and 2’ hold, then Σγ(θ̃) = Σγ,0 + op(1).
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(b) if Assumption 1, 2, and 3 hold, then Ŵγ(θ̃) = Avar
(
Φ̂γ(θ̃)

)
+ op(1)

Lemma 2 Under the null hypothesis H0, Assumptions 1, and 5,

Φ̂0(·) // Φ0(·) as a process on l∞(D),

where Φ0(·) is an RL-valued Gaussian process with zero mean vector and covariance struc-

ture given by,

E [Φ0(γ)Φ0(γ̃)] = E
[
εθ0(Z)

2Iγ(X)Iγ̃(X)′
]

∀γ, γ̃ ∈ D.

Lemma 3 Under the null hypothesis H0, and Assumptions 1-5, it holds that:

(a) supγ∈D

∣∣∣Φ̂θ̃(γ)− (Φ̂0(γ)− µ̂◦′
γ (θ0)

√
n(θ̂ − θ0))

∣∣∣ = op(1).

(b) µ̂◦
γ̂(θ0) = µ◦

γ,0 + op(1).

Lemma 4 Under the null H0, and Assumptions 4,5,

(a) if Assumption 1, 2, and 2’ hold, then Σγ̂(θ̃) = Σγ,0 + op(1).

(b) if Assumption 1, 2, and 3 hold, then Ŵγ̂(θ̃) = Avar
(
Φ̂γ(θ̃)

)
+ op(1)

A.2 Proofs

For any class of functions F , we denote as {Pnf : f ∈ F} the empirical measure indexed

by F , such that Pnf = n−1
∑
f(Zi); alike, we use Pf for the population measure, Pf =∫

f(Z)dP (Z). We say that a class of functions is: i) Glivenko-Cantelli for P (hereafter,

P -GC) whenever supf∈F |Pn − P |f = op(1); ii) P -Donsker if {
√
n(Pn − P )f : f ∈ F}

converge in distribution to a tight random element in the space l∞(F). Throughout, we

refer to both classes of sets with finite VC dimension and classes of functions with finite

VC subgraph dimension as VC classes. These classes, having uniformly bounded covering

numbers (Theorem 2.6.7 in VW), are Glivenko-Cantelli and Donsker (see Theorem 2.4.3

and 2.5.2 in VW) for any probability measure on the sample space, provided that they

have integrable and square-integrable envelope function, respectively.
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Proof of Lemma 1. For the first part of the Lemma, by the weak law of large numbers

(WLLN) and a mean value theorem argument (MVT), suffices to show that

1

n

n∑
i=1

(
ε2
θ̃
(Zi)− ε2θ0(Zi)

)
Iγl(Xi) = I + II + III = op(1)

for each l ∈ 1, 2, ..., L, where,

I = (θ̃ − θ0)
′ 1

n

n∑
i=1

∇mθ̄(Xi)∇mθ̄(Xi)
′Iγl(Xi)(θ̂ − θ0),

II =
2

n

n∑
i=1

mθ0(Xi)∇mθ̄(Xi)
′Iγl(Xi)(θ̃ − θ0),

III =
2

n

n∑
i=1

Yi(mθ̃(Xi)−mθ0(Xi))Iγl(Xi),

and |θ̄ − θ0| ≤ |θ̃ − θ0|. The triangle inequality, Assumption 2, and the consistency of

θ̃ show that, |I| ≤ d2θ

∥∥∥θ̃ − θ0

∥∥∥2 n−1
n∑

i=1

R(Xi)
2 = op(1), where ∥·∥ denotes the euclidean

norm. By a similar reasoning,

|II| ≤ dθ

∥∥∥θ̃ − θ0

∥∥∥ 2

n

n∑
i=1

mθ0(Xi)R(Xi)

≤ dθ

∥∥∥θ̃ − θ0

∥∥∥ (E [Y 2
])1/2 (E [R(X)2

])1/2
+ op(1) = op(1)

where the last inequality follows from the WLLN, the law of iterated expectation, and

Cauchy-Schwarz inequality. Finally, after expanding again around θ0 it is easy to see that

|III| ≤ dθ

∥∥∥θ̃ − θ0

∥∥∥ 2n−1
∑n

i=1 YiR(Xi)Iγl(Xi) = op(1).

