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Abstract

We present a decentralized mechanism of multilateral negotiation that allows

every player to make a proposal as well as accommodates counteroffers and partial

agreements. Only local unanimity is required for reaching an agreement and players

are not excluded even if their proposals have been rejected, both being key relevant

features in most real-life negotiations. The role of planner becomes minimal in our

mechanism compared to those in the literature. This leads to a new solution theory

that synthesizes the alternating-offer bargaining model a la Rubinstein (1982) and

the general non-transferable utility environment with n players, which strategically

establishes the Nash bargaining solution for pure bargaining problems, the Shapley

value for transferable utility games, and in general, the Shapley NTU value for

nontransferable utility games.

Keywords: Shapley NTU value, nontransferable utility game, subgame perfect

equilibrium, bargaining

1 Introduction

In this paper, we present a new strategic mechanism of multilateral bargaining to study

the fundamental economic problem how benefits from cooperation will be distributed

among the economic agents. The seminal work of Hart and Mas-Colell (1996) opened the

door of the analysis of multilateral bargaining and advanced our understanding of the

Shapley value (Shapley, 1953) and the consistent value (Maschler and Owen, 1989, 1992)
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from a non-cooperative perspective. Our starting point is to develop a more natural and

practical mechanism, inspired by the actual negotiation processes in international politics,

that requires the minimal role of a planner to allow for truly decentralized bargaining.

In doing so, the paper offers three original contributions to the literature.

Firstly, we construct a genuinely decentralized bargaining model where players have

much more freedom in making proposals and forming coalitions. Unlike the conventional

approach in the literature that rarely accommodates partial agreements, our model has a

weaker requirement on unanimity and allows for players to directly choose to join and form

a certain coalition. Moreover, players will never be forced to leave the negotiation table

even though their proposals have not been accepted by the others, which further makes

our bargaining protocol independent from a planner. Indeed, when players can freely

choose whom to form a coalition and are not forced to drop out from the negotiation after

their proposals were rejected, the planner of the underlying mechanism has virtually no

influence on the choices of the players. Thus, it would be a truly decentralized mechanism.

By contrast, the role of a planner is much stronger in existing models such as Hart and

Mas-Colell (1996) and Pérez-Castrillo and Wettstein (2001), where, for example, if a

player’s proposal is rejected, she will be (eventually) excluded from future negotiations.

Secondly, we offer a bargaining theory that synthesizes the alternating-offer bargaining

model a la Rubinstein (1982) and the general non-transferable utility environment with n

players. The alternating-offer bargaining model is widely accepted as a natural and robust

bargaining protocol, and has been tremendously influential in the economic literature,

particularly so in the development of the theory of the firm and labour economics (cf.

Stole and Zwiebel (1996)). Alternating offers seems prevalent in all sorts of real-world

negotiations, yet a systematic and effective modelling of offers being alternatively made

in an n-player coalitional context has been an open problem for decades. Note that the

alternating-offer feature hardly appears in the two notable multilateral bargaining models

(and the variations) of Hart and Mas-Colell (1996) and Pérez-Castrillo and Wettstein

(2001) that adopt a top-down perspective that effectively leave out the possibilities for

players to make counter-offers: It starts immediately with the negotiation towards the

grand coalition. When a player i makes an offer, all others can only agree or disagree. If

rejected, player i will effectively leave the game and the others will negotiate only among

themselves. We offer a constructive and bottom-up negotiation protocol where all players

are allowed to make proposals for the rest to approve or reject. If one does not agree

with the others, she can make an alternative proposal such that the others can consider

it. This proposal could further be abandoned if “better” proposals are available. Thus,
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all players can make proposals, have opportunities to review others’ proposals, and take

up new proposals so long as they wish. So counter-offers are truly preserved and the

interaction among players is much more extensive in our model.

Finally, through this multilateral alternating-offer bargaining mechanism we establish

an integrated solution theory that has the Nash bargaining solution for pure bargaining

problems, the Shapley value for transferable utility games, and in particular, the Shapley

NTU value for the general non-transferable utility games. To the best of our knowledge,

this paper is the first one that offers a non-cooperative bargaining foundation for the

Shapley NTU value in the most general case, despite a previous attempt by Vidal-Puga

(2008) that focuses on a restricted situation. Thus, the robustness of the Shapley’s

solutions is confirmed from both axiomatic and strategic perspectives, and its connection

to the Nash bargaining solution is installed in a unified bargaining framework. Such a

framework makes it possible for us to comprehend and review all these major solution

concepts for different game environments in the same context, and helps discover the

strategic difference between the Shapley NTU value and the consistent value (Maschler

and Owen, 1989, 1992). Moreover, a natural extension to games with coalition structure

is provided, which yields the Owen value Owen (1977).

Other desirable features of the mechanism include allowing for coalition formation

and players proposing rules (called payoff configurations in Hart and Mas-Colell (1996))

instead of payoffs, which makes the mechanism general and flexible. By agreeing to a rule,

players form a certain coalition, and consequently, a partition of players is formed, which

can proceed in negotiation with other players. Hence, the model itself does not place

any force towards a grant coalition. By having players proposing rules, we effectively

admit proposing payoffs since the latter can be viewed as the outcome of a specific rule.

More importantly, this is closer to real world negotiations. It is common that players

may not be restricted to a specific payoff, but find a range of payoffs, or general policies,

a set of principles or regulations, and solutions potentially agreeable. Confining to final

payoffs may restrict the scope of negotiation and affect the likelihood of reaching an

agreement. Proposing rules removes such an imposed condition and makes the modelled

negotiation practical. It is common to see that in real life countries negotiate on terms or

clauses, rather than directly on payoffs, in order to reach an agreement. In the literature,

proposing rules can be found as early as in, among others, van Damme (1986) that designs

a two-player bargaining game in which players’ offers are solution concepts such as the

Nash bargaining solution or the Kalai-Smorodinsky solution. Vidal-Puga (2008) also

applies this idea in the general n-player NTU environment, and de Clippel and Serrano
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(2008) characterize a payoff configuration for partition function form games on the basis

of the balanced contributions.

The paper is organized as follows. Section 2 presents the basic notation. Section 3

presents the model, where we construct two decentralized multilateral negotiation mech-

anisms both possessing the appealing features mentioned above. To help illustrate the

details of the mechanisms, Section 4 offers an example that was well studied in the liter-

ature. Section 5 contains the main results. Section 6 provides some concluding remarks.

2 Preliminaries

Let N = {1, ..., n} be a finite set of players. A coalition is a subset of N . Given S ⊂ N

and x ∈ RN , we define xS ∈ RN as the restriction of x to the coordinates in S. Given

S, T ⊂ N with S ∩ T = ∅, x ∈ RS, y ∈ RT , we define x × y ∈ RS∪T as (x × y)i = xi for

all i ∈ S and (x× y)i = yi for all i ∈ T, and given X ⊂ RS and Y ⊂ RT , we define

X × Y = {x× y : x ∈ X, y ∈ Y } .

Let Π denote the set of all orders of players in N with generic element π = (π1, . . . , πn).

Given π ∈ Π and i = πk ∈ N , let P π
i be the set of predecessors of player i in π, i.e.,

P π
i = {πl ∈ N : l < k}

and let P π
i = P π

i ∪{i}. Given µ ≥ 0, we define ΛN
µ as the set of normalized N -dimensional

vectors whose coordinates are bounded from below by µ, i.e.,

ΛN
µ =

{
λ ∈ RN :

∑
i∈N

λi = 1, λi ≥ µ∀i ∈ N

}
.

A non-transferable utility (NTU) game is a mapping V that assigns to each coalition

S ∈ 2N \ {∅} a subset V (S) of RS such that the following properties hold:

(P1) V (S) is a non-empty closed subset of RS.

