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Abstract

We study statistical discrimination in a marriage market where agents, characterized
by attractiveness (e.g., wealth, education) and background (e.g., race, ethnicity), engage in
time-consuming search. Upon meeting, couples date to learn about their match’s quality.
Following Phelps (1972), different backgrounds impede such learning. We show that even
absent any bias, equilibrium features segregation. Moreover, welfare improvements en-
hance segregation. In particular, radical improvements in search technologies induce com-
plete segregation and a “dating apocalypse” whereby agents replace partners frequently.
We show that, in line with empirical findings, segregation is decreasing in couples’ attrac-
tiveness, and provide conditions for (probabilistic) positive sorting by attractiveness.
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1 Introduction

In 1967, Loving v. Virginia 388 U.S. 1, the Supreme Court overturned remaining anti-miscegenation
laws, legalizing interracial marriage throughout the U.S. Since then, approval rates of intermar-
riage – marriage among partners from different racial or ethnic backgrounds – in the U.S. have
soared (according to a recent survey by Gallup Polls, the interracial approval rate stands at
94%; see McCarthy, 2021). Moreover, since the beginning of the 21st century, dating apps
have gradually displaced the roles that family and friends once played in bringing couples to-
gether (Rosenfeld, Thomas and Hausen, 2019), making it easier to meet partners from different
backgrounds (see, e.g., Lewis, 2013). Yet, the actual rate of intermarriage among newlyweds
remains surprisingly low – around 19% according to the American Community Survey, 2020.1

Moreover, the increase in the observed rate of intermarriage is consistent with demographic
changes alone: Figure 1 shows the dynamics of the actual rate of intermarriage, and the rate
that would be observed in a counterfactual world in which all newlyweds in a given year are
matched randomly.

Figure 1: Actual vs. counterfactual intermarriage rates.

Despite widespread approval of intermarriage, people remain far more likely to marry part-
ners who share the same racial or ethnic background. This begs the question: With the

1This rate includes both interracial and interethnic marriages. Similarly, 18% of cohabitors had a partner
of different race or ethnicity; see Livingston and Brown (2017). See Fryer (2007) for an analysis of interracial
marriage using census data from 1880–2000.
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approval rate of intermarriage so high, and with online dating technologies easily connecting
people across backgrounds, why do intermarriage rates remain so low?

One possible explanation for such segregation in marriage is the presence of bias (implicit or
explicit). We show that even in the absence of any form of bias, segregation arises when agents
search, date, and marry optimally; in particular, segregation arises when agents optimally
choose how much time to invest in evaluating the merits of each potential spouse that they
meet. Moreover, the resulting segregation patterns are consistent with the empirical ones.

The key assumption underlying our analysis is that the evaluation of the quality of a match
with a potential partner from a different background (race, ethnicity) is noisier than the evalua-
tion of a partner with whom one shares the same background. This assumption is based on the
central feature in the literature on statistical discrimination in the tradition of Phelps (1972).2

Various explanations for such differences in evaluation have been proposed in the literature.
Lang (1986) suggests that differences in “language” (verbal and nonverbal) impede communi-
cation between people from different backgrounds. Similarly, Arrow (1972) and Cornell and
Welch (1996) propose that differences in background may hinder the assessment of intangible
but relevant qualities. Aigner and Cain (1977) suggest that, in the eyes of each individual,
members of their own “group” face a more homogeneous set of environmental determinants of
quality, resulting in lower variation and hence less noisy evaluation.

This paper studies steady-state equilibria of a marriage market with nontransferable utility
where agents – who are characterized by their attractiveness (e.g., wealth, education) and back-
ground (e.g., race, ethnicity) – spend time not only searching for partners, but also evaluating
the quality of the match with each partner that they meet. In particular, we develop a model
of matching with both search and learning frictions in which, contrary to the assumptions in
the existing literature, potential partners do not immediately learn the value of their match
upon meeting, and need not immediately (and irreversibly) decide whether to accept or reject
a prospective match. Rather, partners who meet may decide to first spend time learning more
about their match’s prospects. Introducing such learning into the classic matching-with-search-
frictions literature (see Chade, Eeckhout and Smith, 2017, for a comprehensive review of this
literature) allows us to incorporate Phelps’ approach into this framework.

Our main results concern segregation in marriage. We show that segregation arises in any
steady-state equilibrium, and that there is a tension between Pareto efficiency and segregation:
if an equilibrium E Pareto dominates another equilibrium E ′, it must also exhibit higher segre-
gation. Thus, any policy aimed at improving the welfare of all market participants inevitably

2Statistical discrimination theories explain group inequality without assuming preference bias or various
forms of prejudice. This is in contrast to “taste-based” theories of discrimination (e.g., Becker, 2010).
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results in further segregation. Furthermore, we find that advances in search technologies that
allow people to meet many potential partners in a short span of time can backfire when it comes
to segregation in marriage. In particular, as search frictions vanish, the market becomes fully
segregated: there is no marriage between agents from different backgrounds.

Our model yields predictions about equilibrium sorting patterns along the dimensions of
background and attractiveness. First, even though there is segregation (i.e., sorting along
the dimension of background) at all attractiveness levels, segregation rates are lower for more
attractive agents than for less attractive ones; i.e., less attractive agents are more likely to
marry agents from their own background. Interpreting attractiveness as years of schooling,
this prediction is in line with the American Community Survey – see Figure 3 below – which
shows that segregation in marriage is less common among the more educated (see also Fryer,
2007). Second, complementarities in partners’ attractiveness result in a probabilistic form of
positive assortative matching: highly attractive agents are more likely to marry other highly
attractive agents, but on occasion may marry less attractive ones as well. This prediction is
also in line with data from the American Community Survey – see Figure 5 below. Finally,
we show that even in the presence of such complementarities, positive assortative matching
(by attractiveness) need not be efficient from a social perspective: a social planner may find it
optimal to induce negative assortative matching along the dimension of agents’ attractiveness,
while maintaining segregation.

Beyond sorting and segregation patterns, our analysis provides a possible explanation for
the phenomenon often referred to as the “dating apocalypse” (see, e.g., Sales, 2020), whereby
the growing ease with which people are able to find dating partners through modern dating apps
makes it more difficult to establish long-term relationships. In our model, as search frictions
vanish, the average number of partners that agents date before marrying goes to infinity, and
the amount of time they dedicate to each potential partner goes to zero.

The contribution of this paper is twofold. At the applied level, we study the connection
between search, dating, and segregation patterns in the marriage market. In addition to con-
tributing to the statistical discrimination literature, at the methodological level, this paper
develops a novel tractable framework that incorporates pre-match information acquisition into
the matching-with-search-frictions paradigm.

Related literature

This paper contributes to the matching-with-search-frictions literature by introducing pre-
match information acquisition. This extensive literature explores the properties of equilibrium
matching under various assumptions on the search technology, match payoffs, search costs, the
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ability to transfer utility, and agents’ rationality.3

While at the methodological level our paper is most closely related to Smith (2006), at an
applied level it is closely related to Eeckhout (2006). Eeckhout (2006) considers a marriage
market where agents repeatedly search to form a partnership in which they choose to cooperate
or defect, and then decide whether to continue or separate. Agents are homogeneous except
for a payoff-irrelevant characteristic, color. Eeckhout shows that while color-blind equilibria
exist, they are inferior to equilibria in which there is segregation between colors, and that
minority bias can increase welfare.4 The driving force behind his results is that color can be
used as a public randomization device that creates better incentives for long-term cooperation.
By contrast, in our model, segregation is driven by differences in the effectiveness of learning
about partners (Phelps, 1972).5 As a result, in our model equilibria always exhibit segregation.
Moreover, since in our model agents are heterogeneous, we can also explore questions such as
(i) how the level of segregation changes with agents’ attractiveness (e.g., wealth, education),
and (ii) which sorting patterns arise in equilibrium.

Mailath, Samuelson and Shaked (2000) study statistical discrimination in a model of the
labor market with two-sided directed search. In their model, workers are either “red” or “green”
and color is payoff irrelevant. They show that besides the color-blind equilibrium, there exists an
asymmetric equilibrium in which firms search only for green workers, green workers invest more
in acquiring skills, skilled green workers receive a higher wage, and skilled red workers suffer
from a higher unemployment rate. More recently, Gu and Norman (2020) show that statistical
discrimination can arise in labor markets due to a combination of occupational choice, search
externalities, and a signal extraction problem. Moreover, they show that nondiscriminatory
equilibria may become unstable due to the introduction of group characteristics, which may
rationalize the use of affirmative action policies.

Our paper is not the first to incorporate incomplete information into the matching-with-
search-frictions literature. Chade (2006) assumes that agents receive only a noisy signal about

3See, e.g., McNamara and Collins (1990), Smith (1992), Morgan (1996), Burdett and Coles (1997), Eeckhout
(1999), Bloch and Ryder (2000), Shimer and Smith (2000), Chade (2001, 2006), Adachi (2003), Atakan (2006),
Smith (2006), Lauermann and Nöldeke (2014), Bonneton and Sandmann (2021,2022b), Coles and Francesconi
(2019), Lauermann, Nöldeke and Tröger (2020), and Antler and Bachi (2022).

4These findings bear a resemblance to those of Norman (2003), who shows – in the context of a labor market
without search frictions – that statistical discrimination may be efficient.

5Following Phelps, statistical discrimination due to noise in evaluation has been studied in many setting.
See, e.g., Aigner and Cain (1977), Borjas and Goldberg (1978), Lundberg and Startz (1983), Cornell and Welch
(1996), and more recently Bohren, Imas and Rosenberg (2019), Bardhi, Guo and Strulovici (2020), Chambers
and Echenique (2021), and Fershtman and Pavan (2021). By contrast, Arrow’s (1973) theory of statistical
discrimination does not assume differences in the evaluation across groups, but instead relies on coordination
failures; see, e.g., Coate and Loury (1993) and Moro and Norman (2004). See Fang and Moro (2011) for a
comprehensive review of the theoretical statistical discrimination literature.
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the payoff from marrying a potential partner before making an irreversible decision whether or
not to marry that partner. This leads to an acceptance curse: the merits of a marriage with
a partner, conditional on the latter agreeing to the marriage, are lower than the unconditional
merits of such a marriage. Information frictions have also been incorporated into search-and-
matching models in the related context of the labor market.6 Building on Jovanovic (1984),
Moscarini (2005) develops a theory of job turnover and wage dynamics in which employers
and workers make inferences about the productivity of their match from the produced output.
Besides the different context and questions studied, the main difference between Moscarini’s
(2005) model and ours is that, in the former, new matches are always accepted (workers and
firms are symmetric ex ante) and learning occurs entirely ex post, whereas we focus on pre-
match learning as it is central to the marriage market context.

