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Abstract

This article analyzes a continuous-time R&D race with moral hazard. Cash-con-

strained, loss-making startups compete to access a profitable market requiring a stochas-

tic breakthrough. Each startup is funded by a different early-stage investor. R&D ef-

forts are non-verifiable, and the investors make mutually optimal incentive-compatible

contract offers. A contract specifies the funding period, when the firm should undertake

R&D, and the equity stake in case of market entry. The profitable market accommo-

dates more than one firm. A strong early-mover advantage induces asymmetric funding

deadlines, resulting in staggered exits from the race. If the early-mover advantage is

less distinct, some deadlines are symmetric, leading to shakeouts. The comparative

statics follow from an interplay of contractual externalities among investors and the

particular cost of moral hazard. The model provides an explanation for asymmetries

in VC contracts and for industry shakeouts.
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1 Introduction

Startup firms often rely on early-stage equity funding before turning profitable. The market

for such funding is informal yet sizable. For example, the audit and advisory firm KPMG

estimates global venture capital investments in 2021 to be $671 billion across roughly 40′000

deals. A typical contract between a firm and its early investor determines the duration,

amount of funding, and the specifics of the investor’s equity share if the firm is eventually

sold or holds an IPO (Sohl, 1999).

A major issue for early investor-firm relations is moral hazard. Even though investors

typically seek an active role in the firm they invest in, firm owners can always covertly divert

some funding to their benefit (e.g., Kelly and Hay, 2003). Or, as David Cohen, co-founder

of Techstars, bluntly put it:

“Founders can live for a year or two on seed capital, have some fun and punch

their lottery ticket. If things don’t take off immediately, they can simply move

on.”1

The challenges that early-stage investors face are not restricted to the relation with their

startup. Startups developing new business ideas typically compete with other startups over

the entry into a common market. So, the contract an investor offers to a firm will also

depend on how they expect the other firms to progress over time. But the other firms are

likely funded by external parties, too, and their progress depends on the funding that they

receive. Consequently, the investors’ contract offers are part of an interdependent choice

problem.

This article develops a model that captures this two-fold choice problem of investors.

There are a finite number of exogenously given, symmetric firm-investor dyads. Investors

make a take-it-or-leave-it contract offer to their cash-constrained firms, which then compete

in a complete information, continuous-time R&D race for breakthrough opportunities. Once

a firm takes up a breakthrough opportunity, it enters a profitable market, garners a payoff,

and leaves the game. If doing so, the firm and its investor share the profit according to

the contractual terms. Crucially, the dyads not only compete against each other for a

breakthrough opportunity, but they also need to solve a hidden action problem concerning

the costly R&D efforts on the part of the firm, which are necessary to produce a breakthrough

opportunity.

The model gives rise to some intriguing equilibrium predictions. Most notably, depending

on the market the firms aim for, some investors may keep their firms longer in the race than

others. Put differently, both staggered exits and shakeouts are possible equilibrium outcomes.

1See the Financial Times article “The moral hazard created by buckets of start-up funding” from Septem-
ber 1, 2015.
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Asymmetric contract offers square with empirical evidence on early-stage equity contracts,

suggesting that there is quite some variation in the duration and the volume of funding.

For example, Sohl (1999) and Mason and Harrison (2002) report funding periods that range

from 2 to 8 years. They rationalize the variation by differences in the investors’ ability to

screen startup quality (cf. also Wiltbank et al., 2009). However, recent research suggests

that early-stage investors might not be as good at picking successful projects as previously

thought (Nanda et al., 2020; Davenport, 2022). So, my model provides a complementary

explanation for asymmetric contracts which focuses on the interplay between competition

and moral hazard rather than on asymmetric information.

My model might also provide a novel perspective on the phenomenon of industry shake-

outs; i.e., the sudden consolidation of an industry or sector through simultaneous exit (cf.,

among others, Gort and Klepper, 1982; Klepper, 1996; Klepper and Simons, 2000; Lenox

et al., 2007). The literature typically focuses on more mature markets than I have in mind

for my model. Also, theoretical explanations for shakeouts tend to focus on the uncertainty

about the evolution of the firms’ production technologies (cf. also Hopenhayn, 1993; Cabral,

2011). Agency frictions are absent in these models. Nevertheless, the role of venture capital

in industry shakeouts has been discussed prominently among practitioners in the past.2

The details of the model are as follows. A finite number of symmetric firms compete for

market entry by obtaining a stochastically arriving breakthrough opportunity. The R&D

technology is the same for all firms and produces breakthrough opportunities at a fixed and

commonly known rate. Doing R&D is costly, and the firms can freely switch between periods

of R&D and periods without R&D. Besides the variable R&D costs, the firms also incur a

fixed flow cost from running daily business. Once they stop day-to-day business operations,

the firms have to leave the race for good. Firms are cash-constrained, each relying on the

flow of funding from a different investor. Firm-investor dyads are exogenously given and

fixed throughout the race.

Daily business is contractible, yet doing R&D is not verifiable and subject to moral

hazard. I model moral hazard by following Green and Taylor (2016) and assuming that

the firm owners can covertly decide not to engage in R&D and instead divert part of the

intended funds to their benefit.3 Both investors and firm owners are risk-neutral and discount

the future at the same rate. Firms are protected by limited liability. Investors have all the

bargaining power and make take-it-or-leave-it contract offers. A contract specifies a (possibly

infinite) deadline on the funding provided for daily business, the periods of R&D, as well as

2See, for example, the 1997 HBR article “Strategies for Surviving a Shakeout” by George Day
(https://hbr.org/1997/03/strategies-for-surviving-a-shakeout.)

3Green and Taylor (2016) study a principal contracting with an agent to complete a two-stage project
(Wolf, 2017; Moroni, 2019, add experimentation to this setup). Their one-stage benchmark corresponds to
the single-dyad case in my setting with no discounting and no costs for daily business.
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a (time-dependent) share of the profits from market entry left to the investor.

The market that the dyads compete for may ultimately accommodate more than one firm.

Specifically, I assume the market consists of two sequentially available spots. Each spot comes

with an exogenous, time-independent, and publicly known payoff, which we might interpret

as the net present value of future firm profits. If a firm takes up a breakthrough opportunity,

it collects this payoff, leaves the game, and the next spot becomes available. Races with

multiple prizes are also analyzed in Denicolo (1996, 1999), who does not consider moral

hazard.

There is limited commitment and sparse information about competitors. I assume the

only public event during the race is a firm taking up a breakthrough opportunity. This as-

sumption is motivated by the fact that the environment of young firms is often chaotic and

dynamically evolving. Further, I assume that investors can commit to the terms of the con-

tract only until the next firm takes up a breakthrough opportunity. That is, whenever new

information arrives, then the contracts have to be renegotiated. In reality, contract renego-

tiation between early investors and their startups happens quite frequently (e.g., Bengtsson

and Sensoy, 2015).

An equilibrium in this setting is a profile of mutually optimal contracts that satisfy

limited liability and incentive compatibility of the firms’ R&D decisions. Throughout, I

restrict attention to equilibria in which investors ask their firms to do R&D whenever they

are in the race. As I show, such contracts are mutually optimal if daily business operations

are sufficiently costly.

Whether or not the equilibrium contracts are asymmetric depends on the market struc-

ture. The equilibrium contracts specify two relevant deadlines. The first deadline specifies

the maximum duration of funding provided to race for the first spot. The second deadline

specifies the maximum duration of funding to race for the second spot, provided some other

firm has obtained the first spot. If the ratio of the first spot’s value to that of the second

spot exceeds a certain threshold, then the mutually optimal deadlines to obtain the first spot

turn out asymmetric. This means that there are staggered exits from the race, provided no

breakthrough opportunity arrives for a sufficiently long time. On the other hand, if the first

spot is not too attractive relative to the second spot, then some deadlines are symmetric and

simultaneous exits or a shakeout may occur.

The main reason for these comparative statics is two opposing effects that arise from

moral hazard and multiple prizes. Moral hazard leads to a particular cost function for keeping

the firm in the race. Multiple prizes imply that seizing on a breakthrough opportunity not

only removes the current spot from the set of prizes but also enables competition for the

second spot, thus generating an externality for the remaining dyads in the race.

If the relative value of the current spot is high, then it is always optimal for some investors
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to marginally increase the deadline over those of her opponents and to ask for a little more

R&D from her firm. A more extended deadline implies a higher agency rent for the firm, yet

it also increases the chances of obtaining the current spot. On the other hand, if the value of

the second spot is relatively high, then an investor with a lower deadline is always incentivized

to increase her deadline. Doing so increases the chances of obtaining the first spot and, more

importantly, getting the second spot. Crucially, these gains are more significant than the

additional agency cost only until the deadline matches that of her rivals, beyond which the

second prize does not play a role at the margin.

The equilibrium predictions I obtain differ fundamentally from the equilibria in existing

R&D races without moral hazard. In races where the R&D technology’s hazard rate is

commonly known, it is without loss to assume that firms continue until at least one of

the firms obtains a breakthrough (Loury, 1979; Denicolo, 1996, 1999; Erkal and Scotchmer,

2009). Exit without breakthroughs can occur in non-stationary settings, e.g., when the

hazard rate of the R&D technology is uncertain and agents experiment (Reinganum, 1981,

1982; Choi, 1991; Malueg and Tsutsui, 1997; Moscarini and Squintani, 2010; Awaya and

Krishna, 2020). However, in the standard symmetric experimenting agent setting without

private information, which is closest to the setting in this article, the agents’ beliefs all

decrease at the same rate and, hence, exit is symmetric (Choi, 1991).

My analysis relates to other areas of research. Naturally, moral hazard features promi-

nently in existing models of early startup funding. For example, Elitzur and Gavious (2003)

analyze the incentives of a single angel investor when a venture capitalist provides follow-up

funding. Casamatta (2003) examines the double role of venture capitalists both as a source

of funding and a source of advice. De Bettignies and Brander (2007) consider the problem of

a firm deciding between bank finance and venture capital. Neither of these models analyzes

the optimal funding duration nor considers competition between VC-backed firms. Drover

et al. (2017) provide an exhaustive overview of the empirical and theoretical literature on

different types of startup funding.

The literature on delegation in static contests is also related. In a series of articles, Kräkel

(2002, 2004, 2005) and Kräkel and Sliwka (2006) analyze the incentives of owner-manager

dyads that compete for market shares. In particular, Kräkel (2005) finds asymmetric equi-

libria among symmetric players for the rank-order tournament. The motive for choosing

higher efforts is preemption, which is quite different from the motive that I find in my dy-

namic model. Another important analysis of delegation in contests is by Wärneryd (2000),

who considers a litigation setting. In a similar model, Konrad et al. (2004) shows that the

delegation equilibrium is symmetric for the special case of an all-pay auction, even though

players may be asymmetric.

Another model often used to analyze dynamic competition is the war of attrition. Under
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complete information, the war of attrition typically has a multitude of asymmetric pure

strategy equilibria. Due to the discontinuity in the payoffs, there cannot be a deterministic

exit at intermediate times, though; i.e., firms always either concede right at the beginning or

very late (Hendricks et al., 1988). Exit at intermediate times only happens in (symmetric)

mixed strategy equilibria or in settings that are non-stationary (Georgiadis et al., 2020) or

feature incomplete information (Bulow and Klemperer, 1999).

2 The Model

Time is continuous and denoted by t ≥ 0. There are n ≥ 2 firm-investor dyads labeled

i = 1, , ..., n. Firm-investor dyads are exogenously given and remain fixed throughout the

game. Firms have the technological expertise for R&D, but they lack funding; investors can

provide funding, but they lack the required expertise to run the technology themselves.

2.1 R&D and Prizes

The firms are not yet profitable, and daily business comes at a flow cost of θ > 0. The firms

can engage in R&D at an additional flow cost of c > 0, which produces random breakthrough

opportunities that allow them to enter a profitable market. While a firm can freely switch

between periods with R&D and periods without R&D, it has to leave the game for good

once it stops running daily business. If a firm engages in R&D, it obtains breakthrough

opportunities at a rate λ > 0. Breakthrough opportunities arrive independently among

firms. If a firm does not engage in R&D, it obtains no breakthrough opportunities.

