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Abstract

A principal funds a multistage project and retains the right to cut the funding if it
stagnates at some point. An agent wants to convince the principal to fund the project
as long as possible, and can design the flow of information about the progress of the
project in order to persuade the principal. If the project is sufficiently promising ex
ante, then the agent commits to providing only the good news that the project is
accomplished. If the project is not promising enough ex ante, the agent persuades the
principal to start the funding by committing to provide not only good news but also
the bad news that a project milestone has not been reached by an interim deadline.
We demonstrate that the outlined structure of optimal information disclosure holds
irrespective of the agent’s profit share, benefit from the flow of funding, and the com-
mon discount rate.
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1 Introduction
The development of any innovation requires investment of both time and capital, while
the outcome of this investment is inherently stochastic. Usually, the investor, being the
principal, retains the option to stop funding the innovative project if at some point it proves
unsuccessful. It is widely documented that the agent running the project tends to prefer
the principal to postpone the stopping of the funding to enjoy either the extra funds or an
additional chance to turn her research idea into a success story.1 In such an agent-principal
relationship, the agent’s technological expertise and the quality of her innovative idea often
allow her to manipulate the principal by designing how and when the outcomes of the
research and development process are announced.

Recently, venture capital firms have started to pour billions into startups focused on the
development of quantum computers, which are known for their technological complexity and
difficulty of construction. The economic viability of quantum computing is questioned by a
number of experts; however, the startups promise the investors a completed product in the
foreseeable future.2 For instance, a quantum startup PsiQuantum announced to potential
investors that it hopes to develop a commercially-viable quantum computer within five years
and managed to raise more than $200 million in 2019.3

This paper studies the implications of the agent’s control of information during the
progress of a research and development project when the agent and the principal disagree
about the timing of when to abandon the research idea. We ask: What is the degree of
transparency to which an agent should commit before starting to work on an innovative
project? In particular, which terms for self-reporting on the progress of the project should
a startup propose while discussing the term sheet with a venture capitalist? As we show,
depending on the properties of the project, the startup would strategically choose both the
timing for the disclosure of updates on the progress of the project and the type of news it
discloses - either good or bad.

We study the investor’s dynamic information design problem. The startup controls the
information on the progress of the project and has the power to propose the terms for self-
reporting on it to the venture capitalist.4 The startup has an intertemporal commitment
power and commits to a dynamic information policy, which can be interpreted as designing
the terms of the contract specifying how the information on the progress of the project is
disclosed over time as the project unfolds. In return, the investor continuously provides
funds and chooses when to stop funding the project.

The project has two stages and evolves stochastically over time toward completion,
1Agency conflict in which the agent prefers the principal to postpone abandoning the project that the

agent is working on is studied in Admati and Pfleiderer (1994); Gompers (1995); Bergemann and Hege
(1998, 2005); Cornelli and Yosha (2003).

2”The Quantum Computing Bubble.” Financial Times, August 25, 2022.
3”Bristol Professor’s Secretive Quantum Computing Start-Up Raises £179m.” The Telegraph, November

16, 2019.
4We discuss the reasoning behind this assumption in Section 3.3.
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conditional on continuous investment in it. The completion of each of the stages of project
occurs according to a Poisson process. The completion of the first stage serves as a milestone,
such as the development of a prototype, while completion of the second stage achieves the
project. The investor gets a lump-sum project completion profit if and only if he stops
investing after the project is completed and before an exogenous project completion deadline,
and the startup prefers the principal to postpone stopping the funding.5

As the investor receives the reward only after a prolonged period of investment, he
initially invests without being able to see if the investment is worthwhile. Hence, it is
individually rational for the investor to start investing only if he is sufficiently optimistic
regarding the future of the project. An important feature of the setting that we consider is
that the information is symmetric at the outset: not only the investor, but also the startup
is unable to find out if the project will bring profit to the investor or not - this can be
inferred only as time goes on and some evidence is accumulated. The only tool that the
startup has for persuading the investor to start investing is the promise of future reports on
the progress of the project.

Clearly, the good news about the completion of the project is valuable to the investor
as it helps him to stop investing in a timely manner. Further, as evidence regarding the
project accumulates over time, failure to pass the milestone in a reasonable time makes
the project unlikely to be accomplished in time - and the investor prefers to stop investing
after observing such bad news. When designing the information policy, the startup chooses
optimally between the provision of these two types of evidence in order to postpone the
investor’s stopping decision for as long as possible.

We show that the startup’s choice of information policy depends on the ex ante attrac-
tiveness of the project for the investor. The attractiveness is captured by the flow cost-benefit
ratio of the project. Thus, a project is relatively more attractive ex ante to the investor when
its flow investment cost is lower, its project completion profit is higher, or the Poisson rate,
at which completion of one stage of the project occurs, is higher.

When the project is sufficiently attractive ex ante to the investor, promises to provide
information only on the completion of the project serve as a sufficiently strong incentive
device to motivate the investor to start the funding at the outset. Further, the future news
on the completion of the project does not harm the total expected surplus generated by
the interaction of the startup and investor, while the future news on the project being poor
decreases the surplus that the startup can potentially extract from the investor. Accordingly,
the startup commits to providing only the good news, but not the bad news on the project
in the future: it discloses the completion of the project and postpones the disclosure in order
to ensure the extraction of as much surplus as possible from the investor. In the context of
quantum computing, the startup optimally chooses and announces to the venture capitalist
the date by which it plans to have a fully developed quantum computer. When the date
comes, the startup reports completion if the quantum computer has been completed; if not,
the startup reports the completion as soon as it occurs.

5We discuss the reasons for the presence of the project completion deadline in Section 3.1.
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The situation changes when the project does not look promising to the investor ex ante.
In that case, if the startup commits to disclosing only the completion of the project, the
investor will not have the sufficient motivation to start investing in it. Thus, the startup
extends the information policy to encompass not only the good news but also the bad. As in
the case of the promising project, the startup discloses the project’s completion and does so
without any postponement, thereby fully exploiting its preferred incentive tool. In addition,
the startup sets a date at which the bad news is released if the milestone of the project has
not yet been reached - this date is the interim reporting deadline.

Setting the interim deadline, the startup chooses a deterministic date, which it optimally
postpones. As the startup prefers the investor to postpone stopping the funding, it prefers
the interim deadline to be at a later expected date. Further, the completion of the stages of
project according to a Poisson process makes both the startup and the investor risk-averse
with respect to the date of the interim deadline. Thus, the startup prefers to set the interim
deadline at a deterministic date and to postpone it as late in time as possible in order
to extract all the surplus from the investor. In the context of quantum computing, the
startup optimally chooses and announces a fixed date by which it plans to have a prototype
of the quantum computer. When the date comes, reporting having the prototype at hand
convinces the investor to continue the funding, and reporting not having the prototype leads
to termination of the project.

Finally, we demonstrate that the outlined structure of the optimal information disclosure
holds for a broad class of preferences of the startup and the investor. We allow for profit-
sharing between the startup and the investor, varying degrees of the startup’s benefit from
the flow of funding, and exponential discounting, and show that the startup prefers not to
set any interim deadlines whenever the project is sufficiently promising to the investor. The
future disclosure of the completion of the project promises investor profit in exchange for
a prolonged investment, while the disclosure of the stagnation of the project at the interim
deadline promises investor only saved costs, as further investment stops. Thus, when the
project is attractive, the startup can make the funding and the beneficial experimentation
relatively longer by setting no interim deadlines.

2 Related literature
Our paper is related to the literature on dynamic information design. The closest paper in
this strand of literature is by Ely and Szydlowski (2020). Similarly to our paper, they study
the optimal persuasion of a receiver facing a lump-sum payoff to incur costly effort for a
longer time. In our model, as in theirs, the sender is concerned to satisfy the beginning-
of-the-game individual rationality constraint of the receiver when choosing the information
policy. Further, the “leading on” information policy in Ely and Szydlowski (2020) has a
similar flavor to the “postponed disclosure of completion” information policy in our paper:
promises of news on completion of the project serve as an incentive device sufficient to
satisfy the receiver’s individual rationality constraint.
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However, there are several substantial differences between Ely and Szydlowski (2020)
and our paper. While in their model the state of the world is static and drawn at t = 0, in
our model it evolves endogenously over time, given the receiver’s investment. As a result,
the initial disclosure used in the “moving goalposts” policy in Ely and Szydlowski (2020)
cannot provide additional incentives for the receiver in our model. The sender in our model
uses another incentive device to incentivize the receiver to opt in at the initial period: she
commits to an interim deadline at which she discloses that the first stage of the project is
not completed.

Another closely related paper is by Orlov et al. (2020). The main similarity to our paper
lies in the sender’s incentive to postpone the receiver’s irreversible stopping decision. The
sender in their paper prefers to backload the information provision, which is in line with
the properties of the optimal information policy in our paper. However, there are a number
of substantial differences between our papers. In Orlov et al. (2020), the sender does not
have the intertemporal commitment power; further, the receiver potentially obtains a non-
negative payoff at each moment of time, and thus the sender does not need to persuade the
receiver to opt in at t = 0.

Ely (2017); Renault et al. (2017); Ball (2019) also analyze dynamic information design
models. However, their papers focus on persuading a receiver who chooses an action and
receives a payoff at each moment of time, whereas in our paper the receiver takes an irre-
versible action and receives a lump-sum project completion payoff. Henry and Ottaviani
(2019) consider a dynamic Bayesian persuasion model in which, similarly to our model, the
receiver needs to take an irreversible decision. However, the incentives of the sender and
receiver differ from our model: the receiver wants to match the static state of the world and
the sender is concerned with both the receiver’s action choice and with the timing of that
choice. Basak and Zhou (2020) study dynamic information design in a regime change game.
The optimal information policy in their model resembles the interim deadline policy in our
model: at a fixed date, the principal sends the recommendation to attack if the regime is
substantially weak by that time.

Our paper is also related to the literature on the dynamic provision of incentives for
experimentation (Bergemann and Hege, 1998, 2005; Curello and Sinander, 2020; Madsen,
2022). The closest papers in this strand of literature are by Green and Taylor (2016) and
Wolf (2017). Similarly to our model, both papers consider design of a contract regarding
a two-stage project, in which the completion of stages arrives at a Poisson rate. In Green
and Taylor (2016), there is no project completion deadline and the quality of the project
is known to be good, while in Wolf (2017) the quality of the project is uncertain. In
contrast to our paper, both papers focus on a canonical moral-hazard problem and give
the power to design the terms of the contract to the investor (principal) rather than the
startup (agent). In particular, the contract in Green and Taylor (2016) specifies the terms
for the agent’s reporting on the completion of the first stage of the project. Similarly to
our model, the optimal reporting takes the form of a deterministic interim deadline: at a
principal-chosen date, the agent truthfully reports if she has already completed the first
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stage, which determines the further funding of the project.6

3 The model

3.1 The setup

We consider an environment with an agent (she, sender) and a principal (he, receiver).
Time is continuous and there is a publicly observable deadline T , t ∈ [0, T ].7 For each t, the
principal chooses sequentially to invest in the project (at = 1) or not (at = 0). The flow cost
of the investment is constant and given by c. The choice of at = 0 at some t is irreversible
and induces the end of the principal-agent relationship.8

The assumption that the project needs to be completed in finite time is natural in many
economic settings. The main interpretation for T is an expected change in market conditions
that renders the project unprofitable. In the context of a research and development project,
T could stand for the date at which the competitor’s innovative product is expected to
enter the market, or the date at which the competitor is expected to get a patent on the
competing innovation.

The state of the world at time t is captured by the number of stages of the project
completed by t, xt, and the project has two stages, xt ∈ {0, 1, 2}. The state process begins
at the state x0 = 0 and, conditional on the continuation of the investment by the principal,
it increases at a Poisson rate λ > 0. Information on the number of stages completed is
controlled by the agent. Thus, when making investment decisions, the principal relies on
the information provided by the agent.

The project brings the profit v if and only if the second stage of the project has been
completed by the time of stopping, and a payoff of 0, otherwise. We assume that all of the
profit goes to the principal. This assumption simplifies the exposition without affecting the
main results of the paper. We relax this assumption and consider the profit-sharing between
the agent and the principal in Section 6.

There is a conflict of interest between the agent and the principal as the agent benefits
from using the funds provided by the principal for running the project, possibly diverting
them for her benefit. Thus, the agent faces the flow payoff of c and wants the principal to
postpone his irreversible decision to stop as long as possible.

We assume that the agent has intertemporal commitment power and study the agent’s
6In a broad sense, our paper also relates to the small strand of theoretical literature on dynamic startup-

investor and startup-worker relations under information asymmetry (Kaya, 2020; Ekmekci et al., 2020).
However, while these papers focus on the signaling of the type of startup, we study the provision of infor-
mation by the startup on the progress of the project.

7The results for the setting without a deadline are easily obtained by considering T → ∞. They are
presented in Appendix C.

8The absence of the principal’s commitment to an investment policy and the irreversibility of the stopping
decision capture the venture capitalist’s option to abandon the project, e.g., in the case of its negative net
present value.
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dynamic information design problem. The agent chooses an information policy, which is
a rule that specifies a probability distribution on the exogenously given and sufficiently
rich set of messages M for each date and for each past history. We apply the revelation
principle and without loss of generality restrict attention to information policies, which
provide action recommendations to the principal at each date. Formally, M = {0, 1}.
Further, ât ∈ {0, 1} denotes the action recommended at date t. Ht denotes the set of
histories up to date t with a typical element ht =

{
{xs}t

s=0 , {âs}t
s=0 , {as}t

s=0

}
, i.e., history

includes all realizations of the state process, all recommendations, and all of the principal’s
action choices up to date t. Given this, a pure information policy is given by σ = (σt)t∈[0,T ],
σt : Ht− × {0, 1, 2} → {0, 1}, ∀t, i.e., at each date t, σt maps from history up to, but not
including, date t and date t draw of state process, xt, to an action recommendation. Timing
within some date t is such that first xt is drawn, then ât is determined according to σ, and,
finally, at is chosen by the principal. A mixed information policy is a probability distribution
over pure information policies σ. The mixed information policy induces stopping time τ ,
which is the first date at which ât = 0 is drawn according to the mixed information policy.

Given this formalism, it is straightforward to write out the long run payoffs of the
agent and the principal. P (xτ = 2) captures the ex ante probability that two stages of the
project will be completed by the first date at which the stopping recommendation is drawn,
according to the mixed information policy. Further, E [τ ] captures the t = 0 perspective
on the expectation of the first date at which stopping is recommended, according to the
mixed information policy. The long-run payoff of the agent and the principal are given,
respectively, by

W (τ) := E [τ ] c,

V (τ) := P (xτ = 2) v − E [τ ] c.

