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Abstract

This paper proposes a method to conduct inference on a finite-dimensional parameter in models

defined by a finite number of conditional moment restrictions (CMRs), with possibly different con-

ditioning variables and endogenous regressors. Those conditional moments are allowed to depend

on non-parametric components, which might be modeled flexibly using Machine Learning tools. In-

ference is based on locally robust/orthogonal/debiased moments, extended to the case with CMRs.

These moments are less affected by regularization bias, which is relevant to machine learning first

steps and typically invalidates standard inference. Under weak smoothness conditions, we exploit

the CMRs implied by the model in a general way. Thus, our strategy can be applied uniformly

in various contexts where the construction of orthogonal moments has not been explored, such as

non-linear GMM settings, models with missing data, production functions at the firm level, dynamic

discrete choice models, non-linear simultaneous equations models, and many others. Our approach

converts a given function of the conditioning variables into a valid instrument that yields a debiased

moment, justifying their use over other “ad-hoc” choices of instruments often used in applied work.

We argue that this will necessarily require solving functional equations involving unknown terms

directly linked to the particular model at hand. However, by imposing an approximate sparsity con-

dition, our method automatically finds the solutions to those equations using a Lasso-type program

and thus can be implemented straightforwardly in the same way, regardless of the particular model.

Based on this, we introduce a GMM estimator of a finite-dimensional parameter in a Two-Step

setting. We derive theoretical guarantees for our construction of orthogonal moments and show the

asymptotic normality of the introduced estimator.
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1 Introduction

Models defined by conditional moment restrictions (CMRs) are ubiquitous in economics and statistics.

They appear in a variety of settings such as regressions, quantile models, dynamic discrete choice mod-

els, non-linear simultaneous equations models, missing data, and production functions, among many

others (see Chen and Qiu, 2016). Often, to make the model more plausible or less affected by paramet-

ric assumptions, researchers consider semiparametric specifications by allowing the CMRs to depend on

an unknown potentially infinite-dimensional parameter (e.g., a flexible conditional expectation), apart

from the finite-dimensional structural parameter (e.g., Chamberlain, 1992b). This paper presents a gen-

eral method to construct Locally Robust (LR)/Orthogonal/Debiased Moments (Chernozhukov et al.,

2022a; Neyman, 1959) in such contexts. Particularly, we introduce a method to conduct inference on a

finite-dimensional parameter based on a general approach to obtain debiased moments in settings with

semiparametric CMRs. Therefore, this paper paves the way for the application of debiased moments

in new and unexplored scenarios relevant in applied work.

To be concrete, we consider models defined by a finite number of CMRs, with possibly different

conditioning variables and endogenous regressors (in the sense that the nuisance parameter may be

a function depending on variables other than those used for conditioning). In our context, the only

information that the researcher has is a number of CMRs that depend on a finite-dimensional parameter

of interest and other parameters that belong to a high-dimensional space. A leading case is a Two-

Step setting, where certain CMRs identify conditional expectations. Since this nuisance parameter is

unknown, it needs to be estimated using those moments in a first stage; to conduct this estimation,

the researcher might use recent machine learning methods such as Lasso, Random Forest, Boosting,

Neural Networks, and many others, known for their flexibility. As these deal with high-dimensional

objects, regularization is necessary to maintain the variance under control, causing a bias that could,

in turn, lead to bias in the estimation of the parameter of interest. As this bias typically fails to decay

at a rate faster than
√
n, it would invalidate standard inference.

To alleviate this problem, we introduce a new estimator, the Debiased CMRs Estimator (D-CMRs),

of a finite-dimensional parameter, that exploits debiased moments extended to the case with CMRs.

These moments are suitable in this context, as estimation based on them is less affected by regularization

bias present in the first stage, compared to a standard GMM procedure based on non-orthogonal

moments. Characterizing debiased moments in our general setting is simple. One can show that an

orthogonal moment can be obtained as a sum of the products of the residual functions (present in the

CMRs) and some functions that we denote Orthogonal Instrumental Variables (OR-IVs), which depend

only on the conditioning variables (Argañaraz and Escanciano, 2023). Those OR-IVs belong to a special

subclass of Instrumental Variables (IVs), i.e., functions of the conditioning variables. Moreover, as we

will argue, they are necessarily solutions to functional equations.

We aim to design an algorithm that allows researchers to estimate these OR-IVs without having

to solve those equations explicitly and that can be applied uniformly in various settings with general

CMRs. Our motivation stems from the fact that CMRs appear in a variety of applications in distinct

ways. For instance, consider a missing data setting, as studied by Graham (2011), and a semiparametric
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model of production functions estimation at the firm level, as considered by Ackerberg et al. (2014).

The only feature these two examples have in common is that they can be reduced to a set of CMRs.

Hence, if one seeks to find debiased moments for them, one would need to solve functional equations

directly linked to the particular CMRs implied by each model. By nature of the model, these CMRs

depend on nuisance parameters, and thus, the functional equations would depend on unknown objects.

Consequently, the potential solution will depend on particular unknown terms, and thus estimation

needs to be conducted to obtain the OR-IVs. For instance, in the missing data example, they depend on

the unknown conditional probability of observing the data, an object that is absent in the production

function model. Hence, the estimation strategy that one might propose would again be subject to the

model. In contrast, this paper introduces an algorithm that exploits the CMRs in a general way and

thus can be applied to any setting, under some smoothness conditions that we specify. Our approach

can be regarded as automatic in the sense that it implicitly estimates a solution to these equations.

Thus, the researcher does not have to characterize it, while properly dealing with unknown terms.

As discussed by Argañaraz and Escanciano (2023), the key idea is based on constructing a linear

operator derived from the CMRs (Carrasco et al., 2007; Luenberger, 1997). The range of this operator

collects all the possible Gateaux derivatives of the initial CMRs with respect to the high-dimensional

parameter. Then, what we require for a valid OR-IV is that it has to be orthogonal to the range of

the aforementioned operator, under a suitable notion of orthogonality. The current work builds on the

observation that this orthogonalization can be accomplished by “residualizing” a given known function

from the orthogonal projection onto the range of the operator. The challenge stems from the fact that

such an operator is unknown, and thus its orthogonal projection is unknown. In this work, we show

how such projection can be approximated in practice by exploiting the CMRs implied by the model

following the same recipe, regardless of whether the setting is missing data, production functions, or

any other context.

Assuming that such orthogonal projection is approximately sparse, we argue that we can obtain

an estimator of the solutions of the aforementioned functional equations, i.e., the OR-IVs, using a

Lasso-type program. More precisely, under an approximate sparsity assumption for the orthogonal

projection, we show how it can be approximated by a linear combination of a number of known basis

functions and a sparse finite-dimensional parameter, which is the solution to the Lasso program. Then,

the obtained coefficients are used to approximate the OR-IVs. These make the OR-IVs orthogonal to all

the possible deviations of the CMRs with respect to the non-parametric component, which is sufficient

to obtain a debiased moment. Such an orthogonality condition can be seen as the minimization of a

mean squared error. The dimension of the regressors involved in such minimization is allowed to be

greater than the sample size, by adding a ℓ1- norm penalization term. The resulting objective function

is then familiar to any Lasso problem. Nonetheless, this Lasso program is special, in the sense that it is

based on unknown regressors even though the starting basis functions are given. This is a by-product

of not knowing the linear operator that we mentioned in the previous paragraph. Hence, they need

to be estimated before minimizing the corresponding Lasso objective function. Conveniently, those

regressors take the form of conditional expectations, given the conditioning variables of the model.

Consequently, they can be estimated by suitable machine learning tools. In addition, for theoretical
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and practical reasons, we use cross-fitting. Once these regressors are estimated, the problem is a Lasso

regression and as such, it can be implemented straightforwardly by well-known algorithms for each fold

in the sample. As these features are particular to our estimation of OR-IVs, we provide theoretical

guarantees for our estimation procedure, under the specified sparsity condition.

From a broad perspective, we see our method as a way to justify the use of certain instruments

while dealing with CMRs. It is well-known that CMRs typically imply a large number of unconditional

moments (Bierens, 1990; Carrasco and Florens, 2000). Although the asymptotic efficiency of estimators

can be improved by considering a larger number of moments, an excessive number of them might not

be recommendable in practice (Andersen and Sørensen, 1996; Newey and Smith, 2004). In applications

then, a finite number of instruments are selected to obtain a finite number of unconditional moments,

and estimation is performed using GMM. More often than not, this choice is “ad-hoc”. The only

choice that is theoretically justified, over other choices, is the so-called optimal IVs as moment based

on them yields estimators that are semi-parametric efficient (e.g., Ackerberg et al., 2014; Ai and Chen,

2003, 2012; Chamberlain, 1992b; Chen and Pouzo, 2009). This paper argues that if one is interested in

inference in a high-dimensional setting, only OR-IVs should be used, as moments based on them are

debiased. Hence, our algorithm justifies the use of OR-IVs over other choices of instruments that do

not necessarily yield a debiased moment and that are currently used in applied work. Interestingly, the

optimal IV is a special OR-IV (van der Vaart, 1998), but it is not the only one. Indeed, our algorithm

is able to convert any suitable function of the condition variables into an OR-IV that can be used in

estimation as all these functions can be “residualized” using the approach that we described above. If

multiple such functions are provided, then multiple orthogonal moments can be estimated, and GMM

can be applied as usual. A natural approach is to start with the typical choices in applied work and

transform them using our strategy to obtain debiased moments.

The rationale behind employing GMM stems from our theoretical findings, which assure that stan-

dard inference remains valid for the finite-dimensional parameter, despite machine learning tools being

employed to estimate nuisance parameters in a first stage. Specifically, leveraging the asymptotic prop-

erties established for the OR-IV estimators, we demonstrate that D-CMRs follow an asymptotically

normal distribution. For this, we only require that the nuisance parameters be estimated at a rate faster

than n1/4, which can be achieved by a variety of machine learners. When orthogonal moments are not

considered, standard errors need to be correctly computed to account for such a first-stage estimation

(Newey, 1994). Nonetheless, we show that standard errors based on our debiased moments properly

account for such a first-stage estimation directly by using the usual “sandwich” formula, simplifying

their calculation considerably.

We have assessed the finite sample performance of the introduced estimator through a number of

Monte Carlo experiments. We acknowledge that one limitation our procedure presents is that it requires

several choices by the user. For example, the choice of bases to construct the unknown regressors, the

tuning parameter involved in the Lasso program, and the number of folds for cross-fitting, among

others. Despite our theory suggesting that, under suitable conditions, these are innocuous for the

performance of D-CMRs when n grows, we have been interested in studying the behavior of D-CMRs

under distinct combinations of such choices, with finite sample sizes. To this end, we have conducted
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seven different Monte Carlo experiments in the context of production functions at the firm level, in

a high-dimensional setting. Overall, we find that, in these numerical experiments, the finite sample

performance of our estimator, in terms of bias and coverage, is satisfactory, regardless of the specific

choices made within our methodology, in line with our theoretical results. Particularly, we observe that

as the sample size increases, D-CMRs exhibit small bias across all parameters of interest, resulting in

point estimates closely approximating the true values. More crucially, our computation of standard

errors remains generally valid, despite employing machine learning techniques in the first stage, as

evidenced by coverage levels closer to the nominal one. This shows the ability of our procedure to

control size. The main takeaway is that our estimation of OR-IVs yields an estimator with good finite

sample performance. These observations, then, allow us to be confident about the good properties of

our estimation strategy and our theory.

The rest of the paper is organized as follows. Section 2 revises the most related works to ours,

emphasizing what our contribution is. Section 3 works out two examples to motivate our results and

describe the problem that we face. Section 4 defines LR moments in our context and discusses our

approach informally. Section 5 is the core of the paper as it introduces our algorithm in a general

setting. Section 6 obtains a convergence rate for the estimators of the OR-IVs. In Section 7 we present

an estimator of the finite-dimensional parameter in a two-step setting, and Section 8 provides conditions

under which its asymptotic distribution is a standard normal. Section 9 studies the performance of our

estimator with finite sample sizes through different Monte Carlo experiments. Section 10 provides final

remarks. An Appendix gathers the proofs of all the theoretical results, elaborates on implementation

details of the Lasso-type program we introduce, and provides additional details on the Monte Carlo

experiments.

2 Related Literature

Our work relates to various strands of the literature. First, this paper is connected to the recently

developed literature on debiased moments. The general construction and asymptotic theory of such

moments have been established by Chernozhukov, Escanciano, Ichimura, Newey, and Robins (2022a)

for a high-dimensional context, i.e., when machine learners are used in a first stage. The debiasing

properties of these moments generalize findings in several papers on modern orthogonal moment es-

timation and inference (see, e.g., Athey et al., 2018; Belloni et al., 2012, 2017; Bravo et al., 2020;

Farrell, 2015; Nekipelov et al., 2022; Sasaki and Ura, 2023). Typically, a debiased moment function

comprises two components: the initial identifying moment function and a suitable adjustment term.

In many applications, this adjustment term is derived as the product of a residual function and the

Riesz representer of the original moment function (Ichimura and Newey, 2022). Our paper builds on

this literature by specifically examining general semiparametric models defined by CMRs, which may

involve varying conditioning variables. While this setting is important in economics and statistics,

previous literature has not extensively explored it with a comprehensive scope, as we undertake in

this study. An exception is Chernozhukov et al. (2018), who present a general characterization of

LR moments for models defined by CMRs. Our paper complements this work in two crucial ways.
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Firstly, we consider a setting where we explicitly allow for CMRs depending on different conditioning

variables. Secondly, while the approach outlined by Chernozhukov et al. (2018) involves the inversion

of an unknown conditional variance-covariance matrix, our proposed method offers a practical solution

that avoids cumbersome computations.

Second, our paper contributes to the body of literature focusing on models defined by CMRs. In-

deed, our general model encompasses several settings extensively studied in this literature, where the

emphasis has primarily been on efficiency. A seminal contribution in this regard is made by Ai and

Chen (2012), who establish the semiparametric bound for structural parameters in semiparametric

models defined by nested CMRs, and thus possibly different conditioning variables. Their work ex-

tends previous results by Chamberlain (1987) for the purely parametric case with one conditioning

variable, by Chamberlain (1992b) and Ai and Chen (2003), who study semiparametric models with

just one conditioning variable, and findings in Chamberlain (1992a) and Brown and Newey (1998) that

consider the parametric case with nested CMRs. Moreover, Ackerberg et al. (2014) analyze CMRs with

possibly non-nested or overlapping conditioning sets, where the nuisance functions are just identified

parameters by conditional moments, while the structural one is identified through an unconditional

moment restriction. Both Ai and Chen (2012) and Ackerberg et al. (2014) propose sieve estimators

that are efficient from a semiparametric standpoint. The sieve approach enables them to estimate high-

dimensional parameters. We build upon this literature by allowing for the utilization of a wide array of

machine learning tools to estimate nuisance parameters in a first stage and automatically constructing

LR moments for these models. Furthermore, we provide theoretical bounds for the estimation approach

we propose. To the best of our knowledge, ours is the first paper to derive theoretical guarantees for

LR moments in general settings defined by CMRs. Efficiency concerns are beyond the scope of this

work, but it is an interesting avenue for future research.

Third, our paper also contributes to the literature on the automatic construction of debiased mo-

ments. In the context of Riesz representers, important progress has been made. Chernozhukov et al.

(2022b) and Chernozhukov et al. (2022c) develop a Dantzig selector for the Riesz representer based on

a sparse approximation assumption. Both papers focus on scenarios where the parameter of interest

is an average of a linear functional of a regression function, which is estimated by a Dantzig selector

as well. Chernozhukov et al. (2022d) propose a Lasso-type minimum distance estimator for the Riesz

representer while Chernozhukov et al. (2021) explore neural networks. In both cases, the nuisance

parameter can be estimated using general machine learning tools; they also study the case where the

parameter of interest is an expectation of a nonlinear functional of the regression function. A unified

framework for estimating Riesz representers is developed by Chernozhukov et al. (2020), where the esti-

mation problem is formulated as an adversarial min-max program (Dikkala et al., 2020). While all the

previous papers focus exclusively on the exogenous case, i.e., when the nuisance parameter depends on

conditioning variables, Bakhitov (2022) proposes a penalized GMM approach for estimating the Riesz

representer in endogenous settings. Moreover, Farrell et al. (2021b) proposes an automatic construction

of adjustment terms (that yields a debiased moment) in circumstances where the first stage parameter

is not necessarily a prediction, but any well-defined parameter that has some meaning in an economic

model, and the parameter of interest is an average of some smooth function of the first stage. We ex-
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tend these works by not focusing exclusively on situations where the parameter of interest represents an

expectation. Instead, we deal with the general situation where the model implies conditional moments

of arbitrary (but smooth) functions that depend on finite and infinite dimensional parameters. Then,

our paper paves the way for extending the automatic construction of debiasing moments developed

by those previous works to non-linear GMM settings, prevalent in important contexts such as gen-

eral missing data problems (Graham, 2011; Hristache and Patilea, 2016, 2017), production functions

(Ackerberg et al., 2014; Levinsohn and Petrin, 2003; Olley and Pakes, 1996), dynamic discrete choice

models (Hotz and Miller, 1993), non-linear simultaneous equations models (see, e.g., Wooldridge, 2010,

Section 14.3), to name a few.1 We remark that while there is nothing in the estimation of OR-IVs that

we propose that exploits the specific meaning of the first stage, we focus on conditional expectations

(in the exogenous case) or functions that can be identified inverting conditional expectations (in the

endogenous case) since there are well-known results that show their rates of convergence (upon which

our asymptotic theory relies) for different machine learners allowing the use of all of them in our setting,

while Farrell et al. (2021a) only provide theoretical bounds for Deep neural networks.

Last but not least, this paper builds on previous results by Argañaraz and Escanciano (2023). They

present a characterization of debiased moments for settings with a finite number of CMRs, with varying

conditioning variables, i.e., the same type of models that we study in this paper. Such a characterization

serves for debiasing a general class of parameters, which include smooth functionals of high-dimensional

parameters. Argañaraz and Escanciano (2023) do not discuss how such a characterization can be

accomplished in practice, i.e., how their theoretical construction can be implemented. This construction

is the starting point of the current work. To be precise, we leverage the theoretical results of Argañaraz

and Escanciano (2023) to design a simple-to-implement algorithm to construct orthogonal moments

in practice, which is data-driven and can be applied systematically in a wide variety of contexts,

providing theoretical guarantees for it. Albeit we only focus on debiasing a particular class of structural

parameters, excluding functionals of high-dimensional components, we believe that our current work is

a crucial starting point for developing subsequent algorithms that can be employed to build debiased

moments for more general parameters.

Notation: The norm ||·|| is a generic norm. For an arbitrary vector x ∈ Rr, let ||x||1 and ||x||2
be the ℓ1 and ℓ2 norm, respectively. ||x||0 be the number of non-zero entries of x. For a random

variable a(W ), let ||a(W )||2 =
√

E [a(W )2]. For a n × r matrix A = [aik], let ||A||∞ = max
i,k

|aik|, and

||A||ℓ∞ = max
i

∑r
k=1 |aik|. For a set of indexes S ⊆ {1, · · · , r}, let xS be the modification of x that

places zeros in all entries of x whose indexes do not belong to S. Moreover, let Sx be the subset of

S such that xk ̸= 0 for all k ∈ Sx, and S
c
x be the complement of Sx in S. For a bounded set Q, |Q|

denotes the cardinality of Q. For a, b ∈ R, a ∨ b = max {a, b}. Let P be a probability distribution.