If a firm obtains a breakthrough opportunity, it can take it up and enter the profitable

market or discard it. Discarded breakthrough opportunities depreciate immediately. The

profitable market can ultimately accommodate two firms. The time-independent monetary

value of entering first is Π1 ≥ 0, and the value of entering second is Π2 ≥ 0. It seems

reasonable to assume Π1 > Π2; yet the model also allows for strong second-mover advantages

involving Π1 ≤ Π2.
4 Throughout, I use σ ∈ {1, 2} to index the values of market entry, Πσ.

If a firm is the σ-th firm to enter the profitable market, it receives Πσ and leaves the race.

4One way to rationalize decreasing prizes is to assume that, after the first breakthrough, the winner
enjoys monopoly profits until the second breakthrough arrives. One way to rationalize increasing prizes is to
posit that every new entrant in the market attracts a growing number of additional customers. In any case,
determining the prizes in a full-fledged model of the profitable market would require taking the expected
arrival times of breakthroughs into account. As these arrival times are endogenous, this would add another
layer of complexity to the analysis, from which I abstract in the model.
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2.2 Moral Hazard

The firm owners lack the required capital both to run daily business and to engage in R&D.

Instead, they rely on the funding provided by their respective investors. The investors have

all the bargaining power and make simultaneous take-it-or-leave-it contract offers, which I

specify below. Firm owners are protected by limited liability. The firm owners and the

investors are risk-neutral and discount the future at a rate ρ > 0.

Within the dyads, the investor can verify whether the firm runs daily business operations

and whether a breakthrough opportunity arrives, yet there is moral hazard concerning the

R&D decision.5 Specifically, if provided with the required means for R&D, the firm owner

can covertly decide not to undertake R&D but rather divert a positive flow ϕ ≤ c for personal

benefits. That is ϕ measures the severity of the moral hazard problem. If ϕ = 0, then the

owner does not gain anything from shirking, whereas ϕ = c means that the owner can fully

divert the funding for R&D. Throughout, I assume

λΠσ − (c+ θ + ϕ) > 0, ∀σ. (A)

As we will see, Assumption (A) ensures that funding the firm at least for some time is

optimal for every investor and, hence, that all investors offer a contract in equilibrium.

2.3 Contracts

Whether or not firm owners accept their contract offer is publicly observed. The only other

publicly-observed event during the race is a firm taking up a breakthrough opportunity and

thus leaving the game. The actual terms of the contract between investor and firm, any

decision to stop daily business without a breakthrough opportunity, and the actual arrivals

of breakthrough opportunities are unobserved outside a dyad. Further, investors possess

limited commitment power and can commit to the contract terms only up to the opponent

firm taking up a breakthrough opportunity.

As we will see, it is thus without loss to restrict attention to contracts that only condition

on a public state s = (σ,N), where σ corresponds to the index of the current spot in the

market and N ⊆ {1, ..., n} corresponds to the subset of dyads starting in that state.6

The contract prescribes for any time in any relevant state whether to invest in daily

business, engage in R&D, take up a breakthrough opportunity if it arrives, and any transfers

5Truthful reporting of breakthrough arrivals is not an issue. In Section 5.1, I briefly discuss an extension
in which firms can hide arrivals from the investor. It turns out that incentive compatibility always induces
the right incentives for truthful reporting.

6The reason is that the mutually optimal contract when σ = 2 is unique and, hence, by limited commit-
ment, independent of calendar time. With more than two prizes, the state space would be more involved
(cf. the discussion in Section 5.3).
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between the firm and the investor. A couple of observations about the optimal contracts

follow directly from the environment described so far.

1. As the firms have to leave the game for good when funding for daily business dries up,

it is without loss to assume that any contract entails a deadline up to which funding

for daily business operations is provided, where the deadline may be infinite.

2. Funding for daily business equals θ because a higher payment is unnecessary. For the

same reason, the additional flow payment to the firm when asked to engage in R&D

equals c.

3. Because the firm lacks cash, the only way to compensate the investor is to use an

equity stake she retains if the firm eventually takes off.

4. Because the investor can always suspend the funding for R&D when she deems entering

the profitable market currently not worthwhile and because breakthrough opportunities

depreciate immediately if not taken up, it is without loss to assume that breakthrough

opportunities must always be taken up when they arrive.

Let Si = {s = (σ,N) ∈ S : i ∈ N} be the set of states where dyad i is active. The

relevant parts of the contract offered by investor i can thus be described by a triple

Ci = {Ti, Ri, ai},

which consists of a deadline profile Ti = {Tis}s∈Si
, a transfer profile Ri = {Ris}s∈Si

, and an

action profile ai = {ais}s∈Si
. The deadlines Tis ≥ 0 specify the time to which funding in

state s is provided. The transfer functions Ris : R+ → R return the transfer Ris(t) from the

firm to the investor (her equity stake) in case the firm obtains a breakthrough opportunity

at t ≥ 0. And the action functions ais : R+ → {0, 1} indicate whether the firm should do

R&D (ais(t) = 1) at time t or not (ais(t) = 0).7 Throughout, I take the transfer functions

Ris(t) and the action functions ais(t) to be measurable. Both the transfer functions and the

action functions satisfy Ris(t) = ais(t) = 0 for t > Tis. Further, I adopt the convention that

at the beginning of each state, the clock is set back to zero; i.e., each state s starts anew at

time t = 0.

To summarize, the timing and the information are as follows:

τ = 1: Each investor i offers a contract Ci = {Ti, Ri, ai} to firm owner i, who then decides

whether to accept. Contract offers are only observed within the respective firm-

investor dyad. Acceptance decisions are publicly observed.

7Mixing — i.e., ais(t) ∈ [0, 1] — could, in principle, be integrated into the analysis. Yet, it is unclear how
a contract that asks the firm to mix should be implemented in practice. For the sake of exposition, I thus
refrain from modeling mixing.
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τ = 2: The firms who accepted the contract in τ = 1 enter the race, which starts at date

t = 0 in state s = (1, N) with N ⊆ {1, ..., n}. The actual arrivals of break-

through opportunities and any exit before a breakthrough opportunity arrives

are only observed within the respective firm-investor dyads. R&D decisions are

only observed by the respective firms. If a breakthrough opportunity is taken up

at some t ≥ 0 by firm j ∈ N and |N | ≥ 2, then the clock is set back to t = 0,

and the game continues in (public) state s = (2, N \ j). If just one firm accepted

its contract, |N | = 1, then the game ends after it takes up the first breakthrough

opportunity.

As the game is one of complete information, all dyads of course correctly anticipate the

contracts and decisions by the other dyads on the equilibrium path.

2.4 Payoffs and Equilibrium

For a state s = (σ,N) ∈ Si, write Uis(t; âis, Ci, C−i) for the utility of firm owner i in

state s ∈ Si at time t who is given a contract Ci = {Ti, Ri, ai} and chooses a (given the

funding of the investor, feasible) action âi when the other firms adhere to their contracts

in the profile C−i = (C1, ..., Ci−1, Ci+1, ..., Cn). The utility Uis(t; âi, Ci, Cj) is obtained by

integrating the product of the flow payoff at a point in time τ when choosing âis(τ) and the

(discounted) probability that no breakthrough opportunities have arrived between t and τ .

Letting Ns(t;C) be the set of dyads still in the race at t, we have

Uis(t; âi, Ci, C−i) =

Tis∫
t

[
ais(τ)

[
âis(τ)λ(Πσ −Ris(τ)) + (1− âis(τ))ϕ

]

+ λ
∑

j∈Ns(τ ;C)\i

ajs(τ)Ui(σ+1,Ns(τ ;C)\j)(0; âi, Ci, C−i)

]

× e
−

τ∫
t
[(ais(τ̂)âis(τ̂)+

∑
j∈Ns(τ̂ ;C)\i ajs(τ̂))λ+ρ]dτ̂

dτ, (U)

with Ui(3,.)(.) = 0. The flow payoff from being in the race at some point τ consists of the

current flow from racing plus the expected continuation (flow) payoff from the contract if an

opponent takes up a breakthrough opportunity.

Incentive compatibility of a contract Ci prescribing action ai requires that for all states

s ∈ Si, for all times t ∈ [0, Tis], and for all (given the funding of the investor, feasible) action

profiles âi ̸= ai,

Uis(t; ai, C) ≥ Uis(t; âi, C), (IC)
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where C = (Ci, C−i). Further, limited liability requires that the transfer from the firm to

the investor cannot exceed the value of the breakthrough opportunity; i.e., for all dates t

and states s ∈ Si it must hold

Ris(t) ≤ Πσ. (LLC)

Analogous to the firm owner utility, let Vis(t;Ci, C−i) be the value of the incentive com-

patible contract Ci to investor i when she is still in the race at time t in state s ∈ Si and

the other investors offer incentive-compatible contracts C−i. We have

Vis(t;Ci, C−i) =

Tis∫
t

[
ais(τ)[λRis(τ)− c]− θ

+ λ
∑

j∈Ns(τ ;C)\i

ajs(τ)Vi(σ+1,Ns(τ ;C)\j)(0;Ci, C−i)

]
e
−

τ∫
t
[
∑

j∈Ns(τ̂ ;C) ajs(τ̂)λ+ρ]dτ̂
dτ, (V)

with Vi(3,.)(.)) = 0. Then, an equilibrium is a profile of feasible contracts that are mutually

optimal at the beginning of every state s. I only consider pure strategy Nash equilibria.

Definition 1 (Equilibrium). An equilibrium is a profile of contracts C∗ = (C∗
1 , ..., C

∗
n) sat-

isfying (LLC) and (IC) such that, for all investors i ∈ {1, ..., n} and all states s ∈ Si, it

holds

Vis(0;C
∗
i , C

∗
−i) ≥ Vis(0;Ci, C

∗
−i),

for all Ci ̸= C∗
i that also satisfy (LLC) and (IC).

Throughout, I restrict attention to what I call full-R&D contracts. Under such contracts,

the firms always engage in R&D when in the race. Formally,

Definition 2 (Full-R&D Contract). A full-R&D contract is a contract Ci such that ais(t) = 1

holds for all t ∈ [0, Tis] and all states s ∈ Si.

Full-R&D contracts may not be mutually optimal when daily business is too cheap (i.e., θ

is too low), the future is hardly discounted (ρ ≈ 0), or entering second provides a considerably

higher payoff than entering first (Π2 ≫ Π1). In the following analysis, I first determine the

mutually optimal contract profile when investors are restricted to offering full-R&D contracts.

In the second step, I present a sufficient condition for the mutual optimality of offering full-

R&D contracts.

3 Mutually Optimal Deadlines

Because investors can commit to the terms of their contract only up to the first breakthrough,

we can proceed backward. In the following, we will thus first determine the optimal contin-
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uation contract for the states where firms compete for the second prize, σ = 2. Using the

continuation payoffs from these states, we then solve for the mutually optimal contract in

the states s with σ = 1.

The necessary tools to find and characterize the mutually optimal contract offers are

developed in Appendix A. As is standard for models with dynamic moral hazard, incentive

compatibility allows us to substitute the payments Ris from the utility functions of the firm.

This then gives us investor utility Vis(0;C) under the cost-minimizing transfers as a function

V ∗
is(T ) of the deadline profile T = (Tis, {Tjs}j∈N\i) in state s alone. The main contribution

in Appendix A is to delineate a link between the structure of V ∗
is(T ) and the set of mutually

optimal deadlines. Section 3.2 below provides more details.

3.1 The Race for the Second Prize

The following result characterizes the mutually optimal deadlines and the resulting contin-

uation payoffs in states where the dyads race for the second spot. The statement restricts

investors to full-R&D contracts as defined in Definition 2 above. At the end of this section,

Proposition 3 then gives a condition under which an equilibrium in this class of contracts

exists. As with all the results in this section, the proof is in Appendix B.

Proposition 1. In any state s = (σ,N) involving σ = 2, the optimal full-R&D contract

offers are symmetric between dyads. All investors offer a deadline T ∗
2 , which is independent

of the number of opponent dyads and given by

T ∗
2 =

1

λ
ln

(
λΠ2 − (c+ θ)

ϕ

)
. (1)

Under the optimal contract, the firms’ utilities, U∗
2,|N |, and entrepreneurs’ utilities, V ∗

2,|N |,

from entering state s depend on the number of dyads, |N |, and are given by

U∗
2,|N | =

ϕ

λ(|N | − 1) + ρ

[
1− e−(λ(|N |−1)+ρ)T ∗

2
]

(2)

V ∗
2,|N | =

λΠ2 − (c+ θ)

λ|N |+ ρ

[
1− e−(λ|N |+ρ)T ∗

2
]
− U∗

2,|N |. (3)

In the optimal contract, the respective firms’ incentive compatibility constraints bind

and, hence, firm utility (2) is equal to the expected net present value of shirking under the

deadline T ∗
2 . The expression for investor utility in (3) corresponds to the difference between

total dyad welfare and firm utility.