Throughout the paper, we assume that whenever the principal is indifferent about in-
vesting or not, he chooses to invest. Finally, we use the following notational convention: for
any two stopping times, S and τ ,

S ∧ τ := min {S, τ} ,

S ∨ τ := max {S, τ} .

3.2 Agent’s problem

We start with Lemma 1 that presents the agent’s problem of choosing the mixed information
policy. This choice is formulated in terms of choosing the distribution of the stopping time
τ induced by the mixed information policy. Without loss of generality, we formalize the
choice of this distribution using the choice of conditional distributions of τ . F0(t) is the cdf
of the stopping time t ∈ [0, T ] when xt = 0, F1(t|t1) is the cdf of the stopping time t ∈ [t1, T ]
when xs = 0 for s ∈ [0, t1) and xs = 1 for s ∈ [t1, t], F2(t|t1, t2) is the cdf of the stopping
time t ∈ [t2, T ] when xs = 0 for s ∈ [0, t1), xs = 1 for s ∈ [t1, t2), and xs = 2 for s ∈ [t2, T ].
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The agent’s mixed information policy is given by the collection of conditional distributions

σµ := {F0, F1, F2} .

Lemma 1. The agent’s problem can be formulated as

max
F0,F1,F2

{c · E [τ ]}

s.t. [P (xτ = 2|t < τ)] v − E [τ − t|t < τ ] c ≥ P (xt = 2|t < τ) v, ∀t < τ.
(1)

To grasp the intuition behind Lemma (1), it is useful to note that, becasue the mixed
information policy is a recommendation policy, the action recommendations generated by
this policy have to be obedient to the principal. In other words, at each date and for each
possible history the action recommendations drawn from the conditional distributions σµ

have to be optimal for the principal. A useful object for characterizing if the policy σµ

generates obedient action recommendations is given by the principal’s continuation value at
some interim date t given the mixed information policy. This continuation value depends
on the beliefs of the principal.

The principal updates his belief given policy σµ and assesses the costs and benefits of
either further following the recommendations drawn from the policy or deviating from them.
The information disclosed by the agent up to date t serves as a source of inference for the
principal. First, he forms a belief regarding the number of completed stages of the project by
t, conditional on no stopping recommendation being drawn by t, P (xt = n|t < τ). Second,
given the information available up to t, he forms a belief regarding the number of completed
stages of the project at the random date τ when the stopping recommendation will be drawn
in future, P (xτ = n|t < τ).

The principal’s continuation value at t given the mixed information policy σµ is the
difference between the expected payoff promised by the policy and the expected payoff from
stopping at t, we denote it by Vt (τ):

Vt (τ) := [P (xτ = 2|t < τ) − P (xt = 2|t < τ)] v − E [τ − t|t < τ ] c. (2)

The system of constraints in the agent’s problem (1) ensures that at each date before the
stopping recommendation is drawn according to σµ, the principal’s continuation value must
be non-negative. As the principal’s choice to postpone the stopping of funding is costly,
it is natural to interpret the system of constraints in (1) as the system of the principal’s
individual rationality constraints.

3.3 Discussion of assumptions

The main interpretation of the considered dynamic information design problem is the con-
tracting between the agent (startup) and the principal (investor) on the terms of reporting
on the completion of stages of the project that are not publicly observed. The terms could
take the form of a proposed formal reporting schedule or a schedule of meetings with the

8



investor. Non-observability of the stage completions stems from the fact that, while the tech-
nology is being developed in the lab, the principal either does not have sufficient expertise
to assess the progress or the full access to the lab.

We assume that the principal does not have the power to propose the terms for reporting
to the agent and, e.g., make her fully disclose the progress achieved in the lab. The most
natural interpretation of such an asymmetry in the bargaining power is the asymmetry
in the market for private equity: there are sufficiently many investors willing to invest
in a particular technology or sufficiently few startups working on the technology.9 For
instance, investors’ interest in quantum computing has grown markedly in recent years,
while there are reports of a shortage of human capital in this industry.1011 Another example
is the communication software industry, which has recently experienced increased investment
activity.12

As the agent enjoys the power of full control over the information on the progress of
the project, she is completely free to offer what is disclosed and when. In particular, the
contract between the agent and the principal can specify that the completion of the second
stage of the project is disclosed with a delay rather than immediately. The agent who has
an advantage in expertise over the principal can rationalize such a condition by saying that
before the success is reported to the principal, it is worth re-checking the data, which takes
time.

Even though the principal can not dictate to the agent which information and how she
should disclose, the principal can potentially hire an external monitor who would visit the
lab and prepare an additional report on the progress of the project. In that case, the contract
signed between the agent and the principal will account for both free information that the
agent promised to provide and additional costly information which the principal obtains with
the help of a monitor. In the baseline version of the model, we assume that the principal
can not use the help of a monitor. This can be rationalized by the shortage of experts in
the field, which makes hiring a monitor prohibitively costly. Alternative interpretation is
that the agent restricts the principal’s access to additional information on the progress of
the project by stating that a potential information leak would put the technology being
developed at risk.13

The information policy relies upon the agent’s commitment power, which holds not
9In the alternative interpretation of the model, contracting concerns internal corporate research and

development and takes place between the leading researcher and the headquarters of a company. The
leading researcher’s bargaining power in proposing the terms for disclosure again stems from the market
asymmetry: the specialists having the desired level of expertise might be in a short supply.

10”The Quantum Computing Bubble.” Financial Times, August 25, 2022.
11“Quantum Computing Funding Remains Strong, but Talent Gap Raises Concern”, a report by

McKinsey Digital, https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/quantum-
computing-funding-remains-strong-but-talent-gap-raises-concern/.

12”This Is Insanity: Start-Ups End Year in a Deal Frenzy.” Best Daily Times, December 07, 2020.
13In particular, this rationale was used to restrict the investors’ access to information on the progress

of the project in the case of Theranos, see ”What Red Flags? Elizabeth Holmes Trial Exposes Investors’
Carelessness.” The New York Times, November 04, 2021.
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only within each date but also between the dates. The agent’s commitment within each
date follows from prohibitively high legal costs of cooking up the evidence. The agent’s
intertemporal commitment stems from the rigidity of terms and form of reporting fixed in
the contract that the agent and the principal sign at t = 0.

4 No-information and full-information benchmarks

4.1 No-information benchmark

First, we consider the simple case when the information policy is given by σNI : the same
message m is sent for all histories h (t) and all dates t. Thus, the agent provides no infor-
mation regarding the progress of the project. As we demonstrate, in this case the principal
starts investing in the project if and only if it is sufficiently promising for the principal from
the ex ante perspective and invests until a deterministic interior date.

As no news arrives, the principal bases his decision about when to stop investing on his
unconditional belief regarding the completion of the second stage of the project. We denote
the unconditional belief that n stages of the project were completed by t, by pn (t), i.e.,
pn (t) := P (xt = n). The state of the world is fully determined by p (t) given by

p0 (t) = e−λt,

p1 (t) = λte−λt,

p2 (t) = 1 − e−λt − λte−λt.

The principal’s sequential choice of at ∈ {0, 1} can be restated equivalently as the choice
of deterministic stopping time SNI ∈ [0, T ] chosen at t = 0.14 Given the principal’s con-
tinuous investment, the probability of completion of the second stage of the project, p2 (t),
increases monotonously over time, making obtaining the payoff v more likely. However,
postponing the stopping is costly.

To decide on SNI , the principal trades off the flow benefits and flow costs of postponing
the stopping decision, while keeping the individual rationality constraint in mind. The flow
cost of postponing the stopping for ∆t is given by c · ∆t and the flow benefit is given by
v · p1 (t) λ∆t.15 Thus, the necessary condition for the principal’s stopping at some interior
moment of time (0 < S < T ) is given by

v · p1 (S) λ = c. (3)

Let
κ := c

vλ
,

14Note that the dynamic belief system that he faces is deterministic in a sense of being fully specified
from t = 0 perspective.

15To observe this, note that the probability of the completing both the first and second stages within a
very short time ∆t is negligibly small; thus, during some ∆t, the principal receives the project completion
payoff v iff the first stage has already been completed.
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the ratio of the flow cost of investment c to the gross project payoff v normalized using λ,
the rate at which a project stage is completed in expectation. The intuitive interpretation
of κ is the flow cost-benefit ratio of the project. κ is an inverse measure of how ex ante
promising the project is for the principal. (3) is equivalently given by16

p1 (S)︸ ︷︷ ︸
flow benefit of waiting

= κ︸︷︷︸
flow cost of waiting

(4)

and presented graphically in Figure 1. As the state process transitions monotonously from
0 to 1 and then to 2, p1 (t) first increases and after some time starts to decrease. Thus, the
principal has two candidate interior stopping times satisfying (4), S̄ and S̄NI . The principal
prefers to postpone stopping to S̄NI , as during

(
S̄, S̄NI

)
the flow benefits are higher than

the flow costs.

0 t

1 p2(t), probability of completion
of 2nd stage of project

0 t

1
e

p1(t), flow benefit
of waiting

c
vλ

, flow cost
of waiting

optimal
choice

S̄ S̄NI

Figure 1: Principal’s choice under no information:
left plot: postponing stopping increases the chance of getting a project payoff v;

right plot: principal trades off costs and benefits and optimally stops at S̄NI .

The forward-looking principal can guarantee himself a payoff of 0 if he does not start
investing at t = 0. Thus, he will choose to start investing at t = 0 only if his flow gains
accumulated up to T ∧ S̄NI are larger than his flow losses, and his expected payoff is given
by

V NI := max
{

0,
∫ T ∧S̄NI

0
(v · p1 (s) λ − c) ds

}
. (5)

Geometrically, the integral in (5) represents the difference between the shaded areas in Figure
2 that correspond to the accumulated gains and losses. The principal starts investing at
t = 0 if, given T and λ, the normalized cost-benefit ratio κ is low enough, so that the shaded
area of the accumulated gains is at least as large as that of the accumulated losses. We
denote such a cutoff value of κ by κNI (T, λ) and summarize the principal’s choice without
information in Lemma 2.

16Here we WLOG express the flow benefits and flow costs of investing for the principal in different units
of measurement.
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S̄NI

1
e

y = x2

y = x

κ := c
vλ

p1(t)

accumulated
gains

accumulated
losses

t T S̄NI

1
e

y = x2

y = x

κ := c
vλ

p1(t)

accumulated
gains

accumulated
losses

t

Figure 2: Principal’s choice to start investing at t = 0 or not under no information:
left plot: T > S̄NI ; the project deadline is distant and decision-irrelevant;

right plot: T ≤ S̄NI ; the project deadline is close, which leads to lower expected benefits
of investing.

In both plots the expected accumulated gains are higher than the losses, so the principal
starts to invest at t = 0.

Lemma 2. Assume no information regarding the progress of the project arrives over time.
Denote the time at which the principal stops investing by SNI . If κ > κNI (T, λ), then the
principal does not start investing in the project, i.e., SNI = 0. If κ ≤ κNI (T, λ), then the
principal’s choice of stopping time is given by

SNI =

S̄NI , if 1
λ

≤ T and κ ≥ e−λT λT

T, otherwise ,
(6)

the closed-form expressions for S̄NI and κNI (T, λ) are presented in the proof in Appendix
B.

4.2 Full-information benchmark

Here, we consider the case in which the information policy is given by σF I : M = {m0, m1, m2}
and the message mn is sent for all t such that xt = n, n ∈ {0, 1, 2}. Thus, the principal
fully observes the progress of the project at each t. We characterize the cutoff level of the
cost-benefit ratio below which the principal is willing to start investing. Further, we show
that the principal chooses to stop when no stages of the project are completed and the
project completion deadline T is sufficiently close.

At each t, the principal uses the information on the number of stages completed to decide
either to stop investing or to postpone stopping. News of the completion of the second stage
of the project causes the principal stop immediately, so that he immediately receives the
project payoff v and stops incurring the costs of further investment. If only the first stage
of the project is completed, the principal faces the following trade-off. The instantaneous
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probability that the second stage will be completed during ∆t is given by λ∆t. Thus, the
expected benefit of postponing the stopping for ∆t is given by

v · λ∆t + V F I
t+∆t|1 · (1 − λ∆t) , (7)

where V F I
t|1 is the continuation value of the principal at time t under full information and

conditional on xt = 1. Meanwhile, the cost of postponing the stopping is given by c · ∆t.
If κ < 1, then v · λ∆t > c · ∆t. Further, it can be shown that in this case V F I

t|1 > 0, ∀t.17

Thus, the principal who knows that the first stage of the project has already been completed
invests either until the second stage is complete or until the project deadline T is reached.
If κ > 1, then the expected benefit (7) is smaller than the cost c · ∆t for all t < T , which
implies that the principal chooses not to start investing at t = 0 under full information. To
rule out this trivial case, we assume κ ≤ 1.

Assumption 1. κ ≤ 1.

We now consider the case in which the principal knows that the first stage has not yet
been completed. The principal’s trade-off with respect to the stopping decision is now more
complex. Postponing the stopping for ∆t leads to completion of the first stage of the project
with instantaneous probability λ∆t. Completion of the first stage of the project at some
t implies that the principal receives V F I

t|1 (rather than v). Thus, the expected benefit of
postponing the stopping for ∆t is now given by

V F I
t|1 · λ∆t + V F I

t+∆t|0 · (1 − λ∆t) , (8)

where V F I
t|0 is continuation value of the principal at time t under full information and con-

ditional on xt = 0. The cost of postponing the stopping is, as before, given by c · ∆t. In
contrast to (7), where the principal obtains the completion payoff v, which is constant over
time, now the principal obtains the continuation value, V F I

t|1 , which shrinks over time because
there is less time left to complete the second stage before T . It turns out that there exists a
date t < T sufficiently close to the final date T such that the optimal policy prescribes the
principal to stop at such date if the first stage of the project is still incomplete. We denote
this date by SP

0 . The economic interpretation of SP
0 is that it is the interim deadline that

the principal sets for the project. Further, if the first stage is completed by SP
0 , then the

optimal policy prescribes the principal to continue until either the second stage is completed
or T is reached.

Finally, given the optimal policy, the principal chooses to opt out of investing at t = 0
(i.e., SP

0 = 0) if the cost-benefit ratio of the project, κ, is sufficiently high. We denote
the upper bound for κ such that the principal starts investing at t = 0 by κF I (T, λ).
Intuitively, κF I (T, λ) > κNI (T, λ): whenever the principal is willing to start investing
under no information, he is also willing to start under full information. We summarize the
principal’s choice under full information in Lemma 3.

