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Abstract

We investigate firms’ incentives to conceal intermediate research discoveries in in-

novation races. To study this, we introduce an innovation game where two racing firms

dynamically allocate their resources between two distinct research and development

(R&D) paths towards a final innovation: (i) developing it with the currently available

but slower technology; (ii) conducting research to discover a faster new technology for

developing it. We fully characterize the equilibrium behavior of the firms in the cases

where their research progress is public and private information. Then, we extend the

private information setting by allowing firms to conceal or license their intermediate dis-

coveries. We show that when the reward of winning the race is high enough, firms would

conceal their interim discoveries, which inefficiently retards the pace of innovation.
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1 Introduction

In the course of research and development (R&D), firms often discover interim knowledge

that brings them closer to successfully producing a final innovation. When multiple firms

race towards such innovation, a firm’s optimal R&D strategy is likely to be influenced by

the information about whether its rivals have made intermediate breakthroughs. Thus, a

firm may want to conceal intermediate discoveries in order to hinder its rivals from adjust-

ing their R&D strategies. On the other hand, it may prefer to disclose an intermediate

discovery because this can open the opportunity for monetization via licensing the techno-

logical breakthrough. In this paper, we introduce and study an innovation race model that

captures the tradeoffs between licensing and concealing interim discoveries and characterize

firms’ equilibrium behavior.

We consider a situation where two firms race towards developing an innovative product,

such as a COVID-19 vaccine or a full self-driving (FSD) vehicle. The first firm to develop the

product receives a reward (e.g., a transitory flow of monopoly profit) and the other firm does

not. At each point in time, the firms allocate their limited resources between two routes

for developing the product and incur constant flow costs. One route is to conduct basic

research to discover a new technology that does not directly deliver the product but makes

developing it faster, e.g., messenger RNA (mRNA) or light detection and ranging (LIDAR)

technology.12 This route requires two breakthroughs: discovering the new technology and

developing the product with it. The other route is to develop the product with a currently

available but slow technology, namely the incumbent technology. For example, the viral
1The mRNA technology was not utilized in practice before the COVID-19 outbreak. Thus, pharma-

ceutical firms had to first acquire basic knowledge in order to employ this new methodology. The ad-
vantage of possessing this intermediate technology is that firms can develop vaccines in a laboratory by
using readily available materials. Hence vaccines can be developed faster with mRNA technology than
with older methods. Moderna and Pfizer-BioNTech utilize mRNA technology to develop COVID-19 vac-
cines. For more information, see the web page of the Centers for Disease Control and Prevention (CDC):
https://www.cdc.gov/coronavirus/2019-ncov/vaccines/different-vaccines/mrna.html.

2 LIDAR is a laser radar that can provide extensive and reliable information surrounding a vehicle
including an object’s distance, size, position, and velocity if it is moving. Most FSD vehicle developers
including Waymo—formerly the Google self-driving car project—use LIDAR combined with cameras. The
main drawback of LIDAR is its current high cost. Thus, to develop a commercializable FSD vehicle, firms
first need to discover a way to make LIDAR less expensive. Once LIDAR becomes affordable, it will be
relatively easy to develop a commercializable FSD vehicle. In this sense, successfully developing an FSD
vehicle with the LIDAR technology can be understood as a route requiring two breakthroughs.
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vector method for developing a COVID vaccine and the camera-based vision technology for

developing an FSD vehicle can be considered incumbent technologies.34 This path requires

a single breakthrough but the arrival rate is relatively low. We assume that the path with

the new technology is more efficient: the total expected completion time of doing research

for the new technology and developing the product with it is shorter than that of developing

with the incumbent strategy. Thus, the socially efficient policy is to have both firms allocate

all their resources to research, and once one of them discovers the new technology, have it

share the breakthrough with the other firm to prevent duplication of research costs.

We investigate three different settings in the context of this framework. First, we consider

the case where it is public information whether a firm has discovered the new technology

or not. In this setting, a firm can condition its strategy not only on its own technological

breakthrough but also on its rival’s progress. We show that there exists a unique equilibrium

and its form is determined by the relative efficiency of the new technology. The efficiency

measure is defined to be inversely proportional to the expected total completion time of

the path with the new technology, i.e., doing research is more attractive when efficiency is

high. It is shown that when efficiency is extreme (high or low), a firm’s equilibrium strategy

does not depend on its rival’s progress. Specifically, when the new technology is highly

efficient, both firms allocate all their resources to research (i.e., perform research only); and

when the new technology is not much more efficient, both firms allocate all their resources

to development (i.e., develop with the incumbent technology only) regardless of their rival’s

status. On the contrary, when efficiency is intermediate, the equilibrium strategy of each firm

does depend on its rival’s progress. In this case, both firms begin by conducting research,

but once one firm makes the intermediate technological breakthrough, the other switches to

developing with the incumbent technology, namely it pursues a fall-back strategy.
3The viral vector technology was used during recent disease outbreaks including the 2014-2016 Ebola

outbreak in West Africa. Many pharmaceutical firms had access to this methodology when the COVID-19
outbreak began. Indeed, this technology was utilized to develop COVID-19 vaccines by Oxford-AstraZeneca
and Janssen (Johnson&Johnson). For more information, see the web page of the CDC: https://www.cdc.
gov/coronavirus/2019-ncov/vaccines/different-vaccines/viralvector.html.

4 Unlike other companies, Tesla’s approach towards developing an FSD vehicle is to use only cameras
without LIDAR (Templeton, 2019). Since camera technology is already very cheap, no cost-saving break-
through is needed to implement it. However, the quality of information attained from cameras is inferior to
that attained from LIDAR, thus it will take more time to develop an FSD vehicle utilizing only cameras.
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Next, we analyze the setting where technological discoveries are private information, i.e.,

a firm cannot observe its rivals’ technological progress. As in the public information setting,

when efficiency is high, each firm conducts research until it succeeds or its rival produces

the final innovation. Similarly, when efficiency is low, both firms endeavor to develop with

the incumbent technology. This invariance occurs because, in the extreme cases of very

high and very low efficiency, firms do not use the information about their rival’s progress

even when it is observable. However, in the case of intermediate efficiency, the firms cannot

use the fall-back strategy as in the public information setting since they are no longer able

to make their resource allocations contingent on their rivals’ state of technology. Instead,

their resource allocations must depend on their ‘beliefs’ about their rivals’ progress. We

characterize the unique symmetric equilibrium that is Markov with respect to these beliefs.

The equilibrium strategy has a cutoff structure: firms conduct research exclusively up to a

certain date (belief), then they start allocating their resources between developing with the

incumbent technology and researching the new one, namely they employ a stationary fall-

back strategy. The most intriguing feature of this equilibrium is that beliefs remain constant

once the allocation of resources to development begins. This stationarity derives from two

conflicting effects in the belief evolution. First, as time passes, it becomes more likely that

one’s rival has found the new technology (the duration effect). On the other hand, the lack

of one’s rival producing the final innovation (which is publically observable) implies that it

is less likely that the new technology has been discovered (the still-in-the-race effect).

Last, we extend the private information setting by allowing firms to protect their discover-

ies by using either a patent or a trade secret. First, when a firm treats the new technology as a

trade secret, it conceals the discovery, i.e., its rival still cannot observe its progress. However,

this does not prohibit the firm’s rival from discovering the new technology independently.

Second, when a firm files a patent, it discloses the discovery of the new technology. On the

one hand, if its rival has not yet made the technological breakthrough, then the exclusive

right to use the new technology is bestowed on the patenting firm. In addition, the patenting

firm may license the new technology, i.e., it may permit its rival to use the new technology

for a fee. Once the licensee pays the fee, both firms race for the final innovation employing

the new technology. On the other hand, if the rival firm has already discovered the new
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technology, i.e., it was protected as a trade secret. Then, the patenting firm cannot claim

the exclusive right—rather, the new technology is now considered common property—and

both firms can use it without making transfers.56

We first show that if a firm files a patent and the rival firm does not possess the new

technology, the patenting firm always licenses. Thus, both firms develop the final innovation

with the new technology, which is socially efficient. Once a firm files a patent, its rival can

only try to develop the product with the old slow technology. Given this, the patenting firm

can extract rent from its rival by allowing it to use the new technology for a fee. This is

an application of the classical result of Coase (1960) in the sense that the socially efficient

outcome can be achieved when the property right of the new technology is given to a firm

and trade involves no transaction costs. Therefore, disclosing the new technology implies

licensing it.

Finally, we explore whether a firm prefers to disclose or conceal the new technology. We

show that this decision crucially depends on the size of the reward of winning the race: when

the reward is high, firms may prefer to conceal their discoveries, whereas when the reward

is low, they disclose and license them. Intuitively, this is because concealment involves

a higher chance of winning the race, which is more attractive when the reward is high.

Whereas, disclosure delivers an immediate payment from licensing, which is more appealing

when the reward is low. More specifically, when a firm conceals a discovery, its rival does

not know whether it possesses the new technology. Thus, per the results from the private

information setting, the rival firm continues allocating some of its resources to researching

the new technology. This is not desirable for the rival, especially when efficiency of the new

technology is intermediate, because if it knew that the other firm already possessed the new

technology, then its best response would be to allocate all its resources to development with

the incumbent technology (i.e., to employ the fall-back strategy). In this sense, concealing

the new technology hinders the rival firm from strategically responding to its discovery.

Concealment is detrimental not only to the rival firm but also to social surplus because
5When a firm files a patent, the firm with the trade secret can dispute the patent based on 35 U.S. Code

§273 - Defense to infringement based on prior commercial use.
6For more information about trade secrets and patents, see the web page of the World Intellectual Property

Organization: https://www.wipo.int/about-ip/en/. Also, see Lobel (2013) for examples.
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it generates duplicate research efforts. This slows down the pace of innovation. On the

contrary, the socially efficient outcome could be achieved by disclosing and licensing the new

technology. These results on firms’ incentives for concealment imply a simple policy inter-

vention. Reducing the reward of winning the race (e.g., weakening the transitory monopoly

power in the innovative product market by imposing a tax,) reduces incentives to conceal

and promotes licensing, thus speeding up the pace of innovation.

Related Literature

This paper primarily contributes to the literature on patent vs. secrecy by introducing a

novel incentive to conceal a firm’s discovery: hindering its rival’s strategic response. Previous

studies mainly focused on the limited protection power of patents. For example, the seminal

article by Horstmann et al. (1985) posits that “patent coverage may not exclude profitable

imitation.” Thus, in their framework, the main reason why a firm may choose secrecy over

a patent is not to be imitated.7 Another limitation of a patent is that it expires in a finite

time. For instance, Denicolò and Franzoni (2004) consider a framework where a patent gives

the patenting firm monopoly power only for a certain period of time (and no profit after

expiration), whereas secrecy can give indefinite monopoly power to a firm but it can be

leaked or duplicated by a rival with some probability. On the contrary, in this paper, we

abstract from the restrictions of patents and focus analysis on the potential advantages of

concealment.