The optimal deadline (1) is independent of the number of dyads, |N |, and the discount

factor, ρ. This independence may appear counterintuitive, yet the reason for it is pretty
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simple. Without a further spot to race for, the number of opponents only affects the effective

discount rate but not the expected flow payoff from being in the race for the investors. Yet,

the effective discount rate does not play a role at the margin when comparing the marginal

costs and the marginal benefits of changing the deadline.

Further, note that the statement is silent on the equilibrium payments from firms to

investors in case of market entry, R∗
s. After solving the full contract, I provide a discussion

of the payments in Section 5.1. For the case of σ = 2, we will find that R∗
s is increasing in t;

i.e., the investor’s stake in the firm increases over time. This is a standard result (Green and

Taylor, 2016); the closer the firm is to the deadline, the less continuation payoff the investor

has to leave to the firm to prevent them from shirking.

Finally, some comparative statics of the optimal deadline are apparent. If the cost of

racing, c+ θ, increases, the investor has less to gain, and the deadline becomes shorter. On

the other hand, if the value of the spot, Π2, increases or if the agency problem becomes

less severe (i.e., ϕ decreases), then there is more to gain for the investor and the deadline

T ∗
2 increases. Indeed, if ϕ vanishes, then T ∗

2 diverges to infinity, which shows that finite

deadlines are solely due to moral hazard.

As regards λ, Assumption (A) gives us that the deadline T ∗
2 increases for low λ, is

unimodal, and approaches zero as λ diverges to infinity. The reason is that an increase in

the arrival rate of the breakthroughs has two opposing effects. On the one hand, it increases

the per-period value of racing, which would call for a more extended deadline. On the other

hand, observing no breakthrough for a given period becomes more indicative of shirking,

which would call for a shorter deadline. For low values of λ, the first effect dominates,

whereas the second effect dominates for high values.

3.2 The Race for the First Prize

We now turn to the states where the firms race for the first prize, σ = 1. The characterization

of the mutually optimal deadlines is more involved than in the last section, because the

continuation payoffs depend on the number of dyads that move on to the next state.

I proceed in several steps. The first step, discussed in detail in Appendix A.1, charac-

terizes the marginal utility of investor i under the cost-minimizing transfers for a deadline

profile T = (Tis, {Tκ}|N |−1
κ=1 ). The opponent deadlines are collected such that {Tκ}|N |−1

κ=1 de-

creases in κ. The particular dyads’ identities corresponding to these deadlines do not matter

for investor i, because all players are symmetric, and the mutual optimal play in the contin-

uation games (i.e., the race for prize σ = 2) is independent of the dyad’s identities taking

part.

Lemma 1. Fix a dyad i and a state s = (σ,N) ∈ Si with σ = 1. Let V ∗
is(T ) be investor utility

12



under the cost-minimizing transfers for deadlines T = (Tis, {Tκ}|N |−1
κ=1 ), where {Tκ}|N |−1

κ=1 =

{∅} if |N | = 1 and the elements of {Tκ}|N |−1
κ=1 decrease in κ otherwise. Further, let T0 = ∞

and T|N | = 0. Then, for all κ ∈ {1, .., |N |} such that Tκ < Tκ−1,

sgn

(
∂V ∗

is(T )

∂Tis

∣∣∣∣
Tis∈[Tκ,Tκ−1)

)

= sgn

([
λΠ1 − (c+ θ) + λ(κ− 1)

[
V ∗
2,κ−1 + U∗

2,κ−1

]]
e−λTis

−
[
ϕ+ λ(κ− 1)U∗

2,κ−1

])
. (4)

The expression in the sign function on the right side in (4) is proportional to the difference

between the marginal gain of extending the deadline and the marginal cost of doing so. Other

than in the race for the second prize, the number of dyads still in the race matters for the

incentives. The marginal benefit of staying in the race increases in the flow benefit from

racing for the first spot, λΠ1 − (c + θ), and the dyad welfare that accrues in expectation

when racing for the second spot together with κ − 2 other dyads, V ∗
2,κ−1 + U∗

2,κ−1. The

marginal cost of doing so is determined by the shirking payoff, ϕ, plus the continuation

utility that the firm obtains, U∗
2,κ−1, in case a competitor takes the first spot. The firm must

be compensated for both to follow the contract.

Observe that the argument in the sign function on the right side in (4) strictly decreases

in Tis. This implies that the utility of the investor is unimodal on any (proper) interval

[Tκ, Tκ−1). As I discuss in Appendix A.2, we can characterize the set of mutually optimal

deadline profiles from the relation of the functions’ roots that we obtain by extending the

argument on the right side in (4) to the positive real line.8 For the following, observe that

these roots are given by ln(Gκ)/λ, where

Gκ ≡
Π1 −

c+ θ

λ
+ (κ− 1)

[
V ∗
2,κ−1 + U∗

2,κ−1

]
ϕ

λ
+ (κ− 1)U∗

2,κ−1

. (5)

To characterize the mutually optimal deadlines, I let Ts be set of all mutually optimal

deadline profiles {T ∗
κ}

|N |
κ=1 in state s that are decreasing in the index κ. Formally,

Definition 3 (Set of Weakly Decreasing Mutually Optimal Deadline Profiles, Ts). Let Ts be

the set of all deadline profiles {T ∗
κ}

|N |
κ=1 in state s for which the following holds:

(a) If |N | ≥ 2, then they are decreasing: T ∗
κ−1 ≥ T ∗

κ for all κ ∈ {2, ..., |N |}.
8In Section 4 below, I give some intuition for the approach by considering a two-dyad case (Remark 2).
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(b) They are mutually optimal: For every κ ∈ {1, ..., |N |}, it holds

T ∗
κ ∈ argmax

Ti

Vis(Ti, {T ∗
κ̂}κ̂∈{1,...,|N |}\i).

Except for the case with two dyads (cf. Section 4 below), explicit solutions for the mutu-

ally optimal deadlines are not feasible for general levels of moral hazard, ϕ > 0. So, for the

main result in this section, I focus on the case when the agency problem vanishes, ϕ → 0.

For the following, let

Φ ≡ λΠ1 − (c+ θ)

λΠ2 − (c+ θ)
. (6)

When ϕ vanishes, the optimal deadlines diverge to infinity. However, the degree of

deadline asymmetry as we approach the limit profile varies in Φ. We have the following

characterization.

Proposition 2. Fix a state s = (σ,N) with σ = 1 and let {T ∗
κ}

|N |
κ=1 ∈ Ts. The mutually

optimal deadlines satisfy

lim
ϕ→0

T ∗
κ = ∞

for all κ. Further, suppose |N | ≥ 2 and ρ > λ. Then, for every ϕ > 0 sufficiently close to

zero:

(a) If Φ < ρ/(ρ+ λ), then any profile {T ∗
κ}

|N |
κ=1 ∈ Ts is completely symmetric,

T ∗
1 = T ∗

2 = ... = T ∗
|N | ∈

[
1

λ
ln (G1) ,

1

λ
ln
(
G|N |

)]
,

where 1
λ
ln
(
G|N |

)
≥ 1

λ
ln (G1) .

(b) If Φ > (ρ+ λ)/(ρ− λ), then there is a unique profile {T ∗
κ}

|N |
κ=1 ∈ Ts, which is completely

asymmetric,

T ∗
1 > T ∗

2 > ... > T ∗
|N |,

where T ∗
κ = 1

λ
ln (Gκ) for all κ ∈ {1, ..., |N |}.

(c) For a.e. Φ ∈ (ρ/(ρ+λ), (ρ+λ)/(ρ−λ)), there are natural numbers k, k ≤ |N | satisfying
k ≥ 2 and k ≤ k such that, for any number ℓ ∈ {k, k + 1, ..., k}, there is a profile

{T ∗
κ}

|N |
κ=1 ∈ Ts satisfying

T ∗
1 > T ∗

2 > ... > T ∗
ℓ = T ∗

ℓ+1 = ... = T ∗
|N | ∈

[
1

λ
ln (Gℓ) ,

1

λ
ln
(
G|N |

)]
, (7)

where T ∗
κ = 1

λ
ln (Gκ) for all κ ∈ {1, ..., ℓ − 1} and 1

λ
ln
(
G|N |

)
≥ 1

λ
ln (Gℓ) . Moreover,

to any profile {T ∗
κ}

|N |
κ=1 ∈ Ts there is a number ℓ ∈ {k, k + 1, ..., k} such that (7) holds.
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Shakeout
Staggered
Exits

Shakeout followed by
Staggered Exits

Φ
1ρ

ρ+λ
ρ+λ
ρ−λ

Figure 1: Mutually optimal deadlines in states with σ = 1. For low Φ, the deadlines are
symmetric in any mutually optimal deadline profile, implying a shakeout. For high values of
Φ, the deadlines are always asymmetric, implying staggered exits. For intermediate values,
staggered exits follow a one-time shakeout involving a subset of the dyads.

Both k and k are non-decreasing in Θ. For any relevant Φ, k < |N | holds whenever

|N | is sufficiently large; if k < |N | holds, then k does not change when increasing |N |.

If the first spot is of relatively low value, then the mutually optimal deadlines are sym-

metric. In this case, which is stated in (a) of Proposition 2, there are multiple mutually

optimal deadlines that the dyads can coordinate on. Conversely, the optimal deadlines are

asymmetric if the first spot is of high value. In this case, as stated in (b), the deadline profile

is unique up to permutations of the dyads.

For generic intermediate values of Φ, the statement in (c) says we may have a multiplicity

of asymmetric mutually optimal deadline profiles.9 These deadline profiles all have a similar

structure: provided that no breakthrough occurs, we first see a shakeout, when some of

the firms leave at once, and then staggered exits by the remaining ones. The “size” of the

shakeout, i.e., the number of firms leaving at the same time, as well as the time until a

shakeout occurs can vary between the different mutually optimal deadline profiles. Figure 1

shows the different ranges for Φ.

The lower and the upper bound on the number of possible distinct deadlines, k and k,

increase in the value of the first spot and decrease in the value of the second spot. The higher

the first-mover advantage in the market, the higher the asymmetry in the funding horizons

among investors. The last part of statement (c) says that when the number of dyads is large

enough, there will be a shakeout for a.e. Φ ∈ (ρ/(ρ + λ), (ρ + λ)/(ρ − λ)). Moreover, if we

hypothetically add a new dyad to the game, then the lowest number of firms in a shakeout

across all possible mutually optimal contract profiles increases by one.

Remark 1. Proposition 2 only covers the case of a high discount factor, ρ > λ. As shown

9The strategy of the proof requires that the elements in {Gκ}|N |
κ=1 be distinct, which might fail for non-

generic values of Π1 and Π2 — hence the qualification w.r.t Φ in the statement of Part (c).
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in the Appendix C, asymmetry is limited to at most two different deadlines when ρ ≤ λ.

Specifically, I find that the equilibrium deadline profile is entirely symmetric for low values

of Π1. For high values of Π1, there are |N | − 1 investors choosing the same deadline and

one investor choosing a strictly longer deadline. For intermediate values, both profiles are

mutually optimal.

3.3 Equilibrium Existence

To complete the analysis, it remains to show that an equilibrium in full-R&D contracts exists.

Technically, existence of an equilibrium in the class of full-R&D contracts follows directly

from the characterization results that I obtain in Appendix A. Condition (8) in the following

statement then ensures that doing R&D is indeed the optimal choice for any investor when

funding the firm.

Proposition 3. Suppose it holds for both σ ∈ {1, 2} that

Πσ −
c+ ϕ

λ
≥ λ

λ+ ρ

[
max
σ′≥σ

Πσ′ − c+ θ

λ

]
. (8)

Then, an equilibrium in full-R&D contracts exists. In particular, any equilibrium is in full-

R&D contracts, and all dyads i = 1, ..., n are active at the beginning of the race.

For σ = 1, condition (8) holds whenever ρ > 0 and Π1 is sufficiently high or when ρ

is sufficiently high. A high ρ and a high Π1 make the first prize attractive (relative to the

second prize), such that doing R&D is worthwhile. Moreover, the condition holds for σ = 2

if ϕ ≤ θ or if ρ is high enough. If staying in the race is sufficiently expensive, delaying R&D

for the second spot is never attractive.

