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Abstract

In two-player finite-horizon repeated games, end-of-game behavior usually leads
to patterns of decreasing degrees of cooperation with diminishing payoffs. We
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contract dynamics in the early stages of the relationship and are as effective in
inducing cooperation as contracts with full commitment while being more cost-
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1 Introduction

Contracts are seen as having a central role in generating cooperation in business and

other relationships. Although it is one of the most widely used commitment devices in

various transactions, contracting is not free. It requires resources—from a transaction

cost perspective, contracts are associated with costs of designing and monitoring. As such,

contracting alone is insufficient to accommodate many important economic phenomena.

The role of trust in contractual relationships, in particular, has been emphasized in various

studies (e.g., Burchell and Wilkinson, 1997). Practitioners frequently point out that being

better at using contracts starts with good strategies to foster trust (e.g., Tippins, 2021).

That is, such strategies do more than just reduce the cost of contracting—building trust

and using contracts are complementary to each other.

As reported by Ohmae (1989) in the Harvard Business Review, all business agreements

may not last long, but many business alliances depend on “softer” aspect of relationships.

He notes that few alliances, including those engaged in joint ventures and supply chains

of various industries, rely on rigidly binding agreements from the beginning, stressing

the importance of non-binding agreements on two-sidedness or symmetry of effort and

attention in earlier stages to solidify their relationships in later stages.

In this paper, we study how a non-binding agreement in an earlier stage of the game

can be used to induce cooperative behavior in a baseline with, at most, partial cooper-

ation. This temporally incomplete contract is as effective as a more standard complete

contract while being favorable when it comes to contracting costs. We show that such

soft-landing contracts are able to increase cooperation in both the intensive and exten-

sive margin while being optimal compared to both the complete contract and a baseline

without contracts.

We start with a simple, symmetric, finitely repeated game that can generate partial

cooperation in the early stages. To that end, our stage game, based on a prisoner’s

dilemma game, features three actions – keeping it as concise as possible while avoiding

complete backward unraveling (and thus complete lack of cooperation) that would be

inherent to two-action stage games. A grim trigger strategy that unforgivingly punishes

deviation then generates a cooperative equilibrium where players cooperate in all early

stages as long as they do not discount the future too much.

We then introduce contracts in the form of commitment devices that allow players to

commit to playing (or avoiding) specific actions with the goal of extending the stages in

which cooperation takes place (intensive margin) or the parameters in which cooperation

can occur entirely (extensive margin). We find that while simply prescribing the optimal

action in all periods (i.e., a full commitment contract) is effective in achieving both goals,

once costs of contracting are factored in, less prescriptive contracts are superior in many

circumstances, in particular when cooperation could already be achieved partially without
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contracts.

These soft-landing contracts are characterized by their temporal incompleteness; leav-

ing the players free hand in the early stages and only coming into effect in the late stages

of the game. This way, they are able to prevent the backward unraveling that precludes

late-stage cooperation without eliminating the incentives used by the grim trigger strate-

gies that generate cooperation already in the baseline. While also requiring a maximum

discounting, this is less restrictive than the baseline requirements, leading to situations

in which the contracts can induce cooperation extensively, i.e., when there has not been

cooperation before, as well as intensively —increasing the periods with cooperation. Due

to its simpler and shorter nature, these soft-landing contracts are less costly than the

complete full commitment alternative. Hence, we find that whenever they are profitable

(i.e., better than the contract-less baseline), they are also optimal. These results are

robust to richer models that incorporate more complex cost structures, endogenize the

negotiation timing, or relax the assumptions of prescriptive contracts in favor of contracts

over monetary transfers.

Our analysis contributes to the literature on incomplete contracts, particularly on

the question of when and why parties choose to write more or less complete contracts.

Contractual incompleteness is often associated with transaction costs (Williamson, 1985,

1989) that can arise both ex ante and ex post. Ex-ante transaction costs are the costs as-

sociated with the drafting of the contract (“search costs” (e.g., Klein, 2002; Tirole, 2009)

and “ink costs” (Dye, 1985; Anderlini and Felli, 1994; Melumad et al., 1997; Battigalli

and Maggi, 2002, 2008)). Ex-post transaction costs are the costs of enforcing and im-

plementing contracts. Kaplow (1995) and Schwartz and Watson (2004) argue that more

complex contracts (or rules) may be more costly to enforce (e.g., litigate) because more

information or evidence is needed. Furthermore, more detailed contracts specifying more

contingencies imply higher costs of monitoring compliance and detecting violations—as

highlighted by Diamond (1984, 1991) in the context of corporate debt.1 In our model,

we assume fixed ex-post enforcement costs (but no ex-ante drafting costs) that do not

depend on the characteristics or duration of the contract. Contracting parties incur these

costs only once, and because of time discounting, they prefer contractual commitments

in later periods. This adds a temporal dimension to optimal contractual incompleteness;

enforcement costs of longer and earlier contracts are effectively higher.

More detail is only one aspect of completeness. Battigalli and Maggi (2002) argue that

there may be tradeoffs between additional detail and overly rigid contracts where con-

tractual contingencies may be insufficiently customized to the contracting parties. They

show that when the surplus from a contractual relationship relative to the contracting

costs is sufficiently small, the optimal contract (signed by the parties) leaves some degree

1Also, in multi-tasking environments, imperfect monitoring can result in the optimal contract being
simple (Holmstrom and Milgrom, 1991).
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of discretion to the party—that means, the contract is incomplete as some state-action

pairs are not specified. Basov (2016, 62–64) provides a simple example to illustrate this

result. In line with these results, we show that flexible soft-landing contracts with a larger

allowable action space outperform rigid soft-landing contracts that effectively prescribe

the cooperative action.

Our baseline setup with cooperation in a finitely repeated game is related to work in

the literature on relational contracts. In finitely repeated games, cooperation is typically

not attainable because of the underlying end-of-game properties. Yet, experimental ev-

idence shows that cooperation is possible in such setting (Axelrod, 1981). Kreps et al.

(1982) establish cooperation in a finitely repeated prisoner’s dilemma by introducing

reputation and asymmetric information. We take the approach in Benoit and Krishna

(1985) to achieve some cooperation in our baseline model. We contribute to the litera-

ture by combining relational and formal contracting. We show that formal contracts can

complement relational contracts.

In addition, our paper relates to the literature on contracting practice where it has

long been established that negotiating (and upholding) contracts is intricately linked to

questions of trust. Arrighetti et al. (1997) observe how contracting and trust interact in

the environment of contracting law, and a wide array of papers has studied how contracts

can be used to form trust (e.g., Ben-Ner and Putterman, 2009; Malhotra and Murnighan,

2002; Burchell and Wilkinson, 1997). However, trust can also play an instrumental role in

shaping contracts. In an experimental setting, Ben-Ner and Putterman (2009) find that

complete contracts tend to substitute trust, while—related to the soft-landing contracts

we are studying—Lorenz (1999) concludes that trust plays an important role in forming

incomplete contracts. Similarly, Burchell and Wilkinson (1997) observe in a survey on

European firms a positive relationship between trust and flexibility outside the contract.

More specifically, Ohmae (1989) and Williamson (1985, 1989) note how relational aspects

such as trust lead to contracts that often start as non-binding agreements or unspecific

framework agreements before becoming more binding and specific in the course of the

interaction.