For the second part of the lemma, we need to show that Ĉγ(θ̃) = Cγ,0 + op(1), L̂(θ̃) =

L0 + op(1), and µ̂◦
γ(θ̃) = µ◦

γ,0 + op(1). By the usual MVT argument and the law of large

numbers,

Ln = L0 + I + II + II ′ + op(1)
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with,

∥I∥ =

∥∥∥∥∥ 1n
n∑

i=1

∇lθ̄(Zi)
(
θ̂ − θ0

)(
θ̂ − θ0

)′
∇lθ̄(Zi)

′

∥∥∥∥∥ ≤ d4θ

∥∥∥θ̂ − θ0

∥∥∥2 1

n

n∑
i=1

R2
2(Zi) = op(1),

∥II∥ =

∥∥∥∥∥ 1n
n∑

i=1

∇lθ̄(Zi)
(
θ̂ − θ0

)
l′θ0(Zi)

∥∥∥∥∥ ≤ d2θ

∥∥∥θ̂ − θ0

∥∥∥ 1

n

n∑
i=1

∥lθ0(Zi)∥R2(Zi)

≤ d2θ

∥∥∥θ̂ − θ0

∥∥∥( 1

n

n∑
i=1

∥lθ0(Zi)∥2
)1/2(

1

n

n∑
i=1

R2
2(Zi)

)1/2

= op(1).

Alike, we write Ĉγ(θ̃) as,

Ĉγ(θ̃) = I − II − III + Cγ,0 + op(1),

where,

I =
1

n

n∑
i=1

lθ0(Zi)∇mθ̄(Zi)
′(θ̂ − θ0)Iγ(Xi)

′

II =
1

n

n∑
i=1

∇lθ̄(Zi)
′(θ̂ − θ0)εθ0(Zi)Iγ(Xi)

′

III =
1

n

n∑
i=1

∇lθ̄(Zi)(θ̂ − θ0)(θ̂ − θ0)
′∇mθ̄(Zi)Iγ(Xi)

′

By Assumptions 2, and 3,

∥I∥ ≤
∥∥∥θ̂ − θ0

∥∥∥ 1

n

n∑
i=1

∥lθ0(Zi)∥ ∥∇mθ̄(Zi)∥ ∥Iγ(Xi)∥

≤
√
L
∥∥∥θ̂ − θ0

∥∥∥( 1

n

n∑
i=1

∥lθ0(Zi)∥2
)1/2(

1

n

n∑
i=1

R2(Zi)

)1/2

= op(1),
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An analogous reasoning shows that ∥II∥ = op(1), and,

∥III∥ ≤
∥∥∥θ̂ − θ0

∥∥∥2 1

n

n∑
i=1

∥∇lθ̄(Zi)∥ ∥∇mθ̄(Zi)∥ ∥Iγ(Xi)∥

≤
√
Ld3θ

∥∥∥θ̂ − θ0

∥∥∥2( 1

n

n∑
i=1

R2(Zi)

)1/2(
1

n

n∑
i=1

R2
2(Zi)

)1/2

= op(1).

Finally, µ̂◦
γ(θ̃) = µ◦

γ,0 + op(1) follows from the proof of Lemma 3 below.

Proof of Lemma 2. By Lemma 2.6.17 in VW and Assumption 5, both D and {Iγ(X) :

γ ∈ D} are VC classes. Therefore, F = {εθ0(z)Iγ(X) : γ ∈ D} is a VC class (Lemma

2.6.18 in VW), with square integrable envelope function F = |εθ0 |, and, hence, is P -

Donsker. The convergence of the finite-dimensional distributions (fidis) of Φ̂0(·) to those

of Φ0(·), by the multivariate central limit theorem, characterize the limit process.