17See the derivation in the proof of Lemma 3 in the Appendix.
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Lemma 3. Assume that the progress of the project is fully observable at each moment in
time. If κ > κF I (T, λ), where κF I (T, λ) > κNI (T, λ), then the principal does not start
investing in the project. If κ ≤ κF I (T, λ), the principal invests either until the random date
at which the second stage of the project is completed, t = τ2, or until the interim deadline,
t = SP

0 , at which he stops if the first stage has not yet been completed. Formally, the time
at which the principal stops investing is a random variable τF I given by:

τF I =

τ2 ∧ T, if xSP
0

̸= 0
SP

0 , otherwise ,

where SP
0 = T + 1

λ
log

(
1−2κ
1−κ

)
and the expression for κF I (T, λ) is presented in the proof in

Appendix B.

Assume now that the agent chooses which information to provide to the principal. As
for κ > κF I (T, λ) the principal is not willing to start investing even under full information,
there is no way in which the agent can strategically conceal the information to her benefit.
In Section 5, We assume κ ≤ κF I (T, λ) and analyze how the agent can strategically provide
information on the progress of the project and extract the principal’s surplus.

5 Agent’s choice of information policy
In this Section, we present how the agent’s choice of information policy changes with the ex
ante attractiveness of the project, which is captured by the cost-benefit ratio κ. In Section
5.1, we provide the big picture of the solution to the agent’s problem. In Sections 5.2-5.3,
we introduce the results formally and discuss the economic mechanisms that determine the
outlined structure of the optimal information policy.

5.1 The structure of optimal information disclosure

The structure of optimal information disclosure is formally established in Propositions 1 and
2 (see Sections 5.2 and 5.3) as the solution to the agent’s problem (1). In this Section, we
put the results of these two Propositions together to present an overview of optimal infor-
mation disclosure. It follows the simple and intuitive pattern. There exist cost-benefit ratio
cutoffs κND (T, λ) , κND (T, λ) < κNI (T, λ), and κ̃ (T, λ) , κNI (T, λ) < κ̃ (T, λ) < κF I (T, λ).
κND (T, λ) is defined as follows: for any κ ≤ κND (T, λ), the principal invests until T in the
no-information benchmark. κ̃ (T, λ) is defined in Lemma 4. Depending on the cost-benefit
ratio of the project, the optimal information policy has the following form:

1. when κ ≤ κND (T, λ), the agent provides no information and the principal invests until
T ;

2. when κND (T, λ) < κ ≤ κ̃ (T, λ), the agent discloses only the completion of the second
stage of the project and does that with the postponement;
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3. when κ̃ (T, λ) < κ < κF I (T, λ), the agent immediately discloses the completion of the
second stage of the project whenever it occurs and specifies a deterministic interim
deadline, at which it discloses if the first stage is already completed;

4. when κ ≥ κF I (T, λ), the agent provides no information as the principal’s long-run
payoff is non-positive even under full information.

Figure 3 illustrates the optimal structure of information disclosure and presents the
partition of the cost-benefit ratio space based on the corresponding forms of the optimal
information policy.

κ (T, λ)0 κ̃ κF IκNIκND 1
2

Postponed disclosure
of stage 2 completion

Immediate disclosure of
stage 2 completion and

interim deadline for stage 1

Non-disclosure
(principal

invests until T )

Non-disclosure
(principal rejects

the project)

Figure 3: Comparative statics of the form of optimal information policy with respect to the
cost-benefit ratio of the project, κ (T, λ).

The lower is the value of cost-benefit ratio, the higher is ex ante attractiveness of the
project to the principal. First, for κ ≤ κND (T, λ), the project is so attractive that the
principal is willing to keep investing until the project deadline T even in the no-information
benchmark. Thus, there is no need to disclose any information. For the higher values of κ,
there emerges a room for strategic disclosure, and the higher is the value of κ (i.e., the lower
is the ex ante attractiveness of the project), the more information the agent has to disclose
to incentivize the principal. For κ ≥ κF I (T, λ), the project gets so unattractive that the
principal can not strictly benefit from investing even in the full-information benchmark. In
this extreme case, the agent chooses not to disclose any information.

From Figure 3, one can see which additional pieces of information the agent chooses
to disclose and when she chooses to discloses them as κ gets higher and higher. When
κ ∈ (κND (T, λ) , κ̃ (T, λ)], the agent discloses only the completion of the second stage of the
project and does not promise any information on the completion of the first stage of the
project. Further, as κ increases from κND (T, λ) to κ̃ (T, λ), the agent adjusts the timing
of the disclosure: she postpones the disclosure of the second stage completion less and less
and discloses immediately for κ̃ (T, λ). For κ ∈ (κ̃ (T, λ) , κF I (T, λ)), the agent not only
discloses the completion of the second stage of the project immediately, but also provides
information on the completion of the first stage at the interim deadline that she optimally
chooses.

Throughout the analysis, we maintain the following technical assumption:

Assumption 2. eλT − λT (λT + 1) > 1.

This assumption imposes a lower bound on T and rules out the case in which T is so low
that whenever the principal is willing to start investing in the no-information benchmark,
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he invests until T . As a result, κND < κNI , which allows for a richer comparative statics
analysis in Section 5.2. We formally demonstrate the implications of this assumption for
the optimal structure of information disclosure in Appendix B.

In Sections 5.2 and 5.3, we formally establish the comparative statics results presented
in Figure 3. We start the discussion from the optimal information policy under κ ∈
(κND (T, λ) , κ̃ (T, λ)]. The trivial case of non-disclosure under κ ≤ κND (T, λ) is analysed
in the discussion of Assumption 2 in Appendix B.

5.2 Postponed disclosure of project completion

In this Section, we restrict attention to κ ∈ (κND (T, λ) , κ̃ (T, λ)] and explain why the
optimal information policy is such that the agent discloses only the completion of the project
and does this with the postponement. The agent’s problem is complex, and thus we solve
it in steps. First, we characterize the information policy, which solves the relaxed version
of (1) with the principal’s individual rationality constraints only for some initial periods.
Second, we demonstrate that there exists an information policy solving the relaxed agent’s
problem and satisfying the full system of the principal’s individual rationality constraints
in (1).

5.2.1 Solution to the agent’s relaxed problem

In this Section, we consider the agent’s relaxed problem and discuss its solution. This sheds
light on the technical intuition behind the key properties of the optimal information policy.
The agent’s relaxed problem for the parametric case of κ ∈ (κND (T, λ) , κNI (T, λ)] is given
by (1) with the principal’s individual rationality constraint only for t ∈ [0, S̄NI ]. The agent’s
relaxed problem for the parametric case of κ ∈ (κNI (T, λ) , κ̃ (T, λ)] is given by (1) with the
principal’s individual rationality constraint only for t = 0.

Consider W (τ), the agent’s long-run payoff given some mixed information policy, rep-
resented by a stopping time τ . This can be restated equivalently as follows:

W (τ) = [W (τ) + V (τ)] − V (τ)
= P (xτ = 2) v︸ ︷︷ ︸

total surplus

− [P (xτ = 2) v − E [τ ] c]︸ ︷︷ ︸
principal’s surplus

. (9)

The solution to the agent’s relaxed problem for both considered parametric cases follows a
simple idea: the optimal information policy ensures that the total surplus is maximal and
that the principal’s surplus is minimal. Consider τ such that the stopping occurs after the
completion of the second stage of the project, unless the project deadline T was hit, i.e., the
policy satisfies the condition τ ≥ τ2 ∧ T . Such a policy leads to

P (xτ = 2) = P (xT = 2) . (10)

Given a mixed information policy, represented by τ , satisfying (10), if τ is individually
rational for the principal at date t = 0 then the total surplus generated achieves its upper
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bound and is given by P (xT = 2) v, which depends on the exogenously given project deadline
T and the profit v. However, the stopping only after the second stage completion is not
individually rational for the principal at t = 0 when the cost of funding is sufficiently
high, the profit is sufficiently low, or the expected time until a project stage completion is
sufficiently high.

Lemma 4 elaborates on the cost-benefit ratio cutoff value κ̃ (T, λ): it distinguishes the
case in which stopping only after the second stage completion is individually rational at
t = 0 from the case in which it is not. Based on this partition, when κ ∈ (κND, κ̃ (T, λ)], we
call the project ex ante promising for the principal.

Lemma 4. For each (T, λ) there exists κ̃ (T, λ), κNI (T, λ) < κ̃ (T, λ) < κF I (T, λ), such
that if κ ≤ κ̃ (T, λ) (κ > κ̃ (T, λ)) then an information policy, represented by τ , in which
stopping after τ2 ∧ T happens with probability one is individually rational at t = 0 (not
individually rational at t = 0) for the principal.

For κ ∈ (κND (T, λ) , κ̃ (T, λ)], the stopping time τ ≥ τ2 ∧ T is individually rational
for the principal at t = 0, and it maximizes the total surplus. In addition to choosing
τ ≥ τ2 ∧ T , it is optimal for the agent to choose the stopping time with a higher expected
date of stopping the funding to extract all the principal’s surplus subject to his individual
rationality constraints. For κ ∈ (κNI (T, λ) , κ̃ (T, λ)], the agent chooses such τ that the
principal’s individual rationality constraint at t = 0 is binding. As a result, V (τ) = V NI ,
i.e., the principal gets his no-information benchmark payoff given by 0.

For κ ∈ (κND (T, λ) , κNI (T, λ)], as in the no-information benchmark the principal in-
vests until S̄NI with certainty, the agent chooses the information policy as to postpone the
start of information provision at least until S̄NI . Further, the agent chooses τ with a higher
expected date of stopping so that the principal’s individual rationality constraint at t = S̄NI

is binding. The absence of stopping until at least S̄NI and the fact that individual ratio-
nality constraint binds at t = S̄NI taken together imply that V (τ) = V NI , i.e., from t = 0
perspective, the principal gets her no-information benchmark payoff, which is non-negative
and given by (5).

The next Lemma summarizes the necessary conditions for an information policy to solve
the agent’s relaxed problem when the project is promising. These conditions are shared
both by the relaxed problem formulated for the case of κ ∈ (κND (T, λ) , κNI (T, λ)] and
the relaxed problem formulated for the case of κ ∈ (κNI (T, λ) , κ̃ (T, λ)]. The conditions
that are both necessary and sufficient for an information policy to solve the agent’s relaxed
problem are presented in the Proof of Lemma 5.

Lemma 5. Assume κ ∈ (κND, κ̃ (T, λ)]. If an information policy, represented by τ , solves
agent’s relaxed problem, then

1. with probability one, stopping occurs after τ2 ∧ T ;

2. V (τ) = V NI , where V NI is the principal’s expected payoff in the no-information bench-
mark, given by (5).
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5.2.2 Optimal information policy

In this Section, we show that there exists an information policy that both solves the agent’s
relaxed problem and satisfies the full system of the individual rationality constraints. Given
this, as Lemma 5 describes the solution to the relaxed problem, it also sheds light on the
properties of the optimal information policy for the case of a promising project.

As the stopping time τ is induced by a direct recommendation policy σµ, it is clear from
Lemma 5 that the optimal information policy has to satisfy the following conditions. First,
whenever the agent recommends the principal to stop, the second stage of the project is
already completed. Second, the recommendation to stop is postponed so that the principal’s
individual rationality constraint is binding, which manifests in V (τ) = V NI . The first
condition presents the key feature of the optimal information policy for the case of promising
project: the agent discloses the completion of the second stage of the project, but stays silent
regarding the completion of the first stage of the project. The intuition behind the agent’s
choice is simple: a recommendation to stop when no stages of the project are completed and
the project deadline T is close does indeed incentivize the principal; however, it also reduces
the total surplus generated that can be extracted via the agent’s control of information.
Meanwhile, the recommendation to stop when the two stages of the project are completed
incentivizes the principal without reducing the total surplus generated. When κ ≤ κ̃ (T, λ),
a partially informative policy that discloses only the completion of the second stage provides
sufficient incentives to the principal, and thus the agent uses it.18

We proceed with obtaining an information policy that not only satisfies the conditions in
Lemma 5 and solves the relaxed problem, but also satisfies the full system of the principal’s
individual rationality constraints in Lemma 1. Ensuring both is non-trivial. For instance,
consider a policy solving the agent’s relaxed problem and assume it recommends to continue
for t ∈ [0, S∗), then at S∗ recommends stopping if the second stage is already completed,
but recommends to continue at all the subsequent dates t ∈ (S∗, T ]. A no stopping recom-
mendation drawn at S∗ reveals that the state is either 0 or 1. Clearly, after sufficient time
passes after S∗, the principal would attach a high probability to the second stage already
being completed and would potentially be tempted to deviate from the recommendation to
continue.19 However, the optimal policy satisfying the full system of constraints exists. We
present it in Proposition 1.

Proposition 1. Assume κ ∈ (κND (T, λ) , κ̃ (T, λ)]. The optimal information policy is a
direct recommendation mechanism that does not provide a recommendation to stop during
t ∈ [0, S∗). At t = S∗, if the second stage of the project is already completed, then the
mechanism recommends the principal to stop. If the second stage of the project is not
yet completed, then the mechanism recommends the principal to stop at the moment of its

18The “leading on” information policy in Ely and Szydlowski (2020) is similar: the only information that
the policy provides is that the task is already completed and, thus, it is time to stop investing.

19In other words, Vt (τ) drifts down over time and can get negative at some date.
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completion t = τ2. Corresponding optimal information policy is

τ = S∗ ∨ (τ2 ∧ T ) ,

where S∗ is a deterministic date chosen such that V (τ) = V NI , i.e., the respective constraint
in the system of principal’s individual rationality constraints is binding.

The recommendation mechanism starting from S∗ generates recommendations to stop if
the second stage is completed. As the recommendation to stop comes immediately at the
completion of the second stage for all t > S∗, hearing no recommendation to stop reveals
that the state is either 0 or 1. Further, as time goes on, the principal attaches a higher and
higher probability to the state being 1, which ensures obedience to the recommendation to
continue at each date. Further, the start of information provision S∗ is sufficiently postponed
to ensure that the principal’s individual rationality constraint is binding either at t = S̄NI

or at t = 0.
The choice of S∗ is driven by extraction of the principal’s surplus and depends on κ in an

intuitive way. First, consider the case κ ∈ (κND, κNI (T, λ)], the principal is willing to start
investing and invests until t = S̄NI in the no-information benchmark. The agent’s optimal
choice is to set S∗ > S̄NI . Given such an information policy, the principal does not stop
at S̄NI , the date of stopping in the no-information benchmark, and with probability one
continues to invest during t ∈ [S̄NI , S∗) even though the mechanism provides absolutely no
information for all t < S∗. This is driven by the fact that the expected benefit from stopping
at some future date t ∈ [S∗, T ] and obtaining the project payoff v with certainty compensates
the flow losses of investing during t ∈ [S̄NI , S∗).20 Further, the agent sufficiently postpones
S∗ to ensure that she extracts the principal’s surplus and the principal gets precisely V NI ≥
0.