2 A Model

We consider a marriage market with nontransferable utility. There is a set of men and a set of
women, each containing a unit mass of agents. Each agent is characterized by two observable
characteristics: her/his attractiveness ω ∈ [0, 1] (which represents attributes such as wealth or
education) and background θ ∈ {A,B} (which represents attributes such as race, ethnicity, and
religion). We denote an agent’s type by x = (ω, θ) ∈ X ≡ [0, 1]×{A,B}, and often identify an
agent by her/his type. Following standard vector notation we denote agent x’s attractiveness
and background by xω and xθ, respectively. To focus on the role of learning frictions across
(racial/ethnic) groups, we assume that the distribution of types on both sides of the market
is the same, and that groups are symmetric, i.e., both the size and distribution of types are
identical in both groups. Furthermore, we assume that the distribution of ω in the population
admits a continuous density g(ω) that is bounded in [g, g], with 0 < g < g <∞.

Any pair of potential partners are either compatible or not. We assume that the prior
probability that agents x and y are compatible depends only on their attractiveness, and denote
this probability by q0(xω, yω). Furthermore, q0(·, ·) is strictly increasing in each of its arguments,
symmetric, differentiable, and has derivatives that are bounded in [q, q] for some 0 < q < q <∞.
The compatibility (or lack thereof) of a couple determines whether they will form a happy or
unhappy marriage together. The flow payoff each agent receives while in a happy marriage is

6Information frictions have been incorporated into decentralized matching models in other contexts as well.
For example, Lauermann and Wolinsky (2016), Lauermann, Merzyn and Virág (2018), and Mauring (2017)
study two-sided search models in which buyers and/or sellers make inferences about an aggregate state from
the terms of trade they encounter. Anderson and Smith (2010) show that information frictions can upset
equilibrium sorting in a model without search frictions. In their model, agents choose a partner not only to
maximize their current production, but also to signal their productivity to future partners.
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normalized to 1, whereas the flow payoff from an unhappy marriage is −z < 0. We assume that
q0(1, 1)− (1− q0(1, 1))z < 0, which implies that (i) every couple are incompatible with positive
probability, and that (ii) no couple marry without first receiving (positive) information about
their compatibility.

The market operates in continuous time and agents discount the future at a rate r > 0.
Agents transition between three states: singlehood, dating, and marriage. While an agent
is single, s/he meets singles on the other side of the market according to a quadratic search
technology with parameter µ > 0. That is, for any subset Y ⊆ X, if the measure of agents in
the singles pool with types in Y is ν, then agent x meets such agents at a rate of µν.

When a pair of potential partners meet, they immediately observe each other’s types. How-
ever, they do not observe if they are compatible or not. Upon meeting, they can either begin
dating (to learn about their compatibility) or reject the match and return to the singles mar-
ket. At any point in time while a couple are dating, each agent can unilaterally break up with
her/his partner. Following a breakup, both agents immediately return to the singles market to
search for new potential partners. Dating is exclusive; that is, while a couple are dating they
do not meet other potential partners.7 Agents incur a small flow cost c > 0 while dating.

While dating, couples learn about their compatibility as follows. If x and y are compatible,
they observe a positive signal that arrives at rate λxy > 0 according to an exponential distri-
bution, whereas if they are incompatible, such a signal never arrives.8 Let λxy = λ if x and
y share the same background, and λxy = βλ otherwise. As discussed in the Introduction, we
follow Phelps (1972) and make the following assumption.

Assumption 1 (Inter-background noise) The rate of learning λxy is slower when x and y
have different backgrounds; that is, β < 1.

Upon the arrival of a signal, a couple infer that they are compatible and marry immediately. In
the absence of a signal, the couple gradually become more pessimistic about their compatibility
until one of the partners chooses to separate. We denote by qt(x, y) the couple’s joint belief
about their compatibility after having dated for t > 0 units of time without observing a signal.9

We assume that each marriage is dissolved at a flow rate of δ > 0. Such a dissolution can
be interpreted as the arrival of bad news about attributes that cannot be revealed prior to
marriage (e.g., a spouse’s parenting style) that turn a happy marriage into an unhappy one.

7Relaxing the assumptions that dating is mutually exclusive (e.g., assuming that while dating agents meet
potential partners at a lower rate) does not affect our qualitative results.

8This learning technology is borrowed from the strategic experimentation literature (e.g., Keller, Rady and
Cripps, 2005).

9The interim belief qt(·, ·) is a function of both attractiveness and background, as the former affects the prior
and the latter affects the learning rate. By contrast, the prior q0(·, ·) is only a function of attractiveness.
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When dissolution occurs, both agents return to the singles market. Finally, we assume that no
agent is entirely excluded from the market, i.e., that c(r + δ) < βλq0(0, 0).

We analyze the steady state of the model. In a steady-state equilibrium, (i) the agents’
decisions – whether and for how long to date each potential partner – are optimal given the
endogenous composition of the singles pool, and (ii) the flows of individuals into and out of each
of the three states – singlehood, dating, and marriage – are balanced. That is, the distributions
of singles, dating couples, and married couples are stationary. In Section 5, we prove that such
an equilibrium exists.

The (stationary) strategy of each agent is a function that specifies the maximal amount
of time for which s/he is willing to date each potential partner. Thus, agent x’s strategy is a
mapping Tx : X → R+, where Tx(y) is the maximal amount of time that agent x is willing
to date an agent of type y. Note that by setting Tx(y) = 0, agent x effectively rejects agent
y immediately. As dating requires mutual consent, after agents x and y meet, they date for
at most min{Tx(y), Ty(x)} units of time: if they learn they are compatible beforehand, they
marry, and otherwise they separate after dating for min{Tx(y), Ty(x)} units of time. We focus
on symmetric strategy profiles, i.e., profiles in which strategies are symmetric with respect to
gender and background.

Agents’ dating strategies determine the probability that a couple 〈x, y〉 marry conditional
on meeting one another. This probability, which we refer to as a couple’s conversion rate, is
denoted by α(x, y) and will be useful throughout the analysis.

Balanced Flow. We now derive the balanced-flow condition, which guarantees that the
distributions of singles, dating couples, and married couples are stationary.

At each point in time, the outflow of agents of type x from the singles pool is given by the
measure of such agents who meet a partner y such that both x and y are willing to date one
another for a positive amount of time. Note that agents date for a positive amount of time if
and only if they marry with positive probability. Thus, the outflow of type x agents from the
singles pool is given by

µu(x)

∫
{y:α(x,y)>0}

u(y)dy,

where u(y) denotes the (steady-state) measure of agents of type y in the singles pool.
There are two circumstances in which a type x agent returns to the singles pool. First, s/he

may break up with an agent whom s/he has been dating (whether due to her/his own decision
or due to that of her/his partner’s). The couples 〈x, y〉 that break up at a given point in time
are those that met exactly min{Tx(y), Ty(x)} units of time ago and did not receive a signal
while dating. The probability that such a couple did not receive a signal is 1 − α(x, y), and
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hence in a steady state the flow of agents of type x into the singles pool due to failed dating is
given by

µu(x)

∫
{y:α(x,y)>0}

u(y)(1− α(x, y))dy.

Second, agent x may return to the singles pool due to the dissolution of her/his marriage.
Denote by d(x, y) the measure of type x agents who are dating a type y agent. The measure
of type x agents who are dating is then

d(x) =

∫
{y:α(x,y)>0}

d(x, y)dy.

Thus, the measure of type x agents who are married is g(x)−u(x)− d(x), and the flow of such
agents who return to the singles pool due to the dissolution of marriages is

δ(g(x)− d(x)− u(x)).

By equating the inflow and outflow derived above and rearranging, we obtain that the flow
of type x agents into and out of singlehood is balanced if

µu(x)

∫
{y:α(x,y)>0}

α(x, y)u(y)dy = δ(g(x)− d(x)− u(x)). (1)

Note that the LHS of (1) is the inflow of type x agents into marriage, and the RHS of (1) is
the outflow of such agents from marriage. Hence, (1) guarantees that the flows into and out of
marriage are also balanced. Thus, when (1) holds for every x ∈ X, the distributions of singles,
dating couples, and married couples are all stationary.

Continuation values and capital gains. In the subsequent analysis we often make use
of the continuation value of agent x when s/he is single. We denote this continuation utility
by Ws(x). In the literature (e.g., Smith, 2006), the flow of the continuation value of single
agents represents their expected capital gain from meeting (and marrying) partners in their
“acceptance set.” In our model, it represents the capital gain from meeting (and beginning to
date) potential partners. Formally,

rWs(x) = µ

∫
X

Vd(x; y)u(y)dy, (2)

where Vd(x; y) denotes agent x’s capital gain from dating agent y.10

10Agent x’s capital gain from dating agent y is given by evaluating Equation (A.1) (in the Appendix) at the
equilibrium dating time of the two agents. We discuss optimal dating choices in detail in Section 3.
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3 Dating and Segregation in Equilibrium

In our model, agents must choose not only which potential partners to date, but also how much
time to spend dating each partner. To understand these choices, consider agent x’s marginal
value of dating agent y (i.e., the value of dating y for an additional dt units of time) after the
couple have dated for t ≥ 0 units of time. With probability qt(x, y)λxydt the couple receive a
signal and marry, in which case agent x enjoys the capital gain from a happy marriage. The
flow value of a happy marriage is one, and thus the capital gain from a happy marriage is
(1 − rWs(x))/(r + δ). The marginal cost of dating consists of the flow cost of dating, c, and
the flow value of singlehood, rWs(x), which must be forgone since dating is exclusive. Hence,
agent x’s marginal value of dating agent y is

λxyqt(x, y)
1− rWs(x)

r + δ
− (rWs(x) + c). (3)

Standard arguments show that q̇t(x, y) = −λxyqt(x, y)(1 − qt(x, y)), which implies that agent
x’s marginal value of dating agent y decreases over time.

Agent x’s choice of whether or not to continue dating agent y is relevant only if the latter
chooses to continue dating agent x. As in many other two-sided matching models, the mutual
consent requirement can sustain an equilibrium in which any two agents reject one another.
To preclude this type of equilibrium, the matching-with-search-frictions literature typically
assumes that an agent accepts any match whose benefit is strictly greater than the agent’s
reservation value. In this paper, we make the analogous assumption that agent x chooses to
continue dating agent y as long as agent x’s marginal value of dating agent y is positive.

The next result uses the above assumption and the fact that the marginal value of dating
decreases over time to establish that agent x’s optimal dating choices are characterized by a
single threshold belief over her/his compatibility with the current partner, which is independent
of the attractiveness of that partner.

Proposition 1 (Optimal dating) Agent x’s equilibrium behavior is characterized by a thresh-
old belief

q?(x) ≡ rWs(x) + c

1− rWs(x)
× r + δ

λ
, (4)

such that s/he chooses to continue dating agent y from the same (resp., from a different)
background as long as qt(x, y) > q?(x) (resp., as long as qt(x, y) > q?(x)/β).

Proposition 1 implies that agents are more selective about dating potential partners from
a different background – both in terms of whom they are willing to begin dating in the first
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place and in terms of when they will break up with a partner they are dating. When an agent
x meets a potential partner with attractiveness yω such that q0(xω, yω) ∈ (q?(x), q?(x)/β),
agent x is willing to date her/him only if they share the same background. Furthermore, if
an agent x meets an agent whom s/he would date regardless of the latter’s background (i.e.,
q0(xω, yω) > q?(x)/β), then there exist circumstances (i.e., qt(x, y) ∈ (q?(x), q?(x)/β)) under
which agent x will wish to continue dating the latter only if they share the same background.

