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Abstract

This paper studies studies allocation efficiency and suggests ways of

improving it without affecting total information rent in the auctions for

solar and wind energy capacity creation conducted by Solar Energy Cor-

poration of India (SECI). These auctions account for 54 gigawatts of re-

newable electricity capacity in India. SECI’s auctions usually have large

procurement targets, which are beyond the capacity of a single firm. The

auctions are open descending bid format, where bidders publicly reveal

their capacity constraint and bid on the selling price of their electricity.

The market clearing price is the one with least excess demand, and a

residual award is provided to the last exiting bidder. This rationing rule

and asymmetric capacities of bidders lead to inefficient allocation. Us-

ing SECI’s bidding data, I structurally estimate the cost distribution of

the bidders, and to conduct counterfactual analysis. Switching to sealed

bid reduces probability of inefficient selection by 20-33 percentage points

without affecting payment by SECI.
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1 Introduction

Efficient allocation is a central problem in the domain of market design. The knowl-

edge of cost of a potential supplier of a good or a value for a buyer is often unknown

to the designer, often a government. The governments use auctions to elicit this

private information and allocate the good to a bidder. In order to find the most ef-

ficient bidder, many auction mechanisms allow bidders to have some markup, which

is their information rent. Allowing for this rents can achieve with the targets of

granting rights to natural resources to the most efficient users. However, this effi-

ciency comes at the cost to public funds as governments either pay the information

rent to a potential seller in case of procurement, or doesn’t extract them from a

buyer when it sells some object or resource.

In recent years, auctions have been utilized for the rights to harness solar and wind

power on a large scale, with the aim of fostering the growth of renewables-based

electricity market. The policy of establishing utility-scale solar and wind farms in

developing countries is seen as a crucial step in achieving the global policy target

of net carbon neutrality. Depending on their respective policy targets, governments

across the world use varied and nuanced auction designs for renewable energy market

(for examples, see IRENA, 2015, guide to design of auctions for renawables). The

allocation rules within these auctions give rise to strategic interactions among com-

peting potential suppliers. An inefficient supplier may strategically bid in the auction

and out-compete a more efficient supplier, or vice versa. In this paper, I study the

allocation inefficiency in the solar and wind auctions in India. I demonstrate the

inefficient allocation by characterizing equilibrium bidding behavior. Building upon

this theoretical framework, I conduct an empirical analysis using data provided by

the Solar Energy Corporation of India (SECI) to demonstrate that efficiency can be

improved with adjustments to the auction mechanism.

Studying inefficiency in these auctions is important due to their role in creating a

large and economically significant renewable energy market in India. The combined
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production capacity of wind and solar farms in India is 109 gigawatts(GW), which

is the 5th largest in the world. Solar and Wind power accounted for around 90%

of the additional electricity capacity for India in 2022 (report by Ember-Climate,

2023). Besides helping India and the world achieve their climate goals, this capacity

can also provide electricity to around 28 million urban Indian households per year.

The auctions have seen high levels of participation from 158 diverse firms, around

80 of whom have been selected as suppliers. International players like Softbank,

Sembcorp, and large Indian firms like Adani, Tata, Renew regularly participate.

Global energy firms like Total Energy are also present in the market, through their

partnership with local producers. Such high participation has led to reduction in

the wholesale price of solar and wind electricity in some parts of India to around

INR2.5 per kilowatt-hour (3 cents of USD).

These auctions are conducted by both state and federal government agencies, which

sell long-term power purchase agreements to multiple bidders. Each agreement

specifies the total capacity of the projects that each bidder is expected to develop

and a fixed selling price per kWh of their production (tariff). Prior to the auctions,

the auctioneers announce a procurement target. The auctions have a qualifier round

and a final round. In the qualifier round, bidders bid their desired capacity (assumed

to be equal to their capacity constraint) and tariff.1 The target set by auctioneers is

often too large to be fulfilled by any single bidder’s capacity. Moreover, it is common

that the total capacity of the bidders with most competitive bids is not exactly equal

to the target. This creates a market clearing problem, which is resolved through the

allocation rule of implemented in the final round auction.

The final round is same for almost all the agencies. It is an open descending bid

auction with two non-standard features- supplier rationing and public revelation of

heterogeneous bidder capacities. The award is decided by progressively eliminating

the high-price bidders until the cumulative capacity of the remaining bidders falls
1Capacity bid need not necessarily be a capacity constraint, but a part of a bidder’s production

plan. However, in this paper, I abstract from bidders’ dynamic optimisation problem of allocating
it’s production capacity over different auctions.
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below procurement target. At this point, the market is cleared through a simple

rationing rule which awards a positive residual quantity to the last eliminated bid-

der. The bid of this bidder is the price of electricity for the winning bidders too,

making this a uniform price auction. This allocation rule is the same as in Holmberg

and Wolak (2018), who assume that bidders are symmetric in their capacity. The

rationale behind such a rule is to clear the market in a simple and transparent way,

while fostering competition by bidders who want to avoid rationing.2

However, the presence of such rationing can induce to strategic behavior, where a

bidder with lower cost may agree to accept the residual award at a higher price,

thereby having a high payoff. This leads to an inefficient allocation. A preliminary

analysis of the data provided by SECI regarding bids and awards from each bidder

suggests the existence of such incentives.3 In approximately half of the auctions,

bidders cease to compete as long as they can receive a residual award. Notably, the

bidders with high capacities tend to make such decision more often. This observation

indicates a relatively low level of competition.

I further investigate these incentives through theoretical investigation of the final

round, which is modelled as a descending clock auction with supplier rationing. The

bidders have their costs drawn independently and identically from the same distri-

bution. At the start of the auction, clock shows a reserve bid bR, which decreases

continuously during the auction. In case of two bidders, the auction ends when a

bidder decides to exit the auction at a particular price. The exiting bidder gets

residual award and the remaining bidder gets own capacity as the award.

In this game, the equilibrium is characterised by higher capacity bidder being less
2It could be argued that bidders may over-report their capacity in the qualifier and subsequently

agree to a residual award at a higher price. However, in practice, bidders have to prove their
capacity to the auctioneer before the auction. Thus, the over-reporting is not a problem. On
the other hand, a bidder may under-report with an anticipation that the opponent may agree to
residual at a higher price. This strategy allows the bidder to secure a higher price for a lower
capacity. A formal investigation of this conjecture is a possible future work.

3A major reason to focus on SECI’s auctions is that they have helped create half of the solar and
wind capacity of India. Moreover it has been shown to be relatively low risk counterparty, which
means that one can abstract from risk-premium considerations and focus solely on the strategic
considerations in analysing bids (Ryan, 2021).
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competitive. In other words, she exits at a higher bid for any given cost. Further-

more, if her cost is above a certain threshold, she exits at the reserve bid (bunching

at the reserve).4 As such, higher capacity bidder is more likely to be the one to exit

earlier even if her cost is low. Such equilibrium properties can explain the observed

less competition by large capacity bidder. It provides clear insights into the link

between auction rules and inefficient market design.

Intuitively, the higher capacity bidder is less competitive due to the higher residual

award they receive upon exiting the auction. Thus, the gain in terms of capacity

award is not as high if she is more competitive. Moreover, she gets much lower price

for the residual if she loses despite being competitive. Aggressively competing is not

advantageous to her regardless of the her cost type. Thus, open bidding, rationing

rules, and public information about opponents’ capacities create strategic incentives,

wherein a high-capacity bidder would prefer not to compete even if their cost is low.

This leads to an inefficient market design.

This gives rise to an important policy question. Since the auctioneers may not want

the market clearing rule to be more complicated and aim to fulfill all of their pro-

curement demand, can these auctions be made more efficient with minor tweaks?

I address this question econometrically in two steps: estimating the cost distribu-

tion and conducting simulations to compare the welfare properties of the existing

mechanism with a sealed bid one.

To estimate the cost distribution, I utilize the bids of bidders who receive zero

awards. In an open descending price auction, any bidder receiving a zero residual

has a dominant strategy to reduce their bid to their cost. If a bidder refrains from

competing, they miss the opportunity to receive a positive award at a bid higher than

their cost, should another bidder exit. Conversely, if they compete and eventually

exit at their cost, they still receive an award of zero. Hence, the observed bids of
4These are the properties of the semi-seperating bayes-nash equilibrium. There are other bayes-

nash equilibria, where one of the bidders never exits while the other one exits immediately, like in
a war of attrition. These pooling equilibria survive on a non-credible threat, and are not studied
in detail here.
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such bidders who receive zero awards are equivalent to their costs.5 Their bids can,

then, be used to estimate the cost distribution.

These cost observations are censored on the right tail, and the threshold of censoring

is endogenous. Only a subset of bidders with bids below a certain threshold in

the qualifier round of SECI auctions are selected for the final round. However,

this qualification threshold bid is dependent on the cost distribution itself. The

endogeneity thus created leads to a situation where observed costs are not drawn

independently of each other.

In order to resolve this endogeneity, I use probability density of observing certain

order statistics of costs; conditional on the observation pertaining to some higher

order statistic. This conditional probability density resembles the density of order

statistics of costs, when looking at a sub-sample of independently drawn costs, all

of which are below some randomly drawn threshold. Since we also observe bidder

identities, identification of the cost distribution from this subsample can be accom-

plished similarly to Dutch auctions with observed identities, for which identification

results are well established. (see Athey and Haile, 2007, for example).

I estimate the distribution parametrically, considering the small data size (116 bids

from 25 auctions). The conditional probability density provides the likelihood func-

tion, the maximization of which yields estimates of a parametric cost distribution.

These estimates are adjusted for auction-specific characteristics. To control for

bidder-specific characteristics, I categorize them into strong and weak bidders. As a

simple proxy, I identify the top 7 renewable energy producers in the country, as per

the report by BloombergNEF (2022), as strong bidders. Among the 25 auctions,

three of these seven bidders account for 33% of the bids that receive a positive award,

whereas they represent only 18% of the bids awarded zero. This suggests that these

bidders possess a significant cost advantage over others, potentially contributing to

their high market share.
5An important caveat here is that bidders are assumed to not engage in jump bidding. The

inference in presence of jump bidding is addressed in more details in Haile and Tamer (2003).
However, in this paper, I assume that such bidders don’t engage in such bidding.
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Using these estimates, I compare the selection inefficiency in the India’s renewable

energy auction with a sealed bid discriminatory price auction, with 2 asymmetric

players. I am able to show that using discriminatory pricing instead of uniform

can lead to reduction in inefficient selection by 20-34% depending on the level of

asymmetry, when M = 300. This translates to significant welfare improvements

to the tune of USD 600,000-1,000,000, depending on the level of asymmetry and

bidder capacity. The payment made by the government doesn’t change significantly

through this switch. As such, the auction can be lead to a more efficient market

with a minor change in the procedure, which don’t affect the procurement target

and transparency. An important future avenue is to conduct a proper counterfac-

tual analysis to get more insights into welfare implications of switching to some

alternative allocation mechanism.

The rest of the paper is as follows. Section 2 compares the paper with related papers

in the literature. Section 3 provides institutional background. Section 4 provides

stylized facts regarding bidding behavior using SECI data. Section 5 provides the

model and equilibrium for simpler version of the auction. Section 6 is on identifica-

tion and estimation of the cost distribution. Comparison of the extent of inefficiency

can be found in Section 7. Section 8 concludes the paper.

2 Related literature

This paper contributes to the literature on auctions, both theoretical and applied,

and to market design for renewable energy.

The auction studied in this paper is a version of asymmetric all-pay auctions, where

loser is defined as the player who gets a smaller positive award. It is closely related to

Holmberg and Wolak (2018), who studied symmetric version of the same problem.

Their aim was to compare the properties of uniform versus discriminatory price

mechanisms, something done in this paper too. Another closely related paper is

Betto and Thomas (2024) which studies asymmetric two player all pay auctions
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with spillovers, under complete information. This paper aims to provide a general

model for R&D race, and show that it’s possible for a high cost player to have a

higher payoff when there are spillovers.

The proof of equilibrium existence and uniqueness is inspired by the exposition of

theoretical results in Lebrun (2006) and Lizzeri and Persico (2000). The former

provides the conditions for existence and uniqueness of pure strategy monotonic

equilibrium in sealed bid first price auction, which have a problem of singularity.

The same problem arises in the analysis of SECI auctions. The intuition behind

uniqueness of equilibrium is same as that used in Lizzeri and Persico (2000) for

second price all-pay auctions. Furthermore, uniqueness result of this paper adds to

that of Lizzeri and Persico (2000), as one of the assumptions used by them is invalid

in SECI’s auctions. Thus, the techniques used in theoretical results of this paper

add to the literature on equilibrium existence and uniqueness.

In the empirical part of the paper, I solve for an endogeneity problem arising out of

the context specificity of SECI auctions. The identification technique is similar to

that in Song (2006), which uses conditional density to estimate the distribution of

bidder types when the number of bidders is unknown. Identifying the cost distribu-

tion from observed order statistics of the cost of bidders is similar to identification of

bid distribution in dutch auctions where we observe winning bid and bidders’ iden-

tities. This result can be found in Athey and Haile (2007) and Paarsch, Hong, et al.

(2006). In the dutch auctions, there is an additional step where the bid distribution

is used to estimate cost distribution. Such a step is not needed in my case.

Finally, the paper adds to the literature on market design in renewable sector. A

closely related problem was studied by Fabra and Llobet (2019), where the bidders’

cost is considered common information, but their capacities are private information.

Allowing bidders to control their production enables them to make high markups

in such a scenario. Some other papers have looked at specific electricity markets.

Regarding India, a formal study is conducted by Ryan (2021). This paper showed

that the participation and competition was higher in the auctions conducted by
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SECI in comparison to auctions conducted by other agencies. The explanation

for the same is that other agencies are more likely to default on their payments

to the bidders, which makes them risky. As a result bidders charge risk premium

through their bids in the auction, which holds up investments in their auctions.

The paper, however, abstracts from certain strategically important nuances of the

auction procedure used by SECI. Besides this, Probst et al. (2020) provide reduced

form results on the impact of local content requirement on the price discovered in

SECI auctions. Such a requirement was discontinued in 2017. Besides India, Hara

(2023) studies the importance of risk premiums for bidding in Brazilian renewable

energy auctions. A case study comparing auction designs in Brazil and Mexico is

presented in Hochberg and Poudineh (2018), which talks about competition and

price discovery in the two countries. My paper adds to this literature by providing

a formal analysis of SECI’s auction nuances, specially of supplier rationing, which

lead to inefficiencies in market design.

To conclude this section, I can say that this paper belongs to the literature on market

design for renewable energy, and contributes to empirical and theoretical literature

on auctions.

3 Institutional background

At 180GW, India has 4th largest installed capacity of electricity production from

renewable sources. Of this 109GW is based on solar and wind. A huge proportion

of this capacity is concentrated in large utility-scale grid connected solar and wind

farms. The farms are built through auctions of power purchase agreements (PPA),

which are signed between the auctioneer and bidders. PPAs mention the size of

projects which a single bidder has to construct, and the price at which they sell

their eletricity to the auctioneer for 25 years.

Many agencies at state and central level conduct these auctions. Around 50% of the

solar and wind capacity is created by SECI and National Thermal Power Corporation
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(NTPC)(joint report by JMK and IEEFA, 2023). Some other important agencies

are the state level energy development corporations, among which just the 2 states

Gujarat and Maharashtra auctions account for 15% of the auctioned capacity.

In this section, I describe SECI’s allocation procedure in detail. Similar auction pro-

cedure is also used by NTPC. I focus on these two because of their combined size,

and also because they are considered relatively risk-free of counterparties (Ryan,

2021). In this case, the analysis of bids can abstract from risk-premium considera-

tions. Moreover, many other agencies also share the allocation rules used by SECI

in the final round. While the paper investigates efficiencies arising from the final

round, I provide econometrically relevant details of qualification round as well.

Before the 2 rounds, the auctioneer releases a Request for Submission (RfS) docu-

ment, which specifies auction specific details. It mentions if the project has to be

solar or wind or hybrid, if it has be located in a particular place in India or if it’s

location neutral. RfSs state that it’s bidders responsibility to find the land (unless

the auction is for solar park) and connect their project to the grid. It provides the

incentives and penalties for good and bad post-auction performance, respectively.

RfS mentions procurement target (M) and reserve tariff for the qualifier round (p̄).

In the qualifier round, each bidder submits two envelops. The first envelop shows

the financial and technical competence of the bidder. The second envelope contains

the bids on price and bidder’s capacity. SECI doesn’t open second envelope until

it has ascertained the veracity of the first envelope. If allowed, the price could be

Viability Gap Funding (VGF), which is the minimum amount required by the bidder

to make her project feasible, while selling electricity it would produce at p̄. Bidders

bid VGF per MW of their capacity bid. Otherwise, price is the tariff at which she

would sell each unit (Kilowatt-hour) of electricity. This price is valid only for the

capacity and project started as a result of winning the PPA in a particular auction.

VGF bidding was discontinued after 2017, except for very specific cases, as more

and more winners were bidding only on tariffs.
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Table 1: Example allocation rule with target of 500

Bidder Qualifier Final Award
qi pIi pIIi

B1 100 1.5 1.5 100
B2 50 2.6 2.1 50
B3 200 2.8 2.1 200
B4 450 3.0 2.1 150
B5 150 3.2 3.0 0
B6 100 3.4 2.5 0
B7 300 3.5 NQ -

The allocation rule is exhibited through the example in Table 1. The total number

of bidders in the qualifier round can be denoted by N1, and the mechanism is low

price sealed bid. SECI ranks these N1 bidders according to the price bid, with

lowest (best) rank for lowest price. If VGF is allowed, the bidders asking for VGF

are ranked higher than the ones bidding tariff. In SECI auctions, the auctioneer

selects top m bidders such that their cumulative capacity just exceeds M for the

final round. Additionally, top half of the remaining bidders also qualify.6 In the

example table, N1 = 7,m = 4 and selected bidders would be B1−B6. If the total of

bidders’ capacities is less than M , the auctioneer reduces the value of M in second

round in a pre-defined manner and all the bidders would qualify. In NTPC auctions,

all but last ranked bidder qualify. I denote the number of bidders in final round by

N .

The N bidders compete online in an open descending bid auction.7 Each bidder is

able to see opponents’ price and capacity throughout the auction. The starting bid

of each bidder is their bid from the previous round, and they can only reduce it. The

minimum reduction allowed is 0.01 INR (0,00012 USD). The bidders can’t change

their capacity, which allows me to treat them as exogenous during the auction. The

auction lasts for at least one hour and it ends when there has been no change in bids

for 8 minutes. At the end of the auction, top W bidders by price, whose cumulative
6Assume that the quantity bid by ith ranked bidder is q(i). The auctioneer would select top m

ranking bidders, such that m = minm
∑m

j=1 q(j) ≥ M , and half of the remaining bidders, for the
second round.

7which is strategically equivalent to uniform price auction. See Krishna (2009)
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capacity just falls below M are awarded a contract to build their desired capacity.

In table 1, these are B1, B2, B3. The lowest price bidder among the remaining (or,

the marginal winner) is awarded the residual amount for capacity creation. Both

NTPC and SECI have followed this rationing rule. In Table 1, this rationed bidder

is B4. 8

4 Data and stylized facts

In this section, I analyse the bidding data in order to understand the bidding be-

haviour. Data is obtained from 2 sets of documents provided on the website of

Solar Energy Corporation of India, SECI. The first set of documents are requests

for submission (RfSs), which are issued by the auctioneer to invited bidders. This

document provides auction specific characteristics like technology specifications, lo-

cation restrictions, procurement target etc. They also provide the details of auction

mechanism, allocation, and transfer rule among other things. The second set of the

documents are the ones containing the result of the auction. These documents pro-

vide the first and second round bids of all the bidders, and the capacity awarded to

each bidder at the conclusion of the auction. Similar auctions are also conducted by

National Thermal Power Corporation (NTPC) and I append that to the SECI data.