(P2) V (S) is comprehensive, i.e., if x ∈ V (S) and y ∈ RS such that y ≤ x, then

y ∈ V (S).

(P3) V (S) is bounded from above, i.e., for each x ∈ RS, the set {y ∈ V (S) : y ≥ x} is

compact.
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(P4) V (N) is strictly non-leveled and smooth1, i.e., there exists µ(V ) > 0 such that for

each x in the Pareto frontier of V (N) there exists a unique λ ∈ ΛN
µ(V ) outwards to

V (N) in x.

Without loss of generality, we normalize maxV ({i}) = 0 for all i ∈ N,.

We say that V is a pure bargaining problem if 0N ∈ V (N) and 0S is on the Pareto

frontier of V (S) for all S ⊂ N, where 0S is defined as (0S)i = 0 for all i ∈ S.

Definition 2.1 The Nash solution of a (normalized) pure bargaining problem given by V

is the payoff allocation Nash(V ) ∈ V (N) that maximizes the product of its coordinates,

i.e.,

Nash(V ) ∈ arg max
x∈V (N)

∏
i∈N

xi.

The Nash solution is always Pareto efficient, i.e., Nash(V ) belongs to the frontier of

V (N).

We say that V is a transferable utility (TU) game if there exists a mapping v that

assigns to each coalition S a real number v(S) ∈ R such that

V (S) =

{
x ∈ RS :

∑
i∈S

xi ≤ v(S)

}
(1)

for all S ⊆ N.

Properties (P1)-(P4) follow from (1). For example, (P4) holds with λi = 1 irrespec-

tively of the Pareto allocation x.

Definition 2.2 The Shapley value of a TU game given by v is the payoff allocation

Sh(v) ∈ RN defined as

Sh(v)i =
1

|Π|
∑
π∈Π

(
v
(
P π
i

)
− v (P π

i )
)

for all i ∈ N.

The Shapley value is always Pareto efficient, i.e., Sh(v) belongs to the frontier of

V (N) (or, equivalently,
∑

i∈N Sh(v)i = v(N)).

For each i ∈ N and x ∈ RN\{i} let τi(x) be defined as

τi(x) = max{t ∈ R : x× (t) ∈ V (N)}.
1Our results are not affected if we require non-levelness and/or smoothness for each V (S).
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Under smoothness and non-levelness (P4), τi is a well-defined, derivable, and strictly

decreasing in each coordinate function from RN\{i} to R.
Assume the utility of players can be transfered at a constant rate given by λ ∈ ΛN

0 .

Then, a linear transformation of players’ utilities leads to a TU game. If the Shapley

value of this new game is feasible in the former game without the constant-rate transfer

assumption, then we say that it is a Shapley NTU value.

Formaly, given λ ∈ ΛN
0 , we define the associated game V λ as

V λ(S) =

{
x ∈ RS :

∑
i∈S

λixi ≤ vλ(S)

}

where

vλ(S) = max
y∈V (S)

∑
i∈S

λiyi

for all S ⊆ N.

Definition 2.3 A payoff allocation x ∈ RN is a Shapley NTU value of V if x ∈ V (N)

and there exists λ ∈ ΛN
0 such that λixi = Sh(vλ)i for all i ∈ N.

An additional typical property for NTU games is the following:

(P5) (Zero-monotonicity) Given i ∈ N \ S, it holds x × y ∈ V (S ∪ {i}) for each x ∈
V (S), y ∈ V ({i})

Zero-monotoniciy in a TU game is equivalent to v(S) ≤ v(S ∪ {i}) for all i ∈ N \ S.
Under our normalization, zero-monotonicity can be re-stated as x× (0) ∈ V (S ∪ {i})

for each S ⊂ N and i ∈ N \ S.
Under (P1)-(P5), we show that the Shapley NTU value always exists. As far as we

know, there are no previous results of existence of the Shapley NTU value in such a

general setting. We are also unaware of results of uniqueness, apart from some trivial

cases such as pure bargaining problems and TU games. In general case uniqueness fails,

see for example Hart and Mas-Colell (1996) for a non super-additive game.

It is well-known that the (unique) Shapley NTU value coincides with the Nash bar-

gaining solution for pure bargaining problems and with the Shapley value for TU games.

3 Decentralized multilateral negotiation mechanism

Fix a zero-monotonic NTU game V . Players will decide how to share the benefit of

their mutual collaboration, and they can choose whom to collaborate with, refusing to
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collaborate at all being always an option. Their payoffs will only depend on the identity

of the players who actually collaborate.

Given T ⊆ N , we define a rule supported by T as a function fT which assigns to each

coalition S ⊇ T a feasible payoff allocation for S, i.e., fT (S) ∈ V (S) for all S ⊇ T . Thus,

a rule determines a payoff configuration (see Hart and Mas-Colell (1996)). However, a rule

should not be interpreted as a set of payoff allocations, one for every coalition, but as an

index that indicates the approved payoff allocation when a particular coalition of players

has agreed to collaborate. We denote the set of all such rules as FT and F =
⋃

T⊆N FT .

The strategic bargaining model that we are going to propose closely follows the spirit

of Rubinstein’s alternating offer protocol (Rubinstein, 1982), albeit necessarily proceeding

in a more sophisticated manner concerning the n-person non-transferable utility environ-

ment where coalitional bargaining is allowed. Before we formally introduce our model, it

would be useful to provide an informal and intuitive description to present the essential

idea.

A random ordering of players is formed. For convenience, say it is (1, 2, . . . , n). Every

player will be allowed to express their opinions, in the form of making proposals (i.e., rules

as defined above) about how to share payoffs among them or simply accepting others’

proposals to form coalitions. Firstly, player 1 makes a proposal f {1} ∈ F{1}.

Then, it is for player 2 to express her opinion. If player 2 concurs with player 1’s

opinion, then she can accept f {1} and join player {1} to form coalition {1, 2}, with their

joint proposal supported by {1, 2} to be f {1,2} ∈ F{1,2}, where f {1,2}(S) = f {1}(S) for

all S ⊇ {1, 2}. If player 2 does not accept the proposal of player 1, then she will make

a proposal f {2} ∈ F{2}. After that, player 1 can say yes or no to f {2}, in the spirit of

alternating offer. If player 1 accepts player 2’s proposal, then they form a coalition with

the joint proposal f {1,2} ∈ F{1,2}, where f {1,2}(S) = f {2}(S) for all S ⊇ {1, 2}. If player

1 rejects it, then the two players stay apart for the moment holding their own proposals,

respectively.

Obviously, up to now there will be two cases for players 1 and 2: either they form

a coalition with an agreed proposal or they separate. It is worth noting here that even

though they may not reach an agreement as in the latter case, neither player 1 nor player

2 will be excluded from future negotiations.

By the ordering, in the next step it will be for player 3 to take actions. There are

three cases.

1. Coalition {1, 2} was formed and player 3 accepts f {1,2}. Then, the three players

form a coalition with the joint proposal to be defined as f {1,2,3}(S) =f {1,2}(S) for
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all S ⊇ {1, 2, 3}.

2. Coalition {1, 2} was formed, but player 3 does not accept f {1,2} and proposes

f {3} ∈ F{3} instead. Then, coalition {1, 2} will decide to accept or reject player 3’s

proposal. Players 1 and 2 will vote sequentially.

(a) If both players in {1, 2} accept f {3}, then these three players form a coalition

with the joint proposal defined as f {1,2,3}(S) =f {3}(S) for all S ⊇ {1, 2, 3}.

(b) Otherwise, players 1 and 2 keep their coalition {1, 2} with their proposal while

player 3 stands alone for now keeping her own proposal.

3. Players 1 and 2 did not form a coalition but set apart with their own proposals.

Player 3 can decide to join either of them to form a coalition if she accepts the

corresponding proposal. If player 3 agrees on neither f {1} nor f {2} but proposes

f {3}, then players 1 and 2 sequentially decide to accept or reject f {3}.