In the case κ ∈ (κNI (T, λ) , κ̃ (T, λ)], the principal is not willing to start in the no-
information benchmark as his expected payoff from investing is negative. Thus, the agent
chooses S∗ to guarantee that the principal gets his reservation value V NI = 0 and is thus
willing to start investing at t = 0. The value of S∗ is relatively lower as compared to the
previous case: as the project is less attractive, to provide the principal sufficient incentives,
the agent needs to start the information provision regarding the completion of the project
earlier.

Finally, there exist many information policies that both solve the agent’s relaxed problem
and satisfy the full system of constraints in (1). This constitutes an important advantage
for the agent: she can choose an optimal policy that is easier to implement from the real-
world perspective, depending on the particular environment. In the optimal mechanism
from Proposition 1, the recommendation to stop at some date t depends only on the current
state of the world xt. In an alternative delayed disclosure mechanism, the recommendation

20Similarly to the “leading on” information policy in Ely and Szydlowski (2020), the promises of future
disclosure of the completion of the project are used as a “carrot” to make the receiver continue investing
beyond the point at which he stops in the no-information benchmark.
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to stop arrives with a pre-specified delay after the second stage was completed. Thus,
the recommendation depends only on the past history and not on the current state of the
world. In an optimal delayed disclosure mechanism, the delay becomes smaller as more time
passes.21

Recall that, as Lemma 5 suggests, the key idea of the optimal information policy is
that the agent postpones the disclosure of the completion of the project to extract more
surplus, which makes the principal’s individual rationality constraint bind. The higher
the cost-benefit ratio of the project κ becomes, the higher additional value the agent’s
information policy needs to provide to the principal to ensure that his active individual
rationality constraint is satisfied. The implication of this for the optimal information policy
is presented in Lemma 6.

Lemma 6. Assume κ ∈ (κND (T, λ) , κ̃ (T, λ)]. Given the direct recommendation mecha-
nism inducing optimal τ , for a fixed Poisson rate λ, the expected length of investment E [τ ]
decreases in the cost-benefit ratio κ.

The intuition is that the higher the cost-benefit ratio of the project becomes, the sooner
after the second stage of the project is completed the agent recommends the principal to
stop. For the cost-benefit ratio as high as κ̃ (T, λ), the agent provides the recommendation
to stop immediately at the date of completion of the second stage of the project. Further,
for κ > κ̃ (T, λ), the optimal information policy satisfying the conditions in Lemma 5 ceases
to be individually rational for the principal. As we show in the next Section, for κ >

κ̃ (T, λ), in addition to immediate disclosure of the project completion, the agent provides
the information regarding the completion of the first stage of the project.

5.3 Immediate disclosure of completion and an interim deadline

When κ > κ̃ (T, λ), the project is not promising for the principal and any information
policy in which stopping occurs after τ2 ∧ T with probability one violates the principal’s
individual rationality constraint. In other words, from the ex ante perspective the future
reports disclosing only the completion of the project do not motivate the principal to start
investing. Thus, an information policy that provides an individually rational expected
payoff to the principal should assign a positive probability not only to stopping after the
completion of the project, but also to stopping in either state 0, when no stages of the
project are completed, or state 1, when only the first stage of the project is completed. We
present the necessary conditions for an information policy to be optimal when the project
is not promising in Lemma 7.

Lemma 7. Assume κ ∈ (κ̃ (T, λ) , κF I (T, λ)). If a mixed information policy σµ solves
agent’s problem, then it satisfies the conditions

21The rich set of optimal direct recommendation mechanisms in our model encompasses both mechanisms
in which the information provision depends only on the current state, similarly to the optimal mechanism
in Ely and Szydlowski (2020), and the mechanisms that use delay, similarly to the delayed beep from Ely
(2017).
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1. F0(t) > 0 for some t < T ;

2. F1(t|t1) = 0 for all t ∈ [t1, T );

3. F2(t|t1, t2) = 1 for all t ∈ [t2, T ].

The condition on F0(t) implies that conditional on no completed stages of the project,
stopping of the funding happens with a positive probability before T . The condition on
F1(t|t1) implies that conditional on one completed stage of the project, stopping of the
funding never occurs before T . Finally, the condition on F2(t|t1, t2) implies that conditional
on two completed stages of the project, stopping of the funding happens immediately, i.e., at
t = τ2. We proceed discussing the intuition behind these necessary conditions for optimality.

Stopping when only the first stage of the project is already completed is clearly inefficient.
In state 1, the principal prefers to continue investing until the completion of the second
stage and this principal’s incentive to wait is aligned with the agent’s incentive to postpone
the stopping. Further, stopping in state 1 does not help overcome the problem of the
violated individual rationality constraint under κ > κ̃ (T, λ). Meanwhile, assigning a positive
probability to stopping when no stages are completed helps to overcome the problem of
violated individual rationality constraint, as the principal benefits from stopping at some
date t when the first stage of the project is not yet completed and the project deadline
T is sufficiently close. Further, the agent chooses to induce stopping of funding after the
completion of the second stage rather than in state 0 as the former does not harm the
total surplus generated. Thus, a policy that is optimal assigns probability 1 to immediate
stopping when the second stage is completed.

Lemma 7 implies that in an information policy, optimal for the agent, stopping after
the completion of the second stage of the project happens immediately and stopping also
happens given that no stages of the project are completed - i.e., at the interim deadline
chosen by the agent, which we denote by SA

0 , and which is distributed according to F0.
Thus, Lemma 7 drastically simplifies the strategy space in the agent’s design problem: it is
only left to characterize the optimal distribution F0. At t = 0, the agent publicly chooses
a distribution F0, then an interim deadline is drawn according to it and privately observed
by the agent. Next, the information starts to flow. The action recommendation to stop the
funding satisfies the following stopping time

τ =

SA
0 , if xSA

0
= 0

τ2 ∧ T, otherwise,
(11)

where the principal knows only the distribution F0, but not the draw of SA
0 .

Given that the completion of the second stage of the project is disclosed immediately,
stopping at the interim deadline in state 0 leads to a loss of expected further investment
flow for the agent, and a potential savings from abandoning a “stagnating” project for the
principal. The agent’s payoff can be without loss of generality restated as the expected loss
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in future investment due to stopping at the interim deadline SA
0 in state 0 (rather than at

τ2 ∧ T ). Given this, the agent’s problem can be expressed as

min
F0

EF0

P
(
xSA

0
= 0

)
E
[
τ2 ∧ T − SA

0 |xSA
0

= 0
]

︸ ︷︷ ︸
expected loss in future investment given SA

0

, (12)

subject to the system of the principal’s individual rationality constraints, which also have
a natural interpretation as the expectation of principal’s savings on the future investment,
which discontinues at SA

0 in state 0, minus the loss in the project completion profit due to
stopping the funding at SA

0 in state 0.22

Inspecting the agent’s expected loss in future investment in (12) reveals that if the
agent postpones the interim deadline SA

0 , then two effects arise. First, the probability that
stopping at the interim deadline will happen decreases. Second, the expected loss in total
surplus due to stopping at the interim deadline rather than at τ2 ∧ T decreases. Thus, the
agent’s expected loss in future investment is decreasing in the date of interim deadline and
the agent prefers an interim deadline with a later expected date.

Agent’s choice of the interim deadline distribution F0 is affected by the two factors.
First, as the expected loss in future investment in (12) is decreasing and convex in the date
of the interim deadline, and thus the agent is risk-averse with respect to random interim
deadlines. Thus, given some random interim deadline, the agent directly benefits from
inducing a mean-preserving contraction. Second, the agent benefits from inducing a mean-
preserving contraction indirectly. Inspecting the principal’s long-run payoff for some fixed
SA

0 reveals that the principal is also risk-averse with respect to random interim deadlines.
Thus, inducing a mean-preserving contraction makes the principal better-off and relaxes
the individual rationality constraint at t = 0, hence, allowing the agent to postpone the
expected interim deadline further. As a result the optimal for the agent interim deadline
takes the form of a deterministic date. In other words, it is optimal for the agent to publicly
announce the interim deadline SA

0 at the outset, so that the principal knows it.
The agent has an incentive to postpone the interim deadline and uses her control of the

information environment to postpone the deadline as much as possible so that the principal’s
individual rationality constraint at t = 0 binds. Figure 4 demonstrates the principal’s long-
run payoff as a function of the interim deadline, which we denote by S0. It is maximized
at the principal-preferred interim deadline SP

0 , which was characterized in Lemma 3. The
agent-preferred interim deadline SA

0 yields the principal’s expected payoff of 0.
The next Proposition summarizes the optimal information policy, which can be without

loss of generality implemented using a direct recommendation mechanism:

Proposition 2. Assume κ ∈ (κ̃ (T, λ) , κF I (T, λ)). The optimal information policy is given
by a direct recommendation mechanism that generates

(a) the recommendation to stop at the moment of completion of the second stage of the
project, t = τ2, and

22The principal’s individual rationality constraint is presented in (64).
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Figure 4: Principal’s long-run payoff, V , as a function of an interim reporting deadline
chosen by the agent, S0.

(b) a conditional recommendation to stop at the publicly announced interim deadline t =
SA

0 . At SA
0 , stopping is recommended with certainty if the first stage of the project has

not yet been completed.

Formally,

τ =

SA
0 , if xSA

0
= 0

τ2 ∧ T, otherwise,

where SA
0 is chosen so that the principal’s individual rationality constraint at t = 0 is binding,

i.e., V (τ) = 0.

A stopping recommendation at any date other than the interim deadline t = SA
0 fully

reveals that project is accomplished. Further, observing a recommendation to stop at the
interim deadline, the principal learns that the milestone of the project has not yet been
reached and becomes sufficiently pessimistic that the project will be completed by T .

A notable feature of the optimal information policy when the project is ex ante unattrac-
tive is its uniqueness. The only optimal instrument through which the agent fine tunes the
incentive provision to the principal is the choice of interim deadline, and there is a unique
optimal way to set the deadline to make the principal’s individual rationality constraint
bind.

We proceed by considering the comparative statics of the interim deadline. Both the
agent-preferred and the principal-preferred interim deadline, SA

0 and SP
0 , respectively, in-

crease in the exogenous deadline T . This is because less time pressure relaxes the principal’s
individual rationality constraint and allows the agent to postpone the deadline further in
order to extract the principal’s surplus.

As the cost-benefit ratio increases up to κF I , the agent-preferred deadline converges to
the principal-preferred deadline. An increase in the cost-benefit ratio of the project makes
the principal’s individual rationality constraint tighter.23 As a result, for a higher κ, in the

23This is because the increase in κ makes the principal’s instantaneous benefit from waiting decrease, and
the normalized instantaneous cost of waiting becomes higher.
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absence of completion of the first stage, the principal is willing to wait for a shorter time
before stopping. Thus, both the interim deadline preferred by the principal SP

0 and the
interim deadline chosen by the agent SA

0 are lower for a higher κ. Further, for a higher
κ the agent has to choose an information policy relatively closer to the full-information
benchmark to ensure that the individual rationality constraint at t = 0 is satisfied. Hence,
the agent-chosen interim deadline SA

0 approaches SP
0 , the interim deadline preferred by the

principal. The comparative statics of SP
0 and SA

0 with respect to the cost-benefit ratio of
the project κ are presented in Figure 5.

S0
P

S0
A

κ
˜

κ��
κ

�

�

��

Figure 5: Interim deadline chosen by the agent SA
0 (dashed) and preferred by the

principal SP
0 (thick), as functions of the cost-benefit ratio of the project κ.

6 General preferences
In this Section, we allow for profit-sharing between the agent and the principal, varying de-
gree of the agent’s benefit from the flow of funds, and exponential discounting, and demon-
strate that the optimal information policy still has the same properties as in the baseline
model.

First, we assume that the agent and the principal share the project completion profit v:
the principal gets α · v, while the agent gets (1 − α) · v, α ∈ (0, 1]. Thus, now the agent
benefits not only from the flow of funds provided by the principal for running the project but
also from the share in the profit. The assumption that the agent gets a share in the project
completion profit is natural in many situations. In particular, the research documents that
the entrepreneurs in innovative startups are up to some extent driven by giving vent to their
entrepreneurial mindset and bringing their innovative ideas to life (Gundolf et al., 2017). In
such a context, a positive profit share of the agent captures that the agent is motivated by
the success of the project.

Second, we assume that given a flow cost of c incurred by the principal, the agent obtains
a flow benefit βc, β ≥ 0. β can be interpreted as the agent’s marginal benefit from using the
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funds provided by the principal for funding the project. Alternatively, for β ∈ [0, 1] the loss
of 1−β of the amount of the transfer at each date can be interpreted as the transaction costs.
Finally, setting β = 0 for some α < 1 allows for abstracting from the agent’s motives for
diverting the funds and considering the agent motivated only by the success of the project.

Third, we allow for exponential discounting at a rate r > 0. Thus, the present value of
a profit obtained at a date t is given by ve−rt and the present value of a stream of funding
up to date t is given by 1

r
(1 − e−rt) c. The following Proposition demonstrates that given

the more general preference specification, the structure of the optimal disclosure, present in
the baseline model, preserves.

Proposition 3.

(a) When the cost-benefit ratio of the project is low, κ ≤ κ̃ (T, λ, r, α), the optimal infor-
mation policy, represented by the stopping time τ , satisfies τ ≥ τ2 ∧ T , i.e., the agent
recommends the principal to stop only after the completion of the second stage of the
project.

(b) When κ > κ̃ (T, λ, r, α), the optimal τ assigns positive probability both to the stopping
in state 2 and state 0, i.e., the agent not only discloses the completion of the second
stage of the project, but also specifies an interim deadline for the completion of the
first stage.

Similarly to the baseline model, allowing the principal to stop after the project comple-
tion brings profit to the principal and thus leads to a relatively higher total surplus, which
the agent can extract. Meanwhile, allowing the principal to stop at the interim deadline
does not increase total surplus and serves solely as an expected payoff transfer from the
agent to the principal. To see that, note that stopping when the first stage of the project
is still incomplete allows the principal to save on the further costs of funding the project
when over time the project proves to be “unsuccessful”. This can not be beneficial for the
agent as she does not internalize the costs of running the project. Further, stopping at the
interim deadline is strictly detrimental for the agent as she strictly prefers the principal to
postpone the stopping of funding when no stages of the project are completed.24

When the project is sufficiently ex-ante attractive, the agent can motivate the principal
to start funding the project without promising to stop the stagnant project at the interim
deadline, and this is strictly beneficial for the agent. Thus, when the project is promising,
the agent sets no interim deadlines, which in expectation gives her more funds and more
experimentation for free.