For sufficiently low ϕ ≥ 0, as assumed for Proposition 2, then the condition in (8) always

holds for σ = 2, because θ > 0. For σ = 1, the condition holds whenever Π1 ≥ Π2. And for

Π1 < Π2, it can be rewritten as

Φ ≥ λ

λ+ ρ

λΠ1 − (c+ θ)

λΠ1 − c
.

So, because the second fraction on the right is strictly below one and ρ > λ in Proposition 2,

there are values of Φ in any of the three ranges depicted in Figure 1 for which an equilibrium

in full-R&D contracts exists. For ρ < λ, a sufficiently high θ ensures that full-R&D equilibria

exist for all the ranges described in Proposition C.5.
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4 The Incentives in the Two-Dyad Case

In this section, we look at the two-dyad case, n = 2. This case allows us to discuss the

intuition for the varying deadline profiles in some more depth. With two dyads, we have the

following set of states

S ≡ {(1, {1, 2}), (1, {1}), (1, {2}), (2, {1}), (2, {2})}.

We will focus on the state s = (1, {1, 2}), where both firms are present and race for the first

spot.

4.1 Asymmetric vs. Symmetric Deadlines

Let us consider the incentives of investor i. If her deadline is below that of the opponent,

Tis ≤ Tjs, then investor i has to consider both the presence of the other firm and the agency

problem with her firm. When Tis > Tjs, then only the agency problem matters. Formally,

combining the result from Lemma 1 with the continuation payoffs obtained in Proposition

1, we get that under the cost-minimizing transfers, the marginal gain from increasing the

deadline satisfies,

sgn

(
∂V ∗

is(T )

∂Tis

)
=

sgn

([
Π1 −

c+ θ

λ
+

λ

λ+ ρ

[
Π2 −

c+ θ

λ

]

×
[
1− e−(λ+ρ)T ∗

2
] ]

e−λTis −
[
ϕ

λ
+

ϕ

ρ

[
1− e−ρT ∗

2
]]) if Tis < Tjs

sgn

([
Π1 −

c+ θ

λ

]
e−λTis − ϕ

λ

)
if Tis ≥ Tjs.

(9)

As already observed after Lemma 1, the arguments in the sign function on the right in

(9) are monotone in Tis and, thus, the marginal gain from increasing the deadline has at

most one sign change in Tis on either of the intervals [0, Tjs) and [Tjs,∞). Writing (T ∗
1s, T

∗
2s)

for a profile of mutually optimal deadlines, it is immediate that the necessary and sufficient

conditions for T ∗
1s = T ∗

2s are

lim
T̂i1↑T ∗

js

∂V ∗
is(T )

∂Tis

∣∣∣∣Tis=T̂i1

Tjs=T ∗
js

≥ 0 and
∂V ∗

js(T )

∂Tjs

∣∣∣∣Tis=T ∗
js

Tjs=T ∗
js

≤ 0, ∀i ̸= j ∈ {1, 2}. (10)
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There are multiple symmetric, mutually optimal deadlines that the investors can coor-

dinate on. Specifically, from (9), we obtain that the symmetric mutually optimal deadlines

T ∗
1s = T ∗

2s must lie in the interval [T , T ], where

T =
1

λ
ln

(
λΠ1 − (c+ θ)

ϕ

)
(11)

and

T =
1

λ
ln


[
λΠ1 − (c+ θ) +

λ

λ+ ρ
[λΠ2 − (c+ θ)]

[
1− e−(λ+ρ)T ∗

2

]
ϕ+ λ

ϕ

ρ
[1− e−ρT ∗

2 ]

 . (12)

By Assumption (A) it holds T , T > 0. Moreover, we have T ≥ T , and thus that an

interval of mutually optimal symmetric deadlines exists if and only if

λΠ1 − (c+ θ)

λΠ2 − (c+ θ)
≤ ρ

λ+ ρ

1− e−(λ+ρ)T ∗
2

1− e−ρT ∗
2

. (13)

Clearly, keeping Π2 fixed, there is Π̄1 such that inequality (13) holds for all Π1 ≤ Π̄1 but is

violated for all Π1 > Π̄1. That is, symmetric, mutually optimal deadlines require that the

first spot in the profitable market is not too attractive. To sum up:

Observation 1. There are symmetric mutually optimal deadlines in state s = (1, {1, 2})
if and only if (13) holds. In particular, any profile (T ∗

1s, T
∗
2s) satisfying T ∗

1s = T ∗
2s ∈ [T , T ],

where T and T are given in (11) and (12), is a profile of mutually optimal deadlines.

Let’s turn to the case of asymmetric deadline profiles. A profile of asymmetric deadlines,

T ∗
is ̸= T ∗

js is mutually optimal if and only if

∂V ∗
is(T )

∂Tis

∣∣∣∣Tis=T ∗
is

Tjs=T ∗
js

= 0 and
V ∗
js(T )

∂Tjs

∣∣∣∣Tis=T ∗
is

Tjs=T ∗
js

= 0, for i ̸= j ∈ {1, 2}. (14)

The above equations have two asymmetric solutions. For T ∗
is > T ∗

js, this yields T
∗
is = T

and T ∗
js = T from (11) – (12) above. Consequently, T ∗

is > T ∗
js holds whenever (13) fails to

hold. That is, symmetric and asymmetric mutually optimal deadline profiles never co-exist.

Observation 2. There are asymmetric mutually optimal deadlines in state s = (1, {1, 2}) if
and only if (13) fails. In particular, any profile (T ∗

1s, T
∗
2s) satisfying T ∗

is = T and T ∗
js = T for

i ̸= j, where T and T are given in (11) and (12), is a profile of mutually optimal deadlines.
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As in the symmetric case, multiple profiles of mutually optimal deadlines exist. The

reason for multiplicity is a different one, though. Here, multiplicity follows from permuting

the dyads rather than coordinating on an identical deadline from an interval of possible such

deadlines.

4.2 Discussion

To get an intuition for when symmetric deadlines and when asymmetric deadlines are mu-

tually optimal in s = (1, {1, 2}), it is instructive to look at the sign of the marginal utility in

(9). In either of the two cases in (9), the sign of the marginal utility is equal to the sign of

a difference proportional to the difference between the marginal benefit from increasing the

deadline and the marginal agency cost thereof.

If the deadline is longer than that of the opponent (Tis ≥ Tjs), then the marginal benefit

consists of the expected flow from racing for the first spot. In the case of having a shorter

deadline than the opponent (Tis < Tjs), the marginal benefit additionally consists of the

value from keeping the option to work towards the second spot once the first spot becomes

unavailable. That is, the presence of the opponent dyad has a positive externality. In a

sense, it keeps the race open for the second prize.

The opponent’s presence also has a negative externality, though. This negative exter-

nality manifests itself in the form of an additional marginal cost whenever Tis < Tjs. The

extra cost stems from the fact that the firm owner, anticipating the possibility of racing for

the second spot alone, has a higher continuation utility than when no opponent is present.

Incentive compatibility then requires that the investor promises to leave a higher share of

Π1 to the firm owner.

Now, in the case of a sufficiently valuable second spot, the overall effect of having the

opponent in the race is positive. This gives an investor with a shorter deadline an incentive to

match the deadline of the opponent and thus induces symmetric, mutually optimal deadlines.

In contrast, when the first spot is sufficiently valuable, the incentive to free-ride on the efforts

of the other firm is not so strong. Instead, a competition effect dominates, giving one investor

(but not the other) an incentive to choose a strictly more extended deadline.

Remark 2. On a technical note, observe from (11)–(12) together with Observations 1–2 that

asymmetric deadlines occur if and only if the root of the argument in the first case of (9),

extended to the positive reals, lies to the left of the root of the argument in the second case of

(9), extended to the positive reals. This observation generalizes to the case of more than two

dyads, giving us a useful link between the utility function of the investors and the structure

of the mutually optimal deadline profiles (cf. Proposition A.4 in Appendix A).
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5 Discussion

5.1 Payments

As formally established in Lemma A.1 in Appendix A.1, the transfer from the firm to the

investor if taking up a breakthrough opportunity at t in equilibrium C∗ is given by

R∗
is(t) = Πσ −

ϕ

λ
− Uis(t; ais, C

∗). (15)

From the expression for Uis(t; ais, C) in Lemma A.1, it is immediate that whenever the

profile of deadlines is symmetric (Tis = Tjs for all i, j ∈ N), then Uis(t; ais, C
∗) is strictly

decreasing in t. Given (15), this implies that the transfer R∗
is(t) — i.e., the equity share of

the investor in case of a breakthrough — is increasing over time.

In the case of asymmetric deadlines, increasing R∗
is(t) is also straightforward to verify for

any firm i and any t ∈ [T̂ , T ∗
is], where T̂ is the time of the latest opponent’s exit from the

race before the exit of dyad i.10 Indeed, as t → T ∗
is the continuation payoff, Uis(t; ais, C

∗),

vanishes, and the expected share of the firm value that the firm retains after a breakthrough

decreases to ϕ. The closer to the deadline, the lower the agency rent of the firm, and a

breakthrough in the last instance is only worth as much as shirking.

5.2 Truthful Reporting

A natural extension of the model is to assume that the firm privately observes the arrival of

breakthroughs and that only the move into the profitable market is contractible. In such a

case, the investor might be worried about truthful reporting on the part of the firm.

In particular, there might be breakthrough opportunities that the investor wants the firm

owner to take up but the owner prefers to discard, and wait for a better spot instead. To

avoid this, the net return from the current breakthrough for the firm owner has to be higher

than the continuation value from the contract,

Πσ −Ris(t) ≥ Uis(t; ai, C
∗).

From the binding incentive compatibility constraint (15), we see that this condition is auto-

matically satisfied in any incentive-compatible contract.

10As can be seen from the second case in (A.1), whether or not R∗
is(t) is increasing for t < Tℓ, where Tℓ is

the longest time up to which ℓ opponents are in the race, depends on the expected utility in the continuation
game, Uℓ.
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5.3 More than Two Prizes

It is possible to extend the model to more than two prizes. In this case, an additional

complication arises due to the multiplicity of mutually optimal contract offers. In the model

analyzed in this paper, solving for the mutually optimal contract offers relied on the fact

that the respective continuation values are independent of the dyads’ identities staying in

the race. For states involving the first spot, this independence resulted from the symmetric

contract when dyads race for the second spot (Proposition 1). For more than two spots, this

independence of identities breaks down whenever the continuation contract is asymmetric,

which may occur for states involving spots before the second-to-last one.

One way to circumvent the problem of multiple mutually optimal continuation contracts

is to introduce a randomization device that publicly draws a random variable anytime a firm

takes up a spot. With such a public randomization device, sun-spot like equilibria come into

focus in which the remaining dyads mix between the different mutually optimal continuation

profiles to ensure the continuation games provide continuation utilities that depend on the

number of dyads but not on their identities. I show existence of such equilibria in an earlier

version of this paper.11

5.4 Concluding Remarks

This article analyzed a race between firm-investor dyads that seek to obtain breakthrough

opportunities to enter a profitable market. Combining moral hazard and multiple prizes

in an otherwise standard, symmetric continuous-time race, I obtained equilibrium behavior

that may exhibit staggered exits, shakeouts, or intermediate cases depending on the prize

structure.

We have focused on the case where multiple firm-investor dyads race for two sequentially

available spots in a profitable market. If the first spot in the market is sufficiently valuable,

then the equilibrium contracts generally exhibit asymmetric funding deadlines. On the other

hand, if the second spot is sufficiently valuable, then the equilibrium contracts are symmetric.

Partially symmetric contract profiles might occur in intermediate cases.

The presence of opponent dyads creates both a positive and a negative externality. When

the second spot is sufficiently valuable, then a free-riding effect dominates. Choosing a

shorter deadline than the opponents is always worse than matching their deadlines, as the

presence of the opponents keeps the race open for the second spot. When the second spot

is not that valuable, that positive externality is outweighed by a negative externality, which

comes in the form of additional agency rent from competition in the second stage. Here,

competition induces asymmetric deadlines.