Let L2 be the space of functions of W that are square-integrable, when W ∼ P , where the precise

meaning of W will be established below.2 In addition, let L2
0 be a subset of L2 with the additional

mean-zero restriction. Similar definitions apply for objects such as L2(V ) and L2
0(V ) for functions of V ,

1Additional examples can be found in Section 5 of Chen and Qiu (2016).
2Technically, we should index L2 by some σ−finite measure. We avoid this to simplify our notation.
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an arbitrary random variable. For any arbitrary subset K, let K denote the closure of K and K⊥
be its

orthocomplement, when a topology and inner product ⟨·, ·⟩ is defined. Moreover, ΠK is the orthogonal

projection operator onto K. Let J <∞ and V = (V1, V2, · · · , VJ)
′
, we say that a vector-valued function

f(V ) = (f1(V1), · · · , fJ(VJ))
′
is in L2(V ) ≡

⊗J
j=1 L

2(Vj) when each of the elements in a such vector

belongs to the corresponding L2 (Vj), j = 1, · · · , J . We let ||f(Z)||L2(Z) =
√∑J

j=1 ||fj(Vj)||
2
2. Finally,

all the CMRs in the sequel are satisfied almost surely (a.s.), but we will not make it explicit to simplify

the exposition.

3 Two Motivating Examples

To illustrate the key ideas of this paper we will consider two simple settings throughout. We emphasize

that this choice is purely for the sake of clarity in exposition. Our theoretical framework is broad

and applicable to models defined by various CMRs, where conditioning variables may vary, and the

nuisance parameters may not necessarily be functions of these variables.

Example 1: Missing Data. Suppose that we start with the following identifying moment restriction

for the parameter of interest θ0:

E [ρ (Y1, Z1, θ0)|Z1] = 0, (3.1)

where ρ is some known (up to θ0) residual function, Z1 is a vector of exogenous variables and Y1, e.g.,

income, is not always observed. In addition, we have a non-missing indicator variable δ ∈ {0, 1} such

that Y1 is observed iff δ = 1. Also, there is an auxiliary variable T that is always observed. Hence,

if we let X = (Z1, T ), we observe W = (δ, δY,X). Let us also denote Z = (X,Z1). We assume that

P (δ = 1|Y1, X) = P (δ = 1|X) = η0(X), where η0(X) > 0 a.s. This model has been considered, e.g.,

by Hristache and Patilea (2017) and Hristache and Patilea (2016); see also Graham (2011). Under the

assumed missingness mechanism, model (3.1) can be equivalently written at the observational level,

using the CMRs

E
[

δ

η0(X)
− 1

∣∣∣∣X] = 0, (3.2)

E
[

δ

η0(X)
ρ (Y1, Z1, θ0)

∣∣∣∣Z1

]
= 0. (3.3)

We are interested in learning θ0, in a context where η0 is not known. We might proceed by exploiting

Equation (3.2) to extract information of η0, and then use it in the restriction (3.3). □

Example 2: Production Functions at the Firm Level. We observe a panel of n firms across T

periods, where i and t index firms and periods, respectively. Let Yit be the output of firm i at time t,

and Xit be a vector of inputs, e.g., capital and labor. Output is determined by the following equation:3

Yit = F (Xit, θ0p) + ωit + ϵit, (3.4)

3Unless otherwise stated, all the variables are expressed in logarithms.
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where ωit is firm i’s productivity shock (anticipated productivity) in period t, which is allowed to be

correlated with inputs, and ϵit is noise in output, which is independent and identically distributed

(iid), and is assumed to be independent of the current and previous optimal decisions of the firm and

anticipated productivities. The function F is assumed to be known up to θ0p. Since ωit is not observed

and is correlated with inputs, OLS will provide inconsistent estimates.4 To address this, we follow the

so-called proxy variable approach, started by Olley and Pakes (1996); see also Levinsohn and Petrin

(2003) and Wooldridge (2009). We assume that there exists some firm’s choice, Iit, at t that is linked

to ωit:

Iit = It (ωit, Xit) .

The precise meaning of variable Iit, a “proxy”, differs across different formulations of the model.5 In

addition, let us assume that It is strictly monotonic in ωit. No parametric assumptions are imposed on

It. Then, we shall write

ωit = ωt (Iit, Xit) ,

where ωt is also non-parametric. Hence, we were able to express the unobservable productivity in terms

of observable inputs. It is immediate that Equation (3.4) becomes

Yit = F (Xit, θ0p) + ωt (Iit, Xit) + ϵit. (3.5)

Let

η0t (Iit, Xit) = F (Xit, θ0p) + ωt (Iit, Xit) .

Then, by the independence assumption,

E [Yit − η0t (Iit, Xit)| Iit, Xit] = 0. (3.6)

While Equation (3.6) identifies η0t, it is not enough to identify all the parameters of the production

function. This is true since Xit enters parametrically and non-parametrically in (3.5). The last element

of the model is the evolution of ωit. Typically, this is also treated non-parametrically, as in Olley and

Pakes (1996) and Levinsohn and Petrin (2003). We, nonetheless, follow Ackerberg et al. (2014) and

work with a more “natural” semiparametric model. Let us assume that ωit follows a First-Order

Markov’s process in the sense that

E [ωit|Xi,t−1, Ii,t−1 · · · , ωi,t−1, ωi,t−2, . . . , ωi,0] = E [ωit|ωi,t−1] . (3.7)

Equation (3.7) is indeed assumed by Olley and Pakes (1996) and Levinsohn and Petrin (2003). What

Ackerberg et al. (2014) suggests is to parameterize (3.7). To keep things simple, let us consider

E [ωit|ωi,t−1] = θ0ωωi,t−1. (3.8)

4In the case where F is assumed to be linear in inputs.
5For instance, Olley and Pakes (1996) considers in Iit the firm’s current investment towards future physical capital.

In Levinsohn and Petrin (2003), Iit is the firm’s choice of an intermediate input, e.g., electricity or material input.
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Then, letting Ωit be the firm information set at t, with (Xit, Iit) ⊆ Ωit, and using the independence

assumption, Equations (3.5), (3.7), and (3.8), it is not difficult to show that

E [Yit − F (Xit, θ0p)− θ0ω (η0,t−1 (Zi,t−1)− F (Xi,t−1, θ0p))|Ωi,t−1] = 0. (3.9)

Suppose that T = 3, i.e., firms are observed during three periods. Ignoring subscript i, and denoting

η0 ≡ (η01, η02), the model can be defined by the following CMRs:

E [Y1 − η01 (I1, X1)| I1, X1] = 0, (3.10)

E [Y2 − F (X2, θ0p)− θ0ω (η01 (I1, X1)− F (X1, θ0p))|Ω1] = 0, (3.11)

E [Y2 − η02 (I2, X2)| I2, X2] = 0, (3.12)

E [Y3 − F (X3, θ0p)− θ0ω (η02 (I2, X2)− F (X2, θ0p))|Ω2] = 0. (3.13)

Let Y = (Y1, Y2, Y3, X2, X3), X = (I1, X1, I2, X2), Z = (X,Ω1,Ω2), and W = (Y,X,Z). Hence, based

on W , our goal is to learn θ0 =
(
θ
′
0p, θ0ω

)′

, the parameter of interest, in the presence of an unknown

η0. To this end, we might exploit (3.10)/(3.12) to estimate η0, and then plug the resulting estimator

into moments based on (3.11)/(3.13) for estimation of θ0. □

Both Example 1 and Example 2 share a common characteristic: η0 is unknown and ultimately needs

to be estimated to estimate θ0. One approach to estimating η0 involves employing a low-dimensional

framework, e.g., with a polynomial series using a small number of terms. For instance, a popular

Stata command for estimation of production functions, introduced in Petrin et al. (2004), as a default

option, treats the part of η0 that depends on ωt (It, Xt) as a third-degree polynomial. We, instead,

model η0 using machine learning tools, which includes the low-dimensional sieve approach of Petrin et al.

(2004) as a special case.6 These tools (e.g., Lasso, random forest, neural networks, and boosting) have

proven useful in dealing with situations where functions of covariates (where the leading case involves

conditional expectations) need to be estimated without imposing stringent parametric assumptions.

With a highly complex η0, it would be difficult to estimate θ0 without bias. This is a by-product

of the regularization techniques that all those algorithms impose in estimation. Moreover, that bias

would typically decay at slow rates, slower than
√
n (Chernozhukov et al., 2022a). Consequently, a

valid concern is that such a first-stage bias would be translated into bias in the estimation of θ0, and

then it would not hold that
√
n
(
θ̂Non−orth − θ0

)
is normally distributed. Indeed,

√
n
(
θ̂Non−orth − θ0

)
would not be Op(1), invalidating standard inference on θ̂Non−orth. To illustrate the point, Figure 1

displays (in orange) the empirical distribution of the standardized
(
θ̂Non−orth − θ0

)
for one of the

parameters of the production function of Example 2 obtained from simulated data on 1,000 firms and

1,000 Monte Carlo repetitions. This is computed by estimating η0 using Random Forest in the first

stage and then estimating θ0 using GMM.7 The figure illustrates that this estimator is substantially

6The only generalization of Petrin et al. (2004)’s proposal that we are aware of is Cha et al. (2023), who model

the nonparametric component using a high-dimensional basis. Notice that we allow for the use of many other suitable

nonparametric estimation strategies.
7For this illustration, we have used the R function ranger and its default options.
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biased, as its mean is not centered around zero. Furthermore, the shape of the distribution is certainly

different from the standard normal distribution (depicted by the red curve), which would be similar to

the expected asymptotic distribution if the bias were absent.

Therefore, our ultimate goal is to construct moments that, under regularity conditions, can be used

for estimation of θ0, and that will lead to an estimator that would remain
√
n−consistent, even when

η0 has been estimated flexibly. Such moments, known as LR/Orthogonal/Debiased moments, play a

crucial role in achieving this goal. A key object will be a function of the conditioning variables Z

that satisfies an important property. We will argue that to compute this function one needs to solve

functional equations. The particular terms involved in it as well as the plausibility of it would be

extremely linked to the particular setting that one is working on. Our aim is to construct LR moments

in a data-driven manner that can be uniformly applied across various settings, e.g., missing data and

production functions. This is the main contribution of this work. Moreover, the researcher does not

have to derive explicit expressions for such functions, in the spirit of the fairly recent literature of

automatic estimation of Riesz representers (cf. Section 2). The algorithm will provide the user with a

suitable adjustment term that can subsequently be employed in the estimation of θ0. This approach

results in an estimator that indeed yields a
√
n
(
θ̂Orth − θ0

)
normally distributed. Figure 1 displays

the standardized empirical distribution of such an estimator (in blue). Notably, it closely resembles the

expected asymptotic distribution and, crucially, is centered around zero, implying that our construction

is less affected by the first-stage bias. To accomplish this, we will show that the problem reduces to

a Lasso-type problem, under an approximate sparsity condition. Thus, implementing our approach is

relatively straightforward.
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Figure 1: Comparison of Non-Orthogonal and Orthogonal Estimators

NOTE: The figure shows the histogram of the standardized and centered estimator
(
θ̂ − θ0

)
for one of the parameters of the

production function of Example 2, using Non-orthogonal and Orthogonal moments, based on the construction we propose. The

density of the standard normal distribution is also displayed in red. The sample size is n = 1, 000. Results are based on 1, 000

Monte Carlo repetitions.

4 Debiased Moments and Informal Discussion

The first step in our automatic construction involves theoretically characterizing debiased moments (see

definition below) within the specific setting that the researcher is concerned with. Hence, following

the recent literature on debiasing moments in high-dimensional contexts (cf. Section 2), we aim to

construct debiased moments for Example 1 and Example 2.

We provide a precise notion of a LR moment for θ0 in our setting. Let κ ∈ L2(Z) be an arbitrary

vector-valued function. Let κ0 be an element of a special subset of L2(Z), which will be described

below. Moreover, let η0 ∈ B, where B is a possibly infinite dimensional vector space. A debiased

moment in our setting is a moment based on a function ψ : W × Θ ×B × L2(Z) 7→ R satisfying the

following two restrictions:

d

dτ
E [ψ (W, θ0, η0 + τb, κ0)] = 0, for all b ∈ B, (4.1)

E [ψ (W, θ0, η0, κ)] = 0, for all κ ∈ L2(Z), (4.2)

where d
dτ denotes derivatives from the right (i.e., from non-negatives values of τ). Equation (4.1) implies

that the Gateaux derivative at η0 of a moment based on ψ is zero. Here b represents a possible direction

of deviation from η0, and belongs to B. Intuitively, local perturbations to the nuisance parameter do
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not affect the moment. This is an appealing property as it would be hard to learn η0 exactly, which is

particularly true in high-dimensional contexts. This is the reason why the estimation of θ0 based on a

moment that is orthogonal is less affected by first-stage bias, typically present in the estimation of η0,

and will be a key attribute to establish standard inference results on an estimator of θ0. As we will

show below, we need to introduce the nuisance parameter κ0 to achieve (4.1). Nonetheless, this would

not affect the moment itself as Equation (4.2) implies that the expectation of ψ is globally insensitive

to deviations from κ0.

Now, how can we construct moments that satisfy the key properties (4.1)-(4.2) in the contexts of

Example 1 and Example 2? The basic idea will be to obtain a function κ0 that is orthogonal to a set

that contains all the possible derivatives of the CMRs with respect to η. This corresponds to a more

general result of orthogonality for general functionals in models defined by several CMRs, studied by

Argañaraz and Escanciano (2023).

Example 1: Under regularity conditions, it is not difficult to see that an orthogonal moment in this

case will be based on

ψ (W, θ0, η0, κ0) =

(
δ

η0(X)
− 1

)
κ01(X) +

δ

η0(X)
ρ (Y1, Z1, θ0)κ02(Z1), (4.3)

where κ0 = (κ01, κ02) ∈ L2 (X)× L2 (Z1) is such that

d

dτ
E [ψ (W, θ0, η0 + τb, κ0)] = E

[
δb (X)

η20 (X)
(−κ01 (X)− ρ (Y1, Z1, θ0)κ02 (Z1))

]
= 0, for all b ∈ B.

(4.4)

Then, κ0 satisfies (4.1). In addition, as κ0 ∈ L2 (Z), condition (4.2) also holds. □

Example 2: For this case, given some smoothness conditions, we can obtain a debiased moment by

means of

ψ (W, θ0, η0, κ0) = (Y1 − η01 (I1, X1))κ01 (Z1) + (Y2 − F (X2, θ0p)− θ0ω (η01 (Z1)− F (X1, θ0p)))κ02 (Z1)

+ (Y2 − η02 (Z2))κ03 (Z2) + (Y3 − F (X3, θ0p)− θ0ω (η02 (Z2)− F (X2, θ0p)))κ04 (Z2) ,

(4.5)

where Z1 = (I1, X1), Z2 = (I2, X2), κ0 = (κ01, κ02, κ03, κ04) ∈ L2 (Z1)× L2 (Z1)× L2 (Z2)× L2 (Z2) is

such that

d

dτ
E [ψ (W, θ0, η0 + τb, κ0)] = E [b1 (Z1) (−κ01 (Z1)− θ0ωκ02 (Z1)) + b2 (Z2) (−κ02 (Z2)− θ0ωκ02 (Z2))]

= 0, for all b ∈ B.

(4.6)

Then, we can verify that (4.5) indeed satisfies (4.1)-(4.2). □

Expressions (4.3) and (4.5) indicate that we can obtain debiased moments by linearly combining

the initial CMRs: sum the products of the initial residual functions and the elements in κ0. This linear
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combination is special in the sense that we are required to find κ0 ∈ L2(Z) such that the moment is

invariant to local perturbations to η. Therefore, by construction, the resulting moments (4.5)/(4.3) are

debiased. Since κ0 yields an orthogonal moment by properly combining the initial residual functions,

we denote them Orthogonal Instrumental Variables (OR-IVs).

In both situations, obtaining a valid κ0 entails solving functional equations (4.4)/(4.6). Various

approaches can be pursued to achieve this goal. One option is to directly characterize the solutions to

(4.4)/(4.6). However, this strategy may not be ideal, as its plausibility hinges on the specific expressions

involved in the functional equations defining κ0. Consequently, there is no guarantee that a particular

procedure for solving κ0 in one model can be readily applied in other contexts. For instance, solving

Equation (4.4) differs from solving Equation (4.6), given that the former involves η0, while κ01 and

κ02 are functions of different random variables. Moreover, Equation (4.6) requires finding four terms,

instead of two, although each pair involves functions of the same random variables. In more complex

settings, additional terms may emerge. Instead of relying on the tractability of the equations defining

the OR-IVs, we propose an approach that can be applied generally. In addition, as it is evident

from (4.4)/(4.6), these equations might involve unknown quantities, and thus the direct computations

might not be feasible. Our goal is to design a feasible algorithm where unknown quantities are treated

intelligently.

Another possibility, inspired by the literature on the automatic construction of Riesz representers

for orthogonal moments (see Bakhitov, 2022; Chernozhukov et al., 2022d; Ichimura and Newey, 2022),

is to view Equations (4.4)/(4.6) as moment conditions for κ0. However, we cannot directly apply the

same techniques developed for Riesz representers. There are two main reasons for this. First, unlike

Riesz representers, which are unique, for reasons that will become clear below, κ0 is not uniquely

identified—there might be more than one OR-IV. Second, in our setting, the trivial solution is always

a solution, making κ0 = 0 an OR-IV, which leads to the orthogonal moment ψ = 0, providing no

information about θ0. To avoid trivial solutions, one might consider imposing an additional constraint

to disregard them. However, determining the most suitable approach to impose such restrictions

can be challenging and context-dependent. For example, one might attempt to estimate the null space

associated with some unknown linear operator defined by (4.4)/(4.6). Although this could theoretically

work, estimating unknown null spaces is likely unfamiliar to the average practitioner, which is why we

opted not to pursue this route further. Instead, we propose a more “natural” idea based on a Lasso-type

program, as detailed below.

Finally, in cases where the conditioning variables are fixed across the CMRs, Chernozhukov et al.

(2018) (Section 2.2.4) present a general expression for κ0’s. This approach has some caveats. The

formula involves unknown quantities and thus one might not apply it directly. More importantly, it

requires the inversion of an unknown conditional variance-covariance matrix, which is challenging to

handle in practice (see Equations (2.23)-(2.25) in Chernozhukov et al. (2018)).

Differently from all the previous ideas, we aim to design a procedure that allows the researcher

to find functions κ0’s without solving complicated equations. Additionally, we want to obtain these

functions without dealing with sensitive terms such as conditional variances that need to be inverted.

More importantly, we aim to provide a method that can be applied in general settings, independent of
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the specific structure of the model. Our algorithm will convert any vector of instruments f ∈ L2(Z)

into a unique and valid κ0. In other words, our approach will transform any suitable function of the

conditioning variables such that it satisfies the equations implied by (4.4) or (4.6). If multiple functions

are considered, several ψ’s can be constructed and orthogonal moments derived, and hence GMM can

be applied as usual to estimate θ0. An estimator θ̂ based on this will be shown to be asymptotically

normally distributed. Hence, the associated “sandwich” formula will yield proper standard errors,

which account for the first stage estimation of η0 and κ0.

Let us discuss informally the core idea of our procedure in the context of Example 1. We start

with an arbitrary and known function f = (f1, f2) ∈ L2 (Z), chosen by the researcher. For instance,

f1 (X) = T and f2 (Z1) = Z1, provided that these variables have finite second moments. Under suitable

conditions and for suitable vectors M̂1 and M̂2, our algorithm will find some finite-dimensional vector

β̂ such that an estimator κ̂ is constructed as follows:

κ̂1 (X) = f1 (X)− M̂
′
1β̂, (4.7)

κ̂2 (Z1) = f2 (Z1)− M̂
′
2β̂, (4.8)

and satisfies (4.4), with probability approaching one.