Another hallmark of this paper is its consideration of ‘interim’ discoveries. Therefore, it is

naturally related to the literature on licensing of interim R&D knowledge, e.g., Bhattacharya

et al. (1992); d’Aspremont et al. (2000); Bhattacharya and Guriev (2006); Spiegel (2008). In

these papers it is assumed that firms already know which of them has superior knowledge,

i.e., the firm that will license the technology is exogenously given. Unlike in those studies, we

allow firms to choose when to license (and even allow them not to license), i.e., the licensing

decision is endogenous.

We also contribute to the innovation literature by introducing a model with two character-
7Many subsequent papers study the imitation threat and potential patent infringement, e.g., Gallini

(1992); Takalo (1998); Anton and Yao (2004); Kultti et al. (2007); Kwon (2012); Zhang (2012).
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istics. First, there are different avenues towards innovation: developing with the incumbent

technology and doing research for the new technology. Second, one of the paths involves mul-

tiple stages: once a firm discovers the new technology, then the firm develops the innovative

product with it.

With respect to the first characteristic, there is a recent branch of the literature that

studies races where there are different routes to achieve a final objective. Das and Klein

(2020) and Akcigit and Liu (2016) study a patent race where two firms compete for a

breakthrough and there are two methods to get the breakthrough: a safe method and a

risky method. In Das and Klein (2020) the safe method has a known constant arrival

intensity while the risky method has an unknown constant arrival intensity. In Akcigit and

Liu (2016), instead, the safe method has a known payoff associated with breakthrough arrival,

while there is uncertainty about the payoff if the risky method is used. In this paper, firms

face no uncertainty about whether the innovation is feasible. Instead, they are uncertain

whether their rival possesses the new and faster technology.

The second characteristic, multi-stage innovation, is also widely studied in the literature,

e.g., Scotchmer and Green (1990); Denicolò (2000); Green and Taylor (2016); Song and

Zhao (2021). Our paper shares the framework with these in that we use two sequential

Poisson discovery processes and ask whether a firm would patent the first discovery or not.

A feature setting apart from their works is that there is another path that only requires one

but slower breakthrough toward innovation. This feature connects our model to Carnehl and

Schneider (2022) and Kim (2022) in the sense that players can choose between a sequential

approach—which requires two breakthroughs—and a direct approach, which requires only one

breakthrough, but its riskier or slower.8 Our model mainly differs from theirs in that multiple

players compete by choosing between these approaches, whereas Carnehl and Schneider

(2022) considers a problem by a single decision maker and Kim (2022) studies a contracting

setup between a principal and an agent. In their studies, a key factor for a player to choose

the direct approach is a deadline that is either exogenously given or endogenously determined
8In Carnehl and Schneider (2022), an agent is uncertain whether the direct approach is feasible or not,

i.e., this approach is risky. On the other hand, in Kim (2022), there is no uncertainty on the feasibility of the
direct approach, but its completion rate is slower than the ones for the sequential approach. In this sense,
our framework is closer to Kim (2022).
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to reduce moral hazard. In contrast to these, a deadline is not involved in our model. Rather,

the race with the rival firm may induce a firm to develop with the incumbent technology,

which can be considered as a direct approach.

Last, this paper is related to the recent literature on information disclosure in priority

races, e.g., Hopenhayn and Squintani (2016); Bobtcheff et al. (2017). In those papers, once

a firm makes a breakthrough, the innovation value grows as time passes until one of the

firms files a patent. Thus, firms face a tradeoff between disclosing to claim the priority and

delaying in order to grow the innovation value. On the contrary, in this paper, the value of

innovation is fixed and the discovery of the new technology only allows the firm to develop

the innovative product faster. Therefore, a firm may delay the disclosure purely to confound

the rival’s R&D decisions.

Roadmap

We introduce the model in the next section, then characterize equilibria in the private and

the public information settings in Section 3 and 4. In Section 5, we extend the private

information setting by allowing firms to disclose their discoveries. We conclude in Section 6.

All proofs appear in the appendix.

2 Model

We consider a race between two firms, A and B, to develop an innovative product. Time is

continuous and infinite t ∈ [0,∞). The innovative good can be developed using two different

technologies: at the start of the race, both firms have access to an incumbent technology,

but they can gain access to a faster new technology by conducting research.

Each firm owns a unit of resources per unit of time, which can be used either for research

to discover the new technology or for developing the innovative product. We denote by σit
the fraction of time t resources that firm i allocates to ‘research’ and γit the resources that

firm i allocates to ‘develop’ the innovative product. Firm i gains access the new technology

stochastically at rate σit ·µ, where µ is a constant parameter. This access is irreversible. The

firm develops the innovative product stochastically at rate γit · λt, where λt depends on the
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firm’s technology. Specifically, λt = λL if the firm doesn’t have access to the new technology

and λt = λH > λL if the firm has access to the new technology.

The race ends once one of the firms develops the innovative product. During the race,

firms pay a flow cost c. The first firm to develop the innovative product receives a lump-

sum reward worth Π.9 Firms don’t discount the future and maximize their expected total

payoff.10 The successful development of the innovative product is publicly observable. Thus,

firms know at all times if they are still on the race. However, firms do not observe their

opponents’ resource allocation.

In the upcoming sections, we will explore different model specifications. These include

cases where research breakthroughs are either public or privately observed, situations where

firms can voluntarily disclose evidence of a research breakthrough, and the possibility of

firms with access to the new technology sharing this access with their opponents.

Change of variables To facilitate the interpretation of the results, we introduce two

relevant parameters measuring the efficiency and the relative intensity of the new technology:

η ≡ E[ completion time with the incumbent technology ]

E[ total completion time with the new technology ]
=

1
λL

1
µ

+ 1
λH

,

δ ≡ E[ research completion time with the new technology ]

E[ total completion time with the new technology ]
=

1
µ

1
µ

+ 1
λH

.

Note that when η is fixed, a higher δ implies that the new technology is more research-

intensive (or less development-intensive). This is because when firms try to achieve innova-

tion via the new technology, they are expected to spend more time in research as δ increases.

For the rest of the paper, we make the following two parametric assumptions:
9 We model the race as winner-takes-all competition. This payoff structure has been commonly used

in the innovation race literature, e.g., Loury (1979); Lee and Wilde (1980); Denicolò and Franzoni (2010).
However, as long as firms only care about the identity of the winner and the duration of their participation
in the race, we are only assuming that preferences of the firms are separable in these two dimensions and
risk-neutral in their participation. Following the literature, we can regard Π as the societal value of having
the innovative product, and the first firm that introduces the innovative product becomes the monopolist and
captures all the social value, e.g., by using the first-degree price discrimination. In this article, we abstract
away from the market after the race and focus on the activities during the race.

10With discounting the firms are not risk-neutral over the duration of the race conditional on the outcome.
This complicates the closed-form solutions without affecting the qualitative results of the paper.
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Assumption A1. The new technology is relatively more efficient: η > 1.

Assumption A2. The incumbent technology is profitable: Π ≥ c/λL.

When assumption A1 does not hold, there is no incentive for firms to allocate resources to

research. They will instead develop the innovative product using the incumbent technology

as long as assumption A2 holds. When assumption A2 fails, there is no incentive for firms

to ever use the incumbent technology. We provide a detailed analysis of this case in the

appendix for completeness.11

First best We want to evaluate the equilibrium resource allocation of the firms in terms

of the expected welfare that they produce. we assume that welfare is independent of the

identity of the firm that wins the race. Moreover, we assume that the total welfare is linear

in the development time. Thus, the social planner is, like the firms, risk-neutral in the

development time. The problem of the planner is equivalent to the problem of minimizing

the expected completion time.

Observation. If firms can share their technological breakthroughs, the planner’s solution

consists of:

(i) allocating all resources to research, so that the new technology is obtained at rate 2µ;

(ii) when any firm discovers the new technology, share it immediately with the opponent so

that both firms develop at rate 2λH .

Hence, the (ex-ante) expected development time is given as follows:

LFB =
1

2µ
+

1

2λH
. (1)

3 Public Information Setting

We begin by exploring a setting where firms’ research progress is public information, i.e.,

firms can observe their opponents technological breakthroughs. In this case, the set of firms
11TBA.
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that have obtained the new technology is common knowledge and we can regard it as a state:

ω ∈ Ω ≡ {{A,B}, {A}, {B}, ∅}. We assume the firms employ Markov strategies, i.e., Firm

i’s strategy is defined by σi : Ω→ [0, 1]. A pair of Markov strategies (σA, σB) constitutes a

Markov perfect equilibrium if, for any state, each firm’s strategy is the best response to the

opponent’s strategy.

Since a firm possessing the new technology derives no value from research, we can restrict

attention to the strategies such that σi(ω) = 0 when i ∈ ω. Next, we introduce three

benchmark Markov strategies that satisfy this condition.

Definition 3.1. (a) The research strategy σiR for firm i fully allocates resources to research

regardless of the opponent’s technology level (σiR(ω) ≡ 1{i/∈ω}).

(b) The fall-back strategy σF fully allocates resources to research unless any firm has the

new technology, in which case it fully allocates resources to development (σF (ω) ≡

1{ω=∅})

(c) The incumbent strategy fully allocates the resources to development independently of

the state (σI(ω) ≡ 0).

The following proposition shows that it is a Markov perfect equilibrium for both firms to

simultaneously use one of the above strategies, depending on parameter values. The proof

is in Appendix A.

Proposition 1. Suppose that technological breakthroughs are public and let η(δ) ≡ 1 +

δ and η(δ) ≡ 1
2

(
1 +

√
1 + 4δ(1− δ)

)
. Then, the Markov perfect equilibrium is uniquely

characterized as follows.

(a) If η ≥ η(δ), each firm plays its respective research strategy (σAR, σ
B
R);

(b) If η ∈
(
η(δ), η(δ)

)
, both firms play the fall-back strategy (σF , σF );

(c) If η ≤ η(δ), both firms play the incumbent strategy (σI , σI).

The above proposition provides a clear picture of how the efficiency of the new technol-

ogy (η) affects the firms’ R&D decisions. When the new technology is sufficiently efficient
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Figure 1: Markov Perfect Equilibrium under the Public Information Setting

and research is relatively easy (η ≥ η(δ)), the firms do research regardless of whether their

opponent has discovered the new technology. When the new technology is relatively in-

efficient (η ≤ η(δ)), the firms do not engage in research at all. In the intermediate case

(η(δ) < η < η(δ)), the firms’ R&D decisions are affected by the opponent’s progress: when

neither firm has made the technological breakthrough, both firms do research; but once a

firm obtains the new technology, the follower—the firm without the new technology—switches

to develop with the incumbent technology.

The proposition also shows that the thresholds depend on δ, the relative intensity of the

new technology. Figure 1 illustrates how these thresholds depend on δ. First, to determine

the threshold for the equilibrium with the research strategy, we need to consider the case

when one firm (the leader) has discovered the new technology and the other (the follower)

has not. Say that Firm i is the follower and Firm j is the leader. Firm i needs to determine

whether to follow j (σi({j}) = 1) or to switch to the incumbent technology (σi({j}) = 0).

When it is difficult to attain the new technology, the follower would choose to follow only

if the new technology is efficient enough. Thus, the threshold for the equilibrium with the

research strategy is increasing as δ increases.