Proof of Lemma 3. By an MVT argument,

Φ̂θ̂(γ) = Φ̂0(γ)− I ′
√
n(θ̂ − θ0)− µ̂◦′

γ (θ0)
√
n(θ̂ − θ0)

where,

I = µ̂◦
γ̂(θ̄)− µ̂◦

γ̂(θ0) =
1

n

n∑
i=1

(
∇mθ̄(Xi)−∇mθ0(Xi)

)
Iγ(Xi)

′

and |θ̄− θ0| ≤ |θ̃− θ0|. The class {∇mθ(x) : θ ∈ Θ} is a collection of continuous mapping,

θ −→ ∇mθ, over the compact metric space Θ with integrable envelope function R(·) and,

therefore, is P -GC (e.g., Example 19.8 in Van der Vaart [2000]). Thus,

sup
γ∈D

∥I∥ ≤ sup
γ∈D

1

n

n∑
i=1

∥∇mθ̄(Xi)−∇mθ0(Xi)∥ ∥Iγ(Xi)∥

≤
√
L
1

n

n∑
i=1

∥∇mθ̄(Xi)−∇mθ0(Xi)∥ = op(1).

where the last equality follows from an application of the uniform law of large numbers
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(e.g., Davidson [1994], Theorem 21.6). For the second part of the Lemma is sufficient to

prove that,

|II| =

∣∣∣∣∣ 1n
n∑

i=1

∇(j)mθ0(Xi)
(
Iγ̂(Xi)− Iγ(Xi)

)∣∣∣∣∣ = op(1),

for each j ∈ {1, .., dθ}. To see this is true, notice that by Assumption 5, D∆̃D = {γ1∆̃γ :

γ1,γ2 ∈ D} is a class of subsets of unions of VC classes, and hence is VC. Therefore,

{|∇(j)mθ0(x)|Iγ̃(x) : γ̃ ∈ D∆̃D} is also VC with integrable envelope R(·) and, hence,

P -GC. Thus, for each j ∈ {1, .., dθ},

|II| ≤ 1

n

n∑
i=1

|∇(j)mθ0(Xi)|Iγ̂∆̃γ(Xi)

≤ sup
γ̃∈D∆̃D

(Pn − P )|∇(j)mθ0|Iγ̂∆̃γ + E
[
|∇(j)mθ0(X)|Iγ̂∆̃γ(X)

]
= op(1) + µR(γ̂∆̃γ) = op(1)

where µR(γ̂∆̃γ) =
(
µR(γ̂1∆̃γ1), ..., µR(γ̂L∆̃γL)

)′
, and µR(A) =

∫
A
E [R(Z)|X] dP (X) is a

(signed) measure absolutely continuous with respect to P . The last equality follows from

Assumption 4.

Proof of Lemma 4. For each element on the main diagonal of Σ̂γ̂(θ̃)− Σ̂γ(θ̃) write,

1

n

n∑
i=1

εθ̂(Zi)
2(Iγ̂l(Xi)− Iγl(Xi)) = I + II + III

where

I =
1

n

n∑
i=1

εθ0(Zi)
2(Iγ̂l(Xi)− Iγl(Xi))

II = (θ̂ − θ0)
′ 1

n

n∑
i=1

∇mθ̄(Xi)∇mθ̄(Xi)
′(Iγ̂l(Xi)− Iγl(Xi))(θ̂ − θ0)

III = −(θ̂ − θ0)
′ 2

n

n∑
i=1

εθ0(Zi)∇mθ̄(Xi)(Iγ̂l(Xi)− Iγl(Xi))

The class {εθ0(z)2Iγ̃l : γ̃ ∈ C∆̃C} is VC with integrable envelope function ε2θ0 and, hence,

is P -GC. Therefore, |I| ≤ µσ(γ̂l∆̃γl) + op(1) = op(1), by Assumption 4. Also, |II| ≤
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√
Ld2θ

∥∥∥θ̂ − θ0

∥∥∥2 n−1
∑n

i=1R(Xi)
2 = op(1), by Assumptions 1-2 and the consistency of θ̂,

and |III| ≤
√
Ldθ

∥∥∥θ̂ − θ0

∥∥∥n−1
∑n

i=1 εθ0R(Xi) = op(1) by Cauchy-Schwarz inequality.

Thus, Σ̂γ̂(θ̃) = Σ̂γ(θ̃) + op(1), and the first part of the lemma follows from Lemma 1(a).