In particular, we interpret β̂ as being the solution to a Lasso-type problem with regressors M̂1 and

M̂2. Essentially, the vector β̂ makes κ̂, constructing as in (4.7)-(4.8), orthogonal to a linear operator

whose range is equal to all the possible deviations of the moment based on ψ. This orthogonality

condition can be seen as the minimization of a mean squared error. As we allow for the dimension of

each of the regressors M̂ ’s above to be greater than the sample size, we add a ℓ1−norm penalization

term. Hence, our problem of finding β̂ can be regarded as the solution to a Lasso problem. Under an

approximate sparsity condition, we show that if this β̂ is plugged into (4.7)-(4.8), a valid κ̂ and thus a

debiased moment can be obtained. Therefore, starting from an arbitrary f , we were able to construct

an orthogonal moment.

Based on this construction, we derive below a convergence rate for our OR-IV estimator, κ̂. Letting

η̂ be a suitable machine learning estimator of η0, under the key condition

√
n ||η̂ − η0|| ||κ̂− κ0|| → 0,

which allows slower than
√
n rates for η̂ and κ̂, we prove the asymptotic normality of a two-step GMM

estimator θ̂, implying that standard inference can be conducted on it straightforwardly. Debiasing plays

a pivotal role in this derivation. The following sections develop these ideas in a general framework,

derive the exact program that β has to solve, and provides the technical conditions required. Readers

less interested in these details can skip these sections, except for Section 7 where we present our

estimator.
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5 Computation of the OR-IVs

5.1 General Setting

Let us introduce the general setting. The data Wi = (Yi, Xi, Zi), i = 1, · · · , n, is iid with support

W, where Y is a random vector of endogenous variables taking values in Y ⊆ RdY , X is another

random vector of potentially endogenous variables, and Z is random vector of exogenous variables.

Let θ ∈ Θ ⊂ Rdθ denote a finite-dimensional parameter vector. In addition, let η ∈ B be a vector of

real-valued measurable functions of X that may depend on additional unknown parameters that we do

not specify, and B is some linear vector space. To be specific, η =
(
η1, · · · , ηdη

)
with ηs ≡ ηs (X). We

assume that there is a vector of residual functions mj : Y ×Θ×B 7→ R such that:

E [mj (Y, θ0, η0)|Zj ] = 0, µj − a.s., j = 1, 2, · · · , J, (5.1)

where E[·] is expectation under the distribution of Y given Zj , µj is probability measure of Zj , Z =

(Z1, · · · , ZJ), and each mj is known up to the parameters (θ0, η0). To be precise, mj might depend

on θ0 arbitrarily. Observe that we are not imposing anything regarding how the conditioning variables

relate. These might have all or some elements in common. Note that in the case where Zj is a

constant, for some j, we have an unconditional moment. Hereafter, we assume that there exists a

unique (θ0, η0) ∈ Θ×B such that (5.1) holds.

As before, let κ = (κ1, · · · , κJ), where κj ≡ κj (Zj), and κj ∈ L2(Zj), 1 ≤ j ≤ J . Hence, we say

κ ∈ L2(Z), where L2(Z) =
⊗J

j=1 L
2(Zj). Let B ⊆

⊗dη L2 (X) be a Hilbert space with inner product

⟨·, ·⟩B and define

hj (Zj , θ, η) = E [mj (Y, θ, η)|Zj ] .

Our results will rely heavily on smoothness conditions of the functions gj ’s. In particular, throughout

we maintain the key assumption:

Assumption 1. Given some ||·||, hj (Zj , θ0, ·) : B 7→ L2(Zj) is Fréchet differentiable in a neighborhood

of η0, where the derivative is given by

[∇hj (Zj , θ0, η0)] (b) ≡
d

dτ
hj (Zj , θ0, η0 + τb)

=
[
S
(j)
θ0,η0

b
]
(Zj) ,

(5.2)

for some b ∈ B.

We make the observation that (5.2) defines a linear operator S
(j)
θ0,η0

: B 7→ L2(Zj) (Carrasco et al.,

2007; Luenberger, 1997). In addition, let us define

Sθ0,η0b =
(
S
(1)
θ0,η0

b, · · · , S(J)
θ0,η0

b
)
.

Then, Sθ0,η0 : B 7→ L2(Z) is also a linear operator. We equipped L2(Z) with the inner product

⟨f1(Z), f2(Z)⟩L2(Z) =
∑J

j=1 E [f1j(Zj)f2j(Zj)], where f1 = (f11, · · · , f1J) and f2 = (f21, · · · , f2J).
Therefore, L2(Z) is a Hilbert space. The range of that operator can be defined as follows

R (Sθ0,η0) =
{
f ∈ L2 (Z) : f = Sθ0,η0b for some b ∈ B

}
.
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A key object for us is R (Sθ0,η0)
⊥
, i.e., the orthogonal complement of the closure of the range of Sθ0,η0

in L2(Z), which can be defined as

R (Sθ0,η0)
⊥
=

f ∈ L2 (Z) :

J∑
j=1

E [fj (Zj)hj (Zj)] = 0, for all h = (h1, · · · , hJ) ∈ R (Sθ0,η0)

 .

Let κ0 ∈ R (Sθ0,η0)
⊥

. Then, it can be easily verified that a debiased moment in model (5.1) can

be constructed as follows:

ψ (W, θ0, η0) =

J∑
j=1

mj (Y, θ0, η0)κ0j (Zj) . (5.3)

We point out two important observations. First, κ0 might not be unique. In fact, there can

potentially exist an infinite number of such κ0’s. Despite this, not every IV, i.e., functions in L2 (Z),

belongs to R (Sθ0,η0)
⊥
, and thus not every IV may serve as a valid κ0. Consequently, choices of

instruments commonly made in applied work might not lead to orthogonal moments. Nevertheless, we

will demonstrate how to convert any possible function in L2 (Z) into a valid κ0. Therefore, one may

begin with the common choices of instrument functions and then apply our transformation to directly

obtain an orthogonal moment.

Second, κ0 does not necessarily exist. This situation occurs when R (Sθ0,η0)
⊥
= {0}. This implies

that the only valid OR-IV is κ0 = 0, which will lead to a trivial LR moment that cannot be used to

learn θ0. Following the terminology in Argañaraz and Escanciano (2023), when R (Sθ0,η0)
⊥
= {0} we

say that the model satisfies a local surjectivity property.8 A practical implication of this situation is

that this would result in a trivial orthogonal moment, i.e., ψ = 0. Unfortunately, the plausibility of

encountering this situation depends on the particular model at hand.9

5.2 Estimation of OR-IVs

We next explain how to obtain OR-IVs automatically in the general model (5.1). We need to im-

pose some conditions to simplify our automatic construction below while still maintaining a general

framework. We assume

Assumption 2. (i) There exists a known (up to θ0 and η0) function νj such that[
S
(j)
θ0,η0

b
]
(Zj) = E [νj (Y, θ0, η0, b)|Zj ] ;

(ii) νj (Y, θ0, η0, b) = b (X)′ ν̃j (Y, θ0, η0), for some dη−vector of known (up to θ0 and η0) functions ν̃j

.

8Similar notions have appeared elsewhere, e.g., in Bonhomme (2012).
9Using our approach for estimating OR-IVs, we may check for local surjectivity in practice. For example, local

surjectivity implies κ̂ ≈ 0 for each individual in the sample for a large class of initial functions f ’s. An alternative approach

consists of using duality theory and exploiting the fact that R (Sθ0,η0)
⊥
= N

(
S∗
θ0,η0

)
, where S∗

θ0,η0
is the adjoint operator

of Sθ0,η0 and N (·) denotes the null space of an operator (Luenberger, 1997, Theorem 6.6.3). Theoretically checking that

N
(
S∗
θ0,η0

)
= {0} might be easier than studying if R (Sθ0,η0)

⊥
= {0}.
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(iii) For all b ∈ B, E
[
b (X)′ ν̃j (Y, θ0, η0)

∣∣Zj] ∈ L2(Zj).

Assumption 2 (i) says that there exists a function νj that links the direction b to the operator S
(j)
θ0,η0

through the conditional expectation given Zj . Assumption 2 (ii) requires that the function νj has to

be linear in the direction b. Assumption 2 (iii) assures the well-definiteness of the operator for all

b ∈ B. Notice that assuming the residual functions mj ’s are sufficiently smooth such that their Fréchet

differentiable exists and the interchange between derivatives and integrals holds, Assumption 2 (i) and

(ii) are satisfied. Assumption 2 (iii) is a high-level condition that restricts the conditional distribution

of the data given Zj and simplifies our calculations below.10 We can easily verify that Assumption 2

holds in Example 1 and Example 2.

As we explained above, our goal is to find a function κ0 ∈ L2 (Z) such that it is orthogonal to

R (Sθ0,η0). This implies that

J∑
j=1

E [E [νj (Y, θ0, η0, b)|Zj ]κ0j (Zj)] = 0,

for all b ∈ B. We can obtain such κ0 by picking some function f ∈ L2 (Z), and then computing

κ0 = f − Π
R(Sθ0,η0)

f , where recall that Π
R(Sθ0,η0)

denotes the orthogonal projection operator onto

R (Sθ0,η0), and is defined as follows

Π
R(Sθ0,η0)

f := arg min
f̃∈R(Sθ0,η0)

J∑
j=1

E
[(
fj(Zj)− f̃j(Zj)

)2]
. (5.4)

By the Projection Theorem, (5.4) exists and is unique (see Luenberger, 1997, Theorem 3.3.2). Next,

we exploit the following facts. Notice that Π
R(Sθ,η0)

f ∈ R (Sθ0,η0), and that the range of Sθ0,η0S
∗
θ0,η0

is

dense in R (Sθ0,η0), where S
∗
θ0,η0

is the adjoint operator of Sθ0,η0 . The following proposition provides a

general expression for this operator, which will be useful in the sequel.

Proposition 1. Suppose Assumptions 1 and 2 hold. In addition, suppose that Sθ0,η0 is bounded and

⟨b1, b2⟩B = E
[
b1(X)

′
b2(X)

]
. Then, the adjoint S∗

θ0,η0
: L2(Z) 7→ B exists, is lineal, continuous, and is

given by [
S∗
θ0,η0g

]
(X) =

J∑
j=1

E [ ν̃j (Y, θ, η0) gj (Zj)|X] .

Let Π
R(Sθ0,η0)

f = f∗, then for any ε > 0, there exists at least one function g∗ such that

J∑
j=1

E
[(
f∗j (Zj)− S

(j)
θ0,η0

S∗
θ0,η0g

∗
)2]

< ε. (5.5)

Notice that it is not necessarily the case that f∗ is an interior point of R
(
Sθ0,η0S

∗
θ0,η0

)
. However, as the

previous display indicates, we can approximate the orthogonal projection by exploiting the operator

10Similar conditions to Assumption 5.2.1 in Bonhomme (2012) are sufficient for Assumption 2 (iii).
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Sθ0,η0S
∗
θ0,η0

, objects that, as we have shown, are given by the model. These types of observations have

been used in previous works, e.g., Bonhomme (2012) (see Section D of the Appendix of this paper). In

other words, we may say that f∗ is approximately smooth relative to Sθ0,η0S
∗
θ0,η0

.11 Moreover, notice

that for any function g ∈ L2(Z), by orthogonality we have that

J∑
j=1

E
[(
fj (Zj)− S

(j)
θ0,η0

S∗
θ0,η0g

)2]
=

J∑
j=1

E
[(
f∗j (Zj)− S

(j)
θ0,η0

S∗
θ0,η0g

)2]
+

J∑
j=1

E
[(
fj (Zj)− f∗j (Zj)

)2]
.

(5.6)

The above implies that a necessary and sufficient condition for Sθ0,η0S
∗
θ0,η0

g to be close to f∗ is that

Sθ0,η0S
∗
θ0,η0

g has to be close to f . This point is important since the left-hand side of (5.6) can be used

in estimation, as we will explain below.

In this paper, we focus on a particular function space for functions that satisfy (5.5). To be precise,

let G be some space of functions equipped with norm ||·||G such that G ⊆ L2(Z). Notice that this

condition is not necessarily restrictive. In particular, if we consider G to be the space of functions in

L2(Z) that has finite L1-norm, i.e.,
∑J

j=1 E [|fj (Zj)|] < ∞, then, all functions in L2(Z) belongs to G.
In general, we are interested in solving

min
g∈G

J∑
j=1

E
[(
fj(Zj)− S

(j)
θ0,η0

S∗
θ0,η0g

)2]
. (5.7)

Using Proposition 1, we can write (5.7) more explicitly:

min
g∈G

J∑
j=1

E


fj (Zj)− E


 J∑
j′=1

E
[
ν̃j′ (Y, θ0, η0) gj′ (Zj)

∣∣∣X]
′

ν̃j (Y, θ0, η0)

∣∣∣∣∣∣∣Zj



2 . (5.8)

Typically, there will be more than one element g that solves (5.8). This can be seen from the fact that

if g∗ is a solution, then any g∗ + h is also a solution if h ∈ N
(
Sθ0,η0S

∗
θ0,η0

)
, where N (·) denotes the

null space of an operator. Nevertheless, this point is not problematic for us since any of them will lead

to the same approximation to f∗, i.e., we can take any function that solves (5.8). A natural thing to do

is to focus on the g∗ of minimum norm, denote it by g0. Then ||g0||G ≤ ||g||G for all g that solves (5.8).

If the minimum norm solution exists, it is unique since N
(
Sθ0,η0S

∗
θ0,η0

)
is a closed linear subspace

(Luenberger, 1997, Them 3.10.1). We will let ||·||G be the ℓ1−norm.

In what follows we will construct an estimator of g0 and use it to obtain an estimator of f∗. We

propose to estimate g0 by means of

ĝn = arg min
g∈Gn

J∑
j=1

E
[(
fj(Zj)− Ŝ

(j)

θ̂,η̂
Ŝ∗

θ̂,η̂g
)2]

+ 2λn ||g||2G , (5.9)

11Interestingly, in other settings, conditions such as this one, have been imposed. Recently, in the context of Riesz

representers and for non-parametric IV ill-posed problems, Bennett et al. (2022) impose a similar assumption for the

Riesz representer associated with a parameter of interest that can be written as an expectation of a function of the

nonparametric component of the model. This assumption assures strong identification of such a parameter, even if the

nonparametric part is non-identified.
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where Ŝ
(j)

θ̂,η̂
Ŝ∗

θ̂,η̂ is a suitable estimator of S
(j)
θ0,η0

S∗
θ0,η0

, λn ≥ 0 is a regularization term, and Gn is a

function class. We impose the key assumption that Gn ⊆ Ḡ for some fixed normed set of functions that

do not depend on n with norm ||·||G and, importantly, Ḡ ⊆ G. We note that Gn can be any suitable

class, e.g., Reproducing Kernel Hilbert Spaces or Neural Networks.

Particularly, we work with the space of sparse functions.12 Let γ (Z) =
(
γ1 (Z1)

′
, · · · , γJ (ZJ)

′
)′

be a vector of basis functions, where γj (Zj) is a rj−dimensional vector of known real-valued func-

tions, with E [γjk (Zj)] = 0 and E
[
γ2jk (Zj)

]
= 1, k = 2, · · · , rj .13 Let β = (β11, · · · , β1r1 , · · · , βJrJ )

′

be a r−dimensional vector, where r =
∑J

j=1 rj . Then, we consider the s-sparse function class in

r−dimension with bounded coefficients:

Gn =
{
g ∈ Ḡ : gj (Zj) = γj (Zj)

′
βj , ||β||0 = s, ||β||∞ < c

}
.

For estimation, we use cross-fitting.14 Randomly partition the sample into L subgroups, I1, · · · , IL,
of the same size. Let Icℓ be the complement of Iℓ. Next, split Icℓ into three pieces such that Icℓ =

Aℓ + Bℓ + Cℓ. Possibly, this partition will depend on j, but we omit this dependence for simplicity.

We compute β̂ℓ, using observations in Icℓ only, and base estimation of each of the components in (5.9)

using each of the pieces of Icℓ . To make our computation clear, we need to add some notation. For any

estimator, a subscript will indicate the part of Icℓ that has been used to compute it. For example, θ̂Aℓ

means that θ0 has been estimated using observations in Aℓ and so on. In addition, let nℓ denote the

number of observations in Iℓ. The estimator β̂ℓ can be written as follows

β̂ℓ = arg min
β∈Rr

J∑
j=1

1

n− nℓ

∑
i/∈Iℓ

(
fj (Zji)

−
J∑

j′=1

r
j
′∑

k=1

βj′kÊCℓ

[(
ÊBℓ

[
ν̃j′
(
Yi, θ̂Aℓ

, η̂Aℓ

)
γj′k (Zji)

∣∣∣Xi

])′

ν̃j

(
Yi, θ̂Bℓ

, η̂Bℓ

)∣∣∣∣Zji]
)2

+2λn ||β||1 ,

(5.10)

where η̂Aℓ
, η̂Bℓ

, ÊBℓ
[ ·|X], and ÊCℓ

[ ·|Zj ] are non-parametric estimators, possibly based on some Ma-

chine Learning tool, and θ̂Aℓ
and θ̂Bℓ

are possibly non-LR estimators of θ0.
15 Recall that ν̃j are known

functions, given estimators of θ0 and η0, thus, these conditional expectations can be evaluated. Notice

that the ℓ1−penalization term allows for r > n. We can also write (5.10) using matrix notation. Let

fjℓ be a nℓ−dimensional vector containing each fj (Zji), i /∈ Iℓ. Let M̂jℓ be a nℓ × r design matrix

such that its (i, l)-entry is given by[
M̂jℓ

]
il
= ÊCℓ

[(
ÊBℓ

[
ν̃j′
(
Yi, θ̂Aℓ

, η̂Aℓ

)
γj′k (Zji)

∣∣∣Xi

])′

ν̃j

(
Yi, θ̂Bℓ

, η̂Bℓ

)∣∣∣∣Zji] . (5.11)

12Extending our results to other functional classes such as Reproducing Kernel Hilbert Spaces or Neural Networks is

an interesting avenue of research.
13We let the first element of γj be 1.
14Cross-fitting has a long tradition in the semiparametric literature; see, e.g., Bickel (1982), Klaassen (1987), van der

Vaart (1998), Robins et al. (2008), Zheng and van der Laan (2010), and more recently, Chernozhukov et al. (2018).
15I.e., estimators based on non-LR moments.
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Then, (5.10) can be equivalently written as

β̂ℓ = arg min
β∈Rr

J∑
j=1

1

n− nℓ

(
fjℓ − M̂jℓβ

)′ (
fjℓ − M̂jℓβ

)
+ 2λn ||β||1 .

Remarkably, we have transformed our initial problem into a Lasso-type one for which there exist

well-known and fast algorithms to find the solution.

Ultimately, we propose to estimate each component in κ0, for each individual i ∈ Iℓ, by means of

κ̂jℓ (Zji) = fj (Zj)− f̂∗j (Zj)

= fj (Zji)−
J∑

j′=1

r
j
′∑

k=1

β̂j′kℓÊCℓ

[(
ÊBℓ

[
ν̃j′
(
Yi, θ̂Aℓ

, η̂Aℓ

)
γj′k (Zji)

∣∣∣X])′

ν̃j

(
Yi, θ̂Bℓ

, η̂Bℓ

)∣∣∣∣Zji] .
(5.12)

We can outline our algorithm as follows:

Algorithm to estimate OR-IVs:

Step 0: Choose a real-valued function f ∈ L2(Z). For instance, f(Z) = (f1(X), f2(Z1)) = (T,Z1) in

Example 1. Choose a basis for each γj(Zj), e.g., exponential, Fourier, splines, or power. In addition,

specify a low-dimensional dictionary, say γlow(Z), which is a sub-vector of γ(Z).16

Step 1: For each ℓ = 1, · · ·L, compute (possible) non-LR estimators θ̂Aℓ
and θ̂Bℓ

. Moreover, using

some Machine Learning algorithm, compute η̂Aℓ
, η̂Bℓ

, ÊBℓ
[ ·|X], and ÊCℓ

[ ·|Zj ]. These conditional

expectations depend on known ν̃j , and thus can be evaluated.