Second, why is the threshold for the equilibrium with the incumbent strategy hump-

shaped? To answer this question, we need to consider the situation where neither firm yet

possesses the new technology. The firms allocate resources by taking into account the diffi-

culty and the advantage of becoming a leader. Consider the case with δ < 1/2, i.e., attaining
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the new technology is relatively easy, but the leader’s advantage is relatively weak (due to

low λH). In this case, the major determinant is the difficulty of becoming a leader. Fix the

efficiency (η) and marginally increase δ. Then it becomes more difficult to attain leadership,

which makes the incumbent strategy more attractive. Next, consider the case with δ > 1/2,

i.e., attaining the new technology is relatively difficult, but it is more advantageous to become

a leader (due to high λH). In this case, the major determinant is the leader’s advantage.

If δ decreases, the leader’s advantage decreases, which again makes the incumbent strategy

more attractive.

The next Corollary characterizes the expected completion time of product development

with public technological breakthroughs.

Corollary 3.1. When technological breakthroughs are public, the expected development time

in any MPE is

Lpublic =



1

2

(
1

µ
+

1

λH
+

1

λH + µ

)
, if η ≥ η(δ),

1

2µ
+

1

λH + λL
, if η ∈ (η(δ), η(δ)),

1

2λL
, if η ≤ η(δ).

(2)

4 Private Information Setting

We now consider the case in which research breakthroughs are private information, i.e., firms

cannot observe whether their opponents have the new technology or not. In this case, the

firms can only condition their resource allocation on their own research breakthroughs and

calendar time t. As before, a firm that possesses the new technology will fully allocate its

resources to development. Thus, we focus on the dynamic resource allocation problem of

a firm that has not discovered the new technology yet. Thus, an allocation policy for a

player can be therefore described by a function σ : R+ → [0, 1] that represents the research

allocation at a given time conditional on the new technology not being discovered. Let S be

the set of such policies.
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4.1 Evolution of Beliefs and Recursive Formulation

Although firms do not observe their opponents’ technology levels, they do form beliefs about

whether their opponents have acquired the new technology. In equilibrium, these beliefs

should be consistent with the opponents’ chosen allocation policy. At any point in time, all

that firms know about their opponent’s progress stems from the fact that the race is still

ongoing, which means that they have not yet successfully developed the innovative product.

Given that the race is ongoing by time t, it is possible to calculate the probability pt that

firms have access to the new technology based on their chosen allocation policy. To describe

the evolution of these probabilities, we introduce the following lemma.

Lemma 4.1 (Probability of access to the new technology). Suppose that a firm follows policy

σ : R+ → [0, 1]. The probability pt that the firm has access to the new technology by time t,

given that the race is still ongoing at time t, evolves according to the following differential

equation:

− d

dt
log(1− pt) =

ṗt
1− pt

= µ · σ(t)− {λH − (1− σ(t)) · λL} · pt. (3)

The proof is provided in Appendix B. Since none of the firms has access to the new

technology at the beginning of the race, we have for any allocation policy σ the initial

probability p0 is zero, which serves as an initial condition for the evolution of pt. The left-

hand side of (3) is the opposite of the time derivative for the log of (1− pt). The right-hand

side of (3) captures two distinct effects in the evolution of the conditional probability. First,

given that the firm has not yet attained the new technology by time t, the research succeeds

at rate µ · σ(t) and it may raise the belief. The first term of (3) represents this positive

effect, which we dub the duration effect (DE). On the other hand, the fact that the race is

still ongoing indicates that the firm has not succeeded yet in development and therefore it

is less likely to have the new technology in hand. The second term of (3) reflects this effect,

which we dub the still-in-the-race effect (SRE).12 Notice that this term is proportional to
12Similar types of the belief updating can be found in the strategic experimentation literature, e.g., Keller

et al. (2005); Bonatti and Hörner (2011). The main difference is that the agents form beliefs about whether
the project is good or bad in those papers, whereas the firms form beliefs about whereas in our model, firms
only form beliefs about the technology access of the rival.
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(b) σ = 1, µ = 2, λH = 4 and δ = 2/3.

Figure 2: Duration Effect (Black) and Still-in-the-Race Effect (Red)

λH − (1 − σ(t))λL, which is the rate of successful innovation development given the new

technology net of that without the new technology.

A natural benchmark is to consider the allocation policy that only allocates resources to

research. We characterize this probability in the following corollary.

Lemma 4.2. Suppose that a firm follows an allocation policy σ, with σ(s) = 1 for s ∈ [0, t).

Then, the conditional probability pt of having access to the technology by time t given that

the race is ongoing is:

pt = q(t) :=
1
λH

(
e−µt − e−λH t

)
1
µ
e−µt − 1

λH
e−λH t

. (4)

In addition, q is increasing, with limt→∞ q(t) = min{1, µ/λH}.

This result highlights the tradeoff between the duration effect and the still-in-the-race

effect. In Figure 2, we illustrate these effects when a firm fully allocates its resources to

research (σt = 1 for all t ≥ 0). Specifically, we provide the graphs of the terms of each effect

divided by (1 − p): µ (DE), λHp (SRE). In Figure 2a, we depict the case where µ = λH ,

i.e., δ = 1/2. Observe that, in this case, the duration effect is larger than the still-in-the-

race effect for every p. If we fix λH and increase µ, we observe that the duration effect

continues to dominate the still-in-the-race effect. Hence, when δ = λH/(λH + µ) < 1/2, the

probability converges to 1 (limT→∞ q(T ) = 1). On the other hand, in Figure 2b, we illustrate
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the case where µ < λH , i.e., δ < 1/2. In this case, the duration effect is greater than the

still-in-the-race effect only when p < µ/λH . This induces the belief to converge to µ/λH .

Firms’ best response In this section, we fix the allocation policy σj of firm j and derive

the set of best responses by firm i. The value for firm i of staying in the race depends on σj

and the current access to the new technology. We denote V 1,i
t the value of firm i at time t

that has access to the new technology and V 0,i
t the value of firm i at time t when i doesn’t

have access to the new technology. Next, we explore the dynamics of Firm i’s value starting

with the value of the firm that has the new technology by time T , what must satisfy the

equation

V 1,i
T =− cdt+ Π · λHdt+ 0 ·

(
λHp

i
T + λL(1− piT )(1− σjT )

)
dt

+ (1− λHdt− λHpiTdt− λL(1− piT )(1− σjT )dt)(V 1,i
T + V̇ 1,i

T dt).

Thus, we can derive the Hamilton-Jacobi-Bellman (HJB) equation:

0 = V̇ 1,i
T + λH(Π− V 1,i

T )−
{
λHp

i
T + λL(1− piT )(1− σjT )

}
V 1,i
T − c. (HJB1)

This HJB equation gives a clear interpretation on the evolution of V 1,i
T : at an instant T (i)

Firm i wins the race at rate λH , in which case it gets the rent Π but loses the continuation

payoff V 1,i
T ; (ii) From the point of view of Firm i, Firm j wins the race at an expected rate

λHp
i
T + λL(1− piT )(1− σjT ), in which case Firm i loses the continuation payoff; (iii) the flow

cost c is charged.

We continue with the continuation value when Firm i doesn’t have access to the new

technology by time T , V 0,i
T . In this case, the firm chooses between doing research and

developing with the incumbent technology:

V 0,i
T = max

σiT∈[0,1]
− cdt+ Π · λL(1− σiT )dt+ V 1,i

T · µσ
i
Tdt+ 0 ·

(
λHp

i
T + λL(1− piT )(1− σjT )

)
dt

+
(

1− λL(1− σiT )dt− µσiTdt− λHpiTdt− λL(1− piT )(1− σjT )dt
)

(V 0,i
T + V̇ 0,i

T dt).
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By using the linearity of σiT , the corresponding HJB equation can be derived as follows:

0 = V̇ 0,i
T −

{
λHp

i
T + λL(1− piT )(1− σjT )

}
V 0,i
T − c

+ max
σiT∈[0,1]

[
σiT · µ(V 1,i

T − V
0,i
T ) + (1− σiT ) · λL(Π− V 0,i

T )
]
.

(HJB0)

This HJB equation determines whether Firm i allocates the resources to research or develop-

ment, conditional on not having access to the new technology. If µ(V 1,i
T −V

0,i
T ) > λL(Π−V 0,i

T ),

Firm i allocates all resources to research: σiT = 1. If λL(Π − V 0,i
T ) > µ(V 1,i

T − V
0,i
T ), Firm

i allocates all resources to development: σiT = 0. If µ(V 1,i
T − V 0,i

T ) = λL(Π − V 0,i
T ), Firm

i is indifferent between any (potentially interior) level of research and development: any

σiT ∈ [0, 1] is consistent with a best response.

4.2 Symmetric Markov Equilibrium

To characterize the equilibrium behavior of firms when technological breakthroughs are pri-

vate, we focus on symmetric equilibria in which policies are Markov with respect to the belief

about the opponent’s technology level. Formally, we say that (σA, σB) is an equilibrium if for

i 6= j, σi is a best-response to σj, i.e. it solves (HJB0) for all T ≥ 0. Moreover, (σA, σB) is a

symmetric Markov equilibrium (SME) if σA = σB, and σ is measurable with respect to the

beliefs that firms have about their opponents’ technology, i.e. pit = pit′ implies σi(t) = σi(t′)

where pt is derived from p0 = 0 and (3) using σj. The following proposition characterizes

the symmetric Markov equilibria of the game.

Proposition 2. When technological breakthroughs are private information, the following

statements hold.

(a) (Cutoff Structure) Any SME (σ, σ) is characterized by a cutoff time T ∗ ∈ R+∪{∞}

and a stationary allocation σ∗ ∈ [0, 1) such that both firms fully allocate to research

up to time T ∗ (σ(t) = 1 for all t < T ∗), and use σ∗ from then on (σ(t) = σ∗ for all

t > T ∗).

(b) (Equilibrium Characterization) Let η̃(δ) ≡ min{η(δ), 2−δ}. The unique symmetric

Markov equilibrium is characterized as follows.
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Figure 3: Symmetric Markov Equilibrium under the Private Information Setting

(i) If η ≥ η̃(δ), both firms play a research policy (T ∗ =∞).

(ii) If η ≤ η(δ), both firms play an incumbent policy (T ∗ = 0, σ∗ = 0).