Our model does not feature trust (but rational, profit-maximizing players instead)

and thus provides an alternative explanation for the soft-landing contracts observed in

practice. We show how this kind of temporally incomplete contract can also be viewed

as a strategic choice in addition to merely an expression of trust between contracting

parties.

The rest of the paper is structured as follows: In Section 2, we analyze the baseline

model and characterize the benchmark equilibria without contracts. In Section 3, we

introduce soft-landing contracts and derive the parameter space in which they can increase

cooperation relative to the benchmark equilibria. In Section 4, we characterize the most

preferable contractint solution that maximizes joint profits. In Section 5, we extend the
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Player P2

w (work) l (loaf) s (shirk)

P
la
y
e
r
P
1 w (work)

(
0
0

) (
ẽπ −m
ẽ (π − c)

) (
2π −m
2 (π − c)

)

l (loaf)

(
ẽ (π − c)
ẽπ −m

) (
ẽ/2
ẽ/2

) (
(2 + ẽ)π − c−m
(2 + ẽ)π − 2c

)

s (shirk)

(
2 (π − c)
2π −m

) (
(2 + ẽ)π − 2c

(2 + ẽ)π − c−m

) (
1
1

)

Table 1: Normal-Form Representation of the Stage Game

baseline model to allow for more flexible timing and contracting costs. In Section 6, we

conclude.

2 Baseline Model of Interaction

2.1 Setup

Let there be two players interacting in a finitely repeated normal-form game. In order to

obtain early cooperation, we focus on a repeated game in which there are three possible

actions, yielding an augmented prisoner’s dilemma (APD) stage game. This approach

allows using a grim trigger strategy of Nash reversion to sustain the cooperative outcome

in early periods.2

The stage game consists of two players (P1 and P2) deciding whether to work (w), loaf

(l), or shirk (s),3 associated with effort levels ei ∈ {2, ẽ, 0} corresponding to Ai = {w, l, s}.
The payoff in each stage game outcome is then given by

πi(ai, aj) = (ai + aj) π − aic− I(ai < aj) ·m

where π is the utility of joint effort, c is the cost of effort, and m is the moral utility cost

of free-riding. To simplify the payoff structure, we normalize the payoffs for the (w,w)

outcome to 1 by setting π and c such that πi(w,w) = 4π − 2c = 1. We summarize the

symmetric payoff matrix of the stage game in Table 1.

To ensure that (s, s) and (l, l) form the only two pure-strategy Nash equilibria in the

2This follows the limited folk theorem using trigger strategies proposed by Benoit and Krishna (1985)
(see also Fudenberg and Tirole (1991)).

3In this game w dominates s, whereas the intermediate action l is neither dominant nor dominated.
Thus, we refer to this structure as an augmented prisoner’s dilemma
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stage game, we impose the following conditions.4

Assumption 1. Let the set of parameters (π, c,m, ẽ) be such that (a) π > 1
2
, (b) c =

2π − 1
2
, (c) 0 < m < 2π − 1, (d) 0 < ẽ < min

(
m

π−1/2
, m+1/2

π

)
.

For better tractability, let πD = πi(s, w) = 2π − m denote the maximal deviation

payoffs and πL = πi(l, l) = ẽ/2 denote the payoffs of the (l, l)-NE.

The APD stage game is repeated T times with a standard discounted total utility

Πi =
∑

δtπi(ai,t, aj,t). We make the standard assumptions of rational players and common

knowledge of past actions.

2.2 Baseline Equilibria

Because the APD stage game has two pure-strategy Nash equilibria, consider the following

strategy to form a cooperative equilibrium: If everyone cooperates, cooperation continues.

If someone deviates, (s, s) will be played as a punishment for the remainder of the game.

Formally, this is saying every player plays the grim trigger strategy

aGT
i,t =


s if ∃τ < t : aj,τ ̸= w;

l if t = T ∧ ∀τ < t : aj,τ = w;

w otherwise.

Note that because payouts in each stage game are independent, by backward induction,

an equilibrium has to be played in the last period. The outcome in the last period

is, therefore, (l, l) rather than (w,w) even if both players cooperated up until the last

period. The timing of the optimal deviation then depends on the discount factor δ, with

a last-period deviation being optimal whenever δ > πD−1
πD .5 Factoring in discounting, a

deviation is unprofitable whenever

1− δT−1

1− δ
+ δT−1 + δTπL >

1− δT−1

1− δ
+ δT−1πD ⇐⇒ 1 + δπL > πD ⇐⇒ δ >

πD − 1

πL

This relationship yields the first equilibrium condition, summarized in the following

lemma.

Lemma 1 (Cooperative Equilibrium). A cooperative equilibrium in which aGT
i,t is played

yielding (w,w), . . . , (w,w), (l, l) exists in the baseline model whenever δ >
πD − 1

πL =: δ̄BL.

4These assumptions also guarantee the existence of only one mixed-strategy Nash equilibrium in
the stage game. For better tractability, we focus our analysis solely on pure-strategy Nash equilibria.
Allowing for mixed strategies in our analysis, however, does not change the results qualitatively. For a
discussion of the effects of mixed-strategy equilibria, see Appendix A.1. Alternatively, the existence does

not affect the outcomes under the modified assumption (d)′ m
π < ẽ < min( m

π−1/2 ,
m+1/2

π ).
5The derivation of the thresholds for the APD can be found in Appendix A.1.
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In addition to the cooperative equilibrium, it is also always optimal (in the sense of

a subgame-perfect Nash equilibrium) to play a Nash equilibrium in every period. That

means that every action profile a∗1 = a∗2 ∈ {s, l}T also constitutes a subgame-perfect

Nash equilibrium of the APD, of which a∗i = (l, . . . , l) is payoff-dominant, forming the

non-cooperative equilibrium characterized in Lemma 2.

Lemma 2 (Non-Cooperative Equilibrium). A non-cooperative equilibrium in which ai,t =

l is played yielding (l, l), . . . , (l, l) exists in the baseline model for any δ.

This equilibrium is of particular interest in the case when cooperative equilibria cannot

be sustained, that is, whenever δ < δ̄BL.

3 Soft-Landing Contracts

While limited cooperation can be sustained in the baseline model, adding the ability to

write contracts to the framework will give the players tools to improve cooperation—

both intensively (increasing the number of periods with cooperation) and extensively

(extending the region of the parameter space in which cooperation is possible). Assuming

that actions are verifiable (and contractible), we model a contract in this context as a

commitment device that allows the players to commit to a certain subset of actions

available to play for a specified subset of periods.

The allowable actions from this contract can, but do not have to, depend on earlier

actions taken. For our main results, we assume that this commitment is made (and the

contract entered) before the first-period interaction. At the outset of the game (t = 0),

players commit to a contract by specifying a subset of actions available to them at a

later stage, that is, when the first contracted period is reached.6 Formally, a contract

can be specified as C = (C1, C2) with C1 = C2 where Ãi(h) = Ci(h) ∈ (P(Ai)/∅) is

the set of actions available to player i at history h. Later in the paper, we relax this

pre-commitment assumption and allow for endogenous contract timing (in t ≥ 1) after

the interaction has begun.

Contracting comes at a cost. We assume that these costs are implementation costs

κ ≥ 0 that are incurred once at the first contracted period tκ := min{t : Ct ̸= At} (rather

than at the contracting stage).7 We assume the costs κ are independent of the length

6This is the same as saying that the contract entered in t = 0 does not restrict the action space nor
does it prescribe any actions between the contract stage and the first contracted period.