Since dating requires mutual consent, it follows that within each couple, the agent with the
higher breakup threshold is the one that ultimately chooses when to break up. Therefore, the
effective breakup threshold of agents x and y is given by

Q?(x, y) =
max{q?(x), q?(y)}

λxy/λ
,

where λxy/λ ∈ {1, β} is equal to 1 if the agents share the same background, and β otherwise.

3.1 Equilibrium Segregation and Social Welfare

Having characterized the agents’ behavior at the individual level, we can now study the equi-
librium of our model. In particular, we establish that segregation occurs in every equilibrium,
and show that there is an inherent tension between social integration and social welfare.

We start by defining our notion of segregation. Roughly speaking, we say that there is
segregation if the conversion rate of agents who share the same background is higher than the
conversion rate of agents who have different backgrounds. Owing to the symmetry between
groups, if this is true for agents in group A it is also true for agents in group B. For convenience,
in both our definitions of segregation (Definition 1) and the level thereof (Definition 2) we use
group A as the benchmark group.

Definition 1 (Segregation) We say that there is segregation if for every two levels of attrac-
tiveness ω, ω′ ∈ [0, 1] it holds that

α ((ω,A), (ω′, A)) ≥ α ((ω,A), (ω′, B)) (5)

with strict inequality if the LHS is strictly positive.

To examine whether segregation occurs in equilibrium, we first calculate the equilibrium
conversion rates.
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Lemma 1 (Conversion rates) The equilibrium conversion rate of a couple 〈x, y〉 is

α?(x, y) =
q0(xω, yω)−Q?(x, y)

1−Q?(x, y)
(6)

if Q?(x, y) < q0(xω, yω), and zero otherwise.

An immediate corollary of Proposition 1 and Lemma 1 is that every equilibrium exhibits
segregation. Segregation arises due to the fact that an agent x who is willing to date agents
with attractiveness ω from both social groups is always willing to invest more in dating the
agent who shares her/his background (Proposition 1).

Corollary 1 (Equilibrium segregation) Every equilibrium exhibits segregation.

The next result establishes that there is a tension between integration and social welfare.
In order to compare the levels of segregation of different equilibria, we define a measure of
segregation, which we dub the segregation ratio. For any ω, ω′ the segregation ratio ρ(ω, ω′) is
the ratio between the conversion rate of a couple with attractiveness levels ω and ω′ who share
the same background and a couple with attractiveness levels ω and ω′ who do not share the
same background.

Note that ρ(ω, ω′) is ill defined in situations where α((ω,A), (ω′, B)) = 0. When it also
holds that α((ω,A), (ω′, A)) > 0, segregation is complete, and so we write ρ(ω, ω′) = ∞. By
contrast, in the case where α((ω,A), (ω′, A)) = 0 there is no meaningful way to say whether or
not there is segregation at these levels of attractiveness, and so we do not define ρ(·, ·) in such
cases.

Definition 2 (Level of segregation) For any ω, ω′ ∈ [0, 1] such that α((ω,A), (ω′, A)) > 0,
define the segregation ratio as

ρ(ω, ω′) =


α((ω,A),(ω′,A))
α((ω,A),(ω′,B))

, if α((ω,A), (ω′, B)) > 0

∞ , otherwise
. (7)

The next result shows that an equilibrium that Pareto dominates another equilibrium ex-
hibits a higher level of segregation. This comparison can be interpreted either as a comparative
statics exercise or as a comparison between multiple equilibria in the same setting.

Proposition 2 (Segregation vs. efficiency) Fix λ and β. If an equilibrium E Pareto dom-
inates an equilibrium E ′, then the segregation ratio in E is higher (pointwise) than in E ′.
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Figure 2 provides a graphical explanation for Proposition 2. Consider two agents who
come from different backgrounds, say x = (ω,A) and y = (ω′, B). The effective breakup
threshold for them is Q?(x, y) (i.e., they date until the joint belief drops from q0(ω, ω′) to
Q?(x, y) or until observing a positive signal). Were x to date a potential partner from the
same background z = (ω′, A), their effective breakup threshold would be Q?(x, z) = βQ?(x, y).
We interpret the interval of beliefs Lj = [Q?(x, y), q0(ω, ω′)] as the joint dating region since
x dates agents from both backgrounds in this interval, and interpret the interval of beliefs
Ls = [βQ?(x, y), Q?(x, y)] as the segregative dating region since within this region x dates only
agents from her/his own background. The segregation ratio is represented by (Lj+Ls)/Lj. Note
that a Pareto improvement would raise the effective threshold Q?(x, y) as Q?(·, ·) is increasing
in the agents’ continuation value Ws(·) (Equation (4)). The increase in Q?(x, y) increases
the size of the segregative dating region (1 − β)Q?(x, y), reduces the size of the joint region
q0(ω, ω′)−Q?(x, y), and, as a result, increases the ratio (Lj + Ls)/Lj.

q0

Joint dating region
Q?

βQ?
Segregative dating region

Ls

Lj

Figure 2: Segregation and efficiency.

3.2 Improvements in Online Dating Technologies

In recent years, the dating market has undergone radical changes due to the introduction of
new dating apps that have replaced more traditional matching channels.11 Such advances in
search technologies enable people to meet many potential partners in a short span of time. In
our model, such changes can be represented as an increase in the meeting rate µ. In this section
we investigate the implications of such changes on segregation, dating, and marriage patterns.

Recall that Proposition 2 allows for changes in the model’s parameters (except for λ and
β) in the transition from E ′ to E. Thus, if an increase in µ improves the welfare of all market
participants, then it must result in more segregation.12

11According to a recent survey by Pew Research Center (2020), “Roughly half or more of 18- to 29-year-olds
... say they have ever used a dating site or app.”

12While deriving comparative statics of a steady-state equilibrium in search-and-matching models is notori-
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Corollary 2 (Search frictions and segregation) If an increase in µ leads to a Pareto im-
provement, then it also increases segregation.

The introduction of dating apps allowing individuals to meet partners virtually instanta-
neously can be interpreted as search frictions becoming arbitrarily small. Various papers have
studied the implications of vanishing search frictions on marriage-market outcomes in differ-
ent contexts. Eeckhout (1999) and Adachi (2003) show that when search frictions vanish, the
equilibrium matching converges to a matching that is pairwise stable in the Gale and Shapley
(1962) sense and hence is efficient. Under vertical heterogeneity, pairwise stability also implies
positive assortative matching in the classic frictionless nontransferable utility marriage model
of Becker (1973). Lauermann and Nöldeke (2014) show that equilibrium matching can converge
to a matching that is not pairwise stable if (i) mixed strategies are allowed and (ii) there are at
least two pairwise stable matchings.13 Antler and Bachi (2022) establish that vanishing search
frictions lead to radically different results when agents’ reasoning is coarse: in the frictionless
limit agents search indefinitely and never marry.14

In this paper, we examine how a drastic reduction in search frictions affects both segregation
in marriage and dating patterns. We start by showing that when search frictions vanish, the
market becomes fully segregated.

Proposition 3 (Full segregation as search frictions vanish) In the limit as search fric-
tions vanish (µ→∞), there is full segregation: agents date only partners with whom they share
the same background.

To understand the mechanism behind this result, let us assume for a moment that the singles
market is fixed (in equilibrium, the size and composition of the singles market are endogenous).
The key tradeoff agents face in our model is between learning more about a potential partner
and searching for a more promising one. As the process of learning about a partner from a
different background is noisier than that of learning about a partner with whom one shares
the same background, the marginal benefit from learning about the former is lower. The
opportunity cost of learning – searching for a different partner – is independent of the current
partner’s background. When the speed of search increases, it becomes easier to meet other

ously difficult, for the special case of the model in which all agents have the same level of attractiveness, we
can show that a reduction in search frictions leads to higher welfare and hence more segregation. We formally
derive comparative statics results for that case in an earlier working paper version of this paper (Antler, Bird
and Fershtman, 2022).

13In Adachi (2003) (i) is violated and in Eeckhout (1999) (ii) is violated.
14A parallel strand of the literature studies the implications of declining search frictions on product design,

vertical differentiation, and growth in product and labor markets (e.g., Albrecht, Menzio and Vroman, 2021;
Martellini and Menzio, 2021; Menzio, 2021).
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singles, which raises the opportunity cost of learning more about a specific partner. Agents
therefore invest less in dating each potential partner. Because learning across backgrounds is
noisier, it follows that when search frictions are sufficiently small, agents prefer to avoid dating
agents from a different background altogether, and instead wait for partners with whom they
share the same background. The challenge in the proof is in arguing that the above intuition
holds given the endogeneity of the (size and composition of the) equilibrium singles market.

3.2.1 Vanishing Search Frictions and the “Dating Apocalypse”

Although recent changes in dating technologies have drastically reduced search frictions, many
individuals have reported a growing difficulty in establishing long-term relationships. This joint
phenomenon is often referred to as the “dating apocalypse” (see, e.g., Sales, 2020). Our model
can rationalize such findings by showing that when search frictions vanish, agents invest a
negligible amount of time in dating each partner that they meet, and hence date an arbitrarily
large number of partners before marrying.

In Proposition 3 we established that as µ → ∞, agent x meets singles instantaneously.
Hence, in this case, agent x has no reason to date a potential partner for more than an in-
finitesimal amount of time: s/he can break up with the partner if a signal does not arrive
immediately and can instantaneously begin dating a new one of the same type. Thus, in the
limit µ→∞, agent x chooses to date only the most attractive agents who are willing to date
her/him, and hence the breakup threshold q?(x) converges to q0(xω, xω). Moreover, as search
frictions vanish, the investment in dating each potential partner converges to zero.

Corollary 3 (Dating apocalypse) As µ → ∞, agents are willing to date only agents with
their own level of attractiveness and above: q?(x) −→

µ→∞
q0(xω, xω) for every x ∈ X. Hence, as

search frictions vanish, (i) the maximal dating time between any two agents converges to zero,
(ii) the average number of partners each agent dates before marrying goes to infinity, and (iii)
dating becomes fully assortative in the attractiveness dimension.

4 Segregation Patterns

In this section we study how one’s set of partners changes with one’s level of attractiveness.
In Section 4.1 we establish that the segregation ratios decrease with attractiveness and show
that this pattern is consistent with empirical findings. In Section 4.2, motivated by empirical
patterns, we define a new probabilistic notion of assortative matching that captures the idea
that individuals who are more attractive are more likely to marry highly attractive individuals
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(regardless of background) but, on occasion, may marry less attractive individuals. We then
establish that complementarities between partners’ attractiveness are sufficient for such prob-
abilistic sorting to arise in equilibrium. Finally, in Section 4.3 we compare socially efficient
sorting patterns with equilibrium sorting patterns.