Step 2: Compute design matrix M̂jℓ such that its (i, l)−entry is (5.11).

Step 3: Initialize β̂ℓ using γ
low(Z) such that

[
M̂jℓ

]
il
= ÊCℓ

[(
ÊBℓ

[
ν̃j′
(
Yi, θ̂Aℓ

, η̂jAℓ

)
γlow
j′k

(
Zj′ i

)∣∣∣Xi

])′

ν̃j

(
Yi, θ̂Bℓ

, η̂jBℓ

)∣∣∣∣Zji] ,
β̂ℓ =

(∑J
j=1 M̂

′
jℓM̂jℓ

)−1 (∑J
j=1 M̂

′
jℓfjℓ

)
0


Step 4: (While β̂ℓ has not converged)

(a) Update normalization

D̂j′kℓ =

 1

n− nℓ

∑
i/∈Iℓ


J∑
j=1

ÊCℓ

[(
ÊBℓ

[
ν̃j′
(
Yi, θ̂Aℓ

, η̂jAℓ

)
γj′k

(
Zj′ i

)∣∣∣Xi

])′

ν̃j

(
Yi, θ̂Bℓ

, η̂jBℓ

)∣∣∣∣Zji] ϵ̂jiℓ


21/2

ϵ̂jiℓ = fj (Zji)−
J∑

j′=1

r
j
′∑

k=1

β̂j′kℓÊCℓ

[(
ÊBℓ

[
ν̃j′
(
Yi, θ̂Aℓ

, η̂jAℓ

)
γj′k

(
Zj′ i

)∣∣∣X])′

ν̃j

(
Yi, θ̂Bℓ

, η̂jBℓ

)∣∣∣∣Zji] .
16E.g., take the first r̃j components of each γj .
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(b) Update β̂ℓ, where

β̂ℓ = arg min
β∈Rr

J∑
j=1

1

n− nℓ

(
fjℓ − M̂jℓβ

)′ (
fjℓ − M̂jℓβ

)
+ 2λn

J∑
j=1

rj∑
k=1

∣∣∣D̂jkℓβjk

∣∣∣ ,
and

λn =
c1√
n− nℓ

Φ−1
(
1− c2

2r

)
,

where Φ (.) is the standard normal cdf.

Step 5: Given the optimal β̂ℓ, compute κ̂jℓ as in (5.12).

Following Belloni et al. (2012), we need to include a normalization term, D̂jkℓ, in the ℓ1 norm, which

is necessary for the good properties of the Lasso estimator we are considering. For this same reason,

we suggest computing λn as given in Step 4, as recommended by Belloni et al. (2012) (p. 2380). We

initially set c1 = 1.1 and c2 = 0.1/ log(n∨ p), as recommended by Belloni et al. (2012) (footnote 7). In

our Monte Carlo experiments, we have also considered other choices for these constants. To improve

numerical stability we follow Chernozhukov et al. (2022d) and cap the maximum number of iterations

at 10. In addition, we use warm start. This means that in a given iteration, the initial parameter

value is equal to the β̂ℓ obtained in the previous iteration. In Section B of the Appendix we provide

a justification for the previous optimization of β̂ℓ. Notice that Step 4 (b) requires solving for β̂ℓ. For

this, we use an extension of the coordinate descent approach for Lasso (Friedman et al., 2007, 2010;

Fu, 1998); see Section C of the Appendix for details and justification.

We make the observation that our previous algorithm applies to the most general case. In some

applications, it will be implemented with some simplifications, depending on the particular expres-

sion of ν̃j and how the random variables relate. For example, it might not be necessary to par-

tition Iℓ into three pieces, as it might not be necessary to compute all the estimators in Step 1.

This occurs, for example, when ν̃j does not depend on θ0 or η0 or both. Another case is when

E [ ν̃j (Y, θ0, η0) γjk(Zji)|X] = ν̃j (Y, θ0, η0) γjk(Zji) as (Y, Zj) and the variables that η0 depends on

are contained in X. More simplifications can emerge if ν̃j depends only on Zj . As we will illustrate

below, in Example 1 and Example 2,
[
M̂jℓ

]
iℓ
has a simpler expression than in (5.11).

We can simplify our implementation further. Notice that by nature of our general model, we

need to deal with a dimension given by j, which indexes the CMRs. This might be inconvenient in

practice as the researcher has to make choices for each j. For example, the type of basis γj and the

dimension of each of these vectors rj . Moreover, this might lead to work with large matrices M̂jℓ. In

particular, in the case where rj = r∗ for all j, the number of columns of the design matrix is r = J×r∗.
Nevertheless, the way in which we have formulated our problem allows us to deal with this point. We

are trying to estimate simultaneously a number of functions in L2(Z) by using a linear combination of

elements. Then we can straightforwardly impose restrictions among the approximating terms, which

places restrictions on Gn. One natural choice is to restrict γj and βj to be constant across j. Then,
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each basis γj = γ̃ has the same dimension, and gj(Zj) = γ̃ (Zj)
′
β. In this case, β = (β1, · · · , βr), and

[
M̂jℓ

]
ik

= ÊCℓ


 J∑
j′=1

ÊBℓ

[
ν̃j′
(
Yi, θ̂Aℓ

, η̂Aℓ

)
γ̃k

(
Zj′ i

)∣∣∣Xi

]′

ν̃j

(
Yi, θ̂Bℓ

, η̂Bℓ

)∣∣∣∣∣∣∣Zji
 . (5.13)

Needless to say, our approximating condition will be more likely to hold with more flexible models.17

As we will evaluate this simpler estimation of OR-IVs in Section 9 through different Monte Carlo

exercises, let us show (5.13) in the contexts of Example 1 and Example 2.

Example 1: In this case, the researcher has to provide a function f ∈ L2 (Z) and basis γ (X) and

γ (Z1). The regressors can be written as

[
M̂1ℓ

]
ik

=
γk (Xi)

η̂2ℓ (Xi)
+ ÊBℓ

[
γk (Z1i) δi
η̂3Aℓ

(Xi)
ρ
(
Y1i, Z1i, θ̂Aℓ

)∣∣∣∣∣Xi,

]
,

[
M̂2ℓ

]
ik

= ÊCℓ

[
δi

η̂2Bℓ
(Xi)

ρ
(
Y1i, Z1i, θ̂Bℓ

)( γk (Xi)

η̂Bℓ
(Xi)

+ ÊBℓ

[
γk (Z1i) δi
η̂2Aℓ

(Xi)
ρ
(
Y1i, Z1i, θ̂Aℓ

)∣∣∣∣∣Xi

])∣∣∣∣∣Z1i

]
.

In this example, while M̂2ℓ involves all the estimated objects in Step 1, in M̂1ℓ, only θ̂Aℓ
, η̂Aℓ

, and

one conditional expectation appear. Thus, to estimate the entries of M̂1ℓ, we only need to split Icℓ into

two pieces such that Icℓ = Aℓ+Bℓ, while for estimation of M̂2ℓ, we make the partition Icℓ = Aℓ+Bℓ+Cℓ.

□

Example 2: The user has to provide f(Z) = (f1(Z1), f2(Z1), f3(Z2), f4(Z2)) ∈ L2 (Z) and basis γ (Z1)

and γ (Z2). In this example, the regressors have the following expression

[
M̂1ℓ

]
ik

= γk (Z1i) + θ̂ωℓγk (Z1i) , (5.14)[
M̂2ℓ

]
ik

= θ̂ωℓ

(
γk (Z1i) + θ̂ωℓγk (Z1i)

)
, (5.15)[

M̂3ℓ

]
ik

= γk (Z2i) + θ̂ωℓγk (Z2i) , (5.16)[
M̂4ℓ

]
ik

= θ̂ωℓ

(
γk (Z2i) + θ̂ωℓγk (Z2i)

)
. (5.17)

As we can see from above, no conditional expectations or estimators of η0 appear. Hence, it is not

necessary to partition Icℓ . This is, we would use all observations in Icℓ to obtain an estimator of θ0ω. □

6 Asymptotic Properties of OR-IVs

This section provides the mean square convergence rate for κ̂ based on the Lasso estimator that we

introduced above, which is fundamental for deriving the asymptotic properties of θ̂.

17Notice that our algorithm remains as given above, except for the fact that now the expression
[
M̂jℓ

]
ik

(and thus the

normalization term D̂jkℓ) needs to account for the aggregation before the expectation ÊBℓ [ ·|X], as suggested by (5.13).
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Let Mj be the population analog of matrix M̂jℓ. Let M̂jℓ (Zji) be a r−dimensional vector contain-

ing the i− row of M̂jℓ. A similar definition applies to Mj (Zji). We define

F̂jℓ =
1

n− nℓ

∑
i/∈Iℓ

fj (Zji) M̂jℓ (Zji) , Fj = E [fj (Zj)Mj (Zj)] ,

Ĝjℓ =
1

n− nℓ

∑
i/∈Iℓ

M̂jℓ (Zji) M̂jℓ (Zji)
′
, Gj = E

[
Mj (Zj)Mj (Zj)

′
]
.

Then, β̂ℓ can equivalently be written as

β̂ℓ = arg min
β∈Rr

J∑
j=1

(
−2F̂

′
jℓβ − β

′
Ĝjℓβ

)
+ 2λn ||β||1 . (6.1)

Interestingly, the previous characterization of the program is similar to the one proposed by Cher-

nozhukov et al. (2022d) for automatic estimation of Riesz representers (see Equation (3.7) in this

paper), but with different matrices. An important difference is that Ĝj , the estimated Gram matrix,

depends on regressors M̂j ’s that are estimated. This also contrasts with the formulation considered by

Bakhitov (2022). These previous works formulate the estimation problem in terms of known objects

analogous to Mj ’s. In what follows, we work with the characterization given in (6.1). We start by

assuming

Assumption 3. There are constants c1, · · · , cJ such that with probability approaching one

max
1≤k≤r

|Mjk (Zj)| ≤ cj , µj − a.s., j = 1, · · · , J.

Since Ĝj depends on the estimated M̂j(Zj)M̂j(Zj)
′
, it is natural that we require a convergence

rate for them such that we can assure that Ĝj provides a good approximation to Gj . Let F0 be the

distribution of the data W , then we assume

Assumption 4.∫ ∣∣∣∣∣∣M̂jℓ(zji)M̂jℓ(zji)
′ −Mjℓ(zji)Mjℓ(zji)

′
∣∣∣∣∣∣
∞
F0 (dw) = Op

(
ε2n
)
, εn =

√
log(r)

n
.

Assumption 4 is a key assumption. For our Lasso results to be valid, it is sufficient to approximate

the population counterparts of the entries of the Gram matrix well, at a rate given by ε2n. Adding

more estimated regressors in the Lasso program is worth it as long as their estimation is good enough.

This emphasizes the need to leverage machine learning tools to effectively approximate the unknown

regressors, and thereby Gj , at the required rate. The flexibility of these algorithms can be important

in ensuring that Assumption 4 holds. Assumptions 3 and 4 imply∣∣∣∣∣∣Ĝjℓ −Gj

∣∣∣∣∣∣
∞

= Op (εn) .

Chernozhukov et al. (2022d) and Bakhitov (2022) present a similar result to the previous one. It should

not be surprising that we obtain this, even though we do not know theMj ’s, as Assumption 4 addresses

the fact that we are working with estimated M̂j ’s in the sense that we can proceed “as if” we knew

them. Next, we impose a sparse approximate condition on the orthogonal projection f∗.
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Assumption 5. There exist C > 1 and β̄ with s non-zero elements such that

J∑
j=1

E
[{
f∗j (Zj)−Mj(Zj)

′
β̄
}2
]
≤ Csε2n,

with
∣∣∣∣β̄∣∣∣∣

1
= O(1).

The previous assumption controls the squared approximation error from using the linear combina-

tion M
′
j β̄ to approximate the orthogonal projection. Remark that Assumption 5 does not impose that

f∗ can be written as a linear combination of s terms, i.e., that the orthogonal projection is strictly

sparse. Instead, Assumption 5 only requires the existence of β̄ with s terms such that the approxima-

tion error across the J elements is bounded by Csε2n. Moreover, the above assumption does allow the

unknown identity of the elements in Mj that give a good approximation, i.e., the researcher does not

have to specify which elements are important, a task that will be typically hard to accomplish as we

are dealing with highly complex functional objects; see Bradic et al. (2022). We also notice that a very

sparse approximation, with a small number of terms s, will typically lead to faster convergence rates.

For a more detailed discussion of approximation bias conditions with sparse specifications, see Belloni

et al. (2012). For the remainder of this section let us drop the dependence of random elements on ℓ to

simplify our notation.

We next impose a sparse eigenvalue condition, following the Lasso literature (e.g., Bickel et al.,

2009), on the empirical matrix
∑J

j=1 Ĝj :
18

Assumption 6. The largest eigenvalue of
∑J

j=1Gj is uniformly bounded in n and there is a c > 0

such that with probability approaching one

ϕ2(s) = inf

{
δ
′∑J

j Ĝjδ∣∣∣∣δSβ

∣∣∣∣2
2

, δ ∈ Rr\ {0} ,
∣∣∣∣∣∣δSc

β

∣∣∣∣∣∣
1
≤ 3

∣∣∣∣δSβ

∣∣∣∣
1
, |Sβ| ≤ s

}
> c.

Notice that the objective function in (6.1) depends on a sample counterpart of Fj , F̂j , and thus we

hypothesize a convergence rate for it.

Assumption 7.
∣∣∣∣∣∣F̂jℓ − Fj

∣∣∣∣∣∣
∞

= Op (εn).

Assumption 4 involves the estimated components of the estimated design matrix Ĝj , M̂jM̂
′
j . This

assumption is crucial for the good properties of the Lasso estimator β̂. Nonetheless, it is not enough

to assure that a good approximation will be obtained for f∗. If β̂ is sufficiently accurate but M̂j is not,

in a precise sense, we will not be able to approximate f∗ well. Given this, we also need to impose some

rate for the mean square distance between M̂j and its population counterparts Mj . We do this with

the following assumption:

18Imposing a sparse eigenvalue condition on the empirical Gram matrix has been done elsewhere, e.g., Belloni and

Chernozhukov (2013).
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Assumption 8. Let

B =
J∑
j=1

∫ (
Mj (zj)− M̂j (zj)

)(
Mj (zj)− M̂j (zj)

)′

F0 (dw) .

Then, the maximum eigenvalue of B is Op
(
ε2n
)
.

Finally, we allow the Lasso regularization parameter λn to shrink slightly slower than εn =
√
log(r)/n

(as in Bakhitov (2022) and Chernozhukov et al. (2022d)), which restricts the rate at which r grows as

a function of n. This completes the list of sufficient conditions that yields one of the main results of

the paper:

Theorem 2. Let Assumptions 3-8 hold. In addition, suppose that εn = o (λn). Then,

||κ̂(Z)− κ0(Z)||L2(Z) = Op (µ
κ
n) , µκn =

√
sλn.

Notice that the rate depends on s, which controls the degree of approximate sparsity in f∗. The

smaller s, the faster the rate. Additionally, the rate depends on εn, which controls the approximation

of the estimated Gram matrix Ĝj to Gj . As we emphasized above, this depends heavily on the good

properties of M̂j . Interestingly, despite allowing for an endogenous setting, as in Bakhitov (2022),

which derives slower rates for its Riesz representer estimator relative to the one in Chernozhukov et al.

(2022d), endogeneity does not affect the rate we obtain.19 Intuitively, this is due to the fact that to

construct our estimator κ̂, we always work with functions or dictionaries of the exogenous variables

of the model. Particularly, g∗ is a function of the conditioning variables only. In contrast, Bakhitov

(2022) deals with dictionaries of endogenous variables. We regard this as an advantage of the way we

have formulated our problem.

7 Estimation of the Parameter of Interest in a Two-Step Setting

We now propose an estimator of θ0. To this end, we will simplify some aspects of our general model

(5.1). Up to now, we have allowed the functions mj ’s to depend on the entire vector η0 and θ0. This

is the most general case that we can think of in our context. As we have shown, our construction of

debiased moments can handle it. We, however, will be interested in the common situation where the

researcher works with a two-step setting, in which there are functions mj ’s that depend on η0 only.

Then, CMRs based on those functions can be used to obtain an estimator of η0, as it occurs with our

examples. We focus on this case as many relevant scenarios in applied work present this feature (see,

e.g., Chen and Qiu, 2016, Section 5 and references therein). Additionally, to simplify our theoretical

derivations below and to be able to obtain more familiar conditions for rates of first-stage estimators,

we will focus on the case where mj depends on ηj only and η0j is a conditional expectation.20 Focusing

19See Theorem 1 and the author’s comments in Bakhitov (2022).
20We remark that this is not necessary. Our theory can be extended to the more general case, at the cost of making

derivations more involved. We focus on the situation where η0j is a conditional expectation since the asymptotic result

we obtain for θ̂ depends on the mean square convergence of η̂j , which has been derived for various machine learners. This

is not the case for general first-stages, except for the theoretical guarantees obtained by Farrell et al. (2021b) for Deep

Neural Networks.
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on conditional expectations as first-stage nuisance parameters is appealing as we can leverage machine

learning algorithms to model such objects very flexibly. Furthermore, there exist well-known theoretical

results that guarantee their convergence.

Recall from our previous discussion that for a given instrument f ∈ L2(Z), we can obtain an OR-IV

κ0(Z), with J elements. Then, for different choices of instruments, say q of them, we can construct J

vectors κ0j(Zj), of dimension q. We use the bold notation to emphasize that κ0j(Zj) is a q−vector.

For the remainder of this paper, let us re-define (5.3) such that

ψ (W, θ, η,κ) =

J∑
j=1

mj (Yi, θ, ηj)κj(Zj),

where we should notice that ψ is a now a q−vector function, and mj depends on ηj only. Let η̂ℓ be an

estimator of η0, using observations in Icℓ . In addition, let

ψ̂ (θ) =
1

n

L∑
ℓ=1

∑
i∈Iℓ

ψ (Wi, θ, η̂ℓ, κ̂ℓ) .

Our proposed estimator θ̂ is defined as the solution to the GMM program

θ̂ = arg min
θ∈Θ

ψ̂ (θ)′ Λ̂ψ̂ (θ) , (7.1)

where Λ̂ is a positive semi-definite symmetric weighting matrix. A choice that asymptotically minimizes

the asymptotic variance is Λ̂ = Ψ̂−1, where

Ψ̂ =
1

n

L∑
ℓ=1

∑
i∈Iℓ

ψ̂iℓψ̂
′
iℓ, ψ̂iℓ ≡ ψ

(
Wi, θ̃ℓ, η̂ℓ, κ̂ℓ

)
,

and θ̃ℓ is a possibly non-LR estimator of θ0, based on observations in Icℓ . Matrix Ψ̂ directly accounts

for estimating η0 and κ0 in a previous stage. We refer to (7.1) as the Debiased-CMRs Estimator

(D-CMRs). Let us summarize our estimation procedure with the following steps:

Step 1: For each subsample ℓ = 1, · · · , L , compute estimates η̂ℓ and κ̂ℓ, using observations not in Iℓ.

Step 2: Obtain our estimator θ̂ by means of (7.1). The estimator of the asymptotic variance, which

accounts for the estimation of the previous objects, takes the “sandwich” form

V̂ =
(
Υ̂′Λ̂Υ̂

)−1
Υ̂′Λ̂Ψ̂Λ̂Υ̂

(
Υ̂′Λ̂Υ̂

)−1
, Υ̂ =

∂

∂θ
ψ̂(θ̂). (7.2)

As η0 is a vector of conditional expectations, any suitable machine learning procedure can be

used to obtain η̂ℓ. Standard assumptions in the machine learning literature need to be imposed on

the mean-square convergence rate of this estimator. Conveniently, for the exogenous case where η0

depends on the conditioning variables Z only, the convergence rates for different machine learners have

been already obtained, for example, neural networks (Chen and White, 1999; Farrell et al., 2021a;
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Schmidt-Hieber, 2020), random forests (Syrgkanis and Zampetakis, 2020), Lasso (Bickel et al., 2009),

and boosting (Luo et al., 2022). As we stated previously, we want to consider the general case where η0

can also be a function of variables different from the conditioning ones, i.e., we allow for endogeneity.