7Implementation costs are associated with the costs of enforcing a contract (e.g., Kaplow, 1995;
Schwartz and Watson, 2004) or the costs of monitoring compliance and detecting violations (e.g., Dia-
mond, 1984, 1991). In an extension (see Section 5.2), we will consider more general contracting costs
that also include drafting costs (incurred at the time the contract is entered), associated with the costs
that arise from researching and analyzing contingencies (search costs) (e.g., Klein, 2002; Tirole, 2009)
and from specifying these contingencies (ink costs) (e.g., Dye, 1985; Anderlini and Felli, 1994; Melumad
et al., 1997).
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of the contract, the number of contractual periods, or the amount of committed actions.

These assumptions make our model more tractable and eliminate potential biases in favor

of shorter and simpler soft-landing contracts.

In this section, we establish the implementability of cooperation with soft-landing

contracts for three scenarios: (a) full commitment, in which players commit to actions

in every period; (b) history-independent soft-landing contracts, in which committed ac-

tions are not contingent on the history of actions prior to the contract; and (c) history-

dependent contracts, in which the contracted actions depend on the history leading up

to the contract. We return to the question of profitability (when the contract strictly

payoff-dominates the relevant baseline scenario from the previous section) and optimality

(when the contract also strictly payoff-dominates all other contracts) of a soft-landing

contract in Section 4.

3.1 Full Commitment

The full commitment contract scenario represents the most restrictive commitment and

acts as a benchmark; it is the polar opposite of the environment without any commitment

in our baseline equilibria. In this full commitment scenario, both players commit to a

restricted action space Ãi for every period. Trivially, a full commitment contract that

restricts the action space to Ãi = {w} and effectively prescribes ai,t = w for all i and

all t implements full cooperation for the entirety of the extended game. Trivially, this

cooperation equilibrium under a full commitment contract exists regardless of the specific

δ. This sets this contract apart from the contracts we consider next.

3.2 History-Independent Soft-Landing Contracts

In a soft-landing contract, the players commit to a (restricted) action space Ãi (effec-

tively prohibiting some actions) for the latter part of their interaction.8 With history

independence, the action space Ãi does not depend on past actions. For simplicity, we

require the restrictions on the action space to be symmetric.

We now construct a soft-landing contract and players’ strategy under this contract

that can implement the fully cooperative outcome. For simplicity, we consider a contract

that does not interfere for the first T −1 period and only takes effect in the last period. It

prohibits the lowest-effort action s by specifying a (restricted) action space Ãi = {l, w}.9

8We assume players abide by the rules of the contract, which means do not choose the eliminated
action. This can achieved by including appropriate penalties. We do not specify such contracted penalties
but simply assume that a violation of the contract terms is prohibitively costly.

9The arguably more natural case of an abridged full commitment contract that prescribes ai = w
(with action space Ãi = {w}) only for the last τ periods (which is close in spirit to the full commitment
contract), is strictly dominated by the proposed soft-landing contract. It effectively partitions the game
into forced cooperation for the last τ periods with a shortened ADP repeated T − τ times. Analogous
to the discussion for the baseline in Lemma 1, cooperation cannot be sustained in period T − τ , which
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With this contract, the (restricted) stage game becomes

loaf (l) work (w)

loaf (l)
(
πL, πL

)
(πwl, πlw)

work (w) (πlw, πwl) (1, 1)

This stage game continues to have two pure-strategy Nash equilibria, namely (l, l)

and (w,w). This is by Assumption 1 that guarantees that πwl < 1 and πlw < πL.

Under the soft-landing contract and the (restricted) stage game in the last period,

let the players’ grim-trigger strategy be as follows. It is analogous to the cooperative

strategy in the baseline scenario but, in the last period, rewards cooperation with (w,w)

and punishes deviation with (l, l). This strategy is effectively shifting both punishment

and reward upwards payoff-wise. Formally, we define the strategy as:

aIAi,t =


s if t ̸= T ∧ ∃τ < t : aj,τ ̸= w

l if t = T ∧ ∃τ < t : aj,τ ̸= w

w otherwise

We have an optimality of cooperation with this new grim trigger strategy whenever

1− δT−1

1− δ
+ δT−1 + δT >

1− δT−1

1− δ
+ δT−1πD + δTπL ⇐⇒ δ >

πD − 1

1− πL =: δ̄IA.

We summarize this result of cooperation under the soft-landing contract in the fol-

lowing lemma.

Lemma 3 (History-Independent Soft-Landing Contract). A cooperative equilibrium in

which aIAi,t is played yielding (w,w), . . . , (w,w) exists whenever δ > πD−1
1−πL =: δ̄IA if a

soft-landing contract prescribing history-independent actions is used.

Crucially, this contract works—in contrast to an abridged full commitment— because

while eliminating the most profitable deviation action s it is not too rigid to eliminate the

flexibility of punishing previous behavior. Put differently, SLCs that are not themselves

contingent, only work if not too rigid, see also Battigalli and Maggi (2008).

3.3 History-Dependent Soft-Landing Contracts

Next we turn to contracts that can be conditioned on the history of past play, i.e.,

their effect depends on what actions players took in the past. Even though the history-

independent contracts discussed before can be understood technically as degenerate history-

dependent contracts, this section will focus on proper history-dependent contracts.

is discounted less and thus leads to a lower present value utility (even at κ = 0).
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These contracts can be used to implement a strategy that employs otherwise incredible

punishments because the requirement for being best responses disappears while the nec-

essary requirements for punishments to be conditioned on past behavior is now possible.

For comparability and tractability consider a contract that, similar to the history-independent

case, only lasts for the last period.10 To deter deviation, let it be such that it prescribes

w as long as the opponent played w in all past periods and s otherwise.11 This results in

the modified grim trigger strategy aDA
i,t being played:

aDA
i,t =

s if ∃τ < t : aj,τ ̸= w

w otherwise

Note that except for the last period the standard grim trigger strategy aGT
i,t , already im-

plements the most effective (i.e. the harshest) punishment.

Then with deviation taking place in period T − 1, deviation would be unprofitable when-

ever

1− δT−1

1− δ
+ δT−1 + δT >

1− δT−1

1− δ
+ δT−1πD + δT0 ⇐⇒ δ > πD − 1 =: δ̄DA

as summarized by Lemma 4 below

Lemma 4. A cooperative equilibrium exists whenever δ > πD − 1 =: δ̄DA if a SLC

prescribing history-dependent actions is used.

4 Results

In this section we compare the contracts described in the previous section to the baseline

(profitability) as well as to each other (optimality). To this end, we will assume that

the payoff-dominant equilibrium is played in the baseline.12 Again, by focusing on the

payoff dominant equilibrium in the baseline we eliminate biases in favor of contracts when

comparing to the baseline.