(a) If both reject it, then the three players set apart from each other while holding

their own proposals.

(b) If both accept it, then they form the coalition {1, 2, 3} with the joint proposal

defined as f {1,2,3}(S) =f 3(S) for all S ⊇ {1, 2, 3}.

(c) If one player, e.g., player 1, accepts it while the other player rejects it, then

coalition {1, 3} is formed with the joint proposal defined as f {1,3}(S) =f {3}(S)

for all S ⊇ {1, 3} while the other player remains alone with her own proposal.

Note that we can have a variant mechanism such that whenever an instance of acceptance

happens, thereby a new coalition is formed, the rest of the players are allowed to vote on

the corresponding proposal to possibly join the coalition. It will not change the subgame

perfect equilibrium payfoff allocations of the model, but it would make the mechanism

unnecessarily cumbersome, while adding neither any substantially new feature nor real

insight. Hence, we will not further analyze this variant here.

In this way, the negotiation proceeds to player n to make a proposal, with possibilities

of finally forming the grand coalition or partial coalitions (including the possible case of

all singleton coalitions). If the grand coalition is formed, then the game ends while

the corresponding payoff sharing schemes are worked out and implemented accordingly.

Otherwise, if the grand coalition is not formed, with some probability they repeat the

process from the very beginning with a (new) random order of all the players, and with

the remaining probability the game stops as it is with players to receive payoffs according

to the corresponding proposals.
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Note that the mechanism would allow for all the players to express their opinions

before possibly starting playing the game again.

Below we formally describe the decentralized multilateral negotiation mechanism asso-

ciated to V and a fixed parameter ρ ∈ [0, 1). All players in N are assumed to be rational,

completely informed, and expected utility maximizers. The mechanism proceeds in the

following steps.

Step 0: All players in N form a randomized order, with all orderings to be formed

equally likely. For convenience of expression, we assume the order is, without loss

of generality, π = (1, . . . , n). Go to the next step.

Step 1: Only player 1 is active in this step while all other players take no action but

simply wait. Player 1 announces a rule f {1} ∈ F{1} and the present situation is a

pair (R1, F 1) with R1 = {{1}} and F 1 =
{
f {1}}. It proceeds to the next step.

Step s (s = 2, . . . , n): By induction we know the present situation of the set of players

P π
s and denote it as (Rs−1, F s−1), where Rs−1 is a partition of P π

s whose elements

are nonempty sets of P π
s and F s−1 is a set of rules supported by the coalitions of

Rs−1, respectively. Let Rs−1 =
{
Rs−1

1 , . . . , Rs−1
K

}
and F s−1 =

{
fRs−1

1 , . . . , fRs−1
K

}
with K ≥ 1. There are two cases in this step.

Case 1. Player s accepts a particular fRs−1
k and joins Rs−1

k to form coalition Rs−1
k ∪{s}

with its supported rule defined as fRs−1
k ∪{s}(S) =fRs−1

k (S) for all S ⊇ Rs−1
k ∪

{s}. It then leads to the present situation (Rs, F s), where Rs = {Rs
1, . . . , R

s
K}

with Rs
k = Rs−1

k ∪ {s} and Rs
l = Rs−1

l for all l ∈ {1, ..., K} \ {k}, and F s ={
fRs

1 , . . . , fRs
K

}
with fRs

k = fRs−1
k ∪{s} and fRs

l = fRs−1
l for all l ∈ {1, ..., K} \

{k}. Go to the next step.

Case 2. Player s does not accept any rule in F s−1 but proposes a rule f {s} ∈ F{s}.

All players in P π
s sequentially vote for or against f {s}. Let A ⊆ P π

s be the

set of players who vote in favour, and let B =
⋃

Rs−1
k ⊆AR

s−1
k be the set of

players who belong to a coalition in which all its members vote in favour.

Then, all players of B join player s and form coalition B ∪{s}, which leads to

the present situation (Rs, F s), where Rs = {Rs
1, . . . , R

s
K′} with Rs

K′ = B ∪ {s}
and

{
Rs

1, . . . , R
s
K′−1

}
= {P ∈ Rs−1 : P ̸⊆ B}, and F s =

{
fRs

1 , . . . , fRs
K′
}
with

fRs
K′ defined as fRs

K′ (S) =f {s}(S) for all S ⊇ Rs
K′∪{s}, and fRs

l = fRs−1
l′ when

Rs
l = Rs−1

l′ . Go to the next step.

Step n+ 1: It has two cases.
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Case 1. Rn = {N}. That is, the grand coalition N is formed and F n contains only one

rule. The game ends with (Rn, F n) being implemented, i.e., each player i ∈ N

receives fN(N)i.

Case 2. Rn ̸= {N}. Then, two things may happen:

(a) With probability ρ, the game goes back to Step 0 and the whole process

is repeated from the beginning.

(b) With probability 1− ρ, the game stops with (Rn, F n) being implemented,

i.e., for each Rn
k ∈ Rn, each player i ∈ Rn

k receives fRn
k (Rn

k)i.

Proceeding in the above protocol, finally players in N will reach2 a situation (Rn, F n),

where Rn = {Rn
1 , . . . , R

n
K} and F n =

{
fRn

1 , . . . , fRn
K

}
. The final payoff allocation will be

fRn
k (Rn

k)i for all i ∈ Rn
k ∈ Rn.

We work with stationary strategies. A strategy is stationary if it only depends on

the elements present on the negotiation table, and not on the history that yields these

elements. Note that a stationary subgame perfect equilibrium is also optimal against

deviation strategies that are non-stationary. From now on, when we say subgame perfect

equilibrium, we mean stationary subgame perfect equilibrium.

We also assume that, in case of indifference between voting in favour or against a

proposal, players vote in favour and, in case of indifference between joining a coalition

or proposing a new rule, players join the coalition. These are standard assumptions in

the literature. For example, Moldovanu and Winter (1994) “assume that each player

prefers to be a member of large coalitions than smaller ones provided that he earns the

same payoff in the two agreements”, and Hart and Mas-Colell (1996) “assume that both

proposers and respondents break ties in favor of quick termination of the game.”

It is useful to describe a game for two players, say 1 and 2. In this case, we are in a

pure bargaining problem.

Example 3.1 Assume N = {1, 2} and V is the unanimity 2-player game given by

V ({1}) = V ({2}) = (−∞, 0] and V (N) = {x ∈ RN : x1 + x2 ≤ 1}. Assume player 1 is

first chosen. Now, player 1 announces some f {1} ∈ F{1}. Say, for example, f {1}({1}) = 0

and f {1}(N) =
(
1
2
, 1
2

)
. Player 2 observes f {1} and makes her decision.

• If player 2 agrees to join player, the game ends and the final payoff allocation is(
1
2
, 1
2

)
.

2Since ρ < 1, any coalition of players will agree on a proposal with probability 1.
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• If player 2 disagrees, she proposes some f {2} ∈ F{2}. Say, for example, f {2}({2}) =
0 and f {2}(N) =

(
ρ

1+ρ
, 1
1+ρ

)
. Then, player 1 should choose whether to accept or

reject this proposal.

– If player 1 accepts, the final payoff allocation is
(

ρ
1+ρ

, 1
1+ρ

)
.

– If player 1 rejects, with probability ρ the whole process is repeated, and with

probability 1− ρ the final payoff allocation is f {1}({1})× f {2}({2}) = (0, 0).

In Example 3.1, the second case (i.e., disagreeing) is an optimal response for player

2, and her proposal will be accepted by player 1. Player 1 can propose some f {1} with

f {1}(N)2 ≥ 1
1+ρ

in order to be accepted. Hence, there is an equilibrium path in which

player 1 proposes an acceptable rule. In any case, the final payoff allocation in equilibrium

is
(

ρ
1+ρ

, 1
1+ρ

)
.