11I am happy to provide the earlier version upon request.
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A Auxiliary Results

A.1 Payoff Characterization

In this section, I derive the utility functions of the firms and the investors in a state s = (σ,N)

under the cost-minimizing transfers. As we will see shortly, it is without loss to do so under

the assumption that the continuation values (i.e., the values of remaining in the game once

an opponent dyad has taken up a spot and left the game) only depend on the number of

remaining players but not on their identities.12 So, for states with |N | ≥ 2, I collect the

investors’ continuation values of states with κ ∈ {1, ..., |N |} players remaining in the race by

the vector V = {Vκ}κ∈{1,...,|N |−1}. Analogously, the firms’ continuation values are given by

U = {Uκ}κ∈{1,...,|N |−1}.

Lemma A.1 (Firm Owner Utility). Fix a dyad i and a state s = (σ,N) ∈ Si. Let C be a

profile of full-R&D contracts. Then:

(a) Let U0 = 0, T|N | = 0, and T0 = ∞. Further, if |N | ≥ 2, let {Tκ}|N |−1
κ=1 be a sequence

whose elements Tκ decrease in κ and assume it corresponds to the profile of opponent

deadlines in that state, {Tjs}j∈N\i = {Tκ}|N |−1
κ=1 . Suppose investor i sets a deadline

Tis ∈ [Tκ, Tκ−1) for some κ ∈ {1, ..., |N |}. Then, under cost-minimizing transfers

Uis(t; ai, C) =



ϕ+ λ(κ− 1)Uκ−1

λ(κ− 1) + ρ

×
[
1− e−(λ(κ−1)+ρ)(Tis−t)

] if t ∈ [Tκ, Tis]

Uis(Tℓ−1; ai, C)e−(λ(ℓ−1)+ρ)(Tℓ−1−t)

+
ϕ+ λ(ℓ− 1)Uℓ−1

λ(ℓ− 1) + ρ

×
[
1− e−(λ(ℓ−1)+ρ)(Tℓ−1−t)

]
if t ∈ [Tℓ, Tℓ−1)

for ℓ ∈ {κ+ 1, ..., |N |}.

(A.1)

(b) The cost-minimizing transfers Ris satisfy

Ris(t) = Πσ −
ϕ

λ
− Uis(t; ai, C), for a.e. t ≥ 0. (A.2)

12This holds in all equilibria for the race with two prizes. The reason is that in the states with σ = 2,
the continuation values are zero for everyone. If so, the mutually optimal contract offers are symmetric
(cf. Corollary A.1 below), implying symmetry of the continuation values in the states with σ = 1, too.
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Proof of Lemma A.1. Suppose Tis ∈ [Tκ, Tκ−1) for some κ ∈ {1, ..., |N |} and consider t ∈
[Tℓ,min{Tis, Tℓ−1}) for some ℓ ∈ {κ, ..., |N |} and suppose ais(t) = 1. Expanding (U), we get

that firm owner i’s utility for small dt > 0 approximately satisfies

Uis(t; âi, C) = [(1− âis(t))ϕ+ âis(t)λ[Πσ −Ris(t)] + (ℓ− 1)λUℓ−1] dt

+ (1− (λ(ℓ− 1 + âis(t)) + ρ)dt)Uis(t+ dt; âi, C)

for small dt > 0. Presuming optimality of âis implies

Uis(t; âi, C) = max
a∈{0,1}

{
[(1− a)ϕ+ aλ[Πσ −Ris(t)] + (ℓ− 1)λUℓ−1] dt

+ (1− (λ(ℓ− 1 + a) + ρ)dt)Uis(t+ dt; âi, C)

}
.

Rearranging and taking the limit dt → 0 gives

0 = max
a∈{0,1}

{
a [λ[Πσ −Ris(t)− Uis(t; âi, C)]− ϕ]

}
+ ϕ+ (ℓ− 1)λUℓ−1 − (λ(ℓ− 1) + ρ))Uis(t; âi, C) + U ′

is(t; âi, C), (A.3)

from which we see that in order for âis(t) = 1 to be chosen by the firm at all t ∈ [0, Tis],

incentive compatibility requires

Πσ −Ris(t)− Uis(t; ai, C) ≥ ϕ/λ (A.4)

for all t ∈ [0, Tis]. Now, observe that the constraint (A.4) must bind at (almost) every t

in any equilibrium, for, if not, then there would be an alternative, feasible contract with

strictly higher payments, R̂is(t), whenever the constraint does not bind on a strictly positive

measure of points t. Because the contract is otherwise unchanged this would yield a strictly

higher profit to the investor. This gives (A.2).

Since a contract under which the constraint (A.4) binds everywhere also satisfies (LLC)

and is payoff equivalent to a contract under which it binds almost everywhere, we can rewrite

(A.3) as

0 = λ

[
ϕ

λ
+ (ℓ− 1)Uℓ−1

]
− (λ(ℓ− 1) + ρ)Uis(t; ai, C) + U ′

is(t; ai, C).
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Solving gives

Uis(t; ai, C) = e(λ(ℓ−1)+ρ)t

− t∫
0

λ

[
ϕ

λ
+ (ℓ− 1)Uℓ−1

]
e−(λ(ℓ−1)+ρ)τdτ + C

 ,

where C is a constant. For ℓ = κ it must hold Uis(Tis; ais, C) = 0, yielding the first

case in (A.1). For ℓ ∈ {κ + 1, ..., |N |}, value matching requires limt↑Tℓ−1
Uis(t; ais, C) =

Uis(Tℓ−1; ais, C), yielding the second case in (A.1).

The incentive compatibility constraint (A.2) allows to substitute the payments in the

investor utility function. As the proof to the following lemma shows, this gives the following

characterization result for investor utility under the cost-minimizing transfers.

Lemma A.2 (Investor Utility). Fix a dyad i ∈ {1, ..., n} and a state s = (σ,N) ∈ Si. Let C

be a profile of full-R&D contracts. Let V0 = 0, T|N | = 0, and T0 = ∞. Further, if |N | ≥ 2,

let {Tκ}|N |−1
κ=1 be a sequence whose elements Tκ decrease in κ and assume it corresponds to

the profile of opponent deadlines in that state, {Tjs}j∈N\i = {Tκ}|N |−1
κ=1 .

(a) Suppose investor i sets a deadline Tis ∈ [T|N |, T|N |−1), then under cost-minimizing trans-

fers

Vis(0;C) =

Tis∫
0

λ

[
Πσ − Uis(τ ; ai, C)− c+ θ + ϕ

λ
+ (|N | − 1)V|N |−1

]
e−(λ|N |+ρ)τdτ. (A.5)

(b) Suppose investor i sets a deadline Tis ∈ [Tκ, Tκ−1) for some κ ∈ {1, ..., |N | − 1}, then
under cost-minimizing transfers

Vis(0;C) = V|N |−1e
−(λ|N |+ρ)T|N|−1

+

T|N|−1∫
0

λ

[
Πσ − Uis(τ ; ai, C)− c+ θ + ϕ

λ
+ (|N | − 1)V|N |−1

]
e−(λ|N |+ρ)τdτ, (A.6)

where Vℓ is recursively given by

Vℓ = Vℓ−1e
−(λℓ+ρ)(Tℓ−1−Tℓ) + e(ℓλ+ρ)Tℓ

×
Tℓ−1∫
Tℓ

λ

[
Πσ − Uis(τ ; ai, C)− c+ θ + ϕ

λ
+ (ℓ− 1)Vℓ−1

]
e−(λℓ+ρ)τdτ (A.7)
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for ℓ ∈ {κ+ 1, ..., |N | − 1}, and for ℓ = κ by

Vℓ = e(λℓ+ρ)Tℓ

×
Tis∫
Tℓ

λ

[
Πσ − Uis(τ ; ai, C)− c+ θ + ϕ

λ
+ (ℓ− 1)Vℓ−1

]
e−(λℓ+ρ)τdτ. (A.8)

Proof of Lemma A.2. Suppose Tis ∈ [Tκ, Tκ−1) for some κ ∈ {1, ..., |N |} and consider t ∈
[Tℓ,min{Tis, Tℓ−1}) for some ℓ ∈ {κ, ..., |N |}. Then, expanding (V), the utility of the investor,
Vis(t;C), under a profile C of full-R&D contracts approximately satisfies for small dt > 0,

Vis(t;C) = ais(t)[λRis(t)− c] + (ℓ− 1)λVℓ−1 − θ

+ (1− ((ℓ− 1 + ais(t))λ+ ρ)dt)Vis(t+ dt).

Using ais(t) = 1 and (A.2) and taking the limit dt → 0 yields

0 = λ

[
Πσ − Uis(t; ai, C)− c+ θ + ϕ

λ
+ (ℓ− 1)Vℓ−1

]
− (λℓ+ ρ)Vis(t;C) + V ′

is(t;C).

Solving gives

Vis(t;C) = e(λℓ+ρ)t

×

− t∫
0

λ

[
Πσ − Uis(τ ; ai, C)− c+ θ + ϕ

λ
+ (ℓ− 1)Vℓ−1

]
e−(λℓ+ρ)τdτ + C

 , (A.9)

where C is a constant. If Tis < Tℓ−1, then using the boundary condition Vis(Tis;C) = 0 we

obtain

Vis(t;C) = e(λℓ+ρ)t

×

 Tis∫
t

λ

[
Πσ − Uis(τ ; ai, C)− c+ θ + ϕ

λ
+ (ℓ− 1)Vκ−1

]
e−(λℓ+ρ)τdτ

 . (A.10)

If, on the other hand, Tis ≥ Tℓ−1, then value matching requires limt↑Tℓ−1
Vis(t;C) = Vis(Tℓ−1;C),

so that defining Vℓ ≡ Vis(Tℓ;C) gives us

Vis(t;C) = Vℓ−1e
−(λℓ+ρ)(Tℓ−1−t) + e(λℓ+ρ)t
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×

 Tℓ−1∫
t

λ

[
Πσ − Uis(τ ; ai, C)− c+ θ + ϕ

λ
+ (ℓ− 1)Vℓ−1

]
e−(λℓ+ρ)τdτ

 . (A.11)

Now, to obtain (A.5) we set ℓ = |N | and evaluate (A.10) at t = 0. This gives (a). To

obtain (A.6) we set ℓ = |N | and evaluate (A.11) at t = 0. Then (A.7) follows from recursively

using (A.11) for ℓ ∈ {κ+ 1, ..., |N |} and (A.8) follows from (A.10) for ℓ = κ. This gives (b)

and completes the proof.

A.2 Equilibrium Characterization Results

This section uses the expressions for the firms’ and the investors’ utilities obtained in the

last sectoin to characterize the mutually optimal deadlines. The next lemma is instrumental

in doing so.

Lemma A.3. Fix a dyad i and a state s = (σ,N) ∈ Si. Let V
∗
is(T ) be investor utility under

the cost-minimizing transfers for deadlines T = (Tis, {Tκ}|N |−1
κ=1 ), where {Tκ}|N |−1

κ=1 = {∅} if

|N | = 1 and the elements of {Tκ}|N |−1
κ=1 decrease in κ otherwise. Further, let T0 = ∞, T|N | = 0,

and U0 = V0 = 0. Then, for all κ ∈ {1, .., |N |} such that Tκ < Tκ−1,

sgn

(
∂V ∗

is(T )

∂Tis

∣∣∣∣
Tis∈[Tκ,Tκ−1)

)

= sgn

(
[λΠσ − (c+ θ) + λ(κ− 1) [Vκ−1 +Uκ−1]] e

−λTis

− [ϕ+ λ(κ− 1)Uκ−1]

)
. (A.12)

Proof of Lemma A.3. Let V ∗
is(T ) = Vis(0;C) be investor i’s utility in state s under cost-

minimizing transfers and deadlines T = (Tis, {Tjs}j∈N\i) as characterized in Lemma A.2.

That is, if |N | = 1, then the opponent deadline profile is {Tjs}j∈N\i = {∅}. And if |N | ≥ 2,

then the opponent deadline profile corresponds to {Tκ}|N |−1
κ=1 , where the elements of {Tκ}|N |−1

κ=1

weakly decrease in κ. Last, recall that V0 = U0 = 0 and that T|N | = 0 and T0 = ∞.