(iii) If η ∈
(
η(δ), η̃(δ)

)
, both firms play stationary fall-back strategy. Allocate

resources fully to research up to time T ∗ ∈ (0,∞) and then choose an interior

allocation σ∗ ∈ (0, 1), where

σ∗ =
η

1− δ
− η + δ

η − δ
, q(T ∗) =

1

2

{
η

δ
− 1− δ
η − 1

}
,

(5)

The equilibrium continuation value and the formal proof of the proposition are relegated

to Appendix C. However, a sketch of the proof is provided next. We begin by showing that

the belief derived from a symmetric Markov strategy is nondecreasing in time, i.e., ṗt ≥ 0

(Lemma C.1). This is because if ṗt < 0 for some t > 0, by the Markov property, the belief

cannot go above pt which contradicts ṗt < 0. Note that ṗt < 0 if pt > 0 and σt = 0. This

allows us to focus on the following two cases: (i) σt = 0 for all t ≥ 0; or (ii) σt > 0 for all

t ≥ 0 (Lemma C.2). The first case corresponds to incumbent strategy in the observable-

breakthrough benchmark (T ∗ = 0 and σ∗ = 0). Even though the strategy space is different

from the benchmark, it is qualitatively equivalent since the firm always develops with the

incumbent technology. Similarly, a special case of the second case—σt = 1 for all t ≥ 0—
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corresponds to research strategy (T ∗ =∞). In the remaining case, on the equilibrium path,

σS ∈ (0, 1) for some S ≥ 0, i.e., firms are indifferent between researching to find the new

technology and developing the innovation with the old technology at time S. In this case,

we show that from then on (t ≥ S), the firms continue to be indifferent between research

and development (Lemma C.3). In addition, we show that to make firms indifferent for all

t ≥ S, the firms’ strategies and beliefs should be stationary: σt = σ∗ and pt = p∗ for all

t ≥ S (Lemma C.4). By identifying the earliest time T at which firms are indifferent, we

can show that it corresponds to the stationary fall-back strategy: σt = 1 for all t < T and

σt = σ∗ for all t > T . Thus, we have three types of symmetric Markov equilibria: both firms

play (i) the research strategy; (ii) the incumbent strategy; or (iii) the stationary fall-back

strategy.

Next, we need to identify which regions of the parameter space give rise to each of the

three types of equilibrium. First, consider parameter values under which the fall-back policy

is not the second-best policy (η ≥ η(δ) or η ≤ η(δ)). In this case, firms do not change their

resource allocations even if they can observe their opponent’s technological breakthroughs.

Thus, the same strategy profiles (fully conducting research or fully developing with the

incumbent technology) will constitute an equilibrium in the private information setting.

Now consider the remaining case (η(δ) > η > η(δ)). In this case, the new technology is

efficient enough (η > η(δ)) for both firms to begin by doing only research. However, They

need to determine whether to keep fully conducting research indefinitely (T ∗ = ∞) or to

hedge their bets by switching to the stationary fall-back strategy at some point (T ∗ < ∞

and σ∗ ∈ (0, 1)). The answer crucially depends on the relative intensity δ. When the new

technology is more development-intensive (δ < 1/2), if firms keep fully conducting research

indefinitely, then the beliefs that their opponent has made a breakthrough converge to 1 by

Lemma 4.2. Since they are in the parameter region where firms switch to development with

the incumbent technology if they know that their opponent possesses the new technology (or

equivalently p = 1), they will find it better to choose the stationary fall-back strategy when

the belief is sufficiently close to 1. Next, consider the case where the new technology is more

research-intensive (δ > 1/2). In contrast to the previous case, there exists a region where

both firms play the research strategy indefinitely in equilibrium (2− δ < η < η(δ) = 1 + δ).
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Figure 4: Expected completion times for the first-best case, private and public information
settings

This result is also easily understood by considering the belief about technological status. By

Lemma 4.2, this belief cannot exceed (1− δ)/δ in this region of the parameter space. Since

the belief is bounded strictly below 1, firms may find it preferable to keep fully conducting

research in the private information setting, even though they would switch to development

with the incumbent technology if they were able to observe a breakthrough by their opponent.

As δ increases, the upper bound of the belief (1− δ)/δ decreases, so the firms will keep fully

conducting the research even with the relatively low η. Thus, the threshold between the

equilibria with the stationary fall-back strategy and the research strategy decreases in δ.

Remark 1. In Lemma C.6, we characterize the generic forms of the expected payoffs when

both firms use σt = 1 for all t ∈ [0, T ]. It allows us to derive the expected payoffs at each

point in time under the equilibrium with the stationary fall-back policy. By using V 1
T ∗ = V ∗1

and V 0
T ∗ = V ∗0 in (5) as terminal conditions at time T ∗, the constants C0 and C1 in (27) and

(28) can be determined. Moreover, C1 is negative (see the proof of Lemma C.8). Thus, the

expected payoffs V 1
t and V 0

t for any t ∈ [0, T ∗] can be derived.
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4.3 Comparison of Expected Completion Times

Having characterized the firms’ equilibrium behavior in the private information setting, we

can compare it with the benchmark cases. Recall that the (ex ante) expected completed

times for the first-best case and the public information setting are characterized in equations

(1) and (2). In Figure 4, we fix δ and display the curves of the expected completion times

for the first-best case (black) and the second-best case (blue) with respect to the efficiency

measure η. The gap between these two expected completion times is a consequence of the

new technology not being shared.

Observe that when η ≥ η(δ) or η ≤ η(δ), the equilibrium policy in the private information

setting is consistent with the public information setting, i.e., the expected completion times

for these settings are same. When η ∈ (η(δ), η(δ)), in the private information setting, the

firms cannot use the fall-back policy because they are not able to observe the rivals’ tech-

nology levels. Rather, they use stationary fall-back strategies (η ∈ (η(δ), η̃(δ))) or research

strategies (η ∈ [η̃(δ), η(δ))), which are suboptimal compared to the public information case.

Therefore, the expected completion time would be longer, i.e., a lack of information trans-

mission about the research status retards the pace of innovation. Figure 4 also illustrates

these results: there is a gap between the expected completion times of the public and private

information settings only if η ∈ (η(δ), η(δ)).

5 Patents

In this section, we extend the model by allowing the firms to costlessly patent and license

the new technology to their opponents.

5.1 Patents with public information

As in Section 3, we consider a setting where research breakthroughs are public. In this

framework, there is no reason why a firm would not file a patent and, conditional on filing a

patent, there are gains from sharing it with the competitors. Thus, there exists a price such
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that the firm with the patent (Licensor) is willing to accept to share the technology with the

opponent (Licensee) and that the opponent is willing to pay.

Moreover, if the licensor has all the bargaining power (i.e. can extract all the surplus

that is created by sharing the new technology) then the incentives to research in the first

place are aligned with minimizing the duration of the race and the equilibrium is efficient.

We formalize this statement in the following observation.

Observation. When technological breakthroughs are public, technological breakthroughs are

always patented and shared. Moreover, if negotiations take the form of a take-it-or-leave-it

offer, the unique equilibrium is first-best efficient.

5.2 Patents with private information

When technological breakthroughs are private information, a firm that obtains the new

technology can choose to conceal its discovery—treat it as a trade secret—or disclose it by

filing a patent. In addition, a firm that files a patent can decide whether to license it or not.

To simplify the analysis, we assume that the firm that holds the patent can make a take-it-or

leave-it offer to the rival firm for the right to use the new technology. As usual, we solve the

equilibrium backwards, starting at the subgame in which one of the firms filed a patent.

5.2.1 The Subgame after Patenting

We begin by describing the subgame that takes place after a firm files a patent. There

are two possible scenarios, depending on whether the rival had the new technology and was

concealing it or didn’t had the new technology. Consider first the case where the rival already

had the new technology. Then, the trade secret protection allows the rival firm to dispute

the patent. Thus, both firms have the right to use the new technology and the expected

payoffs of them are VC = λHΠ−c
2λH

.

Next, suppose that the rival firm does not possess the new technology. Then, the patent-

ing firm has the exclusive right to use the new technology. If the rival firm rejects the

licensing offer, it has to develop with the incumbent technology. Then, the continuation

value of the patenting firm and the rival firm are VP = λHΠ−c
λH+λL

and VR = λLΠ−c
λH+λL

.

22



Let x be the take-it-or-leave-it (TIOLI) offer that the patent holder makes to the rival

firm for the right to use the new technology. After licensing, both firms can use the new

technology. Thus, the expected payoffs of the patenting firm and the rival firm after licensing

are VC + x and VC − x. Then, the rival accepts the offer whenever VC − x∗ = VR and the

patent holder chooses x∗ such that it s satisfied with equality. With simple algebra, we can

derive that

x∗ =
(λH − λL)(λHΠ + c)

2λH(λH + λL)
=
λH − λL
λH + λL

(
VC +

c

λH

)
> 0. (6)

Then, the expected payoff for the patenting firm after licensing is

VL ≡ VC + x∗ =

(
1 +

(λH − λL)c

λH(λHΠ− c)

)
VP > VP . (7)

As in the case of public information, a firm that patented the new technology can always be

better off by licensing it.

5.2.2 Immediate-Disclosure Equilibrium

We first explore whether the first-best outcome can be achieved by allowing the firms to

disclose the new technology and license it. Recall that in the first-best case, both firms do

research, and a firm’s new technology is immediately spilled over to the rival. Thus, we

consider a strategy profile such that a firm with the new technology employs the immediate-

disclosure strategy—a firm discloses (and licenses) the new technology as soon as it discovers—

and a firm without the new technology employs the research strategy (σt = 1 for all t ≥ 0).

Then, we ask whether both firms playing this strategy can be sustained as an equilibrium.

Suppose that a firm (say Firm A) just discovered the new technology and Firm B has

not disclosed it yet. Given that Firm B sticks to the immediate disclosure and research

strategy, Firm A’s belief that Firm B has the new technology is zero. Then, by disclosing

the new technology, Firm A expects to license it, i.e., the expected payoff for Firm A after

disclosure is VL. Now consider Firm A’s deviation to delay the disclosure by time dt. With

the probability λHdt, Firm A wins the race and receives Π. But with the probability µdt,

Firm B will discover the new technology and files a patent, but it will be disputed by Firm

A’s trade secret right. Thus, both firms will race with the new technology from then on
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and the expected payoff is VC . With the probability (1− λHdt− µdt), neither of the events

happens and Firm A licenses, then the expected payoff is VL. Last, the flow cost cdt will be

paid. To sum up, Firm A’s expected payoff from delaying the disclosure is

Π · λHdt+ VC · µdt+ (1− λHdt− µdt) · VL − cdt = VL + [(µ+ 2λH)VC − (µ+ λH)VL] dt

= VL + [λHVC − (µ+ λH)x∗] dt.

Then, from δ = λH/(µ+λH), the immediate-disclosure and research strategy can be sustained

as an equilibrium if and only if δVC ≤ x∗. By using (6) and some algebra, this inequality is

equivalent to:
(1− δ)(η(δ)− η)

2(η − 1 + δ)
≤ c

λHΠ− c
. (8)

From the assumption that λLΠ ≥ c, observe that (8) always holds if η ≥ η(δ). Recall

that firms do research regardless of the rival’s progress. It implies that there does not exist

any incentive for a firm to conceal its progress. Therefore, the firms would monetize the

new technology by licensing it as soon as it discovers, and the first-best outcome would be

achieved.

Next, suppose that η(δ) < η < η(δ). Then, (8) is equivalent to:

π =
λLΠ

c
≤ 1 +

η2 − (1− δ)2

η(η(δ)− η)
≡ π. (9)

Also note that π > 1 since η > 1 − δ > 0. Therefore, when the reward of winning the race

is sufficiently low (1 ≤ π ≤ π), the firms would license the new technology as soon as it

discovers. The following proposition formally summarizes the above results.