For NTPC auctions, however, I rely on public reports provided by Mercom India,

which is a market tracker. Thus, data is not available for all the NTPC auctions,

and the one available is only for round 2.

In total, there is data from 62 auctions conducted by SECI and NTPC. Two of

these auctions restrict participation to Public Sector Enterprises, two have very

small procurement target. One of them is for Round-the-Clock supply and another

one has two part tariff. Data is not complete for 2 of the auctions. I remove these
8In some SECI auctions during and after 2019, if the bidder was awarded capacity less than

50% of its quantity bid, they could reject the offer and this capacity would lapse. However, I am
abstracting from this rejection option, as it was exercised only in 4 auctions, which I will exclude
from my empirical analysis.
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eight auctions from the analysis because they are not directly comparable to other

auctions. This leaves us with 54 auctions, having a total of 374 bids for the second

round.

I convert the VGF bids, which are per Megawatt (MW) of capacity, into equivalent

tariff bids, which are per Kilowatt-hour (KWh), using following calculation.

tariff =
V GF ∗ capacity

capacity ∗ CUF ∗ 24 ∗ 365 ∗ 25 ∗ 1000

Here numerator captures the amount of money which the bidder has asked for, and

denominator captures the number of KWhs of energy they will produce over 25

years. CUF is the expected capacity utilisation factor, which is set at 0.2 for this

exercise.9 In the conversion formula above, I am assuming that bidders value the

present and the future production equally.

Table 2 shows the average number of participants to the qualifier round across large

SECI auctions.10 The table shows that the participation varies over the years. In

total, 138 firms have participated in the large auctions. The high participation in

2017 is driven by auctions for projects in Bhadla Solar Park in the state of Rajasthan,

which is now the largest Solar Park in Asia. Among these potential suppliers for

SECI, 66 have never won any positive award. 27% of the capacity constructed via

large SECI’s auctions is concentrated with just 3 bidders- ReNew (10%), Adani

(9%), and Softbank Energy (7%).11 Top 10 bidders have 53% of the capacity. These

bidders include Singapore-based Sembcorp, home-grown firms like ACME, Azure

power. As a result of this competition, the average market clearing price declined

from Rs. 4.5/unit in 2015 auctions to Rs. 2.4/unit in 2021 auctions. This price is

the bid of the bidder who received the residual award in the final round.
9As per the Saur-News-Bureau (2023) report, average CUF for solar is 15-19% and as per the

WindInsider (2023) report, for wind it’s 25%.
10This excludes 1 auction for Round the clock supply, 1 auction with two part tariff, and 2

auctions which restricted entry to public sector firms.
11In 2023, Adani acquired all the renewable projects of Softbank in India for USD 3.5 Billion,

making them the largest renewable producer for SECI.
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Table 2: Average participation in large auctions

Year Ind N S SP Aggregate
2015 8.5 8.50
2016 3 8.5 6 4.40
2017 12 21.67 17.80
2018 9.5 7 9.14
2019 4.25 9 5.20
2020 9.6 13 10.57
2021 15 22 17.33
2022 12.75 10 11.83
2023 7 7
Aggregate 8.96 7 9 15.6 9.22

Among the tariff auctions with large procurement targets (above 200MW), I observe

that in 24 out of 40 auctions, the bidder who gets residual award has bid within

Rupee 0.02 of the lowest of bids of all the losing bidders or within 0.01 of her first

round bid, if there is no losing bidder. Such a bidder is said to have conceded or not

competed. In 17 of such 24 auctions, it is the bidder with highest quantity bid who

concedes and accepts to be rationed. In two cases, all bidders have same capacity.

In three of the auctions, no bidder gets rationed in the outcome. In 5 auctions, the

bidders exercise the option to reject the residual capacity allotted to them. This

right is provided to them only after 2019, if the award is less than half of capacity

bid. In these auctions, we do not observe any competition.

Among the 14 VGF auctions analysed (with M ≥ 25MW), 6 auctions have no

residual award as each bidder’s quantity bid equals M . Among the remaining, the

residual winner doesn’t compete in 3 auctions. In all of them, this bidder is also

the one with highest capacity report. In 2 auctions, competition is observed. In 3

auctions, the winner had a very low first round bid and capacity bid equal to M ,

which led to absence of competition in second round. Overall, I can say that in

the auctions where there was a positive residual award, there was no competition in

almost half of the occurrences by the highest quantity bidder.

Presence of both competitive and non-competitive behaviour in bidding rules out

any collusive scheme where the bidders collude to get a high tariff. However, 67.5%
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of all the auctions observe bidder agreeing to be rationed without any competition,

and in most cases it’s the bidder with highest capacity report. Thus, there seems to

a relationship between capacity report and competitive behavior. To further explore

this relation, I estimate a simple linear probability model and a probit model. For

this purpose, I restrict attention to SECI auctions.

In this model, the decision to not compete is captured by indicator variable concedeia.

For tariff auctions, concedeia = 1 if in auction a, Bi gets residual award and bid

same as or within INR 0.02 of the lowest bid among all the bidders who got zero

award. If no bidder gets award of zero, I compare the final bids to qualifier bids.

concedeia = 1 if Bi gets a positive residual award and her second round bid is within

INR 0.02 of her qualifier round bid. For VGF auctions, same procedure is followed

with a threshold of INR 100,000.

I remove the auctions where the bidders who are awarded their capacity report

without changing bids between the 2 rounds from this analysis. I don’t use the bids

from auctions where none of the bidders were awarded a positive residual capacity.

I also exclude auctions where some bidder exercised the right to reject the residual

award. Whenever a bidder decides to concede and gets zero award, the auction

doesn’t end, as the allocation is not yet decided. It continues with lesser number of

bidders, any subset of whom (including empty subset) might get a positive award if

they decide to not compete further. Thus, a subgame is created among remaining

bidders. If I observe such a situation in a particular auction, I consider the subgame

generated by exit of a bidder as a separate auction a. In each such subgame a where

the bidder i decides to compete and not agree to a residual capacity, concedeia = 0.

In the terminal subgame, concedeia = 1 if the bidder who gets positive residual

doesn’t compete further. Treating these subgames as independent of each other

imposes limitation on utility of the linear probability model. As such, the model

here measures just a correlation, and not the causal effect of rationing on decision

to exit immediately. The bidders getting zero award are not considered for this

analysis because their decision to concede is not based on strategic choice regarding
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agreeing to residual at a higher bid, but on their individual rationality.

To capture the extent of rationing, I calculate a potential residual award for all the

bidders who were awarded their capacity report. This is the capacity award they

would have obtained if they had chosen to concede. To this end, I subtract the

quantity bids of winners whose bids are same for both the rounds (if any) from M .

This gives me adjusted M . I also remove these bidders from analysis. The potential

residual award is then difference between adjusted M and capacity of all other

bidders. The potential residual is then floored at 0. I take its ratio with respect to

the capacity report in order to measure the extent of rationing. I use number of fully

rationed competitors (one who would have gotten zero award if they had conceded

at a bid higher than the market clearing bid), and the number of partially rationed

competitors as additional regressors, which can account for impact of competition.

I model following regression specification:

concedeia = ν0 + ν1(residualia/capacityia) + ν3nPRa + ν4nFRa + χXa + ϵia

where Xa are auction specific controls, nPRa are the number of partially rationed

bidders and nFR is the number of fully rationed bidders. The results are provided in

Table 3 This econometric specification doesn’t use any measure for cost of bidders,

which is important for exit decisions. However, this should not be a problem because

the aim here is not to claim any causality, but find some correlation between a

bidder’s decision to concede and her capacity.

We can notice that the measure of rationing is an important determinant of proba-

bility of immediate exit by a bidder. Moreover, there is a positive relation between

both of the variables, which implies that the bidder is more likely to concede immedi-

ately if she is not being rationed a lot. The relation carries on to Probit specification.

Another important determinant is the number of partially rationed bidders, the bid-

ders whose decision to concede ends the game. More the number of such players,

more is the chance that at least one of them can be outcompeted without reducing
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Table 3: Relation between residual award size and immediate exit decision

Dependent variable:

ImmediateExit

OLS probit

(1) (2) (3) (4) (5) (6)

Constant 0.271∗∗∗ 0.326∗∗∗ 0.346∗∗∗ −0.565 -0.345 -0.314
(0.095) (0.108) (0.126) (0.428) (0.487) (0.527)

residual/capacity 0.374∗∗∗ 0.397∗∗∗ 0.404∗∗∗ 1.231∗∗∗ 1.457∗∗∗ 1.483∗∗∗

(0.101) (0.103) (0.105) (0.475) (0.486) (0.494)

nFR −0.029 −0.037∗ −0.032 −0.140 −0.173∗ −0.159
(0.019) (0.020) (0.023) (0.094) (0.099) (0.111)

nPR −0.047∗∗∗ −0.057∗∗∗ −0.059∗∗∗ −0.181∗∗ −0.237∗∗∗ −0.245∗∗

(0.016) (0.019) (0.022) (0.077) (0.091) (0.104)

Region controls ✓ ✓ ✓ ✓

Type Controls ✓ ✓

Observations 158 158 158 158 158 158
R2 0.154 0.167 0.169
Adjusted R2 0.138 0.134 0.124
Log Likelihood -59.852 -58.411 -58.345
Akaike Inf. Crit. 127.704 130.823 134.690

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

own bid by much. Thus, the bidders are less likely to concede when nPR rises.

The histogram of ratio of residual and quantity bid in Figure 1 can help visualise

this relationship between the extent rationing and decision to not compete. For this

histogram, I filtered out the observations where rationed quantity was zero. The

graph shows that proportion of red for lower values to residual to capacity bid ratio

is higher.

These reduced form empirical models present correlation between residual quantity

and the competitiveness of bidders. While the models here are not at all causal, the
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Figure 1: Histogram of ratio of potential residual award

presence of such correlations and other stylized facts presented in this section rule

out a collusion based explanation for such behavior. The observed patterns warrant

a more theoretical analysis.

5 Theoretical modelling of supplier rationing

This section models the final round as a descending clock auction with residual

award. The aim of this and next section is to provide a simple game theoretical

explanation of the stylized facts presented in Section 4. I make assumptions on

game timing, and bidder and auctioneer information which incorporate relevant

information from qualifier round. Although seemingly strong, such assumptions

help this paper remain focused on incentives for bidders to compete or not, when

facing rationing.

Before the auction, government announces the procurement target M for that auc-

tion. Each bidder, i announces her capacity qi ≤ M , which is the capacity they
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can create and provide to the government. I assume that this quantity is reported

truthfully. Set of all the bidders is denoted by N . The bidders are assumed to be

risk-neutral. In the procedure described in section 2, the reserve bid is individualised

as it depends on their first round bid. However, I abstract from this and assume

that the announces the reserve price (=bR) which is same for all the bidders.

The abstraction on reserve price doesn’t lead to much loss of generality as can

be explained in the following example. Let’s suppose M = 100 and we start the

final round with 5 bidders with capacities {30, 40, 50, 35, 10} and price {3, 4, 5, 6, 7}.

Then, the highest possible bid for any bidder is 7. However, the 4th and 5th bidder

get 0 if they bid 7. Thus, they would gradually reduce their bid from their starting

bid, with the hope of out-competing some other bidder while respecting individual

rationality constraints. Suppose they reduce their bid to 5 and then last bidder exits

the auction as she doesn’t find it profitable to provide any amount at price below

5. If the auction were to end at this bid, first and second bidder would get 70 in

total as their award. This means that third and fourth bidder have to compete for

remaining 30 if the auction continues. The situation is similar to an auction where

bidders bid for an award of 30, and have the same reserve bid of 5. Moreover, the

game can continue in such a way that the common reserve becomes 4 and the total

award size is 70. Thus, assuming a common reserve bid, instead of individualised

reserve (as in reality) doesn’t affect the theoretical understanding of the bidding

strategies in this auction, and this is essentially due to open nature of bidding.

Each bidder is assumed to have a constant marginal cost of supplying the product,

denoted by ci. For each bidder i, ci is private information, revealed to her before

the auction. ci
i.i.d∼ Fi(c) and ci ∈ [0, c̄]. Suppose that there is a very small atom at

0. For the baseline model, Fi(c) = F (c), ∀i. I denote the reversed hazard rate of

this distribution, f(c)/F (c) by σ(c) and assume that σ′(c) < 0,∀c > 0. It is possible

that there might be some learning among bidders from the qualification bids of their

opponents. Any such learning can be captured by assuming heterogeneous priors

over opponents’ costs. As I show through a extensions in appendix B, heterogenous
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priors can be easily accommodated in the baseline model.

M is allotted via an open descending price auction, modelled as descending clock

auctions where bidders bid the per unit price they would ask the government for

providing the good.12 Right before the start of the auction, each bidder’s capacity,

qi, is made public. The auction process can be thought of as a descending clock

auction auction. At the start of the auction, auctioneer displays bid bR on a screen

and all the bidders enter an arena. As auction proceeds, the displayed bid reduces

in a continuous manner. If a bidder wishes to exit at a bid b, she leaves the arena

when screen displays b ≤ bR. When she leaves, she gets a residual quantity award

of Max{0,M −
∑

i qi1Bi∈I(b)}, where I(b) is the set of bidders in the arena at bid

b. The auction stops when a bidder gets a positive award when she exits, or if

M −
∑

i qi1Bi∈I(b) = 0. The bidders who are still in the arena at the end of auction

are awarded their quantity at the bid displayed on the screen at that time. Thus at

any point, the bidders who would get a positive residual on exiting the arena decide

to either accept the residual at the current bid, or to wait for the bid to drop so that

another opponent exits. If they decide the former, they get higher price but lower

quantity, and vice-versa if they decide the latter.

In such a game, any bidder who would get a zero award on exiting, would not exit

until the displayed price is same as her cost. If they exit at a higher bid, they still

get a payoff of zero. However, if the don’t exit, there is a chance that some other

players will exit and this bidder may get a positive award. Thus, it’s beneficial for

her to not exit at a bid above cost. This characteristic of equilibrium bids of zero

award bidders plays crucial role in identification of the cost distribution from SECI

data.

The descending clock auction is essentially a dynamic game, where the bidders have

2 options (exit and continue) at any given instant. However, one can also think of
12This is an abstraction from the idea of price bids being the tariff on produced electricity and

not the price of constructed capacity. The price bids in this model can be thought to be the per
unit markup these bidders desire added to the Lifetime average Cost of Electricity they expect to
produce. Any adjustments made for this equivalence don’t harm the equilibrium results as long as
capacity utilisation factors and discount rates are assumed same across agents.
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this as a stage game. At the start of the game, each bidder chooses a cutoff bid

at which she would exit, if none of her opponents would have exited by that bid.

If a bidder exits and gets an award of zero, a subgame starts, and each bidder in

this subgame finds a new cutoff bid. If in any subgame, the exiting bidder gets a

positive residual award, the game ends. Thus, bidders have cutoff strategies in this

stage game, where the cutoff bid depends on the set of quantities of all the players

in the subgame. Bidder i’s strategy is to choose her cutoff bid (or simply, bid) bi

in each subgame. The analysis amounts to finding Bayes Nash Equilibria (BNE) in

pure strategies of this game. To keep the results simple and tractable, I focus on

games with just 2 bidders.

5.1 Pure strategy equilibrium with 2 players

This section provides the results on characteristics and existence of pure strategy

equilibria for auctions with 2 players and 3 players. In general, opponent of Bi is

denoted by B−i, her bid by bi, and her equilibrium bid function by βi(c). A bidder is

said to be large if their capacity is larger than the procurement target. The simplest

case with 2 bidders would be when M < qi for both i, i.e., both are large. This case

reduces the auction to a simple english auction, where βi(c) = c for both i. The

other cases are a bit more involved.

5.1.1 A large bidder and a small bidder

Assume M = q1 > q2 without loss of generality. In this case B2 gets 0 if her bid is

higher. On the other hand, B1 gets her capacity in all the cases. Bi’s ex-post payoff,

conditional on winning and losing respectively, are:

πW
i (bi; ci,q, b−i) = qi(p− ci)

πL
i (bi; ci,q, b−i) = Max{0,M − q−i}(p− ci)
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where p = Max{b1, b2}

B2 would find it weakly dominant to bid her cost. If she bids above and loses, she

gets 0. If she wins with this bid, she pays price equal to opponent’s bid, which

would higher than her cost. Thus, she isn’t really better off by bidding above her

cost. Bidding lower than cost is dominated as that gives negative payoff. Thus, her

equilibrium bid function, β2(c) = c.

β1(c) is obtained as B1’s best response to β2(c) = c. This is obtained by maximisa-

tion of her expected payoff, which is given by:

π1(b1; c1, β2(c)) = (M − q2)(b1 − c1)F (b1) + q1

∫ bR

b1

(x− c1)dF (x)

For B1, this situation reduces, analytically, to a decision problem, rather than a

game. β1(c1) is attained by finding b1 ∈ ArgMax
b≤bR

π1(b;c1, β2(c)) for each c1. If

β1(c1) < bR, then σ(β1(c1))(β1(c1)− c1) =
M−q2
q2

which is the first order condition of

optimisation at an interior point. If for some c1 this equality doesn’t hold ∀b < bR,

β1(c1) = bR, i.e., B1 exits immediately at bR. Strategies β1(c), β2(c) constitute the

equilibrium of this case.

To have an illustration of equilibrium, suppose ci
iid∼ U(0, 1) without an atom. This

implies that if there is an internal optimum for some cost type, she bids according

to function β1(c) =
q2

2q2−M
c. Note that if q2 < M/2, this yields negative bids, which

are dominated. Thus, if q2 < M/2, there is no internal optimum and B1 bids bR

regardless of her cost (β1(c) = bR), which implies complete pooling. Otherwise, she

would be pooling partially. For example, when M = q1 = 3, q2 = 2, she would bid

bR for c > 0.2
√
31 − 0.8 ≈ 0.313. For other values of c, β1(c) = 2c. Notice that

the bidding function is discontinuous. This discontinuity is further illustrated in

Figure 2b where a truncated lognormal distribution is assumed. Since it is dominant

for B2 to bid her type c2, and the computed β1(c) is the unique maximiser of B1’s

payoff, the equilibrium described here is unique BNE.

22



(a) Complete pooling: q1 = 100, q2 = 40 (b) Partial pooling: q1 = 100, q2 = 80

Figure 2: Equilibrium bid function of B1

Equilibrium bid function for B1 when M = 100, bR = 4.1, and F : [0, 4] → [0, 1] is constrained
Log-Normal with µ = 1, σ = 1. Note that the scales on x-axis and y-axis are different.

B1 bids bR for a type c1 if σ(b)(b − c1) <
M−q2
q2

, ∀b < bR. If M or q1 rise, and/or

q2 declines, this inequality is likely to be satisfied for a wider range of c1. Thus, the

extent of bunching would increase. Intuitively, rise in M and decline in q2 reduces

the extent of rationing faced by B1. This makes her reluctant to compete when her

cost isn’t low enough to defeat B2 who bids truthfully.