Notice that player 1’s proposal is innocuous from a strategic point of view. Thus,

the game for two players essentially coincides with the random-version of Rubinstein’s

bargaining model first studied by Hart and Mas-Colell (1996), and thus yielding the Nash

bargaining solution as ρ approaches 1.

This analysis can be extended for more than two players when the game is a pure

bargaining problem.

Thus, we have (cf. Theorem 3 in Hart and Mas-Colell (1996)) the following result:

Theorem 3.1 For a pure bargaining problem, for each ρ there is at least one equilibrium.

Moreover, any equilibrium payoff allocation converges to the Nash bargaining solution as

ρ approaches 1.

For more than two players, the partial proposals are not innocuous, as they allow a

reassignment of utilities among those that leave the player indifferent. See Example 5 in

Vidal-Puga (2008).

Our main result, which comprises Proposition 5.1, Proposition 5.2, Proposition 5.3,

Proposition 5.4, and Proposition 5.5 in Section 5, is the following:

Theorem 3.2 For each ρ there is at least one subgame perfect equilibrium, and any equi-

librium payoff allocation converges to a Shapley NTU value as ρ approaches 1. Moreover,

any equilibrium payoff allocation coincides with the Shapley NTU value in expected terms

when V (N) is delimited by a hyperplane.

11



4 Detailed example with three players

In this section, we focus on an example which belongs to a family first described by Roth

(1980) and also commented by Myerson (1980); Harsanyi (1980); Hart and Kurz (1983);

Hart and Mas-Colell (1996); Aumann (1985).

Consider a Parliament with 101 seats and three political parties, 1, 2, and 3. Party 1

has 49 votes. Parties 2 and 3 have 26 votes each. A Government can only be established

with a majority (51) of votes. Moreover, the Parliament regulation says that, in case of

a coalition of parties forming the government, the number of ministers should be shared

between those parties proportionally to their respective number of seats. Assuming that

the parties are only interested in the percentage of ministers they have, the resulting

NTU game is the following:

V ({i}) = {(0)} − R{i}
+ for all i ∈ {1, 2, 3}

V ({1, i}) =
{(

49

75
,
26

75

)}
− R{1,i}

+ for all i ∈ {2, 3}

V ({2, 3}) =
{(

1

2
,
1

2

)}
− R{2,3}

+

V ({1, 2, 3}) =
〈{(

49

75
,
26

75
, 0

)
,

(
49

75
, 0,

26

75

)
,

(
0,

1

2
,
1

2

)
,

(
49

101
,
26

101
,
26

101

)}〉
− R{1,2,3}

+ .

where ⟨X⟩ represents the convex hull of the elements in set X. Let N = {1, 2, 3}. Any

element in V (N) can be achieved by the three parties by agreeing on dividing the political

term into several governments with different coalitions. Moreover, since
(

49
101
, 26
101
, 26
101

)
belongs to the convex hull of the other three possible payoff allocations, V (N) can also

be written as

V (N) =

〈{(
49

75
,
26

75
, 0

)
,

(
49

75
, 0,

26

75

)
,

(
0,

1

2
,
1

2

)}〉
− RN

+ .

In any case, this game does not satisfy one of the conditions we require to NTU games. In

particular, it does not satisfy smoothness and non-levelness (in each point on the surface

there exists a unique orthonormal vector with all its coordinates being away above from

zero). This property will be irrelevant in this example. In any case, we can make the

game smooth and non-level by assuming that a party in the government can propose as

ministers candidates from a continuum of independent people with increasing autonomous

vote. Independent candidates imply a smooth decrease in the party’s utility. The idea

is that these independent candidates would drastically decrease the utility in one of the

parties in exchange of a small (but positive) increase in the utility of the other party (see

Figure 1).
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x2

x3

Figure 1: Regular lines represent V ({2, 3}). Dashed lines represent the effect of indepen-

dent candidates.

Roth (1980) argues that the only reasonable solution for this game is (0, 0.5, 0.5). This

payoff allocation can be obtained by applying the Harsanyi (1963) value, which yields two

possible payoff allocations: (0.23, 0.38, 0.38) and (0, 0.5, 0.5). Aumann (1985) justifies

the Shapley NTU value of this game, which in this case is unique: (0.33, 0.33, 0.33).

Alternatively, by applying the Hart and Mas-Colell (1996) model of negotiation, one can

obtain the consistent value (Maschler and Owen, 1989, 1992), which in this case is also

unique: (0.44, 0.28, 0.28).

We check how our non-cooperative game yields the Shapley NTU value (0.33, 0.33, 0.33)

in expected terms.

The proposal f {i} ∈ F{i} of each party i ∈ N , in any stage in which they should pro-

pose a rule, may satisfy (in equilibrium) f {i}({i}) = (0). Hence, we assume it throughout

the whole section. However, the other f {i}(S) would depend on the stage of the game.

Assume first that xρ ∈ V (N) is the expected final payoff allocation when parties play

a (stationary) subgame perfect equilibrium. Let xπ be the expected final payoff allocation

when order π is chosen by Nature at stage 0.

In order to compute x(1,2,3), we should take into account what would happen if players

1 and 2 do not agree and propose
(
R{1,2}, F {1,2}) with R{1,2} = {{1}, {2}}. Then, an

optimal strategy for party 3 is to either choose a party that maximizes her final payoff

(by joining either of them to form a coalition) or to propose f {3} with

f {3}(N) = (ρxρ1, ρx
ρ
2, 1− ρ (xρ1 + xρ2)).

Hence, party 3 final payoff will be

max
{
ρxρ3 + (1− ρ)f

{1}
3 ({1, 3}), ρxρ3 + (1− ρ)f

{2}
3 ({2, 3}), 1− ρ (xρ1 + xρ2)

}
.

13



In case parties 1 and 2 agree and propose
(
R{1,2}, F {1,2}) with R{1,2} = {{1, 2}}, then

an optimal strategy for party 3 is to choose the more profitable of these options:

• to reject this proposal, propose an acceptable f {3} with

f {3}(N)1 = ρxρ1 + (1− ρ)f {1,2}({1, 2})1
f {3}(N)2 = ρxρ2 + (1− ρ)f {1,2}({1, 2})2
f {3}(N)3 = 1− ρ(xρ1 + xρ2)− (1− ρ)

(
f {1,2}({1, 2})1 + f {1,2}({1, 2})2

)
and obtain α

(
f {1,2})

3
:= 1− ρ(xρ2 + xρ3)− (1− ρ)(f {1,2}({1, 2})1 + f {1,2}({1, 2})2).

We will see that the resulting xρ is such that this f {3}(N) is indeed contained into

V (N) for any ρ ∈ [0, 1).

In any case, party 3 can assure itself α
(
f {1,2})

3
, which is bounded below by ρxρ3:

α
(
f {1,2})

3
= 1− ρ(xρ1 + xρ2)− (1− ρ)

(
f {1,2}({1, 2})1 + f {1,2}({1, 2})2

)
≥ 1− ρ(xρ1 + xρ2)− (1− ρ) sup

f∈F{1,2}
(f({1, 2})1 + f({1, 2})2)

= 1− ρ(xρ1 + xρ2)− (1− ρ)

(
49

75
+

26

75

)
= 1− ρ(xρ1 + xρ2)− (1− ρ) = ρ(1− xρ1 − xρ2) ≥ ρxρ3.

