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Abstract

Compared to more sophisticated equilibrium theory, naive, non-equilibrium

behavioral rules often better describe individuals’ initial play in games. Addi-

tionally, in repeated play in games, when individuals have the opportunity to

learn about their opponents’ past behavior, learning models of different sophis-

tication levels are successful in explaining how individuals modify their behavior

in response to the provided information. How do subjects following different

behavioral rules in initial play modify their behavior after learning about past

behavior? This study links initial and repeated play in two different types of

games (the 11-20 and 3 × 3 normal-form games) using a within-subject labo-

ratory design. We classify individuals as following different behavioral rules in

initial and repeated play and test whether and/or how strategic naivete and so-

phistication in initial play correlate with naivete and sophistication in repeated

play. We find no evidence of a positive correlation between naivete and sophis-

tication in initial and repeated play.
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1 Introduction

Nash equilibrium has been and still is the benchmark solution concept in game the-

ory for predicting individual behavior in strategic environments. Since economics

adopted the use of laboratory experiments, hundreds of experimental studies have

tested whether individual behavior complies with the predictions of Nash equilibrium

theory. These studies have shown that equilibrium theory has clear limitations in re-

gard to its ability to describe how people behave in strategic environments. In response

to ample experimental evidence, the important contributions of behavioral economics

include models of bounded rationality that improve our understanding of how people

actually behave in two different domains. First, when individuals make decisions for

the first time with no previous experience or opportunity to learn, a scenario that is

called initial play, naive, non-equilibrium, behavioral rules often outperform equilib-

rium theory in their ability to describe individual behavior (see for example, Goeree

and Holt, 2001; Crawford et al., 2013).1

Does behavior in initial responses relate in any way to behavior in repeated play in

strategic environments? This is the central question of this paper.

In studies on initial play, models that explain how individuals begin playing games

differ in their assumptions on the level of naivete or sophistication of individual think-

ing in strategic environments. We can order the behavioral rules in initial play from

most naive to most sophisticated.2 We propose that the most naive behavioral rules

include processes that require no strategic thinking, meaning no need to predict an op-

ponent’s behavior, such that strategic settings are considered to be isomorphic to pure

decision-making settings. For example, maxmax (optimistic) and maxmin (pessimistic)

1For initial play, the crucial aspect is that individuals make decisions with no previous experience or
opportunity to learn. This can include responses to one-shot games, as in Goeree and Holt (2001), or
responses to multiple games that are similar but in which subjects are not provided with any feedback
from game to game, as in, for example, Costa-Gomes et al. (2001). Second, given that people often
do not start playing the Nash equilibrium strategy, bounded rationality models have been applied to
repeated play to understand how people modify their behavior when provided with information on
past behavior, that is, how individuals learn over time (see for example, Sobel, 2000).

2We use naivete and sophistication to refer to strategic naivete and sophistication, which can be
different from behavioral naivete and sophistication. In other words, an individual showing behavior
consistent with level-1 behavioral rule is naive regarding her revealed strategic sophistication but can
be behaviorally the most sophisticated if all other opponents show random uniform behavior. This
observation is related to work by Alaoui and Penta (2016) that tests whether individuals who show
behavior consistent with a particular level-k thinking do so because of their own limitations or because
of their beliefs about opponents’ limited behavior.
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behavioral rules fall into this category because maximizing over possible outcomes or

maximizing over minimum possible outcomes does not require any ability to predict an

opponent’s behavior. Level-k thinking models, which have been shown to be success-

ful in explaining initial behavior in different settings (Stahl and Wilson, 1994, 1995;

Nagel, 1995; Costa-Gomes et al., 2001; Camerer et al., 2004), illustrate different levels

of strategic sophistication quite well. The level-1 behavioral type calculates the ex-

pected payoff associated with each of the available strategies, assuming that each of the

opponent’s actions is equally likely, and takes the strategy with the highest expected

payoff or, alternatively, sums her own payoffs across columns and takes the strategy

that yields the maximum sum of payoffs. In the spirit of this latter interpretation,

we also consider level-1 thinking to be a naive behavioral model.3 More sophisticated

behavioral rules require individuals to best respond to some type of opponent behavior.

Level-2 and level-3 represent assumptions of increasing sophistication about the oppo-

nent’s actions, as the level-2 type believes the opponent is behaving as a naive level-1

type and best responds to those beliefs, while level-3 type assumes that the opponent

is behaving as a level-2 type and best responds to those beliefs. Finally, among the

most sophisticated behavioral rules is the Nash equilibrium, which considers not only

common knowledge of rationality but also rational expectations about beliefs.

In studies focused on repeated play, models that explain how individuals modify

their behavior in response to information on (their own and their opponent’s) past

behavior also differ in strategic naivete or sophistication with respect to whether in-

dividuals use information on past behavior and, if they do how they use it. Learning

models can also be ordered according to their sophistication level from most naive to

most sophisticated in a hierarchical manner. We propose that the most naive learning

model simply repeats the same strategy used in the past, having no need to use past

strategies to predict the opponent’s strategy. We refer to this as the No-Change behav-

ioral rule in repeated play. Adaptive learning models assume that individuals modify

their behavior in response to information on past behavior, i.e., best responding to

an opponent’s past behavior (illustrated best by fictitious play, as in Fudenberg and

Levine, 1998; Fudenberg et al., 1998). Note that adaptive learners assume that oppo-

3The cognitive hierarchy model (Camerer et al., 2004) assumes that level-k players best respond to
combinations of existing lower levels. However, both level-k thinking and cognitive hierarchy models
coincide in terms of their level-1 predictions.
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nents indeed follow a No-Change type, as they assume that opponents will repeat the

same strategy used in the past; therefore, adaptive learners will best respond to their

opponents’ past strategy. Finally, more sophisticated learning models assume that op-

ponents indeed learn through an adaptive learning model and best respond accordingly

(see, for example, Milgrom and Roberts, 1991; Selten, 1991; Conlisk, 1993a,b; Nagel,

1995; Camerer et al., 2002; Stahl, 2003).

Somewhat surprisingly, the studies on learning models (i.e., Cheung and Fried-

man, 1997; Erev and Roth, 1998; Fudenberg and Levine, 1998; Fudenberg et al., 1998;

Camerer and Hua Ho, 1999) and on models to explain initial behavior (summarized in

Crawford et al., 2013) have followed parallel paths.4 On the one hand, in studies on

learning over time, initial play has been treated as a “black box”, an exogenous factor

used only to initialize learning models, for example by estimating initial “attractions”

associated with each of the particular strategies or, alternatively, simply assuming that

initial “attractions” are the same across different strategies. On the other hand, models

that aim to explain initial behavior have used mostly experimental designs that provide

no feedback from game to game, precisely to suppress any opportunity to learn. Such

models have been silent on learning over time.

However, it might seem natural that some type of relation exists between strategic

behavior in initial and repeated play. As Costa-Gomes and Crawford (2006) note, mod-

eling initial responses more precisely could yield insights into cognition that elucidate

other forms of strategic behavior, such as learning and distinguishing between different

levels of sophistication in rules and therefore influencing the implications for equilib-

rium selection and convergence. However, similar implications that seemed a priori

intuitive have been empirically rejected (Costa-Gomes and Weizsäcker, 2008; Knoepfle

et al., 2009). Gill and Prowse (2016) take a different approach by measuring cognitive

ability exogenously with the Raven test; they then test whether more cognitively able

subjects choose numbers closer to equilibrium, converge more frequently to equilibrium

play and earn more. The question of whether the behavior in these two contexts is

related is not only natural but also important. If such behavior is related, observing

the initial behavior of an individual would be informative about how her behavior will

4There are a few exceptions, as some models have been used to explain both initial behavior and
learning behavior over time, such as the quantal response equilibrium model by McKelvey and Palfrey
(1995), which simply estimates different noise levels or lambda-s for behavior in different stages.
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change and vice versa. Furthermore, this relation would allow a unified framework of

behavior in games that incorporates both initial and repeated play (see, for example,

Ho et al., forthcoming). If such behavior is not related, such that we observe very

different levels of sophistication when the same individual faces a situation for the first

time and in repeated play, characteristics that we sometimes measure as inherent to an

individual, such as cognitive ability, may be more context dependent than previously

believed.

We therefore address fundamental questions to propose a unified framework for

studying initial and repeated play in games: How do strategic naivete and sophistica-

tion in initial play relate to naivete and sophistication in the use of information on past

behavior in repeated play? Is a strategically naive player in initial responses, compared

with a more sophisticated player, more likely to learn through a naive learning model

in repeated play? We propose two laboratory experiments with mixture-of-types model

econometric estimations to address these inherently empirical questions.5

We carry out two different experiments with similar designs with two different

types of games, an 11-20 game, Arad and Rubinstein (2012), and 3 × 3 games. The

experiments consist of two different parts. In the first part, the subjects played the

games with no feedback, with our objective being to elicit their initial play (with no

opportunity to learn or obtain experience). Subjects’ behavior in the first part could

not be affected by anything in the second part, as they did not know what they would

do in the second part. Based on the subjects’ decisions, we classified each subject as

following one of multiple behavioral rules. For the 11-20 game, subjects could be easily

classified in their sophistication with a single play of the game. However, this was

not the case for the 3× 3 games, so subjects in our experiment proceeded through 14

different 3× 3 games (actually 7 asymmetric games, where the subjects played as both

row and column players). Based on the subjects’ profiles of 14 decisions, we classified

each subject as following one of the multiple behavioral rules. This exercise is similar

to those pioneered by Stahl and Wilson (1994, 1995) and later used by, for example,

Costa-Gomes et al. (2001), Costa-Gomes and Crawford (2006), Rey-Biel (2009) and

5As the initial response can be equivalent to the response to one-shot games, our study can also be
described as testing whether naivete/sophistication in behavior in one-shot games correlates in any
way with naivete/sophistication in behavior in one-shot games when the individual is provided with
information on past behavior. This is related to our design being able to capture the “initial model of
learning”, as we refer to the objective of the repeated play part of the experiments that we carry out.
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Garćıa-Pola et al. (2020).