In the endogenous setting, identification of η0 is trickier and typically involves an ill-posed problem. In

particular, the identification of this parameter requires the so-called “completeness condition” (Newey

and Powell, 2003). The ill-posedness results in slower rates for the mean square norm of estimators of

η0 than in the exogenous situation. One strategy to alleviate this is to consider rates for the projected

mean square norm. Let Tj : L
2(X) 7→ L2 (Zj) denote the conditional expectation operator given by

Tjηj = E [ηj (X)|Zj ] .

The projected norm is ||Tj (ηj − η0j)||2 =
√

E
[
E [ηj (X)− η0j (X)|Zj ]2

]
. That this norm projects onto

the exogenous Zj allows us to hypothesize convergence rates without having to control the degree of

ill-posedness. Moreover, due to ill-posedness, rates for the square norm will be typically slower than

for the projected norm.21 Hence, conditions on rates for the projected norm will be weaker. This is

what we will do to derive the asymptotic properties of θ̂. To be concrete, we will require

||T (η − η0)||L2(Z) ≡

√√√√ J∑
j=1

||Tj (ηj − η0j)||22 (7.3)

= Op (µ
η
n) ,

where we will allow µηn to be slower than the
√
n−rate. Then, we can use a variety of machine learners

that deal with the estimation of conditional expectations under the presence of endogeneity (e.g., Gold

et al., 2020; Singh et al., 2019). Considering the previous discussion, and to avoid ambiguity, for the

remainder of this paper, we treat η as belonging to B̃ ⊆ B, equipped with the projected mean square

norm, given on the right-hand side of (7.3).

8 Asymptotic Properties of D-CMRs

The theoretical guarantees of θ̂ will be obtained by applying many of the results derived by Cher-

nozhukov et al. (2022a). To this end, let us impose some regularity conditions:

Assumption 9. E
[
||ψ (W, θ0, η0,κ0)||2

]
<∞, and

i)
∫
|mj (y, θ0, η̂jℓ)−mj (y, θ0, η0j)|2 F0 (dw)

p→ 0,

ii)
∫
|mj (y, θ0, η̂jℓ)−mj (y, θ0, η0j)|2 ||κ0j(zj)||2 F0 (dw)

p→ 0,

iii)
∫
|mj (y, θ0, η0j)|2 ||κ̂jℓ(zj)− κ0j(zj)||2

p→ 0.

21See Section 2.1 in Bakhitov (2022) to see why this is the case; see also Bennett et al. (2022).
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Assumption 9 i) and ii) are mean square convergence conditions for η̂, while iii) is a convergence

condition for κ̂. Next, let us define

∆̂ℓ(w) =
J∑
j=1

(mj (y, θ0, η̂jℓ)−mj (y, θ0, η0j)) (κ̂jℓ(Zj)− κ0j(Zj)) .

We need to guarantee that the estimators of OR-IVs are well-defined, for this, we impose

Assumption 10. There are constants c1, · · · , cj such that with probability approaching one

max
1≤k≤r

∣∣∣M̂jk (Zj)
∣∣∣ ≤ cj , j = 1, · · · , J, a.s.

Also, we hypothesize a rate of convergence for the estimator η̂, which is required to be faster than

n−1/4 only, and the same requirement applies for our estimators of OR-IVs, as the following assumption

states:

Assumption 11. i) ||T (η̂ℓ − η0)||L2(Z) = Op (µ
η
n) , µηn = o

(
n−1/4

)
; ii)

√
nµηnµκn → 0.

However, to make the rate for η̂ useful in our context, it must be the case that mj is continuous in

ηj , which is imposed by the following condition:

Assumption 12. For ||T (η̂ℓ − η0)||2L2(Z) small enough,

J∑
j=1

||Tj (mj (y, θ0, ηj)−mj (y, θ0, η0j))||22 ≤ C ||T (η̂ℓ − η0)||2L2(Z) .

Assumptions 3, 4, 7, 10, 11, 12, and εn = o(λn) imply

i)

∫ ∣∣∣∣∣∣∆̂ℓ(w)
∣∣∣∣∣∣2 F0(dw)

p→ 0, and ii)
√
n

∫
∆̂ℓ(w)F0(dw)

p→ 0. (8.1)

Expression (8.1) is a
√
n−convergence result for object ∆̂ℓ, which will be key to derive the asymptotic

properties of θ̂. Additionally, let

ψ (θ, η,κ) = E [ψ (W, θ, η,κ)] .

Assumption 13. ψ (θ, η,κ) is twice continuously Fréchet differentiable in a neighborhood of η0.

Then it can be shown that since ψ leads to a debiased moment, there exists a C > 0 such that∣∣∣∣ψ (θ0, η,κ0)
∣∣∣∣ ≤ C ||T (η̂ℓ − η0)||2L2(Z) .

All the previous conditions yield the most important result of this section:

Lemma 3. Let Assumptions 3, 4, 7, 9, 10, 11, 12, and 13 hold. Then,

√
nψ̂(θ0) =

1√
n

n∑
i=1

ψ (Wi, θ0, η0,κ0) + op(1). (8.2)
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The result in (8.2) is essential for obtaining asymptotic normality of θ̂. Interestingly, cross-fitting

enables to show (8.2) in a simple manner, without the need to impose the so-called Donsker conditions

for η0, as discussed in Chernozhukov et al. (2018) and Chernozhukov et al. (2022a). Avoiding Donsker

conditions is important as it is unknown if machine learners satisfy them. Furthermore, they could be

restrictive in high-dimensional contexts.

The next condition is sufficient to show the consistency of Ψ̂, which appears in the asymptotic

variance of our GMM estimator.

Assumption 14.
∫ ∣∣∣mj

(
y, θ̃ℓ, η̂jℓ

)
−mj (y, θ0, η̂jℓ)

∣∣∣2 ||κ̂jℓ(zj)||2 F0(dw)
p→ 0.

Finally, as in any GMM setting, we need conditions for convergence of the Jacobian: ∂
∂θ ψ̂(θ̄)

p→
Υ = E

[
∂
∂θψ (W, θ0, η0,κ0)

]
for any θ̄

p→ θ0. To that end, we impose the following:

Assumption 15. Υ exists and there is a neighborhood N of θ0 and ||·|| such that

i) ||T (η̂ℓ − η0)||L2(Z) ||κ̂ℓ − κ0||L2(Z)

p→ 0;

ii) For all ||T (η − η0)||L2(Z) ||κ− κ0||L2(Z) (where we are considering each element of κj) small

enough, ψ (W, θ, η,κ) is differentiable in θ on N with probability approaching one and there is a

C and d (W, η,κ) such that for θ ∈ N and for each ||T (η − η0)||L2(Z) ||κ− κ0||L2(Z) small enough∣∣∣∣∣∣∣∣∂ψ (W, θ, η,κ)

∂θ
− ∂ψ (W, θ0, η,κ)

∂θ

∣∣∣∣∣∣∣∣ ≤ d (W, η,κ) ||θ − θ0||1/C ; E [d (W, η, κ)] < C;

iii) For each q and k,
∫ ∣∣∣∂ψq(w,θ0,η̂ℓ,κ̂ℓ)

∂θk
− ∂ψq(w,θ0,η0,κ0)

∂θk

∣∣∣F0(dw)
p→ 0.

Given the previous assumptions and findings, the following result, which shows the asymptotic

normality of θ̂, can be obtained in relatively simple terms.

Theorem 4. Let Assumptions 3, 4, 7, 9, 10, 11, 12, 13, and 14 hold. In addition, let θ̂
p→ θ0, Λ̂

p→ Λ,

and Υ
′
ΛΥ be non-singular. Then,

√
n
(
θ̂ − θ0

)
d→ N (0, V ) , V =

(
Υ

′
ΛΥ
)−1

Υ
′
ΛΨΛΥ

(
Υ

′
ΛΥ
)−1

.

If Assumption 15 also holds, then V̂
p→ V .

Theorem 4 implies that confidence intervals for θ̂ can be obtained straightforwardly in a standard

way, using V̂ , and the usual quantiles of the standard normal distribution. This holds despite the

convergence rates of nuisance parameters being slower than
√
n. Note that Theorem 4 relies on the

consistency of θ̂. We provide sufficient conditions for this in Section E.

9 Monte Carlo

This section studies the performance of D-CMRs, introduced in Section 7, in samples of finite sizes.

We have run several Monte Carlo experiments in the context of Example 2 to estimate the parameters

of a production function, θ0p (cf. Equation 3.4), and the parameter associated with the productivity

process, θ0ω (cf. Equation 3.8), simulating data of a panel of n firms observed across T periods.
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9.1 Data Generating Process

The data generating process (DGP) we work with is similar to the one considered by Ackerberg et al.

(2014), Section 4.3. Only for this section, let us distinguish between variables in logs and in levels.

Uppercase variables denote variables in logs while lowercase variables stand for variables in levels. In

our experiments, firms are followed during three periods, i.e., T = 3. We consider a Cobb-Douglass

production function in logs:

Yit = θ01 + θ0kKit + ωit + ϵit,

where θ01 = 0 and θ0k = 1. The law of motion of capital is given by

kit = (1− δ) ki,t−1 + µitii,t−1,

where 1− δ = 0.9, µit is a lognormal standard shock to the capital accumulation process, and iit is the

firm’s investment decision. This decision is assumed to follow

Iit = γ0 + γ1Kit + γ2ωit + exp (−0.5Kit + 0.5ωit) ,

where γ0 = 0, γ1 = −0.7, and γ2 = 5. We consider a large value for γ2 to exacerbate the endogeneity

bias due to the correlation between inputs and the anticipated productivity shock. We have specified

an admittedly ad-hoc process for Iit. We do this for two reasons. First, we avoid solving potentially

complicated firms’ dynamic programs. Second, such a process, as we showed, is the source of the

non-parametric component of this model, and thus we would like to model it flexibly to assess how

our estimator behaves in highly nonlinear circumstances. Hence, we would like to have some degrees

of freedom to make the relationship between Iit and ωit complex.

Productivity is assumed to follow a normal AR(1) process with θ0ω = 0.7. The variance of the

innovation term in this process is specified such that the standard deviation of ωit is σω = 0.1. The

unanticipated productivity or measurement error in output is normal and iid over firms and time. The

standard deviation of this shock σϵ varies across the three periods of observed data such that σϵ1 = 0.2,

σϵ2 = 0.05, and σϵ3 = 0.1. Finally, to avoid our GDP depending on the starting values of the variables,

we focus on data coming from the steady-state distribution implied by the model. For this, we have

simulated the data over one hundred periods and kept the last three.22

9.2 Results

Recall that Step 0 in our algorithm to estimate OR-IVs involves choosing a vector of functions of

the conditioning variables appearing in the CMRs implied by the model, (3.10)-(3.13). A given vector

function f(Z) will allow us to obtain one unconditional LR moment. In our simulations, we automat-

ically construct four debiased moments, and thus we have to provide four such vectors of functions.

22The same idea has been followed by Ackerberg et al. (2014) and Ackerberg et al. (2015).
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These are

f1(Z) = (Ki1,Ki1,Ki2,Ki2)
′
,

f2(Z) = (Ii1, Ii1, Ii2, Ii2)
′
,

f3(Z) = (Ki1,Ki1, Ii2, Ii2)
′
,

f4(Z) = (Ki1, Ii1, Ii2, Ii2)
′
.

Let us emphasize that each of the previous vectors has four elements since our model has been written

in terms of four CMRs, (3.10)-(3.13). We have specified four of these vectors as we aim to construct

four different orthogonal moments.

Based on these, we have run GMM using the identity matrix as the weighting matrix Λ̂.23 In all

situations, the bases coincide, i.e., γj = γ̃, and βj ’s are assumed to be constant across j, for simplicity.

The estimation of the OR-IVs is based on regressors (5.14)-(5.17) and we obtain β̂ℓ using our algorithm

outlined in Section 5.2.

We acknowledge that one limitation our overall procedure has is that it involves several choices

by the user. Hence, we are interested in studying the performance of our proposed algorithm using

different choices, with the hope that these do not play an important role, as our theoretical results

indicate, at least for a reasonable sample size. These choices are λn, the number of folds L, the number

of bases r, the type of basis γ̃, and the machine learner employed in the first stage.

Except for specific situations, we estimate η0 with boosting letting L = 4, γ’s are exponential bases,

r = 9.24 The tuning parameter λn is the recommendation by Belloni, Chen, Chernozhukov, and Hansen

(2012) (p. 2380, BCCH below). This is such that λn = 1.1√
n−nℓ

Φ−1
(
1− c2

2r

)
, with c2 = 0.1/ log((n−nℓ)∨

r). Also, we have chosen a smaller and larger λn. The smaller λn is such that λn = 1.01√
n−nℓ

Φ−1
(
1− c2

2r

)
,

with c2 = 2/ log(log(log((n − nℓ) ∨ r))). The case with larger λn has λn = 1.3√
n−nℓ

Φ−1
(
1− c2

2r

)
, with

c2 = 0.1/ log((n−nℓ)∨r). We also consider a scenario where L = 6. In a different experiment, we specify

a larger number of coefficients such that r = 25. Additionally, we model γ’s through Fourier basis.25

Finally, in another situation, η0 is estimated with Random Forest.26 Taking everything together, we

present seven different experiments. In a given experiment, three different sample sizes are considered.

We based results on 1, 000 Monte Carlo repetitions.

Table 1 and 2 display the associated bias and the 95% coverage of D-CMRs for each of the three

23This can in principle be improved by considering some matrix that depends on the instruments Z. However, we have

kept our choice for simplicity and to reduce computational time.
24We use the R-function gbmt for boosting. Default options were kept. In particular, weights are equal to 1, the model

offset is a vector of zeros, the number of trees is 2000, interaction depth is 3, the minimum number of observations in a

node is 10, shrinkage is set at 0.001, bag fraction is 0.5, and 50% of the sample is for training the model. Predictions

were conducted using the first 500 iterations of the boosting sequence. A one-dimensional exponential basis is of the form

γ̃k(V ) = exp (αkV ), each with different rate parameter αk. To create a multi-dimensional basis we use the tensor product

among one-dimensional bases. For a discussion of the use of bases with R, we refer the reader to Ramsay et al. (2009).
25A one-dimensional Fourier basis is such that γ̃1(V ) = 1, γ̃2(V ) = sin (αV ), γ̃3(V ) = cos (αV ), γ̃4(V ) = sin (2αV ),

γ̃5(V ) = cos (2αV ), · · · , where α = 2π/K and K is the range of V .
26We use the R-function ranger. Default options were kept. In particular, the number of trees is 500, the minimal

node size is 5, the minimal terminal node size is 1, sampling is with replacement, the splitting rule is based on variance,

the significance threshold is 0.5, and the regularization factor is 1.
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parameters of interest, θ01, θ0k, and θ0ω, across the Monte Carlo repetitions. The tables indicate

reasonably good performance for D-CMRs uniformly, regardless of the specific experiment we focus

on. We observe that as the sample size increases, D-CMRs reports small bias, which is true for every

parameter of the model. Hence, point estimates provide a good approximation to the true values. As

expected, a smaller λn tends to yield a smaller bias. The number of folds seems irrelevant in terms of

bias. In this example, increasing the number of bases does not necessarily produce better bias, but the

difference with respect to a case with smaller r does not seem of practical relevance. The same holds

for the specific choice for γ’s and the machine learning tool employed. While the bias is always smaller

for θ̂k, we see that θ01 and θ0ω are more difficult to learn properly. Nevertheless, this issue disappears

for larger n’s.

More importantly, our procedure is able to control the size. As n becomes larger, the coverage

gets closer to the nominal level. The three different choices of the tuning parameter produce almost

the same coverage. While we observe some differences when L is larger, any apparent distinction

disappears as n grows. A larger r causes a slight improvement in terms of coverage, however, the

improvement disappears when n is sufficiently large. The choice of the specific basis seems innocuous

for coverage. Random Forest tends to yield a coverage level slightly larger for parameters θ̂1 and θ̂ω,

possibly explained by the fact that the bias is shrinking faster than the variance as n grows. This might

be prevented by exploring other choices of the tuning parameters used in the first stage when η0 is

estimated. The main takeaway is that we see relatively stable performance over the choices considered

in this simulation example. These observations, then, are in line with our theoretical results. As we

emphasized several times in the text, our setting is challenging from an econometric perspective as we

are dealing with unknown operators (or an unknown Gram matrix). Yet, D-CMRs perform well for

sample sizes that can be arguably regarded as small. In conclusion, our Monte Carlo results allow us

to be confident about the good properties of our estimation strategy.
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Table 1: Monte Carlo Results - Bias and 95% Coverage

n = 250

Est. Smaller Larger λn Larger Larger Fourier Random

λn λn (BCCH) L r Basis Forest

Bias (θ̂1) 0.095 0.097 0.100 0.105 0.095 0.105 0.100

Cov95% 0.935 0.934 0.936 0.912 0.937 0.948 0.914

Bias (θ̂k) -0.031 -0.039 -0.041 -0.044 -0.036 -0.046 -0.042

Cov95% 0.912 0.913 0.906 0.894 0.910 0.925 0.918

Bias (θ̂ω) -0.160 -0.162 -0.163 -0.165 -0.160 -0.166 -0.253

Cov95% 0.738 0.742 0.739 0.651 0.745 0.733 0.777

n = 500

Est. Smaller Larger λn Larger Larger Fourier Random

λn λn (BCCH) L r Basis Forest

Bias (θ̂1) 0.048 0.061 0.059 0.060 0.059 0.071 0.035

Cov95% 0.943 0.939 0.947 0.927 0.941 0.959 0.963

Bias (θ̂k) -0.013 -0.029 -0.027 -0.027 -0.027 -0.040 -0.021

Cov95% 0.903 0.935 0.927 0.894 0.935 0.935 0.949

Bias (θ̂ω) -0.081 -0.088 -0.087 -0.074 -0.087 -0.095 -0.103

Cov95% 0.926 0.922 0.922 0.886 0.922 0.919 0.970

NOTE: The table shows the bias and the 95% coverage of D-CMRs, across different specifications of our algorithm.

Except for specific situations, we have estimated η0 with boosting, L = 4, γ’s are constructed from exponential

basis, r = 9, and λn is the recommendation by Belloni, Chen, Chernozhukov, and Hansen (2012) (p. 2380, BCCH).

All these choices are used in the specification appearing in the fourth column of the table. Smaller λn refers

to the case λn = 1.01√
n−nℓ

Φ−1
(
1− c2

2r

)
, with c2 = 2/ log(log(log((n − nℓ) ∨ r))). Larger λn stands for the case

λn = 1.3√
n−nℓ

Φ−1
(
1− c2

2r

)
, with c2 = 0.1/ log((n − nℓ) ∨ r). Larger L is when L = 6. Larger r reproduces the

estimation with r = 25. Fourier Basis employs these for the γ’s. We use random forest to estimate η0 in the last

column of the table. Results are based on 1, 000 Monte Carlo repetitions.
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Table 2: Monte Carlo Results - Bias and 95% Coverage (continued)

n = 750

Est. Smaller Larger λn Larger Larger Fourier Random

λn λn (BCCH) L r Basis Forest

Bias (θ̂1) 0.028 0.039 0.037 0.038 0.039 0.053 0.022

Cov95% 0.944 0.946 0.949 0.955 0.958 0.965 0.980

Bias (θ̂k) -0.002 -0.020 -0.017 -0.017 -0.020 -0.037 -0.018

Cov95% 0.880 0.929 0.925 0.924 0.930 0.944 0.945

Bias (θ̂ω) -0.018 -0.025 -0.023 -0.012 -0.025 -0.033 -0.041

Cov95% 0.952 0.951 0.954 0.952 0.951 0.950 0.990

NOTE: The table shows the bias and the 95% coverage of D-CMRs, across different specifications of our algorithm.