First, consider Tis ∈ [Tκ, Tκ−1) for some κ ∈ {1, ..., |N | − 1}. From (A.6) in part (b) of

Lemma A.2, we obtain that

∂V ∗
is(T )

∂Tis

=
∂V|N |−1

∂Tis

e−(λ|N |+ρ)T|N|−1 − λ

T|N|−1∫
0

∂Uis(τ ; ai, C)

∂Tis

e−(λ|N |+ρ)τdτ.
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Consequently, plugging in for ∂V|N |−1/∂Tis and recalling that T|N | = 0, (A.7) gives

∂V ∗
is(T )

∂Tis

=
∂V|N |−2

∂Tis

e−
∑|N|

m=|N|−1
(λm+ρ)(Tm−1−Tm)

− λ

|N |∑
m=|N |−1

e−λ
∑|N|

j=m Tj

Tm−1∫
Tm

∂Uis(τ ; ai, C)

∂Tis

e−(λm+ρ)τdτ.

Repeating, we thus obtain more generally,

∂V ∗
is(T )

∂Tis

=
∂Vκ

∂Tis

e−
∑|N|

m=κ+1(λm+ρ)(Tm−1−Tm)

− λ

|N |∑
m=κ+1

e−λ
∑|N|

j=m Tj

Tm−1∫
Tm

∂Uis(τ ; ai, C)

∂Tis

e−(λm+ρ)τdτ,

where (A.8) yields

∂Vκ

∂Tis

= e−(λκ+ρ)(Tis−Tκ)λ

[
Πσ −

c+ θ + ϕ

λ
+ (κ− 1)Vκ−1

]

− λe(λκ+ρ)Tκ

Tis∫
Tκ

∂Uis(τ ; ai, C)

∂Tis

e−(κλ+ρ)τdτ.

This can be expressed more succinctly as

∂V ∗
is(T )

∂Tis

= λ

[
Πσ −

c+ θ + ϕ

λ
+ (κ− 1)Vκ−1

]
e−(λκ+ρ)Tis−

∑|N|
m=κ+1 λTm−1

− λ

|N |∑
m=κ

e−λ
∑|N|

j=m Tj

min{Tis,Tm−1}∫
Tm

∂Uis(τ ; ai, C)

∂Tis

e−(λm+ρ)τdτ. (A.13)

Next, from Lemma A.1 we obtain for τ ∈ (Tm, Tm−1), m ∈ {κ+ 1, ..., |N |}, that

∂Uis(τ ; ai, C)

∂Tis

=
∂Uis(Tm−1; ai, C)

∂Tis

e−(λ(m−1)+ρ)(Tm−1−τ).

Plugging in for ∂Uis(Tm−1; ai, C)/∂Tis, we obtain

∂Uis(τ ; ai, C)

∂Tis

=
∂Uis(Tm−2; ai, C)

∂Tis

e−(λ(m−2)+ρ)(Tm−2−Tm−1)e−(λ(m−1)+ρ)(Tm−1−τ)

=
∂Uis(Tm−2; ai, C)

∂Tis

e−(λ(m−2)+ρ)Tm−2−λTm−1+(λ(m−1)+ρ)τ .
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Repeating, and using

∂Uis(Tκ; ai, C)

∂Tis

= [ϕ+ λ(κ− 1)Uκ−1] e
−(λ(κ−1)+ρ)(Tis−Tκ),

we finally obtain

∂Uis(τ ; ai, C)

∂Tis

= [ϕ+ λ(κ− 1)Uκ−1] e
−(λ(κ−1)+ρ)Tis−λ

∑m
j=κ+1 Tj−1+(λ(m−1)+ρ)τ .

Plugging above expression into (A.13) then yields

∂V ∗
is(T )

∂Tis

= λ

[
Πσ −

c+ θ + ϕ

λ
+ (κ− 1)Vκ−1

]
e−(λκ+ρ)Tis−

∑|N|
m=κ+1 λTm−1

− λ

|N |∑
m=κ

e−λ
∑|N|

j=m Tj

min{Tis,Tm−1}∫
Tm

[ϕ+ λ(κ− 1)Uκ−1] e
−(λκ+ρ)Tis−λ

∑m
j=κ+1 Tj−1−λτdτ.

Integrating gives

∂V ∗
is(T )

∂Tis

= λ

[
Πσ −

c+ θ + ϕ

λ
+ (κ− 1)Vκ−1

]
e−(λκ+ρ)Tis−

∑|N|
m=κ+1 λTm−1

+

|N |∑
m=κ

e−λ
∑|N|

j=m Tj [ϕ+ λ(κ− 1)Uκ−1]

×
[
e−(λκ+ρ)Tis−λ

∑m
j=κ+1 Tj−1−λmin{Tis,Tm−1} − e−(λκ+ρ)Tis−λ

∑m
j=κ+1 Tj−1−λTm

]
,

which, recalling T|N | = 0, can be rewritten as

∂V ∗
is(T )

∂Tis

= λ

[
Πσ −

c+ θ + ϕ

λ
+ (κ− 1)Vκ−1

]
e−(λκ+ρ)Tis−

∑|N|
m=κ+1 λTm−1

+

|N |∑
m=κ

[ϕ+ λ(κ− 1)Uκ−1]

×
[
e−(λκ+ρ)Tis−λ

∑|N|
j=κ+1 Tj−1−λmin{Tis,Tm−1} − e−(λκ+ρ)Tis−λ

∑|N|
j=κ+1 Tj−1−λTm

]
,

or

∂V ∗
is(T )

∂Tis

=

e−(λκ+ρ)Tis−
∑|N|

j=κ+1 λTj−1

[
[λΠσ − (c+ θ + ϕ) + λ(κ− 1)Vκ−1] e

−λTis
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+ [ϕ+ λ(κ− 1)Uκ−1]

|N |∑
m=κ

[
e−λmin{Tis,Tm−1} − e−λTm

] ]
,

which is equivalent to

∂V ∗
is(T )

∂Tis

= e−(λκ+ρ)Tis−
∑|N|

j=κ+1 λTj−1

[
[λΠσ − (c+ θ + ϕ) + λ(κ− 1)Vκ−1] e

−λTis

− [ϕ+ λ(κ− 1)Uκ−1]
[
1− e−λTis

] ]
,

finally yielding

∂V ∗
is(T )

∂Tis

= e−(λκ+ρ)Tis−
∑|N|

j=κ+1 λTj−1

×

[
[λΠσ − (c+ θ) + λ(κ− 1) [Vκ−1 +Uκ−1]] e

−λTis − [ϕ+ λ(κ− 1)Uκ−1]

]
,

thus giving us the claim when Tis ∈ [Tκ, Tκ−1) for κ ∈ {1, ..., |N | − 1}.

Second, we repeat above steps for κ = |N |, now starting from part (a) rather than part

(b) of Lemma A.2. This gives

∂V ∗
is(T )

∂Tis

= e−(λκ+ρ)Tis

×

[
[λΠσ − (c+ θ) + λ(κ− 1) [Vκ−1 +Uκ−1]] e

−λTis − [ϕ+ λ(κ− 1)Uκ−1]

]
,

and thus completes the proof.

Now, consider the definition of Gκ in (5), momentarily replace the continuation values

V ∗
2,κ−1 and U∗

2,κ−1 with our more general continuation values Vκ−1 and Uκ−1, and construct

a sequence {Gκ}|N |
κ=1 containing these Gκ. I am interested in subsequences of the sequence

{Gκ}|N |
κ=1 that have some specific properties. For the following, I define a set Gs collecting all

index sets of the subsequences that have these properties for some state s. Specifically,

Definition 4 (Set of Subsequences, Gs). Let Gs be the set of all index sets {κ1, ..., κℓ} with

κℓ = |N | to which there is a subsequence of {Gκ}|N |
κ=1 with the following properties:

(a) For all q ∈ {1, ..., ℓ}, it holds Gκq−1+1 ≤ Gκq , where κ0 = 0.

(b) For all q ∈ {0, ..., ℓ− 1}, it holds Gκq > Gκq+1, where Gκ0 = ∞.

29



For example, if the sequence {Gκ}|N |
κ=1 is strictly decreasing, then the unique set in Gs

is {1, ..., |N |}. On the other hand, if the sequence {Gκ}|N |
κ=1 is increasing, then the unique

set in Gs is {|N |}. Either of these cases can occur in equilibrium, but also mixed cases

play an important role in which {Gκ}|N |
κ=1 is U -shaped and the set Gs consists of multiple

elements. For example, if |N | = 4, all elements in {Gκ}4κ=1 are distinct, and they satisfy

G1 > G4 > G2 > G3, then Gs = {{1, 4}, {1, 2, 4}}. The next lemma gives a more systematic

characterization that will become important in the following.

Lemma A.4. Fix a state s = (σ,N). Suppose the elements of the corresponding sequence

{Gκ}|N |
κ=1 are distinct and that the sequence is U-shaped with lowest element Gk. Further, let

k be the lowest index κ ≤ k of the elements satisfying Gκ < G|N | (setting k = |N | if there
is no such element). Then, an index set {κ1, κ2, ..., κℓ} with κℓ = |N | is an element of Gs if

and only if: (a) κq = q for all q < ℓ and (b) ℓ ∈ {k, k + 1, ..., k}.

Proof of Lemma A.4. The claim follows from the following four observations:

1. Whenever some index κ satisfying 2 < κ < k is part of an index set in Gs then so must

be κ− 1.

(Proof: By assumption, the sequence {Gκ}|N |
κ=1 is strictly decreasing until κ = k. The

observation then follows from (a) in Definition 4.)

2. For any index set {κ1, κ2, ..., κℓ} ∈ Gs with ℓ ≥ 2 it must hold that κℓ−1 < k.

(Proof: Suppose to the contrary that κℓ−1 ≥ k. Then, k < |N | because κℓ−1 < κℓ =

|N |. Point (b) in Definition 4 implies Gκℓ−1
> Gκℓ−1+1, which contradicts the fact that

Gκ is increasing for κ ∈ {k, k + 1, ..., |N |}.)

3. For any index set {κ1, κ2, ..., κℓ} ∈ Gs with ℓ ≥ 2 it must hold that κℓ−1 ≥ k − 1.

(Proof: If k = 1, then the claim is evidentially true. As regards k ≥ 2, suppose to the

contrary that κℓ−1 < k − 1. Then (a) in Definition 4 implies Gκℓ−1+1 ≤ G|N |. But the

definition of k gives Gκℓ−1+1 > G|N |, a contradiction.)

4. For every κ ∈ {k, ...., k} there is an index set {1, 2, ..., κ− 1, |N |} ∈ Gs (which is taken

to be {|N |} if κ = 1).

(Proof: This is a straightforward consequence of the facts that {Gκ}|N |
κ=1 is strictly

decreasing until κ = k and that for all κ ∈ {k, ..., k} we have Gκ < G|N |. Consequently,

any index set {1, 2, ..., κ− 1, |N |} satisfies conditions (a) and (b) in Definition 4.)

Observation 1 gives that any element in {κ1, κ2, ..., κℓ} ∈ Gs has κ1 = 1 and – up to the

(ℓ−1)-th element — consists of consecutive elements only. Observation 2 provides an upper
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bound on the length of any element in Gs and Observation 3 provides a lower bound. Finally,

Observation 4 establishes that these bounds are tight.

For any sequence {Gκ}|N |
κ=1, the following proposition gives a full characterization of the

corresponding set of mutually optimal deadline profiles, as defined in Definition 3 in the text.

Proposition A.4. Fix a state s = (σ,N) ∈ S and take any weakly decreasing deadline

profile {T ∗
κ}

|N |
κ=1. Then, {T ∗

κ}
|N |
κ=1 ∈ Ts if and only if there is {κ1, ..., κℓ} ∈ Gs such that

{T ∗
κ}

|N |
κ=1 satisfies

T ∗
κq

> T ∗
κq+1 = T ∗

κq+1
,∀q ∈ {0, ..., ℓ− 1}, where T ∗

κ0
= ∞, (A.14)

and
1

λ
ln
(
Gκq−1+1

)
≤ T ∗

κq
≤ 1

λ
ln
(
Gκq

)
, ∀q ∈ {1, ..., ℓ}, where κ0 = 0. (A.15)

Moreover, for every {κ1, ..., κℓ} ∈ Gs there is at least one {T ∗
κ}

|N |
κ=1 ∈ Ts.

Proof of Proposition A.4. First, I show the only-if part, then the if part.

Only-If Part: If {T ∗
κ}

|N |
κ=1 ∈ Ts then there is {κ1, ..., κℓ} ∈ Gs such that {T ∗

κ}
|N |
κ=1 satisfies

the conditions (A.14) and (A.15). To show this, consider an index set {κ1, κ2, ..., κℓ} with

κℓ = |N | and a corresponding deadline profile {T ∗
κ}

|N |
κ=1 satisfying

T ∗
1 = ... = T ∗

κ1
> T ∗

κ1+1 = ... = T ∗
κ2

> ... > T ∗
κℓ−2+1 = ... = T ∗

κℓ−1
> T ∗

κℓ−1+1 = ... = T ∗
|N |.

