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Abstract

This paper provides a theoretical argument for preferential treatment of shared vehicles (SV)

over private ones by municipal parking authorities. When all parked vehicles are treated

equally, multiple equilibria may exist: (i) a “private” one, where travelers are reluctant to

share their vehicle, due to lack of alternatives for their next trip, and (ii) a “shared” equilib-

rium, where travelers release their vehicles for use by others, due to abundance of other SV

for their next trip. The latter equilibrium, if exists, is shown to deliver a higher welfare. Mu-

nicipal parking discounts for vacant SV are shown to make the private equilibrium unstable,

so even a small initial fleet of SV pushes the economy towards the shared equilibrium.
Keywords: Shared mobility, Parking policy, Multiple equilibria, Frictions of space,

Repeated matching

JEL codes: C78, L91, R48

1. Introduction

Commercial vehicle sharing (i.e. per-minute or per-hour automated vehicle rental service,

SV henceforth) offers a great promise for the future of ground transportation. According to

back-of-envelope calculation by Zakharenko (2022), in a large city, sharing cars enables the

economy to meet the same transportation demand with six times fewer vehicles and eight

times less parking space, dramatically reducing the capital cost of the industry. Jochem

et al. (2020), by analyzing survey data from multiple European cities, offer an even more

optimistic conclusion that each free-floating SV substitutes from 7 to 18 private vehicles,
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depending on the city. Jochem et al. (2020) also provide a substantial number of references

to other studies measuring this ratio in various cities of the world.

While the SV technology has gained some momentum in many places, primarily in large

cities of Europe, it still remains a fringe transportation option for most people in the world.

For example in the U.S., the largest provider of round-trip SV (i.e. vehicles that have to be

returned to the same location) had only 12000 vehicles in 2019,1 and the largest provider of

free-floating SV (i.e. those that can be dropped off anywhere within a certain area) has only

1000 vehicles and serves only a handful of cities.2

Although shared vehicles serve many more people per day than private ones, they still

spend a considerable amount of time being parked. Zakharenko (2022) estimates that in

Moscow (Russia), shared cars are parked and available for booking 70% of all time. The

success of shared mobility is therefore highly sensitive to municipal parking policy. For

example Car2Go, a prominent SV provider of its time, chose to discontinue serving its 80000

customers in Toronto (Canada) after the city hall introduced parking fees for shared vehicles.3

This paper offers a theoretical analysis of how people with travel demand (travelers

henceforth) make their choice between private and shared vehicles. Vehicle sharing allows to

meet the same transportation demand with fewer vehicles and less parking space, but requires

travelers to search for a vehicle before use. The cost of search depends on the density of

vacant SV across space, which in turn depends on how many of other travelers choose shared

mobility. Thus, vehicle sharing is a coordination problem with potential multiple equilibria.

In the “private” equilibrium, the number of vehicles equals the number of travelers, which

results in high costs of transportation (vehicles capital costs and parking), but allows to

always have an available vehicle nearby. The “shared” equilibrium reduces the capital costs

1https://en.wikipedia.org/wiki/Zipcar
2“GIG Car Share Thanking Members for Big Win with Big Expansion News,” prnewswire.com, December

3, 2020.
3“Car2Go to shut down in Toronto, blaming new city rules”, CBC News, May 24, 2018.
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of transportation industry but introduces frictions of vehicle search. The model developed

in this paper shows that, when the shared equilibrium exists, it results in a higher social

welfare.

The above results imply that the economy can be stuck in a bad “private” equilibrium,

where travelers are essentially hoarding vehicles due to expected difficulty of search for

alternatives. This paper shows that a local government parking policy that favors vacant SV

can push the economy towards the better equilibrium: such preferential treatment makes the

private equilibrium unstable. That is, an introduction of arbitrarily small fleet of SV leads

to a snowball of additional travelers using shared mobility, as well as an additional supply

of SV. Eventually, the economy converges to the better shared equilibrium.

There exists a vast research on various aspects of shared mobility in various fields of

science; Nansubuga and Kowalkowski (2021) offer a review of nearly 200 papers, published

mainly in last 10 years. While a substantial part of this review covers the hurdles limiting

the success of shared mobility, the municipal parking policy is omitted from the discussion.

Therefore, the current paper is probably the first theoretical paper to formalize the link

between parking policy for shared vehicles and social welfare.

A substantial body of economics literature on optimal parking regulations is also silent

about shared vehicles; for example Inci (2015), the most recent literature review in the

field, implicitly assumes throughout the paper that each parked vehicle is used exclusively

by a specific individual. The same assumption is made in existing theoretical studies of

preferential parking policy, e.g. Zakharenko (2020) or Jakob and Menendez (2020). While

some studies have discussed parking management for futuristic autonomous shared vehicles

(e.g. Winter et al. (2021)), no study could be found that theoretically analyzes the optimal

parking policy for already existing non-autonomous SV services.