4.1 Existence of Cooperative Equilibria

As we briefly discussed in Section 2 and 3 all equilibria have conditions on δ for their

existence. To better illustrate this conditions for the existence of cooperative equilibria

in the different frameworks, we consider a specific subset of the parameter space created

10A more general analysis can be found in Section 5.1
11Formally, this is saying Ci(h) = {w} if h = (w,w)T−1 and Ci(h) = {s} otherwise.
12While in general the existence of a payoff ordering of equilibria does not ensure the payoff dominant

equilibria to be played, one can think of the contracting stage additionally as a coordination instrument
for the baseline.
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Figure 1: Heatmaps for the cooperative equilibrium threshold for δ̄BL (a), δ̄IA (b) and
δ̄DA (c) for π = 1.5.

by Assumption 1. Figure 1 illustrates the thresholds for the baseline model as well as the

history-independent and dependent SLC as summarized in Lemma 1, 3 and 4 respectively.

While it is clearly visible that each cooperative equilibrium is feasible for a range of

parameters of the parameter space, it is equally discernible that there is no complete

dominance ordering of environments. In other words, there are different parameters

for which different types of environments can produce a cooperative equilibrium. This

comparative result is emphasized by Figure 2.

There is however partial ordering regarding the history-dependent SLCs. Recall that

the history-independent SLC is imposed by merely shifting the action profiles used for

reward and punishment upwards in terms of payoff. In contrast, history-dependent SLCs

optimize the grim-trigger strategy used in the baseline. As a consequence, it is possible to

show that whenever a cooperative equilibrium is feasible in the baseline, so is cooperation

under a history-dependent SLC.13 The same is not true for between the baseline and

history-independent SLCs as the exemplary parameter-subspace depicted in Figure 2

shows.

Further, compare the history-dependent and independent SLCs by looking at Lemmas

3 and 4. It becomes apparent that whenever a history-independent contract can induce

a cooperative equilibrium, so can a history-dependent SLC.14 This should not come as a

surprise given that history-independent SLCs form a subcategory of the more general set

of history-dependent SLCs. This result is summarized in Corollary 1.

Corollary 1. The feasibility of a cooperative equilibrium under a history-independent

SLC implies the existence of a cooperative equilibrium with a history-dependent SLC,

which is equivalent to δ̄DA < δ̄IA.

While all equilibria looked at so far require a certain level of discounting, the full

commitment contract described in Section 3.1 is a special case. Since players commit to

one action for the entire game with no opportunity to deviate, full commitment contracts

are intrinsically feasible for any δ.

13This follows simply from πL < 1, which implies δ̄BL := πD−1
πL > πD − 1 =: δ̄DA.

14This follows directly from the fact that δ̄DA = πD < πD/1− πL = δ̄IA since πL ∈ (0, 1)
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Figure 2: Overview over the different types of implementable contracts for π = 1.5. The
corresponding value of the discount threshold δ̄i is represented by the heatmap (with no
implementability in the grey area). Example 1 is denoted by the circle.

4.2 Profitability of Contracts

This dominance in implementability of the full commitment contract is, however, only

one half of the story. To get the full picture, we need to turn to the costs and the

implementability of the SLCs with regards to payoffs. This question has to be examined

in comparison to the payoff of the baseline equilibria.

Recall that the cooperative equilibrium of the baseline model is characterized by a payoff

stream of πi(w,w) = 1 in the first T − 1 periods and πi(l, l) = πL in the last. The non-

cooperative equilibrium on the other hand pays out πi(l, l) = πL in every period. Recall

further that contractual costs were modelled as implementation costs, i.e. the cost κ is

paid in the first period the contract comes into effect.

Now consider the full commitment contract described before. It yields a payoff of

πi(w,w) = 1 in every period and is, thus, ex-ante preferable to the cooperative equilibrium

whenever

1− δT

1− δ
+ δT − κ >

1− δT

1− δ
+ δTπL ⇐⇒ κ < δT (1− πL)

Intuitionally, since the full contract only changes the payoff of the last period the cost of

the contract can only be as high as the discounted difference in payoffs. In contrast, to
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be preferable to the non-cooperative equilibrium it has to be that

1− δT

1− δ
+ δT − κ >

(
1− δT

1− δ
+ δT

)
πL ⇐⇒ κ <

(
1− δT+1

1− δ

)
(1− πL)

Note that this directly implies a higher cost threshold in the case of a no-cooperation

baseline. Thus there are contract costs κ for which full commitment contracts are only

profitable if there was no cooperation before. These results are summarized in the fol-

lowing Proposition:

Proposition 1. As long as κ < 1−δn+1

1−δ
(1 − πL) the cooperative equilibrium induced by

a full commitment contract is preferable to the non-cooperative baseline. Whenever κ <

δT (1− πL) it is also preferable to the cooperative baseline.

Next we turn to the history-independent SLC that prohibits the strongest deviation.

As before this results in a payoff stream of πi(w,w) = 1 in every period. The major

difference, however, is that this SLC only comes into effect in the last period of the

game. Hence, the implementation of such a class of SLC is optimal compared to the

(cooperative) baseline whenever

1− δT

1− δ
+ δT (1− κ) >

1− δT

1− δ
+ δTπL ⇐⇒ κ < 1− πL

since the costs κ are paid in the period in which the contract first becomes binding,

the last in this case. As in the full contract case, a SLC is also possible in a case

with a non-cooperative equilibrium in the baseline. Then the cost-threshold becomes

κ < (1+ . . .+ δ−n)(1−πL), which is clearly higher compared to the case of a cooperative

equilibrium in the baseline. Proposition 2 summarizes those two cases:

Proposition 2. As long as κ < 1−δn+1

(1−δ)δT
(1 − πL) the cooperative equilibrium induced

by a history-independent SLC is preferable to the non-cooperative baseline. Whenever

κ < 1− πL it is also preferable to the cooperative baseline.

This has two implications: Firstly, as long as κ < δT (1 − πL), both a full contract

and a SLC are possible, but the SLC is strictly preferred to the full contract. Secondly,

if δT (1− πL) < κ < 1− πL, only the SLC but not the full contract is profitable.

Lastly, there is the class of history-dependent SLCs. Since the payoff stream induced

by the cooperative equilibria is identical to the case of history-independence, the cost

conditions remains κ < 1− πL. The same is true for SLCs in a non-cooperative baseline

setting with κ < (1+. . .+δ−n)(1−πL) as the profitability threshold. These two thresholds

are reflected in the following proposition

Proposition 3. As long as κ < 1−δn+1

(1−δ)δT
(1− πL) the cooperative equilibrium induced by a

history-dependent SLC is preferable to the non-cooperative baseline. Whenever κ < 1−πL

it is also preferable to the cooperative baseline.

13



4.3 Optimality of Contracts

Having considered the profitability of the different contracts, the question that comes

next naturally is which contract is optimal from the players’ ex-ante perspective. For

that we compare the net payoffs between the different types of contracts. We will com-

pare the three main contracts discussed so far; a contract featuring full commmitment

(FC), one prescribing independent actions (IA) and the one prescribing dependent ac-

tions (DA). Starting with a direct comparison between IA and DA, note that since the

cost structure of both SLC types is identical, all results for the history-independent con-

tract with regards to cost translate to the history-dependent contracts, reflective in the

equivalence of Propositions 2 and 3. Since the cost-thresholds are identical, resulting in

the same implication for both contract types if feasible. A further comparison with the

full commitment contract (1) shows that, since costs have to be paid already in the first

rather than the last period, any of the two contracts is preferable if available.

This result goes to show a general intuition as to why SLCs are a reasonable con-

tract practice that might be preferable not only because of shorter contractual duration

and complexity, but also from a purely payoff perspective. Games (or more generally

interactions) between players that are approached by backwards induction often feature

unravelling. As a result, cooperation (if feasible at all) takes place in the first periods

before purely self-centered behavior takes precedence in the last stages.