For the second part of the lemma, notice that by Lemma 3(b) (and the proof of the

first part of Lemma 3), µ̂◦
γ̂(θ̂) = µ◦

γ,0 + op(1), and for each element of Cn(γ̂) − Cn(γ0) it

holds that,

1

n

n∑
i=1

εθ̂(Zi)lθ̂,j(Iγ̂l(Xi)− Iγl(Xi)) ≤

(
1

n

n∑
i=1

εθ̂(Zi)
2Iγ̂l∆̃γl

(Xi)

)1/2(
1

n

n∑
i=1

lθ̂,j

)1/2

= op(1)Op(1),

where lθ,j denotes the j-th component of lθ and the last equality follows from the first

part of this proof and Lemma 1.

Proof of Theorem 1. The estimator consistency follows from supθ∈Θ |Qn(θ)−Q0(θ)| =

op(1), whereQ0(θ) = E [εθ(Z)Iγ(X)]′ (Σγ,0)
−1E [εθ(Z)Iγ(X)] andQn(θ) = n−1χ̂2

γ̂,θ̃(θ) (see

Theorem 2.1 in Newey and McFadden [1994], for instance). Notice that,

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑

i=1

εθ(Zi)Iγ̂(Xi)− E [εθ(Z)Iγ(X)]

∣∣∣∣∣ ≤ sup
θ∈Θ

|I|+ sup
θ∈Θ

|II|+ sup
θ∈Θ

|III|

where

I = (Pn − P )εθIγ ,

II =
1

n

n∑
i=1

εθ0(Zi)(Iγ̂(Xi)− Iγ(Xi)),

III =
1

n

n∑
i=1

[∇mθ̄(Zi)(Iγ̂(Xi)− Iγ(Xi))
′]
′
(θ − θ0).

The mapping θ −→ εθ is continuous over the compact Θ, with

E
[
sup
θ∈Θ

εθ(Z)

]
≤ E

[
sup
θ̄,θ∈Θ

εθ0(Z)−∇mθ̄(X)′(θ − θ0)

]
≤ dθE [R(Z)]D <∞,
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by Assumption 2 and the compactness of Θ, where D denotes the diameter of Θ. There-

fore, both {εθ(z) : θ ∈ Θ} and {εθ(z)Iγ(X) : θ ∈ Θ} are P -GC classes (see Corollary

8.6 in Giné and Zinn [1984], for instance) and, hence, supθ∈Θ |I| = op(1). Then, by

Cauchy-Schwarz inequality and Assumptions 1 and 4,

sup
θ∈Θ

|II| ≤

(
1

n

n∑
i=1

ε2θ0(Zi)

)1/2(
1

n

n∑
i=1

Iγ̂∆̃γ(Xi)

)1/2

= op(1).

Finally,

sup
θ∈Θ

∥III∥ ≤ sup
θ∈Θ

1

n

n∑
i=1

∥∥Iγ̂∆̃γ(Xi)
∥∥ ∥∇mθ̄(Xi)∥ ∥θ − θ0∥

≤ dθD
1

n

n∑
i=1

∥∥Iγ̂∆̃γ(Xi)
∥∥R(Xi) = op(1),

where the second inequality follows from Assumption 2 and the compactness of Θ. This

result, together with the consistency of Σ̂γ̂(θ̃) implies that supθ∈Θ |Qn(θ)−Q0(θ)| = op(1)

and, therefore, θ̂γ̂ = θ0 + op(1). For the asymptotic normality: by Assumptions 2 and

1(c), the first-order conditions of the minimization problem are satisfied with probability

approaching one, µ̂◦
γ̂(θ̂γ)Σ̂γ̂(θ̃)

−1n−1/2Φ̂γ̂(θ̂γ) = 0. Expanding Φ̂γ̂(θ̂γ) around θ0 and

solving gives the Bahadur representation,

√
n(θ̂G − θ0) = −

[
µ̂◦

γ̂(θ̂γ)Σ̂γ̂(θ̃)
−1µ̂◦′

γ̂ (θ̄)
]−1

µ̂◦
γ̂(θ̂γ)Σ̂γ̂(θ̃)

−1Φ̂γ̂(θ0) + op(1)

where |θ̄ − θ0| ≤ |θ̂γ̂ − θ0|.

From the proof of Lemma 3, it follows that µ̂◦
γ̂(θ) − µ̂◦

γ̂(θ0) = op(1) for any θ −→
p
θ0.