The general policy advice in the parking economics literature, e.g. in Zakharenko (2016),

is that every parked vehicle should be charged the congestion externality it causes for other
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vehicles searching for parking. van Ommeren et al. (2021) apply this methodology to calcu-

late optimal parking rates in Melbourne. Because the instantaneous externality of a parked

vehicle does not depend on whether it is private or shared, this school of thought would

recommend that the per-minute parking rates for all vehicles should be equal. The current

paper offers a theoretical counterargument, that endogenous choices between shared and pri-

vate vehicles may lead to multiple equilibria, and that parking discounts for shared vehicles

may push the economy to the better equilibrium.

This paper also contributes to the Economics literature on repeated matching. In trans-

portation economics, numerous studies offered models of one-sided repeated matching, i.e.

where the supplier, usually a taxi or ridehailing driver, is long-lived and matched repeatedly,

while passengers are short-lived and matched once. Examples include Lagos (2000), Buch-

holz (2021), Zakharenko (2022). The current paper is probably the first paper in this field

to analyze two-sided repeated matching, i.e. where both demand and supply side seek to

be matched repeatedly. Two-sided repeated matching models have been proposed in other

contexts (e.g. marriage and re-marriage, as in Kadam and Kotowski (2018)). These models

typically assume that both sides are willing to be matched continuously and dissolve matches

only to find a better match. The current paper, in contrast, makes such assumption only

for the supply side (operators of shared vehicles); the demand side need to be matched to

vehicles occasionally, rather than continuously.

2. Existing regulation practices

Because car sharing is an emerging market, local regulations of SV parking vary con-

siderably. For example the city of Los Angeles apparently adheres to the “all cars created

equal” philosophy, as its parking fees for shared automobiles are roughly equal to those of
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private automobiles.4 In sharp contrast, San Francisco requires developers to provide a cer-

tain amount of free parking spaces to qualified carsharing organizations.5 Not surprisingly,

the success of carsharing in San Francisco far exceeds that in Los Angeles despite much

smaller population. For example, Zipcar has about 200 carsharing stations in the former,

versus about 60 in the latter.6 Some cities impose non-monetary constraints, for example

Toronto allows a maximum of 2 parked free-floating SV per residential block, in addition to

yearly per-vehicle permit fee.7 Diversity of regulations may be explained by lack of theory

of optimal regulation, a gap filled by the current paper.

3. The model

The model is based on that in Zakharenko (2022), but with some modifications. This

is a dynamic model with infinite time horizon, where all parties do not discount the future.

The reason for non-discounting is high frequency of transactions, e.g. each vehicle being

used multiple times per day. It is implausible to assume, for example, that profit earned

by vehicle operator in the evening has any lower value than profit in the morning. The

objective of SV operators is therefore the average profit per unit of time, while that of

travelers is minimization of the average travel cost per trip.

The model also has spatial heterogeneity in the form of an arbitrary number of geograph-

ical zones with symmetric travel demand between any two of them. All results of the model

are also applicable to a single zone, with round-trip travel demand.

Each zone is a single-dimensional circular space, with travelers having a specific origin

location in the origin zone and destination location in the destination zone, for each trip.

Figure 1 illustrates travel demand. We assume the destinations of inbound trips are dis-

4LA municipal code, SEC. 80.58.1 (e).
5San Francisco planning code, Sec. 166.
6Based on count of Google Maps results for “Zipcar San Francisco” and “Zipcar Los Angeles”, respectively.
7Free-Floating Car-Share Parking Permit Program by the city of Toronto
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Origin zone Destination zone
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Figure 1: Illustration of a typical trip, reproduced from Zakharenko (2022). Vehicle image courtesy of
Macrovector/Freepik.

tributed uniformly around the zone, such that an exogenous mass L of travelers arrive per

unit of zone space, per unit of time. Unlike Zakharenko (2022) who considers one-time trip

demand, here we assume that all travelers have recurrent trip demand, i.e. will demand

another trip, originating from the location of previous arrival, after some period of stay. For

mathematical tractability of the results that follow, we will assume that the duration of stay

t of a traveler in each zone is distributed exponentially with mean τ . We also assume that

the next departure is a Poisson process: travelers do not know in advance when their stay

ends and the next trip begins, hence make identical choices at any time during their stay.

Given these assumptions, the origins of outbound trips are also distributed uniformly with

density L, per unit of zone space per unit of time.

All travel requires the use of a personal vehicle, owned or rented by the traveler. We

assume the cost of vehicle use does not depend on ownership, so we can also assume without

loss of generality that all vehicles are rented and can be transferred from one traveler to

another at any moment when not in use. A “private” vehicle is then equivalent to a rented

vehicle that always remains under control of a single traveler.