24The probability of project success and stock of obtained funds are non-decreasing in the date of stopping
irrespective of the number of the completed stages of the project.
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7 Conclusion
A transparent flow of information is crucial for the successful management of any innovative
project. However, the researcher, who controls the information on the progress of the project,
often tends to have different motives than the investor. This leads to the question of how
a researcher chooses the transparency of the flow of information about the progress of a
project in order to manipulate the investor’s funding decisions. We address this question in
a dynamic information design model in which the agent commits to providing information
to the principal with an incentive to postpone the principal’s irreversible stopping of the
funding.

We contribute to the dynamic information design literature by studying the problem of
the dynamic provision of information regarding the progress of a multistage project, which
evolves endogenously over time and needs to be completed before a deadline. We show that
the agent’s choice of which pieces of information to provide and when depends on the project
being either ex ante attractive for the principal or not. In the case of a promising project,
the agent provides only the good news that the project is completed and postpones the
reports. In the case of an unattractive project, to motivate the principal to start funding
the project the agent not only reports the completion of the project, but also helps the
principal to find out when the project stagnates. To achieve this, the agent announces an
interim deadline for the project – a certain date at which she recommends the principal to
cut the funding of the project if the milestone of the project has not been reached.
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Appendix

A Notational conventions
Throughout Appendix B, the following notational conventions are used:

1. We denote the random time at which the nth stage of the project is completed by τn.
Formally, τn ∈ R+ is a continuously distributed random variable that represents the first
hitting time of xt = n.

27



2. The continuation values of the agent and principal at time t, respectively, given τ ,
and conditional on information disclosed up to t are given by

Wt (τ) := E [τ − t|t < τ ] c,

Vt (τ) := [P (xτ = 2|t < τ) − P (xt = 2|t < τ)] v − E [τ − t|t < τ ] c.

3. Shorthand for posterior beliefs:

qn (t) := P (xt = n|t < τ) ,

rn (t) := P (xτ = n|t < τ) .

B Proofs
Proof of Lemma 2. The beliefs regarding the number of stages of the project completed by
time t, xt, evolve according to the Poisson process. The principal’s unconditional beliefs are
given by p0 (0) = 1 and for any t such that the stopping still has not occurred,

ṗ0 (t) = −λp0 (t) ,

ṗ1 (t) = λ(p0 (t) − p1 (t)), (13)
ṗ2 (t) = λp1 (t) ,

where p0 (t) = e−λt and p1 (t) = λte−λt, p2 (t) = 1 − p0 (t) − p1 (t). The principal’s problem
is given by

max
S∈[0,T ]

{v · p2 (S) − c · S} . (14)

We start with analyzing the choice of S for the interior solution case, S ∈ (0, T ). F.O.C.
for (14) is given by

v · ṗ2 (S) = c, (15)

or, equivalently, p1 (S) = κ. There are two values satisfying (15): S̄ and S̄NI , S̄ < S̄NI . At
each t ∈

(
S̄, S̄NI

)
the principal receives a net positive payoff flow. Thus, stopping at S̄ is

not optimal and the only candidate for optimal stopping is S̄NI .25 Further, one can obtain
the closed form expression for the interior stopping time S̄NI from (15):

S̄NI = − 1
λ

W−1 (−κ) , (16)

where W−1(x) denotes the negative branch of the Lambert W function. S̄NI is well-defined
for any κ < e−1.

Thus, the solution to (14) could potentially be 0, S̄NI , or T . We proceed with a useful
lemma.

Lemma 8. The following is true regarding the principal’s continuation value in the no-
information benchmark, V

NI

t : if V
NI

t ≥ 0, for some t ∈
[
0, S̄NI ∧ T

]
, then V NI (s) ≥

0, for all s ∈
[
t, S̄NI ∧ T

]
.

25S̄ is a local minimum of the objective.
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Proof. The principal’s continuation value in the no-information benchmark is given by

V
NI

t =
[
p2
(
T ∧ S̄NI

)
− p2 (t)

]
v −

(
T ∧ S̄NI − t

)
c. (17)

Further,
V̇ NI (t) = vλ

(
κ − e−λtλt

)
= vλ (κ − p1 (t)) .

p1 (t) ≤ κ for all t ∈
[
0, S̄

]
and p1 (t) ≥ κ for all t ∈

[
S̄, S̄NI ∧ T

]
. Thus, V

NI

t increases for
t ∈

[
0, S̄

]
, decreases for t ∈

[
S̄, T ∧ S̄NI

]
, and V NI

(
T ∧ S̄NI

)
= 0, which establishes the

result.

Lemma 8 implies that if V NI (0) ≥ 0 and the principal chooses to opt in at t = 0, then
V

NI
t ≥ 0, t ∈

[
0, S̄NI ∧ T

]
, i.e., he invests until t = T ∧ S̄NI . This implies that the solution

to (14) is either T ∧ S̄NI or 0.
Finally, at t = 0 the principal chooses to start investing or not. The condition for the

principal to start investing at t = 0 is given by

V NI ≥ 0. (18)

To specify the set of parameters for which (18) is satisfied, we obtain the cutoff value of κ

given T and λ. Such a parameterization is intuitive: κ above the cutoff level corresponds to
a project with sufficiently high normalized cost-benefit ratio and implies that the principal
does not opt in. We denote this cutoff by κNI (T, λ). This solves (18) holding with equality.
Two cases are possible.

Case 1 : T ≤ S̄NI ⇐⇒ T ≤ − 1
λ
W−1 (−κ). This inequality is satisfied when either

1
λ

> T or


1
λ

≤ T

κ ≤ e−λT λT.
Given T ≤ S̄NI , (18) holding with equality becomes

p2 (T ) v − Tc = 0.

Solving it for κ yields κ = e−λT
(

eλT −1
λT

− 1
)
.

Case 2: T > S̄NI . This inequality is satisfied when 1
λ

≤ T and κ > e−λT λT. Given
T > S̄NI , (18) holding with equality becomes

vp2
(
S̄NI

)
− cS̄NI = 0 ⇐⇒ v

(
1 − p0

(
S̄NI

)
− p1

(
S̄NI

))
= cS̄NI ,

where (recall that ṗ2
(
S̄NI

)
= c

v
)

p0
(
S̄NI

)
= 1

λ2S̄NI
ṗ2
(
S̄NI

)
= c

λ2S̄NIv
= κ

λS̄NI

and
p1
(
S̄NI

)
= 1

λ
ṗ2
(
S̄NI

)
= c

λv
= κ.

Consequently,
vp2

(
S̄NI

)
− cS̄NI = v − v · κ

(
1 + λS̄NI + 1

λS̄NI

)
.

29



Let y := λS̄NI . Note that, by definition, y > 1. Then κ = ye−y, and so(
vp2

(
S̄NI

)
− cS̄NI

)
/v = 1 − e−y

(
1 + y + y2

)
.

It follows that V NI (0) is nonnegative whenever λS̄NI ≥ y0
.= 1.79328, which is equivalent

to
κ ≤ κ0

.= 0.298426.

Finally, putting the two cases together yields

κNI (T, λ) =

κ0
.= 0.298426, if 1

λ
≤ T and κ ≥ e−λT λT

e−λT
(

eλT −1
λT

− 1
)

, otherwise.
(19)

Proof of Lemma 3. The principal chooses at ∈ {0, 1} sequentially given the observed real-
izations of xt ∈ {0, 1, 2}. Whenever the principal observes t = τ2, he immediately chooses
at = 0 and gets v.

Consider the case xt = 1, t < T . If it is optimal to continue the project over the internal
[t, t + ∆t), then

V F I
t|1 = −c∆t + λ∆t · v + (1 − λ∆t) · V F I

t+∆t|1, (20)

where V F I
t|n stands for continuation value of the principal at date t given full information

and n completed stages of the project. Consider a candidate policy given by τ = τ2 ∧ T .
V F I

t|1 (τ2 ∧ T ) is given by

V F I
t|1 (τ2 ∧ T ) = v P (τ2 ≤ T |xt = 1) − c E [τ2 ∧ T − t|xt = 1] .

τ2|xt = 1 corresponds to the time between two consecutive Poisson arrivals, and thus has
exponential distribution. First, consider P (τ2 ≤ T |xt = 1):

P (τ2 ≤ T |xt = 1) = 1 − e−λ(T −t).

Next, consider E [τ2 ∧ T − t|xt = 1]:

E [τ2 ∧ T |xt = 1] − t

= P (τ2 ≤ T |xt = 1)
∫ T

t
z · λe−λ(z−t)

P (τ2 ≤ T |xt = 1)dz + P (τ2 > T |xt = 1) T − t

= 1
λ

(
1 − e−λ(T −t)

)
+ t − e−λ(T −t)T + P (τ2 > T |xt = 1) T − t

= 1
λ

(
1 − e−λ(T −t)

)
.

(21)

Thus,
V F I

t|1 (τ2 ∧ T ) = v
(
1 − e−λ(T −t)

)
− c

1
λ

(
1 − e−λ(T −t)

)
=
(

v − c

λ

) (
1 − e−λ(T −t)

)
.

(22)
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First, consider the case v > c
λ
. From (22) one observes that if v > c

λ
, then V F I

t|1 (τ2 ∧ T ) >

0, ∀t ∈ [0, T ). V F I
t|1 (τ2 ∧ T ) for this parametric case is illustrated in the Figure 6. As, by

optimality, V F I
t|1 in (20) is weakly higher than V F I

t|1 (τ2 ∧ T ), it holds that V F I
t|1 > 0, ∀t ∈ [0, T ).

Thus, the principal invests until τ2 ∧ T , which verifies that the candidate policy is optimal
and the optimal continuation value given full information and one completed stage of the
project is given by

V F I
t|1 =

(
v − c

λ

) (
1 − e−λ(T −t)

)
. (23)

Second, consider the case v = c
λ
. In this case, the principal is indifferent between continuing

and stopping at any date. Third, consider v < c
λ
. In this case, from (22), V F I

t|1 (τ2 ∧ T ) <

0, ∀t ∈ [0, T ]. It can be shown that this implies that V F I
t|1 can not be strictly positive at any

date t. Thus, v < c
λ

leads to the trivial case in which the principal does not start investing
at t = 0 in the full information benchmark. Thus, we assume v ≥ c

λ
, or, equivalently κ ≤ 1.

0 tT

Figure 6: V F I
t|1 (τ2 ∧ T ), the continuation value of the principal under full information,

τ = τ2 ∧ T policy, and conditional on one stage of the project being completed.

Consider now the case of xt = 0, t < T , i.e., no stages of the project have yet been
completed. If it is optimal to continue the project over the internal [t, t + ∆t), then

V F I
t|0 = −c∆t + λ∆tV

F I
t|1 + (1 − λ∆t)V F I

t+∆t|0.

By Taylor expansion (V F I
t+∆t|0 = V F I

t|0 + V̇ F I
t|0 ∆t), we obtain the Hamilton-Jacobi-Bellman

equation
c = λ(V F I

t|1 − V F I
t|0 ) + V̇ F I

t|0 .

After plugging V F I
t|1 given by (23) into the HJB equation, one can solve this ODE for V F I

t|0 .
A generic solution is

z0 = v − 2c

λ
+ t(λv − c)e−(T −t)λ + C0e

tλ, (24)

where C0 is an integration constant.
It can be shown that the stopping boundary for the principal’s optimal stopping problem

is a regular boundary, i.e., the smooth pasting condition holds at the stopping boundary.
Applying value matching (V F I

S0|0 = 0) and smooth pasting (V̇ F I
S0|0 = 0) conditions to the HJB

equation, we can get the stopping boundary S0. It is implicitly given by

c = λV F I
S0|1, (25)

where V F I
S0|1 is given by (23).
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The equation (25) can be solved for S0. We denote the solution by SP
0 :

SP
0 = T + 1

λ
log

(1 − 2κ

1 − κ

)
. (26)

Finally, (26) pins down C0, which is implicitly given by

v − 2c

λ
+ SP

0 (λv − c)1 − 2κ

1 − κ
+ C0e

SP
0 λ = 0, (27)

and by the standard verification theorem, it can be demonstrated that the value function
V F I

t|0 given by (24) with C0 given by (27) and SP
0 given by (26) is optimal.

The principal is willing to start investing at t = 0 iff SP
0 ≥ 0. We denote the upper

bound on the cost-benefit ratio κ such that the principal chooses to start investing in t = 0
under full information by κF I (T, λ), we solve SP

0 = 0 for κ and obtain

κF I (T, λ) = 1 − e−λT

2 − e−λT
. (28)

In summary, under full information, if κ ≤ κF I (T, λ), then the principal starts investing
at t = 0. Further, he stops at SP

0 if the first stage of the project has not been completed by
that time. Otherwise, he proceeds to invest until τ2 ∧ T .

Proof of Lemma 1. Any information policy σµ induces an action process, which is a stopping
time with respect to a filtration of the probability space. Thus, an information policy σµ

can be represented as a stopping time τ . A stopping time τ is the principal’s best response
to at least one information policy σµ if and only if

Vt (τ) ≥ 0, ∀t ≥ 0 and V NI
τ < 0, (29)

where Vt(τ) is the principal’s continuation value given by (2) and V NI
t is the principal’s

optimal continuation value in the absence of any additional information from the agent
starting from the date t. We proceed with proving this claim.

Necessity. Assume Vt(τ) < 0 for some t. In that case, it is optimal for the principal to
deviate to stopping at t < τ . Thus, there is no information policy σµ, for which this τ is the
principal’s best reply. Assume V NI

τ ≥ 0. Thus, the principal deviates to stopping at t > τ ,
and there is no σµ, for which this τ is the best reply.

Sufficiency. Assume (29) holds. Vt (τ) ≥ 0 for all t < τ implies that the principal prefers
to continue rather than to stop the funding for all t < τ . Thus, it can not be that case that
the principal stops before τ . Further, V NI

τ < 0 implies that, conditional on reaching the
date of stopping τ , it is better for the principal to stop immediately rather than to stop at
t > τ . Finally, given τ , there exists σ implementing it: consider a direct recommendation
mechanism σ with M = {0, 1} such that whenever, based on the realizations of the state
process and randomization devices, the considered stopping time τ suggests stopping the
funding, the direct recommendation mechanism sends the message m = 0 to the principal.
As it is optimal for the principal to stop at τ , τ is the principal’s best reply to σ.
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As the agent chooses the distribution of the stopping time τ to maximize her long-run
payoff, the constraint V NI

τ < 0 is inactive at optimum. Otherwise, the agent can prolong
the expected funding by choosing a different τ . Thus, without loss of generality, we omit
this constraint from the agent’s problem, and the problem that the agent solves at t = 0 is
given by (1).