Party 2 can anticipate party 1’s response and choose its optimal strategy. The optimal

strategy for party 2 is to choose the most profitable of the following options:

• to accept party 1’s proposal (by joining coalition {1}) and obtain either f {1}(N)2

or ρxρ2 + (1− ρ)f {1}({1, 2})2, depending on whether f {1}(N)3 is greater or smaller

than α
(
f {1})

3
, or

• to reject this proposal, propose an acceptable f {2} with

f {2}({1, 2}) =
(
49

75
,
26

75

)
f {2}(N) = (ρxρ1, ρx

ρ
2 + 1− ρ, ρ(1− xρ1 − xρ2))

and obtain α(f {2})2 := f {2}(N)2 = ρxρ2 + 1− ρ.

For party 2, the option to reject party 1’s proposal and propose an f {2} unacceptable by

party 1 and acceptable by party 3 is out of the table. To see why, notice that party 2

should present f {2} with f {2}({2}) = (0) and f {2}({2, 3}) =
(
1
2
, 1
2

)
, but since 1−ρ(xρ1+x

ρ
2)

14



is always greater than ρxρ3+(1−ρ)1
2
(due to the fact that xρ1+x

ρ
2+x

ρ
3 ≥ 1 and ρ ∈ [0, 1)),

party 3 would not accept to join party 2.

In any case, party 2 can assure itself at least ρxρ2.

Now, party 1 can anticipate party 2 and party 3’s responses and choose its optimal

strategy. An optimal strategy for party 1, for ρ close enough3 to 1, is to propose an

acceptable f {1} with

f {1}({1, 2}) =
(
49

75
,
26

75

)
f {1}(N) = (ρxρ1, ρx

ρ
2 + 1− ρ, ρ(1− xρ1 − xρ2)) .

Knowing this, we conclude that, for ρ close enough to 1,

x(1,2,3) = (ρxρ1, ρx
ρ
2 + 1− ρ, ρ(1− xρ1 − xρ2)) .

Analogously,

x(1,3,2) = (ρxρ1, ρ(1− xρ1 − xρ3), ρx
ρ
3 + 1− ρ)

x(2,1,3) = (ρxρ1 + 1− ρ, ρxρ2, ρ(1− xρ1 − xρ2))

an so on. In general,

xππ1
= ρxρπ1

xππ2
= ρxρπ2

+ 1− ρ

xππ3
= ρ(1− xρπ1

− xρπ2
).

Since xρ is the average of these xπ, and all of them satisfy xπ1 + xπ2 + xπ3 = 1, we conclude

xρ1 + xρ2 + xρ3 = 1. By symmetry,

xρ =

(
1

3
,
1

3
,
1

3

)
and hence

xππ1
=
ρ

3

xππ2
= 1− 2ρ

3

xππ3
=
ρ

3
.

3In particular, ρ ∈
[
147
173 , 1

)
≈ [0.8497, 1).
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Example 4.1 Assume Nature chooses order (1, 2, 3). In equilibrium, party 1 may pro-

pose f {1} with

f {1}({1}) = (0)

f {1}({1, 2}) =
(
49

75
,
26

75

)
f {1}({1, 3}) =

(
49

75
,
26

75

)
f {1}(N) =

(
ρ

3
, 1− 2ρ

3
,
ρ

3

)
,

which is equivalent to stating that

I (party 1) propose to form government all the term with either party 2 or

party 3 alone, but I would also agree to divide the term so that the government

is held by the three-party coalition government for X part of the term, by

parties 1 and 3 for Y part of term, by parties 2 and 3 for Z part of term, and

by parties 1 and 2 for the remaining part of term.

The values of X, Y and Z depend on ρ. For example, for ρ = 0.9, it could be:

I (party 1) propose to form government all the term with either party 2 or

party 3 alone, but I would also agree to divide the term so that the government

is held by parties 1 and 3 for 9% of term, by parties 2 and 3 for 54% of term,

and by parties 1 and 2 for the remaining 37% of term.

Now, party 2 agrees and party 1 also agrees. The final payoff allocation is then(
ρ

3
, 1− 2ρ

3
,
ρ

3

)
which converges to

(
1
3
, 1
3
, 1
3

)
as ρ approaches 1.

5 Main results

Given π ∈ Π and x ∈ V (N), we define ψρ,π(x) ∈ V (N) inductively as follows:

ψρ,π(x)πn = min
y∈V (N\{πn})

{
τπn

(
ρxN\{πn} + (1− ρ)y

)}
.

Assume ψρ,π(x)πl
∈ R is defined for each l > k. Equivalently, ψρ,π(x)N\Pπ

πk
∈ RN\Pπ

πk is

defined. We then define

ψρ,π(x)πk
= min

y∈V (Pπ
πk
)

{
τπk

((
ρxPπ

πk
+ (1− ρ)y

)
× ψρ,π(x)N\Pπ

πk

)}
.

Notice that ψρ,π(x) does not depend on xπn .
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Proposition 5.1 For each ρ ∈ [0, 1), the proposals corresponding to a stationary sub-

game perfect equilibrium are always accepted, and the final payoff allocations in the sub-

game where the order is given by π ∈ Π are characterized by ψρ,π(xρ) for all π ∈ Π,

where

xρ =
1

|Π|
∑
π∈Π

ψρ,π(xρ).

Moreover, these proposals are always nonnegative, i.e, ψρ,π(x) ∈ RN
+ for all π ∈ Π.

Proof. Assume we are in a subgame perfect equilibrium. For each π ∈ Π, let xπ be the

final payoff allocation in the subgame that begins when order π is chosen. Let x∗ be the

average of these xπ over Π. Assume, w.l.o.g., order π = (1, . . . , n) is chosen. We prove

the following Claim:

Claim 5.1 Each player i ∈ N can assure herself at least ψρ,π(x∗)i, i.e., x
π
i ≥ ψρ,π(x∗)i.

Moreover, this assured payoff can be done by making a unanimously acceptable offer (i.e.

all players in P πi vote in favour in equilibrium).

In order to prove this claim, we proceed by backwards induction. Assume we are at

step n and player n faces proposal (Rn−1, F n−1) with Rn−1 = (Rn−1
1 , . . . , Rn−1

K ) and

F n−1 =
(
fRn−1

1 , . . . , fRn−1
K

)
. For notational simplicity, from now on we write fk instead

of fRn−1
k . Let yn ∈ RPπ

n be defined as

yn = f 1(Rn−1
1 )× · · · × fK

(
Rn−1

K

)
.

By super-additivity of V , yn ∈ V (P π
n ). Thus,

ψρ,π(x∗)n ≤ τn
(
ρx∗Pπ

n
+ (1− ρ)yn

)
.

Then, player n can assure herself at least ψρ,π(x∗)n by not accepting any rule in F n−1

and proposing f {n} with

f {n}(N) =
(
ρx∗Pπ

n
+ (1− ρ)yn

)
× τn

(
ρx∗Pπ

n
+ (1− ρ)yn

)
.

Then, in case there exist incompatible rules between the players at the end of the process

(Case 2 in Step n + 1), the final expected payoff for each player i ∈ Rn−1
k is ρx∗i + (1 −

ρ)fk
(
Rn−1

k

)
. Under our assumption of agreement in case of indifference, in equilibrium all

players in P π
n will vote in favour so that the final payoff allocation is f {n}(N). Moreover,

by definition of τn, this is an optimal strategy for player n when making a unanimously

acceptable offer.
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Assume now the result holds for each player i > s, and we are at step s. Player s

faces proposal (Rs−1, F s−1) with Rs−1 = (Rs−1
1 , . . . , Rs−1

K ) and F s−1 =
(
fRs−1

1 , . . . , fRs−1
K

)
.

Again, for notational simplicity, from now on we write fk instead of fRs−1
k . Let ys be

defined as

ys = f 1(Rs−1
1 )× · · · × fK

(
Rs−1

K

)
.

By super-additivity of V , ys ∈ V (P π
s ). Thus,

ψρ,π(x∗)s ≤ τs

((
ρx∗Pπ

s
+ (1− ρ)ys

)
× ψρ,π(x∗)N\Pπ

s

)
.