I will derive necessary conditions on the sequence {Gκ}|N |
κ=1 for this profile to be one of

mutually optimal deadlines and then verify that they imply {κ1, κ2, ..., κℓ} ∈ Gs and condition

(A.15) (condition (A.14) is satisfied by construction).

From Lemma A.3, optimality of T ∗
κj

implies[
λΠσ − (c+ θ) + λ(κj − 1)

[
Vκj−1 +Uκj−1

]]
e
−λT ∗

κj ≥ ϕ+ λ(κj − 1)Uκj−1, (A.16)

for every j ∈ {1, ..., ℓ}. That is, all investors choosing T ∗
κj

must find it optimal to choose a

deadline of at least T ∗
κj

when κj−1 opponents are in the race. Further, for every j ∈ {1, ..., ℓ}
it must hold (setting κ0 = 0) that

[
λΠσ − (c+ θ) + λκj−1

[
Vκj−1

+Uκj−1

]]
e
−λT ∗

κj ≤ ϕ+ λκj−1Uκj−1
, (A.17)

ensuring that neither of the investors choosing a deadline of lenght T ∗
κj

find it profitable

to extend the deadline beyond T ∗
κj
, where they would face κj−1 opponents. Last, all dyads

choosing T ∗
κj−1

, j ∈ {2, ..., ℓ}, must find it strictly optimal to extend the deadline beyond
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T ∗
κj
, where they face κj−1 − 1 opponents,

[
λΠσ − (c+ θ) + λ(κj−1 − 1)

[
Vκj−1−1 +Uκj−1−1

]]
e
−λT ∗

κj

> ϕ+ λ(κj−1 − 1)Uκj−1−1. (A.18)

Combining (A.16) and (A.17) gives (a) in Definition 4. Combining (A.17) and (A.18) gives

(b) in Definition 4. Hence, we have that {κ1, κ2, ..., κℓ} ∈ Gs. Moreover, the first inequality

in condition (A.15) follows from rearranging (A.17) while the second inequality in condition

(A.15) follows from rearranging (A.16).

If Part: If there is {κ1, ..., κℓ} ∈ Gs such that {T ∗
κ}

|N |
κ=1 satisfies the conditions (A.14) and

(A.15), it holds {T ∗
κ}

|N |
κ=1 ∈ Ts. To show this consider a decreasing profile {T ∗

κ}
|N |
κ=1 and suppose

there is {κ1, ..., κℓ} ∈ Gs such that {T ∗
κ}

|N |
κ=1 satisfies the conditions (A.14) and (A.15). First,

note that {κ1, ..., κℓ} ∈ Gs implies that the outer inequalities in (A.15) are consistent; i.e.,

that 1
λ
ln
(
Gκq−1+1

)
≤ 1

λ
ln
(
Gκq

)
holds for all q ∈ {1, ..., ℓ}, where κ0 = 0.

Next, consider an investor i that faces an opponent deadline profile

{Tjs}j∈N\i = {T ∗
κ}κ∈{1,...,|N |}\κ̂

for some κ̂ = κι, where ι ∈ {1, ..., ℓ}. I will show that setting Tis = T ∗
κ̂ is optimal for that

investor. Writing T = (Tis, {Tjs}j∈N\i), we have for all q ∈ {ι, ..., ℓ} that

sgn

(
lim

T̂↑T ∗
κq

∂V ∗
is(T )

∂Tis

∣∣∣∣
Tis=T̂

)
=

sgn

([
λΠσ − (c+ θ) + λ(κq − 1)

[
Vκq−1 +Uκq−1

]]
e−λT ∗

κq

−
[
ϕ+ λ(κq − 1)Uκq−1

])
≥ 0,

where the equality follows from Lemma 1 (appreciating the fact that the number of opponents

on [T ∗
κq+1

, T ∗
κq
) is equal to κq − 1 for all q ∈ {ι, ..., ℓ} where T ∗

κℓ+1
= 0) and the inequality

follows from condition (A.15), ensuring that λ−1 ln(Gκq) ≥ T ∗
κq

holds for all q ∈ {ι, ..., ℓ}.
From Lemma 1 we also know that ∂V ∗

is(T )/∂Tis is unimodal in the intervals between the

opponent deadlines. Consequently, it holds ∂V ∗
is(T )/∂Tis ≥ 0 for all Tis ∈ [0, T ∗

κι
).

Further, observe that, for all q ∈ {1, ..., ι}, we have
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sgn

(
lim

T̂↓T ∗
κq

∂V ∗
is(T )

∂Tis

∣∣∣∣
Tis=T̂

)
=

sgn

([
λΠσ − (c+ θ) + λκq−1

[
Vκq−1 +Uκq−1

]]
e−λT ∗

κq −
[
ϕ+ λκq−1Uκq−1

])
≤ 0,

where the equality follows from Lemma 1 (appreciating the fact that the number of opponents

on [T ∗
κq
, T ∗

κq−1
) is equal to κq−1 for all q ∈ {1, ..., ι} where T ∗

κ0
= ∞) and the inequality

follows from condition (A.15), ensuring that Gκq−1+1 ≤ e−λT ∗
κq holds. Thus, again by the

fact that ∂V ∗
is(T )/∂Tis is unimodal in the intervals between the opponent deadlines, it holds

∂V ∗
is(T )/∂Tis ≤ 0 for Tis ∈ [T ∗

κι
,∞). Together we obtain that choosing a deadline Tis = T ∗

κι

maximizes V ∗
is(T ), as desired.

It remains to show that for every {κ1, ..., κℓ} ∈ Gs there is at least one {T ∗
κ}

|N |
κ=1 ∈ Ts. In

view of the only-if part it suffices to show that for a given {κ1, ..., κℓ} ∈ Gs there exists a

decreasing deadline profile such that (A.14) and (A.15) hold. Consider the profile {T ∗
κ}

|N |
κ=1

satisfying

T ∗
1 = T ∗

2 = ... = T ∗
κ1

= T̂ ∗
κ1

> T ∗
κ1+1 = ... = T ∗

κ2
= T̂ ∗

κ2
>

...

> T ∗
κℓ−2+1 = ... = T ∗

κℓ−1
= T̂ ∗

κℓ−1
> T ∗

κℓ−1+1 = ... = T ∗
|N | = T̂ ∗

κℓ
,

where

T̂ ∗
κj

=
1

λ

(
λΠσ − (c+ θ) + λ(κj − 1)

[
Vκj−1 +Uκj−1

]
ϕ+ λ(κj − 1)Uκj−1

)
, j ∈ {1, ..., ℓ}.

This trivially satisfies condition (A.14). Appreciating that {κ1, ..., κℓ} ∈ Gs impliesGκq−1+1 ≤
Gκq by Point (a) in Definition 4 then finally gives condition (A.15) and, hence, the claim.

The last result in this section is a straightforward corollary of Proposition A.4. Part

(a) follows directly from Part (c), appreciating when Uκ = Vκ = 0 for all κ, then Gκ =

(λΠσ − (c+ θ))/ϕ for all κ. The proofs for the other parts make use of Lemma A.4.

Corollary A.1. Fix a state s = (σ,N) ∈ S.

(a) If all continuation payoffs are zero (Uκ = Vκ = 0 for all κ), then there is a unique profile

{T ∗
κ}

|N |
κ=1 ∈ Ts. This profile is completely symmetric with T ∗

κ = 1
λ
ln ((λΠσ − (c+ θ))/ϕ)

for all κ ∈ {1, ..., |N |}.

(b) Suppose {Gκ}|N |
κ=1 is strictly decreasing. Then, there is a unique profile {T ∗

κ}
|N |
κ=1 ∈ Ts.

This profile is completely asymmetric with T ∗
κ = 1

λ
ln (Gκ) for all κ ∈ {1, ..., |N |}.
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(c) Suppose {Gκ}|N |
κ=1 is weakly increasing. Then, any profile {T ∗

κ}
|N |
κ=1 ∈ Ts is completely

symmetric; i.e., T ∗
κ = T ∗ for all κ ∈ {1, ..., |N |}. Specifically, T ∗ ∈ [T , T ], where

T ≡ 1
λ
ln
(
G|N |

)
≥ 1

λ
ln (G1) ≡ T .

Proof of Corollary A.1. Part (b) — Complete asymmetry and uniqueness is a direct con-

sequence of Lemma A.4: When {Gκ}|N |
κ=1 is strictly decreasing, then the unique element in

Gs is {1, 2, ..., |N |}. The characterization then follows directly from Proposition A.4. Part

(c) — Complete symmetry of the deadlines is also a direct consequence of Lemma A.4:

When {Gκ}|N |
κ=1 is strictly increasing, then the unique element in Gs is {|N |}. Again, the

characterization follows directly from Proposition A.4.

B Proofs of Propositions in Text

Proof of Proposition 1. The optimal deadline T ∗
2 follows directly from (a) in Corollary A.1,

appreciating that for σ = 2 all continuation payoffs are zero (Uκ = Vκ = 0 for all relevant

κ). The utility of the firm follows from Lemma A.1. As noted in the text, the utility of the

investor is total dyad welfare minus the rent left to the firm.

Proof of Proposition 2. To begin, observe that under the mutuall optimal continuation con-

tract offers (cf. Proposition 1) we have from (5),

lim
ϕ→0

ϕ ·Gκ =

λΠ1 − (c+ θ) +
λ(κ− 1)

λ(κ− 1) + ρ
[λΠ2 − (c+ θ)]

1 +
λ(κ− 1)

λ(κ− 2) + ρ

≡ Ḡκ. (B.19)

This follows from expanding the fraction in (5) by λ and appreciating

lim
ϕ→0

[
V ∗
2,κ−1 + U∗

2,κ−1

]
=

[λΠ2 − (c+ θ)]

λ(κ− 1) + ρ

and

lim
ϕ→0

U∗
2,κ−1

ϕ
=

1

λ(κ− 2) + ρ
,

both of which follow from plugging in the expressions of the firm’s and the investor’s utilities

(2)–(3) and appreciating that T ∗
2 diverges to infinity when ϕ → 0.

By construction, we have sgn(Gκ−Gκ′) = sgn(Ḡκ−Ḡκ′) for all sufficiently low ϕ whenever

Ḡκ ̸= Ḡκ′ . This allows me to use {Ḡκ}|N |
κ=1 rather than {Gκ}|N |

κ=1 to construct Gs in order to

draw conclusions on the properties of the profile of mutually optimal deadlines when ϕ

becomes small.
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Fix κ, κ′ satisfying κ′ > κ ≥ 2. Then we have from (B.19) that Ḡκ > Ḡκ′ is equivalent to

Φ

[
λ(κ′ − 1)

λ(κ′ − 2) + ρ
− λ(κ− 1)

λ(κ− 2) + ρ

]
>

λ(κ′ − 1)

λ(κ′ − 1) + ρ

[
1 +

λ(κ− 1)

λ(κ− 2) + ρ

]
− λ(κ− 1)

λ(κ− 1) + ρ

[
1 +

λ(κ′ − 1)

λ(κ′ − 2) + ρ

]
,

where Φ is defined in (6). Straightforward yet tedious calculations reveal that this is equiv-

alent to

Φλ(ρ− λ)[λ(κ− 1) + ρ][λ(κ′ − 1) + ρ]

> λ(ρ− λ) [[λ(κ− 1) + ρ][λ(κ′ − 1) + ρ]− ρλ] + 2λ4(κ− 1)(κ′ − 1).

From this we get that Ḡκ > Ḡκ′ for κ′ > κ ≥ 2 is equivalent to f(κ, κ′) > 0, where f(κ, κ′)

is given by

f(κ, κ′) = λ2(κ− 1)(κ′ − 1) [(Φ− 1)(ρ− λ)− 2λ]

+ ρ(ρ− λ) [(Φ− 1) [λ(κ+ κ′ − 2) + ρ] + λ] . (B.20)

To continue, treat κ as a real number where necessary, define the binomial g(κ) ≡ f(κ, κ+1)

and observe that

g′(κ) = λ2(2κ− 1) [(Φ− 1)(ρ− λ)− 2λ] + 2ρ(ρ− λ)λ[Φ− 1]. (B.21)

Consequently, it holds g′′(k) ≥ 0 with limk→∞ g(k) = ∞ when Φ ≥ (ρ + λ)/(ρ − λ) and

g′′(κ) < 0 with limk→∞ g(k) = −∞ when Φ < (ρ+ λ)/(ρ− λ). Moreover, for κ = 2 we have

g(2) = 2λ2 [(Φ− 1)(ρ− λ)− 2λ] + ρ(ρ− λ) [(Φ− 1)(3λ+ ρ) + λ] ,

which is increasing in Φ, ∂g(2)/∂Φ > 0, because we consider the case ρ > λ.