In the second part of the experiment, subjects went over the same games again, but

this time, in each of the games, they received information on both what they did and

what their current opponent did in the first stage. For the 11-20 game, we implemented

a third stage, in which subjects were provided with their own past strategy in the

first part and asked to choose a strategy for each of the possible strategies that their

current opponent could have chosen in the first part (a strategy method accounting

for the information on opponent’s strategy in the first part). As having just one

decision imposes important limitations on our ability to identify which learning model

the subject is using, we used stage 3 data in the main analysis and relegate stage 2

data analysis to the Online Appendix, which confirms the main results. Using the

subjects’ profiles of their decisions in repeated play and observed information on their

own and current opponent’s past strategies in the first part, we classified each subject

as following one of multiple behavioral rules in repeated play.

It is important to note that with this elicitation and identification of learning rules,

we differ from studies that attempt to identify the ability of different learning rules to

explain behavioral data (see, for example, Erev and Roth, 1998; Camerer and Hua Ho,

1999; Feltovich, 2000, and more recently, Kovář́ık et al., 2018). First, the learning

models that we consider and identify vary in terms of which information individuals

use (their own or their opponent’s) to modify past behavior and what individuals

believe about how their opponents will use that same information on past behavior.

Second, in our setting, for a particular game, subjects can learn about an opponent’s

past actions just once, but we elicit how subjects learn from several different games or

decisions based on their opponents’ past actions in those games. In other words, we

elicit subjects’ learning rules using multiple different games or decisions in a way that

does not allow the subjects themselves to evaluate the success of their learning model,

which we refer to as the “initial model of learning”. These two important features

considerably distinguish our approach to studying learning from existing work.

As this study is, as far as we know, the first empirical exercise to connect initial

and repeated play, we use games that allow the highest separation among different

behavioral rules in both initial and repeated play. The 11-20 game presents very

good separation, as this game was specifically designed to separate different levels

of strategic thinking, and we further designed the 3 × 3 games with this purpose in
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mind. The separation is the cornerstone for the use of a mixture-of-types model to

identify and classify subjects into different behavioral rules in both initial and repeated

play. Finally, the within-subject design allows us to construct contingency tables to

test whether naivete and sophistication in initial play are correlated with naivete and

sophistication in repeated play. We find no evidence for a positive correlation between

strategic naivete and sophistication in initial and repeated play.

Regarding initial behavior, consistent with previous findings, few Nash equilibrium

players are found among the subject population. In the 11-20 game, the majority

of subjects play 18 and 17 (corresponding with level-2 and level-3 sophisticated be-

havioral rules), with the two strategies accounting for 47% and 31% of the subject

population, respectively. In the 3 × 3 games, we find that the majority of subjects,

60%, use a naive, non-strategic, behavioral rule. The second most frequent rule is a

more sophisticated behavioral rule, level-2 type, which is used by 36% of the subjects.

Furthermore, when we identify the behavioral rules that describe repeated play in both

experiments, the majority of subjects, approximately 55%, show behavior consistent

with adaptive learning, and an important number of subjects, 22% in 3 × 3 and 35%

in the 11-20 games, follow the most naive behavioral rule of ignoring their opponent’s

past action. Sophisticated learning models are more rarely used.

Most importantly and surprisingly, when we examine how naivete and sophistica-

tion compare between initial and repeated play, which is the central question of our

study, we find little support for any positive correlation. In the 11-20 game, subjects

are more likely to use adaptive learning models independently of the behavioral rule

used in initial play. For the 3 × 3 games, subjects using a naive behavioral rule in

initial play are, if anything, more likely to use a more sophisticated learning model

than subjects using a more sophisticated model in initial play. In particular, 62% of

individuals using a naive behavioral rule in initial play use an adaptive learning model,

while only 45% of the subjects using a level-2 rule use an adaptive learning model.

The rest of this paper is organized as follows. Section 2 describes the theoretical

framework defining the different behavioral rules and their classification into naive and

sophisticated rules. Section 3 presents the experimental design for the empirical test.

Section 4 contains the results, which are divided into the identification and classifica-

tion of subjects according to their initial play, the identification and classification of

subjects according to their repeated play, and the correlation between the naivete and
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sophistication displayed across the two settings. Finally, Section 5 concludes. Online

Appendix A includes the econometric specification for mixture-of-types models, Online

Appendix B includes robustness checks on the experimental results, Online Appendix

C includes additional tables, and finally Online Appendix D includes the experimental

instructions.

2 Theoretical Framework: Naivete and Sophistica-

tion in Initial and Repeated Play

When analyzing initial play, we consider 8 behavioral types. We consider the leading

behavioral models in the literature (Stahl and Wilson, 1994, 1995; Nagel, 1995; Costa-

Gomes et al., 2001; Costa-Gomes and Crawford, 2006; Garćıa-Pola et al., 2020, among

others).

The altruistic or social welfare maximizer type, A, simply sums her own and her

opponent’s payoffs in each cell of the payoff matrix and applies the maxmax operator.

The inequity averse type, IA, in a similar way, takes the absolute value of the difference

between the her own and her opponent’s payoffs in each cell of the payoff matrix and

applies the minmin operator. Although these two models resonate with interdependent

preferences, which a priori are independent from models of strategic thinking, the actual

naive implementation brings them close to a naive behavioral rule. The optimistic type

(MaxMax ) follows the strategy that results from applying the maxmax operator using

only her own payoffs, while the pessimistic type (MaxMin) follows the strategy that

results from applying the maxmin operator using only her own payoffs. The level-1

type (L1 ) sums her own payoffs across columns and takes the strategy that yields the

maximum sum of her payoffs. The level-2 type (L2 ) expects her opponent to behave

as a level-1 type and best responds to those beliefs. Level-3 and level-4 types (L3

and L4 ), similarly, expect their opponent to behave like level-2 and level-3 types,

respectively, and best responds to those beliefs.6 Finally, NE players calculate the

mutual best response required by equilibrium thinking.

How do we classify all these behavioral rules from the most naive to the most

sophisticated? We take a simple approach and define the most naive behavioral rules

6Note that given that our games in Figure 1 do not have any dominated strategies, level-k rules
and dominance-k rules, as defined in Costa-Gomes et al. (2001), coincide.
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as those that do not need to anticipate the opponent’s strategy, such that subjects

following the most naive behavioral rule could treat strategic and pure decision-making

situations as isomorphic. Among the non-strategic behavioral rules, we include the

altruistic or social welfare maximizer, inequity-averse, maxmax or optimistic, maxmin

or pessimistic and level-1 types. Note that some of these behavioral rules can indeed be

interpreted as individuals having beliefs and best responding to them (e.g., the level-1

or maxmin rule), but can also be interpreted as individuals simply following a naive

behavioral rule as if they faced a pure decision-making setting (e.g., the level-1 type

summing her own payoffs across columns or a maxmin type doing the maxmin operator

over her own payoffs). As long as a behavioral rule does not need to anticipate the

opponent’s strategy, we consider these behavioral rules to be non-strategic and naive.

Once we define the most naive behavioral rule, we build on best response iterations

to define higher levels of sophistication. On this basis, level-2 to level-4 rules are

ordered immediately after the naive behavioral rules because a level-2 player anticipates

that her opponent will behave like a level-1 type and best responds to those beliefs,

while a level-4 anticipates that her opponent will behave like a level-3 type and best

responds to those beliefs. Please see the robustness test in Section B.3.1 of the Online

Appendix for a discussion of the similar hierarchical best response iterations for A, IA

and MaxMax and MaxMin. Finally, the most sophisticated behavioral rule is the Nash

equilibrium.

With respect to repeated play, we consider 4 main behavioral types. We again

consider the leading behavioral models from the literature (Fudenberg and Levine,

1998; Fudenberg et al., 1998; Nagel, 1995; Camerer et al., 2002; Stahl, 2003).

The no-change type (No-Change) simply mimics the behavior undertaken in the

first part of the experiment. Models based on adaptive learning theory (Adaptive)

assume that individuals best respond and try to guess what their opponent will do

(similarly to any belief-based learning model, as in Fudenberg and Levine (1998)).

In our setting, as subjects are provided with their opponent’s past strategy, adaptive

learning implies that the opponent will repeat her/his past strategy (that is, oppo-

nents are expected to follow a No-Change type and therefore, adaptive learners best

respond to that behavior).7 When best responding to their opponents’ past behavior,

7Notice that in our repeated play setting, given that subjects are never provided with informa-
tion on how successful their strategy in the first stage was, reinforcement learning (Erev and Roth,
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individuals may maximize their own payoffs (AdaptiveS), do maxmax over the sum of

their own and their opponents’ payoffs (AdaptiveA), or do minmin over the absolute

difference between their own and their opponents’ payoffs (AdaptiveIA). Sophisticated

learning (Sophisticated) goes one step further and considers that her opponent follows

adaptive learning behavior. Thus, the sophisticated learning rule uses her own past

behavior, calculates the corresponding adaptive learning behavior (i.e., the opponent’s

best response to one’s own past behavior), and then best responds to those beliefs

regarding the opponent’s expected behavior. Finally, we also consider one more degree

of sophistication in repeated behavior (Sophisticated 2 ). The Sophisticated 2 type as-

sumes that her opponent will choose sophisticated learning behavior (i.e., choose the

best response to her own behavior as an adaptive learner) and best responds to those

beliefs. Note that all these behavioral types require not only a particular game to

make predictions but also information on players’ own and/or their opponents’ past

behavior, so the types are dependent on observed past behavior.