Then, player s can assure herself at least ψρ,π(x∗)s by not accepting any rule in F s−1 and

proposing f {s} with

f {s} (P π
i ) ∈ argmin

{
τi

((
ρx∗Pπ

i
+ (1− ρ)y

)
× ψρ,π(x∗)N\Pπ

s

)
: y ∈ V (P π

i )
}

for all i > s and

f {s}(N) =
(
ρx∗Pπ

s
+ (1− ρ)ys

)
× ψρ,π(x∗)N\Pπ

s
× τs

((
ρx∗Pπ

s
+ (1− ρ)ys

)
× ψρ,π(x∗)N\Pπ

s

)
.

Under our assumption of agreement in case of indifference, in equilibrium all players in P π
s

will vote in favour and all players in N \ P π
s will accept the rule in the growing coalition

so that the final payoff allocation is f {s}(N). Moreover, by definition of τs, this is an

optimal strategy for player s when making a unanimity acceptable offer. This conclude

the proof of Claim 5.1.

Under Claim 5.1, xπ ≥ ψρ,π(x∗). By definition, ψρ,π(x∗) belongs to the Pareto frontier

of V (N), and hence xπ = ψρ,π(x∗). This implies xρ = x∗ and hence the first part of the

result. Moreover, since we are in equilibrium, these proposals are nonnegative because

each player i ∈ N has the strategy of voting always against any proposal and propose

f {i} with f {i}(S) = 0S for all S ⊇ {i}, which assures her a zero payoff.

Proposition 5.2 For each ρ ∈ [0, 1), π ∈ Π, and x ∈ V (N)∩RN
+ , ψ

ρ,π(x) is characterized

by

1. ψρ,π(x) ∈ ∂V (N)

2. λiψ
ρ,π(x)i = ρλixi + (1− ρ)

(
vλ
(
P π
i

)
− vλ (P π

i )
)
for all i ∈ N \ {πn}

for some λ ∈ ΛN
µ(V ).
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Proof. Fix π ∈ Π, ρ ∈ [0, 1) and x ∈ V (N). We assume, w.l.o.g., π = (1, 2, . . . , n). For

each i ∈ N, take

yi ∈ argmin
{
τi

((
ρxPπ

i
+ (1− ρ)y

)
× ψρ,π(x)N\Pπ

i

)
: y ∈ V (P π

i )
}

and

zi = yi × ψρ,π(x)N\Pπ
i
× τi

(
yi × ψρ,π(x)N\Pπ

i

)
∈ ∂V (N).

In particular, z1 = ψρ,π(x). Since all points in (zi)i∈N belong to the Pareto frontier of

V (N), there exists some λ ∈ ΛN
µ(V ) such that all points (zi)i∈N belong to the hyperplane{
y ∈ RN :

∑
i∈N

λiyi =
∑
i∈N

λiz
1
i

}
.

Then, ψρ,π(x) coincides in both V and the NTU game W defined as

W (N) =

{
y ∈ RN :

∑
i∈N

λiyi ≤
∑
i∈N

λiz
1
i

}
and W (S) = V (S) otherwise. Hence,

λiψ
ρ,π(x)i = λimin

{
τi

((
ρxPπ

i
+ (1− ρ)y

)
× ψρ,π(x)N\Pπ

i

)
: y ∈ V (P π

i )
}

= min
{
λiτi

((
ρxPπ

i
+ (1− ρ)y

)
× ψρ,π(x)N\Pπ

i

)
: y ∈ V (P π

i )
}

= min

{∑
i∈N

λiz
1
i − ρ

∑
j<i

λjxj − (1− ρ)
∑
j<i

λjyj −
∑
j>i

λjψ
ρ,π(x)j : y ∈ V (P π

i )

}
=
∑
i∈N

λiz
1
i − ρ

∑
j<i

λjxj − (1− ρ)vλ (P π
i )−

∑
j>i

λjψ
ρ,π(x)j

=
∑
j≤i

λjψ
ρ,π(x)j − ρ

∑
j<i

λjxj − (1− ρ)vλ (P π
i )

for all i ∈ N . Rearranging terms:∑
j<i

λjψ
ρ,π(x)j = ρ

∑
j<i

λjxj + (1− ρ)vλ (P π
i )

for all i ∈ N. Hence, given i ∈ N \ {n},∑
j<i+1

λjψ
ρ,π(x)j = ρ

∑
j<i+1

λjxj + (1− ρ)vλ
(
P π
i+1

)
and thus

λiψ
ρ,π(x)i = ρλixi + (1− ρ)

(
vλ
(
P π
i+1

)
− vλ (P π

i )
)

= ρλixi + (1− ρ)
(
vλ
(
P π
i

)
− vλ (P π

i )
)
.
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Corollary 5.1 There exists M ∈ R+ such that |ψρ,π (xρ)i − xρi | ≤ (1 − ρ)M for all

ρ ∈ [0, 1), π ∈ Π and i ∈ N.

Proof. From Proposition 5.1 we deduce that xρ ∈ V (N) ∩ RN
+ . Fix ρ ∈ [0, 1), π ∈ Π,

and i ∈ N. From Proposition 5.2, we deduce that there exists some λρ ∈ ΛN
µ(V ) such that

ψρ,π(xρ)i − xρi = (1− ρ)

(
xρi −

1

λρi

(
vλ

ρ (
P π
i

)
− vλ

ρ

(P π
i )
))

(2)

for all i ∈ N \{πn}. As for πn, letW be the NTU game defined in the proof of Proposition

5.2. Then, wλρ
(N) =

∑
i∈N λ

ρ
ix

ρ
i . Hence,

ψρ,π(xρ)πn − xρπn
=

1

λρπn

(
wλρ

(N)− ρ
∑
l<n

λρπl
xρπl

− (1− ρ)vλ
ρ

(N \ {n})

)
− xρπn

=
1

λρπn

(
wλρ

(N)− ρ
∑
l<n

λρπl
xρπl

− (1− ρ)vλ
ρ

(N \ {n})− λρπn
xρπn

)

=
1

λρπn

(∑
l<n

λρπl
xρπl

− ρ
∑
l<n

λρπl
xρπl

− (1− ρ)vλ
ρ

(N \ {n})

)

=
1− ρ

λρπn

(∑
l<n

λρπl
xρπl

− vλ
ρ

(N \ {n})

)

= (1− ρ)

(
−xρπn

+
1

λρ1

(
wλρ

(N)− vλ
ρ

(N \ {n})
))

. (3)

From (2) and (3), and taking into account that 0 ≤ wλρ
(N) ≤ vλ

ρ
(N), we deduce that

the result holds for

M =
1

µ(V )
max

{
vλ(S) : S ⊆ N, λ ∈ ΛN

µ(V )

}
.

As we will see, these ψρ,π (xρ) determine the payoff allocations in the subgames where

π is the chosen order. Hence, Corollary 5.1 implies that for ρ close to 1 (i.e., low risk

of breakdown), the final subgame perfect equilibrium payoff allocations in the subgames

are very similar to the expected final payoff allocation, which is at least close to Pareto

optimal (because the ψρ,π(x) are always Pareto optimal), and there is not substantial

advantage or disadvantage in being at a certain position in the order; the random effect

vanishes.