With the goal of ensuring cooperation, the first (in this model T − 1) periods already

achieve that without the interference of any contract. Thus, the most duration-efficient

contract would be one that only intervenes in periods without prior cooperation in order

to induce additional cooperative periods. This aspect of a SLC increasing the amount of

already existing cooperation periods will be referred to as inducing cooperation on the

intensive margin. Since costs are incurred when the contract first takes effect and players

discount the future, duration efficiency (with respect to early periods) translates directly

into payoff efficiency. For that reason any feasible SLC necessarily payoff-dominates the

full commitment contract.

However, Section 3.2 also showed that such a SLC can not just simply be an abridged

version of the full commitment contract as it would just move the time-point of deviation

forward without any punishment in the contractual periods. In contrast, we presented

an alternative for constructing a contract that is still independent of previous actions but

retains the possibility of punishing players while the contract is active. To understand

the intuition behind that approach, it is necessary to understand that by restricting the

contract to be history-independent, it is deprived of the means to inflict punishment for

deviating prior to the contract becoming active. Thus, punishment needs to take place in

the subset of actions the contract still allows the players to play. In the case of committing

to one single actions for a period, cooperation and deviation in any prior period can only

14



be met by the same prescribed action. If the contract leaves the option of more than

one action, however, players retain the possibility to react differently to cooperation or

deviation by adhering to, for instance, a modified grim-trigger strategy. Thus, the SLC

is constructed by merely prohibiting the action resulting in the most profitable deviation

in the only period in which no cooperation takes place in the baseline. This is clearly

not necessary to take into account when constructing a SLC that can be conditioned on

prior play, which thus allows to implement an optimal grim-trigger strategy to induce

cooperation.

There is another dimension of inducing cooperation not yet touched upon, the ex-

tensive margin. In addition to increasing the periods of already existing cooperation, a

contract can also induce cooperation by changing the equilibrium from a non-cooperative

one in the baseline to a cooperative one. All SLCs are able to extensify cooperation

in that manner. However, they are limited by their implementability constraint on the

discount factor, δ̄IA and δ̄DA respectively. The same is not true for the full commitment

contract. By its nature it prevents deviation entirely and is thus not dependent on the

discount factor. Given low enough contractual costs κ, while suboptimal for intensify-

ing cooperation from a payoff perspective, a full commitment contract is always able to

extend cooperation when the SLCs are not. While this occasional trade-off between the

extensive and intensive margin in the form of choosing either a SLC or a full commitment

contract is apparently rather extreme, Section 5.1 explores the middle ground of multi-

period SLCs creating a more gradual trade-off between the payoff-efficiency of SLCs and

the feasibility advantages of long contracts.

To illustrate these prior points consider one specific example:

Example 1. Let the stage game described in Section 2 be repeated T = 3 times with

π = 1.5,m = 1.7, ẽ = 0.8.

As evident in Figure 2, this example is such that both types of SLC, history-dependent

and independent, can be implemented. Figure 3 analyzes this specific example further,

focusing not only on implementability but also on payoff-optimality by including the

contractual costs κ in the parameter space. In this specification whenever δ > δ̄BL = 0.75

(marked by the vertical black line) a cooperative equilibrium can be sustained in the

baseline. If additionally κ < 1− πL = 0.6 both SLC types yield a higher payoff than the

baseline. In this case, since there was already a cooperative equilibrium in the first place,

cooperation is induced in the intensive margin. Consider in contrast the areas to the left

of the black line. Here δ < δ̄BL and thus the baseline can only feature a non-cooperative

equilibrium. Consequently, any contract that induces cooperation does so in the extensive

margin. In this parametrization δ̄IA = 0.5 > 0.3 = δ̄DA so that there exists a low range of

discount factors for which only a history-dependent SLC can induce cooperation.15 Costs

15While we showed before that necessarily δ̄DA < δ̄BL depending on the parametrization δ̄IA ≷ δ̄BL,
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Figure 3: Environments with the highest payoff depending on discount δ and cost κ for
the specific example marked before (with π = 1.5,m = 1.7, ẽ = 0.8). The non-grey
regions correspond to the regions of the parameter space for which a SLC is preferable
to the baseline (and full commitment).

κ are implementation costs, and thus paid in the last period and discounted accordingly.

As a result a lower δ implicitly decreases the cost of the contract which implies that the

maximum cost a SLC can incur and still be preferable increases. On the other hand, the

cost for the full commitment contract gets always paid in the first period and does not

depend on variations in the discount factor. However, while costs remain constant, the

relative utility of cooperation induced in the last period decreases with lower discounts

factor, which results in a lower maximal cost for the full commitment to be preferable to

the baseline.

Lastly, a comment should be made about the cost structure used in the model. It is

obvious that focusing solely on implementation costs that do not depend on the length

of the contract, its complexity, monitoring or numbers of action prescribed is a stark

simplification. However, when comparing the SLC to full commitment contracts, these

simplifications not only make the model more tractable. As mentioned before, every

aspect mentioned above that does not factor into the height of the costs would make the

depending on πL ≷ 0.5.
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cost structure biased in favour of shorter, less restrictive contracts such as the SLC. Thus,

the results are based as much as possible on the incentives of cooperation itself rather

then cost advantages. Therefore, any generalization of the cost structure, except for the

timing of costs, which is examined in Section 5.2 and does not result in any qualitative

changes, would merely strengthen the preferability of SLCs over the full commitment

contract further.

5 Extensions

In this section, we relax three assumptions from our main analysis. First, we allow for

multi-period soft-landing contracts. Second, we consider more general contracting cost

structures. And third, we allow players to enter the soft-landing contract at a later stage

(rather than the outset of their relationship).

5.1 Multi-Period Soft-Landing Contracts

When considering both effective classes of SLCs (Section 3) before, the analyses were

limited to the case where the contract took effect in the last period of the game. This

is the most natural case for mainly two reasons. Firstly, compared to the cooperative

equilibrium in the baseline, by inducing intensive cooperation a SLC can only improve

the payoffs in the last period. Since this intensification only takes place in the last

period, it appears natural to use the SLC to commit only in the last period as well.16

Secondly, the SLC comes with costs κ that are paid when the contract takes effect,

reflecting implementation costs. Due to discounting, this costs have a present value of

δτκ depending on the period τ in which the contract becomes effective. As a result,

having a contract for more than one period is in addition wasteful, as the same cost has

to be paid earlier and is thus less discounted.

Even though it appears as if multi-period SLCs can be disregarded on this basis, there

is a reason to analyze them; the extensive margin of inducing cooperation. While the

intensive margin is concerned with the increase of existing cooperation, the extensive

margin covers the creation of new cooperation, i.e., changing the equilibrium from a

non-cooperative to a cooperative one.