How should we classify all these behavioral rules from the most naive to the most

sophisticated? We again take a simple approach and define the most naive behavioral

rule in a repeated play setting as the one that does not need to use information on

past strategies to have a model of how the opponent will behave. Among the learning

rules that we consider, the No-Change rule is therefore the most naive, that is, the rule

to simply repeat the strategy taken in the first stage. The rest of the behavioral rules

build on this basis, increasing in sophistication as they take one additional step in the

best response iteration on the use of information, such that the Adaptive rule is more

sophisticated than the No-Change rule because adaptive learners are best responding to

the No-Change rule and the Sophisticated rule is more sophisticated than the Adaptive

rule because sophisticated learners are best responding to adaptive learners. Finally,

the most sophisticated learning type, Sophisticated 2, assumes that her opponent is a

sophisticated learner and best responds to those beliefs.

1998) cannot be directly assessed. However, with a more flexible interpretation and assuming that
subjects evaluate their own past strategy with their current opponent’s past strategy, reinforcement
and adaptive learning models would predict the same strategy.

10



3 Experimental Procedures and Design

We carried out two independent experiments, one using the 11-20 game (199 subjects)

and one using 3× 3 normal-form games (198 subjects).

3.1 Procedures

Participants were recruited with the ORSEE system (Greiner, 2015). The sessions were

conducted via computer with z-Tree software (Fischbacher, 2007). For the normal-form

game experiment, two sessions with a total of 78 subjects were held in April and May

2019 in the Laboratory of Experimental Analysis (Bilbao LABEAN; http://www.bilbaolabean.com)

at the University of the Basque Country, UPV/EHU. We conducted two additional ses-

sions with the remaining 120 subjects in the Laboratory of Experimental Economics

(LEE, http://lee.uji.es) at the University Jaume I of Castellón. For the 11-20 game

experiment, five sessions were held in April 2022 in the Bilbao LABEAN.

The subjects were told that the experiment consisted of different parts and that

payments would depend on both luck and their own and other subjects’ decisions.

Immediately before each part, subjects were given detailed instructions explaining the

task involved, including examples of games, how they could make decisions, and how

they would be matched and paid. Subjects were allowed to ask any questions that they

might have during the presentation of the instructions. At the end of this presenta-

tion, the subjects were asked a few questions to guarantee that they had understood

the instructions regarding each part. They could not start the experiment until they

answered these questions correctly. A translated version of the instructions for the two

experiments can be found in Online Appendix D.

For the 11-20 game, all subjects played the game three times with a different,

randomly matched opponent each time. In the first part of the experiment, subjects

played the 11-20 game with no feedback. In the second part, subjects were presented

with the 11-20 game again, but this time, they were provided with information about

their own past strategy and their current opponent’s past strategy in the first part

of the experiment. In the third part, subjects went over the 11-20 one last time, but

this time they were provided with their own past strategy in the first part, and asked

to choose a strategy for each of 10 possible strategies that their new opponent could

have chosen in the first part (strategy method regarding opponent’s strategy in the
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first part). As having just one decision imposes important limitations on our ability to

identify which learning model the subject is using, we analyze individual behavior in

parts 1 and 3 in Section 4.3 and relegate the analysis of the behavior in part 2 to the

Section B in the Online Appendix.

For the 3× 3 normal-form games, all subjects played the same seven games in the

same order, first as the row player and then as the column player, playing a total of 14

games in each part.8 We did not inform the subjects that they were playing the same

games in different roles: we showed all the games to all subjects from the perspective

of row players. Subjects were randomly matched, such that within each part of the

experiment, they were paired with a different opponent in each of the 14 games. In

the first part of the experiment, subjects received no feedback from game to game so

that we could elicit initial play in the 14 games. In the second part, subjects repeated

the same 14 games in the same order but were provided with information about their

own and their current opponent’s past strategy in the first part of the experiment. The

fact that subjects were provided with information on past actions in the second part

was public knowledge, but they learned about the availability of this information only

after they had finished the first part. In other words, the behavior in the first part of

the experiment could not have been affected in any way by any of the experimental

features in the second part. An example of how the games in both parts and the

information provided in the second part were displayed in the experiment can be found

in the instructions in the Online Appendix D.

When all subjects had submitted their choices in all parts, for each subject, the

computer randomly chose one part from any of the three parts for payment in the 11-20

game, and two games from any of the two parts for payment in the normal-form game

experiment. For the 11-20 game, if stage 3 game was randomly chosen, subjects got

paid only for the opponent’s actually chosen strategy. Note that this payment struc-

ture removes any incentive for using hedging strategies. Thus, in the two experiments,

8Any experiment using a within-subject design may raise concerns about potential experimenter
demand effects. However, it is not clear to us how experimenter demand effects might have affected
the results in our setting. On the one hand, individuals’ natural taste for consistency in behavior
(Eyster, 2003; Falk and Zimmermann, 2011) may have led subjects to choose the same behavior in
both parts of the experiment. On the other hand, one might anticipate more pronounced reactions to
the provided information if the subjects had identified our research question. The results clearly show
that not all subjects repeated the same behavior and that not all subjects reacted to the provided
information.
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each subject could be paid for different games. Before being paid, subjects completed

a non-incentivized questionnaire on their demographic characteristics (gender, age, na-

tionality, university entry grade and field of study), risk preferences following Eckel

and Grossman (2002), and a cognitive reflection test. Descriptive statistics of all these

variables can be found in Online Appendix Table A1. The subject pool showed char-

acteristics typical of undergraduate students who are mostly studying for economics

and business degrees, with a slightly higher presence of females, given that most were

pursuing a degree in social sciences. We also requested free-format explanations of

their choices and the expected choices of others in each of the parts of the experiment.

We did not include these data in the analysis, but we did informally assessed the

consistency between the subjects’ explanations of what they did and the rule that we

estimated using their elicited actions and frequently observed a clear alignment between

the two. For work that attempts to relate subjects’ free-format explanations of their

actual actions and their actions, see Brañas Garza et al. (2011). Finally, we paid the

subjects privately according to the two games selected plus a 3-euro show-up fee. The

average payments were 21.11 euros and 15.76 euros, with standard deviations of 15.35

and 4.90, for the 11-20 and 3× 3 normal-form game experiments, respectively. Each of

the experiments lasted one hour and a half, including the presentation of instructions

and payment.

3.2 Design of Games

In the 11-20 game, Arad and Rubinstein (2012), players choose numbers between 11

and 20. The chosen number is guaranteed as the payoff. Moreover, if a player’s chosen

number is exactly one number below the opponent’s number, she earns the chosen

number plus 80, and if the chosen number coincides exactly with the opponent’s chosen

number, then she earns the chosen number plus 10. This particular version is the one

proposed by Alaoui and Penta (2016). The 11-20 game with such a large incentive to

undercut has clear advantages for the study of naivete and sophistication in strategic

thinking. First, it is straightforward to see that the lower the chosen number, the higher

the iterative step in strategic thinking. Second, social-preference types of concerns are

downplayed, as we confirm with the behavioral data.

In normal-form games, it is not as straightforward to match choices with strategic
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sophistication, so we designed seven 3×3 games for the experiment, as shown in Figure

1. We designed our own games instead of using games from other studies because we

aimed to have high separation between different behavioral rules in both in initial and

repeated play, which, as far as we know, was not the aim of any previous studies. The

actual order in which the games were presented to the subjects was G1, G2... until G7

as row players, which we refer to as G11, G21, and so on until G71, and G1, G2... until

G7 as column players, which we refer to as G12, G22, and so on until G72. As noted

in the previous section, all subjects were shown the games as if they were row players,

that is, we transposed the games when the subjects were playing as column players.

We chose this particular sequence, first as row players and then as column players, to

prevent the subjects from realizing that they were making choices in the same games.

Figure 1: 3× 3 Experimental Games

G1 G2
4 , 20 20 , 12 18 , 2 6 , 18 22 , 4 4 , 16
6 , 8 8 , 14 22 , 16 20 , 6 2 , 24 16 , 4

18 , 14 14 , 6 2 , 18 12 , 12 2 , 6 18 , 22

G3 G4
4 , 20 12 , 16 16 , 4 10 , 18 20 , 16 4 , 6
18 , 2 20 , 12 2 , 8 12 , 10 14 , 22 2 , 12
22 , 18 2 , 2 10 , 22 6 , 4 18 , 4 16 , 18

G5 G6
8 , 16 16 , 14 20 , 12 14 , 16 2 , 20 12 , 22
16 , 8 18 , 12 4 , 4 6 , 18 20 , 4 10 , 6
14 , 6 16 , 4 2 , 20 22 , 4 14 , 18 4 , 10

G7
4 , 20 22 , 14 18 , 4
6 , 6 8 , 12 20 , 14

18 , 16 14 , 8 4 , 18

We chose 3 × 3 normal-form games because such games allow ample separation

between the predictions of different behavioral rules. Note that with 14 3 × 3 games,

there are 4,782,969 possible ways of playing the 14 games, while with 2 × 2 games,

we would have only 16,384 possible combinations. Therefore, the use of 3 × 3 games

substantially increases the a priori possibility of separation among the predictions of

different behavioral rules. Additionally, we chose 3× 3 games instead of, for example,

4 × 4 games to ensure that the number of strategies was relatively small such that it
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was easier to handle by subjects, which facilitated the explanation of the instructions.

3.3 Predictions in the 11-20 Game and 3 × 3 Normal-Form

Games

In this section we review the predictions of all the behavioral rules that we consider in

Section 2 for both initial responses and repeated play in the two types of games.

For the 11-20 games, the unique prediction for NE is to play 11. On the other hand,

the prediction for L1 is to play 19, for L2 to play 18, for L3 to play 17, and for L4

to play 16. The higher the level-k is, the lower the number, and therefore, the closer

to NE. The predictions for the rest of the behavioral rules are concentrated on playing

strategies 19 and 20. The prediction for the optimistic type is to play 19, while that for

the pessimistic type is to play 20. The prediction for the altruistic type is indifferent

between strategies 19 and 20, while the prediction for the inequity-averse type is that

she would minimize differences in any of the strategy profiles in which both players

coincide, although we assume that they would have a preference for coinciding at 20.

See a summary of all these predictions in the first column of the top panel of Table 1.

For the 3 × 3 normal-form games, the last 14 columns in the top panel of Table 1

show the predictions for each of these behavioral rules in each of the games in Figure

1.