Proposition 3. Suppose that one of the following conditions holds: (i) η ≥ η(δ); or (ii)

η ∈ (η(δ), η(δ)) and 1 ≤ π ≤ π. Then, there exists an equilibrium in which firms fully

allocate resources to research and license the new technology as soon as they access it.
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5.2.3 No-Disclosure Equilibrium

We now explore whether the worst-case scenario for the planner can be realized, i.e., firms

never patent the new technology and the expected completion time corresponds to the private

information setting.

First, we consider the case where η̃(δ) = min{2 − δ, η(δ)} ≤ η < η(δ) = 1 + δ. By

Proposition 2, in the equilibrium under the private information setting, firms do research

until it succeeds (T ∗ = ∞ and σt = 1 for all t ≥ 0). Suppose that both firms stick to this

resource allocation strategy and never disclose their discoveries. When Firm A discovers

the new technology at time t and never discloses it, the expected payoff of Firm A is V t
1 =

{1 + δ(1− qt)} · VC by Proposition 2 (b-i). If Firm A discloses the discovery at time t,

Firm B has the new technology with the probability qt. Thus, the expected payoff from the

disclosure is VC · qt + VL · (1 − qt) = VC + (1 − qt)x∗. Therefore, the firm will not disclose

if x∗ < δVC . We can also consider the case where Firm A discovers at time t but conceals

until t′ and decides to disclose or not at time t′. Even in this case, Firm A faces the same

problem as before and will not disclose if x∗ < δVC . Recall that x∗ < δVC is equivalent to

π > π. Therefore, if π > π(η, δ), there exists an equilibrium such that firms never disclose

their discoveries and do research until it succeeds.

Next, we consider the case where η ∈
(
η(δ), η̃(δ)

)
. By Proposition 2 (b-iii), in the

equilibrium under private information, firms employ the stationary fall-back strategy (for

some T ∗ ∈ (0,∞) and σ∗ ∈ (0, 1), σt = 1 for all 0 ≤ t < T ∗ and σt = σ∗ for all t ≥ T ∗).

Suppose that Firm A discovers the new technology at t ≥ T ∗. If Firm A keeps the discovery

secret, the expected payoff of Firm A is V ∗1 =
2δ

η − 1 + δ
VC . In addition, V ∗1 < V 1(p∗) =

{1 + δ(1− p∗)}VC (see Lemma C.8). On the other hand, if Firm A discloses the discovery,

the expected payoff from the disclosure is VC + (1− p∗)x∗. Then, Firm A does not disclose

under the condition stronger than x∗ < δVC . In this case, there exists π > π such that Firm

A does not disclose when π > π. The following proposition formally states this result.

Proposition 4. Suppose that η ∈ (η(δ), η(δ)). Then, there exists π > π such that for all

Π/c > π, there is an equilibrium in which (i) firms never patent the new technology (ii) firms

employ the equilibrium resource allocations from Proposition 2.
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6 Conclusion

In this article, we study the long-lasting question of patent vs. secrecy by highlighting the

firm’s incentives to conceal breakthroughs to hinder the rival’s strategic response. To do so,

we introduce an innovation race model with multiple paths and show that firms’ disclosing

decisions depend on the reward for winning the race.

We show that when interim breakthroughs are public, patent protection is effective in

inducing a more efficient allocation of R&D resources. However, when interim breakthroughs

are private and stakes are high, patent protection has a limited effect. Based on this result,

we can argue that, in some situations, higher stakes may reduce patenting and licensing

which would decrease the pace of innovation.

There are many avenues open for further research. For example, we assume that there

are exogenously given two paths towards innovation, and one of the paths requires two

breakthroughs. However, in practice, there are numerous ways to make an innovation, and

it often requires more than two breakthroughs. We also assume that a firm’s R&D resources

are fixed over time, but we could also allow firms to endogenously choose how much effort

to put into each point in time. Finally, we assume the contest structure is given by the

winner-takes-all competition, but we might consider a contest designing problem. We leave

these intriguing questions and others for future work.
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Denicolò, V. and Franzoni, L. A. (2010). On the winner-take-all principle in innovation races.

Journal of the European Economic Association, 8(5):1133–1158.

Gallini, N. T. (1992). Patent policy and costly imitation. The RAND Journal of Economics,

pages 52–63.

Green, B. and Taylor, C. R. (2016). Breakthroughs, deadlines, and self-reported progress:

Contracting for multistage projects. American Economic Review, 106(12):3660–99.

Hopenhayn, H. A. and Squintani, F. (2016). Patent rights and innovation disclosure. The

Review of Economic Studies, 83(1):199–230.

Horstmann, I., MacDonald, G. M., and Slivinski, A. (1985). Patents as information transfer

mechanisms: To patent or (maybe) not to patent. Journal of Political Economy, 93(5):837–

858.

Keller, G., Rady, S., and Cripps, M. (2005). Strategic experimentation with exponential

bandits. Econometrica, 73(1):39–68.

Kim, Y. (2022). Managing a project by splitting it into pieces. Available at SSRN:

https://ssrn.com/abstract=3450802.

Kultti, K., Takalo, T., and Toikka, J. (2007). Secrecy versus patenting. The RAND Journal

of Economics, 38(1):22–42.

Kwon, I. (2012). Patent races with secrecy. The Journal of Industrial Economics, 60(3):499–

516.

Lee, T. and Wilde, L. L. (1980). Market structure and innovation: A reformulation. The

Quarterly Journal of Economics, 94(2):429–436.

Lobel, O. (2013). Filing for a patent versus keeping your invention a trade secret. Harvard

Business Review, 21.

Loury, G. C. (1979). Market structure and innovation. The quarterly journal of economics,

pages 395–410.

28

https://ssrn.com/abstract=3450802


Neyman, A. (2017). Continuous-time stochastic games. Games and Economic Behavior,

pages 92–130.

Scotchmer, S. and Green, J. (1990). Novelty and disclosure in patent law. The RAND

Journal of Economics, pages 131–146.

Song, Y. and Zhao, M. (2021). Dynamic r&d competition under uncertainty and strategic

disclosure. Journal of Economic Behavior & Organization, 181:169–210.

Spiegel, Y. (2008). Licensing interim r&d knowledge. Technical report.

Takalo, T. (1998). Innovation and imitation under imperfect patent protection. Journal of

Economics, 67(3):229–241.

Templeton, B. (2019). Elon musk’s war on lidar: who is right and why do they think

that. Forbes https://www. forbes. com/sites/bradtempleton/2019/05/06/elon-musks-war-

on-lidar-who-is-right-and-why-do-they-think-that/7fe42c4f2a3b.

Zhang, T. (2012). Patenting in the shadow of independent discoveries by rivals. International

Journal of Industrial Organization, 30(1):41–49.

29



Appendix

A Proofs for Public Information Setting

A.1 Transformation

It is useful to write conditions in terms of the rate µ. The following lemma summarizes this

transformation.

Lemma A.1. Let µ ≡ 2λLλH
λH−λL

and µ ≡ λL(λH+λL)
λH−λL

. Then, η ≥ η(δ) is equivalent to µ ≥ µ

and η ≤ η(δ) is equivalent to µ ≤ µ.13

Proof of Lemma A.1. First, we have:

η − η(δ) = η − (1 + δ) =
µλH

λL(λH + µ)
− λH
λH + µ

− 1

=
µ(λH − λL)− 2λLλH

λL(λH + µ)
=

λH − λL
λL(λH + µ)

(µ− µ).

Therefore, η ≥ η(δ) is equivalent to µ ≥ µ. Next, we have

(
η(δ)− η

)(
η −

1−
√

1 + 4δ(1− δ)
2

)
=− η2 + η + (1− δ)δ

=−
(

µλH
λL(λH + µ)

)2

+
µλH

λL(λH + µ)
+

µλH
(λH + µ)2

=
µλH(λH − λL)

λ2
L(λH + µ)2

(
µ− µ

)
.

Note thatη > 1 implies η −
{

1−
√

1 + 4δ(1− δ)
}
/2 > 0. Thus, η ≤ η(δ) is equivalent to

µ ≤ µ.

A.2 Proof of Proposition 1

Proposition 1 characterizes the MPE of the setting with observable technologies. A Markov

strategy for player i is a mapping σi : Ω → [0, 1], where the state Ω represents the set of
13Although µ and µ are the functions of λL and λH , we suppress them to simplify.
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firms that possess the new technology. A MPE consists of a profile of Markov strategies such

that each of the players is best responding to the strategy of their opponent.14

The existence of a best response that is Markov to a Markov opponent strategy is sup-

ported by the stationarity of the problem from the firm’s perspective. Thus, the best Markov

response must also be a best response over all strategies. This means that we need only con-

sider Markov deviations to determine the Markov Perfect Equilibria.

Given a Markov strategy profile, we can compute the expected value for each player at

every state. Let U j
ω denote Firm j’s continuation value at the state ω. Notice that for every

strategy, a positive transition rate from state ω to ω′ implies that ω ⊆ ω′. This allows us to

obtain the equilibrium Markov strategies and continuation value at any MPE via backward

induction.

We begin with the state ω = {A,B}. For any firm that possesses the new technology,

it is optimal to develop with it. Thus, in any MPE, σA({A,B}) = σB({A,B}) = 1 and the

continuation value is

UA
{A,B} = UB

{A,B} =
1

2

(
Π− c

λH

)
= VC (10)

Next, we consider jointly the states ω = {A} and ω = {B}, i.e. the cases in which

only one of the firms possesses the new technology. The firm with the new technology will

trivially find it optimal to develop with it. Thus, σA({A}) = σB({B}) = 1 in any MPE. The

following lemma characterizes σi({j}), i.e. the opponent firm’s optimal action.

Lemma A.2. If η < η(δ) then, in any MPE, σA({B}) = σB({A}) = 0. When η > η(δ)

then, in any MPE, σA({B}) = σB({A}) = 1.

Proof of Lemma A.2. Let ω = {i}, i.e., only firm i possesses the new technology. Firm i will

develop with the new technology. For firm j, the problem is to choose σ to maximize his

continuation value:

U j
{i} = max

σ∈[0,1]

σµVC + (1− σ)λLΠ− c
σµ+ (1− σ)λL + λH

Taking the derivative of the previous objective function with respect to the choice variable
14Existance of these equilibria for a larger class of continuous-time stochastic games with finite states and

actions has been studied in Neyman (2017).
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σ, and using (10) we obtain

(λHΠ + c) · [µ(λH − λL)− 2λHλL]

2λH(λH + λL + σ(µ− λL))2
=

(λHΠ + c)(λH − λL)(µ− µ)

2λH(λH + λL + σ(µ− λL))2

Note that the above equation is positive if and only if µ > µ̄, or equivalently by Lemma A.1,

η > η(δ). Therefore, the best response is σi({j}) = 1 if η > η(δ), and σi({j}) = 0 if η < η.

In addition, we have

U j
{i} =


µVC − c
µ+ λH

, if η ≥ η(δ),

λLΠ− c
λL + λH

, if η < η(δ).

Finally, it remains to analyze the state ω = {∅}. We divide the analysis into the following

three lemmas.

Lemma A.3. Assume η < η(δ). Then the unique MPE involves σA(∅) = σB(∅) = 0.