Before we proceed to the analysis, it will be useful to derive a number of properties that
the continuation value of single agents Ws(·) must satisfy. The first property is its strict
monotonicity in attractiveness. To gain intuition, note that since agents’ breakup thresholds
are independent of their potential partner’s attractiveness, an agent can mimic the dating
times of a less attractive agent (from the same background) with every potential partner.
Moreover, the more attractive agent is strictly more likely to be compatible with any given
partner compared to a less attractive agent. Hence, were the more attractive agent to use this
mimicking strategy, s/he would have a higher probability of (happily) marrying every partner
that s/he meets compared to the less attractive agent. It follows thatWs(·) is strictly increasing
in ω, which, by (4), implies that q?(·) is also strictly increasing in ω. The second property is
the continuity ofWs(·) in attractiveness, which follows from an analogous mimicking argument:
an agent who is slightly less attractive than x can obtain a similar continuation value to x by
mimicking the latter’s strategy.15

Lemma 2 Ws(ω, θ) and q?(ω, θ) are strictly increasing and Lipschitz continuous in ω.

4.1 Interracial Segregation by Education.

There is considerable evidence that segregation is more common among the less educated.
For instance, according to Fryer (2007), “[t]here seems to be some conventional wisdom that
interracial marriages are concentrated among those with lower levels of education. But while
this claim used to be true several decades ago, the pattern has reversed itself. Interracial
marriages are now more concentrated among those with higher levels of education.” This claim
is also visible in Figure 3, which shows the rate of interracial marriage for high-education couples
versus that of low-education couples. A high (resp., low) education couple is a couple for which
both partners have (resp., do not have) a college degree.16

Fryer (2007) argues that “the data are most consistent with a Becker-style marriage market
model in which objective criteria of a potential spouse, their race, and the social price of
intermarriage are central.” But, at the same time, Fryer also states that ”[t]he evidence in favor

15In the proof, we show that Ws(·) and q?(·) are Lipschitz continuous in ω, which will be useful in the sequel.
16The Data shown in Figure 3 was obtained from the American Community Survey, 2008-2020. The trends

shown in the figure are the same as those that can be seen from looking at the rate of interracial marriages of
high/low education individuals.
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Figure 3: Intermarriage as a function of education.

of the classic Becker model is far from overwhelming.” We suggest that premarital dating can
also explain this evidence, even without any social price of intermarriage.

The next result establishes that, in the equilibrium of our model, agents’ dating choices
lead to more segregation at the bottom of the attractiveness distribution as long as µ is not too
large (extreme values of µ lead to complete segregation as established in the previous section).
Recall that one interpretation of an agent’s attractiveness is her/his level of education. With
this interpretation, our model’s prediction is consistent with the empirical evidence described
in Figure 3.

Proposition 4 (Intermarriage by level of attractiveness) There exists µ∗ > 0 such that
if µ < µ∗, then ρ(ω, ω) is decreasing in ω; that is, there is less segregation among more attractive
agents.

In the proof of Proposition 4 we provide a condition that characterizes µ?. It is worth
pointing out that µ∗ is linked to the variation in the marginal effect of an agent’s attractiveness
on the prior probability that a couple are compatible. In particular, when the variation in
the derivative of q0(·, ·) decreases (i.e., when q0(·, ·) is “more linear”), µ? is greater. That is,
segregation is less common among the most attractive agents for a wider region of parameters.
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4.2 Sorting by Attractiveness

We now examine under what conditions assortative matching along the dimension of attrac-
tiveness is obtained, a question that has been central to the two-sided matching literature since
the seminal work of Becker (1973). In particular, various conditions on the degree of comple-
mentarity of the match production function that yield assortative matching have been derived
in the literature on matching with search frictions (see Chade, Eeckhout and Smith, 2017).
Assortative matching by attractiveness can be interpreted as another measure of segregation,
e.g., segregation by wealth/education rather than by background.

The assortativity of a matching is generally studied by examining how changes in an agent’s
type alter her/his acceptance set (agents who are mutually acceptable belong in each other’s
acceptance set). The probabilistic manner in which meetings are converted to marriages in our
setting requires a new notion of assortative matching that takes into account the fact that, in
our setting, it matters not only who marries whom, but also with what probability. We refer
to the new notion as single crossing of conversion rates. This notion is satisfied if, roughly
speaking, for any two agents who have levels of attractiveness x′ω and x′′ω > x′ω and share the
same background, there exists a critical attractiveness level y?ω such that agent x′′ is more likely
than agent x′ to marry a partner more attractive than y?ω, whereas agent x′ is more likely
than agent x′′ to marry a partner less attractive than y?ω. Under this notion, the difference
α(x′′, y)− α(x′, y) satisfies a single-crossing property in yω (illustrated in Figure 4).

Partner’s attractiveness

Marriage
probability

α(x′, ·) α(x′′, ·)

Figure 4: Illustration of the single crossing of conversion rates for x′ω < x′′ω.

Formally, for any conversion-rate function α(·, ·) and agents x′, x′′ ∈ X, we denote the set
of agents who marry x′ or x′′ with positive probability by

Aα(x′, x′′) = {y : α(x′, y) > 0 or α(x′′, y) > 0}.

Our objective is to derive conditions for positive assortative matching along the attrac-
tiveness dimension. Hence, we focus on situations in which agents can be compared by their
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level of attractiveness alone. In particular, we fix two agents x′, x′′ (on the same side of the
market) who share the same background and a potential partner y (possibly from a different
background), and analyze agent y’s attractiveness affects the conversion rate of the couples
〈x′, y〉 and 〈x′′, y〉.

Definition 3 (Single crossing of conversion rates) Fix two arbitrary backgrounds xθ, yθ ∈
{A,B}. A conversion-rate function α(·, ·) satisfies the single-crossing property if for every two
agents x′ = (x′ω, xθ) and x′′ = (x′′ω, xθ) such that x′ω < x′′ω, there exists y?ω(x′, x′′) such that for
any (yω, yθ) ∈ int(Aα(x′, x′′)), α(x′′, (yω, yθ)) > α(x′, (yω, yθ)) if and only if yω > y?ω(x′, x′′).

The next result establishes that complimentary in agents’ attractiveness leads to single-
crossing of conversion rates.

Proposition 5 (Equilibrium sorting by attractiveness) If q0(·, ·) is supermodular, then
every steady-state equilibrium conversion-rate function satisfies the single-crossing property.

An implication of the above result is that highly attractive individuals are more likely to
marry highly attractive partners, but on occasion may marry less attractive partners as well.
Figure 5 shows that this prediction is consistent with empirical patterns (where attractiveness
is measured by years of schooling). In particular, we split the population into four groups
according to their level of education: high school and below, 1-3 years of collage, 4 years
of collage, 5+ years of collage. For each group, Figure 5 depicts the normalized empirical
distribution of the educational level of partners. The markers in Figure 5 represent partners
with exactly these four levels of education.17 The single crossing property (for every pair of
education levels) is visible in the figure.

It is tempting to interpret the prior q0(·, ·) as the analog of the match-production function
f(·, ·), and to compare our condition for assortative matching with those derived in the litera-
ture. However, were we to interpret the production function f(·, ·) as the expected match value,
we would have f(·, ·) = q0(·, ·) ·1 + (1− q0(·, ·)) · (−z). Hence, the supermodularity assumptions
on f(·, ·) and q0(·, ·) have different meanings and implications, which precludes a meaningful
comparison.

4.3 Socially Efficient Sorting

In this section we argue that positive assortative matching by attractiveness may be inefficient
from a social perspective even if q0(·, ·) is supermodular. That is, it is inefficient from the

17This figure is based on marriages in 2019 that were recorded in the American Community Survey 2019.
The distribution is normalized by the size of each group.
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Figure 5: Single crossing of the distribution of partners’ education.

perspective of a social planner who chooses the agents’ stationary dating times without knowing
their compatibility in order to maximize the weighted average of the continuation value of single
agents.18 In particular, we show that such a planner may induce negative assortative matching
by attractiveness and positive assortative matching by background (i.e., segregation).

To gain intuition as to why efficient allocations may exhibit negative assortative matching
consider the expected length of agents’ singlehood episodes. From a social perspective, the
length of these episodes should be minimized as agents only obtain positive payoffs while
married. Agents with low levels of attractiveness are unlikely to be compatible with one another,
and so if they are instructed to only date one another, on average, they will date many partners
before eventually finding the one that they will marry. This results in long singlehood episodes
for such agents. By contrast, if highly attractive agents are allowed to date one another,
they need to date relatively few potential partners before marrying and have short singlehood
episodes. The average length of a singlehood episode for agent x is determined by E(1/α(x, ·)).
Since this function is concave in α(x, ·) the social planner has an incentive to smooth out
variation in the conversion rate, which may lead her to induce negative assortative matching
that leads to lower variation in α.

18The stationarity assumption makes the social optimum analysis consistent with the equilibrium analysis.
Bonneton and Sandmann (2022a) show that nonstationary equilibria may also exist in a two-sided search setup
(without dating).
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Example 1 (Negative Assortative Matching) Suppose that there are only two levels of
attractiveness, xhω = 1/2 and xlω = 2/5, where Pr(xω = xl) = 3/4, and that q0(xω, yω) = xωyω.
Moreover, suppose that c = 1/20, δ = 1/100, r = 1/10, µ = 2, λ = 1, and β = 3/4. Table 1
presents the socially optimal allocation:

α(·, ·) xlω, x
l
ω xlω, x

h
ω xhω, x

h
ω

Same Background 12% 16% 0%

Different Background 10% 14% 0%

Table 1: Socially optimal conversion rates by background and attractiveness.

Note that even though the social planner induces negative assortative matching by the agents’
level of attractiveness, she maintains the segregation across groups. This is the case as noisier
learning is costly both at an individual level and at a social one.

Example 1 shows that the equilibrium sorting patterns may indeed be inefficient: while there
is positive assortative matching (by attractiveness) in equilibrium, there is negative assortative
matching in the socially efficient outcome. This phenomenon is intrinsically related to dating,
which enriches the set possible conversion rates that the social planner can induce. In the
absence of dating, the conversion rate in the acceptance set is 1 regardless of the agents’ type,
and so the (expected) length of an agent’s singlehood episode is determined entirely by the
measure of agents in her/his acceptance group who are single. By contrast, when agents engage
in premarital dating, the length of singlehood episodes is inversely related to the conversion
rate, which is strictly less than one for any couple.

5 Equilibrium Existence

So far we have analyzed agents’ equilibrium behavior in a steady state equilibrium under the
assumption that such an equilibrium exists. We now prove that a steady state equilibrium
indeed exits. Recall that in a steady-state equilibrium, (i) agents set their breakup thresholds
q?(·) optimally given the (endogenous) size and composition of the singles pool, (ii) agents’ con-
tinuation utilities are consistent with equilibrium dating strategies, and (iii) the flows between
singlehood, dating, and marriage are balanced. Formally:

Definition 4 (Equilibrium) A steady-state equilibrium is a tuple 〈Ws(·), q?(·), u(·)〉 that
consists of the value functions of single agents, the agents’ breakup thresholds, and the measure
of single agents, such that Equations (1), (2), and (4) hold.
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Following the approach pioneered by Shimer and Smith (2000), we establish the existence of
a steady-state equilibrium in the value function space. While existence proofs in the literature
typically rely on matching and acceptance sets, which reflect binary accept/reject choices, in our
model the agents make richer decisions, choosing for how long, if at all, to date each potential
partner. Moreover, in our model, agents transition between three states – singlehood, dating,
and marriage – rather than just two states.