Every trip takes h units of time. Vehicle costs include, per unit of time: social cost of
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parking g, when the vehicle is vacant or reserved; cost of use c when in transit; capital cost

ϕ at all times.

Upon arrival and beginning of their stay, travelers decide whether they want to hold the

vehicle until the next trip (which is equivalent to private ownership), or release (i.e. drop

off) to make it available for booking by other travelers. Denote by λ the endogenous share

of travelers who choose to release.

Denote by µ the endogenous density of vacant vehicles. For travelers who released their

vehicle upon arrival, two random outcomes are possible for the next departure: (i) the same

vehicle is still available for booking, and (ii) another vehicle has to be found. In the latter

case, almost surely, another vehicle is located some distance away, and the traveler has to

walk to the vehicle. Denote by x the idiosyncratic walking time to such vehicle; assuming

unitary walking speed, it is also equal to walking distance. Denote by w the disutility of

walking, per unit of time/distance. The vehicle has to be reserved while a traveler is walking

towards it.

Among travelers who previously released a vehicle, those who return to the same vehicle

are referred to as returnees, while those who search for another one are walkers. For a

representative vacant vehicle, denote by q the endogenous rate of its booking by the walkers.8

4. Social optimum

What are the socially optimal release decision λ and vacant vehicle density µ? Because the

number of passenger-kilometers traveled (and therefore the number of vehicles in transit) is

assumed exogenous, maximization of social welfare amounts to minimization of costs related

to parked vehicles. These vehicles fall into one of three categories:

8More complex strategies of travelers are possible, when they screen for vacant vehicles continuously
during their stay, and make release/reserve decisions upon appearance of more convenient vacant vehicles.
This paper assumes all decisions are made only in the beginning or at the end of stay, for mathematical
tractability.
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• Vehicles held by arriving travelers. (1−λ)L of such vehicles are expected to emerge, per

unit of time, per unit of space; each remains parked for τ units of time in expectation.

• Vacant vehicles: density µ per unit of space.

• Vehicles reserved by the walkers. The mass of travelers who release their previous

vehicle is λL. It is socially optimal that travelers always walk to the most proximate

vehicle. For a traveler who stayed t units of time before the next trip, the probability

that the previous vehicle is still vacant is exp(−qt). In this case, the traveler is a

returnee and zero walking time/cost is incurred. With the remaining probability 1 −

exp(−qt), the traveler becomes a walker. Given exponential distribution of t with p.d.f.
1
τ
exp

(
t
τ

)
, the mass of walkers is

λL

∫ ∞

t=0

(1− exp(−qt))
1

τ
exp

(
− t

τ

)
dt = λL

qτ

1 + qτ
.

Given vacant vehicle density µ, the expected walking distance (and time) is 1
2µ

; the

coefficient 2 here is because the traveler can walk in two directions from her initial

position.

The social cost of any parked vehicle per unit of time is g + ϕ; when a traveler is walking

toward a reserved vehicle, an additional cost of w is incurred.

Given this analysis, the total social cost of all parked vehicles, per unit of time per unit

of space, is given by

C ≡ (g + ϕ)(L(1− λ)τ + µ) + (g + ϕ+ w)λL
qτ

1 + qτ

1

2µ
. (1)

The equilibrium value of q is found as follows: it is equal to the flow of newly emerging

8



walkers, λL qτ
1+qτ

, divided by the density of vacant vehicles µ. Thus, q is found from equation

q ≡ λL
qτ

1 + qτ

1

µ
. (2)

One solution to this equation is q = 0; it corresponds to the case when all travelers who

release their vehicles return to the same vehicles. We will refer to such state as quasi-shared,

because it essentially makes all vehicles private: even if they are in the vacant status, they

will not be demanded by anyone except their previous user. This means that, in the quasi-

shared economy, the number of vehicles should be no less than the number of travelers, hence

the mass of vacant vehicles µ must be greater or equal to the flow of travelers releasing their

vehicles λL times their expected duration of stay τ .

Replacing q = 0 into (1) trivially yields

C = (g + ϕ)(L(1− λ)τ + µ).

Minimization of social cost then amounts to minimization of µ (i.e. removal of excess vacant

vehicles) and/or maximization of λ (i.e. removal of vehicles previously held by travelers, and

making these travelers switch to excess vacant vehicles). Thus, when q = 0, the lowest social

cost is achieved when µ = λLτ (i.e. there is exactly one vehicle per traveler) and thus

C = (g + ϕ)Lτ, (3)

i.e. the social cost of parked vehicles is equal to that in a private vehicle economy. Can the

society do better than that?