Discussion of Assumption 2. κND (T, λ) is defined as follows: for any κ ≤ κND (T, λ), the
principal invests until T in the no-information benchmark. From Lemma 2, if the principal
is willing to start investing, i.e., κ ≤ κNI (T, λ), then

SNI = S
NI ∧ T.

For the sake of instruction, below we consider relaxing the Assumption 2 and demonstrate
how the relation between κND (T, λ) and κNI (T, λ) changes between Case a (assumption
alternative to the Assumption 2) and Case b (Assumption 2 holds).

Case a. eλT ≤ λT (λT + 1) + 1. In this case, whenever the principal is willing to start
investing in the no-information benchmark, she invests until T , i.e., κND (T, λ) = κNI (T, λ),
where κNI (T, λ) is given by (19). To see that, first, consider the extreme sub-case in which
T < 1

λ
. As −λS

NI must belong to −1 axis of Lambert W function, it has a lower bound
corresponding to 1

λ
. Thus, T < S

NI for any κ (T, λ). Second, consider λT ∈
[
1, λ̃T

]
, where

λ̃T solves eλT = λT (λT + 1) + 1. In this case, from (16), if κ (T, λ) ≤ e−λT λT (κ (T, λ) ≥
e−λT λT , respectively), then T ≤ S

NI (T ≥ S
NI , respectively). However, κNI (T, λ) ≤

e−λT λT . Thus, κND (T, λ) = κNI (T, λ).
Case b. eλT > λT (λT + 1) + 1. As before, it holds that if κ (T, λ) ≤ e−λT λT (κ (T, λ) ≥

e−λT λT ), then T ≤ S
NI (T ≥ S

NI , respectively). Denote

κND (T, λ) := e−λT λT.

As κNI (T, λ) > κND (T, λ), two cases emerge. If 0 < κ ≤ κND (T, λ), then T ≤ S
NI , and

from κ ≤ κNI (T, λ), it holds that SNI = T and as the agent does not strictly benefit from
disclosing any information, she chooses non-disclosure. If κ > κND (T, λ), then T > S

NI

and the agent can potentially benefit from information disclosure.

Proof of Lemma 4. Consider an information policy such that stopping of funding happens
immediately at the completion of the second stage of the project; it is given by τ = τ2 ∧ T .
There exists such κ̃ (T, λ) that solves the principal’s binding t = 0 individual rationality
constraint when τ = τ2 ∧ T :

V (τ2) = 0, (30)

where
V (τ2) = p2 (T ) v − E [τ2 ∧ T ] c

= v
(
1 − e−λT − λTe−λT

)
− c

1
λ

(
2 − 2e−λT − λTe−λT

)
.

(31)
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The solution to equation (30) is given by

κ̃ (T, λ) = 1 − eλT + λT

2 − 2eλT + λT
. (32)

Further, κ > κ̃ (T, λ) ⇒ V (τ2) < 0 and κ ≤ κ̃ (T, λ) ⇒ V (τ2) ≥ 0.

Proof of Lemma 5. Consider the case of κ ∈ (κND (T, λ) , κNI (T, λ)]. The agent’s relaxed
problem for this case has the individual rationality constraints only for t ∈ [0, S̄NI ], and it
is given by

max
F0,F1,F2

{c · E [τ ]}

s.t. Vt (τ) ≥ 0, ∀t ∈
[
0, S̄NI

]
,

(33)

where Vt(τ) is given by (2).
Consider the candidate information policy represented by τ such that τ ≥ S̄NI ∨(τ2 ∧ T )

and V (τ) = V NI , where V NI is given by (5). We start with arguing that the candidate τ

satisfies the system of individual rationality constraints. From Lemma 2, given candidate τ ,
the principal invests until S̄NI with certainty and the constraints in (33) are satisfied for all
t ∈ [0, S̄NI). Further, τ implies that VS̄NI (τ) = 0, i.e., the individual rationality constraint
at t = S̄NI is binding.

We proceed with arguing that the candidate τ maximizes the agent’s objective function
in (33). The agent’s objective can be WLOG written out as:

W (τ) = P (xτ = 2) v︸ ︷︷ ︸
total surplus

− V (τ).︸ ︷︷ ︸
principal’s surplus

(34)

By Lemma 4, a stopping time τ that assigns probability one to τ ≥ τ2 ∧ T satisfies the
individual rationality constraint at t = 0 in (33). Note that, given τ ≥ τ2 ∧ T , the total
surplus in (34) is given by P (xT = 2) v, i.e., total surplus achieves its upper bound deter-
mined by the exogenously given project deadline T . The principal’s surplus in (34) is given
by V (τ) = V NI , i.e., principal’s surplus achieves its lower bound specified by (5). This can
be seen from the principal’s decision problem, in which he best replies to an information
policy σµ. As σµ allows the principal to condition his actions on the information regarding
the evolution of the state process, the principal’s equilibrium payoff can not be lower than
V NI , his equilibrium payoff when he is restricted to choosing actions without conditioning
them on the information about the state process. Thus, τ solves the relaxed problem (33).

Consider the case of κ ∈ (κNI (T, λ) , κ̃ (T, λ)]. The agent’s relaxed problem for this case
has the individual rationality constraint only for the initial period, and it is given by

max
F0,F1,F2

{c · E [τ ]}

s.t. V (τ) ≥ 0,
(35)

where V (τ) = P (xτ = 2) v − E [τ ] c.
Consider candidate information policy represented by τ such that τ ≥ τ2∧T and V (τ) =

V NI . For such τ , agent’s expected payoff (34) is given by P (xT = 2) v − V NI . As discussed
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for the parametric case κ ∈ (κND (T, λ) , κNI (T, λ)], the first term is at its upper bound. To
see that the second term is at its lower bound, note that, from Lemma 2, V NI = 0, and thus
the individual rationality constraint in (35) is binding. Hence, τ solves the relaxed problem
(35).

Proof of Proposition 1. The proof covers the case κ ∈ (κND (T, λ) , κNI (T, λ)] and the case
κ ∈ (κNI (T, λ) , κ̃ (T, λ)] separately.

1. The case of κ ∈ (κND (T, λ) , κNI (T, λ)].
We start with proving the existence of S∗ such that V (τ) = V NI . Assume that S∗ > S̄NI .

For all t ∈ [S̄NI , S∗), stopping never occurs, at t = S∗ it occurs if xS∗ = 2, and for all
t ∈ (S∗, τ) it occurs at t = τ2 ∧T . For t ∈ [S∗, τ), the absence of stopping induces posteriors
qn (t). Further, for t ∈ [S∗, τ) the principal discounts future benefits from postponing
stopping using the probability of the state being 2. Hence, the continuation value at t = S̄NI

can be written as

VS̄NI (τ) = vλ

(∫ S∗

S̄NI
p1 (z) − κdz +

∫ T

S∗
(q1 (z) − κ) (1 − P (xz = 2)) dz

)
. (36)

The principal’s long-run payoff is given by

V (τ) =
∫ S̄NI

0
(v · p1 (s) λ − c) ds + VS̄NI (τ) ,

where
∫ S̄NI

0 (v · p1 (s) λ − c) ds = V NI . Thus, to ensure that S∗ makes the individual ra-
tionality constraint bind at t = S̄NI , i.e., V (τ) = V NI , it is necessary and sufficient that
VS̄NI (τ) = 0. Using (36), this equation can be written as∫ S∗

S̄NI
κ − p1 (z) dz =

∫ T

S∗
(q1 (z) − κ) (1 − P (xz = 2)) dz.

Let g (S) :=
∫ S

S̄NI κ − p1 (z) dz and k (S) :=
∫ T

S (q1 (z) − κ) (1 − P (xz = 2)) dz, S ∈ [S̄NI , τ).
q1 (t) ≥ κ, for all t ∈ [S∗, T ). Thus, g

(
S̄NI

)
= 0, k

(
S̄NI

)
> 0. Further, p1 (t) < κ, for

all t ∈ (S̄NI , T ]. Hence, g (T ) > 0, k (T ) = 0. Finally, p1 (t) ≤ κ, for all t ∈
[
S̄NI , T

]
implies that g′ (S) ≥ 0, for all s ∈

[
S̄NI , T

]
, and q1 (t) ≥ κ, for all t ∈ [S∗, T ] implies that

k′ (S) ≤ 0, for all s ∈ [S∗, T ]. Thus, by the intermediate value theorem, there exists S∗

solving VS̄NI (τ) = 0. Thus, there exists S∗ > S̄NI such that principal’s individual rationality
constraint is binding at t = S̄NI .

We proceed with proving that the stopping time τ satisfies the conditions in Lemma 1
and thus it is obedient.

First, consider t ≤ S̄NI . The principal’s continuation value for all t ∈ [0, S̄NI ] can be
written as

Vt (τ) =
∫ S̄NI

t
vλ (p1 (s) − κ) ds + VS̄NI (τ) .

Given the binding individual rationality constraint, it becomes

Vt (τ) =
∫ S̄NI

t
vλ (p1 (s) − κ) ds, for all t ∈ [0, S̄NI).
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Finally, note that Vt (τ) above is equivalent to V NI
t given by (17). Lemma 2 implies that

given κ ∈ (κND (T, λ) , κNI (T, λ)], V NI (0) = V (τ) ≥ 0. Further, Lemma 8 implies that
V (τ) ≥ 0 ⇒ Vt (τ) ≥ 0, ∀t ∈ [0, S̄NI).

Second, consider t ∈
[
S̄NI , S∗

]
. Given κ ∈ (κND (T, λ) , κNI (T, λ)], p1 (t) ≤ κ, ∀t ∈[

S̄NI , S∗
]
. Thus, V NI

t = 0, ∀t ∈
[
S̄NI , S∗

]
. The principal’s continuation value is given by

Vt (τ) =
∫ S∗

t
vλ (p1 (s) − κ) ds + VS∗ (τ) . (37)

As p1 (t) ≤ κ, ∀t ∈
[
S̄NI , S∗

]
,
∫ S∗

t vλ (p1 (s) − κ) ds ≤ 0 and it is increasing in t. As
VS̄NI (τ) = 0, where VS̄NI (τ) is given by (36), it follows that Vt (τ) ≥ 0, ∀t ∈

[
S̄NI , S∗

]
.

Third, consider t ∈ [S∗, τ). The absence of stopping at t ≥ S∗ reveals that xt ̸= 2.
Thus, q1 (t) = p1(t)

p0(t)+p1(t) = λt
1+λt

, ∀t ∈ [S∗, τ), and, thus, q̇1 (t) > 0. Further, q1 (S∗) > κ.
The continuation value ∀t ∈ [S∗, τ) is given by

Vt (τ) = E [
∫ τ

t vλ (q1 (z) − κ) dz | t < τ ] .

Thus, Vt (τ) ≥ 0, ∀t ∈ [S∗, τ).
2. The case of κNI (T, λ) < κ ≤ κ̃ (T, λ).
We start with proving the existence of S∗ such that V (τ) = 0. For all t ∈ [0, S∗),

stopping never occurs, at t = S∗ it occurs if xS∗ = 2, and for all t ∈ (S∗, T ] it occurs at
t = τ2 ∧ T . The principal’s long-run payoff can be written as

V (τ) = vλ

(∫ S∗

0
p1 (z) − κdz +

∫ T

S∗
(q1 (z) − κ) (1 − P (xz = 2)) dz

)
. (38)

To ensure that S∗ makes the individual rationality constraint bind at t = 0, it is necessary
and sufficient that V (τ) = 0. The next step of the proof consist of inspecting (38) to
establish that there exists S∗ ensuring that V (τ) = 0. It follows the respective part from
the proof for the parametric case κND (T, λ) < κ ≤ κNI (T, λ), imposing S̄NI = 0 in it
everywhere; thus, we omit it for the sake of space.

We proceed with proving that the stopping time τ satisfies the conditions in Lemma
1 and thus it is obedient. The principal’s continuation value is given by (37). As κ ∈
(κNI (T, λ) , κ̃ (T, λ)], it follows from Lemma 2 that V NI

t = 0, ∀t ∈ [0, S∗]. First, assume
S∗ ≤ S̄NI . From the proof of Lemma 2, it follows that p1 (t) ≤ κ, ∀t ∈ [0, S], and p1 (t) ≥
κ, ∀t ∈ [S, S̄NI ]. Thus,∫ S̄NI

t
vλ (p1 (s) − κ) ds ≥

∫ S̄NI

0
vλ (p1 (s) − κ) ds, ∀t[0, S̄NI ]. (39)

As Vt(τ) is given by (37), V (τ) = 0 and (39) imply that Vt(τ) ≥ 0, ∀t ∈ [0, S∗]. Second,
assume S∗ ≥ S̄NI . As V (τ) = 0 and

∫ S̄NI

0 vλ (p1 (s) − κ) ds < 0, it must be that V (S̄NI) > 0.
Further,

∫ S∗

t vλ (p1 (s) − κ) ds increases in t for t ∈ [S̄NI , S∗]. Thus, Vt(τ) ≥ 0, ∀t ∈ [0, S∗].
Finally, the proof that Vt(τ) ≥ 0, ∀t ∈ [S∗, τ) follows the the respective part of the proof

for the parametric case κ ∈ (κND (T, λ) , κNI (T, λ)]; thus, we omit it for the sake of space.
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Proof of Lemma 6. We provide the proof for the parametric cases κND (T, λ) < κ ≤ κNI (T, λ)
and κNI (T, λ) < κ ≤ κ̃ (T, λ) separately.

1. The case of κND (T, λ) < κ ≤ κNI (T, λ).
Under any obedient optimal policy, the principal’s individual rationality constraint is

binding, thus, V (τ) = V NI , or equivalently p2 (T ) v − E [τ ] c = p2
(
S̄NI

)
v − S̄NIc. Thus,

E [τ ] = 1
λκ

(
p2 (T ) − p2

(
S̄NI

))
+ S̄NI .

Differentiating both sides with respect to κ yields

∂ E [τ ]
∂κ

= e−T λ (1 + Tλ) − e−S̄NIλ − κ

κ2λ
.

The equation
e−T λ (1 + Tλ) − e−S̄NIλ − κ = 0

can be equivalently rewritten as

e−T λ − e−S̄NIλ = κ − e−T λTλ.

It has a unique solution corresponding to κ = κND (T, λ) := e−T λTλ. As κ > κND (T, λ) , it
holds that ∂ E [τ ] /∂κ < 0.

2. The case of κNI (T, λ) < κ ≤ κ̃ (T, λ).
The principal’s long-run payoff under any obedient optimal policy is given by

E [τ ] c = p2 (T ) v.