Proof of Lemma A.3. Notice that η < η(δ) ≤ η(δ). Thus, By Lemma A.2, once a firm finds

the new technology, i.e., ω = {A} or {B}, the other one switches to developing with the

incumbent technology since. In these cases, the values of the firms are given as follows:

UA
{A} = UB

{B} =
λHΠ− c
λL + λH

and UB
{A} = UA

{B} =
λLΠ− c
λL + λH

. (11)

Back to the state ∅, let πi(σi∅, σ
j
∅) be the expected continuation payoff of Firm i when firms

play the actions σi∅ and σ
j
∅ as long as neither firm obtains the new technology, and continue

with the optimal actions thereafter.

Given that firm j plays σ̂ at state ω = ∅, the best response of firm i is:

max
σ∈[0,1]

σµU i
{i} + (1− σ)λLΠ + σ̂µU i

{j} − c
σµ+ (1− σ)λL + σ̂µ+ (1− σ̂)λL

(12)

Taking the derivative of the previous objective function with respect to σ and using eq. 11,

we get
[µ(λH − λL)− λL(λH + λL)] · [c+ Π(λL + σ̂(µ− λL)]

(λH + λL)(λL(2− σ − σ̂) + µ(σ + σ̂))2
(13)
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This is negative since η < η(δ) implies, by Lemma A.1, µ < µ = λL(λL+λH)
λH−λL

. Therefore, the

best action independently of the action of the opponent at state ∅ is to use the incumbent

technology, given optimal continuation.

Lemma A.4. Assume η ∈ (η(δ), η(δ)). Then the unique MPE involves σA(∅) = σB(∅) = 1.

Proof of Lemma A.4. The problem of firm i at state ∅ is, as before,

max
σ∈[0,1]

σµU i
{i} + (1− σ)λLΠ + σ̂µU i

{j} − c
σµ+ (1− σ)λL + σ̂µ+ (1− σ̂)λL

By the assumption η < η(δ) and Lemma A.2, the equations (11) also hold for this case.

Thus, the derivative is the same as we obtained in eq. 13. The difference is that now, since

η > η(δ)), the derivative changes sign. Thus, independently of the action chosen by the

opponent in state ∅, it is optimal to do research (given optimal continuation).

Thus, the strategy profile that both firms play fall-back strategies constitutes the unique

equilibrium.

Lemma A.5. Assume η > η(δ). Then the unique MPE involves σA(∅) = σB(∅) = 1.

Proof of Lemma A.5. By Lemma A.2, in any MPE the firms do research once the opponent

obtains the new technology. Thus,

U i
{i} =

λHΠ + µVC − c
µ+ λH

and U i
{j} =

µVC − c
µ+ λH

.

Using these in the problem of firm i in state ∅ (eq. 12) and taking derivatives with respect

to the choice variable σ we obtain:

λHΠ(µ(λH − λL)− λHλL)[λL + σ̂(µ− λL)] + c(λ2
H(µ− λL) + µ2(λH − λL)− 3λLλHµ)

λH(λH + µ)(λL(2− σ − σ̂) + µ(σ + σ̂))2

Note that the denominator is positive. The numerator can be rewritten as

{µ(λH − λL)− λHλL} · {λHΠ · (λL + σ̂(µ− λL)) + c · (µ+ λH)}
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Which is positive since µ > 2λHλL
λH−λL

> λHλL
λH−λL

. Thus, the best response at state ∅, for every σ̂,

is to choose σ = 1.

A.3 Proof of Corollary 3.1

When η(δ) ≥ η, the expected completion time is 1
2λL

since both firms develop with the

incumbent technology. Next, when η ∈ (η(δ), η(δ)), the expected time until one of the

firms discover new technology is 1
2µ
. Then, a firm develops with the new technology and

the other firm develops with the incumbent technology, thus, the expected completion time

from then on is 1
λH+λL

. Therefore, the (total) expected completion time is 1
2µ

+ 1
λH+λL

.

Last, when η ≥ η(δ), unlike in the previous case, the firm without the new technology

keeps doing research. Then, the expected time until either the firm with the new technology

develops the product or the firm without the new technology discovers it is 1
λH+µ

. With the

probability µ
λH+µ

, the firm without the new technology discovers it earlier than the product

development, then it takes an additional expected completion time 1
2λH

. Therefore, the total

expected completion time is

1

2µ
+

1

λH + µ
+

µ

λH + µ
· 1

2λH
=

1

2

(
1

µ
+

1

λH
+

1

λH + µ

)
.

B Private Information: Evolution of Beliefs

Proof of Lemma 4.1. Suppose that Firm j allocates σjt attention to research conditional on

not having the new technology. Finally, let Σt =
∫ t

0
σjs ds.

Let pit be the belief of Firm i that Firm j obtained the new technology by time t.

1− pt
pt

=
Pr(no success in research and development)

Pr(success in research but no success in development)

=
e−µΣt · e−λL(t−Σt)∫ t

0
µ · σs · e−µΣs · e−λL(s−Σs) · e−λH(t−s) ds

(14)

Let Ut and Rt be the numerator and the denominator of the right-hand side of (14). Note
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that

∂Ut
∂t

= −Ut ·
(
(µ− λL)σjt + λL

)
∂Rt

∂t
= µ · σjt · Ut − λH ·Rt

By Differentiating (14) and multiplying Rt/Ut,

− ṗit
(1− pit)pit

=
−Ut ·

(
(µ− λL)σjt + λL

)
·Rt − µ · σjt · U2

t + λH ·Rt · Ut
R2
t

· Rt

Ut

=−
(
(µ− λL)σjt + λL

)
+ λH − µ · σjt (1− pit)/pit

=
{
λH − λL(1− σjt )

}
− µ · σjt/pit.

By multiplying −(1− pit)pit, we have (3).

Proof of Lemma 4.2. By plugging σt = 1 to (3), we have ṗt = (µ − λHpt)(1 − pt). By

rearranging the differential equation, we can derive that

λH − µ = (λH − µ)
λH ṗt

(µ− λHpt)(λH − λHpt)
=

d

dt
log

(
λH − λHpt
µ− λHpt

)
.

Then, from p0 = 0, we can derive that

λH(1− pT )

µ− λHpT
=
λH
µ
e(λH−µ)T .

By rearranging the above equation, we have (4).

Observe that

q̇T =
µ(λH − µ)2e(λH+µ)T

(λHeλHT − µeµT )2
> 0.

Thus, q is increasing in T .

When µ > λH ,

lim
T→∞

qT = lim
T→∞

1
λH

(
e(λH−µ)T − 1

)
1
µ
e(λH−µ)T − 1

λH

= 1.
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When µ < λH ,

lim
T→∞

qT = lim
T→∞

1
λH

(
1− e(µ−λH)T

)
1
µ
− 1

λH
e(µ−λH)T

=
µ

λH
.

C Private Information: Equilibria

C.1 Equilibrium values

In equilibrium, a firm’s expected payoffs with and without the new technology are V t
0 =

V 0(qt) and V t
1 = V 1(qt) where q is the belief defined in (4) and

V 1(q) ≡1

2

(
Π− c

λH

)
(1 + δ(1− q)) , (15)

V 0(q) ≡1

2

(
Π− c

µ
− c

λH

)
(1− δq)− c

2(λH + µ)
. (16)

In equilibrium, the expected payoff of each firm is V 0
t = λLΠ−c

2λL
for all t ≥ 0.15

Moreover, for all t ≥ T ∗, σt = σ∗, pt = p∗, V 1
t = V ∗1 and V 0

t = V ∗0 where

C.2 Cutoff Structure

C.2.1 Lemmas

Lemma C.1. If the belief process {pt} is derived from a symmetric Markov strategy σ, then

ṗt ≥ 0 for all t ≥ 0.

Proof of Lemma C.1. Suppose that ṗt < 0 for some t ≥ 0. Note that the belief is nonnega-

tive. Then, pt−η > pt ≥ 0 for a small η > 0. Also note that p0 = 0 and ṗ0 = µ ·σ0 ≥ 0 by (3).

By the continuity of p, there exists t′ < t such that pt′ = pt and ṗt′ ≥ 0. However, since the

strategy is Markov, σt′ = σt, which gives ṗt′ = ṗt and contradicts ṗt′ ≥ 0 > ṗt. Therefore,

ṗt ≥ 0 for all t ≥ 0.
14See Remark 1 for the expected payoffs for t ∈ [0, T ∗]
15When a firm possesses the new technology—though it is off the equilibrium path—the expected payoff is

V t1 = λHΠ−c
λH+λL

.
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Lemma C.2. If σ constitutes a symmetric Markov equilibrium, σt = 0 for all t ≥ 0 or

σt > 0 for all t ≥ 0.

Proof of Lemma C.2. Consider the case with pt > 0. If σt = 0, by (3), ṗt = −(λH−λL)pt(1−

pt). Since pt cannot be equal to 1, ṗt < 0, which contradicts the previous result. Therefore,

σt > 0 whenever pt > 0. If σ0 = 0, then ṗ0 = 0 and the belief stays at 0. By the Markov

property, σt = 0 for all t ≥ 0. If σ0 > 0, then ṗ0 > 0 and pt > 0 for a small enough t > 0.

Then, σt = 0 will never be chosen, i.e., σt > 0 for all t ≥ 0.

Lemma C.3. If σ constitutes a symmetric Markov equilibrium and σS ∈ (0, 1) for some

S ≥ 0, then µ(V 1
t − V 0

t ) = λL(Π− V 0
t ) for all t ≥ S.

Proof of Lemma C.3. By Lemma C.2, if σS > 0 for some S ≥ 0, σt > 0 for all t > 0, thus,

µ(V 1
t − V 0

t ) ≥ λL(Π− V 0
t ) for all t ≥ 0.

Assume the contrary. Then, we can properly define T ≡ inf{t > S | µ(V 1
t − V 0

t ) >

λL(Π − V 0
t )}. Then, µ(V 1

s − V 0
s ) = λL(Π − V 0

s ) holds for S ≤ s ≤ T , and for some δ > 0,

µ(V 1
s − V 0

s ) > λL(Π− V 0
s ) for all T < s < T + δ.

When µ(V 1
t − V 0

t ) = λL(Π− V 0
t ), we show that µ(V̇ 1

t − V̇ 0
t ) ≤ −λLV̇ 0

t if and only if

λHpt + λL(1− pt)(1− σt) ≤
µ(λH − λL)(Π− V 1

t )− λLc
λLΠ

.

First, by (HJB1) and (HJB0), we have

µV̇ 1
t = µ(λH +Xt)V

1
t − µ(λHΠ− c), (17)

(µ− λL)V̇ 0
t = (µ− λL)XtV

0
t − (µ− λL)(µ(V 1

t − V 0
t )− c), (18)

where Xt = λHpt + λL(1 − pt)(1 − σt). Also note that (µ − λL)(V 1
t − V 0

t ) = λL(Π − V 1
t ).

Then, µ(V̇ 1
t − V̇ 0

t ) ≤ −λLV̇ 0
t is equivalent to:

λLΠ ·Xt =
{
µV 1

t − (µ− λL)V 0
t

}
Xt

≤µ(λHΠ− c)− µλHV 1
t + (µ− λL)c− µ(µ− λL)(V 1

t − V 0
t )

= µ(λH − λL)(Π− V 1
t )− λLc.
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Let σT− := limt→T− σt and σT+ := limt→T+ σt. Note that σT+ = 1. By the continuity of

p and V 1, we have pT− = pT+ = pT and V 1
T− = V 1

T+ = V 1
T .