When q > 0, the solution to (2) is

q =
λL

µ
− 1

τ
, (4)
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which is only possible when

µ < λLτ. (5)

Given (4), the problem of minimization of (1) is

min
λ,µ

(g + ϕ)(L(1− λ)τ + µ) +
g + ϕ+ w

2

(
λL

µ
− 1

τ

)
, (6)

subject to (5). The first-order conditions of optimal µ and λ are

dC

dµ
= g + ϕ− g + ϕ+ w

2

λL

µ2
= 0, (7)

dC

dλ
= −(g + ϕ)Lτ +

g + ϕ+ w

2

L

µ

 = 0, λ ∈
(

µ
Lτ
, 1
)

≤ 0, λ = 1
. (8)

Denote by µ̄ the value of µ that makes (8) an equality, µ̄ ≡ 1
2τ

g+ϕ+w
g+ϕ

. Note that at point

µ = µ̄ and λ̄ = µ̄
Lτ

, (7) also holds. Also note that equality (7) and inequality (5) can hold

simultaneously only when µ > µ̄.

The comparison of µ̄ to Lτ , i.e. maximum possible vehicle density (cf.(5)), yields two

types of optimal solutions. When µ̄ ≥ Lτ , the economy cannot do better than the all-private-

vehicle scenario. This may be due to low travel demand L, or short durations of stay τ , or

high walking costs w, all of which make vehicle sharing less attractive compared to personal

vehicles. Technically, any point along the quasi-shared line µ = λLτ (bold line on figure 2,

right panel) delivers the same (lowest possible) social cost (3).

When µ̄ < Lτ , the social cost can be reduced to a lower level by vehicle sharing. The

global minimum is characterized by λ = 1 (i.e. all travelers release vehicles) and µ∗ =√
(g+ϕ+w)L
2(g+ϕ)

, as shown by black dot on figure 2, left panel. The social cost at this point

is lower than (3), i.e. vehicle sharing makes the economy better off, despite the fact that

positive walking costs are incurred. At the same time, any combination (λ, µ) that satisfies
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µ

λ

1

Lτµ̄
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µ

λ

1

Lτ µ̄
Figure 2: Socially optimal vehicle density and traveler decisions, high L (left panel) vs. low L (right panel).

µ = λLτ, µ ≤ µ̄ (bold line on figure 2, left panel) is also weakly locally optimal, in the sense

that a small deviation from any such point cannot increase social welfare. Furthermore, if

there are marginal welfare gains of holding, rather than releasing, a vehicle (e.g. due to cost

of equipment required for vehicle sharing), the point λ = 0, µ = 0 (i.e. pure private-vehicle

economy) becomes strictly preferred to any point in the vicinity.

To summarize, the social cost function (6) may have multiple local minima. One local

optimum is the pure private-vehicle economy, where all travelers hold their vehicles at all

times. If demand L and parking duration τ are sufficiently high while walking cost w

sufficiently low, there is also a global optimum with vehicle sharing, such that all travelers

release their vehicles after use, and µ = µ⋆. The existence of multiple local optima is due

to problems of coordination: when few travelers release their vehicles, there are few vacant

vehicles, which in turn makes it optimal to hold them after each trip.

5. Market equilibrium and optimal policies

This section studies decentralized equilibrium with provision of SV by competing opera-

tors, and government policies that help to achieve the global optimum. I assume free entry

of SV providers, which ensures their zero profits in equilibrium. I also assume a small market
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share of each provider, meaning that its particular vacant vehicle may compete with vehicles

by other providers, but not with those by the same provider. The government can regulate

the market by introducing fees for parked vehicles; denote by gr the parking rate for reserved

vehicles, and by gv the rate for vacant vehicles.

The travelers at the end of each trip decide whether to release their vehicle. Denote by

λi the probability of release by individual i, and by λ the share of travelers who release. At

the beginning of the next trip, travelers who previously released should choose one of vacant

vehicles; they choose the one that minimizes the sum of long-term monetary and walking

costs.

Operator tariffs include a trip fare pa, charged during the h units of transit time, and also

the reservation rate p′ per unit of reservation time. We will focus on symmetric equilibria

where all competing operators have the same tariffs {pa, p′}. To show that such tariffs

maximize individual profit, we will consider small deviations {paj , p′j} of a particular operator

j from the equilibrium values.

Define by vehicle cycle the time from the end of the previous vehicle trip until the end

of the next trip. If the vehicle was released at the end of the previous trip, its cycle consists

of three phases: vacancy, (possible) reservation, and use. If held, the vehicle cycle consists

of the time it is held, and the time of use.

We analyze separately two candidate equilibria: with and without vehicle sharing.

5.1. Equilibrium without sharing

First, observe that when traveler i holds their vehicle (i.e. λi = 0), competition between

operators implies that the traveler expected cost per cycle equals that of the operator,

(c+ ϕ)h+ (gr + ϕ)τ. (9)

Next, consider the quasi-shared state, where λi =
µ
Lτ

∈ (0, 1]. As elaborated in section
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4, such state is characterized by q = 0, that is, all vehicles are demanded only by their

respective last users, and travelers normally return to their last vehicle for the next trip.