Proposition 5.3 For each ρ there is at least one subgame perfect equilibrium.
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Proof. Under Proposition 5.1, any subgame perfect equilibrium payoff allocation is

characterized by xρ = 1
|Π|
∑

π∈Π ψ
ρ,π(xρ), where ψρ,π(xρ) ∈ RN

+ is the payoff allocation in

the subgame that begins when π ∈ Π is the chosen order. To prove the existence of such

xρ, consider the continuous function

ψρ(x) =
1

|Π|
∑
π∈Π

ψρ,π(x)

for each x ∈ V (N) ∩RN
+ . We will prove that ψρ has a fixed-point. Under our conditions,

V (N)∩RN
+ is a non-empty, compact convex set. In order to apply Brouwer’s fixed-point

theorem, it is enough to prove that ψρ,π(x) ∈ V (N) ∩ RN
+ for all x ∈ V (N) ∩ RN

+ , so

that convexity of V (N) ∩ RN
+ assures that their average belongs to V (N) ∩ RN

+ too. By

definition, ψρ,π(x) ∈ V (N) for all x ∈ RN . Hence, we just need to prove that ψρ,π(x)i ≥ 0

for all i ∈ N and all x ∈ V (N) ∩ RN
+ . Fix x ∈ V (N) ∩ RN

+ and fix σ ∈ Π. We assume

w.l.o.g. σ = (1, 2, . . . , n). Let

yn ∈ arg min
y∈V (Pσ

n )

{
τn
(
ρxPσ

n
+ (1− ρ)y

)}
and let

zn =
(
ρxPσ

n
+ (1− ρ)yn

)
×
(
τn
(
ρxPσ

n
+ (1− ρ)yn

))
.

By zero-monotonicity, yn× (0) ∈ V (N). By convexity of V (N), ρx+(1− ρ) (yn × (0)) ∈
V (N). Hence,

ψρ,σ(x)n = znn = τn
(
ρxPσ

n
+ (1− ρ) yn

)
≥ (ρx+ (1− ρ)(yn × (0)))n = ρxn ≥ 0.

By definition, zn belongs to the Pareto frontier of V (N). Assume we have defined zj in

the Pareto frontier of V (N) for each j > i and, moreover, zjk = ψρ,σ(x)k for all i < j ≤ k.

In particular, let z∗k = zjk for all i < j ≤ k, so that z∗
N\Pσ

i
∈ RN\Pσ

i is well-defined. For

i > 1, let

yi ∈ arg min
y∈V (Pσ

i )

{
τi

((
ρxPσ

i
+ (1− ρ)y

)
×
(
z∗
N\Pσ

i

))}
and let

zi =
(
ρxPσ

i
+ (1− ρ)yi

)
×
(
τi

(
ρxPσ

i
+ (1− ρ)yi ×

(
z∗
N\Pσ

i

)))
×
(
z∗
N\Pσ

i

)
.

Finally, let z1 = xN\{n} × (τn(xN\{n})). We have then n vectors (zi)i∈N on the Pareto

frontier of V (N). Hence, there exists λρ,σ ∈ ΛN
µ(V ) and α ∈ R+ such that

∑
j∈N λ

ρ,σ
j zij = α

for all i ∈ N. Given such λρ,σ ∈ ΛN
µ(V ), consider the NTU game (N, V ρ,σ) defined as

V ρ,σ(N) =

{
y ∈ RN :

∑
i∈N

λρ,σi yi ≤ α

}
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and V ρ,σ(S) = V (S) for all S ⊂ N. By definition, z1 ∈ V ρ,σ(N) and x ≤ z1, so that

comprehensiveness (P2) implies x ∈ V ρ,σ(N). Following the above procedure for x, ρ and

σ, functions τi yield the same values in both V and V ρ,σ for all i ∈ N. Since ψρ,σ(x) does

not depend on xn, we have, for each i < n:

λρ,σi ψρ,σ(x)i = λρ,σi ψρ,σ
(
xN\{n} × τn(xN\{n})

)
i

under Proposition 5.2:

= ρλρ,σi xi + (1− ρ)
(
vλ

ρ,σ (
P σ
i

)
− vλ

ρ,σ

(P σ
i )
)
.

Zero-monotonicity of V implies (for i < n) that vλ
ρ,σ (

P σ
i

)
≥ vλ

ρ,σ
(P σ

i ) . Hence, ψ
ρ,σ(x)i ≥

0 for all i ∈ N . Therefore, there exists a fixed-point xρ, which completes the proof of

existence of subgame perfect equilibria.

Proposition 5.4 If the frontier of V (N) is flat, i.e., there exist λ ∈ ΛN
0 and α ∈ R such

that

V (N) =

{
x ∈ RN :

∑
i∈N

λixi ≤ α

}
,

then, in the subgame that begins after order π ∈ Π is chosen, there exists a unique subgame

perfect equilibrium payoff allocation given by ψρ,π(xρ) and characterized by

λiψ
ρ,π (xρ)i = ρλix

ρ
i + (1− ρ)

(
vλ
(
P π
i

)
− vλ (P π

i )
)

for all i ∈ N. Moreover, the unique expected subgame perfect equilibrium payoff allocation

xρ is the (unique) Shapley NTU value, i.e.,

λix
ρ
i = Shi(N, v

λ)

for all i ∈ N and all ρ ∈ [0, 1).

Proof. Existence is guaranteed by Proposition 5.3. We now prove uniqueness. Given

the definition of V (N), α = vλ(N). Moreover, for each π ∈ Π and i = πk ∈ N,

λiτi(x) = λimax

t ∈ R : λit+
∑

j∈N\{i}

λjxj ≤ vλ(N)

 = vλ(N)−
∑

j∈N\{i}

λjxj
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and hence

λiψ
ρ,π(x)i = min

{
λiτi

(
ρxPπ

i
+ (1− ρ)y × ψρ,π(x)N\Pπ

i

)
: y ∈ V (P π

i )
}

= min
y∈V (Pπ

i )

vλ(N)−
∑
j∈Pπ

i

λj (ρxj + (1− ρ)yj)−
∑

j∈N\Pπ
i

λjψ
ρ,π(x)j


= vλ(N)−

∑
j∈N\Pπ

i

λjψ
ρ,π(x)j − max

y∈V (Pπ
i )

∑
j∈Pπ

i

λj (ρxj + (1− ρ)yj)


= vλ(N)−

∑
j∈N\Pπ

i

λjψ
ρ,π(x)j − max

y∈V (Pπ
i )

∑
j∈Pπ

i

λjρxj +
∑
j∈Pπ

i

λj(1− ρ)yj


= vλ(N)−

∑
j∈N\Pπ

i

λjψ
ρ,π(x)j − ρ

∑
j∈Pπ

i

λjxj − (1− ρ) max
y∈V (Pπ

i )

∑
j∈Pπ

i

λjyj

= vλ(N)−
∑

j∈N\Pπ
i

λjψ
ρ,π(x)j − ρ

∑
j∈Pπ

i

λjxj − (1− ρ)vλ(P π
i ).

By definition, ψρ,π(x) is Pareto efficient, and thus the above equality can be rewritten as∑
j∈Pπ

i

λjψ
ρ,π(x)j = ρ

∑
j∈Pπ

i

λjxj + (1− ρ)vλ(P π
i ). (4)

Analogously, when k < n,, by taking i = πk+1,∑
j∈Pπ

i

λjψ
ρ,π(x)j = ρ

∑
j∈Pπ

i

λjxj + (1− ρ)vλ
(
P π
i

)
. (5)

Notice that (4) and (5) hold for any i ∈ N and any π ∈ Π. By substracting (4) from (5),

we obtain, for each i ∈ N and π ∈ Π,

λiψ
ρ,π(x)i = ρλixi + (1− ρ)

(
vλ
(
P π
i

)
− vλ(P π

i )
)
. (6)

Let xρ be a subgame perfect equilibrium payoff allocation, i.e.,

xρ =
1

n!

∑
π∈Π

ψρ,π (xρ) .

By taking x = xρ and averaging on π in (6), we obtain, for each i ∈ N,

λix
ρ
i = ρλix

ρ
i + (1− ρ)Shi(v

λ).