Rewriting it equivalently, E [τ ] = 1
λ

1
κ
p2 (T ) ⇒ ∂ E [τ ] /∂κ < 0.

Proof of Lemma 7. Lemma 4 implies that if the distribution of the stopping time τ assigns
zero probability to stopping in states 0 and 1 then V (τ) < 0 and the individual rationality
constraint is violated. Thus, the necessary condition for a information policy represented
by τ to be individually rational under κ ∈ (κ̃ (T, λ) , κF I (T, λ)) is that it assigns a positive
probability to stopping not only in state 2, but also to stopping in either state 0 or state 1.

First, consider a stopping time τ that assigns a positive probability to stopping in state
1, i.e. F1(t|t1) > 0 for some t ∈ [t1, T ). A pure information policy σ induces a stopping
time τπ defined on the probability space (H, F , P ), where H is the space of histories and F
is the natural filtration of the state process xt. Assume there is a positive mass of histories
H1 ⊆ H for some given stopping time τπ:

H1 :=
(
HA := {h|τ1(h) ≤ τπ(h) < τ2(h) ≤ T}

)
∪
(
HB := {h|τ1(h) ≤ τπ(h) < T < τ2(h)}

)
∪
(
HC := {h|τ1(h) ≤ τπ(h) = T < τ2(h)}

)
.

We proceed with showing that at optimum, P (HA ∪ HB) = 0, i.e., stopping in state 1 is
possible only at T . Assume P (HA ∪ HB) > 0 and consider a new stopping time τ̃π, which
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differs from τπ as follows: ∀h ∈ H1, let τ̃π(h) = τ2(h) ∧ T (so that under τ̃π, ∀h ∈ HA

stopping occurs in state 2), and ∀h ∈ H\H1, nothing is changed. Hereafter, for the sake of
conciseness, we drop the argument h of the stopping time τπ(h). Assessing the change in
the principal’s payoff yields:

V (τ̃π) − V (τπ)

=
∫

HA
vdP (h) −

∫
HA∪HB

c · τ2 ∧ TdP (h) −
(∫

HA∪HB
(0 − c · τπ) dP (h)

)
=v P(HA) − c

∫
HA∪HB

(τ2 ∧ T − τπ) dP (h).
(40)

Let H∪ := HA ∪ HB, HA ∪ HB = {h|τ1 ≤ τπ < τ2 ∧ T}. Further, note that HA =
H∪ ∩ {τ2 ≤ T}. Given this, the expression (40) becomes

V (τ̃π) − V (τπ)
=v P (H∪ ∩ {τ2 ≤ T}) − c E (τ2 ∧ T − τπ|H∪) P(H∪)
=v P (τ2 ≤ T |H∪) P (H∪) − c E (τ2 ∧ T − τπ|H∪) P(H∪)

= P (H∪)
(

v P (τ2 ≤ T |H∪) − c E (τ2 ∧ T − τπ|H∪)
)

.

(41)

Further, inspecting the expression in the brackets in the last line of (41) yields:

v P (τ2 ≤ T |H∪) − c E (τ2 ∧ T − τπ|H∪)

=
∫

Ĥ
v P (τ2 ≤ T |H∪ ∩ {τπ = S ± ε} ∩ {τ1 = t1 ± ε})

− c E (τ2 ∧ T − S|H∪ ∩ {τπ = S ± ε} ∩ {τ1 = t1 ± ε}) dP (h) ,

(42)

where {τπ = t ± ε} is a shorthand for τπ ∈ [t − ε, t + ε] and

Ĥ = {h|{τπ = S ± ε} ∩ {τ1 = t1 ± ε}S ∈ [0, T ] , t1 ∈ [0, T ]} .

It can be show that

{H∪ ∩ {τπ = S}} = {xS = 1} . (43)

Further, it can be shown that for all 0 < t1 ≤ S ≤ T ,

P (τ2 ≤ T | {xS = 1} ∩ {τ1 = t1}) = P (τ2 ≤ T |xS = 1) ,

E (τ2 ∧ T − S| {xS = 1} ∩ {τ1 = t1}) = E (τ2 ∧ T − S|xS = 1) .
(44)

Given (43) and (44), consider (42), where we integrate over the set Ĥ. Consider subset
of Ĥ such that t1 > S, taking limε→0 of the integral over this subset yields 0 as the bounded
convergence theorem applies. Now consider taking limε→0 of integral over the complement
subset such that t1 ≤ S (and applying the bounded convergence theorem): given (43),
limε→0 of the expression under the integral in (42) becomes

v P (τ2 ≤ T | {xS = 1} ∩ {τ1 = t1}) − c E (τ2 ∧ T − S| {xS = 1} ∩ {τ1 = t1}) . (45)
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Further, given (44), for any t1, S in the t1 ≤ S subset of Ĥ, (45) is given by

v P (τ2 ≤ T |xS = 1) − c E (τ2 ∧ T − S|xS = 1) = (v − c

λ
)
(
1 − e−λ(T −S)

)
> 0, (46)

where the sign of expression follows from κ ≤ κF I < 1 and the expression for E (τ2 ∧ T − S|xS = 1)
is obtained in (21). Thus limε→0 of the integral over this subset yields a strictly positive
value, and (42) is positive. Finally, as P (H∪) > 0 in (41), we get that V (τ̃π) − V (τπ) > 0.
Given this, it is straightforward that W (τ̃π) − W (τπ) > 0. Thus, for a pure information
policy σ to be optimal, it should not assign a positive probability to stopping in state 1. It
can be shown that this necessary condition carries over to a mixed information policy σµ,
and thus

F1(t|t1) = 0, ∀t ∈ [t1, T ). (47)

Given (47), we can wlog restrict attention to τπ which assigns a positive probability to
stopping in states 0 and 2. Our goal here is to show that at optimum stopping in state 2
happens immediately. Given (47), wlog consider the following partition of H for some given
τπ:

(i). H0 := {h|τπ < τ1 ∧ T}, i.e., such histories that stopping occurs in state 0,

(ii). H1 := {h|τ1 ≤ τπ = T < τ2}, i.e., stopping occurs in state 1,

(iii). H2 :=
(
HA

2 := {h|τ2 < τπ ≤ T}
)

∪
(
HB

2 := {h|τ2 = τπ ≤ T}
)
, i.e., stopping occurs in

state 2.

Showing that at optimum stopping in state 2 happens immediately boils down to showing
that optimality requires that P(HA

2 ) = 0. Note that as histories are induced by pure
information policy σ, while choosing τπ, which occurs before τ1, the principal does not
distinguish between any of the histories, and thus

τπ(h) = S0 ∈ [0, T ], ∀h ∈ H0,

where S0 is deterministic. Given this, the partition becomes:

H0 :={h|S0 < τ1 ∧ T},

H1 :={h|τ1 ≤ S0 ≤ τπ = T < τ2},

H2 :=
(
HA

2 := {h|τ1 ≤ S0} ∩ {h|τ2 < τπ ≤ T}
)

∪

∪
(
HB

2 := {h|τ1 ≤ S0} ∩ {h|τ2 = τπ ≤ T}
)

.

(48)

The goal is to show that optimality requires that P
(
HA

2

)
= 0. We proceed with con-

structing τ̂π which gives the principal a payoff higher than τπ. τ̂π is constructed as follows.
First, for all h ∈ HA

2 , at t = τ2, flip a coin with a distribution θ ∈ [0, 1]. In the case of
heads, stop right away, i.e., at τ2. In the case of tails, proceed according to τπ. Second, for
all h ∈ H, add ∆S ∈ [0, T − S0] to S0 to ensure that

V (τπ) = V (τ̂π) ≥ 0, (49)
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where the inequality is implied by the t = 0 IR constraint for the agent. We proceed with
showing that such ∆S ≥ 0 exists. Denote for each h:

∆τπ(h) :=

τπ(h) − τ2(h), if τ2(h) < τπ(h)
0, otherwise.

Writing out (49):

v P(H2) − c
(∫

H2
τ2 + ∆τπdP + S0 P(H0) + T P(H1)

)
=v P(Ĥ2) − c

(∫
Ĥ2

τ2 + ∆τπdP − θ ·
∫

ĤA
2

∆τπdP + (S0 + ∆S) P(Ĥ0) + T P(Ĥ1)
)

,
(50)

where the sets Ĥ0, Ĥ1, Ĥ2 are defined as follows:

Ĥ0 :={h|S0 + ∆S < τ1 ∧ T}
Ĥ1 :={h|τ1 ≤ S0 + ∆S ≤ τ̂π = T < τ2(h)}
Ĥ2 :=

(
HA

2 := {h|τ1 ≤ S0 + ∆S} ∩ {h|τ1 ≤ τ2 < τ̂π ≤ T}
)

∪

∪
(
HB

2 := {h|τ1 ≤ S0 + ∆S} ∩ {h|τ1 ≤ τ2 = τ̂π ≤ T}
)

.

(51)

The goal is to prove that the equation (50) has a solution in ∆S. Rewriting equation
(50) equivalently, while keeping V (τπ) = 0 in mind yields:

0 =v P(Ĥ2) − c

(∫
Ĥ2

τ2 + ∆τπdP − θ ·
∫

ĤA
2

∆τπdP

)
− c

(
(S0 + ∆S) P(Ĥ0) + T P(Ĥ1)

)
,

⇐⇒

c

(∫
Ĥ2

∆τπdP − θ ·
∫

ĤA
2

∆τπdP

)

=v P(Ĥ2) − c
(∫

Ĥ2
τ2dP + (S0 + ∆S) P(Ĥ0) + T P(Ĥ1)

)
.

(52)
Consider stopping times τ̃π and ˜̃τπ given by

τ̃π =

τ2 ∧ T, if xS0 > 0
S0, otherwise.

˜̃τπ =

τ2 ∧ T, if xS0+∆S > 0
S0 + ∆S, otherwise.

The equation (52) can be written as

c

(∫
Ĥ2

∆τπdP − θ ·
∫

ĤA
2

∆τπdP

)
=v P (x˜̃τπ = 2) − c E

[
˜̃τπ
]

⇐⇒

c

(∫
Ĥ2

∆τπdP − θ ·
∫

ĤA
2

∆τπdP

)
=V

(
˜̃τπ
)

.

(53)
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Let µ(∆S) denote the LHS and λ(∆S) denote the RHS of (53). It can be shown that
µ(∆S) and λ(∆S) are continuous in ∆S. First, consider the left bound, ∆S = 0, and the
LHS:

µ(0) = c

(∫
H2

∆τπdP − θ ·
∫

HA
2

∆τπdP

)

= c

(∫
HB

2

∆τπdP +
∫

HA
2

∆τπ (1 − θ) dP

)
> 0.

(54)

Next, consider the RHS.

λ(0) = v P(H2) − c
(∫

H2
τ2dP + S0 P(H0) + T P(H1)

)
= V (τ̃π). (55)

Further, it can be shown from V (τπ) = 0 that V (τ̃π) = c
∫

H2
∆τπdP . To see this note

that

V (τπ) =0

⇐⇒ v P(H2) − c
(∫

H2
τπdP + S0 P(H0) + T P(H1)

)
=0

⇐⇒ v P(H2) − c
(∫

H2
τ2dP +

∫
H2

∆τπdP + S0 P(H0) + T P(H1)
)

=0

⇐⇒ v P(H2) − c
(∫

H2
τ2dP + S0 P(H0) + T P(H1)

)
=c

∫
H2

∆τπdP

⇐⇒ V (τ̃π) =c
∫

H2
∆τπdP.

Given this, (55) yields
λ(0) = c

∫
H2

∆τπdP. (56)

From (54) and (56),
λ(0) > µ(0) > 0. (57)

Next consider the right bound, ∆S = T − S0. First, consider LHS:

µ(T − S0) = c
(∫

h:{τ2≤T } ∆τπdP − θ ·
∫

h:{τ2≤T }∩{τπ−τ2≥ε} ∆τπdP
)

≥ 0. (58)

Second, consider RHS:

λ(T − S0) =v P(τ2 ≤ T ) − c

(∫
h:{τ2≤T }

τ2dP + T P(τ1 > T ) + T P(τ1 ≤ T < τ2)
)

=v P(τ2 ≤ T ) − c

(∫
h:{τ2≤T }

τ2dP + T P(τ2 > T )
)

=v P(τ2 ≤ T ) − E [τ2 ∧ T ] = V (τ2 ∧ T ) .

Further, as κ > κ̃, it holds that V (τ2 ∧ T ) < 0. Thus, λ(T − S0) < 0 and

λ(T − S0) < 0 ≤ µ(T − S0). (59)
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Given (57) and (59), by the intermediate value theorem, there exists such τ̂π that (49)
holds. Finally, as

V (τπ) = P(HA)v − c E[τπ],
V (τ̂π) = P(ĤA)v − c E[τ̂π],

V (τπ) = V (τ̂π) by construction, and P(ĤA) > P(HA) by ∆S > 0, and thus it follows that
E[τ̂π] > E[τπ]. Thus, W (τ̂π) > W (τπ) and τ̂π gives the agent a payoff higher than τπ. Thus,
if a pure information policy σ is optimal then P

(
HA

2

)
= 0, i.e., stopping in state 2 happens

immediately. Finally, it can be shown that this necessary condition carries over to a mixed
information policy σµ, and thus

F2(t|t1, t2) = 1, ∀t ∈ [t2, T ].

Proof of Proposition 2. Given Lemma 7, the space of candidate optimal information policies
under κ ∈ (κ̃ (T, λ) , κF I (T, λ)] simplifies to information policies such that stopping in state
2 happens at τ2, and also stopping in state 0 happens with positive probability. Thus, to
characterize the information policy under κ ∈ (κ̃ (T, λ) , κF I (T, λ)], We need to characterize
the assignment of the probability mass of stopping in state 0 that is optimal for the agent
given the principal’s individual rationality constraints, i.e., choice of F0(t).

At t = 0, the agent chooses a distribution F0 on [0, T ], observable to both the agent and
the principal. ρ stands for the random date at which the stopping occurs if the state is 0 by
that date. ρ is drawn at t = 0 according to F0, which is independent from the state process
xt, and the draw privately observed by the agent.

We proceed to solving the agent’s problem:

max
F0

{EF0 [cE [τ ]]}

s.t. EF0 [Vt(τ)|t < τ ] ≥ 0, ∀t ≥ 0,
(60)

where τ is given by (61).
We proceed in two steps: first, we formulate and solve the relaxed version of (60) with

individual rationality constraint only for t = 0; second, we demonstrate that the solution to
the relaxed problem satisfies the full system of constraints in (60).

The individual rationality constraint in the relaxed problem is given by

P (xτ = 2) v − E [τ ] c ≥ 0.