To predict strategies based on different learning models we need actual observed

past behavior, so the bottom panel of Table 1, does not show the actual predicted

strategies but, in general, the calculation that a behavioral rule requires in repeated

play with the provided information, such that it is valid for both 11-20 and the 3× 3

normal-form games.
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Table 1: Predicted Strategies by Different Behavioral Rules: 11-20 Game and the 3×3
Normal-Form Games

11-20 G11 G12 G21 G22 G31 G32 G41 G42 G51 G52 G61 G62 G71 G72

Initial Play

A 19,20 2 3 3 3 3 1 1,2 2 1 3 1 3 1 2

IA 20 2 1 3 1 3 2 1,2,3 1,3 2 3 1 1 2 1

MaxMax 19 2 1 1 2 3 3 1 2 1 3 3 3 1 1

MaxMin 20 2 1 1 1 1 3 3 3 1 1 2 3 2 2

L1 19 1 1 2 3 2 1 3 2 1 3 3 2 1 1

L2 18 3 1 3 2 3 2 1 3 1 1 2 2 3 1

L3 17 3 3 1 3 2 3 3 1 2 1 2 1 3 3

NE 11 2 3 3 3 2 2 3 3 2 2 1 3 2 3

Repeated Play

No-Change “Same strategy as in the first part”

AdaptiveS “Best response to (opponent’s past strategy)”

AdaptiveA “A best response to (opponent’s past strategy)”

AdaptiveIA “IA best response to (opponent’s past strategy)”

Sophisticated “Best response to (opponent’s best response to (own past strategy))”

Sophisticated 2
“Best response to (opponent’s best response to

(best response to (opponent’s past strategy)))”

Notes: The table reports the strategies predicted by the models for initial play (top panel) and repeated play (bottom panel).

The numbers in the first column refer to the strategies in the 11-20 game. In the rest of the columns, 1, 2 and 3 refer to the

first, second and third strategies in the 3×3 normal-form games, respectively. In a few instances, a behavioral rule is indifferent

between multiple strategies, so we assume that the behavioral rule predicts any of these strategies with equal probability.

3.4 Assessment of the Design: Separation of Behavioral Rules

across Games

On the one hand, as shown by the predictions described in Table 1, the 11-20 game is

ideal for identifying and separating different level-k rules from the NE. On the other

hand, the 3×3 normal-form games, shown in Figure 1, were carefully designed with the

aim of yielding the largest separation between the predictions of different behavioral

rules.

Table 2 shows the separation between the predictions corresponding to different

behavioral rules for both initial play (panel A) and repeated play with information on
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past actions (panel B) for the 3 × 3 games. Panel C shows the separation between

the predictions corresponding to different behavioral rules for repeated play in the 11-

20 game. The values in the table represent the proportion of decisions in which the

predictions for two behavioral rules (the one in the row and the one in the column) are

separated. The numbers can take any value between 0 (no separation at all, such that

two behavioral rules predict exactly the same strategy in each of the decisions) and 1

(full separation, such that two behavioral rules predict a different strategy in all of the

decisions).
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Table 2: Separation of Different Behavioral Rules

Panel A: 3× 3 Initial Play

A IA MaxMax MaxMin L1 L2 L3

A 0.00

IA 0.60 0.00

MaxMax 0.46 0.62 0.00

MaxMin 0.71 0.65 0.57 0.00

L1 0.57 0.76 0.50 0.79 0.00

L2 0.75 0.58 0.57 0.64 0.71 0.00

L3 0.86 0.80 0.86 0.64 0.79 0.71 0.00

NE 0.57 0.51 0.86 0.64 0.79 0.79 0.57

Panel B: 3× 3 Repeated Play

No Change AdaptiveS AdaptiveA AdaptiveIA Sophisticated

No Change 0.00

AdaptiveS 0.65 0.00

AdaptiveA 0.60 0.52 0.00

AdaptiveIA 0.62 0.81 0.64 0.00

Sophisticated 0.71 0.60 0.71 0.62 0.00

Sophisticated 2 0.71 0.60 0.50 0.70 0.47

Panel C: 11-20 Repeated Play

No Change AdaptiveS AdaptiveA AdaptiveIA Sophisticated

No Change 0.00

AdaptiveS 0.90 0.00

AdaptiveA 0.89 0.90 0.00

AdaptiveIA 0.90 0.90 1.00 0.00

Sophisticated 0.99 0.90 0.90 0.90 0.00

Sophisticated 2 0.95 0.80 1.00 0.90 0.99

Notes: The table reports the proportions of strategies for which the different behavioral models predict

different strategies. The minimum possible separation value is 0, which occurs when the two models always

prescribe the same strategy, and the maximum possible separation value is 1, which occurs when the two

models always predict a different strategy.

In the 11-20 game, the separation values for initial play are equal to 1 for any
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level-k and NE. However, for all the naive behavioral models (L1, A, IA, O and

P ) the separation is close to 0, as all of them are concentrated on strategies 19 and

20. To calculate the separation values for repeated play, we need to use past observed

behavior. The separation values for repeated play are very high, as shown in panel C

of Table 2.

In the 3×3 games the separation values for the initial play range between 0.46 and

0.86, which shows that each pair of behavioral rules is separated into at least 6 of 14

games and as many as 12 of 14 games. Regarding the separation values in repeated play,

as for the 11-20 game, we could not calculate these values ex ante, as they depend on

the particular observed past behavior of subjects.9 The values in panel B are therefore

based on the actual observed behavior in the first part of the experiment. The values

range between 0.47 and 0.81, which indicates that two behavioral rules for repeated

play are separated into at least 6 of 14 games and as many as almost 12 of 14 games.

We therefore conclude that the goal of attaining large separation between the con-

sidered behavioral rules was achieved.

4 Results

4.1 Descriptive Overview

We begin by considering the mean behavior in both initial and repeated play, which

represents how individuals start playing in strategic environments with no feedback

(first part) and how individuals react to both their own and their current opponent’s

past behavior (second part).

9However, we could use, as we actually did, the accumulated evidence from past studies (see
Crawford et al., 2013, for example) that approximately half of subject populations show non-strategic
behavior and a smaller proportion more sophisticated behavioral rules such as L2 and L3, with a
minority of subjects following the Nash equilibrium strategy. As the results in Section 4.2 show, we
find a type distribution that is roughly consistent with existing findings in the literature.
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(a) 11-20 Mean Behavior in Stages 1,2,3

(b) 3× 3 Mean Behavior of Strategies 1,2,3 by Game: Initial Play

(c) 3× 3 Mean Behavior of Strategies 1,2,3 by Game: I Repeated Play

Figure 2: Mean Behavior in Initial and Repeated Play

Figure 2 shows the results for the three stages of the 11-20 game (panel A), as well
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as for the first (panel A) and second (panel B) parts of the 3× 3 experiment.

Clearly, in the two experiments individual behavior is different from random play

in both initial and repeated play; otherwise, we would observe that in each game, the

10 and 3 strategies are each played with equal probability (p-values less than 0.001

for both the first and second parts in the two experiments, based on a chi-square test

against a uniform distribution).

In addition, for the 11-20 game we can reject that initial and repeated play are the

same (p-values of 0.000 and 0.000, when comparing stages 1 and 2 and stages 1 and

3 are compared, respectively, from the two-sample chi-square test of the null that the

two data samples come from the same distribution). We can also compare the repeated

play in stages 2 and 3, where we can again reject that the behavior is the same (p-values

of 0.002) However, for the 3× 3 games, the mean behavior does not differ significantly

between the first and second parts of the experiment, as we cannot reject that the

behavior in both scenarios comes from the same distribution (p-value of 0.84 from the

two-sample chi-square test that two data samples come from the same distribution),

which may suggest that many subjects ignore the provided information on opponent’s

past behavior and follow the same strategy as in the first part. Note that, mean

behavior can mask important differences with respect to individual heterogeneity. The

key task in the next two subsections is to identify the relevant behavioral types that

are able to reproduce the behavior in both parts of the experiment.

4.2 Naivete and Sophistication in Initial Play: Type Identifi-

cation

Using the individual data on revealed choices from the first part of the experiment, we

proceed to identify the behavioral type of each subject in initial play.

For the 11-20 game, we do not need any econometric model, as the behavioral types

are readily inferred by their unique choices of numbers, as shown by panel A in Figure

2. Table 3, nevertheless, shows this type distribution. The most frequent type is L2,

corresponding to 47% of the subject population, followed by L3, accounting for 31%

of the subjects. The L4 behavioral type can be attributed to 13% of the subjects.

Subjects adhering to the rest of the behavioral rules have a negligible presence.

For the 3 × 3 normal-form games, now necessarily using a mixture-of-types model
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with uniform errors, we identify and classify each of the 198 subjects into a behavioral

type.10 The maximum likelihood function is estimated subject by subject. Please

see Appendix A for a general description of the maximum likelihood function used to

estimate behavioral types and for a particular derivation of the maximum likelihood

function for estimating the behavioral types in initial play.

Table 3: Behavioral Type Identification for Initial Play: 11-20 Game and 3× 3 Games

11-20 Game 3× 3 Games: Minimum Number of Perfect Guesses

Model No Constraints 7 9 11

(1) (2) (3) (4) (6)

Non-strategic 0.08 0.56 0.57 0.51 0.62

A – 0.14 0.14 0.10 0.14

IA – 0.07 0.07 0.01 0.00

MaxMax – 0.08 0.08 0.08 0.05

MaxMin – 0.10 0.11 0.11 0.10

L1 – 0.17 0.18 0.21 0.33

L2 0.47 0.39 0.39 0.48 0.38

L3 0.31 0.02 0.02 0.00 0.00

L4 0.13 – – – –

NE 0.01 0.02 0.02 0.01 0.00

No. of Subjects 188 174 169 91 21

Notes: The table displays the population frequencies estimated to be consistent with each of the behavioral rules listed
in the Model column. In column 1, we simply report the type frequency for the 11-20 game. Note that we do not include
subjects categorized in levels higher than L4, so we report the types for 188 subjects (out of 199) only. For the 3 × 3
games, we report different estimations for different numbers of perfect guesses: from all subjects (column 2) to subjects
with 7, 9 and 11 (column 6) perfect guesses (alternatively, ε equal to 0.75, 0.53 and 0.32, respectively. We exclude subjects
whose behavior is equally compatible with more than one type (ties, see footnote 11).