5.1.2 2 small bidders

In this case, M > q1 > q2, and q1 + q2 > M . In this case, both bidders would get a

positive reward in case their bids are higher. Bi’s ex-post win and loss payoffs can

be written as:

πW
i (bi; ci,q, b−i) = qi(p− ci)

πL
i (bi; ci,q, b−i) = (M − q−i)(p− ci)

where p = max{b1, b2}.

Any ties are broken in favour B2.13 Unlike, the previous case and second price
13This tie-breaking rule is not without loss of generality. In fact, it is set in this way in order to

have equilibrium existence. This is similar to the idea in Simon and Zame (1990) on endogenising
the tie-breaking rule. They prove that in the game where indeterminacy can arise due to unspecified
tie-breaking rule, one can always find a tie-breaking rule consistent with equilibrium existence.
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auction, none of the players would bid truthfully in this case. Bi’s expected payoff

from the auction when she bids bi, conditional on opponent’s bid, b−i and capacities

q1, q2,M is:

πi(bi; b−i, ci,q,M) = (M − q−i)(bi − ci)Pr(bi > b−i) + qiEF (bi − ci|bi < b−i)Pr(bi < b−i)

There are 2 complete pooling Bayes Nash Equilibria, where either B1 or B2 never

exit the arena, and their opponent exits immediately. In other words, one of the

bidder commits to bid lower than the other bidder, who in turn bids bR. Such BNE

are sustained by some crazy type, and lead to completely inefficient screening.14

Thus, it is natural to look for any other possible BNE, where screening is better.

Following lemma characterises such a BNE:

Lemma 1. For each Bi, βi(c) constitute a semi-separating Bayes Nash Equilib-

rium of the 2 player clock auction with rationing if and only if it satisfies following

properties:

(i) βi(c) is non-decreasing in c.

(ii) βi(c) is continuous and atomless for b < bR for both i.

(iii) βi(0) = 0

(iv) For each player Bi, βi(c) solves:

σ(β−1
−i (βi(c)))β

−1′

−i (βi(c))(βi(c)− c)(q1 + q2 −M) = (M − q−i) (1)

for c > 0

(v) β2(c̄) = bR, and ∃c∗ such that β1(c) = bR ,∀c ∈ [c∗, c̄].

Proof. See Appendix A.1
14If we look at the descending auction in dynamic version explained earlier, such an equilibrium

will not be a perfect bayesian equilibrium.

24



βi(c)

b′
b

βi(c)

b

Figure 3: Possible deviations in case of discontinuity and presence of atom

Characteristic (i) can be shown by exhibiting that payoff function satisfies increasing

differences property. (ii) can be shown through standard arguments for continuity

and atomlessness. If there is an atom at some bid b, the opponent’s type which bids

b will deviate to a bid slightly lower than b, if latter’s strategy is continuous. If there

is a discontinuity in strategies, such that the type β(c) = b and type β(c−) = b′ < b,

than the opponent types bidding between b′ and b would prefer to bid b. These

deviations are shown in Figure 3. Characteristic (iii) can be shown through argu-

ments similar to Bertrand competition.Characteristic (iv) can be obtained through

first order conditions for optimum at an interior point. It requires invertibility of

bid function, which is ensured by conditions (i) and (ii).

Property (v) is the key characteristic of interest. It implies that a positive mass

of high cost types of B1 bid bR, i.e., B1 bunches at bR. It relies on the relative

marginal payoffs of two players at any point of intersection of the solution curves,

which are such that β′
2(c)

β′
1(c)

= M−q1
M−q2

< 1 if βi(c)s intersect at the cost c. The marginal

payoffs are such that their solution curves intersect just once. Then, by continuity,

strict monotonicity at b < bR, and property (iii) and (iv), I show that even in the

immediate neighbourhood of 0, β1(c) > β2(c). Thus, the point of intersection can

only be at 0. Therefore, the solution curves don’t intersect at b > 0. Combined

with the property that highest types of both players should bid bR, it implies that

β1(c) = bR,∀c ∈ [c∗, c̄], while β2(c̄) = bR. This property also shows the importance

of tie breaking rule in favor of B2. In absence of this rule, whenever the two players
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bid bR, B2 has an incentive to reduce the bid slightly below bR and avoid rationing

with positive probability because B1 is bunching at bR. This tie-breaking rule makes

B2 indifferent between bidding bR or slightly below bR. Such an incentive doesn’t

exist for B1 as possibility of tie for her is 0 because B2 doesn’t bunch.

Intuitively, B1 is less aggressive and bunches because she has a higher marginal

cost of competing (or reducing her bid) for any given cost type because she has

a higher residual award. The gain in quantity conditional on winning is same for

both the bidders (=q1 + q2 − M). Residual award is higher for B1, which implies

that competing is costlier for her. Thus, she is less aggressive, which gives her a

higher markup (= β1(c) − c) so that her overall marginal cost of competing is not

as high. Thus, B1’s bid function is above B2’s until both of them have types in the

immediate neighbourhood of 0. This also implies that for high cost types, B1 has no

incentive to compete at all, which leads to bunching. An important implication of

the property (v) of the Lemma is that we can rule out existence of any completely

seperating equilibrium in this auction as long as the capacities of the two bidders

are different. Figure 4 shows the equilibrium as characterised in Lemma 1.

This figure also exhibits the selection inefficiency in these auctions. If B2 has cost

c2 and B1 has cost c1 < c2 as in the figure, B2 will be bidding lower. As such, she

will be awarded q2 and B1 gets M − q2. Total cost of production in this scenario is

c2q2 + c1(M − q2) = c1M + (c2 − c1)q2. On the other hand, if B2 was rationed, the

cost would have been c1q1 + c2(M − q1) = c2M − (c2 − c1)q1 < c1M + (c2 − c1)q2.

Thus, the allocation is not cost efficient.

So far, I haven’t analysed the existence and uniqueness of equilibrium described in

the lemma. This is important because in absence of such an equilibrium, the game

only has the complete pooling equilibria. In order to show this, I first need to define

functions, ϕ1(b), ϕ2(b) as follows:

26



c

bR

βi(c)
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b2
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Figure 4: Asymmetric equilibrium with 2 players

ϕi(b) :=


0 forb = 0

β−1
i (b) for 0 < b < bR

Inf{c : βi(c) = bR} for b = bR

Hereafter, these functions are called solution curves. Since Lemma 1 that β1(c) >

β2(c),∀c ∈ (0, c̄, it also implies that ϕ1(b) < ϕ2(b),∀b > 0.

Any equilibrium is attained from the solution to Boundary value problem (BVP)

given by FOCs (equations 1) and boundary conditions given by ϕ2(b
R) = c̄, ϕ1(b

R) =

c∗ < c̄ such that ϕ1(0) = ϕ2(0) = 0. The differential equations of this BVP have a

division by 0 at the left boundary and hence, cauchy-lipschitz theorem is not appli-

cable at (0, 0). Thus, right boundary has to be used to establish existence, which is

endogenously determined for ϕ1(b). This is similar to the problem of existence and

uniqueness in first price auction, as studied in (Lebrun, 2006). Using the FOCs, I

can show existence of a c∗ such that ϕ1(b
R) = c∗ and ϕ1(0) = ϕ2(0) = 0. Theorem 1

is formal statement of existence and uniqueness of equilibrium in Lemma 1, which

I prove in the appendix.

Theorem 1. The BNE as described in Lemma 1, exists and is unique.
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Figure 5: Intersecting solution curves

Proof. See Appendix A.2

Uniqueness can be understood through the argument similar to that of relative

toughness in Lizzeri and Persico (2000). Consider two sets of solution curves ϕi(b)

and ϕ̂i(b) such that ϕ2(b
R) = ϕ̂2(b

R) = c̄ and ϕ1(b
R) = c∗ < ϕ̂1(b

R) = ĉ∗, pertain-

ing to "ϕ" and "ϕ̂" situations respectively. As I show formally in appendix, this

would imply that ϕ̂1(b) > ϕ1(b) and ϕ̂2(b) < ϕ2(b) for all b > 0. To understand

this intuitively, consider the situation in the Figure 5a. At bR, B2 is bidding same

in both equilibria, but is "marginally" more aggressive at bR in ϕ̂ equilibrium (i.e.,

ϕ̂′
2(b

R) < ϕ′
2(b

R)). As such, the probability of B2’s exit when B1 bids in the imme-

diate neighbourhood of bR is lower. Thus, B1 of type c∗ should be less aggressive

in ϕ̂ in order to compensate for this lower probability through a higher markup,

as indicted by FOCs too. However, the figure suggests otherwise, and hence that

situation can’t happen. Thus, if ϕ̂1(b) > ϕ1(b), ϕ̂2(b) < ϕ2(b) in the neighbourhood

of bR.

Next, lets consider the points of intersection of ϕ̂1(b) and ϕ1(b) and take the one

with highest bid. Denote it by (bt, ct). B1 is bidding same in both ϕ and ϕ̂ equilibria,

but is less aggressive at the margin in the latter. As before, this will imply that B2

should be more aggressive when her cost is ct. This will suggest a situation show

in the figure 5b. Finally, such an intersection in B2’s solution curves, by similar

logic would imply that B1 should be less aggressive when her type is the one who
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Figure 6: Co-movement of ϕ1(b) and ϕ2(b) in response to change in c∗

bids b′t in ϕ, which is not in accordance to what we see in the figure. Thus, the

solution curves in ϕ and ϕ̂ equilibrium should not intersect for all b > 0. Therefore,

if ϕ̂1(b) > ϕ1(b), ϕ̂2(b) < ϕ2(b).

At 0, given that the slope of the solution curves is infinite, we can’t use the same

logic. However, first order conditions require that the relative marginal payoff in

the neighbourhood of a point of intersection should be such that ϕ′
2(0

+)/ϕ′
2(0

+) =

(M − q2)/(M − q1), which is a constant. This would imply that ϕ̂i(b) > ϕi(b) for

both i, which is not possible, as we already saw. Therefore, if ϕ̂1(b) > ϕ1(b), ϕ̂2(b) <

ϕ2(b), ∀b. Therefore, only one possibility remains, in which either ϕ1(0) = ϕ2(0) = 0

or ϕ̂1(0) = ϕ̂2(0) = 0, but not both, as shown in Figure 6. Under certain regularity

conditions, which I verify in the appendix, this implies uniqueness and existence of

equilibrium.

While the result on existence and uniqueness is in line with the results on all-pay

auctions without any residual reward for the losing bidder, there are some subtle

differences. For example, results in Lizzeri and Persico (2000) required loss payoff to

be nonpositive. The result I have is attained even when the "loss" payoff is positive.

Moreover, my result is in contrast with result on 2 player asymmetric war of attrition

in Nalebuff and Riley (1985), which had a continuum of equilibria. In their case,

many possible solutions to the FOCs satisfy the condition that player with highest

type will wait for infinite time.
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The equilibrium characteristic that B1 bunches depends crucially on the finite reserve

bid and assumption that ex-post payoff are the only source of ex-ante asymmetry.

So far in the paper, this asymmetry has been imposed by capacity differences and

the cost distribution is same for both bidders. However, ex-ante asymmetry can

arise from differences in cost distributions too. Till now, I have focused only on the

former in order to clearly understand the effect of such an asymmetry. The insights

developed here on the effect of quantity award heterogeneity also carry on to the

situations where both sources of asymmetry are considered. However, the identity of

bunching bidder depends on the net effect of dominance of cost distribution and ex-

post award. I show this in Appendix B, where I provide a formal characterisation of

the equilibrium and proofs for following 2 cases of heterogeneity in cost distribution

of the two players:

1. ci ∈ [0, c̄i], such that c̄1 < c̄2 and ci
i.i.d∼ Fi(c) such that σ1(c) = σ2(c),∀c ∈

[0,min{c̄1, c̄2}] . Intuitively speaking, B2 is likely to have larger costs than

B1.

2. ci
i.i.d∼ Fi(.) where each Fi has same support, [0, c̄]. Denote by σi(c) the reversed

hazard rate (RHR) of Fi(c); σ′
i(c) < 0. Suppose that the distribution F1 RHR

dominates F2, i.e., σ1(c) ≥ σ2(c)∀c ∈ [0, c̄]. Dominance can imply having

higher probability of higher costs.

Through these cases, I can show that the intuition regarding the effect of differences

in ex-post quantity award in the case of same cost distributions for each bidder case

is robust to differences in cost distributions, even though the net effect is differ-

ent. What matters for the equilibrium structure, and specially for the identity of

bunching bidder is the net effect of cost distribution dominance and quantity bids.

To conclude the analysis, I provide the comparative statics with respect to M and

qi. The simulations show that any effect of increase in q1/(M − q2), depends on its

value, and the extent of change in it. This is shown in Figure 7. In Figure 7a, q1 rises

from 60 to 90, and that leads to B1 being very less aggressive (ϕ̃1(b) < ϕ1(b)), while
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(a) (b)

Figure 7: Change in ϕi(b)s in response to quantity changes

In the left figure, ϕi(b)s are defined for q1 = 60, q2 = 50,m = 100 and ϕ̃i(b) are defined for
q1 = 80, q2 = 50,m = 100. In the right figure, ϕi(b)s are defined for q1 = 60, q2 = 50,m = 100 and
ϕ̃i(b) are defined for q1 = 70, q2 = 50,m = 100. The costs are drawn in i.i.d manner from U [0, 1]
with a bR = 1.1.

B2 becomes more aggressive (ϕ̃2(b) > ϕ2(b)). In Figure 7b, q1 rises from 60 to 70,

which makes both the players less aggressive. Thus, changes in bidding behavior in

response to change in q1 and extent of rationing are not obvious and not monotonic.

The theoretical exercises of this section and the appendix C on 3 players, show that

the descending clock auction with rationing allocates inefficiently. While such an

auction design is attractive because of the simplicity of allocation rules and trans-

parency, the market of renewable electricity created by it is not cost-efficient. Thus a

question arises regarding possibility of making this market more cost-efficient with-

out using more complicated methods. I take an empirical approach to answer this

question. This not only helps me quantify the cost-inefficiency in the auctions, but

also tells the extent to which auctions can be made more efficient by slightly differ-

ent mechanisms. The first step of this approach is to identify the cost distribution

of the bidders from the observables in the data. The second step is to estimate the

cost distribution, and final step is to conduct a simulation based study of various

counterfactual mechanisms.
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6 Identification and estimation of the cost distribu-

tion

In this section, I explain the identification methodology for distribution of costs of

bidders using the data provided publicly by SECI. As mentioned earlier, this data

contains bidders’ identities, bids and awards. In particular, it provides bids of the

bidders who are awarded no capacity. Identification, then, relies on the equilibrium

characteristic that bidders who get an award of zero find it dominant to bid their

cost in descending price open auction. Their bids can be ranked and provide the

order statistics of costs.15 The distribution of order statistics can identify the parent

distribution of the costs.

6.1 Identification

For each auction t ∈ T , SECI provides us data of the final round bids of the bidders

with zero award, which also pertain to the order statistics of costs. These bids

are from a self-selected set of bidders with cost below a certain threshold. The

selection threshold is decided by their bids in the qualification round. The bids in

the qualification round depend on the distribution of costs. In this section, such

dependence of threshold on the distribution prevents us from using distribution of

a single order statistic to estimate the parent distribution as in English auctions.

Thereafter, we will see that the structure of distribution of order statistics can be

used to resolve this problem, and identify underlying cost distribution if at least 2

order statistics are observed.

Suppose, for some auction t, Nt bidders draw their costs independently and identi-

cally from the distribution Ft ∈ F , where F is an ordered family of distributions.
15Suppose X1, X2, ..., XN are N independent draws from a distribution F. If we arrange them

in increasing order and represent this arrangement by Y (1:N), Y (2:N), ..., Y (N :N), then Y (1:N) is
the first order statistic, Y (2:N) is the second order statistic, and so on. We can further find order
statistics distribution F (i:N) for Y (i:N) using the independence of draws. David and Nagaraja
(2004) textbook provides more details on order statistics.
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To commence, suppose that the econometrician observes the second lowest cost, c,

among Nt players, all of whom have cost below some randomly chosen selection

threshold, b̄t. The probability density function pertaining to the distribution of the

second lowest statistic in an arbitrary auction t is:

f 2:Nt
t (c|c ≤ b̄t;Nt) =

Nt(Nt − 1)(Ft(b̄t)− Ft(c))
Nt−2Ft(c)ft(c)

Ft(b̄t)Nt

The CDF is given by:

F 2:Nt
t (c|c ≤ b̄t;Nt) = Nt(Nt − 1)

∫ Ft(c|c≤b̄t)

0

u(Nt−2)(1− u)du

These functions can be found in David and Nagaraja (2004). From the expression

above, it can be noted that F 2:Nt
t (c|c ≤ b̄t) is an increasing function of Ft(c|c ≤ b̄t).

Thus, the latter can be identified by observing the former in the data (See Paarsch,

Hong, et al., 2006; Athey and Haile, 2007, for similar results).

Now suppose, as in SECI auctions, the threshold (b̄t) is not randomly chosen, but

depends on the cost distribution, Ft, i.e., b̄t = b̄(Ft). As before, the probability

density function of observing the second lowest order statistic is:

f 2:Nt
t (c|c ≤ b̄(Ft);Nt) =

Nt(Nt − 1)(Ft(b̄(Ft)− F (c))Ft(c)
Nt−2ft(c)

F (b̄(Ft))Nt

and the CDF is:

F 2:Nt
t (c|c ≤ b̄(Ft);Nt) =Nt(Nt − 1)

∫ Ft(c|c≤b̄(Ft))

0

u(Nt−2)(1− u)du

=⇒ F 2:Nt
t (c|c ≤ b̄(Ft);Nt) =Nt(Nt − 1)

∫ Ft(c)/Ft(b̄(Ft))

0

u(N−2)(1− u)du = µ(Ft, b̄(Ft))

=⇒ µ′(Ft, b̄(Ft)) =Nt(Nt − 1)(Ft(c|c ≤ b̄(Ft)))
Nt−2(1− Ft(c|c ≤ b̄(Ft)))(

1

Ft(b̄(Ft))
− Ft(c)

F 2
t (b̄(Ft))

∂Ft(b̄(Ft))

∂(b̄(Ft))

∂b̄(Ft)

∂Ft

)

It can be noted from above that if b̄ is not dependent on Ft, then ∂b̄(Ft)
∂Ft

= 0 =⇒
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µ′(Ft, b̄(Ft)) > 0, i.e., the mapping between F 2:Nt
t (c|c ≤ b̄(Ft)) and Ft(c|c ≤ b̄(Ft)) is

monotonic. In SECI’s case, we can’t say if µ′(Ft, b̄(Ft)) > 0 or µ′(Ft, b̄(Ft)) < 0 for

all Ft ∈ F unless we know b̄(Ft). In the absence of monotonicity of µ(Ft, b̄(Ft)), the

mapping between F 2:Nt
t (c|c ≤ b̄(Ft)) and Ft(c|c ≤ b̄(Ft)) is not one-one, which is a

problem for identification. Even if b̄(Ft) is known, it can have an irregular shape, in

which case F 2:Nt
t (c|c ≤ b̄(Ft)) may not be strictly monotonic in Ft(c|c ≤ b̄(Ft)).

Thus, we can’t use distribution of a single order statistic for identification. Now,

suppose that data provides at least 2 order statistics for each auction, say c(k1:N) =

x, c(k2:N) = y, where k1 < k2, x < y. Define a truncated distribution H(x; b̄(F )) =

F (x)/F (b̄(F )) and denote its density by h(x; b̄(F )).16 The costs observed in the

second round are drawn from H(x; b̄(F )).