In the quasi-shared state, travelers always pick up the vehicle where they previously

dropped them off, there are no walking or reservation costs, and the only traveler expense

is the trip fare pa. Appendix Appendix A shows that for any λ > 0, any operator j

has an incentive to set paj marginally below the prevailing rate pa, given any positive value

of the latter. Such fare undercutting will lead to negative profits and operator exit (i.e.

reduction of vacant vehicle density µ), meaning that a quasi-shared state cannot be sustained

in equilibrium.

5.2. Equilibrium with sharing

This section looks for possible shared equilibria, i.e. those that satisfy (5) and q > 0.

5.2.1. Traveler problem

In this section, we solve the problem of a traveler i without a previously held SV, who is

searching for a vehicle for her next trip.

Suppose the walking distance to vehicle j is x ≥ 0, so the reservation cost for i, in case

of booking such vehicle, is x(p′j +w). In case of booking vehicle j, traveler i may release and

re-book it repeatedly in the future. The probability that i can use the same vehicle j for the

second trip is approximately (cf. section 4) 1
1+qτ

, i.e. the probability that no other traveler

books vehicle j between i’s trips.9 By induction, the expected number of times that traveler

9Note that when paj marginally differs from pa, the probability of repeated vehicle use also marginally
differs from 1

1+qτ , for the following reasons: (i) the rate of booking of vehicle j by other walkers marginally
differs from q; (ii) if paj > pa, there is a marginal probability that traveler i chooses another vehicle for her
second trip, even if vehicle j is still available; (iii) if paj < pa, there is marginal probability that other travelers
book vehicle j even if their previous vehicle is still available to them. Such deviations also marginally change
the expected number of trips by traveler i with vehicle j. However, because the change in the cost per trip
paj − pa is marginal too, the change in traveler costs due to changing number of trips is of smaller order of
magnitude and can be ignored.
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i will use vehicle j is approximately

1 +
1

1 + qτ
+

1

(1 + qτ)2
+ · · · = 1 +

1

qτ
.

and the total expected cost of all trips using the same vehicle j is

(
1 +

1

qτ

)
paj + (p′j + w)x. (10)

Vehicle j will be chosen if no vehicle by other operators (i.e. those with equilibrium tariff

{pa, p′}) offers a lower cost of the same expected number of trips. This means that all

competing vehicles should be further than distance z(paj , p
′
j, x) from the traveler i’s position,

where z is defined by (10) being equal to
(
1 + 1

qτ

)
pa + (p′ + w)z:

z(paj , p
′
j, x) =

1

p′ + w

((
1 +

1

qτ

)
(paj − pa) + (p′j + w)x

)
. (11)

Given density µ of alternative vacant vehicles, the probability that all alternative vacant

vehicles are indeed further than z, and that traveler i indeed books vehicle j, is given by

D(paj , p
′
j, x) = exp(−2µz(paj , p

′
j, x)). The coefficient 2 here is because the traveler can walk

in two directions from her initial position.

We can also find the expected walking distance by i, conditional on having to walk, given

by

x̄(p′j) =

∫∞
0

xD(paj , p
′
j, x)dx∫∞

0
D(paj , p

′
j, x)dx

=
1

2µ

p′ + w

p′j + w
(12)

5.2.2. Operator problem

The rate of booking of vehicle j by walkers, qj, is equal to the density of travelers who

previously released their vehicles and now demand travel, λL, times the probability of having

to walk, qτ
1+qτ

, times the probability that vehicle j is more convenient than other vehicles,
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2
∫∞
0

D(paj , p
′
j, x)dx, where coefficient 2 is due to two directions of search. Thus, qj is defined

by

qj(p
a
j , p

′
j) = 2λL

qτ

1 + qτ

∫ ∞

0

D(paj , p
′
j, x)dx

=
λL

µ

qτ

1 + qτ
exp

(
−2µ

(
1 +

1

qτ

)
paj − pa

p′ + w

)
p′ + w

p′j + w
. (13)

The duration of vacancy of vehicle j is the inverse of the rate of vehicle booking; the

latter is the sum of qj (booking by walkers) and 1
τ

(the rate of booking by the last user of

vehicle j). The cost of vacancy for the operator is gv + ϕ per unit of time.

The probability that vehicle j is booked by a walker and remains reserved for some time

is qjτ

1+qjτ
. The expected duration of such reservation is given by (12); the operator’s net profit

during reservation is p′j − gr − ϕ per unit of time.

Finally, the net profit during the phase of vehicle use is paj − (c+ ϕ)h.