We proceed with a useful lemma.

Lemma 9. Given an information policy represented by

τ =

ρ, if xρ = 0
τ2 ∧ T, otherwise,

(61)
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where ρ ∈ [0, T ], it holds that

P (xτ = 2) = P (xT = 2) − P (xρ = 0) P (xT = 2|xρ = 0)

and
E [τ ] = E [τ2 ∧ T ] − P (xρ = 0) E [τ2 ∧ T − ρ|xρ = 0] .

Proof. P (xτ = 2) stands for the mass of events such that the principal gets v. Given (61),
the principal gets v either if the second stage is completed not later than ρ or if the first
stage is completed not later than ρ and the second stage is completed not later than T .
Thus,

P (xτ = 2) = P
(

{xρ = 1} ∩ {τ2 ≤ T}
)

+ P
(
xρ = 2

)
.

Further,
P
(

{xρ = 1} ∩ {τ2 ≤ T}
)

= P (xρ = 1) P (τ2 ≤ T |xρ = 1) .

Thus,
P (xτ = 2) = P

(
xρ = 1

)
P
(
τ2 ≤ T |xρ = 1

)
+ P

(
xρ = 2

)
. (62)

Further, from the full probability formula,

P (xρ = 1) P (τ2 ≤ T |xρ = 1) =
P (xT = 2)
− P (xρ = 0) P (τ2 ≤ T |xρ = 0)
− P (xρ = 2) P (τ2 ≤ T |xρ = 2) .

Plugging this into (62) yields

P (xτ = 2) = P (xT = 2) − P (xρ = 0) P (τ2 ≤ T |xρ = 0) .

We proceed with proving the second result of Lemma 9. Given (61), it holds that

E [τ ] = P (xρ = 0) E [τ |xρ = 0] + P (xρ > 0) E [τ |xρ > 0]
= P (xρ = 0) ρ + P (xρ > 0) E [τ2 ∧ T |xρ > 0] .

(63)

Further, from the full probability formula,

P (xρ > 0) E [τ2 ∧ T |xρ > 0] =E [τ2 ∧ T ]
− P (xρ = 0) E [τ2 ∧ T |xρ = 0] .

Plugging this into (63) yields

E [τ ] = E [τ2 ∧ T ] − P (xρ = 0) E [τ2 ∧ T − ρ|xρ = 0] .

43



Using Lemma 9, the agent’s relaxed problem can be written out as:

min
F0

{EF0 [P (xρ = 0) E [τ2 ∧ T − ρ|xρ = 0]]}

s.t. EF0 [P (xρ = 0) (c E [τ2 ∧ T − ρ|xρ = 0] − v P (τ2 ≤ T |xρ = 0))] ≥ −V (τ2) .
(64)

The Lagrangian function for the problem is

L = EF0 [P (xρ = 0) E [τ2 ∧ T − ρ|xρ = 0]]
− µ (EF0 [P (xρ = 0) (c E [τ2 ∧ T − ρ|xρ = 0] − v P (τ2 ≤ T |xρ = 0))] + V (τ2)) ,

where P (xρ = 0) = e−λρ,

E [τ2 ∧ T − ρ|xρ = 0]

= P (τ2 ≤ T |xρ = 0)
∫ T

ρ
z · λ2 (z − ρ) e−λ(z−ρ)

P (τ2 ≤ T |xρ = 0)dz + P (τ2 > T |xρ = 0) T − ρ

= 2
λ

− 2
λ

e−λ(T −ρ) − e−λ(T −ρ) (T − ρ)

(65)

and
P (τ2 ≤ T |xρ = 0) = 1 − e−λ(T −ρ) − λ (T − ρ) e−λ(T −ρ). (66)

We obtain the F.O.C., which needs to hold for each value of ρ that has a positive
probability in F0:

e−λT
(
c
(
2e−λ(T −ρ) − 1

)
(µ − 1) − µλv

(
e−λ(T −ρ) − 1

))
= 0. (67)

The derivative of the left-hand side of (67) w.r.t. ρ is given by e−λρλ (2c + µ (λv − 2c)). As
κF I (T, λ) < 1

2 , the derivative is positive. Thus, there exists at most one ρ that satisfies the
FOC (67). Thus, the optimal F0 is degenerate. We denote it with SA

0 , the interim deadline.
We proceed with characterizing the optimal SA

0 :

min
S∈[0,T ]

{P (xS = 0) E [τ2 ∧ T − S|xS = 0]}

s.t. P (xS = 0) (c E [τ2 ∧ T − S|xS = 0] − v P (τ2 ≤ T |xρ = 0)) ≥ −V (τ2) .
(68)

The system of F.O.C. is given by


e−λT c
(
2e−λ(T −S) − 1

)
(µ − 1)

− e−λT µλv
(
e−λ(T −S) − 1

)
≥ 0 if S = 0
= 0 if S ∈ (0, T )
≤ 0 if S = T

c

λ
e−λT

(
2
(
e−λ(T −S) − 1

)
− λ (T − S)

)
− ve−λT

((
e−λ(T −S) − 1

)
− λ (T − S)

)
+ V (τ2) ≥ 0

= 0 if µ > 0.

Assume µ = 0. In this case, the first F.O.C. wrt S yields −ce−λT
(
2e−λ(T −S) − 1

)
. The

expression is negative for all S ∈ (0, T ). Thus, µ > 0, and optimal S solves the binding
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constraint. Thus, We proceed with inspecting the corresponding equation given by
c

λ
e−λT

(
2
(
e−λ(T −S) − 1

)
− λ (T − S)

)
− ve−λT

((
e−λ(T −S) − 1

)
− λ (T − S)

)
= − V (τ2) ,

(69)

where V (τ2) is given by (31).
The solution to (69) is given by

S = 1
λ

[
γ + W

(
−γe−γ

)]
, (70)

where γ = eλT 1−2κ
1−κ

and W(.) denotes the Lambert W function.
Denote the 0 and −1 branches of the Lambert W function by W0(.) and W−1(.). κ ∈(

0, 1
2

)
, thus, γ > 0. (70) depends on γ and for each γ ̸= 1 corresponds to two points as the

Lambert W function has two branches. The values of (70) as a function of γ are presented
in Figure 7. They are given by

S =



(
1
λ

[γ + W−1 (−γe−γ)] , 0
)

, if γ < 1(
0, 1

λ
[γ + W0 (−γe−γ)]

)
, if γ > 1

0, if γ = 1.

0.5 1.0 1.5 2.0
γ

-2

-1

1

Figure 7: Roots of equation (69) as a function of the parameter γ:
root corresponding to branch 0 of the Lambert W function - thick;

root corresponding to branch −1 of the Lambert W function - dashed.

γ is decreasing in κ, and γ|κ=κF I = 1. As κ ≤ κF I , which corresponds to γ ≥ 1, the
solution to (69) is given by

SA = 0, SB = 1
λ

[γ + W0 (−γe−γ)] .

As the objective of (68) is decreasing in S and SB > SA, the solution to (68) is given by

SA
0 = 1

λ

[
γ + W0

(
−γe−γ

)]
, γ = eλT 1 − 2κ

1 − κ
. (71)
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Finally, we can describe the solution to (64): τ is the stopping time such that stopping
occurs either at the moment of completion of the second stage of the project or at SA

0 ,
conditional on the absence of the completion of the first stage of the project, i.e.

τ =

SA
0 , if xSA

0
= 0

τ2 ∧ T, otherwise,
(72)

where SA
0 is given by (71).

We proceed with the second part of the proof: we demonstrate that (72) satisfies the full
system of constraints in (60), and thus solves (60). To do this, we need to demonstrate that
Vt (τ) ≥ 0, for all t ∈ [0, τ). If the recommendation mechanism τ is given by (72), then, for
t < SA

0 the absence of stopping at some t reveals that xt ̸= 2. Thus,

q1 (t) = p1 (t)
p1 (t) + p0 (t) = λt

1 + λt
, ∀t < SA

0 .

Hence, q̇1 (t) > 0, for all t < SA
0 . Further, for t ≥ SA

0 , the absence of stopping reveals that
xt = 1. Thus, q1 (t) = 1, for all t ≥ SA

0 .

We proceed with a useful lemma.

Lemma 10. It holds that

V̇t (τ) = λq1 (t) Vt (τ) + vλ (κ − q1 (t)) .

Proof. The continuation value of the principal at time t and given the information policy
represented by τ is given by

Vt (τ) = (vλq1 (t) − c) ∆t + (1 − λq1 (t) ∆t) Vt+∆t (τ)
= vλ (q1 (t) − κ) ∆t + (1 − λq1 (t) ∆t) Vt+∆t (τ) .

Differentiating both sides w.r.t. ∆t and considering lim∆t→0 (.) yields

0 = vλ (q1 (t) − κ) − λq1 (t) Vt (τ) + V̇t (τ) ,

which, after rearranging becomes

V̇t (τ) = λq1 (t) Vt (τ) + vλ (κ − q1 (t)) . (73)

Writing out Vt (τ) based on Lemma 10 yields

V̇t (τ) = λq1 (t) Vt (τ) + vλ (κ − q1 (t)) . (74)

q1 (0) = 0 and q̇1 (t) > 0, for all t < SA
0 . we define t̃ as the solution of λt

1+λt
= κ. q1 (t) < κ,

for all t ∈
[
0, t̃ ∧ SA

0

]
.

We argue that V (τ) ≥ 0 ⇒ Vt (τ) ≥ 0, for all t ∈
(
0, t̃ ∧ SA

0

)
. Assume that this is not

true, then ∃t̂ such that t̂ := inf
{
t ∈

(
0, t̃ ∧ SA

0

)
: Vt(τ) < 0

}
. As Vt(τ) is continuous in t, it
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follows that Vt̂(τ) = 0, and by the mean value theorem there must be t ∈
(
0, t̂
)

such that
V̇t (τ) ≤ 0. But this is in contradiction with the fact that Vt(τ) ≥ 0 and 74.

Consider now t ∈ [t̃ ∧ SA
0 , τ). The continuation value can be written as

Vt (τ) = E [
∫ τ

t vλ (q1 (z) − κ) dz | t < τ ] . (75)

As κ < 1
2 and q1 (t) = 1, for all t ∈ [SA

0 , τ), it holds that q1 (t) ≥ κ, ∀t ∈ [t̃ ∧ SA
0 , τ). Thus,

it can be seen from (75) that Vt (τ) ≥ 0, ∀t ∈ [t̃ ∧ SA
0 , τ).

Proof of Proposition 3. We assume it is not the case that α = 1 and β = 0 as, otherwise,
agent is indifferent and discloses no information. We start with proving existence of κ̃ and
then proceed to proving that when the project is promising, an information policy, in which
stopping never occurs in state 0, is optimal. Proving existence of κ̃ follows the steps of the
proof of Lemma 4. The principal’s expected payoff is given by

V (τ) = α P (xτ = 2) v E
[
e−rτ |τ2 ≤ τ

]
− E

[∫ τ

0
e−rsds

]
c.

κ̃ solves V (τ2) = 0, or, equivalently

α P (xτ2∧T = 2) v E
[
e−r·τ2∧T |τ2 ≤ T

]
= E

[∫ τ2∧T

0
e−rsds

]
c, (76)

where P (xτ2∧T = 2) = p2 (T ). Solving (76) for κ yields

κ̃ (T, λ, r, α) = 1
λα

P (xτ2∧T = 2) E
[
e−r·τ2∧T |τ2 ≤ T

]
E
[∫ τ2∧T

0 e−rsds
] .

Finally, V (τ) decreases in κ. Thus, if κ < κ̃ (T, λ, r, α), then a stopping time τ = τ2 ∧ T

satisfies the principal’s individual rationality constraint.
Consider now the agent’s expected payoff W (τ) given by

W (τ) = (1 − α) P (xτ = 2) v E
[
e−rτ |τ2 ≤ τ

]
+ E

[∫ τ

0
e−rsds

]
βc.

Consider the case κ ≤ κ̃ (T, λ, r, α). Consider a stopping time τ given by (61), i.e., such
that stopping happens either immediately at the moment of the second stage completion,
or in state 0 at a possibly random interim deadline. Further, consider an alternative stop-
ping time τ̂ = τ2 ∧ T . Given the two stopping times, P (xτ̂ = 2) > P (xτ = 2). Further,
E
[
e−rτ̂ |τ2 ≤ τ̂

]
= E [e−rτ |τ2 ≤ τ ] and E

[∫ τ̂
0 e−rsds

]
> E [

∫ τ
0 e−rsds]. As W (τ̂) > W (τ) and

κ < κ̃ (T, λ, r, α), the agent prefers to implement the stopping time τ̂ rather than τ .
Consider now the case κ > κ̃ (T, λ, r, α). The application of the arguments from the

proof of Lemma 7 establishes the result.
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C The case of no project completion deadline
Importantly, the presence of a hard project deadline T serves as one of the necessary and
sufficient conditions for the agent to commit to an interim reporting deadline. Without a
hard deadline T , the principal’s incentives under full information are different. Recall from
Lemma 3 the principal’s incentive to continue investing decreases in the length of absence
of the first stage completion. In the case T → ∞, the continuation value V F I

t|1 is constant
and given by v (1 − κ). As a result, the principal’s incentive to continue investing given
the absence of stage completion does not change over time. Thus, if the principal opts
in, he never chooses to stop investing before the completion of the second stage occurs.
As a result, setting an interim deadline stops serving as an agent’s tool to incentivize the
principal’s investment. The agent’s information policy in the case of no project deadline is
given in Lemma 11.

Lemma 11. Assume that T → ∞. In that case, if κ < 1
2 , then the agent uses the informa-

tion policy presented in Proposition 1.

Proof of Lemma 11. Under full information and the absence of an exogenous deadline, the
principal assigns value vx to each state x ∈ {0, 1, 2}. Clearly, v2 = v as the principal stops
immediately and gets v. In state 1, at each t the principal gets v∆t with probability λ∆t,
v1 with probability 1 − λ∆t and pays c∆t. As the principal’s problem is stationary, the
principal’s continuation value v1 does not change with t. Assume that κ < 1, as otherwise
c ≥ λv and the principal chooses not to invest in state 1. As the principal’s continuation
value in state 1 does not change over time,

0 = λ · (v2 − v1) − c,

and so
v1 = v − c

λ
= v(1 − κ).

Thus, the principal wants to invest in state 0 if c ≤ λv1, i.e., κ ≤ 1
2 .

Finally, as the information regarding τ1 is not decision-relevant for the principal, for
κ < 1

2 , the agent chooses the information policy that discloses only the completion of the
second stage of the project and optimally postpones the disclosure to make the principal’s
individual rationality constraint bind.

48