The PDF corresponding to the probability of observing c(k1:N) = x conditional on

c(k2:N) = y is:

pk1|k2(x|y) =
(k2 − 1)!H(x; b̄(F (c)))k1−1h(x; b̄(F (c)))(H(y; b̄(F ))−H(x; b̄(F )))k2−k1−1

(k1 − 1)!(k2 − k1 − 1)!H(y; b̄(F ))k2−1

=
(k2 − 1)!F (x)k1−1f(x)(F (y)− F (x))k2−k1−1

(k1 − 1)!(k2 − k1 − 1)!F (y)k2−1

=
(k2 − 1)!

(k1 − 1)!(k2 − k1 − 1)!

(
F (x)

F (y)

)k1−1
f(x)

F (y)

(
1− F (x)

F (y)

)k2−k1−1

= fk1:k2−1(x|y), where f(x|y) = f(x)/F (y)

(2)

The conditional density is same as the density of kth
1 order statistic from a sample of

size k2−1, which is truncated at y. Since y is drawn independently (unlike b̄(F (c))),

F k1:k2−1(x|y) is increasing function of F (x|y). Thus, the latter can be identified by

the observing former in the data (as in the case with exogenous threshold). F (x) is

then identified upto a threshold (= maxt c
kt2:Nt), by computing F (x|y)∀y observed

over all the auctions. This methodology is same as the one proposed in Song (2006)

for estimating type distribution with unknown number of bidders.
16I drop the subscript t denoting an auction for easy notation.
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The identification here exploits the structure imposed by the order statistics. Intu-

itively, when we use the conditional distribution of order statistics (2), we are using

the order statistics from a subset of observations lower than an exogenous threshold.

Conditional on being below this threshold, the costs are drawn independently and

can be used for identification of the distribution.

So far, I have assumed that bidders draw costs from same distribution, which is

seldom the case. The estimates should account for any heterogeneity in the bidders’

cost distributions. In order to so, econometrician needs to observe identity of all the

bidders and the bidder corresponding to each observed bid. This is, fortunately, the

case with SECI data.

6.1.1 Heterogeneity in bidders’ cost distributions

Identification of cost distributions with asymmetric bidders in SECI auctions is sim-

ilar to that of bid distributions in asymmetric dutch auctions with observations of

winner’s bid and identity and identities of all the other bidders. A dutch procure-

ment auction is an open auction where the buyer would start from a low price and

increase it until someone agrees to sell. Observing the winning bid (w) and winner

identity (Bi for some i) amounts to observing the lowest order statistic of the bids

and the bidder who bid it.17 From Berman (1963), and subsequent work synthesized

in Athey and Haile (2007) and Paarsch, Hong, et al. (2006), we know that the dis-

tributions of bids Gi(b|b ≤ b̄) can be identified for asymmetric dutch auctions with

exogenous reserve b̄, if we observe identities of all the bidders, winning bid, and the

winning bidder. Since bids are same as cost in our case, these results imply that the

cost distributions of each bidder can also be identified, as long as b̄ is independent

of these distributions. If it is not, identification is possible as long as each auction

provides at least 2 order statistics.

I illustrate the identification with 3 bidders. For this purpose, I define some no-
17In contrast, in an English auction, observing the winning bid and winner identity tells the

second lowest bid but doesn’t tell the corresponding bidder identity.
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tations. Denote the set of all the bidders by I. ck:IBi
denotes the kth lowest cost,

which is bid by the bidder Bi. Bk:I denotes the bidder bidding the kth lowest cost.

Econometrician observes the following:

• 2 adjacent order statistics and their bidders, viz.

– c2:IBj
= c2 for some arbitrary Bj.

– c3:IBk
= c3 for some arbitrary Bk.

• Bi bids b1 ≤ c2 for some arbitrary Bi

The PDF for joint probability of observing above is given as:

f
(2,3:I)
(Bi,Bj ,Bk)

(c2, c3) = HBi
(c2)hBj

(c2)hBk
(c3) (3)

where (Bi, Bj, Bk) is an ordered tuple with bidder identities ordered by their bids;

HBi
(x) = FBi

(x)/FBi
(b̄(FBi

, FBj
, FBk

)).18 The PDF corresponding to observing

c2:IBj
= c2 conditional on c3:IBk

= c3 is given by:

p
2|3:I
(Bi,Bj ,Bk)

(c2|c3) =
HBi

(c2)hBj
(c2)

HBi
(c3)HBj

(c3)

=⇒ p
2|3:I
(Bi,Bj ,Bk)

(c2|c3) =
FBi

(c2)

FBi
(c3)

fBj
(c2)

FBj
(c3)

= f
2:{Bi,Bj}
(Bi,Bj)

(c2|c3)

(4)

Above is the PDF corresponding to the joint distribution of events c
2:{Bi,Bj}
Bj

= c2

and c
1:{Bi,Bj}
Bi

≤ c2, conditional on c2 ≤ c3. Denote the corresponding CDF by

F
2:{Bi,Bj}
(Bi,Bj)

(c2|c3). Then:

F
2:{Bi,Bj}
(Bi,Bj)

(c2|c3) =
∫ c2

¯
c

FBi
(x|c3)dFBj

(x|c3)

18As in dutch auctions, (4) can identify Fi(c; c ≤ b̄(F))∀i, which doesn’t account for the endo-
geneity problem.
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Argument for identification of FBj
(x|c3) from here is same as that for asymmetric

Dutch auctions with exogenous reserve with observation of winning bid, winning

bidder, and other bidder identities (Paarsch, 1997; Athey and Haile, 2007). Just like

in i.i.d case, we can identify FBj
(x) up to a threshold determined by (maxt∈T {c3:ItBkt

}).

Note that the mapping of bidder identity to bids is arbitrary and Bj is any arbitrary

bidder, and hence the distribution is identified for each bidder.

The identification here is illustrated for the simplest possible case with 2 adjacent

order statistics for the ease of exposition. This argument can be easily extended to

more bidders case and to the situations where order statistics are not adjacent as

long as we observe at least 2 of them.

6.2 Estimating cost distribution

In this section, I provide parametric estimates for the cost distribution. While this

imposes additional non-testable structure, the limited amount of data prevents using

non-parametric estimation. Moreover, parametric estimation enables us to find a

non-truncated distribution, which may be helpful.19

The parametric estimation helps account for auction and bidder specific observed

heterogeneity regarding cost distribution in a parsimonious fashion. In total, we

can observe 103 costs across 23 SECI auctions, which can be used for estimating

the distribution. Participation varies a lot across these auctions, with some of them

having only 2 order statistics, and some others have 10. These 23 auctions are

different in three aspects:

1. Temporal: There is a trend of decline in costs of renewable technology, which

affects the cost distribution.

2. Technology: Some auctions are specifically for solar power, some for wind, and

some are technologically neutral (hybrid).
19An analysis of tradeoff between the two methods can be found in Paarsch (1997) 3.4.
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3. Geography: Some auctions specify the state where the project must be con-

structed, some are specific to certain solar parks, and some others are location-

neutral. This affects the average cost of production because different parts of

India have different solar irradiance. Moreover, a part of cost is connecting

the project to the grid, which can be slightly low if the project is specific to a

solar park.

I provide average of costs across all these different dimensions in Table 4. For the

temporal part, I divide the sample into upto and after 2018, instead of looking at

each year separately because the data is not balanced across years when segregated

by technology and location. It can be noted that the average is lower for later years,

as expected. But this lower average is driven mostly by solar auctions, specially in

southern India. Looking at post 2018, we can also notice that the costs are lowest

for solar auctions, followed by hybrid and then wind. In the data, we can observe

that the wind and hybrid projects are location neutral. Location is mentioned only

for solar projects, and it can be noticed prices are much higher in southern states

before 2019, and slightly higher for later years. While the data mentions the exact

state, I club the states or solar parks as south Indian if they are to the south of

tropic of cancer. This grouping of states is done in order to have enough data across

different categories along the geography dimension.

A major part of bidder specific heterogeneity emerges from financing costs. Accord-

ing to BloombergNEF (2022) report, lenders ascribe high importance to producer’s

track record. Other bidder specific factors include equipment suppliers and down-

stream contractors, chiefly. Report also mentions the difference in debt financing

rates between wind and solar projects and bidders prefer to bid more in solar park

as that reduces costs due delay in land acquisition. Minor importance is ascribed to

project location. The report is based not just on SECI auctions, but on overall the

renewable electricity sector in India.

Since I don’t obtain detailed data of each firm’s track record, downstream contractors

or supplier networks, the bidder specific effects are captured through an indicator
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variable. This variable, Xi, equates 1 when the bidder Bi is one of the important

bidders. A bidder is said to be important, if she is one of the seven largest power

producers in the country as per the aforementioned bloomberg report. In particular,

it includes Adani group, Greenko, ReNew, NTPC, Azure, Tata, and ACME.20 To be

precise, these are the seven largest producers based on all the contracts acquired by

them, not just the ones obtained via SECI and NTPC auctions. For example, Tata

Power has not been very successful in SECI auctions, but is a major producer at

national level. Greenko doesn’t participate in them. An important assumption here

is that the large bidders were able to contribute so much to the capacity because

they could access financing at cheaper rates, which can be due to any of their

characteristics.

This assumption may not be unfounded if we look at some statistics from 23 SECI

auctions used for estimation. We can notice that just four bidders- Adani, Renew,

NTPC, and ACME- make up 33% of 106 bids with positive award and 38% of the

overall capacity award of 24GW in the 23 auctions. These large firms account for

18.4% of the bids which were awarded zero. It seems that these firms have a bit of

cost advantage over the others. Thus, being a large producer can be a proxy for the

bidder specific characteristics which affect costs.

In particular, I assume that the cost of bidder i in an auction t is given by:

cit ∼ N (µit, var)

where µit = α0 + α1Xi + α2Xt

where Xt are the auction specific controls, and Xi = 1 if the bidder Bi is important

bidder.

The parameters α0, α1, α2, var are estimated through maximum likelihood estima-

tion. For each auction t ∈ T , I can write a log likelihood function of observing the
20Note that NTPC is an auctioneer as well as a supplier. This may lead to some specific strategic

considerations on their part, and may make them better informed too.
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Table 4: Average of observed costs and number of auctions for each technology type
before and after 2018 in SECI auctions

Average cost Upto 2018 After 2018 Aggregate

Hybrid 2.507(16) 2.507(16)

Solar 3.080(36) 2.396(21) 2.828(57)

No location 2.774(5) 2.535(6) 2.644(11)

North 2.855(26) 2.328(13) 2.679(39)

South 4.558(5) 2.42(2) 3.947(7)

Wind 2.985(17) 2.897(13) 2.947(30)

Aggregate 3.050(53) 2.562(50) 2.813(103)

certain cost order statistics and corresponding bidder identities as:

LogLt(α0, α1, α2, var; (ct,bt), It, Xt,Xi)

=

(∑
i∈Ilt

(Φ(clt:It ;α0 + α1XBi
+ α2Xt, var)− Φ(cht:It ;α0 + α1XBi

+ α2Xt, var)

+
ht−1∑
k=lt

(ϕ(ck:It ;α0 + α1XBlt:It + α2Xt, var)− Φ(cht:It ;α0 + α1XBlt:It + α2Xt, var))

)

where (ct,bt) is the vector containing ordered pairs of cost order statistics and

bidder identities pertaining to each of these statistics in auction t, lt is the lowest

ordered statistic in the auction t, ht is the lowest ordered statistic, It is the set of

bidders in auction t, Ilt is the set of bidders with bid less than cl:It , Bk:It is the

bidder bidding kth order statistic, where k ≥ lt.

Using this, I can write the log likelihood function for all the observations as:

LogL(α0, α1, α2, var; InfoT ) =
∑
t∈T

LogLt(α0, α1, α2, var; (ct,bt), It)

where InfoT is the set containing (ct,bt), It, lt, ht, Xt,Xi for all the auctions.

Due to requirement that we observe at least 2 order statistics of costs in each auction,
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Table 5: Estimates of parameters of cost Distribution

Constant Solar Post 2018 Solar×Post2018 Important bidder var

3.3338 0.8161 0.6539 −1.0877 −0.7450 0.8662

(0.2374) (0.2624) (0.2501) (0.3085) (0.1621) (0.0557)

only 25 auctions (23 SECI, 2 NTPC) could be used for estimation. These auctions

revealed 116 draws of different order statistics. Table 5 provides bootstrapped es-

timates of parameters of cost distribution. Notice that the bidders classified as

important are likely to have lower costs on average. This implies that such bidders

have stronger cost distributions in the sense of stochastic dominance. Hereafter, I

refer to them as strong bidders, instead of important, in line with the literature in

auction theory.

7 Alternatives to reduce inefficiency

In this section, I provide insights into the impact of making small changes in the

allocation mechanism on the efficiency and payoffs of SECI auctions, given our

estimates. In the literature on comparing different auction designs, there is no

consensus on which method is better for the auctioneer and/or the society. As per

Holmberg and Wolak (2018), the suitability of low/high price sealed bid vs open

ascending/descending bid auction depends on the application at hand, and hence

warrants a separate investigation for each setting. Moreover, sealed bid auctions

are also regularly used in other sectors of Indian economy, most important of them

being the telecom spectrum allocation.21 As such, it may be interesting to see what

can be gained from replacing open bidding with sealed bidding in the final round,

without changing other parts like complete information on bidder capacities.

I compare the two methods regarding their allocation efficiency and the payoffs for
21These auctions were marred by corruption scandal accusations (most notably 2G scam of 2008),

which may have been a motivation behind having open auctions in renewable energy.
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the auctioneer. Efficiency of each mechanism is measured by following 2 outcomes:

• %Inefficient: This is the probability that the lower cost bidder was rationed

(i.e., got smaller capacity award).

• Cost inefficiency: This is the difference in cost incurred in creation of capacity

when award is made as per a particular auction mechanism, with the cost

incurred if the high cost bidder is rationed (welfare benchmark).

Besides efficiency, I compare these auctions with regards to the payments made by

auctioneer to the suppliers.

The focus of this exercise is to gain insights from the case of 2 small bidders, i.e.,

M > qi∀i and q1 + q2 > M . The theoretical results are well established for this case

in the section 5.1.2. While such a restriction may hamper the direct applicability of

the results, the aim here is to provide an evidence that welfare can be improved if we

switch from uniform pricing to sealed bid discriminatory pricing, without changing

any other feature of the auction.

While the bidders are asymmetric in cost distribution, they don’t know if their

opponent is strong or weak when in the auction. Thus, their belief about opponents

cost can be thought of as mixture of the two distributions, weak and strong. In the

data, it’s observed that in 33% of the auctions, one of the bidders who got some

positive award was the stronger bidder. In a very simplistic manner, I interpret it as

33% chance that one of the bidders who can get a residual award is a strong one. As

such, bidders are assumed believe that their opponent is strong with a probability

of 0.33 and weak with remaining probability. In any case, the exact mixture doesn’t

affect the qualitative result on welfare improvement.

Table 6 summarises the bootstrapped estimates for welfare outcomes and payments

made by the auctioneer in USD over 25 year period, when M = 300 for different

values of q1, q2. We can notice that the savings in social cost are significant across the

mechanisms regardless of the level of asymmetries. As the asymmetry in quantities
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Table 6: Performance of uniform price (UP) and discriminatory price (DP) auctions

q1/q2 %Inefficient Avg diff Cost ineff. Avg diff Payment Avg diff

200/170
UP 29.01 954,157 48,355,454

(3.032) (124,567) (3,974,700)
DP 5.18 23.83 186,213 1,123,430 47,058,238 1,297,217

(1.576) (3.030) (52,936) (144,046) (3,855,957) (223,792)
220/170
UP 28.38 1,002,057 33,401,929

(4.54) (135,079) (616,881)
DP 8.03 20.35 301,693 1,271,372 32,285,294 1,116,634

(2.181) (3.694) (120,706) (135,753) (744,330) (509,935)
200/130
UP 47.15 588,679 35,156,792

(4.039) (58,338) (630,855)
DP 13.21 33.93 158,448 745,699 34,317,544 839,248

(2.737) (3.96) (36,686) (87,593) (1,243,385) (1,035,954)

The table reports values of average and standard deviation (in brackets) for 200 cost draws from
200 distributions, whose parameters are estimated from bootstrapped samples. This is a total of 200
observations for percentage of inefficiency, and 40,000 for others.
The draws are made from normal distribution truncated at 0.4 and 5.5. Reserve bid, bR = 5.6,
procurement demand M = 300.
Differences are calculated as UP-DP.
For the difference in cost inefficiency, the differences between UP and DP are averaged over the
number of instances with different allocation.

increases, we can notice that the probability of inefficient selection increases in both

uniform and discriminatory price auctions. The increase is much higher for uniform

price vis-a-vis discriminatory. Notice from the column on social cost that at such

level of asymmetry, the social cost itself is not very high. At this level of asymmetry,

the cost saving is not as high in magnitude either, but it is significant. The payment

made by auctioneer is also found to be lower when using discriminatory pricing.

However, the differences in payments may not always be significant. This is because

the markup earned by bidders in discriminatory price auction is much higher than

in the uniform price auction.

From the figure 8, we can notice that bidder’s bidding functions (and hence, bid

distributions) are closer to each other in sealed bid discriminatory price auction,
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Figure 8: Bidding behavior: uniform versus discriminatory price

vis-a-vis open uniform price auction. The reason being that in the latter, bidders

receive what they bid when they win, not what their opponent bids. As such, they

are inclined to make bids with higher markup. Given that the highest cost type bids

reserve, higher markup implies that the bidding functions are at higher levels for all

costs in sealed bid compared to open bidding. This would imply that their bidding

functions and the bid distributions are close. Such difference in bidding behavior

across auctions should be seen as long as bidders are asymmetric. This leads me

to hypothesize that discriminatory pricing will reduce social costs even if there are

more bidders, as long as they are asymmetric in their capacities. If the bidders are

symmetric, we don’t have inefficient selection.

8 Conclusion

In this paper, I analyse the final round of auction mechanism used by Solar Energy

Corporation of India (SECI), theoretically as well as empirically. This round is

open descending price auction (uniform pricing). In particular, I analyse bidding

behaviour and resultant inefficiencies arising from two key features of these auctions-
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public reporting of asymmetric bidders capacities, finite reserve, and rationing of

suppliers. I show that switching from a uniform price to discriminatory price auction,

while maintaining these features, leads to significant cost savings without affecting

payment by auctioneer.

A preliminary analysis of SECI data tells us that in more than half of the auctions,

a bidder agrees to getting rationed without competing much. It also tells us that the

decision to compete or concede (and agree to be rationed) is positively correlated

with the size of residual award vis-a-vis own capacity report. In order to explain such

behavior, I characterise the semi-separating equilibrium of a descending clock version

of this auction. I show that a finite reserve bid, bidder capacity asymmetries and

rationing lead to bunching at the reserve by the supplier with higher capacity. The

results also show that the bidder with higher capacity is likely to be less aggressive

in the auction in such an equilibrium. Another feature of this equilibrium is that the

bid at which bidder would exit, unless their opponent exits at a higher bid, is found

to be related to the ratio of residual award and own capacity, as in the data. I show

that this equilibrium necessarily exists and is unique semi-separating equilibrium

for 2 player game. I further extend the results to the case of 3 bidders, where third

bidder has very low capacity. As such, the findings from the data are corroborated

by the theoretical results.