Except for specific situations, we have estimated η0 with boosting, L = 4, γ’s are constructed from exponential

basis, r = 9, and λn is the recommendation by Belloni, Chen, Chernozhukov, and Hansen (2012) (p. 2380, BCCH).

All these choices are used in the specification appearing in the fourth column of the table. Smaller λn refers

to the case λn = 1.01√
n−nℓ

Φ−1
(
1− c2

2r

)
, with c2 = 2/ log(log(log((n − nℓ) ∨ r))). Larger λn stands for the case

λn = 1.3√
n−nℓ

Φ−1
(
1− c2

2r

)
, with c2 = 0.1/ log((n − nℓ) ∨ r). Larger L is when L = 6. Larger r reproduces the

estimation with r = 25. Fourier Basis employs these for the γ’s. We use random forest to estimate η0 in the last

column of the table. Results are based on 1, 000 Monte Carlo repetitions.

10 Final Remarks

This paper has extended the construction of LR/orthogonal/debiased moments to general models

defined by a finite number of CMRs, with possible different conditioning variables and endogenous

regressors. As we have argued, our strategy exploits the CMRs implied by the model in a general way,

and thus can be applied in a wide variety of settings. Hence, our approach will hopefully pave the way for

the employment of machine learning techniques in contexts where the construction of LR has remained

unexplored such as non-linear GMM settings, missing data models, production functions at the firm

level, dynamic discrete choice models, simultaneous equations models, and many others. Conveniently,

our construction is based on a Lasso-type program, making it straightforward to implement. We

encourage researchers to use our recipe to convert typical “ad-hoc” choices of IVs into valid OR-IVs,

leading to a LR moment, especially important in high-dimensional contexts.

Our theoretical results and Monte Carlo experiments motivate us to leverage our procedure further.

In future versions of this work, we plan to use data from a panel of Chilean firms, from 1979 to 1986.

This data has been extensively studied by the production function literature; see, e.g., Levinsohn and

Petrin (2003), Ackerberg et al. (2015), and Gandhi et al. (2020).27 Our motivation to work with this

application is that production function estimation and measures of productivity play a central role in

several empirical settings in economics, with important implications for policymaking. For instance,

production functions have been used to study the effects of trade liberalization, exporting, foreign

27We are indebted to David A. Rivers and Salvador Navarro for sharing the data with us and answering our questions

regarding the construction of the variables.
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ownership, competition, importing intermediate goods, investment climate, and learning by doing (see

Ackerberg et al., 2007, 2015, and references therein). To the best of our knowledge, no previous work

has constructed debiased moments for all the interesting parameters in these settings using a semi-

parametric perspective. Hence, we are interested in determining if our strategy can uncover larger

heterogeneity patterns among production functions than previously recognized. We leave such an

exploration for future versions of this paper.

We recognize that our paper has its limitations. We have assumed that our limited number of LR

moments are sufficient to identify θ0. Additionally, taking identification for granted, we have ignored

that efficiency can be improved by selecting other orthogonal moments. These are crucial matters

that should not be overlooked. It is essential to explore the construction of debiased moments that

are assured to preserve identification in models defined by a number of CMRs using modern tools,

following, e.g., Muandet et al. (2020) and Zhang et al. (2021). Furthermore, as we have seen, several

κ0’s might exist. This raises the question of whether it is possible to characterize a suitable notion of

“optimality” among these OR-IVs. From an efficiency standpoint, it is well-known that the first best is

the optimal IV (see, e.g., Chamberlain, 1992b). This special κ not only yields an estimator that achieves

the efficient semiparametric bound, but it is also a valid OR-IV (Newey, 1990; van der Vaart, 1998).

Such a choice, nonetheless, is difficult to estimate in general settings, which might explain why it has

not been popular among applied researchers. It might be interesting to define a broader criterion that

yields second-best choices of OR-IVs that are guaranteed to improve efficiency in estimation relative

to other OR-IVs and whose computation is tractable in practice. Moreover, a more general theory

for the estimation of OR-IVs can be derived. We have performed our construction exclusively for the

space of sparse functions. It might be promising to develop a general framework for different functional

spaces Gn, including Reproducing Kernel Hilbert Spaces and Neural Networks. Finally, observe that

the algorithm that this paper proposes only serves for debiasing structural parameters θ0’s. It might

be important to reproduce the exercise for more general parameters, which include smooth functions of

high-dimensional parameters, e.g., an average partial effect that depends on η0. While the theoretical

characterization of debiased moments for such parameters has already been derived by Argañaraz and

Escanciano (2023), a suitable implementation routine for it remains to be explored. Hopefully, these

ideas will be addressed in subsequent works.
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Appendix

A Orthogonality Results

Proof of Proposition 1: The existence, linearity, and continuity of S∗
θ0,η0

follows from Theorem 2.21

in Carrasco et al. (2007). For any function g ∈ L2(Z), by definition, S∗
θ0,η0

satisfies

⟨Sθ0,η0b, g⟩L2(Z) =
〈
b, S∗

θ0,η0g
〉
B
.

Then, the result of the proposition easily follows by writing:

⟨Sθ0,η0b, g⟩L2(Z) =
J∑
j=1

E
[
E
[
b(X)

′
ν̃j (Y, θ0, η0)

∣∣∣Zj] gj(Zj)]

=

J∑
j=1

E
[
b(X)

′
ν̃j (Y, θ0, η0) gj(Zj)

]

= E

b(X)
′
J∑
j=1

E [ ν̃j (Y, θ0, η0) gj(Zj)|X]

 , (A.1)

where the first equality holds under Assumption 2, and the second and third equality uses the law of

iterated expectation. Hence, expression (A.1) implies

S∗
θ0,η0g =

J∑
j=1

E [ ν̃j (Y, θ0, η0) gj(Zj)|X] . ■

B Justification of the Algorithm for Estimation of OR-IVs

The justification of the proposed algorithm for estimation of OR-IVs follows by similar arguments as

presented by Belloni et al. (2012) and Chernozhukov et al. (2022d). Particularly, we have applied

Algorithm A.1 in Belloni et al. (2012) to our context. D̂jkℓ ≡ D̂lℓ is the normalization term, which is

constructed as the square root of the empirical second moment of the regressors of the problem times

the corresponding residuals (a normalization of the first-order conditions of the unrestricted problem).

The formula for λn is the same as in Chernozhukov et al. (2022d), which is the one recommended by

Belloni et al. (2012).28 As a result, the procedure that we propose based on tuning parameter λn is

justified by a similar argument to Theorem 1 in Belloni et al. (2012).

Observe, nevertheless, that there exists a difference between our program and the type of Lasso

problems considered by Belloni et al. (2012) and Chernozhukov et al. (2022d). As we emphasized

in the main text, regressors are unknown in our case and thus we need to estimate them, while the

aforementioned papers work under the standard situation where regressors are known. In any case,

28After we properly account for the fact that λn = λ̃n/n, where λ̃n is the tuning parameter in Belloni et al. (2012).
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the key condition in Theorem 1 in Belloni et al. (2012) ask for the asymptotic validity of the penalty

loadings, i.e., D̂lℓ. Let D̂
0
lℓ = D̂0

jkℓ be the “ideal” penalty loadings, which are defined as

D̂0
j′kℓ

=

 1

n− nℓ

∑
i/∈Iℓ


J∑
j=1

E
[(

E
[
ν̃j′
(
Y, θ0, η0j′

)
γj′k (Zjk)

∣∣∣X])′

ν̃j (Y, θ0, η0j)

∣∣∣∣Zj] ϵ0j


21/2

,

where ϵ0j is the j − th entry of the vector f (Z) − f∗(Z), i.e., the difference between the starting

instrument and its orthogonal projection on R
(
Sθ0,η0S

∗
θ0,η0

)
. Then, the ideal loadings are constructed

from the “population” regressors and ϵ0j . Our estimated loadings are asymptotically valid if they obey

aD̂0
l ≤ D̂l ≤ bD̂0

l , (B.1)

where 0 < a ≤ 1 ≤ b such that a
p→ 1 and b

p→ b
′
, with b

′ ≥ 1 (cf. Equation (3.2) in Belloni et al.

(2012)). Condition (B.1) is written in terms of the estimated regressors, as it involves D̂l. But, under

a mild convergence condition, it can be written in terms of loading based on the population regressors,

with probability approaching one. In this case, condition (B.1) will be analogous to the condition

required by Theorem 1 in Belloni et al. (2012). Let us define

D̃0
j′kℓ

=

 1

n− nℓ

∑
i/∈Iℓ


J∑
j=1

E
[(

E
[
ν̃j′
(
Y, θ0, η0j′

)
γj′k (Zjk)

∣∣∣X])′

ν̃j (Y, θ0, η0j)

∣∣∣∣Zj] ϵ̃jiℓ


21/2

,

ϵ̃jiℓ = fj (Zji)−
J∑

j′=1

r
j
′∑

k=1

β̂j′kℓE
[(

E
[
ν̃j′ (Yi, θ0, η0j) γj′k

(
Zj′ i

)∣∣∣X])′

ν̃j (Yi, θ0, η0j)

∣∣∣∣Zji] .
In addition, let us ignore the subscript associated with cross-fitting, and assume

Assumption 16. There exists a neighborhood N of θ0 and ||·|| such that for θ ∈ N and for J∑
j=1

||Tj (ηj − η0j)||22

1/2

small enough, there exists a function h (W, η) and a C such that∣∣∣D̂l(θ)− D̃l

∣∣∣ ≤ h (W,h) ||θ − θ0|| , E [h (W, η)] < C,

where D̂l(θ) is the estimated loading evaluated at θ.

Then, by the Conditional Markov inequality, Assumption 16 implies that, with probability ap-

proaching one, h (W, η̂) = Op(1). Moreover, let θ̄
p→ θ0, with probability approaching one,∣∣∣D̂l(θ̄)− D̃l

∣∣∣ ≤ h (W, η̂)
∣∣∣∣θ̄ − θ0

∣∣∣∣ = Op(1)op(1)
p→ 0.

Hence, D̂ℓ(θ̄)
p→ D̃l follows by the Conditional Markov inequality. This implies that with probability

approaching one, condition (B.1) is equivalent to

aD̂0
l ≤ D̃l ≤ bD̂0

l ,

where notice that now D̃l depends on the population regressors and then we are in an analogous case

to the one considered by Belloni et al. (2012).
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C Optimization

C.1 Algorithm

Step 4 of the iterative algorithm above requires to solve

min
β∈Rr

J∑
j=1

1

n− nℓ

(
fjℓ − M̂jℓβ

)′ (
fjℓ − M̂jℓβ

)
+ 2λn

∣∣∣∣∣∣D̂ℓβ
∣∣∣∣∣∣
1
, (C.1)

where D̂ℓ is a diagonal matrix with elements D̂jkℓ ≡ D̂lℓ along the main diagonal, with l = 1, · · · , r.
Hence, the first r1 entries correspond to the regressors with γ1(Z1), the next r2 entries are the regressors

with γ2(Z2), and so on. To solve (C.1), we use an extension of the coordinate descent approach for

Lasso (Friedman et al., 2007, 2010; Fu, 1998) to our particular objective function. To be precise, we

implement a coordinate-wise descent algorithm with a soft-thresholding update. Let vl denote the lth

element of a generic vector v and let el be a r × 1 unit vector with 1 in the lth coordinate and zeros

elsewhere. This algorithm can be implemented as follows:

For l = 1 : r, do

Step 1: Compute loadings (which do not depend on βk):

Al =
1

n− nℓ

J∑
j=1

e
′
lM̂

′
j

(
fj − M̂jβ + M̂jelβl

)

Bl =
1

n− nℓ

J∑
j=1

e
′
lM̂

′
jM̂jel.

Step 2: Update coordinate βl:

βl =


Al+D̂lλn

Bl
if Al < −D̂lλn

0 if Al ∈
[
−D̂lλn, D̂lλn

]
Al−D̂lλn

Bl
if Al > D̂lλn.

C.2 Justification

In this section, we justify the previous coordinate-wise soft-thresholding update. Observe that

∂

∂βl

 J∑
j=1

1

n− nℓ

(
fjℓ − M̂jℓβ

)′ (
fjℓ − M̂jℓβ

) = −2Al + 2Blβl,

where we note that neither Al nor Bl depend on βl. The subgradient of the penalty term is

∂

∂βl
2
∣∣∣∣∣∣D̂β∣∣∣∣∣∣

1
=


−2D̂lλn if βl < 0[
−2D̂lλn, 2D̂lλn

]
if βl = 0

2D̂lλn if βl > 0
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Therefore, ((1/2) of) the subgradient of the objective function of our program is

∂

∂βl

1

2

 J∑
j=1

1

n− nℓ

(
fjℓ − M̂jℓβ

)′ (
fjℓ − M̂jℓβ

)
+ 2

∣∣∣∣∣∣D̂β∣∣∣∣∣∣
1

 =


−Al +Blβl − D̂lλn if βl < 0[
−Al − D̂lλn,−Al + D̂lλn

]
if βl = 0

−Al +Blβl + D̂lλn if βl > 0

Hence, equalizing those terms to zero and solving for βl gives the element-wise update provided above.

Note that the first term of the objective function in (C.1) is differentiable and convex and the penalty

term is the sum of convex functions. Hence, the whole objective function in (C.1) is a particular case

of Equation 21 in Friedman et al. (2007), and thus the coordinate descent converges to the solution to

(C.1) (Tseng, 2001).

D Asymptotic Results of OR-IVs

Lemma 5. Let Assumptions 3 and 4 hold. Then,∣∣∣∣∣∣Ĝjℓ −Gj

∣∣∣∣∣∣
∞

= Op (εn) , εn =

√
log(r)

n
.

Proof of Lemma 5: Let G̃jℓ =
1

n−nℓ

∑
i/∈Iℓ Mj (Zji)Mj (Zji)

′
. Then, by the triangle inequality,∣∣∣∣∣∣Ĝjℓ −Gj

∣∣∣∣∣∣
∞

≤
∣∣∣∣∣∣Ĝjℓ − G̃jℓ

∣∣∣∣∣∣
∞

+
∣∣∣∣∣∣G̃jℓ −Gj

∣∣∣∣∣∣
∞
.

We first show that
∣∣∣∣∣∣G̃jℓ −Gj

∣∣∣∣∣∣
∞

= Op (εn). To prove this, we follow the proofs of Lemma A10 of

Chernozhukov et al. (2022d) and Lemma D.1 of Bakhitov (2022). Let us define

T jiqk =Mjq (Zji)Mjk (Zji)− E [Mjq (Zji)Mjk (Zji)] , U jqk =
1

n− nℓ

∑
i/∈Iℓ

T jiqk.

where Mjk (Zji) is the k − th element of the vector Mj (Zji). Note that in the previous displays, the

elements just defined depend on ℓ, but we omitted this dependence to simplify the exposition. Then,

for any constant C, we have

P
(∣∣∣∣∣∣G̃jℓ −Gj

∣∣∣∣∣∣
∞

≥ Cεn

)
≤

r∑
q,k=1

P
(∣∣∣U jqk∣∣∣ ≥ Cεn

)
≤ r2max

k,q
P
(∣∣∣U jqk∣∣∣ ≥ Cεn

)
.

Note that E
[
T jiqk

]
= 0 and by Assumption 3,∣∣∣T jiqk∣∣∣ ≤ |Mjq (Zji)| |Mjk (Zji)|+ E [|Mjq (Zji)| |Mjk (Zji)|]

≤ 2c2j .
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The previous fact shows that T jiqk is a bounded random variable. Therefore, it is sub-Gaussian. Let∣∣∣∣∣∣T jiqk∣∣∣∣∣∣
Ψw

denote the sub-Gaussian norm. Then, Kj =
2c2j
log 2 ≥

∣∣∣∣∣∣T jiqk∣∣∣∣∣∣
Ψw

. By Hoeffding’s inequality

(see Thereom 2.6.1 in Vershynin, 2018), there is a constant c such that

r2max
k,q

P
(∣∣∣U jqk∣∣∣ ≥ Cεn

)
≤ 2r2 exp

(
−cC

2 log(r)

K2
j

)

= 2 exp

(
log(r)

[
2− cC2

K2
j

])
−→ 0,

for any C such that C ≥ Kj

√
2
c . Hence, for C large enough, P

(∣∣∣∣∣∣G̃jℓ −Gj

∣∣∣∣∣∣
∞

≥ Cεn

)
→ 0 as r → ∞,

as needed.

Next, let Wc
ℓ contain the data for each i ∈ Icℓ . Then, each estimated element in the matrix Ĝjℓ

depends on Wc
ℓ only. Now, define

P jiℓqk = M̂jℓq (Zji) M̂jℓk (Zji)−Mjq (Zji)Mjk (Zji) , Qjℓqk =
1

n− nℓ

∑
i∈Iℓ

P jiℓqk.

Conditional on Wc
ℓ , by the the conditional Markov’s inequality and the triangle inequality, we can write

for any C ≥ 0

P
(∣∣∣∣∣∣Ĝjℓ − G̃jℓ

∣∣∣∣∣∣
∞

≥ Cεn

∣∣∣Wc
ℓ

)
≤ P

(
max
k,q

∣∣∣Qjℓqk∣∣∣ ≥ Cεn

∣∣∣∣Wc
ℓ

)
≤ P

(∣∣∣Qjℓq∗k∗∣∣∣ ≥ Cεn

∣∣∣Wc
ℓ

)
≤ 1

Cεn
E
[∣∣∣Qjℓq∗k∗∣∣∣∣∣∣Wc

ℓ

]
≤ 1

Cεn
E
[∣∣∣P jiℓq∗k∗∣∣∣∣∣∣Wc

ℓ

]
≤ 1

Cεn
E
[
max
k,q

∣∣∣P jiℓqk∣∣∣∣∣∣∣Wc
ℓ

]
−→ 0,

where max
k,q

∣∣∣Qjℓqk∣∣∣ ≡ ∣∣∣Qjℓq∗k∗∣∣∣, and the last display follows from Assumption 4. We have shown then∣∣∣∣∣∣Ĝjℓ −Gj

∣∣∣∣∣∣
∞

≤ Op (εn) +Op (εn) = Op (εn) ,

as needed. ■

Let us define β∗ as

β∗ ∈ arg min
v∈Rr

(β0 − v)
′
J∑
j=1

Gj (β0 − v) + 2εn
∑
k∈Sc

β̄

|vk| . (D.1)

A maintained assumption throughout this work is that ||β∗||1 = Op(1).
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Lemma 6.
∣∣∣∣∣∣∑J

j=1Gj (β∗ − β0)
∣∣∣∣∣∣
∞

≤ εn.

Proof of Lemma 6: The first order condition (sub-gradient of the objective function) for β∗ implies

that for k ∈ Sβ̄, we have e
′
k

∑J
j=1Gj (β∗ − β0) = 0, where ek is the k− th column of an identity matrix

Ir of dimension r×r. For k ∈ Sc
β̄
, we have that e

′
k

∑J
j=1Gj (β∗ − β0)+εnπk = 0, where πk = sign (β∗k)

if β∗k ̸= 0 and πk ∈ [−1, 1] if β∗k = 0. Hence, in any case
∣∣∣e′k∑J

j=1Gj (β∗ − β0)
∣∣∣ ≤ εn. ■

Lemma 7. (β0 − β∗)
∑J

j=1Gj (β0 − β∗) ≤ Csε2n.