Consider a SLC as described in Section 3 where the prescription is in effect for a total of

τ periods. Both for history-dependent and -independent contracts there is no incentive

to deviate once the contract takes effect. On the cost side, the threshold for history-

dependent and history-independent SLCs decreases from κ < 1−πL to κ < δτ−1(1−πL),

which makes the SLC not only less likely to be implementable but also less favorable than

16More specifically, this arises when considering that the commitment of the SLC is used solely to
counter the backwards unravelling in the equilibrium, which is restricted to uniquely the last period.
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Cooperative baseline Non-cooperative baseline

Single-period contract κ ≤ δT

1− α+ αT

(
1− πL

)
κ ≤ 1− δT+1

(1− δ)(1− α+ αT )

(
1− πL

)
Multi-period contract κ ≤ δT

1− α+ αT−τ

(
1− πL

)
κ ≤ 1− δT+1

(1− δ) (1− α+ αT−τ )

(
1− πL

)
Full commitment κ ≤ 1− πL κ ≤ 1− δT+1

1− δ

(
1− πL

)
Table 2: Cost threshold of the different model specifications for both only implementation
costs (main versions) and generalized costs (extension)

the one period version. On the other hand a longer SLC also changes the discount factor

necessary for the cooperative equilibrium to be possible. Denote by δ̄i(τ) the respective

threshold for the extended SLC.17 Then, one can show that δ̄i(τ) is weakly decreasing

in τ .18

Together, this creates a trade-off between the intensive and the extensive margin when

extending a SLC. With a longer contractual period the contract becomes implicitly more

costly as its present value increases due to less discounting, which reduces the possibility of

intensifying cooperation. On the other hand a longer SLC reduces the necessary discount

factor for cooperation to be possible in the first place, making extensive cooperation

easier to induce. This is possible until the increase in τ lowers δi(τ) to the point where

each player prefers to deviate immediately (even if enduring punishment for the rest of

the game), at which point increasing τ is no longer effective and thus never optimal.

Thus, for a long enough game, this imposes a natural upper bound on the length of a

soft-landing contract - which generically does not last for the entire game.

5.2 Generalized Contract Costs

Up to this point we considered the contractual costs κ to be implementation costs in the

sense that they were paid when the contract takes effect. There is, however, a second

main type of contractual costs that were ignored so far, drafting costs. Drafting costs

are costs that emerge from negotiating and setting up a contract and are usually paid

ex-ante. To capture both aspects, consider a SLC exhibiting generically both drafting

costs κd and implementation costs κi. To facilitate analysis, let α denote the proportion

of total costs taken up by implementation costs, i.e., κi = ακ and κd = (1− α)κ.

Using this, we can then reformulate the cost thresholds for the history-independent

and history-dependent SLC when compared to both a cooperation and non-cooperation

baseline equilibrium. The results are summarized in Table 2.

17Under this notation, for instance, δ̄i = δ̄i(1) for i = {IA,DA}.
18More specifically, it is strictly decreasing as long as δi(·) > δ̄D := πD−1

πD and is constant at δ̄D

afterwards. For a proof of this claim see Appendix A.3.1
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Figure 4: Environments with the highest payoff depending on discount δ and cost κ for the
example. As before, in the red area, only the dependent action SLC is implementable,
whereas in the blue area both kinds of SLCs are possible. The lighter shades of red
represent the additional SLCs with a runtime of 2 and 3 periods.

Figure 5 depicts an overview over the optimality of contracts under two cost regimes

(where implementation costs make up half and three-quarters of total costs resp.). As

mentioned in Section 3, it can be seen that changing the cost structure to more realisti-

cally reflect contracting costs in reality does not change the findings of our main model

qualitatively.

The comparison with Figure 3 is useful in order to understand the main difference

between different cost structures, namely how optimality (i.e., costs such that a contract

is the most preferred option) depends on δ. Without a generalized cost structure, full

commitment contracts behave as if they only exhibit drafting costs (as all costs are paid

upfront when the contract becomes binding in the first period). In contrast, SLCs only

feature implementation costs since no costs are paid upfront. In the former case, a

higher discount factor δ does not increase the present value of costs but increases the

present value of the payoffs, hence making higher costs feasible. In the latter case, if the

contract changes outcomes in any period but the last, those changes are affected less than

the changes to the present value in costs, leading to a decline of feasible costs with δ. In
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(a) Generalized Costs (α = 0.5)
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(b) Generalized Costs (α = 0.75)

Figure 5: Extensions of Figure 3 including two-period SLCs (in the respective light shade)
and drafting costs with α = 0.5 (left) and α = 0.75 (right).

Figure 5 it becomes visible how generalized costs are affected from changes in δ depending

on which effect dominates.

5.3 Endogenous Contracting Timing

When thinking about SLCs in practice there are instances where the contract merely not

being effective in every period does not fully capture the contract’s nature. Rather, the

players start a relationship (i.e., start playing the game in our model) and could postpone

negotiating a contract to an eventually later point in time. In principle, this adds an

uncertainty to the initial actions that could counteract the incentives of cooperation of

any (certain) SLC.

In our main model, contracts have to be formed exogenously in the very first period

before any interaction takes place. This section aims to show that this is mainly an

assumption that simplifies solving the model with the timing being robust when allowing

parties to also form contracts at a later point in time. To capture this, extend the model

such that in every period the players, in addition to choosing their action ai for that

period, also decide beforehand whether to enter into any contract.19 The contract can in

principle be of any form highlighted in Section 3 - although we will restrict attention to

dependent-action SLCs for expositional ease.

First, it is important to note, that any sequentially rational contracts can only affect

payoffs in periods after the contract was negotiated. 20

19As before, we maintain the assumption that contracts negotiated in any stage are symmetric.
20Without sequential rationality, contracts could be chosen that are contingent on earlier stages of

the game. But crucially once a history is reached in which a contract would need to be punishing, this
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For our analysis, two cases need to be distinguished. On one hand, consider the case

where δ < δ̄BL. Following Lemmas 1 & 2 this implies that only the non-cooperative

equilibria can exist in the baseline. Importantly, NE are played in every period, making

unilateral deviations unprofitable by design. Hence, under the restrictions already dis-

cussed in Section 4 whenever a SLC is optimal, writing it as early as possible to extend

the stream of cooperation payoffs for as long as possible is optimal.21

On the other hand, consider the remaining case where δ ≥ δ̄BL and start by considering

the last period. As stated in Lemma 1 this guarantees the existence of a cooperative

baseline, meaning that any SLC can only improve cooperation intensively, i.e., increasing

payoffs from πL to 1 in the last period. Here, in every period but the last players might

find it profitable to unilaterally deviate. However, note that SLCs are only optimal as

long as κ < 1− πL (see Prop. 3). Under such costs, players will find it optimal to write

a contract if no one exists yet both after deviation and non-deviation histories.22 Since

this contract would not condition on past play, it would act similar to the abridged full

commitment contract discussed before, practically partitioning the game at the point of

the contract, making it optimal to play l in the last period before the contract will be

negotiated, thus lowering the total payoffs. The best action in the preceding period is,

thus, to write a contract to avoid piL from being reached in this period, effectively moving

the partitioning forward until a contract is formed in the very first period, yielding the

cooperation payoff in every subsequent period. Put together with the first case, this

results in the following result:

Corollary 2 (Endogenous Timing). Every contract optimal in the basic model with ex-

ogenous timing will be also formed in t = 0 under endogenous timing.

6 Conclusion

We created a simple framework of symmetric player interaction with potentially partial

but not complete cooperation. Introducing contracts into this framework allowed players

to extend the cooperation from the baseline both intensively and extensively. While

complete contracts (full commitment contracts in our terminology) are effective at doing

that, we found that by using soft-landing contracts the same results can be achieved while

saving costs.