The theoretical results also show that these auctions are selecting inefficiently. In

order to see if there exist alternative allocation mechanisms with lesser inefficiency,

I need to know the distribution of costs of the bidders. For this purpose, I first

estimate the bidders’ cost distribution parametrically. Here the identification of

parameters is enabled by observation of bids of bidders with zero award, who bid

their cost. These costs provide us order statistics, albeit only of the bidders whose

costs is below a threshold, which depends on the cost distribution parameter itself. I

show that such an endogeneity can be dealt with, by using the density of probability

of observing a low order statistic, conditional on a higher order statistic, when we

can observe identities and bids of all the bidders. The identification then follows
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from the literature on dutch auctions with observed bidder identity.

Using these parameters, I use simulations to show that moving from uniform pricing

of open auction to a sealed bid discriminatory pricing can help save social costs.

This is because latter method lets suppliers have a higher markup, and reduces the

asymmetry in their bidding functions. However, one should keep in mind that such

savings are quantified using simulations, and with 2 bidders because of absence of

complete theoretical results for more than two bidders. As I argue in the section

7, the result on attainment of cost savings on switching to discriminatory pricing

should hold, the magnitude of cost saved would change. I also need to compare

the existing method with some other counterfactual methods, in order to have more

policy implications

As a future direction of work, a proper counterfactual exercise should be conducted

to properly quantify the extent of benefits of moving from open to sealed bidding. At

the same time, it is possible that some firms have easier access to financing because

of their proximity to the government, which implies that their cost advantage is not

based on efficiency. As such, it might be important to look at the effect of such

proximity and conduct a counterfactual exercise to measure the extent of selection

inefficiency created by selecting such bidders. Besides these immediate avenues of

research, we can look into modelling the qualification round and for generalising

theoretical results for final round.
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A Proofs for section 5

I continue with the assumption that q1 > q2. Throughout the proofs I denote

lim
x→x−

u(x) by u(x−) and lim
x→x+

u(x) by u(x+) for any function u(x).

A.1 Proof of Lemma 1

Proof. First I prove that the equilibrium should satisfy the specified conditions.

Then, I show that there is no unilateral deviation from a bid suggested by these

properties, for any type of any bidder.

Only if direction:

To prove condition (i), it is sufficient to show that payoff of a player satisfies Single

crossing property of incremental returns (SCP IR). Consider any 2 arbitrary cost

types of Bi, ci and c′i such that ci < c′i and 2 bids bi, b
′
i such that bi < b′i. Then the

property is satisfied if πi(b
′
i, ci)− πi(bi, ci) > 0 implies πi(b

′
i, c

′
i)− πi(bi, c

′
i) > 0 when

B−i bids with a non-decreasing strategy. Without loss of generality, assume i = 1.

π1(b
′
1, c1; b2) = (M − q2)(b

′
1 − c1)Pr(b2 < b′1) + q1E(b2 − c1|b2 > b′1)Pr(b2 > b′1)

π1(b1, c1; b2) = (M − q2)(b1 − c1)Pr(b2 < b1) + q1E(b2 − c1|b2 > b1)Pr(b2 > b1)

(5)

where b2 is the random variable denoting B2’s bid.

∴A(b′1, b1, c1, b2) ≡ π1(b
′
1, c1; b2)− π1(b1, c1; b2)

=(M − q2)[(b
′
1 − c1)Pr(b2 < b′1)− (b1 − c1)Pr(b2 < b1)]

+ q1[E(b2 − c1|b2 > b′1)Pr(b2 > b′1)−E(b2 − c1|b2 > b1)Pr(b2 > b1)]

(6)
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Suppose A(b′1, b1, c1, b2) > 0.,

π1(b
′
1, c

′
1; b2)− π1(b1, c

′
1; b2)

=(M − q2)[(b
′
1 − c′1)Pr(b2 < b′1)− (b1 − c′1)Pr(b2 < b1)]

+ q1[E(b2 − c′1|b2 > b′1)Pr(b2 > b′1)−E(b2 − c′1|b2 > b1)Pr(b2 > b1)]

=(M − q2)[(b
′
1 − c1 + c1 − c′1)Pr(b2 < b′1)− (b1 − c1 + c1 − c′1)Pr(b2 < b1)]

+ q1[E(b2 − c1 + c1 − c′1|b2 > b′1)Pr(b2 > b′1)−E(b2 − c1 + c1 − c′1|b2 > b1)Pr(b2 > b1)]

=A(b′1, b1, c1, b2) + (M − q2)(c1 − c′1)[Pr(b2 < b′1)− Pr(b2 < b1)] + q1(c1 − c′1)[Pr(b2 > b′1)− Pr(b2 > b1)]

=A(b′1, b1, c1, b2) + (M − q2)(c1 − c′1)[Pr(b2 < b′1)− Pr(b2 < b1)] + q1(c1 − c′1)[−Pr(b2 < b′1) + Pr(b2 < b1)]

=A(b′1, b1, c1, b2)︸ ︷︷ ︸
>0

+(M − q2 − q1)︸ ︷︷ ︸
<0

(c1 − c′1)︸ ︷︷ ︸
<0

[Pr(b2 < b′1)− Pr(b2 < b1)]︸ ︷︷ ︸
>0

(7)

As b′1 > b1, Pr(b′1 = max{b′1, b2}) − Pr(b1 = max{b1, b2}) > 0 because the event

b2 < b1 is a subset of the event b2 < b′1. This along with A(b′, b, c1, b2) > 0, c1 < c′1,

M < q1 + q2, ensures that above expression above is positive. Thus, π1(b
′
1, c

′
1; b2)−

π1(b1, c
′
1; b2) > 0, which proves the SCP-IR. Thus, equilibrium is monotonic.

(ii) property establishes atomlessness at b < bR and continuity of bidding strategies.

Continuity: For this, I proceed in two steps. First I show that the bids have

common support, and then I show that they have full support. Given the mono-

tonicity of equilibrium, the only type of discontinuity is the one where for some

type c1 of B1, βi(c
−
i ) = b′ < βi(ci) = b. Suppose they don’t have common support.

Then, as shown in the figure 9a, ∃c̃2 s.t. β2(c̃2) ∈ [b′, b]. The payoff to this type

of B2 is π2(β2(c̃2), c̃2) = (β2(c̃2) − c̃2)(M − q1)Pr(b1 < β2(c̃2)) + q2E(b1 − c̃2|b1 >

β2(c̃2))Pr(b1 > β2(c̃2)).

If she bids b, her payoff is π2(b, c̃2) = (b− c̃2)(M − q1)Pr(b1 < b) + q2E(b1 − c̃2|b1 >

b)Pr(b1 > b). The monotonicity of B1’s strategy and a hole in her bid distribution

on (b′, b), and atomlessness of cost distribution, Pr(b1 > b) = Pr(b1 > β2(c̃2)) and

Pr(b1 < b) = Pr(b1 < β2(c̃2)). Thus, π2(b, c̃2) − π2(β2(c̃2), c̃2) = (b − β2(c̃2))(M −

q1)Pr(b1 < b) + q1E(b1 − c̃2|b1 > b)Pr(b1 > b) > 0.

Now suppose that there is a range of bids [b′, b), b′ < b which are bid by none of
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the bidder and all bids below b′ are being bid by some type of each bidder. This is

shown in Figure 9b. Consider a type c1 − ϵ, ϵ → 0 of B1 such that her type c1 bids

b. Given the result on full support and monotonicity, this type would bid b′ − δ(ϵ),

δ(ϵ) → 0 when ϵ → 0. Her payoff is:

π1(b
′ − δ(ϵ); c1 − ϵ, b2)

=(M − q2)(b
′ − δ(ϵ)− c1 + ϵ)Pr(b2 < b′ − δ(ϵ)) + q1E(b2 − c1 − ϵ(ϵ)|b2 > b′ − δ(ϵ))Pr(b2 > b′ − δ(ϵ))

If she instead bids b, her payoff is:

π1(b; c1 − ϵ, b2)

=(M − q2)(b− c1 + ϵ)Pr(b2 < b) + q1E(b2 − c1 + ϵ|b2 > b)Pr(b2 > b)

=(M − q2)(b− c1 + ϵ)Pr(b2 < b′) + q1E(b2 − c1 + ϵ|b2 > b′)Pr(b2 > b′)

=(M − q2)(b− c1 + ϵ)(Pr(b2 < b′ − δ(ϵ)) + Pr(b′ − δ(ϵ) < b2 < b′))

+ q1(E(b2 − c1 − ϵ|b2 > b′ − δ(ϵ))Pr(b2 > b′ − δ(ϵ))−E(b2 − c1 − ϵ|b′ − δ < b2 < b′)Pr(b′ − δ(ϵ) < b2 < b′))

where the last expression follows from non-degeneracy of cost distribution. Using

above two expressions, I can infer the following:

b′

b

c1 c̃2 c

β2(c̃2)

βi(c) β1(c)

β2(c)

(a)

b′

b

c1

β1(c)
β2(c)

c

βi(c)

(b)

Figure 9: Discontinuity of bidding functions
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π1(b; c1 − ϵ, b2)− π1(b
′ − δ(ϵ); c1 − ϵ, b2)

=(b− b′ + δ(ϵ))(M − q2)Pr(b2 < b′ − δ(ϵ)) + ((M − q2)(b− c1 + ϵ)

− q1E(b2 − c1 − ϵ|b′ − δ(ϵ) < b2 < b′))Pr(b′ − δ(ϵ) < b2 < b′)

∴ lim
ϵ→0

π1(b; c1 − ϵ, b2)− π1(b
′ − δ(ϵ); c1 − ϵ, b2) = (b− b′)(M − q2)Pr(b2 < b′) > 0

Thus, there is a strictly positive deviation for B1 when the bids do not have full

support. Similar deviation can be shown for B2 too. Thus, the result on common

and full support for bids of both players tells us that their strategies are continuous.

No atom at bids below bR: In any equilibrium, a cost type of a bidder has to

be locally indifferent between the bid suggested by PBE and a bid slightly lower or

higher. Suppose that in equilibrium, B1 has an atom of probability mass ε > 0 at

some bid b1 < bR. If opponent bids continuously. Then B2 has a type c2 + δ, where

δ → 0 and type c2 bids b1. This is exhibited in Figure 10. If this type decides to

reduce her bid to b−1 , then her marginal cost is almost zero, but marginal benefit is

(q1 + q2 − M)ε(b1 − c2). Thus, B2 of this type (c+2 ) can profit by bidding slightly

lower than b1. Thus, there is no equilibrium where there is an atom for b < bR.

βi(c)

c

b1

c1

β1(c) β2(c)

c2

Figure 10: Deviation if there is an atom in bids

From (i) and (ii), we know that βi(c) is invertible for all c as long as βi(c) ̸= bR.
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Thus, for each i, I can define the functions ϕi(b),∀i as follows:

ϕi(b) :=

β−1
i (b) for b < bR

Inf{c : βi(c) = bR} for b = bR

ϕi(b) gives the cost type of Bi who would some bid b < bR in equilibrium. If the

bidder bids bR, then ϕi(b) gives the smallest cost type of Bi who would bid bR. Since

the equilibrium bids are continuous monotonic, the inverse is also continuous and

monotonic.

Condition (iii) can be argued as follows. Suppose wlog that in equilibrium β1(0) =
¯
b

but β2(c∗) =
¯
b for some c∗ > 0 and

¯
b > 0. Given the strict monotonicity of ϕi(b) ,

the type c∗ + ϵ, ϵ → 0 of B2 would bid some
¯
b+ δ(ϵ), δ(ϵ) → 0. It’s payoff is:

π2(
¯
b+ δ(ϵ), c∗ + ϵ)

=(M − q1)F (ϕ1(
¯
b+ δ(ϵ)))(

¯
b+ δ(ϵ)− c∗ − ϵ) + q2

∫ bR

¯
b+δ(ϵ)

(x− c∗ − ϵ)dF (ϕ1(x))

=(M − q1)(F (ϕ1(0)) + f(ϕ1(
¯
b))ϕ′

1(¯
b))(

¯
b+ δ(ϵ)− c∗ − ϵ) + q2

∫ bR

¯
b+δ(ϵ)

(x− c∗ − ϵ)dF (ϕ1(x))

≈q2

∫ bR

¯
b

(x− c∗ − ϵ)dF (ϕ1(x))− δ(ϵ)(q1 + q2 −M)f(ϕ1(
¯
b))ϕ′

1(¯
b)(

¯
b− c∗ − ϵ)︸ ︷︷ ︸

>0

+ (M − q1)F (ϕ1(
¯
b))︸ ︷︷ ︸

=0

(
¯
b+ δ(ϵ)− c∗ − ϵ)

<q2

∫ bR

¯
b

(x− c∗ − ϵ)dF (ϕ1(x))

<q2

∫ bR

¯
b

(x− c∗ − ϵ)dF (ϕ1(x))

=π2(
¯
b− γ, c∗ + ϵ) , ∀γ > 0

Thus, there is a strictly profitable deviation for the type c∗ + ϵ. This deviation

doesn’t exist if
¯
b = 0. Similar deviation can be shown if β2(0) =

¯
b > β1(0) = 0.

Therefore, in equilibrium βi(0) = 0 for both i.
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To see (iv), suppose that B−i is playing as per ϕ−i which satisfies equation 1 (when

replacing β−1
i (c) with ϕi(b). Then, the payoff of Bi of type ci when she bids bi is:

πi(bi; ci, ϕ−i(b)) = F (ϕ−i(bi))(bi − ci)(M −
∑
j ̸=i

qj) + qi

∫ bR

bi

(x− ci)dF (ϕ−i(x)) (8)

Any interior optimum of this payoff will satisfy the first order condition of optimi-

sation, which is:

f(ϕ−i(bi))ϕ
′
−i(bi)(bi − ci)(M − q−i − qi) + F (ϕ−i(bi))(M − q−i) = 0

Replacing ci by ϕi(b), one can attain (1) for Bi.

Finally I prove (v), which states that B1 partially pools at bR in equilibrium. For this,

I first prove that there can be at most one intersection between ϕ2(b) and ϕ1(b) and

that intersection should be as in Figure 11. Then I show that even in the immediate

right neighbourhood of 0, ϕ2(b) > ϕ1(b), which shows that any intersection as shown

in the figure is not possible. These two together imply that ϕ2(b) > ϕ1(b) for b > 0.

For first step, note that at any point of intersection of ϕ1(b) and ϕ2(b), one can see

from (1) that
ϕ′
2(b)

ϕ′
1(b)

=
M − q2
M − q1

> 1. This would imply that ϕ2(b)) should intersect

that ϕ1(b) just once and from below and left of it, as show in figure 11. This

is because the inequality ϕ′
2(b) > ϕ′

1(b) will not be satisfied at the second point of

intersection. Note that if ϕ1(b) < ϕ2(b) for some b < bR, there will be no intersection

between the two functions for bids above this b. Suppose that ∃bt ≤ bR, such that

ϕ1(b) ≥ ϕ2(b),∀b ≤ bt with equality only at b = bt (as shown in Figure 11). Since

ϕ2(b) can intersect ϕ1(b) only from left and below, all other cases are ruled out.

From (iii), we know that as c → 0+, β1(c) → 0+, β2(c) → 0+. This implies that

β1(c) → β2(c) as c → 0+. From (i) and (ii), βi(c) is continuous and strictly mono-

tonic when c → 0+, which implies that ϕi(b) is defined for all b > 0, and that

lim
b→0+

ϕi(b) = 0.

For the second step, consider some δ > 0, δ → 0 and suppose ϕi(δ/n) = 0 + ϵi(δ/n)
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bt

ϕi(b)

b

ϕ1(c)
ϕ2(c)

Figure 11: Possible intersection between ϕ1(b) and ϕ2(b)

for some natural number n ≥ 1. Then ϕi(δ)−ϕi(δ/n) =
n−1
n
δϕ′

i(δ)+ δ2κi(δ, δ/n) for

each i, where κi(.) is a bounded function. Therefore,

ϕ′
2(δ)

ϕ′
1(δ)

=
ϕ2(δ)− ϕ2(δ/n)− δ2κ2(δ, δ/n)

ϕ1(δ)− ϕ1(δ/n)− δ2κ1(δ, δ/n)
=

ϵ2(δ)− ϵ2(δ/n)− δ2κ2(δ, δ/n)

ϵ1(δ)− ϵ1(δ/n)− δ2κ1(δ, δ/n)
(9)

From FOCs (equations 1),
ϕ′
2(δ)

ϕ′
1(δ)

=
M − q2
M − q1

σ(0) + ϵ1(δ)σ
′(0)

σ(0) + ϵ2(δ)σ′(0)

δ − ϵ2(δ)

δ − ϵ1(δ)
.

σ(c)

σ′(c)
=

f(c)

f ′(c)− f 2(c)/F (c)
. This implies that

σ(0)

σ′(0)
≈ 0 because F (0) is almost 0 under the

assumption of a very small atom at 0 in the cost distribution.

Thus
ϕ′
2(δ)

ϕ′
1(δ)

=
M − q2
M − q1

σ′(0)(σ(0)/σ′(0) + ϵ1(δ))

σ′(0)(σ(0)/σ′(0) + ϵ2(δ))

δ − ϵ2(δ)

δ − ϵ1(δ)
=

M − q2
M − q1

ϵ1(δ)

ϵ2(δ)

δ − ϵ2(δ)

δ − ϵ1(δ)
.

Alongwith Equation (9), this implies:

ϵ2(δ)− ϵ2(δ/n)− δ2κ2(δ, δ/n)

ϵ1(δ)− ϵ1(δ/n)− δ2κ1(δ, δ/n)
=

M − q2
M − q1

ϵ1(δ)

ϵ2(δ)

δ − ϵ2(δ)

δ − ϵ1(δ)

=⇒ M − q2
M − q1︸ ︷︷ ︸

>1

=
ϵ2(δ)(δ − ϵ1(δ))

ϵ1(δ)(δ − ϵ2(δ))︸ ︷︷ ︸
>1, if ϵ2(δ)>ϵ1(δ)

ϵ2(δ)− ϵ2(δ/n)− δ2κ2(δ, δ/n)

ϵ1(δ)− ϵ1(δ/n)− δ2κ1(δ, δ/n)︸ ︷︷ ︸
>1, if ϵ2(δ)>ϵ1(δ)

The relation above should hold for all n > 1. LHS>1 in above. Since δ → 0 and

κi(δ, δ/n) is bounded function, δ2κi(δ, δ/n) ≈ 0. As n → ∞, ϵ2(δ/n) ≈ ϵ1(δ/n) as

the values of ϕi(b)s approach 0, as b → 0. Therefore, as n → ∞, if ϵ2(δ) ≤ ϵ1(δ), then

RHS≤1 while LHS>1, which violates the equation above. Therefore, ϵ2(δ) > ϵ1(δ).
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This implies that ϕ2(b) > ϕ1(b) in the immediate right neighbourhood of 0. Hence,

there is no point of intersection between ϕ2(b) and ϕ1(b) for b > 0. Thus, for any

b ∈ (0, bR], ϕ2(b) > ϕ1(b) and, in particular, ∃c∗ < c̄, s.t. ϕ1(b
R) = c∗. To obtain the

bid function, one can then invert ϕi(b) for both i, and for c > c∗, assign β1(c) = bR,

which is implied by the non-negative monotonicity of βis.