Proof of Lemma 7: By definition of β∗,

(β0 − β∗)
′
J∑
j=1

Gj (β0 − β∗) + 2εn
∑
k∈Sc

β̄

|β∗,k| ≤
(
β0 − β̄

)′ J∑
j=1

Gj
(
β0 − β̄

)
+ 2εn

∑
k∈Sc

β̄

∣∣β̄k∣∣
=
(
β0 − β̄

)′ J∑
j=1

Gj
(
β0 − β̄

) (D.2)

Let β0 be the linear projection of f∗ on M = (M1, · · · ,MJ) in the sense that

J∑
J=1

E
[
Mj (Zj)

(
f∗j (Zj)−Mj (Zj)

′
β0

)]
= 0.

Next, notice that by the triangle inequality

(
β0 − β̄

)′ J∑
j=1

Gj
(
β0 − β̄

)
=

J∑
j=1

E
[{
Mj (Zj)

′ (
β0 − β̄

)}2
]

=
J∑
j=1

∣∣∣∣∣∣Mj(Zj)
′
β0 −Mj(Zj)

′
β̄
∣∣∣∣∣∣2
2

≤ 2
J∑
j=1

(∣∣∣∣∣∣f∗j (Zj)−Mj(Zj)
′
β0

∣∣∣∣∣∣2
2
+
∣∣∣∣∣∣f∗j (Zj)−Mj(Zj)

′
β̄
∣∣∣∣∣∣2
2

)

≤ 4
J∑
j=1

∣∣∣∣∣∣f∗j (Zj)−Mj(Zj)
′
β̄
∣∣∣∣∣∣2
2

≤ Csε2n,

(D.3)

where the last inequality follows from Assumption 5. The result then follows from Equation (D.2) and

εn
∑

k∈Sc
β̄
|β∗,k| ≥ 0. ■

Lemma 8. Let Sβ∗ be the vector of indices of nonzero elements of β∗. Then, s∗ = |Sβ∗ | ≤ Cs.

Proof of Lemma 8: For all k ∈ Sβ∗\Sβ̄, the first order conditions to (D.1) imply
∣∣∣e′k∑J

j=1Gj (β∗ − β0)
∣∣∣ =

εn. Therefore, it holds that

∑
k∈Sβ∗\Sβ̄

e′k J∑
j=1

Gj (β∗ − β0)

2

= ε2n
∣∣Sβ∗\Sβ̄∣∣ .
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Furthermore, using Lemma 7 and the fact that the largest eigenvalue of
∑J

j=1Gj is bounded, we obtain

∑
k∈Sβ∗\Sβ̄

e′k J∑
j=1

Gj (β∗ − β0)

2

≤
r∑

k=1

e′k J∑
j=1

Gj (β∗ − β0)

2

= (β∗ − β0)
′
J∑
j=1

Gj

(
r∑

k=1

eke
′
k

)
J∑
j=1

Gj (β∗ − β0)

= (β∗ − β0)
′

 J∑
j=1

Gj

2

(β∗ − β0)

≤ λmax

 J∑
j=1

Gj

(β∗ − β0)
′
J∑
j=1

Gj (β∗ − β0)


≤ Csε2n,

where λmax(A) denotes the maximum eigenvalue of an arbitrary matrix A. The previous result implies

ε2n
∣∣Sβ∗\Sβ̄∣∣ ≤ Csε2n.

Diving both sides of the previous expression by ε2n yields
∣∣Sβ∗\Sβ̄∣∣ ≤ Cs. Hence,

s∗ =
∣∣Sβ̄∣∣+ ∣∣Sβ∗\Sβ̄∣∣ ≤ s+ Cs ≤ Cs,

as needed ■.

Lemma 9.
∑J

j=1 E
[(
f∗j (Zj)−Mj (Zj)

′
β∗

)2]
≤ Csε2n.

Proof of Lemma 9: By the triangle inequality and Assumption 5, we can write

J∑
j=1

E
[(
f∗j (Zj)−Mj (Zj)

′
β∗

)2]
≤ 2

J∑
j=1

∣∣∣∣∣∣f∗j (Zj)−Mj (Zj)
′
β̄
∣∣∣∣∣∣2
2
+ 2

J∑
j=1

∣∣∣∣∣∣Mj (Zj)
′
β̄ −Mj (Zj)

′
β∗

∣∣∣∣∣∣2
2

≤ Csε2n + 4
J∑
j=1

∣∣∣∣∣∣Mj (Zj)
′
β̄ −Mj (Zj)

′
β0

∣∣∣∣∣∣2
2

(D.4)

+ 4
J∑
j=1

∣∣∣∣∣∣Mj (Zj)
′
β0 −Mj (Zj)

′
β∗

∣∣∣∣∣∣2
2
. (D.5)

Notice that by the result in (D.3),

J∑
j=1

∣∣∣∣∣∣Mj (Zj)
′
β̄ −Mj (Zj)

′
β0

∣∣∣∣∣∣2
2
=
(
β0 − β̄

)′ J∑
j=1

Gj
(
β0 − β̄

)
≤ Csε2n. (D.6)

Moreover, by Lemma 7,

J∑
j=1

∣∣∣∣∣∣Mj (Zj)
′
β0 −Mj (Zj)

′
β∗

∣∣∣∣∣∣2
2
= (β0 − β∗)

J∑
j=1

Gj (β0 − β∗) ≤ Csε2n, (D.7)

Plugging (D.6) into (D.4) and (D.7) into (D.5) yields the desired result. ■
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Lemma 10.
∣∣∣∣∣∣∑J

j=1 Ĝjβ∗ −
∑J

j=1Gjβ∗

∣∣∣∣∣∣
∞

= Op (εn).

Proof of Lemma 10: It can be easily verified that by definition of ||·||∞ and ||·||1, we have∣∣∣∣∣∣
∣∣∣∣∣∣
J∑
j=1

Ĝjβ∗ −
J∑
j=1

Gjβ∗

∣∣∣∣∣∣
∣∣∣∣∣∣
∞

=

∣∣∣∣∣∣
∣∣∣∣∣∣
J∑
j=1

(
Ĝj −Gj

)
β∗

∣∣∣∣∣∣
∣∣∣∣∣∣
∞

≤

∣∣∣∣∣∣
∣∣∣∣∣∣
J∑
j=1

(
Ĝj −Gj

)∣∣∣∣∣∣
∣∣∣∣∣∣
∞

||β∗||1

= Op (εn) ,

as needed. ■

Lemma 11. Let ∆ = β̂ − β∗. For any Ŝ such that β∗,Ŝc = 0 with probability 1, with probability

approaching 1,

∆
′
J∑
j=1

Ĝj∆ ≤ 3λn ||∆||1 ,
∣∣∣∣∆Ŝc

∣∣∣∣
1
≤ 3

∣∣∣∣∆Ŝ

∣∣∣∣
1
.

Proof of Lemma 11: By definition of β̂, we have

J∑
j=1

(
β̂

′
Ĝj β̂ − 2F̂

′
j β̂
)
+ 2λn

∣∣∣∣∣∣β̂∣∣∣∣∣∣
1
≤

J∑
j=1

(
β

′
∗Ĝjβ∗ − 2F̂

′
jβ∗

)
+ 2λn ||β∗||1 .

Using β̂ = ∆+ β∗ in the previous expression and re-arranging terms, we obtain

∆
′
J∑
j=1

Ĝj∆+ 2λn ||β∗ +∆||1 ≤ 2λn ||β∗||+ 2
J∑
j=1

(
F̂j − Ĝjβ∗

)′

∆. (D.8)

By definition of β0,
∑J

j=1Gjβ0−
∑J

j=1 Fj = 0. Then, by Assumption 7, Lemma 6, Lemma 10, and the

triangle inequality, we have∣∣∣∣∣∣
∣∣∣∣∣∣
J∑
j=1

(
Ĝjβ∗ − F̂j

)∣∣∣∣∣∣
∣∣∣∣∣∣
∞

≤

∣∣∣∣∣∣
∣∣∣∣∣∣
J∑
j=1

(
Ĝjβ∗ −Gjβ∗

)∣∣∣∣∣∣
∣∣∣∣∣∣
∞

+

∣∣∣∣∣∣
∣∣∣∣∣∣
J∑
j=1

(
Gjβ∗ − F̂j

)∣∣∣∣∣∣
∣∣∣∣∣∣
∞

≤

∣∣∣∣∣∣
∣∣∣∣∣∣
J∑
j=1

(
Ĝjβ∗ −Gjβ∗

)∣∣∣∣∣∣
∣∣∣∣∣∣
∞

+

∣∣∣∣∣∣
∣∣∣∣∣∣
J∑
j=1

(
Fj − F̂j

)∣∣∣∣∣∣
∣∣∣∣∣∣
∞

+

∣∣∣∣∣∣
∣∣∣∣∣∣
J∑
j=1

(Gjβ∗ − Fj)

∣∣∣∣∣∣
∣∣∣∣∣∣
∞

≤ Op (εn) +Op (εn) +

∣∣∣∣∣∣
∣∣∣∣∣∣
J∑
j=1

(Gjβ∗ − Fj)

∣∣∣∣∣∣
∣∣∣∣∣∣
∞

≤ Op (εn) +

∣∣∣∣∣∣
∣∣∣∣∣∣
J∑
j=1

(Gjβ0 − Fj)

∣∣∣∣∣∣
∣∣∣∣∣∣
∞

+

∣∣∣∣∣∣
∣∣∣∣∣∣
J∑
j=1

Gj (β∗ − β0)

∣∣∣∣∣∣
∣∣∣∣∣∣
∞

= Op (εn) .
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Therefore, by the Hölder’s inequality, we have that

∣∣∣∣∑J
j=1

(
F̂j − Ĝβ∗

)′

∆

∣∣∣∣ ≤ ∣∣∣∣∣∣∑(
F̂j − Ĝβ∗

)∣∣∣∣∣∣
∞
||∆||1 =

Op (εn) ||∆||1. Recall that εn = o (λn), and then we can write

∆
′
J∑
j=1

Ĝj∆+ 2λn ||β∗ +∆||1 ≤ 2λn ||β∗||1 +Op (εn) ||∆||1

≤ 2λn ||β∗||1 + λn ||∆||1 , (D.9)

with probability approaching 1. Moreover, by the triangle inequality, ||β∗||1 ≤ ||β∗ +∆|| + ||∆||1.
Plugging this into (D.9) results in ∆

′∑J
j=1 Ĝj∆ ≤ 3λn ||∆||1, and the first result of the lemma is

obtained.

Furthermore, as ∆
′∑J

j=1 Ĝj∆ ≥ 0, it also follows from (D.9) that

2λn ||β∗ +∆||1 ≤ 2λn ||β∗||1 + λn ||∆||1 . (D.10)

From the fact that β∗,Ŝc = 0, it follows that ||β∗ +∆||1 =
∣∣∣∣∣∣β∗,Ŝ +∆Ŝ

∣∣∣∣∣∣
1
+
∣∣∣∣∆Ŝc

∣∣∣∣
1
and ||β∗||1 =∣∣∣∣∣∣β∗,Ŝ∣∣∣∣∣∣1. Dividing both sides of (D.10) by λn and substituting the previous conclusions yields

2
∣∣∣∣∣∣β∗,Ŝ +∆Ŝ

∣∣∣∣∣∣
1
+ 2

∣∣∣∣∆Ŝc

∣∣∣∣
1
≤ 2

∣∣∣∣∣∣β∗,Ŝ∣∣∣∣∣∣1 + ||∆||1

= 2
∣∣∣∣∣∣β∗,Ŝ∣∣∣∣∣∣1 + ∣∣∣∣∆Ŝ

∣∣∣∣
1
+
∣∣∣∣∆Ŝc

∣∣∣∣
1

≤ 2
(∣∣∣∣∣∣β∗,Ŝ −∆Ŝ

∣∣∣∣∣∣
1
+
∣∣∣∣∆Ŝ

∣∣∣∣
1

)
+
∣∣∣∣∆Ŝ

∣∣∣∣
1
+
∣∣∣∣∆Ŝc

∣∣∣∣
1

= 2
∣∣∣∣∣∣β∗,Ŝ −∆Ŝ

∣∣∣∣∣∣
1
+ 3

∣∣∣∣∆Ŝ

∣∣∣∣
1
+
∣∣∣∣∆Ŝc

∣∣∣∣
1
,

where the second equality follows from the reverse triangle inequality. Subtracting 2
∣∣∣∣∣∣β∗,Ŝ +∆Ŝ

∣∣∣∣∣∣
1
+∣∣∣∣∆Ŝc

∣∣∣∣
1
from both sides in the previous displays yields∣∣∣∣∆Ŝc

∣∣∣∣
1
≤ 3

∣∣∣∣∆Ŝ

∣∣∣∣
1
,

as needed. ■

Lemma 12. ||∆||2 ≤ cλn
√
s.

Proof of Lemma 12: let N denote the indices corresponding to the largest |Sβ∗ | entries in ∆Sc
β∗
, so

that N ⊆ Scβ∗ , |N | = |Sβ∗ |, and |∆k| ≥ |∆q| for any k ∈ N and q ∈ Scβ∗\N . For Ŝ = Sβ∗ ∪N it follows

from Assumption 6, Lemma 8, Lemma 11, and the Cauchy–Schwarz inequality that with probability

approaching 1, ∣∣∣∣∆Ŝ

∣∣∣∣2
2
≤ C∆

′
J∑
j=1

Ĝj∆

≤ Cλn ||∆||1
= Cλn

(∣∣∣∣∆Ŝ

∣∣∣∣
1
+
∣∣∣∣∆Ŝc

∣∣∣∣
1

)
≤ Cλn

∣∣∣∣∆Ŝ

∣∣∣∣
1

≤ Cλn
√
s∗
∣∣∣∣∆Ŝ

∣∣∣∣
2

≤ Cλn
√
s
∣∣∣∣∆Ŝ

∣∣∣∣
2
.
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Then dividing through by
∣∣∣∣∆Ŝ

∣∣∣∣
2
then gives, with probability approaching 1,∣∣∣∣∆Ŝ

∣∣∣∣
2
≤ Cλn

√
s. (D.11)

By Lemma 6.9 of Bühlmann and Van De Geer (2011), Lemma 11, (D.11), and the Cauchy–Schwarz

inequality∣∣∣∣∆Ŝc

∣∣∣∣
2
≤
(∣∣∣Ŝ∣∣∣)−1/2 ∣∣∣∣∆Ŝc

∣∣∣∣
1
≤ 3

(∣∣∣Ŝ∣∣∣)−1/2 ∣∣∣∣∆Ŝ

∣∣∣∣
1
≤ 3

(∣∣∣Ŝ∣∣∣)−1/2 (∣∣∣Ŝ∣∣∣)1/2 ∣∣∣∣∆Ŝ

∣∣∣∣
2
≤ Cλn

√
s.

Hence, by the triangle inequality, with probability approaching one,

||∆||2 ≤
∣∣∣∣∆Ŝ

∣∣∣∣
2
+
∣∣∣∣∆Ŝc

∣∣∣∣
2
≤ Cλn

√
s. ■

Lemma 13.
∑J

j=1 E

[((
Mj (Zj)− M̂j (Zj)

)′

β̂

)2
∣∣∣∣∣Wc

ℓ

]
= Op

(
sλ2n
)
.

Proof of Lemma 13: By the triangle inequality,

J∑
j=1

E

[((
Mj (Zj)− M̂j (Zj)

)′

β̂

)2
∣∣∣∣∣Wc

ℓ

]
≤ 2

J∑
j=1

E

[((
Mj (Zj)− M̂j (Zj)

)′ (
β̂ − β∗

))2
∣∣∣∣∣Wc

ℓ

]

+ 2
J∑
j=1

E

[((
Mj (Zj)− M̂j (Zj)

)′

β∗

)2
∣∣∣∣∣Wc

ℓ

]

Let us provide a bound for the first term on the right-hand side above. By Assumption 8 and Lemma

12, with probability approaching 1

J∑
j=1

E

[((
Mj (Zj)− M̂j (Zj)

)′ (
β̂ − β∗

))2
∣∣∣∣∣Wc

ℓ

]
≤
(
β̂ − β∗

)′

B
(
β̂ − β∗

)
≤ λmax (B) ||∆||22
≤ Csε2nλ

2
n

≤ Csλ2n

(D.12)

By the same token, by Assumption 8, we write

J∑
j=1

E

[((
Mj (Zj)− M̂j (Zj)

)′

β∗

)2
∣∣∣∣∣Wc

ℓ

]
≤ λmax (B) ||β∗||22

≤ Cε2n

≤ Csλ2n,

(D.13)

where the last inequality follows from εn = o (λn). The results in (D.12) and (D.13) implies that

J∑
j=1

E

[((
Mj (Zj)− M̂j (Zj)

)′

β̂

)2
∣∣∣∣∣Wc

ℓ

]
≤ Csλ2n,

as needed. ■

46



Lemma 14.
∑J

j=1 E
[(
f∗j (Zj)− M̂j (Zj)

′
β̂
)2∣∣∣∣Wc

ℓ

]
= Op

(
sλ2n
)
.

Proof of Lemma 14: By the triangle inequality and Lemma 9,

J∑
j=1

E
[(
f∗j (Zj)− M̂j (Zj)

′
β̂
)2∣∣∣∣Wc

ℓ

]
≤ 2

J∑
j=1

E
[(
f∗j (Zj)− M̂j (Zj)

′
β∗

)2]

+ 2
J∑
j=1

E
[(
Mj(Zj)

′
β∗ − M̂j (Zj)

′
β̂
)2∣∣∣∣Wc

ℓ

]

≤ Csε2n + 2

J∑
j=1

E
[(
Mj(Zj)

′
β∗ − M̂j (Zj)

′
β̂
)2∣∣∣∣Wc

ℓ

]
. (D.14)

Next, by the triangle inequality

J∑
j=1

E
[(
Mj(Zj)

′
β∗ − M̂j (Zj)

′
β̂
)2∣∣∣∣Wc

ℓ

]
≤ 2

J∑
j=1

E
[(
Mj(Zj)

′
(
β∗ − β̂

))2]
(D.15)

+ 2

J∑
j=1

E

[((
Mj(Zj)− M̂j(Zj)

)′

β̂

)2
∣∣∣∣∣Wc

ℓ

]
(D.16)

We now find a bound for (D.15). Since the maximum eigenvalue of
∑J

j=1Gj is bounded, and using

Lemma 12, we have

J∑
j=1

E
[(
Mj(Zj)

′
(
β∗ − β̂

))2]
≤ λmax

 J∑
j=1

Gj

 ||∆||22 ≤ Csλ2n. (D.17)

Furthermore, by Lemma 13 we know that

J∑
j=1

E

[((
Mj (Zj)− M̂j (Zj)

)′

β̂

)2
∣∣∣∣∣Wc

ℓ

]
≤ Csλ2n, (D.18)

Plugging the results in (D.17) and (D.18) into (D.15) and (D.16), respectively yields

J∑
j=1

E
[(
Mj(Zj)

′
β∗ − M̂j (Zj)

′
β̂
)2∣∣∣∣Wc

ℓ

]
≤ Csλ2n.

Using the last displays and that εn = o (λn) in (D.14) gives the desired result. ■

Proof of Theorem 2: By Lemma 14,

||κ0 (Z)− κ̂ (Z)||2L2(Z) =

J∑
j=1

E
[(
f∗j (Zj)− M̂j (Zj)

′
β̂
)2∣∣∣∣Wc

ℓ

]
≤ Csλ2n,

as needed. ■
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E Asymptotic Results of the Parameter of Interest

Lemma 15. Let Assumptions 3, 4, and 7 hold. In addition, suppose that εn = o(λn). Then,∣∣∣∣∣∣β̂∣∣∣∣∣∣
1
= Op(1).

Proof of Lemma 15: We follow the proof of Lemma D.9 in Bakhitov (2022). Notice that Expression

(D.9) in the proof of Lemma 11 implies

2λn

∣∣∣∣∣∣β̂∣∣∣∣∣∣
1
≤ 2λn ||β∗||1 + λn

∣∣∣∣∣∣β̂ − β∗

∣∣∣∣∣∣
1
.