Table 3 shows the estimation results. We allow for different criteria on noise levels

or alternatively perfect guesses, from 7 to 11 perfect guesses. We refer to a guess as

perfect when a subject’s action coincides with a behavioral rule’s prediction. Note

that, by chance, if individual play were random, any behavioral type that predicts a

particular strategy combination across the 14 games would make 4.6 perfect guesses.

Therefore, using this value as a benchmark, we consider both less and more stringent

identification criteria: no constraints, at least 7, 9 and 11 perfect guesses (a 50%, 93%

and 139% improvement over random, respectively). As expected, a trade-off exists

between the number of perfect guesses required for identification and the number of

subjects whom we can properly identify. Nevertheless, remarkably, when we impose

10Alternatively, we could use the mixture-of-types model with logistic errors, as in for example
Georganas et al. (2015). Estimation results are both quantitatively and qualitatively the same. These
results are available upon request.
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the criterion of 9 perfect guesses, which is a high threshold (a 93% improvement over

random), we can identify 91 subjects.11

As observed in Table 3, when we focus on the overall population, in column 2,

56% of the subjects follow a non-strategic behavioral rule, followed by 39% who follow

L2, while only a minority of subjects (4%) are identified as sophisticated (following

L3 and NE ). Among the non-strategic behavioral types, the L1 and A rules explain

most of their behavior, followed by the pessimistic and optimistic behavioral rules.

These results are roughly consistent with existing results, summarized in Crawford

et al. (2013), although we find lower frequencies for L1 and higher frequencies for

L2. Furthermore, these conclusions do not change if we move across different columns

(reflecting the criteria over the required perfect guesses). Only when we impose 11

correct guesses, for which we can only identify 21 subjects, do we find considerably

more L1 individuals to the detriment of the optimistic types. However, the overall

conclusions remain unchanged: we still find that approximately 62% of the subject

population is identified to follow a non-strategic behavioral rule, followed by 38% who

follow L2. We cannot reject that the type distribution of the subjects does not depend

on the constraints imposed regarding the number of perfect guesses (p-value of 0.22

for the chi-square test), so the estimation results are robust to different selections of

criteria on the perfect guesses.12

In sum, for the 11-20 games, we observe mostly L2 and L3 behavioral types, while

for the normal-form games, we observe mostly naive and L2 behavioral types.

11Note that we do allow for the existence of the level-0 type in the estimation. When no model does
better than random uniform, the estimated error would be equal to 1, which is interpreted as random
uniform play describing best such subject’s behavior. We find no subject who is best described as a
level-0 type. Additionally, ties are possible between behavioral types, that is, when two behavioral
types are equally good in describing a particular subject’s action profile over the 14 games. We find
24, 17, 2, and 0 of those cases when we impose no constraints and when we impose the criteria of 7, 9
and 11 perfect guesses, respectively. When a tie occurred, we removed the subject from the analysis
and therefore from Table 3 to avoid any potential bias.

12Despite subjects not receiving any feedback from game to game, it is still possible that they might
learn to be more sophisticated as they play the 14 games. For robustness, we also estimated the type
distribution using only the first half and only the second half of the 14 games. The estimated type
frequency changes slightly, but we do not observe any increase in strategic sophistication from the
first to the second half.
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4.3 Naivete and Sophistication in Repeated Play with Infor-

mation on Past Behavior: Type Identification

We now identify the learning model used by subjects by applying a mixture-of-types

model with uniform errors to the individual data on revealed choices in repeated play

for all subjects in each of the two experiments.

First, note that we consider the learning models, that is, the No-Change, Adaptive,

Sophisticated, and Sophisticated2 models, only for repeated play.13 Alternatively, we

could re-estimate the same initial responses model as we did in Section 4.2, assuming

that subjects ignore any provided information. See Section B.1 in the Online Appendix,

where we show that on average learning models indeed do a better job in explaining

the behavioral data on repeated play than the initial responses model. Second, in

contrast to the case of initial play, for repeated play, note that for the two experiments

we need to use the mixture-of-types model. The general description of the maximum

likelihood function can be found in Online Appendix A, as can a particular derivation

of the maximum likelihood function for estimating the behavioral types in repeated

play. Additionally, for the 11-20 game, as we mentioned in Section 3.1 we use stage-3

data for repeated play. See the robustness test using stage-2 data in Section B.2 in the

Online Appendix.

Table 4 shows the results for the 11-20 game (panel A) and for the 3×3 game (panel

B) experiments. As in the first part of the experiment, we consider different criteria

on noise levels, or alternatively perfect guesses, ranging from 5 to 7 (out of 10) perfect

guesses for the 11-20 game and from 7 to 11 (out of 14) perfect guesses for the 3 × 3

games. Note that, by chance, if individual play were random, any behavioral type that

predicts a particular strategy profile would make 1 and 4.6 perfect guesses in the 11-20

and 3×3 games. Therefore, using this value as a benchmark, we consider less stringent

to more stringent criteria for identification of behavioral types. For the 11-20 game,

we consider no constraints, and at least 5, 6 and 7 perfect guesses (corresponding to a

500%, 600% and 700% improvement over random, respectively). For the 3× 3 games,

we consider no constraints, and at least 7, 9 and 11 perfect guesses (corresponding to a

50%, 93% and 139% improvement over random, respectively). Again, a trade-off exists

13In addition, we have also considered an alternative naive learning model, which consists of choosing
any of the available strategies after having discarded the one chosen in part 1. We find no empirical
relevance for such naive learning model. Results are available upon request.
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between the number of perfect guesses required for identification and the number of

subjects that we can properly identify. However, the number of subjects whom we can

cleanly identify is better than that in the first part. When we impose the criterion of

5, 6 or 7 perfect guesses in the 11-20 game, we now identify 121, 104 or 84 subjects,

respectively. When we impose 7, 9 and 11 perfect guesses in the 3× 3 games, we now

identify 166, 117 and 46 subjects, respectively.14

For the 11-20 game, approximately 60% of the subjects follow the adaptive my-

opic best response, followed by the No-Change learning model. The presence of the

Sophisticated learning model is residual. This identification of these types is also ro-

bust to the use of different criteria on perfect guesses (p-value of 0.18 for the chi-square

test).

For the 3×3 games, the behavior of 34% of the subjects is best explained by the No-

Change type, which reflects that an important number of subjects ignore opponent’s

past behavior and simply repeat their own past behavior. The most common behavior is

adaptive behavior, which is displayed by 57% of the subjects, that is, those who choose

the best response to their opponent’s past behavior. Among the different adaptive

learning types, the type that maximizes over the sum of her own and her opponent’s

payoffs seems to be the most frequent. Finally, very few subjects show sophisticated

learning behavior. Consistent with previous findings, these conclusions do not change

as we move across different columns. There is an exception when the highest threshold

of 11 perfect guesses is imposed; the frequency of No-Change increases by 16 percentage

points to the detriment of both the Adaptive and Sophisticated learning types. It is the

result in this last column that, despite being marginally significant, makes us reject that

the type distribution of the subjects varies based on the constraints imposed regarding

the number of perfect guesses (p-value of 0.05 for the chi-square test).

In sum, in contrast to what we found for initial responses, for repeated play we

find a more similar type distribution over the two games, with the majority of subjects

14As in the case when we identify behavioral models in initial play we allow for the existence of
the level-0 type in the estimation. Additionally, we allow for ties between behavioral types, that is,
two behavioral types that are equally good in describing a particular subject’s action profile. For the
11-20 game, we find 29, 0, 0, and 0 of those cases when we impose no constraints, and when we impose
the criteria of 5, 6 and 7 perfect guesses, respectively. For the 3 × 3 games, we find 22, 13, 3, and 0
of those cases when we impose no constraints, and when we impose the criteria of 7, 9 and 11 perfect
guesses, respectively. When a tie occurred, we removed the subject from the analysis, and from Table
4 to avoid any potential bias.

25



Table 4: Behavioral Type Identification for Repeated Play

Panel A: 11-20 Game

Minimum Number of Perfect Guesses

Model No Constraints 5 6 7

(1) (2) (3) (4)

No-Change 0.22 0.22 0.19 0.19

Adaptive 0.56 0.61 0.65 0.65

AdaptiveS 0.48 0.57 0.60 0.61

AdaptiveA 0.02 0.01 0.01 0.01

AdaptiveIA 0.07 0.03 0.04 0.02

Sophisticated 0.15 0.10 0.10 0.10

Sophisticated 2 0.07 0.07 0.06 0.06

No. of Subjects 165 116 101 88

Panel B: 3× 3 Games

Minimum Number of Perfect Guesses

Model No Constraints 7 9 11

(1) (2) (3) (4)

No-Change 0.34 0.35 0.41 0.50

Adaptive 0.57 0.56 0.54 0.45

AdaptiveS 0.16 0.17 0.21 0.28

AdaptiveA 0.28 0.28 0.28 0.15

AdaptiveIA 0.13 0.11 0.05 0.02

Sophisticated 0.06 0.06 0.02 0.04

Sophisticated 2 0.04 0.03 0.03 0.00

No. of Subjects 176 166 117 46

Notes: The table displays the population frequencies estimated to correspond to each of
the behavioral rules listed in the Model column for 5, 6 and 7 perfect guesses (ε equal to
0.75, 0.53 and 0.32, respectively) for the 11-20 game and for 7, 9 and 11 perfect guesses
(ε equal to 0.55, 0.44 and 0.33, respectively) for the 3 × 3 games. In both panels, we
include only subjects who align with any behavioral model below Sophisticated 2, and
we exclude subjects who are equally compatible with multiple behavioral models, see
footnote 14.
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following an adaptive learning model while most of the rest follows the very naive

learning model of No-Change.