If direction:

The conditions give equilibrium, if there is no deviation for any type ci of any player

Bi, from the bid recommended by βi(ci). While the calculations here are for i = 1,

the proof for i = 2 is the same. Suppose ϕ1(b1) = c1, where 0 < b1 < bR. Define

Π1(b
′
1, b1, c1;ϕ2(b)) := π1(b

′
1, c1;ϕ2(b)) − π1(b1, c1;ϕ2(b)) as the change in payoff of

B1 if she bids b′1 ∈ [0, bR] instead of b1. Given the continuity, monotonicity and full

support of bids, ∃ a type c′1 such that ϕ1(b
′
1) = c′1. Since ϕ1(b) satisfies 1,

∂

∂b′1
π1(b

′
1, b1, c1;ϕ2(b))

=
∂

∂b′1
π1(b

′
1, c1;ϕ2(b))

=(M − q2 − q1)(b
′
1 − c1)f(ϕ2(b

′
1))ϕ

′
2(b

′
1) + (M − q2)F (ϕ2(b

′
1))

=(M − q2 − q1)(b
′
1 − c′1 + c′1 − c1)f(ϕ2(b

′
1))ϕ

′
2(b

′
1) + (M − q2)F (ϕ2(b

′
1))

=(c′1 − c1)(M − q2 − q1)f(ϕ2(b
′
1))ϕ

′
2(b

′
1)

=(ϕ1(b
′
1)− ϕ1(b1))(M − q2 − q1)f(ϕ2(b

′
1))ϕ

′
2(b

′
1)

where the second last equation is arrived by using the FOC 1 for type c′1. Given

the monotonicity of ϕ1(b), ϕ1(b
′
1) − ϕ1(b1) > 0 if b′1 > b1, which implies that

∂
∂b′1

Π1(b
′
1, b1, c1;ϕ2(b)) < 0. Since Π1(b1, b1, c1;ϕ2(b)) = 0, this implies that any devi-

ation from b1 to a higher bid would lead to reduction in expected payoff. Similarly,

when b′1 < b1, ϕ1(b
′
1)− ϕ1(b1) < 0, which would ultimately imply that any deviation

from b1 to a lower bid will lead to reduction in expected payoff. Thus, there is

no strictly positive deviation for type c1 of B1 from the strategy recommended by

conditions of Lemma 1. Since c1 was chosen arbitrarily, I can infer that no such

deviation can be found for any other type. Similar calculations can be done for B2.
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The absence of any unilateral deviation implies that a function βi(c) whcih satisfies

the conditions in the Lemma indeed gives a bayes nash equilibrium.

A.2 Proof of Theorem 1

To show that equilibrium exists and is unique amounts to showing that there is

exactly one pair of two functions β1(c) and β2(c) such that the conditions of Lemma 1

are satisfied. To do so, I proceed in following steps:

1. Consider an Initial Value Problem P as follows:

ϕ′
2(b) =

M − q2
q1 + q2 −M

1

σ(ϕ2(b))(b− ϕ1(b))

ϕ′
1(b) =

M − q1
q1 + q2 −M

1

σ(ϕ1(b))(b− ϕ2(b))

(10)

ϕ2(b
R) = c̄, and ϕ1(b

R) = c∗ ≤ c̄. Cauchy Lipschitz theorem implies that ∃a

such that a unique solution to P exists for interval [bR − a, bR + a] because

bR > c̄.

2. Show that this solution is monotonic and extend the local solution to the

interval (0, bR].

3. Show that there is at most one IVP P whose solution ϕ1(b), ϕ2(b) are such

that lim
b→0

ϕ1(b) = lim
b→0

ϕ2(b) = 0.

4. Show that there is exactly one value of c∗ such that lim
b→0

ϕ1(b) = lim
b→0

ϕ2(b) = 0,

where ϕi(b) solve P .

5. Extend the functions to include 0 in their domain, by assuming that ϕ1(0) =

ϕ2(0) = 0.

6. Invert ϕi(b)s. Note that the domain of ϕ−1
1 (c) is [0, c∗]. Thus, β1(c) is defined
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as:

β1(c) =

ϕ−1
1 (c) 0 ≤ c ≤ c∗

bR c∗ < c ≤ c̄.

append β1(c) with a constant function which takes value bR for c ∈ (c∗1, c̄].

β2(c) = ϕ−1
2 (c).

Step 1 is obvious from Cauchy Lipschitz theorem. I now prove steps 2,3, and 4.

Steps 5 and 6 do not require any proof.

Proof of step 2:

Proof. The solution to P is monotonic. This can be seen through a contradiction

argument. Since ϕ1(b) and ϕ2(b) are solutions to ODEs on some interval containing

bR, they are continuous and differentiable in that interval. Thus, if the solution was

not monotonic, then ∃bi such that ϕ′
i(bi) = 0. Under the assumption that there is

a small atom at 0, F (c) > 0∀c ∈ [0, c̄]. Thus, ϕ′
i(bi) = 0 only if |ϕ−i(bi)| = ∞.

This violates the boundedness theorem. Thus, the solutions ϕ1(b) and ϕ2(b) are

monotonic. Moreover, this monotonicity is positive. To see this, note that bR >

c̄ =⇒ bR − ϕ2n(b
R) > 0 =⇒ ϕ′

1n(b
R) > 0. A negative monotonicity would

contradict this. Given this positive monotonicity, the IVP remains well defined and

it’s RHS is lipschitz continuous for any b ≥ bR − a. Thus, one can extend this local

solution to any closed interval in (0, bR].

Proof of step 3:

Proof. Consider another IVP, P̂ , which is same as P except that ϕ̂1(b
R) = ĉ∗ for

some ĉ∗ ∈ (c∗, c̄). Denote its solution by (ϕ̂1(b), ϕ̂2(b)).

Since ϕ2(b
R) = c̄ = ϕ̂2(b

R), σ(ϕ̂2(b
R)) = σ(ϕ2(b

R)). Using FOCs, it can be inferred

that ϕ̂′
2(b

R)(bR − ϕ̂1(b
R)) = ϕ′

2(b
R)(bR − ϕ1(b

R)) = M−q2
(q1+q2−M)σ(ϕ2(bR))

. This further
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implies ϕ̂′
2(b

R)(bR − ĉ∗) = ϕ′
2n(b

R)(bR − c∗). Since ĉ∗ > c∗, bR − ĉ∗ < bR − c∗,

which implies that ϕ̂′
2(b

R) > ϕ′
2(b

R). This implies that for any b in the immediate

left-neighbourhood of bR, ϕ̂2(b) < ϕ2(b).

Suppose for any b2t ∈ (0, bR], ϕ̂2(b) and ϕ2(b) intersect as shown in the figure 5b.

Then, ϕ̂2(b2t) = ϕ2(b2t) and ϕ̂′
2(b2t) < ϕ′

2(b2t), which imply that σ(ϕ̂2(2t))ϕ̂
′
2(2t) <

σ(ϕ2(2t))ϕ
′
2(2t). From the FOCs, it can then be inferred that b2t − ϕ̂1n(b2t) >

b2t − ϕ1(b2t), which implies that ϕ̂1(b2t) < ϕ1(b2t). This requires an intersection

between ϕ̂1(b) and ϕ1(b) at some point b1t > b2t. Thus, there are two solutions to

the IVP defined by ODEs 10, and boundary at points b1t and b2t, which violates

the cauchy-lipschitz theorem of uniquenss of IVP solution. Thus, ∀b ∈ (0, bR),

ϕ̂2(b) < ϕ2(b) and ϕ̂2(b
R) = ϕ2(b

R), and ϕ̂1(b) > ϕ1(b)∀b ∈ (0, bR].

If solutions to both P and P̂ satisfy condition (ii) and (iii) of Lemma 1, then

following needs to be satisfied.

lim
b→0

ϕ1(b) = lim
b→0

ϕ2(b) = lim
b→0

ϕ̂1(b) = lim
b→0

ϕ̂2(b) = 0 (11)

As in proof of the lemma, following can be written for some δ > 0,δ → 0 and a

natural number n ≥ 1:

M − q2
M − q1

=
ϵ2(δ)(δ − ϵ1(δ))

ϵ1(δ)(δ − ϵ2(δ))

ϵ2(δ)− ϵ2(δ/n)− δ2κ2(δ, δ/n)

ϵ1(δ)− ϵ1(δ/n)− δ2κ1(δ, δ/n)

=
ϵ̂2(δ)(δ − ϵ̂1(δ))

ϵ̂1(δ)(δ − ϵ̂2(δ))

ϵ̂2(δ)− ϵ̂2(δ/n)− δ2κ̂2(δ, δ/n)

ϵ̂1(δ)− ϵ̂1(δ/n)− δ2κ̂1(δ, δ/n)

where ϕi(δ/n) = ϵi(δ/n) and ϕ̂i(δ/n) = ϵ̂i(δ/n). Above can be rewritten as:

ϵ2(δ)(δ − ϵ̂2(δ))

ϵ̂2(δ)(δ − ϵ2(δ))

ϵ2(δ)− ϵ2(δ/n)− δ2κ2(δ, δ/n)

ϵ̂2(δ)− ϵ̂2(δ/n)− δ2κ̂2(δ, δ/n)
=

ϵ1(δ)(δ − ϵ̂1(δ))

ϵ̂1(δ)(δ − ϵ1(δ))

ϵ1(δ)− ϵ1(δ/n)− δ2κ1(δ, δ/n)

ϵ̂1(δ)− ϵ̂1(δ/n)− δ2κ̂1(δ, δ/n)

In order to satisfy (14), it is necessary that as n → ∞, ϵ̂i(δ/n) → 0 and ϵi(δ/n) → 0.

Furthermore as δ → 0 and κi and κ̂i are bounded functions, one can further infer

that in the limit of n → ∞ and δ → 0:
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ϵ22(δ)(δ − ϵ̂2(δ))

ϵ̂22(δ)(δ − ϵ2(δ))
=

ϵ21(δ)(δ − ϵ̂1(δ))

ϵ̂21(δ)(δ − ϵ1(δ))

From above, it can be noticed that if ϵ̂2(δ) < ϵ2(δ), then LHS>1. Thus, ϵ̂1(δ) <

ϵ1(δ) for RHS>1. This contradicts the result that ∀b ∈ (0, bR), ϕ̂2(b) < ϕ2(b) and

ϕ̂2(b
R) = ϕ2(b

R), and ϕ̂1(b) > ϕ1(b)∀b ∈ (0, bR]. Thus, we can’t have more than one

IVP which satisfies all the conditions of Lemma 1.

To complete the proof, I use monotonicity result from step 2. In order to have

ϕ′
i(b) > 0, it is required that b > ϕ−i(b) for each i. Thus, as b → 0, we have

ϕi(b) → 0 in order to satisfy the monotonicity.

Proof of Step 4:

Proof. Since the only difference in IVPs is at the initial value ϕ1(b
R) = c∗, I need to

show that there is exactly one value of c∗ such that the solution ϕi(b) to resultant

IVP satisfies lim
b→0

ϕi(b) = 0. To see this, note that the condition ϕ̂2(b) < ϕ2(b) and

ϕ̂2(b
R) = ϕ2(b

R), and ϕ̂1(b) > ϕ1(b)∀b ∈ (0, bR] implies that ϕ̂2(b)− ϕ̂1(b) < ϕ2(b)−

ϕ1(b)∀b > 0. Alongwith result of step 3, this further implies that if ϕ2(bt) = ϕ1(bt)

for some bt > 0, then ϕ̂2(b̂t) = ϕ̂1(b̂t) for some b̂t > bt, where ϕ̂i(b) are solutions

to P̂ . Since the choice of c∗ and ĉ∗ was arbitrary, this amounts to saying that the

x-coordinate of point of intersection of ϕ1 and ϕ2 is strictly increasing in c∗.

Now, consider a function H(c) : [ι, c̄] → [ι, c̄] which maps c∗ to bt where ϕ2(bt) =

ϕ1(bt) for IVP with ϕ1(b
R) = c∗. This mapping is strictly monotonically increasing.

Since the RHS of the differential equiations (10) is continuous, the solution to these

equations is also continuous in the initial value c∗.22 If H(c∗t ) = bt for some c∗t , then

ϕ2(b) − ϕ1(b) < 0 for b < bt, where ϕ1(bt) = ϕ2(bt) when ϕ1(b
R) = c∗t . Given the

strict monotonicity of H(c), the continuity of IVP solution with respect to initial
22See Hirsch, Smale, and Devaney, 2012 chapters 7 and 17 for results on sensitivity analysis of

IVP.
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value implies that if ϕ1(b
R) = c∗t −ω, ω → 0, then ϕ2(b)−ϕ1(b) < 0 for b < bt− δ(ω)

for some δ(ω) → 0, and ϕ1(bt − δ(ω)) = ϕ2(bt − δ(ω)).Thus, H(ct − ω) = bt − δ(ω)

for some δ(ω) → 0, thereby establishing continuity of H(c).

So far, we have established continuity and strictly positive monotonicity of H(c).

Notice further that H(c̄) = c̄ because one can always set ϕ1(b
R) = ϕ2(b

R) = c̄ for the

IVP. Therefore, using Extreme Value Theorem we can say that H(c) will attain it’s

minimum, which is equal to ι, for exactly one value of c. This result holds ∀ι > 0,

and in particular for ι → 0. Thus, the solution to IVP given by equations (10),

ϕ1(b
R) = c∗, ϕ2(b

R) = c̄, is such that lim
b→0

ϕ2(b) = lim
b→0

ϕ1(b) = 0.

B 2 player extensions

In this section, I present two extensions with asymmetric cost information. In the

first extension the 2 bidders have cost distributions which can ordered as per their

Reversed Hazard Rates. In the second extension, I assume that the distribution of

one of the bidders is truncated version of that of another bidder. While both cases

enable me to extend the equilibrium result for the case with same cost distribution,

the second is important for the formalisation of 2P1F equilibrium characterisation.

B.1 Different reversed hazard rates

Suppose ci
i.i.d∼ Fi(c), and ci ∈ [0, c̄] for each i. Denote reversed hazard of Fi(c) by

σi(c). Suppose that they can be ordered in terms of their reversed hazard rate, i.e

σi(c) < σ−i(c). Furthermore assume that lim
c→0+

σ′
i(c) = lim

c→0+
σ′
−i(c). Then, as before,

I can characterise the equilibrium in following lemma:

Lemma 2. For each Bi, βi(c) constitutes a non-trivial BNE of the asymmetric 2

player button auction with rationing if and only if it satisfies following properties:

(i) βi(c) is non-decreasing in c.
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(ii) βi(c) is continuous and atomless for b < bR for both i.

(iii) βi(0) = 0 ,∀i.

(iv) For each player Bi, βi(c) solves:

σ−i(β
−1
−i (βi(c)))β

−1′

−i (βi(c))(βi(c)− c)(q1 + q2 −M) = (M − q−i) (12)

(v) If σ1(c)
σ2(c)

> M−q1
M−q2

,∀c, ∃c∗1 such that β1(c
∗
1) = bR ,∀c ∈ [c∗1, c̄], and β2(c̄) = bR. If

σ1(c)
σ2(c)

< M−q1
M−q2

,∀c, ∃c∗2 such that β2(c
∗
2) = bR ,∀c ∈ [c∗2, c̄], and β1(c̄) = bR.

Proof. Proof of (i), (ii), (iii), (iv), are same as in case with same cost distributions

for each bidder. For (v), I can proceed in the same way as before. Define ϕi as

ϕi(b) :=

β−1
i (b) for b < bR

Inf{c : βi(c) = bR} for b = bR

At any point of intersection of ϕ1(b) and ϕ2(b), I can write
ϕ′
2(b)

ϕ′
1(b)

=
(M − q2)σ1(ϕ1(b))

(M − q1)σ2(ϕ2(b))
.

If σ1(c)
σ2(c)

> M−q1
M−q2

,∀c, ϕ′
2(b) > ϕ′

1(b) at point of intersection. Given the assumption

lim
c→0+

σ′
i(c) = lim

c→0+
σ−i(c), I can use same arguments as in proof of Lemma 1 to show

that B1 will bunch.

However, if σ1(c)
σ2(c)

< M−q1
M−q2

,∀c, then B2 bunches at bR.

The result here implies that B2 will bunch only if the likelihood that she has higher

cost than B1 is large. This provides a larger marginal benefit of reducing the bid,

as there is now a higher probability of B2’s exit. If it is large enough, B1 would

be more aggressive as it offsets the effect of having a larger residual, which leads to

higher cost of competition.

Existence and uniqueness can be proved with steps similar to the case of same

distribution for both bidders.
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B.2 Asymmetric support, same RHR

For each Bi, ci ∈ [0, c̄i]. σ(c) is same for both i for c ∈ [0,mini{c̄i}]. If other words,

cost distribution of one of the bidders is truncation of that of the other. Equilibrium

is characterised by the lemma below:

Lemma 3. For each Bi, βi(c) constitutes a non-trivial BNE of the 2 player asym-

metric button auction with rationing if only if it satisfies following properties:

(i) βi(c) is non-decreasing in c.

(ii) βi(c) is continuous and atomless for b < bR for both i.

(iii) βi(0) = 0 ,∀i.

(iv) For each player Bi, βi(c) solves:

σ−i(β
−1
−i (βi(c)))β

−1′

−i (βi(c))(βi(c)− c)(q1 + q2 −M) = (M − q−i) (13)

(v) ∃∆ such that if c̄2 − c̄1 < ∆, ∃c∗1 such that β1(c) = bR ,∀c ∈ [c∗1, c̄1] and

β2(c̄2) = bR, else, ∃c∗2 such that β2(c) = bR ,∀c ∈ [c∗2, c̄2] and β1(c̄1) = bR

Proof. Proof of (i), (ii), (iii), (iv) are same as in case with same cost distributions

for each bidder. As before, define ϕi(b) as inverse of βi(c). For (v), it can be seen

in the same way as in proof of Lemma 1 that ϕ2(b) > ϕ1(b),∀b > 0 for a given set

of least upper bounds (LUBs) of support of cost distribution, {c̄1, c̄2}. Consider a

bid δ/n, where δ → 0+ and n ≥ 1 is some natural number. Then ϕi(δ/n) = ϵi(δ/n)

such that ϵi(δ/n) → 0. Therefore, as in 2P0F, I can write

ϕ′
2(δ)

ϕ′
1(δ)

=
ϕ2(δ)− ϕ2(δ/n)− δ2κ2(δ, δ/n)

ϕ1(δ)− ϕ1(δ/n)− δ2κ1(δ, δ/n)
=

ϵ2(δ)− ϵ2(δ/n)− δ2κ2(δ, δ/n)

ϵ1(δ)− ϵ1(δ/n)− δ2κ1(δ, δ/n)
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where κi(.) is a bounded function. From the FOCs, I can further infer that:

ϕ′
2(δ)

ϕ′
1(δ)

=
M − q2
M − q1

σ(ϕ1(δ)

σ(ϕ2(δ)

δ − ϵ2(δ)

δ − ϵ1(δ)

=⇒ ϵ2(δ)− ϵ2(δ/n)− δ2κ2(δ, δ/n)

ϵ1(δ)− ϵ1(δ/n)− δ2κ1(δ, δ/n)
=

M − q2
M − q1

σ(ϕ1(δ)

σ(ϕ2(δ)

δ − ϵ2(δ)

δ − ϵ1(δ)

=⇒ M − q2
M − q1

=
ϵ2(δ)

ϵ1(δ)

δ − ϵ1(δ)

δ − ϵ2(δ)

ϵ2(δ)− ϵ2(δ/n)− δ2κ2(δ, δ/n)

ϵ1(δ)− ϵ1(δ/n)− δ2κ1(δ, δ/n)

(14)

Using the same reasoning as in Appendix A.1, I can conclude that ϵ2(δ) > ϵ1(δ)

If c̄1 > c̄2, B1 would bunch because ϕ2(b
R) = c̄2 which needs to be higher than

ϕ1(b
R). This would imply that ϕ1(b

R) < c̄2 < c̄1.