Proposition 6 (Equilibrium existence) A steady-state equilibrium exists.

We prove the existence of a steady-state equilibrium by invoking a fixed point argument.
This requires establishing that the mappings (i) from value functions to conversion rates, and
(ii) from convergence rates to the distribution of singles, be continuous and well defined. The
latter is the analog of Shimer and Smith’s (2000) fundamental matching lemma. Equilibria are
then fixed points of an appropriately defined mapping. Using Schauder’s fixed point theorem,
we establish that such a fixed point indeed exists.

6 Concluding Remarks

We develop a model of two-sided search in which potential partners can spend time learning
about their compatibility before agreeing to their match. To our knowledge, this paper is
the first to incorporate premarital information acquisition into the classic search-and-matching
framework, and to study explicitly the tradeoff between learning about a potential partner and
searching for other, perhaps more promising, potential partners.

The new framework enables us to capture the idea that evaluating the merits of a potential
match depends on the partners’ observable characteristics. In particular, for every poten-
tial couple, the partners’ attractiveness determines the probability that they are compatible,
whereas their background determines the effectiveness of their mutual learning process. The
latter assumption, inspired by Phelps (1972), plays a central role in our analysis of segregation
in marriage.

We find that, in equilibrium, individuals sort along two dimensions: attractiveness and
background. However, this may not be beneficial from a social planner’s point of view. A
key finding of this paper is that there is a tradeoff between social integration and welfare. In
particular, if advances in search technologies (e.g., the emergence of dating apps) improve all
individuals’ welfare, they inevitably result in more segregation. In fact, we show that radical
improvements in the speed of search will lead to complete segregation.
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While our model assumes a simple and commonly used learning technology, the driving force
behind our results is that learning across backgrounds is more noisy. Thus, we expect that our
qualitative results will extend to other commonly used learning technologies that exhibit such a
difference in the effectiveness of learning across backgrounds (e.g., a Brownian motion in which
learning across groups has a higher variance).

Throughout the paper, we use the marriage market and dating terminology and focus on
segregation in marriage. However, pre-match learning is also prominent in other markets where
agents trade bilaterally and engage in time-consuming search. Outside the marriage market
context, learning may take different forms. For example, in the context of the labor market it
can take the form of job interviews or probationary periods during the hiring process. In markets
where developers and founders match to develop joint ventures, learning may take the form of
a due diligence process. Our framework may help shed new light on central aspects of these
additional contexts, such as how hiring processes impact the division of surplus in the labor
market, and how pre-match investment choices are resolved in markets for entrepreneurship.

References
Adachi, Hiroyuki. 2003. “A search model of two-sided matching under nontransferable util-
ity.” Journal of Economic Theory, 113(2): 182–198.

Aigner, Dennis J., and Glen G. Cain. 1977. “Statistical theories of discrimination in labor
markets.” ILR Review, 30(2): 175–187.

Albrecht, James, Guido Menzio, and Susan B. Vroman. 2021. “Vertical differentiation
in frictional product markets.” NBER Working Paper 29618.

Anderson, Axel, and Lones Smith. 2010. “Dynamic matching and evolving reputations.”
Review of Economic Studies, 77(1): 3–29.

Antler, Yair, and Benjamin Bachi. 2022. “Searching forever after.” American Economic
Journal: Microeconomics, 14(3): 558–590.

Antler, Yair, Daniel Bird, and Daniel Fershtman. 2022. “Learning in the marriage mar-
ket: the economics of dating.” CEPR working paper 17065.

Antler, Yair, Daniel Bird, and Santiago Oliveros. 2021. “Sequential learning.” American
Economic Journal: Microeconomics, Forthcoming.

Arrow, Kenneth J. 1972. “Models of job discrimination.” Racial Discrimination in Economic
Life, 83–102.

Arrow, Kenneth J. 1973. “The theory of discrimination.” In Discrimination in labor markets.
, ed. O. Ashenfelter and A. Rees. Princeton University Press.

22



Atakan, Alp E. 2006. “Assortative matching with explicit search costs.” Econometrica,
74(3): 667–680.

Bardhi, Arjada, Yingni Guo, and Bruno Strulovici. 2020. “Early-career discrimination:
Spiraling or self-correcting?” Working Paper.

Becker, Gary S. 1973. “A theory of marriage: Part I.” Journal of Political Economy,
81(4): 813–846.

Becker, Gary S. 2010. The Economics of Discrimination. University of Chicago Press.

Bloch, Francis, and Harl Ryder. 2000. “Two-sided search, marriages, and matchmakers.”
International Economic Review, 41(1): 93–116.

Bohren, J. Aislinn, Alex Imas, and Michael Rosenberg. 2019. “The dynamics of dis-
crimination: Theory and evidence.” American Economic Review, 109(10): 3395–3436.

Bonneton, Nicolas, and Christopher Sandmann. 2021. “Probabilistic assortative match-
ing under Nash bargaining.” Working paper.

Bonneton, Nicolas, and Christopher Sandmann. 2022a. “Existence of a non-stationary
equilibrium in search-and-matching models: TU and NTU.” Working paper.

Bonneton, Nicolas, and Christopher Sandmann. 2022b. “Non-stationary search and as-
sortative matching.” Working paper.

Borjas, George J., and Matthew S. Goldberg. 1978. “Biased screening and discrimination
in the labor market.” American Economic Review, 68(5): 918–922.

Burdett, Ken, and Melvyn G. Coles. 1997. “Marriage and class.” Quarterly Journal of
Economics, 112(1): 141–168.

Chade, Hector. 2001. “Two-sided search and perfect segregation with fixed search costs.”
Mathematical Social Sciences, 42(1): 31–51.

Chade, Hector. 2006. “Matching with noise and the acceptance curse.” Journal of Economic
Theory, 129(1): 81–113.

Chade, Hector, Jan Eeckhout, and Lones Smith. 2017. “Sorting through search and
matching models in economics.” Journal of Economic Literature, 55(2): 493–544.

Chambers, Christopher P., and Federico Echenique. 2021. “A characterisation of ‘Phelp-
sian’ statistical discrimination.” Economic Journal, 131(637): 2018–2032.

Coate, Stephen, and Glenn C. Loury. 1993. “Will affirmative-action policies eliminate
negative stereotypes?” American Economic Review, 83(5), 1220–1240.

Coles, Melvyn G., and Marco Francesconi. 2019. “Equilibrium search with multiple at-
tributes and the impact of equal opportunities for women.” Journal of Political Economy,
127(1): 138–162.

23



Cornell, Bradford, and Ivo Welch. 1996. “Culture, information, and screening discrimina-
tion.” Journal of Political Economy, 104(3): 542–571.

Eeckhout, Jan. 1999. “Bilateral search and vertical heterogeneity.” International Economic
Review, 40(4): 869–887.

Eeckhout, Jan. 2006. “Minorities and endogenous segregation.” Review of Economic Studies,
73(1): 31–53.

Fang, Hanming, and Andrea Moro. 2011. “Theories of statistical discrimination and af-
firmative action: A survey.” In Handbook of Social Economics. Vol. 1, , ed. J. Benhabib, A.
Bisin and M. O. Jackson, 133–200. Elsevier.

Fershtman, Daniel, and Alessandro Pavan. 2021. “Soft affirmative action and minority
recruitment.” American Economic Review: Insights, 3(1): 1–18.

Fryer, Roland G., Jr. 2007. “Guess who’s been coming to dinner? Trends in interracial
marriage over the 20th century.” Journal of Economic Perspectives, 21(2): 71–90.

Gale, D., and L. S. Shapley. 1962. “College admissions and the stability of marriage.”
American Mathematical Monthly, 69(1): 9–15.

Gu, Jiadong, and Peter Norman. 2020. “Statistical discrimination and efficiency.” Working
Paper.

Jovanovic, Boyan. 1984. “Matching, turnover, and unemployment.” Journal of Political Econ-
omy, 92(1): 108–122.

Keller, Godfrey, Sven Rady, and Martin Cripps. 2005. “Strategic experimentation with
exponential bandits.” Econometrica, 73(1): 39–68.

Lang, Kevin. 1986. “A language theory of discrimination.” Quarterly Journal of Economics,
101(2): 363–382.

Lauermann, Stephan, and Asher Wolinsky. 2016. “Search with adverse selection.” Econo-
metrica, 84(1): 243–315.

Lauermann, Stephan, and Georg Nöldeke. 2014. “Stable marriages and search frictions.”
Journal of Economic Theory, 151: 163–195.

Lauermann, Stephan, Georg Nöldeke, and Thomas Tröger. 2020. “The balance condi-
tion in search-and-matching models.” Econometrica, 88(2): 595–618.

Lauermann, Stephan, Wolfram Merzyn, and Gábor Virág. 2018. “Learning and price
discovery in a search market.” Review of Economic Studies, 85(2): 1159–1192.

Lewis, Kevin. 2013. “The limits of racial prejudice.” Proceedings of the National Academy of
Sciences, 110(47): 18814–18819.

Livingston, Gretchen, and Anna Brown. 2017. “Intermarriage in the U.S. 50 years after
Loving v. Virginia. Pew Research Center.” Pew Research Center.

24



Lundberg, Shelly J., and Richard Startz. 1983. “Private discrimination and social inter-
vention in competitive labor market.” American Economic Review, 73(3): 340–347.

Mailath, George J., Larry Samuelson, and Avner Shaked. 2000. “Endogenous inequality
in integrated labor markets with two-sided search.” American Economic Review, 90(1): 46–72.

Martellini, Paolo, and Guido Menzio. 2021. “Jacks of all trades and masters of one: Declin-
ing search frictions and unequal growth.” American Economic Review: Insights, 3(3): 339–
352.

Mauring, Eeva. 2017. “Learning from trades.” Economic Journal, 127(601): 827–872.

McCarthy, Justin. 2021. “U.S. approval of interracial marriage at new high of 94%.” Gallup.

McNamara, John M., and E. J. Collins. 1990. “The job search problem as an em-
ployer–candidate game.” Journal of Applied Probability, 27(4): 815–827.

Menzio, Guido. 2021. “Optimal product design: Implications for competition and growth
under declining search frictions.” NBER Working Paper 28638.

Morgan, Peter. 1996. “Two-sided search and matching.” Working Paper.

Moro, Andrea, and Peter Norman. 2004. “A general equilibrium model of statistical dis-
crimination.” Journal of Economic Theory, 114(1): 1–30.

Moscarini, Giuseppe. 2005. “Job matching and the wage distribution.” Econometrica,
73(2): 481–516.