Thus by consistency of θ̂γ̂ and Lemma 1(b), it follows that both µ̂◦
γ̂(θ̂γ) and µ̂◦

γ̂(θ̄) converge

in probability to µ◦
γ,0. Finally, by Assumptions 4-5, and the uniform continuity of the

sample paths of Φ0(·),

Φ0(γ̂)
d−→ N (0,Σγ,0) .

Proof of Theorem 2. By Lemma 3, 4, and Assumption 3 (or Theorem 1 and As-
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sumption 2’ for the χ̂2) both test statistics are asymptotically equivalent to the following

quadratic form,

q(θ̂,W, γ̂) =
(
Φ0(γ̂)−

√
nµ◦′

γ,0l̄n

)′
W−1

(
Φ0(γ̂)−

√
nµ◦

γ,0l̄n
)
, (A1)

where l̄n = En [lθ0(Zi)], W
−1 is the probability limit of W−1

n , and the couple (W−1
n , θ̂)

is equal to (Σ̂γ̂(θ̃), θ̂γ̂) in the χ̂2 test and
(
Âvar−

(
Φ̂γ(θ̃)

)
, θ̃
)

in the Wald test. The

functional

ϕ(z, w, γ) =
(
z(γ)− µ◦′

γ,0w
)′
W−1

(
z(γ)− µ◦′

γ,0w
)
,

mapping (Φ̂0(·),
√
nl̄, γ̂) into q(θ̂,W, γ̂) is continuous with respect to the product topology

on l∞(D) × RL × D (see Lemma 4 in Andrews [1988]). Thus, Theorem 2 follows by

establishing the limit null distribution of (Φ0(γ̂) − µ◦′
γ,0

√
nl̄) and an application of the

continuous mapping theorem (e.g., Theorem 1.3.6 in VW). Lemma 2, Assumptions 1, 4,

5, and the central limit theorem imply that (Φ0(·),
√
nl̄, γ̂) is a uniformly tight process

on D with fidis converging weakly to those of (Φ0(·), l0, γ0), where l0
d
= N(0, L0) and

E [l0ϕ0(γ)] = E [lθ0(Z)εθ0(Z)Iγ(X)′]. Thus,

(Φ̂0(·),
√
nl̄, γ̂) // (Φ0(·), l0, γ0) on l∞(D),

and by the continuous mapping theorem,

q(θ̂,W, γ̂)
d−→ Y ′W−1Y,

where Y
d
= N(0,ΣY ) and ΣY = Avar

(
Φ̂γ(θ̂)

)
. In the Wald test, where W−1 is a gen-

eralized inverse of ΣY , Y
′W−1Y

d
= χ2

rank(Avar(Φ̂γ(θ̃)))
by Theorem 7.3(i) in Rao and Mi-

tra [1972]. The limit null distribution of the χ̂2 test follows from the fact that ΣY =

Avar
(
Φ̂γ(θ̂γ̂)

)
= Σγ,0−µ◦′

γ (µ
◦
γΣ

−1
γ,0µ

◦′
γ )µ

◦
γ and, thus, Σ

−1/2
γ,0 (ΣY )Σ

−1/2
γ,0 is idempotent with

rank equal to L− dθ.
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Proof of Theorem 3. Is sufficient to show that,

Φ̂0(γ̂)− Φ̂0(γ) =
1√
n

n∑
i=1

εθ0(Zi)(Iγ̂(Xi)− Iγ(Xi)) = op(1).

To see this, notice that fγ̂ = εθ0Iγ̂ is a random element taking values in the P -Donsker

class F = {εθ0(z)Iγ(x) : γ ∈ D} (see Lemma 2) such that,

∫ (
εθ0(Iγ̂(X)− Iγ(X))

)2
dP (Z) = µσ(γ̂∆̃γ) = op(1),

where µσ(γ̂∆̃γ) is a vector defined analogously to µR(γ̂∆̃γ) and µσ(A) =
∫
A
E [εθ0(Z)

2|X] dP (X)

is an absolutely continuous measure with respect to P . Thus, by Lemma 19.24 in Van der

Vaart [2000],
√
n(Pn − P )(fγ̂ − fγ) = op(1), and

Φ̂0(γ̂)− Φ̂0(γ) =
√
n(Pn − P )(fγ̂ − fγ) +

√
nP (fγ̂ − fγ)

=
√
nE [εθ0(Z)(Iγ̂(X)− Iγ(X)] + op(1) = op(1),

by assumption (12).