The operator’s net profit from the entire vehicle cycle (vacancy, reservation, use) is thus

defined by

π(paj , p
′
j) = paj−(c+ϕ)h+

qj(p
a
j , p

′
j)τ

1 + qj(paj , p
′
j)τ

1

2µ

p′ + w

p′j + w
(p′j−gr−ϕ)− τ

1 + qj(paj , p
′
j)τ

(gv+ϕ). (14)

Operator j chooses their tariff {paj , p′j} to maximize (14). The first-order conditions of optimal

tariff, at symmetric equilibrium point paj = pa, p′j = p′, can be shown to be as follows:

∂π

∂paj
(pa, p′) = 1− 1

1 + qτ

p′ − gr − ϕ

p′ + w
− τ

1 + qτ

2µ

p′ + w
(gv + ϕ) = 0, (15)

∂π

∂p′j
(pa, p′) =

qτ

1 + qτ

[
−p′ − gr − ϕ

2µ(p′ + w)

(
1

1 + qτ
+ 1

)
+

1

2µ
− τ

1 + qτ

gv + ϕ

p′ + w

]
= 0. (16)

In the symmetric equilibrium, (13) implies the same solution for q as (2). The system

(15,16) then defines the equilibrium reservation fee p′ and vehicle density µ. Specifically, we
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have that p′ = gr + ϕ, i.e. operators should optimally charge the marginal cost during the

reservation phase and not attempt to earn profit, the same result as in Zakharenko (2022).

Given this result, we can modify (15) to

2µ2(gv + ϕ) = (gr + ϕ+ w)λL. (17)

The latter condition coincides with (7) when parking rates are equal to parking social cost,

gr = gv = g. Note that (17), jointly with shared equilibrium condition (5), implies that such

shared equilibrium is possible only if

µ > µ̄(gr, gv) ≡
gr + ϕ+ w

2τ(gv + ϕ)
. (18)

Also note that µ̄(g, g) equals µ̄ defined in section 4.

The equilibrium trip fare pa is pinned down by operator free entry, which makes profit

π(pa, p′) equal to zero (cf.(4)):

pa = (c+ ϕ)h+
τ

1 + qτ
(gv + ϕ) = (c+ ϕ)h+

µ

λL
(gv + ϕ). (19)

Such trip fare includes the cost of vehicle use (c+ ϕ)h plus a markup that compensates the

costs incurred during vehicle vacancy.

5.2.3. Release decision

The decision whether to release or hold the vehicle by traveler i at the end of previous

trip is made by comparing the expected cost of the two options. If released, i’s expected

cost of the next trip includes the trip fare pa; with probability qτ
1+qτ

, there is also a need to

reserve a vehicle for 1
2µ

units of time in expectation, which incurs costs p′ + w = gr + ϕ+ w
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per unit of time. Thus, the total expected cost is (cf.(19))

(c+ ϕ)h+
τ

1 + qτ
(gv + ϕ) +

qτ

1 + qτ

gr + ϕ+ w

2µ
. (20)

The per-trip cost of travel when vehicles are held is given by (9). Comparing the latter

with (20) implies that the release decision is determined by comparison

q

[
gr + ϕ+ w

2µ
− τ(gr + ϕ)

]
Q gr − gv, (21)

with λi = 1 when the left-hand side is smaller. Note that q is a function of λ and µ that

solves (2). We now seek, for every µ, for an equilibrium release decision that satisfies λi = λ.

When gr = gv, i.e. government parking rates are non-discriminatory, the shared equilib-

rium (i.e. with q > 0 and λ > 0) is possible only when the term in square brackets in (21)

is non-positive, that is, µ ≥ µ̄(gr, gr). Note that when (18) is true, the latter inequality is

strict, which implies λi = λ = 1,∀i.

Few things are worth noting. First, the shared equilibrium can exist (i.e. equilibrium

µ exceeds µ̄(gr, gr), but is still below λLτ = Lτ) only when L is sufficiently high. Second,

setting gr = g makes the shared equilibrium socially optimal.

When gv < gr, i.e. the government offers a discount for vacant shared vehicles, release

is strictly preferred (λi = 1) when µ ≥ µ̄(gr, gr), i.e. when the left-hand side of (21) is

negative. In case µ < µ̄(gr, gr), from (21), λi equals unity (zero) when q is sufficiently low

(high), which further implies that (cf.(4)) λ is sufficiently low (high). But then, a unique

equilibrium traveler strategy λi = λ for given µ is given by equality in (21), which implies

(cf.(4))

λ =
µ

Lτ
+

2µ2

L

gr − gv
gr + ϕ+ w − 2µτ(gr + ϕ)

. (22)

Such release probability satisfies (5) for any µ > 0, meaning that if any vacant vehicles exist,
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Figure 3: Equilibria when vacant SV are treated equally (gv = gr, left panel) and subsidized (gv < gr, right
panel). Equilibria are shown as black dots.

they will indeed be shared by several travelers.