Norman, Peter. 2003. “Statistical discrimination and efficiency.” Review of Economic Studies,
70(3): 615–627.

Pew Research Center. 2020. “The virtues and downsides of online dating.”
Pew Research Center. https://www.pewresearch.org/internet/2020/02/06/the-virtues-and-
downsides-of-online-dating.

Phelps, Edmund S. 1972. “The statistical theory of racism and sexism.” American Economic
Review, 62(4): 659–661.

Rosenfeld, Michael J., Reuben J. Thomas, and Sonia Hausen. 2019. “Disintermediating
your friends: How online dating in the United States displaces other ways of meeting.”
Proceedings of the National Academy of Sciences, 116(36): 17753–17758.

Sales, Nancy Jo. 2020. “Tinder and the dawn of the dating apocalypse.” Vanity Fair.
https://www.vanityfair.com/culture/2015/08/tinder-hook-up-culture-end-of-dating.

Shimer, Robert, and Lones Smith. 2000. “Assortative matching and search.” Econometrica,
68(2): 343–369.

Smith, Lones. 1992. “Cross-sectional dynamics in a two-sided matching model.” Working
Paper.

25



Smith, Lones. 2006. “The marriage model with search frictions.” Journal of Political Economy,
114(6): 1124–1144.

Stokey, Nancy L., and Robert E. Lucas. 1989. Recursive Methods in Economic Dynamics.
Harvard University Press.

A Appendix

Proof of Proposition 1. Agent x’s capital gain from meeting a potential partner y and then
dating her/him for (at most) T units of time is

q0(xω, yω)

∫ T

0

λxye
−λxyt

(
e−rt

1− rWs(x)

r + δ
− 1− e−rt

r
(c+ rWs(x))

)
dt

−
(
1− q0(xω, yω)(1− e−λxyT )

) 1− e−rT

r
(c+ rWs(x)). (A.1)

The first term in this expression is agent x’s expected gain in case a signal arrives while dating
agent y, and the second term represents the cost agent x incurs when a signal does not arrive
and the couple eventually separate without marrying. Antler, Bird and Oliveros (2021) show
formally that the value of learning in such problems is concave. Hence, agent x’s preferred
dating time is either zero, or is given by equating the derivative of (A.1) with respect to T with
zero. This derivative is given by (3), and equating it with zero yields (4).19

Proof of Lemma 1. Integrating q̇t = −λxyqt(1− qt) implies that

qt(x, y)

1− qt(x, y)
= e−λxyt

q0(xω, yω)

1− q0(xω, yω)
. (A.2)

Hence, if a dating couple 〈x, y〉 break up when they believe that they are compatible with
probability q, the maximal length of time for which they will date, T (x, y, q), is given implicitly
by

e−λxyT (x,y,q) q0(xω, yω)

1− q0(xω, yω)
=

q

1− q
.

The probability that they will eventually marry is therefore

α(x, y, q) =

q0(xω, yω)(1− e−λxyT (x,y,q)) = q0(xω ,yω)−q
1−q , if q < q0(xω, yω)

0 , otherwise
. (A.3)

19It is straightforward to show that this preferred dating time is given by T ?x (y; q
?(x)) =

max

{
0, 1

λxy
log

(
q0(xω,yω)(

λxy
λ −q?(x))

(1−q0(xω,yω))q?(x)

)}
.
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This establishes that the conversion rate is given by (6).

Proof of Proposition 2. From Lemma 1 and Equation (7) it follows that in the intermediate
region in which ρ(ω, ω′) is not constant it is given by

ρ(ω, ω′) =
(β −Q?((ω,A), (ω′, A))(q0(ω, ω′)−Q?((ω,A), (ω′, A))

(1−Q?((ω,A), (ω′, A)))(βq0(ω, ω′)−Q?((ω,A), (ω′, A)))
. (A.4)

A Pareto improvement will increase Q? ((ω,A), (ω′, A)) (see Equation (4)). Differentiating
ρ(ω, ω′) with respect to Q?((ω,A), (ω′, A) yields

(1− β)(1− q0(ω, ω′))

(1−Q?((ω,A), (ω′, A))2(Q?((ω,A), (ω′, A)− βq0(ω, ω′))2

(
βq0(ω, ω′)− (Q?((ω,A), (ω′, A))2

)
.

The ratio in this derivative is clearly positive. The second term of this derivative is also
positive as Q?((ω,A), (ω′, A)) < 1, and the segregation ratio is defined only for couples for
whom βq0(ω, ω′) > Q?((ω,A), (ω′, A).

Proof of Proposition 3. We begin by deriving a connection between the measure of singles
and the conversion rate. Fix α(·, ·) and consider a couple 〈x, y〉 for which α(x, y) > 0. From
Equation (A.3) it follows that they date for at most

T ?α(x, y) = − 1

λxy
log
(

1− α(x, y)

q0(xω, yω)

)
units of time. Hence, the measure of couples of type 〈x, y〉 who are dating (under the chosen
α) is

dα(x, y) = µuα(x)uα(y)

∫ T ?α(x,y)

0

(1− q0(xω, yω)(1− e−λxyt))dt.

Integrating over t yields

dα(x, y) = µuα(x)uα(y)
α(x, y)− (1− q0(xω, yω)) log(1− α(x,y)

q0(xω ,yω)
)

λxy
. (A.5)

Integrating (A.5) yields

dα(x) =

∫
X

µuα(x)d(x, y)uα(y)dy

= uα(x)

∫
X

µ

λxy

(
α(x, y) + (1− q0(xω, yω)) log

(
q0(xω, yω)

q0(xω, yω)− α(x, y)

))
uα(y)dy.
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Rearranging the balanced flow condition (1) yields

u(x)

(
1 +

µ

δ
u(x)

∫
X

α(x, y)u(y)dy

)
= g(x)− d(x).

Plugging in the expression for the measure of dating agents derived above and rearranging
yields

u(x) =
g(x)

1 + µ
∫
X

(
λxy+δ

λxyδ
α(x, y) + 1−q0(xω ,yω)

λxy
log
(

q0(xω ,yω)
q0(xω ,yω)−α(x,y)

))
u(y)dy

. (A.6)

Next, we derive the limit result. Assume by way of contradiction that lim infµ→∞ u(x) = 0

for some x ∈ X. From (A.6), it follows that there exists Y ⊂ X with strictly positive measure
such that for every y ∈ Y , (i) α(x, y) > 0, and (ii) lim infµ→∞ µu(y) = ∞. By construction,
every agent of type y ∈ Y is willing to date agent x for a strictly positive amount of time.
Since agent x can start dating any y ∈ Y after searching for an arbitrarily small amount of
time, it follows that, in the limit, for almost all y ∈ Y it must be the case that α(x, y) = 0.
Hence, any Y ⊂ X that satisfies properties (i) and (ii) must be of measure zero, contradicting
the assumption that Y has a positive measure. Therefore, limµ→∞ µu(x) =∞ for all x ∈ X.

Since each agent must wait an arbitrarily small amount of time before meeting a potential
partner of every possible type, each agent will date only the partner for whom the marginal
value of learning is highest among those partners who are willing to date her/him. Hence,
limµ→∞ q

?(x) = q0(xω, xω).

Proof of Corollary 3. The main part of this result was established in the proof of Proposition
3. Parts i) and ii) then follow immediately from the calculations in Lemma 1. Part iii) follows
immediately from the fact that dating requires mutual consent.

Proof of Lemma 2. We start by establishing the strict monotonicity of Ws(ω, θ). Assume
by way of contradiction that Ws(·, ·) is not strictly increasing in ω. Then there exist agents x′

and x′′ for whom x′ω < x′′ω and Ws(x
′) ≥ Ws(x

′′). Under this assumption, for every y ∈ X it
holds that Vd(x′′; y) > Vd(x

′; y); that is, the capital gain of dating agent y is greater for agent
x′′ than for agent x′. This follows from three observations: (i) for every y ∈ X, the couple
〈x′′, y〉 are more likely to be compatible than the couple 〈x′, y〉, (ii) every y ∈ X is willing to
date x′′ for at least as much time as s/he is willing to date x′, and (iii) the opportunity cost for
dating is lower for agent x′′ than for agent x′. However, by (2), Ws(x) is a convex combination
of Vd(x; ·), a contradiction. The strict monotonicity of q?(ω, θ) in ω follows immediately from
condition (4) and the fact that Ws(·) < 1

r
(the latter is the continuation value of being married

to a compatible partner indefinitely).
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We now establish the Lipschitz continuity of both functions. By (2), we have that

Ws(xω + ε, θ)−Ws(xω, θ) =
µ

r

∫
X

(Vd((xω + ε, θ); y)− Vd((xω, θ); y))u(y)dy. (A.7)

Fix xω ∈ [0, 1], y ∈ X and ε > 0, such that xω + ε ≤ 1. We begin by showing that there
exists K > 0 independent of xω, y, and ε, such that Vd((xω + ε, θ); y)− Vd((xω, θ); y) < Kε.

The probability that any couple is compatible is at most q0(1, 1) < 1/(1 + z). Moreover,
in optimum, every pair of agents who start dating either marry or break up before their belief
about their compatibility reaches qmin, where qminλ1

r
= c. By the assumption that dating costs

are not prohibitive, qmin < 1/(1 + z). In combination with the fact that q̇t = −λxyqt(1− qt), it
follows that εK̃, where

K̃ =
1

minq∈[ cr
λ
, 1
1+z

]{βλq(1− q)}
,

is a uniform upper bound on the amount of time it takes a couple’s belief about their compat-
ibility to drift down by ε.

Denote by τ the amount of time a couple 〈(xω + ε, θ), y〉 must spend dating so that, in the
absence of a signal arriving, they believe that they are compatible with probability q0(xω, yω)

(i.e., τ is defined implicitly by qτ ((xω+ε, θ), y) = q0(xω, yω)). Note that τ < K̃qε. The marginal
gain from dating is bounded from above by λ/r for every agent. Since the marginal cost of
dating is nonnegative, it follows that the capital gain that agent (xω + ε, θ) derives from the
first τ units of time for which s/he dates y is bounded from above by K̃λqε/r.

For any t > 0, couple 〈(xω + ε, θ), y〉 receive a signal after having dated for t + τ units of
time with the same probability that couple 〈(xω, θ), y〉 receive a signal after having dated for t
units of time, conditional on neither couple receiving a signal earlier. Moreover, since Ws(ω, θ)

is increasing in ω, the marginal cost of dating is higher for agent (xω + ε, θ) than for agent
(xω, θ). Furthermore, the monotonicity of q?(ω, θ) in ω implies that the dating time of couple
〈(xω, θ), y〉 is greater than the amount of time for which the couple 〈(xω + ε, θ), y〉 continues to
date after they have already dated for τ units of time. It follows that the additional capital
gain that agent (xω + ε, θ) derives from dating y after they have already dated for τ units of
time is less than agent (xω, θ)’s capital gain from dating y. We have therefore shown that (i)
the capital gain agent (xω + ε, θ) derives from dating y for τ units of time is less than K̃λqε/r,
and (ii) the capital gain agent (x, θ) derives from dating agent y is greater than the additional
capital gain that agent (xω + ε, θ) derives from dating agent y after τ units of time passed
without a signal arriving. Hence, Vd((xω + ε, θ); y)− Vd((xω, θ); y) < K̃qλε/r.