4.4 Correlation between Naivete and Sophistication in Initial

and Repeated Play

We now study the central question of the paper, namely, whether there is a correlation

between the type identification in initial and repeated play exploiting the fact that all

subjects participated in the same two parts of the experiment. We use a contingency

table in which the rows present the behavioral rules in initial play and the columns

the behavioral rules in repeated play. Therefore, a particular cell in the contingency

table shows the proportion of subjects identified as following the behavioral rule in

that particular row in initial play who also follow the behavioral rule in that particular

column in repeated play. The frequencies across the columns sum to 1 in each row. A

positive correlation would show a higher frequency of naive, non-strategic behavioral

types in initial play who use a No-Change or less sophisticated rule in repeated play

than of level-2 or level-3 subjects, who in turn would show a higher frequency of

adaptive or sophisticated learning. A no-correlation result would show independence

in the distributions across different rows. A negative correlation would show that naive

behavioral types in initial play use a more sophisticated learning model in repeated

play than of more sophisticated type.

As observed in Tables 5a and 5b, for all subjects (panel A) or for a more precisely

estimated sample of subjects (panel B), we see little evidence of a positive correlation

between naivete and sophistication in initial and repeated play.

For the 11-20 game in Table 5a, the learning model followed by most subjects is the

adaptive one, regardless of the model followed in initial play. L2 and L3 types show

the most diverse classification in the repeated play models, being more likely to repeat

their behavior but also to use more sophisticated rules. The few most sophisticated

subjects in initial play (L4 and Nash types) again show a clearer tendency to use

adaptive learning models. Panel B shows the equivalent results for a reduced number

of subjects when we impose the criterion of 6 out of 10 perfect guesses. In this case, the

subjects show more consistency, and therefore, our identification of behavioral rules is

improved despite the fact that we restrict the sample to 98 subjects. However, the
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Table 5a: 11-20 Contingency Table

Panel A: No constraints

Second Part Model

First Part Model No-change Adaptive Soph Soph 2 No. of Subjects

AdapS AdapA AdapIA
Non-strategic 0.14 0.79 0.71 0.07 0.00 0.07 0.00 14

L2 0.25 0.54 0.45 0.01 0.07 0.15 0.06 71

L3 0.24 0.45 0.35 0.02 0.08 0.18 0.12 49

L4 0.16 0.58 0.58 0.00 0.00 0.21 0.05 19

NE 0.00 1.00 1.00 0.00 0.00 0.00 0.00 2

No. of Subjects 35 84 72 3 9 25 11 155

Panel B: Minimum of 6 correct guesses in each part

Second Part Model

First Part Model No-change Adaptive Soph Soph 2 No. of Subjects

AdapS AdapA AdapIA
Non-strategic 0.08 0.85 0.77 0.08 0.00 0.08 0.00 13

L2 0.22 0.64 0.60 0.00 0.04 0.11 0.02 45

L3 0.21 0.52 0.45 0.00 0.07 0.10 0.17 29

L4 0.20 0.70 0.70 0.00 0.00 0.10 0.00 10

NE 0.00 1.00 1.00 0.00 0.00 0.00 0.00 1

No. of Subjects 19 63 58 1 4 10 6 98

Notes: The table shows for each of the behavioral rules in initial play (by row) the proportion of subjects identified as
following each of the behavioral rules in repeated play. For each row, the proportions across the four columns referring to
the four main behavioral rules (No-Change, Adaptive, Sophisticated and Sophisticated2 ) should sum up to 1. Furthermore,
for each row, the proportions across the three adaptive behavioral models (AdaptiveS , AdaptiveA, AdaptiveS) should sum
to the value in the column for Adaptive.
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Table 5b: 3× 3 Contingency Table

Panel A: No constraints

Second Part Model

First Part Model No-change Adaptive Soph Soph 2 No. of Subjects

AdapS AdapA AdapIA
Non-strategic 0.29 0.62 0.15 0.30 0.16 0.06 0.03 86

A 0.14 0.77 0.23 0.41 0.14 0.09 0.00 22

IA 0.27 0.55 0.18 0.27 0.09 0.00 0.18 11

MaxMax 0.15 0.77 0.15 0.31 0.31 0.00 0.08 13

MaxMin 0.57 0.43 0.14 0.07 0.21 0.00 0.00 14

L1 0.35 0.54 0.08 0.35 0.12 0.12 0.00 26

L2 0.45 0.45 0.18 0.23 0.05 0.06 0.03 62

L3 0.33 0.67 0.00 0.67 0.00 0.00 0.00 3

NE 0.33 0.67 0.00 0.67 0.00 0.00 0.00 2

No. of Subjects 54 85 24 42 19 9 5 153

Panel B: Minimum of 9 correct guesses in each part

Second Part Model

First Part Model No-Change Adaptive Soph Soph 2 No. of Subjects

AdapS AdapA AdapIA
Non-strategic 0.38 0.63 0.17 0.42 0.04 0.00 0.00 24

A 0.17 0.83 0.17 0.67 0.00 0.00 0.00 6

IA – – – – – – – 0

MaxMax 0.00 1.00 0.50 0.50 0.00 0.00 0.00 2

MaxMin 0.75 0.25 0.25 0.00 0.00 0.00 0.00 4

L1 0.42 0.58 0.08 0.42 0.08 0.00 0.00 12

L2 0.53 0.38 0.24 0.12 0.03 0.06 0.03 34

L3 – – – – – – – 0

NE – – – – – – – 0

No. of Subjects 27 28 12 14 2 2 1 58

Notes: The table shows for each of the behavioral rules in initial play (by row) the proportion of subjects identified as following
each of the behavioral rules in repeated play. For each row, the proportions across the four columns referring to the four main
behavioral rules (No-Change, Adaptive, Sophisticated and Sophisticated 2 ) should sum up to 1. Furthermore, for each row, the
proportions across the three adaptive behavioral models (AdaptiveS , AdaptiveA, AdaptiveS) should sum to the value in the
column for Adaptive.
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tendencies observed in panel B are similar to those in panel A. In either panel, we

cannot reject that the distributions of the main types are independent across rows

(p-values of 0.91 and 0.92, respectively, for the chi-square test).

Similar results are found for the 3× 3 games in Table 5b. On the one hand, 62% of

naive subjects in initial play follow an adaptive learning model, and 29% stick to their

initial play. On the other hand, L2 subjects are equally likely to repeat their behavior

and to follow an adaptive learning model. The few most sophisticated subjects in

initial play (L3 and Nash types) do show a clear tendency to use adaptive learning

models. If we focus on the two most frequent behavioral rules in initial play, naive

and L2, these numbers show a clear absence of a positive correlation and, if anything,

suggestive evidence of a negative correlation in naivete/sophistication between the

initial and repeated play. Panel B shows the equivalent results for a reduced number of

subjects when we impose the criterion of 9 out of 14 perfect guesses. In this case, the

subjects show more consistency and thus our identification of behavioral rules is cleaner

even though we restrict the sample to 58 subjects. However, the results regarding the

correlation in panel B are very similar to those in panel A: 63% of naive subjects in

initial play follow an adaptive learning model, and 38% of the L2 subjects use an

adaptive learning model. If anything, the evidence of a negative correlation becomes

even stronger. In neither panel can we reject that the distributions of the main types

are independent across rows (p-values of 0.19 and 0.21, respectively, for the chi-square

test).

We therefore conclude that there is no evidence of a positive correlation between

naivete and sophistication in initial and repeated play.

In the Online Appendix, we carry out three additional robustness checks regarding

the 3 × 3 experimental data. First, we include additional alternative behavioral rules

in initial play; see section B.3.1. Second, we perform a specification test for omitted

types in initial learning models; see section B.3.2. Third, and finally, we perform one

additional specification test replacing the No-Change learning model with the initial

responses model; see section B.3.3. All robustness checks lead us to the same conclu-

sion: we find no evidence for a positive correlation between naivete and sophistication

in initial and repeated play.
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5 Discussion

In this paper, we have explored the relationship between the strategic sophistication

and naivete of models in initial and repeated play. Is a strategically naive player

in initial play more likely than a more sophisticated player to use a naive model in

repeated play? We use an experimental design, based on two different types of games,

11-20 and 3×3 games, and a mixture-of-types model econometric estimation to answer

this empirically motivated research question.

Consistent with previous findings, we find that the Nash equilibrium is not well

suited to explaining the initial responses of individuals. The non-equilibrium rules

that best explain individual behavior appear to be level-2 and level-3 rules in the 11-20

game, and level-2, level-1 and altruistic rules in normal-form 3×3 games. Additionally,

consistent with previous findings, adaptive behavior appears to be the most common

learning model in both the 11-20 and the 3×3 games, although a considerable number

of individuals simply repeat their previously used strategy. Addressing the central

question, and exploiting the within-subject design, we do not find any evidence that

naivete and sophistication in repeated play are positively correlated with naivete and

sophistication in initial play. The lack of positive correlation is robust to the alternative

checks that we performed in the two experiments (contained in the Online Appendix).

The main result of our paper is reminiscent of the results of Costa-Gomes and

Weizsäcker (2008) and Knoepfle et al. (2009). The former found an inconsistency

between the behavior revealed by actions and elicited beliefs regarding opponents’

expected behavior. The latter found that eye-tracking results favor much more so-

phisticated learning than do actual decision data, again indicating an inconsistency

between the two. It could indeed be the case that, as in the case of actions and be-

liefs or actions and eye tracking, individuals treat initial and repeated play as different

and/or independent tasks.

31



References

Alaoui, L. and A. Penta (2016). Endogenous depth of reasoning. The Review of

Economic Studies 83 (4), 1297–1333. 2, 13

Arad, A. and A. Rubinstein (2012). The 11-20 money request game: A level-k reasoning

study. American Economic Review 102 (7), 3561–73. 5, 13
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Kovář́ık, J., F. Mengel, and J. G. Romero (2018, mar). Learning in network games.