The final case gv > gr (vehicle vacancy is penalized) clearly cannot contribute to vehicle

sharing and is omitted.

5.3. Summary of equilibria

We now discuss the market equilibrium where λ is driven by traveler choices while µ by

operator choices. The equilibria are illustrated as black dots on figure 3. The ZP (zero-profit)

curves represent equilibrium supply of vacant SV, given by (17). The IC (indifference) curves

represent the optimal mixed strategy for the release decision λ.

The equilibria when all parked vehicles are treated equally (gr = gv) are on the left panel.

The private equilibrium (λ = 0, µ = 0) always exists, but when L is large enough, a shared

equilibrium with λ = 1, µ = µ∗(gr, gv) ≡
√

(gr+ϕ+w)L
2(gv+ϕ)

also exists. When parking rates gr

are equal to the social cost of parking g, the shared equilibrium, if exists, maximizes social

welfare. Both equilibria are stable, meaning that the economy may remain in the inferior

private equilibrium unless some kind of “big push” increases the density of vacant shared

vehicles beyond µ̄(gr, gr).
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The right panel of figure 3 illustrates the phase diagram for discounted parking of vacant

SV, gv < gr. The same two equilibria are still present. However, the equilibrium release

strategy λ, given by (22), now satisfies (5), so that vehicles are actually shared for any positive

value of µ. This makes the private equilibrium unstable: introduction of arbitrarily small

number of shared vehicles leads to emergence of sufficiently high demand for these vehicles, so

their operations are profitable, their number increases until the shared equilibrium is reached.

In other words, instead of a “big push” necessary in the equal-parking-policy scenario, only

a small push in SV supply is sufficient to move the economy away from inefficient private

equilibrium. This paper therefore advises governments to offer free or cheap parking to

shared vehicles, when they are in the vacant state, while the SV industry is emerging.

Although traveler decision to always release vehicles in the shared equilibrium is socially

optimal, the vehicle density µ∗(gr, gv) is generally not. For example when reserved vehicles

pay the social cost of parking while vacant vehicles pay less, gv < gr = g, the equilibrium

vehicle density µ∗(gr, gv) will exceed the social optimum µ∗(g, g). Therefore, discounted or

free parking for vacant vehicles should be used as a temporary solution to push travelers into

releasing and sharing their vehicles; when the density of vacant vehicles becomes sufficiently

high, parking discounts for such vehicles can be eliminated.

6. Extensions

6.1. Convex social cost of parking

The model above has assumed that the marginal social cost of a parked vehicle does

not depend on aggregate parking demand. It is likely though that such marginal cost is

increasing: as the number of parked vehicles rises, the economy has to transition from

cheaper surface parking lots to more expensive multi-story garages. But then, transition

of the economy towards the shared equilibrium, by reducing overall demand for parking,

will allow to make parking cheaper for all. This further increases the social value of shared
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mobility and the government incentives to push toward such mobility.

6.2. Traveler risk aversion

One simplifying assumption made in the above model is that travelers are risk-neutral

with respect to their walking distance to the next vehicle. If any risk aversion exists, it

may have a negative impact on the willingness to release and share vehicles by travelers,

thus making the shared equilibrium more difficult to achieve. However, SV operators may

counter this problem by offering some kind of insurance for the next vehicle reservation. For

example it could offer free or even subsidized reservation time for the walk, in excess of some

distance, from the location of previous vehicle release to the nearest available vehicle for the

next ride. Further research is needed to formulate the optimal insurance policy to counter

uncertainty in the location of the next vehicle.

6.3. Public transit

While public transit (PT) is generally viewed as a substitute to personal car, it may

in some circumstances become a complement to shared vehicles. For example CoMoUK,

a British non-profit organization that promotes shared mobility, argues in its website that

“Car sharing schemes generally work best where there are good public transport links”.10

In the context of the model developed in this paper, PT could be modeled as a fixed-cost

transportation option that is inferior (more costly) than a private car. Then, PT would have

no effect on the private equilibrium, when everyone uses the same vehicle perpetually and

there are no vacant SV available.

But in the presence of actual vehicle sharing (i.e. when q > 0 in the notation of this

paper), PT would be used by travelers who found themselves without a vehicle within certain

walking distance, effectively imposing a cap on the walking time x. This would have a

10“Would car sharing work in your area?”at https://knowledge.como.org.uk, accessed on October 17, 2022.
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twofold effect on optimal decisions. First, the fact that a fraction of travelers use another

method of transportation would lead to a reduction of equilibrium density µ of vacant SV,

for every given release decision λ. At the same time, existence of alternative transportation

method would hedge travelers from worst-case outcomes (very long walking times) in case

they previously release their vehicles. That would increase the release probability λ for every

given SV supply µ.