Claim (a). Plugging in Φ = ρ/(λ+ ρ) in the expression for g(2) above, we obtain g(2) < 0,

which together with the fact that g(2) increases in Φ implies that g(2) < 0 for all Φ ≤
ρ/(λ+ρ). Further, because ρ/(λ+ρ) < 1 < (ρ+λ)/(ρ−λ), we obtain from (B.21) that g(κ)

is strictly decreasing for all κ ≥ 2. Together, we have g(κ) < 0 for all κ ≥ 2, implying that

Ḡκ is strictly increasing for all κ ≥ 2. Finally, observe that Φ < ρ/(λ+ ρ) implies Ḡ1 < Ḡ2.

Indeed,

Ḡ1 < Ḡ2 ⇐⇒ Φ <
Φ + λ

λ+ρ

1 + λ
ρ

⇐⇒ Φ <
ρ

λ+ ρ
.
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So, we obtain that Ḡκ (and, hence, Gκ for all sufficiently small ϕ > 0) is also strictly

increasing for all κ ≥ 1. Together with Corollary A.1 we then have the claim.

Claim (b). Observe that for Φ = (ρ+λ)/(ρ−λ) it holds g(2) > 0. Because g(2) increases in

Φ, this must hold for all Φ ≥ (ρ+λ)/(ρ−λ). Further, because (ρ+λ)/(ρ−λ) > 1, we obtain

from (B.21) that g(κ) is strictly increasing for all κ ≥ 2. This implies that Ḡκ > Ḡκ+1 for all

κ ≥ 2. Moreover, recall from the proof of claim (a) above that Ḡ1 > Ḡ2 iff Φ > ρ/(ρ + λ).

Appreciating that (ρ + λ)/(ρ − λ) > ρ/(ρ + λ) then yields that Ḡκ (and, hence, Gκ for all

sufficiently small ϕ > 0) is strictly decreasing for all κ ≥ 1. Together with Corollary A.1 we

then have the claim.

Claim (c). It remains to analyze the case Φ ∈ (ρ/(λ + ρ), (ρ + λ)/(ρ − λ)). Doing so, I

suppose Π1 and Π2 are such that no two elements in the sequence {Ḡκ}|N |
κ=1 are equal, which

holds for generic values of Π1 and Π2, as is readily verified from (B.19).

I first argue for the existence of k. We know from above that Φ > ρ/(λ + ρ) implies

Ḡ1 > Ḡ2. Also, we know that, as a consequence of Φ < (ρ+λ)/(ρ−λ)), the binomial g(κ) is

strictly concave and that g(κ) diverges to minus infinity when κ grows large. Together with

the assumption that all elements in {Ḡκ}|N |
κ=1 are distinct, the following cutoff is well defined:

k = min{κ ∈ {2, 3, ..., |N |} : g(κ) < 0}, (B.22)

with the usual convention that min{∅} = |N |. Because g(κ) > 0 for all natural κ < k and

g(κ) < 0 for all natural κ ≥ k, together with Ḡ1 > Ḡ2, it thus holds Ḡκ > Ḡκ+1 for all

κ ∈ {1, ..., k− 1} and Ḡκ ≤ Ḡκ+1 for all κ ∈ {k, ..., |N |}. That is, the cutoff index k refers to

the lowest element in the sequence {Ḡκ}|N |
κ=1. Also, because the value of g(κ) for κ < |N | does

not depend on |N | and g(κ) diverges to minus infinity when κ grows large, it is immediate

that if k < |N |, then k does not change when we increase |N |.
Next I show existence of k. Because the sequence {Ḡκ}|N |

κ=1 is first decreasing, up to k,

and then increasing, the following cutoff is also well defined:

k =

1 if Ḡ1 < Ḡ|N |

min{κ ∈ {2, 3, ..., k} : f(κ, |N |) < 0} if Ḡ1 > Ḡ|N |,
(B.23)

again with the convention that min{∅} = k. By construction, the index k refers to the earliest

element in {Ḡκ}|N |
κ=1 that is below Ḡ|N |. Recalling that we have sgn(Gκ−Gκ′) = sgn(Ḡκ−Ḡκ′)

for all sufficiently low ϕ whenever Ḡκ ̸= Ḡκ′ , the characterization in (c) then follows from

Lemma A.4 together with Proposition A.4.

Last, I argue that both k and k are non-decreasing ceteris paribus in Φ. Observe that

both f(κ, κ′) and g(κ) are increasing in Φ. The latter, i.e., g(κ) increasing in Φ, implies that
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if g(κ̂) > 0 for some κ̂ and Φ, then g(κ̂) > 0 for Φ′ > Φ. In view of (B.22), the fact that

g(κ) is strictly concave, and that g(κ) diverges to minus infinity when κ grows large, this

observation implies that k is non-decreasing in Φ. From the former we obtain that f(κ, |N |)
is increasing in Φ. We also know that Ḡκ is U-shaped with lowest element k. This implies

that, keeping |N | fixed, f(κ, |N |) changes signs at most once on {2, 3, ..., k}, from positive

to negative. But then, it follows from (B.23) that k is non-decreasing in Φ, too.

Proof of Proposition 3. The proof proceeds in three steps. I begin by showing that, for every

state s = (σ,N), the set Gs is non-empty. In a second step, I restrict attention to contract

profiles C in full-R&D contracts and show that there is an equilibrium in such restricted

contracts. Finally, I show that under condition (8), asking ais(t) = 1 for all t ∈ [0, Tis] from

the firm is indeed mutually optimal for the investors in any state s.

Step I: I want to show that, for every state s = (σ,N), the set Gs is non-empty. I show

this by constructing a particular index set {κ1, κ2, ..., κℓ} ∈ Gs. Consider a state s and the

corresponding sequence {Gκ}|N |
κ=1, with elements defined in (5). Then, apply the following

algorithm:

1. Pick the largest element in {Gκ}|N |
κ=1 (if there are multiple, take the element with the

highest κ), and set κ1 to its index, κ.

2. From the remaining elements in {Gκ}|N |
κ=1 having a higher κ than the one just picked,

take again the largest element (and again, if there are multiple, take the element with

the highest κ), and set κ2 equal to its index, κ.

3. Repeat Step 2 until the set of remaining elements in {Gκ}|N |
κ=1 having a higher index κ

than the one just picked is empty.

First, observe that the last index, κℓ, thus chosen always corresponds to |N |. For q ∈
{1, ..., ℓ}, condition (a) in Definition 4 must hold for otherwise κq would not have been chosen

in step q. For the same reason, condition (b) in Definition 4 must hold for q ∈ {1, ..., ℓ− 1}.
Last, observe that condition (b) holds for q = 0 by construction.

Step II: I now argue that from Step I we obtain that, within the class of full-R&D

contracts, a profile of mutually optimal contracts exists. We know that, in all states s ∈ S

with σ = 2, the optimal deadline T ∗
is exists and is the same for all firms and, consequently,

so is the payment function R∗
is. Hence, the continuation value for any dyad in any state

s with σ = 1 when an opponent takes up a breakthrough opportunity is the same and

independent of the remaining dyads’ identities. Step I together with Proposition (A.4) then

gives existence of a set of mutually optimal deadlines for that state. The set of mutually
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optimal deadlines pins down the firm owners’ utilities and, hence, their payment functions,

R∗
is. Existence of a full-R&D equilibrium thus follows.

Step III: I now establish that under condition (8) asking ais(t) = 1 from the firm for all

t ∈ [0, Tis] is indeed always optimal for all investors in any state s. Recall from the proof

of Lemma A.2 that under a contract profile C the value of the investor, Vis(t;C) on some

interval t ∈ [Tκ, Tκ−1) when κ dyads are present, approximately satisfies for small dt > 0,

Vis(t;C) = ais(t)[λRis(t)− c] + λ(κ− 1)Vκ−1 − θ

+ (1− (λ(κ− 1 + ais(t)) + ρ)dt)Vis(t+ dt;C).

From the limit dt → 0, we see that ais(t) = 1 for all t ∈ [Tκ, Tκ−1) maximizes Vis(Tκ;C)

for any initial condition on Vis(Tκ−1;C) if

Ris(t)−
c

λ
− Vis(t;C) ≥ 0.

Any contract must be incentive compatible. Hence, substituting from (A.2) for Ris(t),

the above condition is equivalent to

Πσ −
c+ ϕ

λ
≥ Uis(t; ai, C) + Vis(t;C). (B.24)

The right side of (B.24) corresponds to total dyad welfare at t ≥ 0. To finish the proof

it suffices to appreciate that
λ

λ+ ρ

[
max
σ′≥σ

Πσ′ − c+ θ

λ

]
is an upper bound on total dyad welfare under any feasible profile C, because it corresponds

to the maximum welfare the dyad could secure if it were allowed to freely choose the spot

for which to run in isolation.

C More on Vanishing Moral Hazard

This appendix treats the case ρ ≤ λ. We have the following result:

Proposition C.5. Fix a state s = (σ,N) with σ = 1 and let {T ∗
κ}

|N |
κ=1 ∈ Ts. The mutually

optimal deadlines satisfy

lim
ϕ→0

T ∗
κ = ∞

for all κ. Further, suppose |N | ≥ 2 and ρ ≤ λ. Then, for every ϕ > 0 sufficiently close to

zero:
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(a) If Φ < ρ/(λ+ρ), then {Gκ}|N |
κ=1 is strictly increasing and, hence, any profile {T ∗

κ}
|N |
κ=1 ∈ Ts

is completely symmetric.

(b) If Φ > (λ(|N | − 2) + ρ)/(λ(|N | − 1) + ρ), then all {T ∗
κ}

|N |
κ=1 ∈ Ts have |N | − 1 investors

choosing the same deadline and one investor choosing a strictly longer deadline.

(c) For a.e. Φ ∈ (ρ/(λ+ρ), (λ(|N |−2)+ρ)/(λ(|N |−1)+ρ)), both kinds of profiles described

in (a) and (b) above are mutually optimal.

Proof of Proposition C.5. Consider Ḡκ defined in (B.19) from the proof of Proposition 2.

While the numerator of Ḡκ strictly increases in κ, the denominator weakly decreases in

κ ≥ 2 if an only if ρ ≤ λ. As a consequence, Ḡκ strictly increases in κ ≥ 2 if ρ ≤ λ. Further,

note that Ḡ1 < Ḡκ holds if and only if λ(κ−2)+ρ
λ(κ−1)+ρ

< Φ, where Φ is defined in (6).

Consequently, in case (a) we have Ḡ1 < Ḡ2, giving that {Ḡκ}|N |
κ=1 is strictly increasing. But

then, recalling from the proof of Proposition 2 that we have sgn(Gκ −Gκ′) = sgn(Ḡκ − Ḡκ′)

for all sufficiently low ϕ whenever sgn(Ḡκ − Ḡκ′) ∈ {−1, 1}, the sequence {Gκ}|N |
κ=1 is strictly

increasing for all ϕ > 0 sufficiently small. The claim thus follows from Corollary A.1.

In case (b) we have Ḡ1 > Ḡk. Consequently, the elements of {Gκ}|N |
κ=1 are distinct for all

ϕ > 0 sufficiently small. Letting k = k = 2, the claim then follows from Lemma A.4 together

with Proposition A.4.

Last, in case (c), we have Ḡ|N | > Ḡ1 > Ḡ2. Since {Ḡκ}|N |
κ=1 strictly increases in κ ≥ 2,

it might be that Ḡ1 is equal to some Ḡκ, κ ≥ 3. As can easily be verified from (B.19), this

only happens for non-generic values of Π1 and Π2. Consequently, for generic values of Φ, all

elements of {Gκ}|N |
κ=1 are distinct for all ϕ > 0 sufficiently small. Letting k = 1 and k = 2,

the claim then follows again from Lemma A.4 together with Proposition A.4.
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