Quantitative Economics 9 (1), 85–139. 6

McKelvey, R. D. and T. R. Palfrey (1995, jul). Quantal response equilibria for normal

form games. Games and Economic Behavior 10 (1), 6–38. 4

Milgrom, P. and J. Roberts (1991). Adaptive and sophisticated learning in normal

form games. Games and economic Behavior 3 (1), 82–100. 4

Nagel, R. (1995). Unraveling in guessing games: An experimental study. The American

Economic Review 85 (5), 1313–1326. 3, 4, 8, 9

Rey-Biel, P. (2009). Equilibrium play and best response to (stated) beliefs in normal

form games. Games and Economic Behavior 65 (2), 572–585. 5

Selten, R. (1991). Anticipatory learning in two-person games. In Game equilibrium

models I, pp. 98–154. Springer. 4

Sobel, J. (2000). Economists’ models of learning. Journal of Economic theory 94 (2),

241–261. 2

Stahl, D. O. (2003). Sophisticated learning and learning sophistication. Available at

SSRN 410921 . 4, 9

Stahl, D. O. and P. W. Wilson (1994). Experimental evidence on players’ models of

other players. Journal of economic behavior & organization 25 (3), 309–327. 3, 5, 8

34



Stahl, D. O. and P. W. Wilson (1995, jul). On players′ models of other players: Theory

and experimental evidence. Games and Economic Behavior 10 (1), 218–254. 3, 5, 8

Toplak, M. E., R. F. West, and K. E. Stanovich (2014). Assessing miserly informa-

tion processing: An expansion of the cognitive reflection test. Thinking & Reason-

ing 20 (2), 147–168. 47

35



A Mixture-of-Types Likelihood Function

We assume that a subject i employing rule k makes a type-k decision with probability

(1−εi) but makes a mistake with probability εi ∈ [0, 1]. In such a case, she plays each of

the three available strategies uniformly at random. As in most mixture-of-types model

applications, we assume that the errors are identically and independently distributed

across games and are subject-specific (as in, for example, Iriberri and Rey-Biel, 2013).

The first assumption facilitates the statistical treatment of the data, while the second

accounts for the fact that some subjects may be noisier and thus make more errors

than others.

The likelihood of a particular individual corresponding to a particular type can be

constructed as follows. Let P g,j
k be type k’s predicted choice probability for strategy j

in game g. Some rules may predict more than one strategy in a particular game. This

characteristic is reflected in the vector P g
k = (P g,1

k , P g,2
k , P g,3

k ) with
∑

j P
g,j
k = 1.

For each individual in each game, we observe the choice and whether it is consistent

with k. Let xg,j
i = 1 if strategy j is chosen by subject i in game g in the experiment

and xg,j
i = 0 otherwise. The likelihood of observing a sample xi = (xg,j

i )g,j given type

k and subject i is then

Lk
i (εi|xi) =

∏
g

∏
j

[
(1− εi)P

g,j
k +

εi
3

]xg,j
i

. (1)

Finally, the likelihood function is given by the sum of all behavioral types that are

considered.

Li(εi|xi) =
∑

k
piL

k
i (εi|xi) (2)

pi takes a value of 1 for the behavioral type k that best explains the individual

behavior and 0 for the rest of the considered behavioral types.

To explain initial play, we consider K = 8 behavioral types or models: A, IA,

MaxMax, MaxMin, L1, L2, L3 and NE, and use their revealed actions as input data.

To explain repeated play with the information provided on past actions, we consider

K = 6 different behavioral types: No-Change, AdaptiveS, AdaptiveA, AdaptiveIA,

Sophisticated and Sophisticated 2, and use their revealed actions and observed own

and opponent’s past action as input data.
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B Robustness Checks

B.1 Do Learning Models Explain Repeated Play Better than

the Initial Responses Model?

In this robustness check, we take the simplest approach to studying repeated play and

re-estimate the models of initial responses without including the models of repeated

play (No-Change, Adaptive, Sophisticated and Sophisticated2 ). We then compare the

loglikelihood values under the two approaches.

For the 11-20 game, the loglikelihood values per subject are -18.51 for the models

of initial responses models and -12.97 for the models of repeated play on average. In

the same vein, the average perfect guesses per subject are 6.23 and 3.60, respectively.

For the 3× 3 games, the loglikelihood values per subject are -13.11 for the models

of initial responses models and -11.37 for the models of repeated play on average. The

average perfect guesses per subject are 8.26 and 9.32, respectively.

We conclude that learning models that take into account how individuals use own

and their opponent’s past information are able to explain the repeated data better

than the re-estimated models of initial responses.

B.2 Robustness for 11-20 Game

In the 11-20 game experiment, we included two repeated play stages, stages 2 and 3.

Stage 2 is exactly equivalent to the repeated play in the 3 × 3 experiment. However,

in contrast to the 3× 3 experiment, we have only one unique decision to identify indi-

viduals’ repeated play model. Having just one decision imposes important limitations

on our ability to identify which learning model the subject is using. That is the reason

why we included stage 3, where repeated play was elicited with the strategy method

in the provision of information regarding the play in the first stage. In this robustness

check we repeat the exercise shown in Section 4.4 but with stage 2 data. Given that

we found little evidence for AdaptiveA and AdaptiveIA in this robustness check we in-

clude only AdaptiveS. We show that despite the estimated learning model type being

different, the main finding of no correlation is maintained.

Table 7 shows the separation values when we use stage-2 data. Despite these

separation values being relatively high, albeit lower than when we use stage-3 repeated

play, ties are very frequent when we use stage-2 repeated play. The main reason for this

is that stage-2 data use one unique decision to identify subjects’ learning model, such
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that it is enough that two models are fully confounded for not being able to identify

the learning model the subject is using. Additionally, the removal of ties in the case

of this analysis creates a clear bias: ties are more frequent with some learning models

depending on the stage-1 data. For example, subjects who chose 20 in stage-1 and are

No-Change in stage-2 will never be involve a tie. In contrast, if the same subject was

AdaptiveS in stage 2, the subject may be removed from the analysis due to a tie if

she is playing against a subject who chose 19 in stage 1 (if she ended up choosing 18,

there would be a tie between Adaptive and Sophisticated). To solve this issue, we add

an additional analysis, stage 2 unbiased, repeating the exercise but correcting stage-2

data with the average frequency of these ties.

Table 7: Separation of Different Behavioral Rules: 11-20 Game Stage 2

No Change AdaptiveS AdaptiveA AdaptiveIA Sophisticated

No Change 0.00

AdaptiveS 0.79 0.00

AdaptiveA 0.80 0.98 0.00

AdaptiveIA 0.67 0.99 1.00 0.00

Sophisticated 0.99 0.80 0.97 0.91 0.00

Sophisticated 2 0.97 0.99 1.00 0.99 0.79

Notes: The table reports the proportions of strategies in which the different behavioral models predict

different strategies. The minimum possible separation value is 0, which occurs when the two models

always prescribe the same strategy, and the maximum possible separation value is 1, which occurs when

the two models always predict a different strategy.

Table 8 shows the estimation results. We find that most subjects follow the No−
Change rule repeating their past strategy and that the next largest group follows the

Sophisticated rule. The presence of the adaptive myopic best response is much smaller

than in the stage-3 analysis, being the least followed rule of the four.

Finally, Table 9 shows the correlation results with the stage-2 data. We find no

evidence of positive correlation between naivete and sophistication in initial and re-

peated play. In neither panel can we reject that the distributions of the main types

are independent across rows (p-values of 0.39 and 0.13, respectively, for the chi-square

test).
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Table 8: Behavioral Type Identification for Repeated Play: 11-20 Game Stage 2

Model Stage 2 Stage 2 unbiased

(1) (2)

No-Change 0.40 0.32

AdaptiveS 0.14 0.17

Sophisticated 0.29 0.31

Sophisticated 2 0.17 0.20

No. of Subjects 93 93

Notes: The table displays the population frequencies estimated to
be consistent with each of the behavioral rules listed in the Model
column.. We exclude subjects whose behavior is equally compatible
with more than one type.

Table 9: 11-20 Contingency Table: Stage 2

Panel A: Panel A: Stage 2 Raw

Second Part Model

First Part Model No-change AdapS Soph Soph 2 No. of Subjects

Non-strategic 0.50 0.30 0.10 0.10 10

L2 0.37 0.12 0.37 0.14 49

L3 0.29 0.12 0.29 0.29 17

L4 0.56 0.06 0.19 0.19 16

NE – – – – 0

No. of Subjects 37 12 27 16 92

Panel B: Panel B: Stage 2 Unbiased

Second Part Model

First Part Model No-change AdapS Soph Soph 2 No. of Subjects

Non-strategic 0.33 0.42 0.10 0.14 10

L2 0.28 0.15 0.41 0.17 49

L3 0.24 0.13 0.31 0.33 17

L4 0.55 0.06 0.19 0.20 16

NE – – – – 0

No. of Subjects 29.77 14.49 29.21 18.53 92

Notes: The table shows for each of the behavioral rules in initial play (by row) the
proportion of subjects identified as following each of the behavioral rules in repeated
play. For each row, the proportions across the four columns referring to the four main
behavioral rules (No-Change, Adaptive, Sophisticated and Sophisticated2 ) should sum
up to 1. We exclude subjects whose behavior is equally compatible with more than one
type.

39



B.3 Robustness for 3× 3 Games

One important concern in testing for a correlation between strategic sophistication and

naivete in initial and repeated play is that the identification of behavioral types may

be misspecified because some behavioral rules that are relevant to explaining subjects’

behavior are not considered. With this concern in mind, we perform three robustness

tests. First, we repeat the estimation with elicited behavior in the first part, including

several alternative behavioral rules in addition to those that we already considered.

Second, we perform an omitted-type specification test to alternatively confirm whether

we obtain our result due to the omission of one or many relevant behavioral rules.