Consider the case where c̄1 ≤ c̄2. Consider two pairs of supremum of support of

(c1, c2), (c̄1, c̄1) and (c̄1, ˆ̄c2) such that ˆ̄c2 > c̄1. Denote the corresponding equilibrium

inverse bid functions generated from these suprema as ϕi(b) and ϕ̂i(b) respectively.

From Lemma 1, we know that ϕ1(b
R) = c∗ < c̄1 and ϕ2(b

R) = c̄1 and that lim
b→0+

ϕi(c) =

0 for both i.

With regards to ϕ̂i(b), there are 2 possibilities- either ϕ̂2(b
R) > ϕ2(b

R) = c̄1 or

ϕ̂2(b
R) = ĉ∗2 < ϕ2(b

R) = c̄1.

Let’s consider the first case. Suppose ∃bt s.t. ϕ̂2(bt) = ϕ2(bt), then ϕ̂′
2(bt) > ϕ′

2(bt).

This implies that σ(ϕ̂2(bt))ϕ̂
′
2(bt) > σ(ϕ2(bt))ϕ

′
2(bt), which implies that ϕ̂1(bt) >

ϕ1(bt). This, further implies that ϕ̂1(b) > ϕ1(b), ∀b > 0. Otherwise there are two

solutions to IVP characterised by ODEs given by 13, and boundary values given

by point of intersection of ϕi(b), ϕ̂i(b) for each i, defined over any compact interval

in (0, bR] containing the point of intersection. This violates the Cauchy-Lipschitz

theorem.

Next, let’s look at ϕi(b) and ϕ̂i(b) in the immediate neighbourhood of 0. For this, I

can write following, as in (11),

M − q2
M − q1

=
ϵ̂2(δ)

ϵ̂1(δ)

δ − ϵ̂1(δ)

δ − ϵ̂2(δ)

ϵ̂2(δ)− ϵ̂2(δ/n)− δ2κ̂2(δ, δ/n)

ϵ̂1(δ)− ϵ̂1(δ/n)− δ2κ̂1(δ, δ/n)
,
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where κ̂i(.) is a bounded function. Above implies that ϕ̂2(b) > ϕ̂1(b). I can further
infer that:

ϵ2(δ)

ϵ1(δ)

δ − ϵ1(δ)

δ − ϵ2(δ)

ϵ2(δ)− ϵ2(δ/n)− δ2κ2(δ, δ/n)

ϵ1(δ)− ϵ1(δ/n)− δ2κ1(δ, δ/n)
=

ϵ̂2(δ)

ϵ̂1(δ)

δ − ϵ̂1(δ)

δ − ϵ̂2(δ)

ϵ̂2(δ)− ϵ̂2(δ/n)− δ2κ̂2(δ, δ/n)

ϵ̂1(δ)− ϵ̂1(δ/n)− δ2κ̂1(δ, δ/n)

=⇒ ϵ2(δ)

ϵ̂2(δ)

δ − ϵ̂2(δ)

δ − ϵ2(δ)

ϵ2(δ)− ϵ2(δ/n)− δ2κ2(δ, δ/n)

ϵ̂2(δ)− ϵ̂2(δ/n)− δ2κ̂2(δ, δ/n)
=

ϵ1(δ)

ϵ̂1(δ)

δ − ϵ̂1(δ)

δ − ϵ1(δ)

ϵ1(δ)− ϵ1(δ/n)− δ2κ1(δ, δ/n)

ϵ̂1(δ)− ϵ̂1(δ/n)− δ2κ̂1(δ, δ/n)

Above relation should hold for all n. As δ → 0 and κi(.) and κ̂i(.) are bounded

functions δ2κi(δ, δ/n) ≈ 0 and δ2κ̂i(δ, δ/n) ≈ 0 for both i. Since both ϕi(b) and

ϕ̂i(b) converge to 0+ as b → 0+, I can further say that ϵi(δ/n) ≈ ϵ̂i(δ/n) as n → ∞.

If ϵ̂2(δ) > (<)ϵ2(δ), then LHS is above (below) 1. Thus, RHS will be above (below)

1 only if ϵ̂1(δ) > (<)ϵ1(δ).

Now, if ϵ̂2(δ) < ϵ2(δ), then ϵ̂1(δ) < ϵ1(δ). Since ϕ̂1(bt) > ϕ1(bt), where bt is the point

of intersection of ϕ̂i(b) and ϕi(b), this implies that ϕ̂i(b) intersects ϕi(b) for both i

because ϕ̂2(b
R) = ˆ̄c2 > ϕ2(b

R) = c̄1. This situation is depicted in Figure 12. As

explained in appendix A2, such intersections violate the Cauchy-Lipschitz theorem

of unique solution. Thus, if ϕ̂2(b
R) = ˆ̄c2 > ϕ2(b

R) = c̄1, then ϕ̂2(b) > ϕ2(b)∀b > 0

which implies ϕ̂1(b) > ϕ1(b)∀b > 0 =⇒ ϕ̂1(b
R) = ĉ∗1 > ϕ1(b

R) = c∗.

ϕi(b)

b

ˆ̄c2

c̄1

ĉ∗1
c∗1

, ϕ̂i(b)

ϕ2(b)

ϕ̂2(b)

ϕ1(b)

ϕ̂1(b)

bR

Figure 12: Intersecting solution curves

The second case is where ϕ̂2(b
R) = ĉ∗2 < ϕ2(b

R) = c̄1. In this case, ϕ̂1(b
R) = c̄1, else

both players will have an atom, which is not possible in equilibrium. Thus, here,

ϕ̂1(b
R) > ϕ1(b

R). As before, I can show that any intersection between ϕ̂2(b) and

ϕ2(b) would imply intersection between ϕ̂1(b) and ϕ1(b). Hence, ϕ̂2(b) < ϕ2(b), and
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ϕ̂1(b) > ϕ1(b), ∀b > 0. However, as shown above, this inequality wouldn’t hold for

the bids close to 0. Thus, this case leads to contradictions and hence, is not possible.

Therefore, when if the supremum of support of c2 is higher, i.e., ˆ̄c2 > c̄2, ϕ̂2(b) >

ϕ2(b), and ϕ̂1(b) > ϕ1(b), ∀b > 0.

Define a function M(c̄2) : [c̄1,∞) → R
+ such that M(c̄2) maps LUB of support of

c2 to ϕ1(b
R), where c̄1 is LUB of an arbitrary support of c1. Since the choice of ˆ̄c2

above is arbitrary, we can say that M(c̄2) > 0 is an increasing function. Continuity

can be argued in the same way as in proof of Theorem 1 in Appendix A.2. Thus,

for a given c̄1, as c̄2 increases from c̄1, c∗ increases, and the size of B1’s atom at bR

reduces. The maximum value of c∗ can be c̄1, which corresponds to atom size of

0. Due to monotonicity and continuity of M(c̄2), ∃c̄T2 such that M(c̄T2 ) = c̄1. Then

for c̄2 ∈ [c̄1, c̄
T
2 ), B1 bunches at bR and for c̄2 > c̄T2 , B2 would bunch. This holds

true regardless of the value of
¯
c1. I can thus define ∆ ≡

¯
cT2 −

¯
c1, such that B1(B2)

bunches if
¯
c2 < (>)

¯
c1 +∆. This proves (v).

This result here has similar intuition as in previous extension. B2 would bunch at

bR only if it is likely to have costs much higher than that of B1. This extension

is important not only for robustness checks, but also for formalising equilibrium in

case with 2 small and 1 very small player.

Finally, I establish existence and uniqueness of this PBE in order to have character-

isation of equilibrium of 2P1F case.

Theorem 2. Equilibrium defined by Lemma 3 exists and is unique.

Proof. From Lemma 3, it can be inferred that for some given values of c̄1, c̄2, only

one of the bidders, B1 or B2 will be bunching.

The boundary value problem which gives equilibrium bid function is characterised by

the differential equation 13, and boundaries given by ϕ1(0) = ϕ2(0), and ϕ2(b
R) = c̄2

when c̄2 > c̄1 + ∆, and ϕ1(b
R) = c̄1 otherwise. Comparing to the boundary value
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problem for 2P0F case, it can be noticed that the differential equation and left

boundary are the same, while right boundary can be different.

From the proof of Theorem 1, we already know that equilibrium exists and is unique

if the right boundary is ϕ2(b
R) = c̄2. Moreover, same arguments can be applied to

the case where the right boundary is ϕ1(b
R) = c̄1.

C 3 player extension: 2 small and 1 very small bid-

der

Suppose 3 bidders B1, B2, and B3 have quantities q1, q2, and q3 respectively, such

that, q1 > q2 > q3, q1 + q2 > M but q1 + q3 < M and q2 + q3 < M . Thus, B1 and

B2 can together cover the whole demand. For B3, it is dominant to bid her cost,

for the reasons same as in section 5.1.1. In this game, exit of B1 or B2 will end the

game, but exit of B3 will start a new subgame between the other two. As before,

there are equilibria which require crazy types but the analysis here will focus on the

semi-separating equilibrium which don’t require such types. This equilibrium is also

the perfect bayesian equilibrium of this game.

Denote the set of all players by N , and set {B1, B2} by A2. In this section Bi refers

to the elements of A2 and B−i is the element of A2 \ Bi. For i ∈ {1, 2}, denote

the equilibrium bid function of Bi by βi,N (c) in the subgame with all players, and

βi,A2(c) in the subgame started by B3’s exit. b denotes the vector of bids of all

the players. If a bidder in A2 exits at any bid, she gets a strictly positive quantity

award. As such, these bidders can be called partially rationed as opposed to fully

rationed bidder, B3. A partially rationed bidder Bi bids bi, and the other partially
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rationed bidder bids b−i, and B3 bids b3, her payoff when her type is ci is:

πi(bi; ci,b) =(M − q−i − q3)(bi − ci)Pr(bi = maxj{bj})

+ qiE(b−i − ci|b−i > b3, b−i > bi)Pr(b−i = maxj{bj})

+ E(π∗
i,A2(b3)|bi < b3, b−i < b3)Pr(b3 = maxj{bj})

where π∗
i,A2(b3) is the payoff for Bi in the subgame started by B3’s exit.

β3,N (c) = c. B1 and B2 best respond to that and to each other in equilibrium, which

is characterised in the following lemma:

Lemma 4. β3,N (c) = c. βi,N (c) and βi,A2(c) for i ∈ {1, 2}, give a PBE if and only

if:

(i) βi,N (c) is non-decreasing in c.

(ii) βi,N (c) is continuous and atomless for b < bR for both i.

(iii) βi,N (0) = 0 , ∀i.

(iv) ∀i, βi,A2(ci), solve following differential equations:

(π∗
i,A2(b; ci)− (M − q−i − q3)(βi,N (ci)− ci))

f(βi,N (ci))

F (βi,N (ci))
1b≤c̄

+ (βi,N (ci)− ci)(
∑
j

qj −M)
f(β−1

−i,N (βi,N (ci)))β
−1′

−i,N (βi,N (ci))

F (β−1
−i,N (βi,N (ci)))

= M − q−i − q3

(15)

where π∗
i,A2(b; ci) is the payoff of Bi in the subgame started with exit of B3.

(v) ∃c∗1 ≤ c̄ such that β1,N (c) = bR,∀c ∈ [c∗1, c̄]. β2,N (c̄) = bR if bR > c̄ and

lim
c→c̄−

β2,N (c) = bR if bR = c̄.

(vi) βi,A2(c) for i ∈ {1, 2} are given by semi-seperating equilibrium in the subgame

started by B3’s exit at a bid b, which is characterised in Lemma 3 in Appendix

B.2.

Proof. See Appendix C.1.
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PBE described here looks the same that of section 5.1.2, except that there is a kink

at b = c̄. The intuition behind a similar equilibrium as in case with 2 small bidders is

that B3’s presence affects both B1 and B2 in the same way. It reduces their residual

capacity by the same amount and the marginal probability of B3’s exit at any bid is

same for both the bidders. Thus, B1 is still less reluctant to compete vis-a-vis B2.

The proof is also similar, except for some additional steps for (i) and (v). For (v),

I show that there will be at most one point of intersection between β1(c) and β2(c).

At any point of intersection,
β′
1,N (c)

β′
2,N (c)

=
M−q2−q3−(π∗

1,A2(b,c)−(M−q2−q3)(b−c))σ(b)

M−q1−q3−(π∗
2,A2(b,c)−(M−q1−q3)(b−c))σ(b)

for b ≤ c̄.

If B3 were to exit at bid b pertaining to the point of intersection, then a subgame

same as 2P0F starts with b as reserve. As we know from Lemma 1(v), B1 of type c

pertaining to this bid, will also exit at b in this subgame. This gives us the values

for π∗
i,A2(b, c) for each i, which are such that the aforementioned slope ratio is above

1. Thus, there is only one possible point of intersection between β1,N and β2,N , and

that point is (0, 0) for reasons same as in section 5.1.2.

Furthermore, as I show in appendix, the PBE is such that in the subgame, B2 would

be bunching. This result eases the analysis for existence and uniqueness, as it gives

explicit expressions of continuation values.

Looking at the equilibrium characteristics, it can be noticed that apart from FOC,

every other property is same that of equilibrium in 2 players. FOC here is such

that LHS is not continuous, unlike previous case. The key condition leading to

uniqueness and existence in that case was that the solution to the boundary value

problem for different boundaries is such that ϕ2(b) is lower if ϕ1(b) is higher for a

given boundary (as in Figure 6). Although, this condition still holds, the lack of

continuity leads to negative result on existence of pure strategy PBE.

If bR > c̄, there is a kink in the bidding function at c̄. In this case, B2 becomes

more aggressive on the margin at c̄. The best response for B1 is, then, to be less

aggressive in absolute manner, unless the quantities have some very specific values.

This creates discontinuity in B1’s bidding function, by a logic similar to 2P0F. This
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violates property (i) of BNE described in Lemma 4. Thus, in such a case, we can

only have trivial BNE. However, such a problem doesn’t exist when bR = c̄. Thus,

the result on existence and uniqueness of equilibrium doesn’t extend to this case

when bR > c̄.

Theorem 3. If bR > c̄, equilibrium described by Lemma 4 may not always exist, but

when it exists, it is unique. If bR ≤ c̄, the equilibrium exists and is unique.

Proof. See Appendix C.2.

C.1 Proof of Lemma 4

Proof. For the very small bidder B3, it is weakly dominant to bid her cost. The

reason is same as for 1P1F case. The proof proceeds in the way similar to that

in 2P0F (Appendix A2). However, there are some additional nuances involved in

proving property (i) and (v).

As in Section A.1, I show (i) condition by proving that a player’s expected payoff

satisfies SCP-IR property, when opponent is playing as per an increasing strategy.

As before, I will show it for B1. Consider any two types c1, c
′
1 of B1, such that

c1 < c′1, and any two arbitrary bids b1, b′1, where b1 < b′1. To show monotonicity, all

I need to show is that when B2 follows a non-decreasing strategy, if π1(b
′
1, c1; b2, c3)−

π1(b1, c1; b2, c3) > 0, then π1(b
′
1, c

′
1; b2, c3)− π1(b1, c

′
1; b2, c3) > 0, where b2 is random

variable (RV) denoting B2’s bid, and c3 is RV for B3’s cost type (and equivalently,
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her bid).

π1(b
′
1, c1; b2, c3) =(M − q2 − q3)(b

′
1 − c1)Pr(b′1 = max{b′1, b2, c3})

+ q1E(b2 − c1|b2 = max{b′1, b2, c3})Pr(b2 = max{b′1, b2, c3})

+E(π∗
1,A2(c3, c1)|c3 = max{b′1, b2, c3})Pr(c3 = max{b′1, b2, c3})

π1(b1, c1; b2, c3) =(M − q2 − q3)(b1 − c1)Pr(b1 = max{b1, b2, c3})

+ q1E(b2 − c1|b2 = max{b1, b2, c3})Pr(b2 = max{b1, b2, c3})

+E(π∗
1,A2(c3, c1)|c3 = max{b1, b2, c3})Pr(c3 = max{b1, b2, c3})

(16)

Denote π1(b
′
1, c1; b2, c3)−π1(b1, c1; b2, c3) by A(b′1, b1, c1, b2, c3), or simply, A. Suppose

that A > 0 always. Furthermore,

π1(b
′
1, c

′
1; b2, c3) =(M − q2 − q3)(b

′
1 − c′1)Pr(b′1 = max{b′1, b2, c3})

+ q1E(b2 − c′1|b2 = max{b′1, b2, c3})Pr(b2 = max{b′1, b2, c3})

+E(π∗
1,A2(c3, c

′
1)|c3 = max{b′1, b2, c3})Pr(c3 = max{b′1, b2, c3})

π1(b1, c
′
1; b2, c3) =(M − q2 − q3)(b1 − c′1)Pr(b1 = max{b1, b2, c3})

+ q1E(b2 − c′1|b2 = max{b1, b2, c3})Pr(b2 = max{b1, b2, c3})

+E(π∗
1,A2(c3, c

′
1)|c3 = max{b1, b2, c3})Pr(c3 = max{b1, b2, c3})

(17)
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which implies,

π1(b
′
1, c

′
1; b2, c3) =(M − q2 − q3)(b

′
1 − c′1 + c1 − c1)Pr(b′1 = max{b′1, b2, c3})

+ q1E(b2 − c′1 + c1 − c1|b2 = max{b′1, b2, c3})Pr(b2 = max{b′1, b2, c3})

+E(π∗
1,A2(c3, c

′
1)|c3 = max{b′1, b2, c3})Pr(c3 = max{b′1, b2, c3})

+E(π∗
1,A2(c3, c1)|c3 = max{b′1, b2, c3})Pr(c3 = max{b′1, b2, c3})

−E(π∗
1,A2(c3, c1)|c3 = max{b′1, b2, c3})Pr(c3 = max{b′1, b2, c3})

π1(b1, c
′
1; b2, c3) =(M − q2 − q3)(b1 − c′1 + c1 − c1)Pr(b1 = max{b1, b2, c3})

+ q1E(b2 − c′1 + c1 − c1|b2 = max{b1, b2, c3})Pr(b2 = max{b1, b2, c3})

+E(π∗
1,A2(c3, c

′
1)|c3 = max{b1, b2, c3})Pr(c3 = max{b1, b2, c3})

+E(π∗
1,A2(c3, c1)|c3 = max{b1, b2, c3})Pr(c3 = max{b1, b2, c3})

−E(π∗
1,A2(c3, c1)|c3 = max{b1, b2, c3})Pr(c3 = max{b1, b2, c3})

(18)

∴π1(b
′
1, c

′
1; b2, c3)− π1(b1, c

′
1; b2, c3)

=A+ (M − q2 − q3)(c1 − c′1)Pr(b′1 = max{b′1, b2, c3})− (M − q2 − q3)(c1 − c′1)Pr(b1 = max{b1, b2, c3})

+ q1E(c1 − c′1|b2 = max{b′1, b2, c3})Pr(b2 = max{b′1, b2, c3})− q1E(c1 − c′1|b2 = max{b1, b2, c3})Pr(b2 = max{b1, b2, c3})

+E(π∗
1,A2(c3, c

′
1)|c3 = max{b′1, b2, c3} − π∗

1,A2(c3, c1)|c3 = max{b′1, b2, c3})Pr(c3 = max{b′1, b2, c3})

−E(π∗
1,A2(c3, c

′
1)|c3 = max{b1, b2, c3} − π∗

1,A2(c3, c1)|c3 = max{b1, b2, c3})Pr(c3 = max{b1, b2, c3})

(19)

From Lemma 3, I can write continuation value in the subgame following B3’s exit,

π∗
1,A2(c3, c1), as:

π∗
1,A2(c3, c1) = Max

b′′1≤c3

[
(M − q2)(b

′′
1 − c1)

F (ϕsg
2 (b′′1))

a(c3)
+ q1

∫ c3

b′′1

(x− c1)
dF (ϕsg

2 (x))

a(c3)

]

where ϕsg
2 (b) is given by Lemma 3 in Appendix A.3.2 and a(c3) denotes the proba-

bility that B2’s cost type is from that subset of [0, c̄] which bids less than c3 in the
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subgame with preceding B3’s exit. I can further write,

π∗
1,A2(c3, c1) =Max

b′′1≤c3

[
(M − q2)(b

′′
1 − c1 + c′1 − c′1)

F (ϕsg
2 (b′′1))

a(c3)
+ q1

∫ c3

b′′1

(x− c1 + c′1 − c′1)
dF sg(ϕ2(x))

a(c3)

]
=⇒ π∗

1,A2(c3, c1) ≤Max
b′′1≤c3

[
(M − q2)(x− c′1)

F (ϕsg
2 (b′′1))

a(c3)
+ q1

∫ c3

b′′1

(x− c′1)
dF (ϕsg

2 (x))

a(c3)

]
+Max

b′′1≤c3

[
(M − q2)(c

′
1 − c1)

F (ϕsg
2 (b′′1))

a(c3)
+ q1

∫ c3

b′′1

(c′1 − c1)
dF (ϕsg

2 (x))

a(c3)

]
=⇒ π1(c3, c

′
1)− π1(c3, c1) ≥−Max

b′′1≤c3

[
(M − q2)(c

′
1 − c1)

F (ϕsg
2 (b′′1))

a(c3)
+ q1

∫ c3

b′′1

(c′1 − c1)
dF (ϕsg

2 (x))

a(c3)

]
(20)

Since we have supposed that B2 has non-decreasing strategies in the subgame before

B3’s exit, and Lemma 3(i) states that ϕsg
2 (x) is an increasing function, (20) implies

π1(c3, c
′
1)− π1(c3, c1) ≥ −Max

b′′1≤c3

[
(M − q2)(c

′
1 − c1)

F (ϕsg
2 (b′′1))

a(c3)
+ q1(c

′
1 − c1)

a(c3)− ϕsg
2 (b′′1)

a(c3)

]
=⇒ π1(c3, c

′
1)− π1(c3, c1) ≥ −q1(c

′
1 − c1)

(21)

where the last line follows from the idea that this objective function will be max-

imised when b′′1 = 0.