Proof of Proposition 1. Let Q = diag(q1, ..., qL), with ql > 0 for all l, and consider

D
(
{al}Ll=0, L

)
=

L∑
l=1

(
al∫

al−1

h(t)fx(t)dt

)2

ql
=

L∑
l=1

E [h(x)I{X ∈ γl}]2

ql
,

where γl = {x ∈ X : al−1 ≤ x ≤ al} and {al}Kl=0, where al ∈ X and a1 ≤ a2 ≤ · · · ≤ aK

splits the support of X into L cells Cl = {x ∈ X : al−1 ≤ x ≤ al}. Fix the partition

dimension L = K, whereK is the number of points in X where h(x) = 0, and let determine

the optimal sequence of splitting points {a∗l }Kl=0. By definition, the first and last element

of the sequence are the extrema of the support, a∗0 = inf{x ∈ X}, a∗K = sup{x ∈ X}. The
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other optimal elements solve,

{a∗l }K−1
l=1 = argmax

{al}K−1
l=1 ∈XK−2

1

2

K−1∑
l=1

(
al∫

al−1

h(t)fx(t)dt

)2

ql
.

The gradient of the objective function, ∇, is a (K − 2)-dimensional vector with typical

elements,

[∇]l =

(
E [h(X)γl−1(X)]− E [h(X)γl] (X)

)
h(ai)fx(al)/ql

with l ∈ {1, ..., K − 1}, and the Hessian,∇2 say, is given by the (K − 2)× (K − 2) matrix

with typical elements,

[∇2]l,f =



1
ql

(
2 (h(al)f(al))

2 + (E [h(X)γl−1(X)]− E [h(X)γl(X)]) (f(al)h(al))
′
)

for l = f

−f(af )h(af )f(al)h(al)/ql for |l − f | ≤ 1

0 for |l − f | > 1

where (f(al)h(al))
′ = d/dal (f(al)h(al)) denotes the derivative with respect to al, and

l, f ∈ {1, ..., K − 1}. Consider the optimal sequence of points {a∗l }K−1
l=1 defined recursively

as,

a∗1 : h(a
∗
1) = 0, a∗l = Slãl + (1− Sl)a

∗
l−1,

where Sl = I{h(x) = 0, x > a∗l−1}, and ãl is defined such that h(ãl) = 0 and the derivative

of h at ãi has opposite sign of the derivative of h at a∗l−1, sgn(h
′(al)) = − sgn(h′(a∗l−1)),

meaning that {a∗l } is the sequence of consecutive points where the function assumes value

zero. Then, it is easy to check that the quadratic form of the Hessian at {a∗l }Kl=1 is negative

definite,

b′∇2b =
K−1∑
l=2

(
E [h(X)γl−1(X)]− E [h(X)γl(X)]

)
h′(al)fx(al)(b

2
l /ql)

= E [h(X)γ1(X)]h′(a2)fx(a2)(b
2
1/q1) + E [h(X)γ2(X)]

(
h′(a3)fx(a3)(b

2
2/q2)− h′(a2)fx(a2)(b

2
1/q1)

)
+ E [h(X)γK−1(X)]

(
h′(aK−1)fx(aK−1)(b

2
K−2/qK−2)− h′(aK−2)fx(aK−2)(b

2
K−3/qK−3)

)
− E [h(X)CK(X)]h′(aK−1)fx(aK−1)(b

2
K−2/qK−2) ≤ 0 for all b ∈ RK−1,
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with strict inequality when h′(x) ̸= 0 for some a∗l . The last inequality follows from the

fact that h′(al∗) ≥ 0 (h′(a∗l ) ≤ 0) implies E [h(X)γl−1] ≤ 0 (E [h(X)γl−1] ≥ 0). Thus,

{a∗l }Kl=0 is a global maximum for fixed L. Now, notice that, since Q = IM ,

(δl + δf )
2 ≥ δ2l + δ2f

for any pair δl, δf such that sgn(δl) = sgn(δf ); therefore, any finite split of X is dominated

by a partition with two classes. A contradiction argument shows that the global maximum

is attained by a two-cell partition merging the positive and negative cells characterized

by {a∗j}Kj=0.
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