Since
∫
X
u(y)dy ≤ 1, from (A.7) it follows that Ws(xω + ε, θ) − W (xω, θ) ≤ Kε, where

K = (µ/r)(λq/r)K̃. Since Ws(ω, θ) is increasing in ω, this implies that Ws(ω, θ) is Lipschitz
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continuous in ω with modulus K. The Lipschitz continuity of q?(ω, θ) in ω then follows im-
mediately from condition (4) and the observation that rWs ≤ r(µ/(r + µ))/r < 1. The first
inequality follows from the fact that rWs is bounded from above by r times the expected dis-
counted time at which the next partner is met, µ/(r+ µ), and the payoff from a marriage that
lasts forever, 1/r.

Proof of Proposition 4. From (A.4) it follows that

ρ(ω, ω) =
(β − q?(ω)(q0(ω, ω)− q?(ω)

(1− q?(ω))(βq0(ω, ω)− q?(ω))
,

where q?(ω) is the breakup threshold of an agent who has an attractiveness level of ω. Since
q?(ω, θ) is Lipschitz continuous in ω (Lemma 2) and q0(·, ·) is differentiable by assumption,
ρ(ω, ω) is differentiable almost everywhere and continuous. This derivative (where it exists) is

(1− β)
(1− q0(ω, ω))∂q

?(ω)
∂ω

(βq0(ω, ω)− q?(ω)2) + (1− q?(ω))q?(ω)(q?(ω)− β)∂q0(ω,ω))
∂ω

(1− q?(ω))2(βq0(ω, ω)− q?(ω))2

The sign of this derivative is the same as the sign of

Ψ = (1− q0(ω, ω))
(
βq0(ω, ω)− q?(ω)2

) ∂q?(ω)

∂ω︸ ︷︷ ︸
Ψ1

+ (1− q?(ω))q?(ω)(q?(ω)− β)
∂q0(ω, ω))

∂ω︸ ︷︷ ︸
Ψ2

.

To show that Ψ < 0 (i.e., the segregation ratio is decreasing in attractiveness), we replace
both Ψ1 and Ψ2 with their upper bounds, and derive conditions under which that upper bound
on Ψ is negative.

Bounding Ψ1: Since q?(ω) is increasing (Lemma 2) and ρ(·, ·) is defined only for ω such
that q0(ω, ω) > q?(ω)/β, it follows that Ψ1 is the product of three positive terms.

From (4) it follows that

∂q?(ω)

∂ω
=

(c+ 1)r(δ + r)

λ(rWs(ω)− 1)2

∂Ws(ω)

∂ω
.

The continuation value of any single agent is bounded from above by her/his expected value
from meeting compatible partners at rate µ while single, marrying them immediately, and
returning to the market once the marriage is hit by a dissolution shock. This upper bound is
given by W ≡ µ

(r+µ+δ)r
. Since Ws(·, ·) is Lipschitz continuous in ω with modulus K̃ µλq

r2
(Lemma

2), it follows that
∂q?(ω)

∂ω
≤ (c+ 1)qK̃µ(δ + µ+ r)2

r(δ + r)
.
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Hence,

Ψ1 ≤
(c+ 1)qK̃µ(δ + µ+ r)2

r(δ + r)

(
βq0(ω, ω)− (q?(ω))2

)
(1− q0(ω, ω)).

Note that this bound is decreasing in q?(ω), and so we can replace q?(ω) with its lower bound
of qmin = cr

λ
(see proof of Lemma 2) and get that

Ψ1 ≤
(c+ 1)qK̃µ(δ + µ+ r)2

r(δ + r)

(
βq0(ω, ω)− c2r2

λ2

)
(1− q0(ω, ω)).

This bound is concave in q0(·, ·), and so it has a unique maximum over all possible values of
q0(·, ·). Evaluating the bound at that maximizer gives

Ψ1 ≤
(c+ 1)K̃µ(δ + µ+ r)2 (c2r2 − βλ2)

2

4βλ4r(δ + r)
q.

Bounding Ψ2: The expression (1− q?(ω))q?(ω)(q?(ω)− β) as a function of q?(ω) is convex
in the region [0, β]. Moreover, it is strictly negative in the interior of this region. Since
q?(ω) ∈ [qmin,

1
1+z

β], this expression is bound from above by −M for some finite and strictly
positive M . Hence,

ψ2 ≤ −M
∂q0(ω, ω))

∂ω
.

Thus, the segregation ratio is decreasing in attractiveness (Ψ < 0) if

(c+ 1)qK̃µ(δ + µ+ r)2 (βλ2 − c2r2)
2

4βλ4r(δ + r)
< M

∂q0(ω, ω))

∂ω
.

Note that ∂q0(ω,ω)
∂ω

≥ 2q, and so the above condition holds if

(c+ 1)K̃µ(δ + µ+ r)2 (βλ2 − c2r2)
2

8βλ4Mr(δ + r)
< q/q.

Finally, since M and K̃ are independent of µ, the LHS of the above condition converges con-
tinuously to zero as µ decreases.

Proof of Proposition 5. We provide a proof for the case where xθ = yθ. The proof for the
other case is identical up to dividing q?(·) by β every time it appears below.

Fix x′′ω > x′ω and let x′′ = (x′′ω, xθ), x′ = (x′ω, xθ). First, consider potential partners y =

(yω, yθ) for whom yω ≥ x′′ω. Since q?(·) is increasing in attractiveness, in both the couple 〈x′′, y〉
and the couple 〈x′, y〉, agent y is the one that breaks up with her/his partner. Moreover, s/he
does so when the belief about the couple’s compatibility drops to q?(y). Thus, from (A.3) and
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the fact that q0(·, ·) is increasing, it follows that

α(x′′, y) = max{q0(x′′ω, yω)− q?(y)

1− q?(y)
, 0} > max{q0(x′ω, yω)− q?(y)

1− q?(y)
, 0} = α(x′, y),

for all such y for which either α(x′′, y) > 0 or α(x′, y) > 0. Hence, for any y ∈ Aα(x′, x′′) such
that yω ≥ x′′ω it holds that α(x′′, y) > α(x′, y)

Next, consider potential partners who have level of attractiveness yω < x′′ω. For such po-
tential partners, x′′ is the one who breaks up with y. Moreover, x′′ marries such partners with
positive probability if and only if q0(x′′ω, yω) > q?(x′′). Since q0(·, ·) is increasing, the levels of
attractiveness of the agents whom x′′ marries with positive probability are an interval. Thus, if
either (i) the sets of potential partners who have level of attractiveness yω ≤ x′′ω whom x′′ and x′

marry with positive probability do not intersect, or (ii) α(x′′, y) > α(x′, y) for all y ∈ Aα(x′, x′′)

such that yω ≤ x′′ω, then the proposition is established.
In the remainder of the proof we therefore assume that there exists yω < x′′ω such that

α(x′, (yω, yθ)) > α(x′′, (yω, yθ)) > 0. Since q?(ω, θ) is continuous in ω, it follows that the
probability that a couple marry is also continuous in the attractiveness of both agents. Since
α(x′, x′′) < α(x′′, x′′), the intermediate value theorem implies that there exists y?ω < x′′ω for
which α(x′, (y?ω, yθ)) = α(x′′, (y?ω, yθ)).

To conclude the proof, we show that α(x′, y) > α(x′′, y) for every potential partner y ∈
Aα(x′, x′′) of attractiveness yω < y?ω and background yθ. For such y, the couple 〈x′′, y〉 break up
when qt(x, y) = q?(x′′). Thus, by (A.3), if a couple 〈x′′, y〉 date, they marry with probability

α(x′′, y) =
q0(x′′ω, yω)− q?(x′′)

1− q?(x′′)
.

Hence, for any such y for which α(x′′, y) > 0, it holds that

dα(x′′, (yω, yθ))

dyω
=

dq0
dyω

(x′′ω, yω)

1− q?(x′′)
.

Similarly, the probability that a dating couple 〈x′, y〉 marry is

α(x′, (yω, yθ)) =
q0(x′ω, yω)− q?((max{x′ω, yω}, xθ))

1− q?(max{x′ω, yω}, xθ))
.

Since q?(ω, θ) is monotone in ω, it is differentiable in ω almost everywhere. Hence, for almost
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all y with yω < y?ω,

dα(x′, (yω, yθ))

dyω
=

dq0
dyω

(x′ω, yω)

1− q?(max{x′ω, yω}, xθ))
− 1− q0(x′ω, yω)

(1− q?(max{x′ω, yω}, xθ)))2

dq?(max{x′ω, yω}, xθ))
dyω

.

Since x′′ω > max{x′ω, yω}, q?(·) is increasing in attractiveness, and q0(·, ·) is supermodular,
it follows that

dα(x′′, (yω, yθ))

dyω
>
dα(x′, (yω, yθ))

dyω

for all yω < y?ω at which q?(·) is differentiable. By Lemma 2, q?(·) is Lipschitz continuous in ω
and hence absolutely continuous, which in turn implies that α(·, ·) is also absolutely continuous.
Since, by definition, α(y?, x′′) = α(y?, x′), the proposition follows from the fundamental theorem
of calculus.

Proof of Proposition 6. To establish the existence of a steady-state equilibrium, we show
that (1) value functions have a continuous impact on the conversion rate of any two agents,
(2) conversion rates have a continuous impact on the distribution of agents in the singles pool,
and (3) the value functions are given by a fixed point of a continuous operator. We then invoke
Schauder’s fixed point theorem to establish that a fixed point exists.

Recall that W ≡ µ
(r+µ+δ)r

is an upper bound on the continuation value of single agents (see
proof of Proposition 4). Define the family F of functions from X to [0,W ] that are weakly
increasing and Lipschitz continuous (in xω) with modulus K? > 0. F is a subset of C[0,W ]

that is nonempty, bounded, closed, and convex. We endow this family of functions with the
sup norm ||Ws|| = supx∈X |Ws(x)|.

As explained in the proof of Lemma 2, every agent either marries or breaks up with her/his
partner by the time the belief about the couple’s compatibility reaches qmin = rc/λ. Therefore,
for every x, y ∈ X, it holds that α(x, y) ∈ [0, q0(xω ,yω)−qmin

1−qmin ].
We denote by qWs(x) the minimum between (i) agent x’s breakup threshold when her/his

continuation value while single is Ws(x) (as given by the optimality condition (4)), and (ii) the
maximal probability that a couple is compatible. That is,20

qWs(x) ≡ min{ rWs(x) + c

1− rWs(x)

r + δ

λ
, q0(1, 1)}.