π1(b
′
1, c

′
1; b2, c3)− π1(b1, c

′
1; b2, c3)

≥ A+ (M − q2 − q3)(c1 − c′1)Pr(b′1 = max{b′1, b2, c3})− (M − q2 − q3)(c1 − c′1)Pr(b1 = max{b1, b2, c3})

+ q1(c1 − c′1)Pr(b2 = max{b′1, b2, c3})− q1(c− c1)Pr(b2 = max{b1, b2, c3})

+ q1(c1 − c′1)Pr(c3 = max{b′1, b2, c3})− q1(c− c1)Pr(c3 = max{b1, b2, c3})

= A+ (M − q2 − q3)(c1 − c′1)Pr(b′1 = max{b′1, b2, c3})− (M − q2 − q3)(c1 − c′1)Pr(b1 = max{b1, b2, c3})

+ q1(c1 − c′1)Pr(b′1 ̸= max{b′1, b2, c3})− q1(c1 − c′1)Pr(b1 ̸= max{b1, b2, c3})

= A+ (M − q2 − q3)(c1 − c′1)Pr(b′1 = max{b′1, b2, c3})− (M − q2 − q3)(c1 − c′1)Pr(b1 = max{b1, b2, c3})

+ q1(c1 − c′1)(1− Pr(b′1 = max{b′1, b2, c3}))− q1(c1 − c′1)(1− Pr(b1 = max{b1, b2, c3}))

= A︸︷︷︸
>0

+(M − q2 − q3 − q1)︸ ︷︷ ︸
<0

(c1 − c′1)︸ ︷︷ ︸
<0

(Pr(b′1 = max{b′1, b2, c3})− Pr(b1 = max{b1, b2, c3}))︸ ︷︷ ︸
>0

(22)

Pr(b′1 = max{b′1, b2, c3}) − Pr(b1 = max{b1, b2, c3}) > 0 because b′1 > b1 and event

that b1 is greater than both b2 and c3 is subset of the event that b′1 is greater than

both b2 and c3. This along with A > 0, c1 < c′1, M < q1 + q2 + q3, b′1 > b1, ensures

that above expression is positive. This proves condition (i).

Proof of (ii), (iii) is same as 2P0F. (iv) can be shown from first order conditions of
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optimisation of Bi’s payoff.

For (v), consider a point of intersection (bt, ct) of ϕ1,N and ϕ2,N where bt < c̄. At

this point,

ϕ′
2,N (bt)

ϕ′
1,N (bt)

=
M − q2 − q3 − (π∗

1,A2(bt, ct)− (M − q2 − q3)(bt − ct))σ(bt)

M − q1 − q3 − (π∗
2,A2(bt, ct)− (M − q1 − q3)(bt − ct))σ(bt)

(23)

Note that π∗
1,A2(bt, ct) is the payoff if B3 exits at bt. Since this is also a point of

intersection, the subgame started by B3’s exit is same as 2P0F, with ci ∈ [0, ct].

Moreover, at this point, both players have type c and the reserve bid for 2P0F is bt.

Thus, from Lemma 1, B1 of type ct bids bt, but is bunching and hence, gets residual.

B2 of type ct will also bid bt, but is not bunching. Consequently, their continuation

value at this point are π∗
1,A2(bt, ct) = (M − q2)(bt − ct), π∗

2,A2(bt, ct) = q1(bt − ct).

Thus, we can write

ϕ′
2,N (bt)

ϕ′
1,N (bt)

=
(M − q2 − q3)− q3(bt − ct)σ(bt)

(M − q1 − q3)− (
∑3

j=1 qj −M)(bt − ct)σ(bt)
> 1

where inequality arises because M − q1 − q3 < M − q2 − q3 while
∑

j qj −M > q3.

This implies that ϕ1(b) intersects at most once with ϕ2(b) for b > 0.

The exit of B3 starts a subgame which is same as the extension in Appendix A.3.2.

In this subgame, either B1 or B2 is bunching. This further means that at any given

bid b, if B3 exits, then Lemma 3 tells us that either B1 or B2 of the type ϕi(b) would

also exit at b and get a residual.

Consider a bid δ/n, where δ → 0 and n ≥ 1 is some natural number. Then,
ϕi,N (δ/n) = ϵi(δ/n), where ϵi(δ) → 0 by continuity. Suppose that B1 is bunching in
the subgame started by B3’s exit at (δ). Then, in the same way as in other cases, I
can write the following from the FOCs of case 2P1F:

(δ − ϵ1(δ))(q3σ(δ) + (q1 + q2 + q3 −M)σ(ϵ2(δ))(ϵ2(δ)− ϵ2(δ/n)− δ2κ2(δ, δ/n))) = M − q2 − q3

(δ − ϵ2(δ))(q1 + q2 + q3 −M)(σ(δ) + σ(ϵ1(δ))(ϵ1(δ)− ϵ1(δ/n)− δ2κ1(δ, δ/n))) = M − q1 − q3
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Using the fact that σ(0)/σ′(0) = 0 and that σ′(0) = ∞, I can infer the following

from above:

δ − ϵ1(δ)

δ − ϵ2(δ)

(q3δ + ϵ2(δ)(ϵ2(δ)− ϵ2(δ/n)− δ2κ2(δ, δ/n))(q1 + q2 + q3 −M))

(q1 + q2 + q3 −M)(δ + ϵ1(δ)(ϵ1(δ)− ϵ1(δ/n)− δ2κ1(δ, δ/n)))
=

M − q2 − q3
M − q1 − q3

(24)

ϵ2(δ)(ϵ2(δ)− ϵ2(δ/n)− δ2κ2(δ, δ/n))

ϵ1(δ)(ϵ1(δ)− ϵ1(δ/n)− δ2κ1(δ, δ/n))
≈ q3

q1 + q2 + q3 −M
< 1 (25)

Inputting (21) in (20), I obtain

δ − ϵ1(δ)

δ − ϵ2(δ)

ϵ2(δ)(ϵ2(δ)− ϵ2(δ/n)− δ2κ2(δ, δ/n))

ϵ1(δ)(ϵ1(δ)− ϵ1(δ/n)− δ2κ1(δ, δ/n))
=

M − q2 − q3
M − q1 − q3

> 1

As in 2P0F, above implies that ϵ2(δ) > ϵ1(δ). However that is a contradiction

because (21) implies otherwise. Thus, B1 can’t be bunching.

Now, consider the case where B2 is bunching in the subgame started by B3’s exit at

the bid δ, δ → 0. From the FOCs for 2P1F, I can infer following using facts that

σ(0)/σ′(0) = 0 and σ′(0) = ∞:

δ − ϵ1(δ)

δ − ϵ2(δ)

(q1 + q2 + q3 −M)(δ + ϵ2(δ)(ϵ2(δ)− ϵ2(δ/n)− δ2κ2(δ, δ/n))))

q3δ + ϵ1(δ)(ϵ1(δ)− ϵ1(δ/n)− δ2κ1(δ, δ/n)))(q1 + q2 + q3 −M)
=

M − q2 − q3
M − q1 − q3

(26)

ϵ2(δ)(ϵ2(δ)− ϵ2(δ/n)− δ2κ2(δ, δ/n))

ϵ1(δ)(ϵ1(δ)− ϵ1(δ/n)− δ2κ1(δ, δ/n))
=

q1 + q2 + q3 −M

q3
(27)

Inputting (23) in (22) gives:

δ − ϵ1(δ)

δ − ϵ2(δ)

ϵ2(δ)(ϵ2(δ)− ϵ2(δ/n)− δ2κ2(δ, δ/n))

ϵ1(δ)(ϵ1(δ)− ϵ1(δ/n)− δ2κ1(δ, δ/n))
=

M − q2 − q3
M − q1 − q3

(28)

As argued before, above requires ϵ2(δ) > ϵ1(δ) (which, unlike the previous case, is

not in contradiction with (23)).

Finally, I need to check if the necessary and sufficient condition for B2’s bunching

in the subgame are also satisfied. The FOCs of 2P0F with asymmetric support

(Appendix A.3.2) imply that when B2 bunches ∃ ϵ̃2(δ) < ϵ2(δ) such that B2 pools
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for costs between ϵ̃2(δ) and ϵ2(δ). Therefore,

σ(ϵ̃2(δ))

σ(ϵ1(δ))

ϕ′
2,A2(δ)

ϕ′
1,A2(δ)

δ − ϵ1(δ)

δ − ϵ̃2(δ)
=

M − q2
M − q1

which implies that
δ − ϵ1(δ)

δ − ϵ̃2(δ)

ϵ̃2(δ)(ϵ̃2(δ)− ϵ̃2(δ/n)− δ2κ̃2(δ, δ/n))

ϵ1(δ)(ϵ1(δ)− ϵ1(δ/n)− δ2κ1(δ, δ/n))
=

M − q2
M − q1

, where

κ̃2(.) is a bounded function. Since ϵ̃2(δ) < ϵ2(δ), this further implies

δ − ϵ1(δ)

δ − ϵ2(δ)

ϵ̃2(δ)(ϵ2(δ)− ϵ2(δ/n)− δ2κ̃2(δ, δ/n))

ϵ1(δ)(ϵ1(δ)− ϵ1(δ/n)− δ2κ1(δ, δ/n))
>

M − q2
M − q1

Given the convergence of ϕi(b) to 0 as b → 0 and its continuity, ϵi(δ/n) → 0

as n → ∞. Since, ϵ̃2(δ/n) < ϵ2(δ/n), ϵ̃2(δ/n) → 0 too as n → ∞. Thus, I

can infer that inequality
δ − ϵ1(δ)

δ − ϵ2(δ)

ϵ2(δ)

ϵ1(δ)

(ϵ2(δ)− ϵ2(δ/n)− δ2κ̃2(δ, δ/n)))

(ϵ1(δ)− ϵ1(δ/n)− δ2κ1(δ, δ/n)))
>

M − q2
M − q1

should hold when B2 is bunching in the subgame.

As Lemma 3 lists all the necessary and sufficient conditions for the equilibrium, and

this inequality is derived from the conditions listed in that lemma, it is a necessary

and sufficient condition for B2 to bunch in the subgame started by exit of B3. Since
M−q2−q3
M−q1−q3

> M−q2
M−q1

when q1 > q2 and δ2 ≈ 0 when δ → 0, equation (28) implies that

the condition is satisfied.

Therefore, ϵ2(δ) > ϵ1(δ) and given that at the point of intersection, solution curve of

B2 needs to have higher slope than that of B1; the curves will not intersect. Thus,

ϕ2,N (b) > ϕ1,N (b) ∀b > 0. This would imply that ϕ2,N (bR) = c̄ > ϕ1,N (bR) = c∗1.

Finally, notice that if B2 is bunching in subgame started by B3’s exit at any bid b,

she is bunching in such a subgame for all b. Else, there exists a bid bT such that for

b < bT , B2 bunches and above that, B1 bunches in the subgame. Thus, B1’s payoff

in the subgame, π∗
1,A2(b; ci) would fall discontinuously at bT . As such, the FOC is

satisfied only if ϕ′
2,N (b−T ) < ϕ′

2,N (b+T ). Similarly, ϕ′
1,N (b−T ) > ϕ′

1,N (b+T ). The distance

between ϕ1(b) and ϕ2(b) would increase which, as per Lemma 3, implies that B2

should bunching in the subgame started by B3’s exit at bids above bT , which is a

contradiction. As such, there is no such bT . Thus, if B2 is bunching in subgame
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started by B3’s exit at any bid b, she is bunching in such a subgame for all b.

C.2 Proof of Theorem 3

Proof. The proof is similar to that of Theorem 1 (Appendix A.2). To see this, notice

that the proof of Lemma 4 tells us that B2 is bunching in the subgame started by

B3’s exit. Thus, I can rewrite the FOCs as:

(q1 + q2 + q3 −M)(b− ϕ1,N (b)))σ(b)1b≤c̄

+ (b− ϕ1,N (b))(q1 + q2 + q3 −M)σ(ϕ2,N (b))ϕ′
2,N (b) = M − q2 − q3

q3(b− ϕ2,N (b))σ(b)1b≤c̄

+ (b− ϕ2,N (b))(q1 + q2 + q3 −M)σ(ϕ1,N (b))ϕ′
1,N (b) = M − q1 − q3

(29)

Suppose first that bR > c̄. For any b ∈ (c̄, bR], the FOCs are similar to that of

2P0F. The solution to any IVP given by those FOCs, and boundary conditions

ϕ2,N (bR) = c̄, and ϕ1,N (bR) = c∗ exists for all possible c∗ and is unique. Furthermore,

a structure similar to that of 2P1F also implies that if ϕ̂2,N (b) < ϕ2,N (b), then

ϕ̂1,N (b) > ϕ1,N (b) for solutions to any two IVPs which are same except for the

initial value ϕ1,N (bR).

Thus, for any 2 such IVPs, if ϕ̂2,N (b) < ϕ2,N (b), then ϕ̂2,N (b) < ϕ2,N (c̄) and ϕ̂1,N (b) >

ϕ1,N (c̄).

For any bids less than c̄, the equations 29 can be rewritten as:

(b− ϕ1,N (b)))(σ(b) + σ(ϕ2,N (b))ϕ′
2,N (b)) =

M − q2 − q3
q1 + q2 + q3 −M

(b− ϕ2,N (b))

(
q3

(q1 + q2 + q3 −M)
σ(b) + σ(ϕ1,N (b))ϕ′

1,N (b)

)
=

M − q1 − q3
q1 + q2 + q3 −M

(30)

Consider a sequence { δ
2n
}n∈N. For each n, consider two initial value problems Pn

and P̂n defined on [ δ
2n
, c̄]. The problems have same ODEs as (25) except that I

replace function ϕi,N by ϕin,N . The initial values are ϕ2n,N (c̄) = c∗2n, ϕ1n,N (c̄) = c∗1n,
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and ϕ̂2n,N (c̄) = ĉ∗2n, ϕ̂1n,N (c̄) = ĉ∗1n, where c∗2n > ĉ∗2n and c∗1n < ĉ∗1n.23

Now, I can proceed as in 2P0F to show that for each n there is a unique pair of

boundary conditions ϕ1n,N (c̄) = c∗1n and ϕ2n,N (c̄) = c∗2n, such that solution to Pn

is such that ϕ1n,N (0) = ϕ2n,N (0). Furthermore, it can be shown from arguments

similar to 2P0F that the solution is positively monotonic function. Thus, I can

argue that as n → ∞, we will get solution such that ϕin,N (0) → 0. The rest of

the argument is same as before to show that there is a unique pair of initial values

(c∗1, c
∗
2) such that lim

c→0+
ϕi,N (c) = 0.

Now consider the IVP below, defined on [c̄, bR]:

(b− ϕ1,N (b))(q1 + q2 + q3 −M)σ(ϕ2,N (b))ϕ′
2,N (b) = M − q2 − q3

(b− ϕ2,N (b))(q1 + q2 + q3 −M)σ(ϕ1,N (b))ϕ′
1,N (b) = M − q1 − q3

ϕi,N (c̄) = c∗i

This IVP has a unique solution. However, there is exactly one value of bR where the

solution is such that ϕ2,N (bR) = c̄. Thus, there is no guarantee that the equilibrium

exists. However, parameters are such that it does, it is unique.

Note however that when bR = c̄, there is a singularity on the right boundary also.

However, I can still proceed as in 2P0F barring some changes.The sequence of BVPs

with ODEs as in 25, would be defined on [ δ
2n
, c̄− δ

2n
] with boundaries ϕ2n,N (c̄− δ

2n
) =

c̄− δ
2n
+ δ2

4n
and ϕ1n,N ( δ

2n
) = ϕ2n,N ( δ

2n
). The solution to BVPs will generate a sequence

of non-decreasing functions ϕin,N (b). This can be used to generate another sequence

of functions win(b)n∈N defined as:

win(b) =


ϕin,N (c̄− δ

2n
), b ∈ [c̄− δ

2n
, c̄]

ϕin,N (b), b ∈ [ δ
2n
, c̄− δ

2n
]

ϕin,N ( δ
2n
), b ∈ [0, δ

2n
]

23Case where c∗2n > ĉ∗2n and c∗1n > ĉ∗1n is of no interest because it violates the condition that if
ϕ̂2,N (b) < ϕ2,N (c̄), then ϕ̂1,N (b) > ϕ1,N (c̄).
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The rest of the argument leverages the monotone convergence theorem as in 2P0F,

to show that the lim
n→∞

win converges. Define ϕi,N (b) as lim
n→∞

win, which then implies

that lim
c→0+

ϕi,N (c) = 0 for each i, and lim
c→c̄−

ϕ2,N (c) = c̄.
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