Next, let us divide by 2λn throughout, then by the triangle inequality∣∣∣∣∣∣β̂∣∣∣∣∣∣
1
≤ ||β∗||1 +

1

2

∣∣∣∣∣∣β̂ − β∗

∣∣∣∣∣∣
1

≤ ||β∗||1 +
1

2

(∣∣∣∣∣∣β̂∣∣∣∣∣∣+ ||β∗||1
)
,

with probability approaching one. Subtracting
∣∣∣∣∣∣β̂∣∣∣∣∣∣ /2 from both sides in the previous display and

multiplying by 2 yields ∣∣∣∣∣∣β̂∣∣∣∣∣∣
1
≤ 3 ||β∗||1 = Op(1),

as needed. ■

Lemma 16. Let Assumptions 3, 4, 7, 10, 11, and 12 hold. In addition, suppose that εn = o(λn).

Then,

i)

∫ ∣∣∣∣∣∣∆̂ℓ(w)
∣∣∣∣∣∣2 F0(dw)

p→ 0, and ii)
√
n

∫
∆̂ℓ(w)F0(dw)

p→ 0.

Proof of Lemma 16: First, we show i). Lemma 15 and Assumption 10 imply that sup
zj

|κ̂jℓ| = Op(1)

a.s., for any κ̂jℓ in κ̂jℓ. Next, observe that by the triangle inequality and Assumption 9 i), we have

∫ ∣∣∣∣∣∣∆̂ℓ(w)
∣∣∣∣∣∣2 F0(dw) =

∫ ∣∣∣∣∣∣
∣∣∣∣∣∣
J∑
j=1

(mj (y, θ0, η̂jℓ)−mj (y, θ0, η0j)) (κ̂jℓ(Zj)− κ0j(Zj))

∣∣∣∣∣∣
∣∣∣∣∣∣
2

F0(dw)

≤
J∑
j=1

∫
|mj (y, θ0, η̂jℓ)−mj (y, θ0, η0j)|2 ||κ̂jℓ(Zj)− κ0j(Zj)||2 F0(dw)

≤ Op(1)

J∑
j=1

∫
|mj (y, θ0, η̂jℓ)−mj (y, θ0, η0j)|2 F0(dw)

p→ 0.
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Second, let us show ii). By the Cauchy-Schwarz inequality,

∣∣∣∣∣∣∣∣√n ∫ ∆̂ℓ(w)F0(dw)

∣∣∣∣∣∣∣∣ ≤ √
n

∣∣∣∣∣∣∣
∫ J∑

j=1

E [mj (y, θ0, η̂jℓ)−mj (y, θ0, η0j)|Zj ,Wc
ℓ ]

2 F0(dZj)

1/2
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
∫ J∑

j=1

(κ̂jℓ(Zj)− κ0j(Zj))
2 F0(dZj)

1/2
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ (E.1)

By Assumption 12, with probability approaching one,∣∣∣∣∣∣∣
∫ J∑

j=1

E [mj (y, θ0, η̂jℓ)−mj (y, θ0, η0j)|Zj ,Wc
ℓ ]

2 F0(dZj)

1/2
∣∣∣∣∣∣∣ ≤ C ||T (η − η0)||L2(Z)

= Op (µ
η
n) . (E.2)

Using (E.2) and Theorem 2 in (E.1) yields with probability approaching one,∣∣∣∣∣∣∣∣√n ∫ ∆̂ℓ(w)F0(dw)

∣∣∣∣∣∣∣∣ = Op
(√
nµηnµ

κ
n

)
→ 0,

by Assumption 11 ii). Then, the conclusion follows by the Conditional Markov inequality. ■

Lemma 17. Let Assumption 13 hold. Then, there is a C > 0 such that for ||T (η − η0)||L2(Z) small

enough, ∣∣∣∣ψ (θ0, η,κ0)
∣∣∣∣ ≤ C ||T (η − η0)||2L2(Z) .

Proof of Lemma 17: The result follows from Proposition 7.3.3 of Luenberger (1997). ■

To prove Lemma 3, let ıq be a q−dimensional vector of ones and define

g (Wi, θ, η) =

J∑
j=1

mj (Yi, θ, η) ıq,

ϕ (Wi, θ, η,κ) =

J∑
j=1

mj (Yi, θ, η) (κj (Zji)− ıq) .

Then, we can write

ψ (Wi, θ, η,κ) = g (Wi, θ, η) + ϕ (Wi, θ, η,κ) . (E.3)

Notice that, by using representation (E.3), we have written the LR functions as the sum of two

terms g+ϕ as in Chernozhukov et al. (2022a) (Equation (2.3)). Two differences are worth mentioning.

First, instead of having the Riesz representer entering in ϕ, we have the OR-IVs. Second, g and ϕ, by

construction, are evaluated at the same θ. In particular, ψ (Wi, θ0, η,κ) = g (Wi, θ0, η)+ϕ (Wi, θ0, η,κ).

Chernozhukov et al. (2022a) allow for g and ϕ to be evaluated at different θ’s as ϕ has mean zero when

evaluated at the true nuisance parameters value, for any θ ∈ Θ. In our case, that is true only at θ = θ0.
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Proof of Lemma 3: To show the result we will verify the conditions of Lemma 8 of Chernozhukov

et al. (2022a) and restrict g and ϕ to be always evaluated at the same θ.

First, note that, by Assumption 9, E
[
||ψ (W, θ0, η0,κ0)||2

]
<∞. Moreover, by the triangle inequal-

ity,∫
||g (y, θ0, η̂ℓ)− g (y, θ0, η0)||F0(dw) ≤ ||ıq||2

J∑
j=1

∫
|mj (y, θ0, η̂jℓ)−mj (y, θ0, η0j)|2 F0(dw). (E.4)

Hence, (E.4) and Assumption 9 i) imply Assumption 1 (i) of Chernozhukov et al. (2022a). Similarly,

by the triangle inequality and Assumption 9 (i),∫
||ϕ (w, θ0, η̂ℓ,κ0)− ϕ (w, θ0, η0,κ0)||2 F0(dw) ≤ 2

J∑
j=1

∫
||mj (y, θ0, η̂jℓ)κ0j(zj)−mj (y, θ0, η0j)κ0j(zj)||2

+ op(1). (E.5)

Then, Assumption 9 ii) imply Assumption 1 (ii) of Chernozhukov et al. (2022a). By the triangle

inequality, we can show∫
||ϕ (w, θ0, η0, κ̂ℓ)− ϕ (w, θ0, η0,κ0)||2 F0(dw) ≤

J∑
j=1

∫
|mj (y, θ0, η0j)|2 ||κ̂jℓ(zj)− κ0(zj)||2 F0(dw).

(E.6)

Therefore, Assumption 9 iii) imply Assumption 1 (iii) of Chernozhukov et al. (2022a).29

Observe that

∆̂ℓ(w) = ϕ (w, θ0, η̂ℓ, κ̂ℓ)− ϕ (w, θ0, η0, κ̂ℓ)− ϕ (w, θ0, η̂ℓ,κ0) + ϕ (w, θ0, η0,κ0) .

Then, Lemma 16 implies Assumption 2 (i) of Chernozhukov et al. (2022a).

By Lemma 15 and Assumption 10, we have
∫
ϕ (w, θ0, η0, κ̂ℓ)F0(dw) = 0 with probability ap-

proaching one. Furthermore,
∣∣∣∣ψ̄ (θ0, η̂ℓ,κ0)

∣∣∣∣ ≤ C ||T (η̂ℓ − η0)||2L2(Z), with probability approaching

one. Hence,
√
n
∣∣∣∣ψ̄ (θ0, η̂ℓ,κ0)

∣∣∣∣ p→ 0, by Assumption 11 i). These results verify Assumption 3 (i)

and (iv) of Chernozhukov et al. (2022a). Then, all the conditions of Lemma 8 of Chernozhukov et al.

(2022a) hold in our context and the result of Lemma 3 can be obtained. ■

Let Ψ = E
[
ψ (W, θ0, η0,κ0)ψ (W, θ0, η0,κ0)

′
]
. We next show that

Lemma 18. Let Assumptions 9 and 14 hold. Then, Ψ̂
p→ Ψ.

Proof of Lemma 18: This proof follows similarly to the proof of Lemma E1 of Chernozhukov et al.

29Assumption 1 (iii) of Chernozhukov et al. (2022a) is a convergence condition for estimators θ̂ℓ and κ̂ℓ, but since we

are restricting g and ϕ to be evaluated at θ = θ0, we only need a convergence condition for κ0 and have θ̂ℓ = θ0.
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(2022a). For each i ∈ Iℓ, let ∆̂ℓ (Wi) be as in the main text. Additionally, let

R̂1ℓi = g (Wi, θ0, η̂ℓ)− g (Wi, θ0, η0) =
J∑
j=1

(mj (Yi, θ0, η̂jℓ)−mj (Yi, θ0, η0j)) ıq,

R̂2ℓi = ϕ (Wi, θ0, η̂ℓ,κ0)− ϕ (Wi, θ0, η0,κ0) =
J∑
j=1

(mj (Yi, θ0, η̂ℓ)−mj (Yi, θ0, η0)) (κ0j (Zji)− ıq) ,

R̂3ℓi = ϕ (Wi, θ0, η0, κ̂ℓ)− ϕ (Wi, θ0, η0,κ0) =

J∑
j=1

mj (Yi, θ0, η0) (κ̂jℓ (Zji)− κ0j (Zji)) ,

R̂4ℓi =
J∑
j=1

(
mj

(
Yi, θ̃ℓ, η̂jℓ

)
−mj (Yi, θ0, η̂jℓ)

)
κ̂jℓ (Zji) .

By Assumption 9, E
[∣∣∣∣∣∣R̂kℓi∣∣∣∣∣∣2∣∣∣∣Wc

ℓ

]
p→ 0, k = 1, 2, 3. Similarly, by Assumption 14, E

[∣∣∣∣∣∣R̂4ℓi

∣∣∣∣∣∣2∣∣∣∣Wc
ℓ

]
p→

0. Also, by Lemma 16 i) E
[∣∣∣∣∣∣∆̂ℓ(W )

∣∣∣∣∣∣2∣∣∣∣Wc
ℓ

]
p→ 0. Then, it follows for ψi = ψ (Wi, θ0, η0,κ0),

E

 1

n

∑
i∈Iℓ

∣∣∣∣∣∣ψ̂iℓ − ψi

∣∣∣∣∣∣2
∣∣∣∣∣∣Wc

ℓ

 ≤ E
[∣∣∣∣∣∣ψ̂iℓ − ψi

∣∣∣∣∣∣2∣∣∣∣Wc
ℓ

]

≤ C

(
4∑

k=1

E
[∣∣∣∣∣∣R̂kℓi∣∣∣∣∣∣2∣∣∣∣Wc

ℓ

]
+ E

[∣∣∣∣∣∣∆̂ℓ(Wi)
∣∣∣∣∣∣2∣∣∣∣Wc

ℓ

])
p→ 0.

Hence, by the Conditional Markov inequality 1
n

∑
i∈Iℓ

∣∣∣∣∣∣ψ̂iℓ − ψi

∣∣∣∣∣∣2 p→ 0. Let Ψ̃ = 1
n

∑n
i=1 ψiψ

′
i. Then,

by the triangle inequality and the Cauchy-Schwarz inequality,

∣∣∣∣∣∣Ψ̂− Ψ̃
∣∣∣∣∣∣ ≤ L∑

ℓ=1

1

n

∑
i∈Iℓ

(∣∣∣∣∣∣ψ̂iℓ − ψi

∣∣∣∣∣∣2 + 2 ||ψi||
∣∣∣∣∣∣ψ̂iℓ − ψi

∣∣∣∣∣∣)

≤
L∑
ℓ=1

1

n

∑
i∈Iℓ

∣∣∣∣∣∣ψ̂iℓ − ψi

∣∣∣∣∣∣2︸ ︷︷ ︸
op(1)

+2

L∑
ℓ=1

 1

n

∑
i∈Iℓ

||ψi||2
1/2

︸ ︷︷ ︸
Op(1)

 1

n

∑
i∈Iℓ

∣∣∣∣∣∣ψ̂iℓ − ψi

∣∣∣∣∣∣2
1/2

︸ ︷︷ ︸
op(1)

= op(1) (Op(1) + 1)
p→ 0.

Moreover, by the law of large numbers, Ψ̃
p→ Ψ. Hence, the conclusion of the lemma follows by the

triangle inequality. ■

Lemma 19. Let Assumption 15 hold and θ̄
p→ θ0. Then, ∂ψ̂(θ̄)

∂θ

p→ Υ.

Proof of Lemma 19: We follow the proof of Lemma E2 of Chernozhukov et al. (2022a). Let
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Υ̂ℓ =
1
nℓ

∑
i∈Iℓ

∂ψ(Wi,θ̄,η̂ℓ,κ̂ℓ)
∂θ and Υ̃ℓ =

1
nℓ

∑
i∈Iℓ

∂ψ(Wi,θ0,η̂ℓ,κ̂ℓ)
∂θ . Notice that by Assumption 15 ii),

E

 1

nℓ

∑
i∈Iℓ

d (Wi, η̂ℓ, κ̂ℓ)

∣∣∣∣∣∣Wc
ℓ

 = E [d (Wi, η̂ℓ, κ̂ℓ)|Wc
ℓ ] < C,

with probability approaching one. Then, by the Conditional Markov inequality, 1
nℓ

∑
i∈Iℓ d (Wi, η̂ℓ, κ̂ℓ) =

Op(1). Next, by Assumption 15 i) and ii), and the triangle inequality, with probability approaching

one, ∣∣∣∣∣∣Υ̂ℓ − Υ̃ℓ

∣∣∣∣∣∣ ≤ 1

nℓ

∑
i∈Iℓ

d (Wi, η̂ℓ, κ̂ℓ)
∣∣∣∣θ̄ − θ0

∣∣∣∣1/C
= Op(1)op(1)

p→ 0.

Then, Υ̂ℓ−Υ̃ℓ
p→ 0 follows by the Conditional Markov inequality. Finally, let Ῡℓ =

1
nℓ

∑
i∈Iℓ

∂ψ(Wi,θ0,η0,κ0)
∂θ .

Similarly then, using Assumption 15 iii), we have that Υ̃ℓ− Ῡℓ
p→ 0. What is more, by the law of large

numbers, Ῡℓ
p→ Υ. Hence, the conclusion follows by the triangle inequality. ■

Proof of Theorem 4: Based on the results of Lemmas 3-19, the proof can be derived using standard

asymptotic arguments as in, e.g., the proof of Proposition 21.20 in Ruud (2000). ■

The result in Theorem 4 relies on the consistency of θ̂. We now proceed by establishing the

consistency of our estimator.

Theorem 20. If i) Λ̂
p→ Λ, where Λ is a positive definite matrix; ii) E [ψ (W, θ, η0,κ0)] = 0 if and

only if θ = θ0; iii) Θ is compact; iv)
∫
||mj (y, θ, η̂jℓ) κ̂jℓ(zj)−mj (y, θ, η0j)κ0j(zj)||F0(dw)

p→ 0 and

E [||mj (Y, θ, η0)κ0j(Zj)||] < ∞ for all θ ∈ Θ; v) There is a C > 0 and d (W, η,κ) such that for each

||T (η − η0)||L2(Z) ||κ− κ0||L2(Z) small enough and all θ̃, θ ∈ Θ,∣∣∣∣∣∣ψ (W, θ̃, η,κ)− ψ (W, θ, η,κ)
∣∣∣∣∣∣ ≤ d (W, η,κ)

∣∣∣∣∣∣θ̃ − θ
∣∣∣∣∣∣1/C , E [d (W, η,κ)] < C.

Then, θ̂
p→ θ.

Proof of Theorem 20: We follow the proof of Theorem A3 of Chernozhukov et al. (2022a). Observe

that, by the triangle inequality and Assumption iv),∫
||ψ (w, θ, η̂ℓ, κ̂ℓ)− ψ (w, θ, η0,κ0)||F0(dw) ≤

J∑
j=1

∫
||mj (y, θ, η̂jℓ) κ̂jℓ(zj)−mj (y, θ, η0j)κ0j(zj)||F0(dw)

p→ 0.

It follows then that ψ̂(θ)
p→ ψ̄(θ) = E [ψ (W, θ, η0,κ0)] for all θ ∈ Θ. Next, by v), with probability
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approaching one, ∣∣∣∣∣∣ψ̂ (θ̃)− ψ̂ (θ)
∣∣∣∣∣∣ ≤ 1

n

L∑
ℓ=1

∑
i∈Iℓ

∣∣∣∣∣∣ψ (Wi, θ̃, η̂ℓ, κ̂ℓ

)
− ψ (Wi, θ, η̂ℓ, κ̂ℓ)

∣∣∣∣∣∣
≤ 1

n

L∑
ℓ=1

∑
i∈Iℓ

d (Wi, η̂ℓ, κ̂ℓ)
∣∣∣∣∣∣θ̃ − θ

∣∣∣∣∣∣1/C
= M̂

∣∣∣∣∣∣θ̃ − θ
∣∣∣∣∣∣1/C .

Note, by the conditional Markov inequality, M̂ = Op(1). Then, by Corollary 2.2 of Newey (1991),

we have supθ∈Θ

∣∣∣∣∣∣ψ̂(θ)− ψ̄(θ)
∣∣∣∣∣∣ p→ 0. Moreover, observe that condition v) also implies that ψ̄(θ) is

continuous on Θ. Finally, note that the second condition in iv) implies that E [||ψ (W, θ, η0,κ0)||] <∞
for all θ ∈ Θ, by the triangle inequality. The conclusion then follows similarly to the proof of Theorem

2.6 of Newey and McFadden (1994). ■

F Additional Monte Carlo Details

As we stated in the main text, to obtain our estimator θ̂ =
(
θ̂1, θ̂k, θ̂ω

)′

, we use GMM based on four

debiased moments. These can be written as

ψ (W, θ0, η0) = (Y1 − η01 (I1,K1))κ01 (Z1)+ (Y2 − θ01 − θ0kK2 − θ0ω (η01 (Z1)− θ01 − θ0kK1))κ02 (Z1)

+ (Y2 − η02 (I2,K2))κ03 (Z2)+ (Y3 − θ01 − θ0kK3 − θ0ω (η02 (Z2)− θ01 − θ0kK2))κ04 (Z2) .

Notice that our GMM program involves a three-dimensional non-linear search. To increase the relia-

bility of our results, we have reduced the dimension of the problem such that we see θ01 and θ0ω as

functions of θ0k. In this way, we only search over the dimension θ0k. We have accomplished this as

follows. Notice

η0t (Zt) = θ01 + θ0kKt + ωt (It,Kt) ,

which implies that

θ01 + ωt (It,Kt) = η0t (Zt)− θ0kKt. (F.1)

As ωt follows an AR(1) process, we have

ωt = θ0ωωt−1 + ϵωt , E [ϵωt |ωt−1] = 0. (F.2)

Plugging (F.1) into (F.2) and re-arranging terms yields

η0t (Zt)− θ0kKt = c̃+ θ0ω (η0,t−1 (Zt−1)− θ0kKt−1) + ϵωt , c̃ = θ01 (1− θ0ω) .

Hence, for a given value of θ0k, we can identify θ0ω as the slope in a linear regression of η0t − θ0kKt

on η0,t−1 − θ0kKt−1. The parameter θ01 can also be identified from this regression equation by using

the equality θ01 = c̃/(1− θ0ω), provided that θ0ω ̸= 1. As θ01 = 0 in our Monte Carlo experiments, we

directly consider c̃ = θ01. Then, in our non-linear search, we impose these restrictions and minimize

the GMM objective function based on ψ, treating it as a function of θ0k only.
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