Since ρ < 1, de deduce that λix
ρ
i = Shi(v

λ) for all i ∈ N, and hence xρ does not depend

on ρ and it is the Shapley NTU value of V .
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Proposition 5.5 Let (xρ)ρ∈[0,1) such that, for each ρ ∈ [0, 1), xρ ∈ V (N) is a subgame

perfect equilibrium payoff allocation and there exists limρ→1 x
ρ = x1, then x1 is a Shapley

NTU value of V.

Proof. Under Corollary 5.1, as ρ → 1, xρ approaches each ψρ,π(xρ), all of them on the

Pareto surface of V (N). Closedness of V (N) (given by (P1)) assures that x1 is Pareto

efficient also. Let λ1 ∈ ΛN
µ(V ) be the outward unit normal vector to x1 on ∂V (N). We then

associate with each ρ ∈ [0, 1) and each π ∈ Π an NTU game V ρ,π with V ρ,π(N) flat. Let

λρ,π ∈ ΛN
µ(V ) be the outward unit normal to the hyperplane passing through the (Pareto

efficient) payoff allocations (zi)i∈N defined as in the proof of Proposition 5.3. Let V ρ,π(N)

be the resulting half-space. If the hyperplane is not unique, following Hart and Mas-Colell

(1996), we choose λρ,π the closest possible to λ1. We also define V ρ,π(S) = V (S) for all

S ⊂ N. Since ψρ,π(xρ) approaches x1 as ρ → 1 (by Corollary 5.1), the smoothness of

∂V (N) (given by (P4)) implies that λρ,π → λ1 for each π ∈ Π. Therefore, as ρ→ 1, each

V ρ,π approaches the game V 1 defined as V 1(N) = V λ1
(N) and V 1(S) = V (S) otherwise.

Consider the variation of the mechanism so that, once order π is chosen, the agents play

on game V ρ,π. By construction, for each π ∈ Π, ψρ,π(xρ) coincides in both V and V π.

Because of the characterization of Proposition 5.1 and Proposition 5.2, ψρ,π(xρ) remains

as the (unique) subgame perfect equilibrium payoff allocation for each V ρ,π. Fix i ∈ N.

Under Proposition 5.4,

ψρ,π (xρ)i = ρxρi + (1− ρ)
(vρ,π)λ

ρ,π (
P π
i

)
− (vρ,π)λ

ρ,π

(P π
i )

λρ,πi

.

Hence,

xρi =
1

|Π|
∑
π∈Π

ψρ,π (xρ)i = ρxρi + (1− ρ)
1

|Π|
∑
π∈Π

(vρ,π)λ
ρ,π (

P π
i

)
− (vρ,π)λ

ρ,π

(P π
i )

λρ,πi

.

Since ρ < 1, rearranging terms and dividing by 1− ρ we get:

xρi =
1

|Π|
∑
π∈Π

(vρ,π)λ
ρ,π (

P π
i

)
− (vρ,π)λ

ρ,π

(P π
i )

λρ,πi

.

Taking the limit as ρ → 1, the continuity of the marginal contributions with respect to

the hyperplanes implies that

x1i =
1

|Π|
∑
π∈Π

(v1)
λ1 (

P π
i

)
− (v1)

λ1

(P π
i )

λ1i
=

1

|Π|
∑
π∈Π

vλ
1 (
P π
i

)
− vλ

1
(P π

i )

λ1i

and thus x1 is a Shapley NTU value of V.
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6 Variations

6.1 Player-specific rules

Assume that when player i makes a proposal given by a rule f , this rule should apply not

only to coalitions that contain player i, but to any coalition, containing or not player i.

Our results are not affected by this change, even though the interpretation fundamentally

different. From a technical point of view, the two options would mean the same thing

and imply the same result, with only minor difference that two rules might be effectively

compatible but incompatible for coalitions without the two proposing players.

Our approach is to allow a rule to apply only to coalitions that contain the proposer,

not to all possible coalitions. However, even in the latter case, as a matter of fact, the

rule proposed by player i has no binding power on coalitions without containing player i.

6.2 The role of (dis)agreement with new proposals

What happens when players simply propose a rule and a compatible one is randomly

chosen at the end of the process (i.e., there are not votes for agreeing or disagreeing with

posterior rules)? The game will move on with probability ρ at the end of the last stage if

there is no unanimity on the chosen rule, but it is not allowed for other players to have

opportunities to accept new proposals from their successors in the order.

Such non-cooperative game implements the Shapley value in TU games and the Nash

solution in pure bargaining problems, but not the Shapley NTU value in the general

case. When V (S) are hyperplanes in the positive quadrant, we get the consistent value.

In the general case, we get the consistent value if we allow the coalitions inside the final

partition to renegociate among them in case of breakdown.

6.3 Full randomization

Our mechanism requires to form a randomized order of players at Step 1. Once this

randomization is over, the order of the players is fixed until Step n+1. We can keep the

structure and all the details of the mechanism but make one modification that requires

randomization in each step. That is, in each step, a player is randomly selected from the

set of remaining players (i.e., those who were not selected in the previous steps), who will

either accept a proposal from the present situation of the previous step or propose her

rule. We can still implement the Shapley NTU value as players take contingent strategies.

That is, a player’s proposal would be a list of rules, each corresponding to an ordering
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of players. Such a modification of the mechanism can only unnecessarily complicate the

process.

6.4 Breakdown under unanimity

Step n + 1 in our mechanism states that, if unanimity is achieved (Case 1), the game is

over. This statement is a very reasonable outcome when universal unanimity is obtained.

However, we can avoid this case and assume that, independently of what the situation

is, the game goes back to Step 0 with probability ρ (Case 2). With this variation, the

final payoff allocation in the subgame that begins when order π ∈ Π is chosen is not

ψρ,π(xρ), but ρxρ+(1−ρ)ψρ,π(xρ). Apart from that, the main results do not change with

this variation, that just implies an innocuous delay in the completion of the game. In

particular, the expected subgame perfect equilibrium payoff allocation remains the same:

1

|Π|
∑
π∈Π

(ρxρ + (1− ρ)ψρ,π(xρ)) = ρxρ + (1− ρ)
1

|Π|
∑
π∈Π

ψρ,π(xρ) = ρxρ + (1− ρ)xρ = xρ.

7 Concluding remarks

7.1 Universal unanimity and partial unanimity

One important advantage of our mechanism is its robustness, as we do not require “uni-

versal” unanimity in reaching an agreement. To appreciate its benefit, consider a game

where one player, say player n, is a null player. If this null player prefers to behave in

a way to be harmful to the others whenever possible, then we would still be able to im-

plement the Shapley NTU value with our mechanism, even though this null player is not

rational. By contrast, in such cases those existing results in Hart and Mas-Colell (1996)

or Pérez-Castrillo and Wettstein (2001) will not hold. In Hart and Mas-Colell (1996), un-

less player n is offered some positive payoff, he will always reject any offer made by other

players. Since it is necessary to have unanimous agreement for any offer to be accepted

and implemented, it is impossible to obtain the Shapley or consistent value in subgame

perfect equilibrium. Likewise, in Pérez-Castrillo and Wettstein (2001), this null player

can manage to be a non-proposer by making very negative bids to others (effectively

demanding payments from others) and then she will always reject any non-positive offer

made by the proposer. Therefore, the Shapley value cannot be implemented in subgame

perfect equilibrium, either.
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However, in our mechanism, when a non-null player makes a proposal (i.e., suggests a

rule), she can simply ignore player n but makes a proposal that is acceptable by all other

players, which will still lead to the Shapley NTU value in subgame perfect equilibrium.

Player n may still reject the proposal, but it will not affect the outcome because we do

not require the universal unanimity to accept a rule. In practice, the presence of player

n results in the variation of the mechanism explained in Subsection 6.4. So long as those

in a coalition all accept a rule, then this coalition can join the player who proposed the

rule to form a coalition. Hence, player n will finally be abandoned and get 0 payoff at

the end while the others will get their Shapley NTU value payoffs.
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