The main insight consisted in the finding that in order to counteract the backwards

unravelling that prevents full cooperation in the absence of contracts, the most cost

contract can not be optimal and is clearly dominated by, e.g. a full commitment contract that treats
past play as sunk.

21This result extends to the case where costs are of the more general form presented in Section 5.2.
For more details, see App. A.3.2.

22Deviation histories refer to histories of past play in which at least one player deviated at least once
from the cooperative action w, with non-deviation histories being defined accordingly.
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effective contracts are those that become only effective when strictly required to. However,

being only in effect for the later stages of the game, SLCs have to be carefully constructed

so to not maintain the incentives that led to cooperation in the baseline. We found that

abridged full commitment contracts are not able to sustain those incentives whereas

SLCs that are either less rigid but incontigent (history-independent SLCs) or contigent

(history-dependent SLCs) do. These results proved robust to extensions regarding the

cost structure of contracts, the endogeneizing the contract timing as well as relaxing the

prescription of actions in favor of specifying (budget-balanced) transfers. Further, we

showed how extending the duration of SLCs can be used to trade off cost-effectiveness

with implementability, thus inducing even more cooperation in the extensive margin.

Our results contribute to the existing literature on contracts in two major ways. On

one hand, they provide a solid justification for the use of such framework contracts that

extends beyond the perspective of building and fostering trust, that is usually the focus

of the literature on contracting in practice. On the other hand, temporal incomplete-

ness is generally overlooked in the literature on rationally incomplete contracts. While

many papers have studied the role of specificity and contingency in contracts and how

incompleteness in these dimensions might arise as a conscious decision born out of strate-

gical motivation, this paper is the first, to the best of our knowledge, that undertakes a

comparable approach with respect to the temporal dimension.

While this model can serve as a simple starting point to analyze this specific con-

tracting practice, further research is needed to extend the understanding of temporally

incomplete, such as developing a framework that generates contracts that are written

in ongoing stages of the game. Potential additional avenues include models focusing on

asymmetric principal-agent interactions as well as a unified model incorporating the role

of trust in negotiating contracts.
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A Appendix

A.1 Proofs

Proof of Lemma 1

Proof. Consider first the timing of the optimal deviation. To that end, assume w has been
played for the first τ periods and consider the indifference to deviate in t = τ + 1 compared to
t = τ + 2, yielding

1− δτ

1− δ
+ δτπD =

1− δτ

1− δ
+ δτ + δτ+1πD

⇐⇒ δτπD = δτ + δτ+1πD

⇐⇒ πD = 1 + δπD ⇐⇒ δ = 1− 1

πD =
πD − 1

πD =: δ̄D

By induction, logic follows that whenever δ < δ̄D, it is optimal to deviate in t = 1, whereas for
δ > δ̄D deviation in t = T is the most profitable.

For δ < δ̄D, the condition for the existence of a cooperative equilibrium gets more compli-
cated as indifference is characterized by

1− δT

1− δ
+ δTπL = πD

However, the following argument shows that, in this case, no cooperative equilibrium can exist.
Assume that a player gets a utility stream of 1

1−δ , which is equivalent to the infinite sum of

discounted payoffs of πt = 1, i.e.,
∑∞

0 δt = 1
1−δ . It is easy to see that getting πt = 1 for

infinite periods has to yield a higher total utility than getting πt = 1 for only T − 1 periods and
πt = πL < 1 in the last. Note, however, that this infinite stream is equivalent to the first-period
deviation payoff whenever

1

1− δ
= πD ⇐⇒ πD(1− δ) = 1 ⇐⇒ δ =

πD − 1

πD =: δ̄D

Since the infinite stream utility increases with δ, it has to be that πD ≥ 1

1− δ
>

1− δT

1− δ
+

δTπL whenever δ < δ̄D. But that is saying that deviation is always profitable compared to

cooperation. Thus, the only cooperative equilibria can arise when δ ≥ πD − 1

πL >
πD − 1

πD since

πD > 1 > πL.

A.2 Mixed Equilibria of the APD

Proof. To check for mixed equilibria of the stage game, first note that w is dominated by s by
assumption:

1) 0 > 2(π − c) = 2(12 − π) by (a)

2) 2π −m > 4π − 2c = 1 ⇐⇒ m < 2π − 1by by (c)

3) ẽπ −m > (2 + ẽ)π − 2c = (2 + ẽ)π − 4π + 1 ⇐⇒ m < 2π − 1 by (c)

Hence the only mixed equilibrium is given by the mixed strategy αi = ps+ (1− p)l. The indif-
ference condition for mixed equilibria then yields p = ẽ

m(π − 1
2). Since πi(s, l), πi(l, s) < 1/2ẽ,
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it follows that the utility of the mixed NE is below πL.23 Finally, the alternative assumption
(d)′ is obtained from the condition ensuring ẽπ−m > 0, which in turn implies a positive payoff
from the mixed NE.

Without this assumption, the MNE could provide a negative payoff and thus offer an al-
ternative to punishing deviation with playing (s, s). This would affect the δ-thresholds but not
change the result qualitatively.

A.3 Formal Derivations of Extensions

A.3.1 Multi-Period SLC

To show that δ̄i(τ) is decreasing in τ , assume for now a deviation to be always optimal in
the last period, and consider first the case of a history-independent SLC lasting for τ periods,
δ̄IA(τ). Implicitly, cooperating is optimal if

1 + δ + . . .+ δτ ≥ πD + (δ + . . .+ δτ )πL

⇐⇒ δ + . . .+ δτ ≥ πD − 1

1− πL

which is strictly increasing in δ on the LHS and constant on the RHS. Thus, for this to hold,
we need δ̄i(τ) to be decreasing in τ .

Now consider the feasibility threshold for a history-dependent SLC of τ periods, δ̄DA(τ),
which is implicitly given by

πD − 1 < δ + . . .+ δτ

and note that for τ + 1 periods the threshold is characterized by

πD − 1 < δ + . . .+ δτ + δτ+1 ⇐⇒ πD − 1− δτ+1 < δ + . . .+ δτ

Since δτ+1 > 0 for all δ > 0 and the RHS is strictly increasing in δ for δ > 0, the only possibility
for the inequality to hold is to have δ decrease, which is saying δ̄DA(τ) > δ̄DA(τ + 1). By
induction, this implies that δ̄DA(τ) is strictly decreasing in τ .

Lastly, we now relax the assumption that deviation is always optimal in the last period. As
seen in Appendix A.1, an early deviation is (strictly) optimal whenever δ < δ̄D := πD−1

πD which
implies

πD > 1 + . . .+ δT − 1 + δTπD > 1 + . . . δT

Hence, no contract that gives the optimal (w,w)-payoff in each period can be optimal and thus
δ̄i(τ) ≥ δ̄D for all τ .

For the case of implementation costs in the non-cooperative baseline setting for τ = nc

periods, we obtain

T∑
t=0

δt − δτκ > πL
T∑
t=0

δt ⇐⇒ κ <
(1 + ...+ δT )

δτ
(1− πL) =

1− δT+1

(1− δ)δτ
(1− πL)

for the SLC to be preferable.