First, consider the case with σT− < 1.16 In this case, we have

XT+ =λHpT + λL(1− pT )(1− σT+)

<λHpT + λL(1− pT )(1− σT−) =
µ(λH − λL)(Π− V 1

T )− λLc
λLΠ

.

Then, µ(V̇ 1
T+ − V̇ 0

T+) < −λLV̇ 0
T+ . Since µ(V 1

T − V 0
T ) = λL(Π − V 0

T ), for small enough η > 0,

λL(Π− V 0
T+η) > µ(V 1

T+η − V 0
T+η) which contradicts σT+ = 1.

Next, consider the case with σT− = 1. Note that µ(V 1
T − V 0

T ) = λL(Π− V 0
T ) and µ(V̇ 1

T −

V̇ 0
T ) = −λLV̇ 0

T . If we show that µ(V̈ 1
T+ − V̈ 0

T+) < −λLV̈ 0
T+ , it contradicts σT+ = 1. Observe

that σT+ = 1 and σ̇T+ = 0, thus, ẊT+ = λH ṗT . By taking derivatives for (17) and (18), we

can derive that

µV̈ 1
T+ =µλH

[
(1 + pT )V̇ 1

T + ṗTV
1
T

]
,

(µ− λL)V̈ 1
T+ =(µ− λL)

[
λHpT V̇

0
T + λH ṗTV

0
T − µ(V̇ 1

T − V̇ 0
T )
]
.

Then, we have

µV̈ 1
T+ − (µ− λL)V̈ 0

T+ =λHpT

{
µV̇ 1

T − (µ− λL)V̇ 0
T

}
+ µλH V̇

1
T

+ λH ṗT
{
µV 1

T − (µ− λL)V 0
T

}
+ µ(µ− λL)(V̇ 1

T − V̇ 0
T )

=µ(λH − λL)V̇ 1
T .

(19)

Note that (λHΠ − c)/(λH + λHpT ) is the expected payoff of the firm (with the new

technology) at time T if the opponent shuts down when it does not possess the new technology

at time T . Then, in equilibrium, the expected payoff cannot exceed this value: V 1
T <

(λHΠ − c)/(λH + λHpT ). From (17), we have V̇ 1
T < 0. By (19), µ(V̈ 1

T+ − V̈ 0
T+) < −λLV̈ 0

T+ ,

which contradicts σT+ = 1.

16It is possible that σT− is not properly defined. Even in this case, the following argument still holds by
considering a converging subsequence of {σt}.
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Lemma C.4. Suppose that there exists 0 ≤ T < ∞ such that σ is a symmetric Markov

equilibrium with σt = 1 for all t < T and µ(V 1
t − V 0

t ) = λL(Π − V 0
t ) for all t ≥ T . Then,

for all t ≥ T , σt = σ∗, pt = p∗, V 1
t = V ∗1 , and V 0

t = V ∗0 , i.e., σ is a stationary fall-back

equilibrium. In addition, T = 1
λH−µ

log
(
µ(1−p∗)
µ−λHp∗

)
.

Proof of Lemma C.4. To have 0 < σt < 1 for all t ≥ T ,

µ(V 1
t − V 0

t ) = λL(Π− V 0
t ). (20)

By taking a derivative, we also have

µV̇ 1
t = (µ− λL)V̇ 0

t . (21)

Define X(pt, σt) ≡ λHpt + λL(1− pt)(1− σt). By (HJB1), we have

µV̇ 1
t = X(pt, σt)µ · V 1

t − µλH(Π− V 1
t ) + µc. (22)

By (HJB0) and (20), we also have

(µ− λL)V̇ 0
t =X(pt, σt)(µ− λL)V 0

t − (µ− λL)µ(V 1
t − V 0

t ) + (µ− λL)c

=X(pt, σt)(µV
1
t − λLΠ)− µλL(Π− V 1

t ) + (µ− λL)c.
(23)

By using (21), (22) and (23), we have

X(pt, σt) =
µ(λH − λL)(Π− V 1

t )− λLc
λLΠ

. (24)

By plugging (24) into (HJB1), we can derive that

0 =V̇ 1
t −

1

λLΠ

{
µ(λH − λL)(Π− V 1

t )− λLc
}
V 1
t + λH(Π− V 1

t )− c

=V̇ 1
t −

µ(λH − λL)

λLΠ

{
V 1
t −

λL(λHΠ− c)
µ(λH − λL)

}
(Π− V 1

t )

=V̇ 1
t −

α

Π− β
(V 1

t − β)(Π− V 1
t )

(25)
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where α ≡ µ(λH−λL)(Π−β)
λLΠ

and β ≡ λL(λHΠ−c)
µ(λH−λL)

. Note that

Π− β =
λLλH
λH − λL

[(
1

λL
− 1

λH
− 1

µ

)
Π +

c

µ

]
> 0.

Thus, α and β are strictly positive.

Also note that Π − c/λH > V 1
t for all t ≥ 0 since the firm’s expected profit under the

competition cannot exceed that without the competition. If V 1
T > β, V 1

t > β for all t ≥ T .

If not, there exists t > T such that Vt > β and V̇t = 0, which contradict (25). Likewise, if

V 1
T < β, V 1

t < β for all t ≥ T . Now suppose that V 1
T 6= β. By (25), we have

α =
(Π− β)

(V 1
t − β)(Π− V 1

t )
V̇ 1
t =

d

dt
log

(
|β − V 1

t |
Π− V 1

t

)

By integrating the above equation side-by-side from T to t, we have

α(t− T ) = log

(
|β − V 1

t |
Π− V 1

t

)
− log

(
|β − V 1

T |
Π− V 1

T

)
⇐⇒ |β − V 1

T |
Π− V 1

T

eα(t−T ) =
|β − V 1

t |
Π− V 1

t

.

Notice that the right-hand-side is bounded above and below since V 1
t < Π − c/λH . The

left-hand-side diverges to positive or negative infinite. Thus, it must be that V 1
T = β.

In addition, by solving (25) with the initial condition V 1
T = β, we have V 1

t = β = V ∗1 for

all t ≥ T . By plugging V 1
t = β into (20), we also have

V 0
t =

µβ − λLΠ

µ− λL
=

λL
µ− λL

(
−Π +

λHΠ− c
λH − λL

)
=

λL
µ− λL

· λLΠ− c
λH − λL

= V ∗0

Next, by plugging V 1
t = β into (24), we have

λHpt + λL(1− pt)(1− σt) =
µ(λH − λL)(Π− β)− λLc

λLΠ
=
λH − λL
λL

µ− λH ,

or equivalently,

1− σt =

(
λH−λL
λL

)
µ− λH(1 + pt)

λL(1− pt)
. (26)
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From (3), we have

ṗt =(1− pt) [µ− λHpt − (1− σt)(µ− λLpt)]

=(1− pt)(µ− λHpt)−
{(

λH − λL
λL

− λH(1 + pt)

)
µ

}(
µ

λL
− pt

)
=
µ(λH − λL)

λ2
L

(µ− µ) +

(
λH − λL
λL

)
(2µ− µ)pt

=
(λH − λL)(2µ− µ)

λL
(pt − p∗).

If pT 6= p∗, then the solution of the above differential equation diverges and contradicts

0 ≤ pt ≤ 1 for all t ≥ T . Therefore, pT = p∗ and it also gives pt = p∗ for all t ≥ T . Also

note that

1− p∗ =
(µ− µ)(µ− λL)

λL(2µ− µ)
.

By plugging this into (26), for all t ≥ T , we have

σt =1−

(
λH−λL
λL

)
µ− 2λH + λH(1− p∗)

λL(1− p∗)

=1−
λH−λL
λL

(µ− µ) + λH
(µ−µ)(µ−λL)
λL(2µ−µ)

(µ−µ)(µ−λL)
(2µ−µ)

=1− −(λH − λL)(2µ− µ) + λH(µ− λL)

λL(µ− λL)

=1− −(λH − λL)(µ− λL) + λL(µ+ λL)

λL(µ− λL)
= σ∗.

Last, since σt = 1 for all 0 ≤ t ≤ T , the belief that the opponent has the new technology

at time t is p∗ = pT = qT where q is defined as in (4). By the definition of q, we can derive

that e(λH−µ)T = µ(1−p∗)
µ−λHp∗

, or equivalently, T = 1
λH−µ

log
(
µ(1−p∗)
µ−λHp∗

)
.

C.2.2 Proof of Proposition 2 (a)

Proof of Proposition 2 (a). By Lemma C.1, σ satisfies σt = 0 for all t ≥ 0 or σt > 0 for all

t ≥ 0. In the former case, we can set T ∗ = 0 and σ∗ = 0, then we have σt = σ∗ for all

t > T ∗ = 0. Now consider the latter case. If {t ≥ 0|σt ∈ (0, 1)} is empty, set T ∗ = ∞.
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Then, σt = 1 for all t < T ∗. If {t ≥ 0|σt ∈ (0, 1)} is nonempty, we can properly define

T ∗ ≡ inf{t ≥ 0|σt ∈ (0, 1)} < ∞. Then, σt = 1 for all t < T ∗. In addition, by Lemma C.3,

µ(V 1
t − V 0

t ) = λL(Π− V 0
t ) for all t ≥ T ∗. By Lemma C.4, σt = σ∗ for all t ≥ T ∗.

C.3 Equilibrium Characterization

C.3.1 The Equilibrium with Incumbent Strategies

Lemma C.5. Suppose that σ is the incumbent strategy, i.e., σt = 0 for all t ≥ 0. Then,

σA = σB = σ constitutes a symmetric Markov equilibrium if and only if µ ≤ µ.

Proof of Lemma C.5. Suppose that the incumbent strategy constitutes an equilibrium. Since

neither firm conducts research, the belief that the other firm possesses the new technology

is 0, i.e., pt = 0 for all t ≥ 0. Observe that V 0
t = λLΠ−c

2λL
since both firms develop with the

incumbent technology. If a firm happens to have the new technology and the other firm

sticks with the strategy, the expected payoff is λHΠ−c
λH+λL

, i.e., V 1
t = λHΠ−c

λH+λL
for all t ≥ 0. To

support this equilibrium, from (HJB0), µ(V 1
t −V 0

t ) ≤ λL(Π−V 0
t ) needs to hold. By plugging

V 1
t and V 0

t in, we have

µ

(
λHΠ− c
λH + λL

− λLΠ− c
2λL

)
≤ λL

(
Π− λLΠ− c

2λL

)
⇐⇒ µ(λLΠ + c)(λH − λL)

2λL(λH + λL)
≤ λLΠ + c

2

⇐⇒ µ ≤ λL(λH + λL)

µ(λH − λL)
= µ.

Now suppose that µ ≤ µ. By the above inequality, the strategy profile with σt = 0 for

all t ≥ 0 constitutes an equilibrium, i.e., the incumbent equilibrium exists.