To sum up, public transit reduces the long-term scope of SV popularity; at the same

time, it makes it easier for the industry to overcome coordination failures and take off

from the private equilibrium. Empirically, cities of Europe with better public transit have

seen far more success in shared mobility (especially its free-floating form) than car-friendly

American cities: there are several European free-floating SV operators with 5000+ vehicles

each, compared to a single U.S. operator (GIG carshare) with estimated fleet of 1000 vehicles.

In the future however, car cities like Los Angeles can become global leaders in shared mobility,

provided that they overcome the coordination problems discussed in this paper.

7. Conclusion

This paper analyzes whether preferential treatment of shared vehicles by local govern-

ments is socially optimal. The answer is positive: in the early stages of industry growth,

such preferential treatment helps to overcome coordination problems in transition from pri-

vate to shared use of vehicles. In later stages, when the density of shared vehicles becomes

sufficiently high, such preferential treatment can be removed to avoid over-supply of shared

vehicles in equilibrium.

Appendix A. Price competition is quasi-shared state

This section investigates optimal pricing of an arbitrary operator j in the quasi-shared

state, i.e. the one characterized by µ = λLτ , all other operators setting some trip fare pa,
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and q = 0 (i.e. a vacant vehicle always used by previous user) for all operators except j.

Suppose an arbitrary operator j deviates from prevailing prices and sets a trip fare paj

marginally different from pa. The case paj > pa would imply that j’s existing customer would

have an incentive to switch to another vehicle (because otherwise the extra cost paj−pa would

have to be paid infinitely many times, with no discounting of future losses, while the cost of

search for another vehicle is finite). In a quasi-shared state, no other traveler would ever use

vehicle j, hence the loss of the existing customer would lead to a permanent loss of revenue

for j, which is clearly suboptimal.

In case paj = pa − ϵ < pa for some ϵ > 0, the last user i of vehicle j always wants to

return to the same vehicle. The Poisson rate of last user return to j is 1
τ
. In addition,

other travelers, sufficiently proximate to vehicle j, are incentivized to switch to j from their

previous vehicle. Denote by qj > 0 the endogenous Poisson rate of vehicle j booking by

travelers other than i.

What is the expected cost saving for traveler i from using vehicle j rather than another

vehicle? The probability that vehicle j remains available for i’s another trip is
1
τ

1
τ
+qj

= 1
1+qjτ

.

Then, the expected number of trips by traveler i with vehicle j is 1+ 1
1+qjτ

+ 1
(1+qjτ)2

+ · · · =

1 + 1
qjτ

; i’s cost saving for every such trip is ϵ.

Because other travelers have the same expected cost saving from using vehicle j, they will

prefer to abandon their previous vehicle and walk to j if the walking time does not exceed x̂

given by (p′j +w)x̂ = ϵ
(
1 + 1

qjτ

)
, where p′j is the per-minute reservation rate by operator j.

But then, the rate qj of vehicle j reservation by walkers is the product of the Poisson rate

of traveler departure λL and length of the two-sided walking range 2x̂:

qj = 2λLx̂ = 2λL

(
ϵ

p′j + w

)(
1 +

1

qjτ

)
(A.1)

If ϵ is a small quantity, so is qj; but then 1 + 1
qjτ

in (A.1) is approximately equal to 1
qjτ

.
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Then, qj can be approximated by
√

2λL
τ

ϵ
p′j+w

, which is a higher order of magnitude than ϵ.

What is the effect of price undercutting ϵ on operator j’s profit per cycle? The profit

gain during the vehicle use phase is −ϵ (i.e. the loss in collected revenue). The extra profit

during vehicle reservation by walkers is the product of the (i) probability that the vehicle

is reserved by a walker, qjτ

1+qjτ
, (ii) the expected walking time x̂

2
= 1

2
ϵ

p′j+w

(
1 + 1

qjτ

)
, and (iii)

the profit per minute of reservation p′j − gr −ϕ. This product is equal to 1
2

ϵ
p′j+w

(p′j − gr −ϕ),

the same order of magnitude as ϵ. Finally, the profit gain during the vehicle vacancy phase

stems from the reduction of expected vacancy duration from τ to τ
1+qjτ

= τ

1+
√

2λLτ ϵ
p′
j
+w

, with

a saving of gv + ϕ per minute of reduced vacancy.

Note that profit gains from reduced duration of vacancy are of higher order of magnitude

than losses in revenue per cycle: this is because travelers expect to use cheaper service repeat-

edly for many cycles, hence have higher-order-of magnitude incentives to switch to vehicle j

from their previous vehicle. But than means that the net profit gain from undercutting the

price paj below pa is always positive, and no equilibrium pa exists. In a quasi-shared state,

competition will always lead to negative profit, operator exit, and eventually to fully private

equilibrium with µ = 0 (no vacant SV) and λ = 0 (nobody releasing their vehicle).
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