23For πi(s, l) this is satisfied since (l, l) is a NE, for πi(l, s) this follows from the fact that πi(l, s) =
ẽ(π − c) < ẽ(2π − c) = 1

2 ẽ since ẽ, π > 0.
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A.3.2 Endogenous Timing with Generalized Costs

As in Section 5.2, assume that costs are a combination of drafting and implementation costs
with κi = ακ.
Consider first the case in which only the non-cooperative baseline exists (δ < δ̄BL). Next,
consider a SLC becoming active in period τ and compare it to one that becomes active in
period τ + 1. For the player to prefer the former, we require

δτ−1(1− κd) + δτ > δτ−1πL + δτ (1− κd)

⇐⇒ 1− κd + δ > πL + δ(1− κd) ⇐⇒ 1− πL > κd(1− δ) ⇐⇒ κd <
1− πL

1− δ

which is independent of τ and, hence, by induction any SLC is either optimal in t = 0 or t = T .
Now consider a SLC optimal in the last stage and compare it to the non-cooperative baseline.
The latter is optimal whenever δTπL > δT (1 − κ) which is equivalent to κ > 1 − πL which is

necessarily true since κ > κd > 1−πL

1−δ > 1 − πL. Hence, either a SLC is negotiated at t = 0 or
no SLC is formed, which simplifies to the standard model of Section 3.

Now consider the case where δ ≥ δ̄BL implying the existence of a cooperative equilibrium.
Here we need to consider the possibility of unilateral deviation in intermediate period, hence
approach the game using backward induction. In the last period, following a non-deviation
history the payoff without contract is πL while after a deviation-history it is 0. Under an existing
contract, the payoff is 1 − κ.24 Thus players would prefer to form a contract in all histories if
κ < 1− πL and only in deviation histories if κ < 1.25 As discussed before, these contracts need
to be independent of histories of prior play in order to be sequentially rational. Hence, the last
period yields 1− κ irrespective of whether players deviated previously. Hence, in period T − 1
playing (w,w) is no longer optimal since players would deviate and still enter a non-punishing
contract afterwards. Hence players in a non-deviation history face the choice of sticking to the
second-best πL or forming a contract that gives 1− (1− δ)kd and in both cases getting 1− κ in
the last period. For not contracting immediately, we would need πL > 1 − (1 − δ)κd which is

equivalent to κd > 1−πL

1−δ and contradicting κ < 1−πL. Hence, it is optimal to contract. It follows
that the same must hold for players in a deviation history facing a zero payoff without contract.
Hence again, after both kinds of histories a contract would be made partitioning the game in
the same way as before. Crucially know, in each preceding history, the highest attainable payoff
without contract is πL after non-deviation histories, 0 after deviation histories. The last step
is to prove that in any period a contract adds 1 − (1 − δ)κd. This will be proven by complete
induction. Start from a last period contract in which the total payoff is 1−κ trivially. Now take
an arbitrary contract that yields 1− κd + δ + . . .+ δn−1 + δn(1− κi) and note that we obtain
the previous period total value of 1− κd + δ + . . .+ δn + δn+1(1− κi) by adding 1− (1− δ)κd
to the discounted value, i.e.,

1− (1− δ)κd + δ(1− κd + δ + . . .+ δn−1 + δn(1− κi))

= 1− κd + δκd + δ − δκd + . . .+ δn + δn+1(1− κi)

= 1− κd + δ + . . .+ δn + δn+1(1− κi)

Thus, the game transforms for each subsequent period into a stationary where players decide
between πL and 1 − (1 − δ)κd in non-deviation histories and 0 and 1 − (1 − δ)κd in deviation

24Technically, it is only 1 − κi if the contract was drafted in earlier periods, but this assumption
simplifies analysis and will be accounted for in later stages.

25Since we have shown in Prop. 3 that κ < 1− πL is required for SLCs to be optimal at all, we can
rule out an SLC becoming profitable if it isn’t in the last period (the reasoning propagates forward until
the initial node is a unique non-deviation history at which not contracting is optimal). Hence, focus on
the former case where κ < 1− πL.
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histories, followed by a safe contract irrespective of their choice in that period. Thus, the only
SLCs that arise are when κ < 1− πL and are agreed upon in t = 0.

A.4 Transfer-Based SLC

Another approach to model SLCs in this framework is to think of a contract of a commitment to
transfer payoff between players rather than directly modifying the action space. In the model
setting, this means that a SLC corresponds to a change of the payoff of a stage game. For
simplicity, we will focus again solely on symmetrical contracts. For now, consider transfers that
are not conditioned on previous actions. Then for one period t a history-independent transfer
SLC can be defined as

Ct : Ai ×Ai → R such that ∀ai, aj : Ct(ai, aj) + Ct(aj , ai) ≤ 0.

resulting in the total utility of an action profile, ui,t(ai,t, aj,t) = πi(ai,t, aj,t) + Ct(ai,t, aj,t).
The budget condition ensures that transfers can not create additional surplus (feasibility).26

Under feasibility, transfer SLCs can replicate any action prescription SLC by simply setting
Ct(ai, ·) < −TπD for any action profile ai that should not be played, making the transfer
costlier than the maximum payoff obtainable in the entire game. We will focus therefore on
the subset of budget-balanced transfers, where Ct(ai, aj) = −Ct(aj , ai), with the additional
advantage of not wasting social surplus.

Given that πi(w,w) = 1 is only exceeded by πD > 1, (w, s) and (s, w) are the sole candi-
dates for improving upon (w,w). However, πi(w, s) + πj(w, s) < 2, which makes (w,w) the
socially optimal action profile, even when considering all feasible transfers.
Therefore, focus on transfers that can implement (w,w) in each period. Note that a credible
last period strategy has to induce a NE of the stage game. Therefore, the contract needs to
make (w,w) a NE of the stage game in (at least) the last period. This is easily achieved by
setting Ct(w, l) = 1−πD−ε where ε > 0. In order to keep (s, s) a NE to use in the grim-trigger
strategy, ε has to be sufficiently small.
In order to prove the existence of an ε that induces (w,w) in each period, first consider opti-
mality of (w,w) and note that

πi(w, s) + πj(w, s) = 2π −m+ 2(π − c) = 4π − 2c−m = πi(w,w)−m < 2πi(w,w) = 2

with πi(w,w) = 4π − 2c = 1 by design.

Then, a contract that induces (w,w) as an equilibrium needs to fulfill two conditions, Firstly,
(w,w) has to become a NE of the stage game, requiring

πi(w, s) + Ct(w, s) < 1 ⇐⇒ Ct(w, s) < 1− πD ⇐⇒ Ct(w, s) = 1− πD − ε with ε > 0

Secondly, (s, s) has to remain a NE of the stage game. Consider again the inequality above and
note that

πi(s, w) + Ct(s, w) = πj(w, s)− Ct(w, s) = πj(w, s) + πi(w, s) + ε− 1

= πi(w,w)− 1 + ε−m = ε−m

Thus, πi(s, w) + Ct(s, w) < 0 as long as ε < m. Since m > 0 by definition, this implies that
there always exists an ε satisfying 0 < ε < m.

26Unless Ct(ai, aj) + Ct(aj , ai) = 0 (budget-balance) it is, however, possible to destroy surplus.
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Intuitionally, if ε is too high, that is, the transfer paid by the shirking to the working player too
big, it deters not only free-riding, but also incentivizes players to work when the opponent is
shirking. Thus, the simplest budget-balanced transfer SLC that implements (w,w) as a stage
NE is given by

Ct(ai, aj) =


1− πD − ε for (w, s)

πD − 1 + ε for (s, w)

0 otherwise
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