C.3.2 The Equilibrium with Research Strategies

Lemma C.6. Suppose that for some T , both firms play σt = 1 for all 0 ≤ t ≤ T . Then,

there exist C0, C1 ∈ R such that the expected payoffs of the firm with and without the new
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technology at time t ∈ [0, T ] is given as follows:

V 1
t =V 1(qt) + C1 · (1− qt) ·

(
µ− λHqt

1− qt

)µ+λH
µ−λH

, (27)

V 0
t =V 0(qt) +

(
C0

(
µ

λH
− qt

)
− C1

µ

λH

)
·
(
µ− λHqt

1− qt

)µ+λH
µ−λH

.17 (28)

Moreover, if both firms play the research strategy (T = ∞), C1 = C0 = 0, i.e., V 1
t = V 1(qt)

and V 0
t = V 0(qt).

Proof of Lemma C.6. Consider V n
t as a value function with respect to the belief process qt

defined as in (4): V n
t = Vn(qt). Note that V̇ n

t = V ′n(qt)q̇t = V ′n(qt)(µ − λHqt)(1 − qt). By

plugging this into (HJB1), we have

0 = V ′1(q)(µ− λHq)(1− q)− λH(1 + q)V1(q) + λHΠ− c. (29)

By multiplying (µ− λHq)
− 2µ
µ−λH (1− q)

3λH−µ
µ−λH and rearranging the equation, for all 0 = q0 ≤

q ≤ qT , we can derive that

0 =
d

dq

 (1− q)
2λH
µ−λH

(µ− λHq)
µ+λH
µ−λH

{
V1(q)− V 1(q)

} . (30)

Therefore, for all 0 = q0 ≤ q ≤ qT , we have

V1(q) = V 1(q) + C1 · (1− q) ·
(
µ− λHq

1− q

)µ+λH
µ−λH

(31)

for some C1 ∈ R. By V 1
t = V1(qt) for all 0 ≤ t ≤ T , (27) holds.

17If µ = λH , we need to replace
(
µ− λHqt

1− qt

) µ+λH
µ−λH

to e
2

1−qt .

43



Next, plug V̇ 0
t = V ′0(qt)(µ− λHqt)(1− qt) into (HJB0):

0 =V ′0(q)(µ− λHq)(1− q)− λHqV0(q)− c+ µ(V1(q)− V0(q))

=V ′0(q)(µ− λHq)(1− q)− V0(q)(λHq + µ)− c

+ µ

(
Π− c

λH

)(
1

2
+
λH(1− q)
2(λH + µ)

)
+ µC1 · (1− q) ·

(
µ− λHq

1− q

)µ+λH
µ−λH

.

(32)

By multiplying (1 − q)
2λH
µ−λH (µ − λHq)

− 3µ−λH
µ−λH and rearranging the equation, 0 ≤ q ≤ qT , we

have

0 =
d

dq

 (1− q)
µ+λH
µ−λH

(µ− λHq)
2µ

µ−λH

{
V0(q)− V 0(q) + C1 ·

µ

λH
·
(
µ− λHq

1− q

)µ+λH
µ−λH

} .
Therefore, we have

V0(q) =V 0(q) +

(
C0

(
µ

λH
− q
)
− C1

µ

λH

)
·
(
µ− λHq

1− q

)µ+λH
µ−λH

. (33)

for some C0 ∈ R. By V 0
t = V0(qt) for all 0 ≤ t ≤ T , (28) holds.

Now suppose that both firms play research-first strategy. Then, (27) and (28) hold for all

t ≥ 0. When µ > λH , by Lemma 4.2, limt→∞ qt = 1. Since limt→∞(1−qt)
(
µ−λHqt

1−qt

)µ+λH
µ−λH =∞

and limt→∞

(
µ−λHqt

1−qt

)µ+λH
µ−λH =∞, to make the value functions converge, C1 = C0 = 0. When

µ < λH , by Lemma 4.2, limt→∞ qt = µ/λH , which also implies limt→∞(1−qt)
(
µ−λHqt

1−qt

)µ+λH
µ−λH =

∞ and limt→∞

(
µ−λHqt

1−qt

)µ+λH
µ−λH =∞. Likewise, we also have C1 = C0 = 0 in this case to make

the value functions converge.

Lemma C.7. Suppose that σ is the research strategy, i.e., σt = 1 for all t ≥ 0. Then,

σA = σB = σ constitutes a symmetric Markov equilibrium if and only if µ ≥ min{µ, µ̂}.

Proof of Lemma C.7. Suppose that both firms play the research-first strategy. By Lemma

C.6, the expected payoffs at time t with and without the new technology are V 1
t = V 1(qt)

and V 0
t = V 0(qt).
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Both firms playing the research strategy constitutes an equilibrium if and only if µ(V 1(qt)−

V 0(qt)) ≥ λL(Π− V 0(qt)) for all t ≥ 0. Note that

d

dq

[
µ(V 1(q)− V 0(q))− λL(Π− V 0(q))

]
= −

(
Π− c

µ
− c

λH

)
+ c

λL

2
(
λH+µ
λHλL

) < 0.

Therefore, it is enough to check whether the following inequality holds:

lim
t→∞

[
µ(V 1(qt)− V 0(qt))− λL(Π− V 0(qt))

]
≥ 0. (34)

When µ ≥ λH , by limt→∞ qt = 1, (34) is equivalent to

µ(V 1(1)− V 0(1))− λL(Π− V 0(1)) =
(λHΠ + c)µλL (µ− µ)

2(λH + µ)
≥ 0. (35)

When λH > µ, by limt→∞ qt = µ/λH , (34) is equivalent to

µ
(
V 1 (µ/λH)− V 0 (µ/λH)

)
− λL

(
Π− V 0 (µ/λH)

)
=

(µΠ + c)λLλH ((λH − 2λL)µ− λLλH)

2µ(λH + µ)
≥ 0.

(36)

Observe that when λH < 3λL, λH < µ < µ̂. In this case, by (35), (34) holds iff

µ ≥ µ = min{µ, µ̂}. When λH ≥ 3λL, note that λH ≥ µ ≥ µ̂. If µ ≥ λH ≥ µ, (34) holds by

(35). If λH > µ ≥ µ̂, (34) holds by (36). Therefore, (34) holds iff µ ≥ µ̂ = min{µ, µ̂}.

C.3.3 The Equilibrium with Stationary Fall-back Strategies

Lemma C.8. Suppose that σ is a stationary fall-back strategy, i.e., for some T ≥ 0 and

σ∗ ∈ [0, 1), σt = 1 for all t < T and σt = σ∗ for all t > T . If σA = σB = σ constitutes a

symmetric Markov equilibrium, then η(δ) < η < min{1+ δ, 2− δ}. Conversely, if η(δ) < η <

min{1 + δ, 2− δ}, there exists a unique symmetric Markov equilibrium and it is a stationary

fall-back strategy.

Proof of Lemma C.8. Suppose that σA = σB = σ constitutes an equilibrium. By Lemma
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4.2 and C.4, p∗ = pT = qT > 0. Since 2µ > µ, to have p∗ > 0, µ > µ has to hold.

Next, we show that µ < min{µ̂, µ}. When λH < µ,

lim
T̃→∞

qT̃ = 1 > qT = p∗.

By using the definition of p∗, µ = µ+ λL, 1 > p∗ is equivalent to (µ− µ)(µ− λL) > 0, thus,

µ > µ. Then, µ > µ > λH is equivalent to 3λL > λH , which implies µ̂ > µ. Therefore,

min{µ̂, µ} > µ in this case. Consider the case with λH > µ and 3λL ≥ λH . In this case,

µ̂ > µ ≥ λH > µ, thus, min{µ̂, µ} > µ. Last, consider the case with λH > µ and 3λL < λH .

Then, we have µ > µ̂ and

lim
T̃→∞

qT̃ =
µ

λH
> qT = p∗.

By rearranging the inequality, we have λLλH = λHµ−λLµ > (λH−2λL)µ, which is equivalent

to min{µ̂, µ} = µ̂ > µ.

Now we assume that µ < µ < min{µ, µ̂} and show that the stationary fall-back strategy

defined in Lemma C.4 constitutes an equilibrium. By the construction of the strategy, for

all t ≥ T , µ(V 1
t − V 0

t ) = λL(Π − V 0
t ), which supports σt ∈ (0, 1). Next, we need to show

that µ(V 1
t − V 0

t ) ≥ λL(Π − V 0
t ) for all 0 ≤ t < T to support σt = 1. Assume the contrary:

µ(V 1
s −V 0

s ) < λL(Π−V 0
s ) for some 0 ≤ s < T . Since µ(V 1

T −V 0
T ) = λL(Π−V 0

T ), there exists

s < t ≤ T such that µ(V 1
t − V 0

t ) = λL(Π− V 0
t ) and µ(V̇ 1

t − V̇ 0
t ) > −λLV̇ 0

t , or equivalently,

λLV̇
1
t > (µ− λL)(V̇ 0

t − V̇ 1
t ). (37)

As a first step, we show that there exists C1 < 0 such that V 1
t is given as (27) in Lemma

C.6 for all 0 ≤ t < T . By V 1
T = V ∗1 and qT = p∗, we have

C1 =
1

(1− p∗)

(
1− p∗

µ− λHp∗

)µ+λH
µ−λH (

V ∗1 − V 1(p∗)
)

where V 1 is defined as in (15). With some algebra and min{µ, µ̂} > µ, we can derive that

V 1(p∗)− V ∗1 =

(
Π− c

λH

)
· (µ− µ)2 (λLλH − (λH − 2λL)µ)

2λLλH(λH + λL)(2µ− µ)
> 0. (38)
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Therefore, C1 < 0. Then, for all 0 ≤ t < T , we have

V̇ 1
t = q̇t

[
−
(

Π− c

λH

)
λH

2(λH + µ)
+ C1 ·

λH(1 + qt)

1− qt

(
1− qt

µ− λHqt

) 2λH
λH−µ

]
< 0. (39)

By (HJB1) and (HJB0), we have

V̇ 1
t =λH(1 + qt)V

1
t + c− λHΠ

V̇ 0
t =λHqtV

0
t + c− µ(V 1

t − V 0
t ).

By using λL(Π− V 0
t ) = µ(V 1

t − V 0
t ), we can derive that

V̇ 0
t − V̇ 1

t =λH(1 + qt)(V
0
t − V 1

t ) + µ(V 0
t − V 1

t ) + λH(Π− V 0
t )

= [(λH − λL)µ− λHλL(1 + qt)]

(
Π− V 0

t

µ

)
.

Note that Π > V 0
t since the expected payoff cannot exceed the rent Π. By using Π > V 0

t ,

p∗ ≥ qt and min{µ, µ̂} > µ, we can derive that

V̇ 0
t − V̇ 1

t ≥ [(λH − λL)µ− λHλL(1 + p∗)]

(
Π− V 0

t

µ

)
=

(µ− µ) (λLλH − (λH − 2λL)µ)

2µ− µ

(
Π− V 0

t

µ

)
> 0.

(40)

Then, (39) and (40) contradict (37). Therefore, µ(V 1
t − V 0

t ) ≥ λL(Π − V 0
t ) for all

0 ≤ t < T , and the stationary fall-back strategy constitutes an equilibrium.
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