We denote by αWs : X2 → [0, q0(xω ,yω)−qmin
1−qmin ] a mapping that specifies the conversion rate for

any pair of agents, when they behave according to the breakup thresholds given by qWs . We
20In equilibrium, all agents must date someone, and so for any Ws(x) that is part of an equilibrium, qWs(x)

is equal to the breakup threshold given by (4). The need to define qWs in this way is due to the fact that W is
a loose bound on the value function.
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endow this family with the sup norm ||αWs|| = sup(x,y)∈X2|αWs(x, y)|.

Lemma A.1 αWs(·, ·) is continuous in Ws.

Proof of Lemma A.1. From (A.3) it follows that

αWs(x, y) =


q0(xω ,yω)− λ

λxy
max{qWs (x),qWs (y)}

1− λ
λxy

max{qWs (x),qWs (y)} , if λ
λxy

max{qWs(x), qWs(y)} ≤ q0(xω, yω)

0 , otherwise
.

Since Ws ∈ [0,W ], it holds that rWs is bounded away from 1. Thus, from (4) it follows that
dqWs (x)
dWs(x)

is uniformly bounded from above. The derivative of the conversion rate of the couple
〈x, y〉 with respect to max{qWs(x), qWs(y)} is bounded by q0(xω ,yω)−1

(1−max{qWs (x),qWs (y)})2 . Since qWs is
bounded from above by q0(1, 1) < 1

1+z
, the absolute value of this derivative is also uniformly

bounded. It follows that αWs(·, ·) is continuous in Ws in the sup norm.

Let uα and dα denote, respectively, the steady-state measure of agents in the singles pool
and the measure of agents who are dating, as functions of the conversion rate α(·, ·). We endow
both measures with the sup norm. The next lemma establishes that for any viable α(·, ·)
there is a unique uα for which the balanced-flow condition (1) holds, and that this mapping is
continuous. The proof of this lemma is analogous to the proof of step 1 of Lemma 4 in Shimer
and Smith (2000).

Lemma A.2 uα and dα are well defined and continuous.

Proof of Lemma A.2. First, we show that for any viable α(·, ·) there is a unique uα for
which the balanced-flow condition (1) holds.

In the proof of Proposition 3 we derived Equation (A.5) that connects the measure of dating
couples and the conversion rate. Plugging this equation into the balanced-flow condition (1)
and rearranging yields

uα(x) =
g(x)

1 +
∫
X

µ
λxy

{
λxy
δ
α(x, y)− (1− q0(xω, yω)) log

(
q0(xω ,yω)−α(x,y)

q0(xω ,yω)

)}
uα(y)dy

. (A.8)

Define Ω to be the space of measurable functions from X to [log(l)− log(1 + µ
βλ
l), log(l)], where

l = g and

l = g ·max{1,
∫
X

{
λ

δ

q0(xω, yω)− qmin
1− qmin

− (1− q0(xω, yω)) log

(
qmin(1− q0(xω, yω))

q0(xω, yω)(1− qmin)

)}
dy}.
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For all x ∈ X and ν ∈ Ω, define

Ψαν(x) = log(
g(x)

1 +
∫
X

µ
λxy

{
λxy
δ
α(x, y)− (1− q0(xω, yω)) log

(
q0(xω ,yω)−α(x,y)

q0(xω ,yω)

)}
eν(y)dy

),

where u ≡ eν . Note that uα solves the balanced-flow condition (1) if and only if ν = Ψν. Next,
we show that Ψ is a contraction mapping, and so it has a unique fixed point.

It is straightforward to verify that Ψα is a map from Ω to Ω. For any x ∈ X and ν1, ν2 ∈ Ω,
it holds that

Ψαν
2(x)−Ψαν

2(x)

= log

1 +
∫
X

µ
λxy

{
λxy
δ
α(x, y)− (1− q0(xω, yω)) log

(
q0(xω ,yω)−α(x,y)

q0(xω ,yω)

)}
eν

1(y)dy

1 +
∫
X

µ
λxy

{
λxy
δ
α(x, y)− (1− q0(xω, yω)) log

(
q0(xω ,yω)−α(x,y)

q0(xω ,yω)

)}
eν2(y)dy

 (A.9)

≤ log

1 +
∫
X

µ
λxy
e||ν

1−ν2||
{
λxy
δ
α(x, y)− (1− q0(xω, yω)) log

(
q0(xω ,yω)−α(x,y)

q0(xω ,yω)

)}
eν

2(y)dy

1 +
∫
X

µ
λxy

{
λxy
δ
α(x, y)− (1− q0(xω, yω)) log

(
q0(xω ,yω)−α(x,y)

q0(xω ,yω)

)}
eν2(y)dy

 .
The first inequality uses the fact that the integrand is positive, and that eν1(y) ≤ eν

2(y)e||ν
1−ν2||

for all y ∈ X under the sup norm. The term in square brackets is increasing in α(·, ·) and
uα ≤ g. Since α ≤ q0(xω ,yω)−qmin

1−qmin
, it follows that the integral is bounded from above by l. Since

e||ν
2−ν1|| > 1, the fraction in (A.10) is increasing in the integral, and so

Ψαν
2(x)−Ψαν

1(x) ≤ log

{
1 + µ

βλ
e||ν

1−ν2||l

1 + µ
λ
l

}
.

Finally, observe that

log{1 + e||ν
1−ν2|| µ

βλ
l} − log{1 + µ

λ
l}

||ν1 − ν2||
≤

log{l + µ
βλ
l
2
(1 + µ

βλ
l)} − log{l(1 + µ

βλ
l)}

log{l} − log{l}+ log{1 + µ
βλ
l}

≡ χ ∈ (0, 1).

It follows that |Ψαν
2(x) − Ψαν

1(x)| ≤ χ||ν1 − ν2||. Thus, Ψα is a contraction mapping, and
there is a unique steady-state mass of singles that is consistent with any viable α(·, ·). This, in
turn, implies that dα(x, y) is well defined for any x, y ∈ X (Equation (A.8)), and hence dα is
well defined.
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We now establish the continuity of uα. Rearranging (A.8) yields∫
X

uα(y)

{
α(x, y)(

µ

δ
+

µ

λxy
)− µ

λxy
(1− q0(xω, yω)) log

(
q0(xω, yω)− α(x, y)

q0(xω, yω)

)}
dy =

g(x)

uα(x)
−1.

(A.10)
Consider how changing the value of α(·, ·) by at most ε (for any element in its domain)

impacts the term in curly brackets in (A.10). The change in the first term inside the curly
brackets is at most

ε(
µ

δ
+

µ

βλ
).

Since α(x, y) ≤ q0(xω ,yω)−qmin
1−qmin , it follows that q0(xω, yω) − α(x, y) ≥ qmin

1−q0(xω ,yω)
1−qmin , and so the

absolute value of the change in the second term inside the curly brackets is at most

µ(1− qmin)

βλqmin
ε.

Moreover, note that since uα(x) ∈ [0, g] for any α, the absolute value of the change in uα(x)

due to any change in α is at most g. It follows that such a change in α can change the absolute
value of the LHS of (A.10) by at most

g

(
µ

δ
+

µ

βλ
+
µ(1− qmin)

βλqmin

)
ε.

Therefore, uα is continuous in α in the sup norm.

Next, we construct the operator whose fixed points represent the set of equilibria in our
model. By (2), an equilibrium value function must satisfy

rWs(x) = µ

∫
X

(WWs
d (x; y)−Ws(x))uWs(y)dy,

where WWs
d (x; y) is agent x’s continuation utility upon meeting agent y given Ws (note that

WWS
d (x; y) is not the capital gain from dating), and uWs are the densities in the singles pool

that are consistent with value functions Ws. Adding the expectation of Ws(x) to both sides
and rearranging, we define the operator Γ by

ΓWs(x) =
µ

r + µuWs

∫
X

WWs
d (x; y)uWs(y)dy, (A.11)

where uWs =
∫
X
uWs(y)dy.

Lemma A.3 If K? is sufficiently large, then Ws ∈ F implies that Γ(Ws) ∈ F .
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Poof of Lemma A.3. First, we show that ΓWs(x) lies in [0,W ]. Since WWs
d is nonnegative,

it is immediate that ΓWs(x) ≥ 0. An upper bound on agent x’s value upon meeting agent y
is given by her/his value from marrying a compatible partner immediately, separating when
the dissolution shock occurs, and then being matched again to agent y according to a Poisson
process with arrival rate µ. Thus,

WWs
d (x; y) ≤ 1

r + δ
+

δ

r + δ

µ

r + µ
WWs
d (x; y),

which implies that
WWs
d (x; y) ≤ µ+ r

r(δ + µ+ r)
.

It follows that
ΓWs(x) ≤ µuWs

r + µuWs

µ+ r

r(δ + µ+ r)
≤ W.

Next, note that ΓWs(·, θ) is weakly increasing. This follows from Ws(·, θ) being increasing,
as it is an element of F , which implies that an agent who has level of attractiveness xω can
perfectly duplicate the dating time of an agent who has level of attractiveness x′ω < xω with
any potential partner.

Finally, we show that for sufficiently large K?, ΓWs(·, θ) is Lipschitz continuous with modu-
lus K?. Since ΓWs(·, θ) is increasing, it suffices to show that ΓWs(xω+ε, θ)−ΓWs(xω, θ) ≤ εK?.
Note that

WWs
d (x; y) = V Ws

d (x; y) +Ws(x),

where V Ws
d (x; y) is agent x’s capital gain from meeting agent y, given value functionsWs. Using

this representation, it follows that

ΓWs(xω + ε, θ)− ΓWs(x, θ) =
µ

r + µuWs

∫
X

(V Ws
d ((xω + ε, θ); y)− V Ws

d ((xω, θ); y))uWs(y)dy

+
µ

r + µuWs

∫
X

(Ws(xω + ε, θ)−Ws(xω, θ))u
Ws(y)dy.

Since Ws(·, θ) is increasing and continuous (as it is an element of F), the same arguments
used in the proof of Lemma 2 show that

∫
X
V Ws
d (x; y)uWs(y)dy is Lipschitz continuous in xω

with modulus r
µ
K. Thus,

ΓWs(xω + ε, θ)− ΓWs(x, θ) ≤
µ

r + µuWs

∫
X

(
r

µ
Kε+K?ε)uWs(y)dy ≤ (

r

r + µ
K +

µ

r + µ
K?)ε.

Hence, if K? is sufficiently large, then ΓWs(·, θ) is Lipschitz continuous with modulus K? for
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θ ∈ {A,B}, and thus Γ : F → F .

Lemma A.4 The operator Γ is continuous.

Proof of Lemma A.4. If W 1
s and W 2

s are close under the sup norm, then the dating times
of any couple are close under these two value functions. Since small changes in Ws also induce
small changes in uWs (by Lemmata A.1 and A.2), it follows that small changes in Ws have a
small impact on ΓWs.

We have therefore shown that F is closed, bounded, convex, and nonempty. Moreover, since
F is a family of Lipschitz continuous functions with the same modulus, it is equicontinuous.
We have also shown that Γ is a continuous mapping from F to F . Thus Schauder’s fixed point
theorem (Theorem 17.4 in Stokey and Lucas, 1989) establishes that Γ has a fixed point, which
proves Theorem 6.
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