Finally, as we find a high number of the No-Change type, accounting for almost 40%

of the subjects, we perform an additional analysis replacing the No-Change type with

all the behavioral rules we considered in the first part.

B.3.1 Addition of Alternative Behavioral Rules in Initial Play

We consider 4 alternative behavioral types for the initial play in addition to the 8

that we described in Section 2. All four types could be considered variations of L1,

in which we alter the belief about the opponent’s behavior. Given that we consider it

to be plausible that subjects follow some simple non-strategic rules, it is also plausible

that some subjects think in the same way. Consequently, we consider L1 to refer to

the best response to each of the other non-strategic rules that we initially included,

that is, L1A, L1IA, L1MaxMax and L1MaxMin. Note that these alternative behavioral

rules are clearly strategic and closer in spirit to L2 in terms of strategic sophistication,

as they predict a particular opponent’s strategy and best respond to that strategy.

Additionally, as shown in Table A2 in the Appendix, these additional behavioral types

show good separation from the types that we initially considered.

As shown in Table A3 in the Appendix, the alternative models appear to show some

relevance, although they do not alter the identified type distribution substantially.

First, as expected, the new alternative behavioral rules steal frequency mostly from L2

and the non-strategic types (mostly A). The other behavioral model that appears to be

the most relevant is L1MaxMax, which is followed by 11% of subjects. The contingency

table displayed in Table 10 shows that subjects following these alternative models are

best explained by No-Change and Adaptive, and only a minority are best explained by

Sophisticated in repeated play. In summary, the consideration of additional alternative

behavioral rules to explain initial play does not alter the main results: we find no

evidence of a positive correlation between naivete and sophistication in initial and
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repeated play.

Table 10: Contingency Table with Additional Alternative Behavioral Rules: All Sub-
jects

Second Part Model

First Part Model No-Change Adaptive Soph Soph 2 No. of Subjects

AdapS AdapA AdapIA
Non-strategic 0.31 0.61 0.14 0.30 0.17 0.04 0.03 70

A 0.21 0.71 0.29 0.29 0.14 0.07 0.00 14

IA 0.30 0.60 0.20 0.30 0.10 0.00 0.10 10

MaxMax 0.17 0.75 0.08 0.33 0.33 0.00 0.08 12

MaxMin 0.58 0.42 0.17 0.08 0.17 0.00 0.00 12

L1 0.32 0.59 0.05 0.41 0.14 0.09 0.00 22

Alternative Models 0.25 0.50 0.17 0.33 0.00 0.17 0.08 24

L1A 0.20 0.60 0.00 0.60 0.00 0.00 0.20 5

L1IA 0.20 0.60 0.20 0.40 0.00 0.20 0.00 5

L1MaxMax 0.31 0.46 0.23 0.23 0.00 0.15 0.08 13

L1MaxMin 0.00 0.00 0.00 0.00 0.00 1.00 0.00 1

L2 0.48 0.46 0.15 0.24 0.07 0.04 0.02 46

L3 – – – – – – – 0

NE 0.00 1.00 0.00 0.00 1.00 0.00 0.00 2

No. of Subjects 50 78 21 40 17 9 5 142

Notes: The table shows for each of the behavioral rules in initial play (by row) the proportion of subjects identified as following
each of the behavioral rules in repeated play. For each row, the proportions across the four columns referring to the four main
behavioral rules (No-Change, Adaptive, Sophisticated and Sophisticated 2 ) should sum up to 1. Furthermore, for each row, the
proportions across the three adaptive behavioral models (AdaptiveS , AdaptiveA, AdaptiveS) should sum to the value in the column
for Adaptive. We exclude 56 subjects whose behavior is equally compatible with more than one type in one part or the other.

B.3.2 Specification Test: Omitted Types

In a similar spirit to the previous robustness test, we also perform an omitted type

specification test (as in Costa-Gomes and Crawford, 2006 to rule out the possibility

that we did not consider relevant models.

In this test, instead of proposing alternative behavioral models, we let the actual

subject behavior in our sample inform us of potential alternative rules. If we left out

a rule that actually complies with the subjects’ behavior, we would expect some of

the subjects to show behaviors similar to those predicted by this rule. Therefore, we

consider the observed behavior to identify potential new rules in the following manner.

In addition to all 12 behavioral rules considered in the previous section, we add each

subject’s actual behavior as an additional behavioral rule, one subject at a time, and

re-estimate the mixture-of-types model as many times as the number of subjects in our

population, that is, 198 times. While conducting this exercise, we check whether the
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added subject’s behavioral rule is able to explain other subjects’ behavior better than

the existing 12 models and whether the rule can attract sufficient relevance, where we

impose a threshold of 15% of the population frequency.

We find three such subjects (subject numbers 31, 85, and 86). What strategies do

these subjects follow? First, we check for similarity (or, alternatively, separation) in

these subjects’ behavior. These subjects appear to reflect the same type of behavior, as

they show very little separation (0.21 between the behavior of subject 31 and subject

85, 0.14 between the behavior of subject 31 and subject 86, and 0.36 between the

behavior of subject 85 and subject 86). Second, we check their separation from other

existing behavioral rules, as shown in Table A4 in the Appendix. All three behavioral

rules are well separated from all other considered rules, with the exception of L2, which

shows a separation equal to or less than 0.43. Third, consistent with this finding, we

also observe that when we consider these alternative models in the mixture-of-types

model estimation, the behavioral rule that loses the most frequency is indeed L2, as

shown by estimations in Table A5. Finally, we directly consider the actions of these

subjects and find that their behavior is mostly consistent with L2, but in a few games

mimics L1.15. In particular, the strategy profiles of subjects 85 and 31 diverge from

L2 or L1 behavior in only two decisions and that of subject 86 diverges in only three

decisions.

We conclude that these subjects show some variation from the existing L2 behav-

ioral type; however, none of them show a population frequency higher than that of L2

when incorporated into the estimation together, as shown in Table A5, or one by one.

Does the result of the correlation between sophistication and naivete between initial

and repeated play change when these new empirically motivated behavioral rules are

considered? Table 11 shows that subjects following these alternative models are best

explained by No-Change and by adaptive learners, with proportions similar to those

in Table 5a. Therefore, we again conclude that we find no evidence for a positive

correlation between naivete and sophistication in initial and repeated play.

B.3.3 Specification Test: Replacement of No-Change Type

We found that the large majority of subjects, almost 40% of them, followed the simplest

No-Change behavioral type in repeated play, such that their behavior is best described

as simply taking exactly the same strategy as the one that they took in the first part.

15In particular, the strategy profile of subject 31 is 3 1 3 3 3 1 3 3 1 2 1 2 3 1; the strategy profile
of subject 85 is 3 1 3 3 3 1 1 3 1 2 3 3 3 1; and the strategy profile of subject 86 is 3 1 3 1 3 1 3 2 1 2
1 2 3 1.
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Table 11: Contingency Table with the Addition of Three Subjects’ Behavioral Rules:
All Subjects

Second Part Model

First Part Model No-Change Adaptive Soph Soph 2 No. of Subjects

AdapS AdapA AdapIA
Non-strategic 0.35 0.57 0.11 0.28 0.17 0.04 0.04 46

A 0.17 0.67 0.17 0.50 0.00 0.17 0.00 6

IA 0.33 0.50 0.17 0.17 0.17 0.00 0.17 6

MaxMax 0.22 0.67 0.11 0.22 0.33 0.00 0.11 9

MaxMin 0.67 0.33 0.11 0.11 0.11 0.00 0.00 9

L1 0.31 0.63 0.06 0.38 0.19 0.06 0.00 16

Alternative Models 0.29 0.35 0.12 0.24 0.00 0.24 0.12 17

L1A 0.00 0.50 0.00 0.50 0.00 0.00 0.50 2

L1IA 0.33 0.33 0.00 0.33 0.00 0.33 0.00 3

L1MaxMax 0.36 0.36 0.18 0.18 0.00 0.18 0.09 11

L1MaxMin 0.00 0.00 0.00 0.00 0.00 1.00 0.00 1

Subject 31 0.57 0.14 0.00 0.00 0.14 0.14 0.14 7

Subject 85 0.25 0.75 0.25 0.38 0.13 0.00 0.00 16

Subject 86 0.38 0.57 0.19 0.29 0.10 0.05 0.00 21

L2 0.48 0.44 0.16 0.24 0.04 0.04 0.04 25

L3 - - - - - - - 0

NE 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1

No. of Subjects 49 69 19 35 15 9 6 133

Notes: The table shows for each of the behavioral rules in initial play (by row) the proportion of subjects identified as following
each of the behavioral rules in repeated play. For each row, the proportions across the four columns referring to the four main
behavioral rules (No-Change, Adaptive, Sophisticated and Sophisticated 2 ) should sum up to 1. Furthermore, for each row, the
proportions across the three adaptive behavioral models (AdaptiveS , AdaptiveA, AdaptiveS) should sum to the value in the column
for Adaptive. We exclude 65 subjects whose behavior is equally compatible with more than one type in one part or the other.
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We therefore question whether our results would significantly change if we replaced

the No-Change type with all the behavioral rules that we considered in the first stage

and added more sophisticated learning models such as Adaptive, Sophisticated and

Sophisticated 2.

Table A6 in the Appendix shows these results. The behavioral rules from the first

stage maintain relative frequencies similar to those in the original estimation see Table

3. The frequency of the models from the second stage decreases slightly as they have

to compete with more alternative explanations, but more importantly they remain

relevant and show the same frequency ordering. Adaptive is the most frequent non-

naive model, followed by Sophisticated and Sophisticated 2, which show a much lower

frequency, as before.

Table 12: Contingency Table with No-Change type replaced by Behavioral Models in
Initial Responses: All Subjects

Second Part Model

First Part Model Models of Adaptive Soph Soph 2 No. of Subjects

initial play AdapS AdapA AdapIA
Non-strategic 0.42 0.54 0.14 0.30 0.10 0.02 0.01 36

A 0.22 0.78 0.22 0.43 0.13 0.00 0.00 23

IA 0.27 0.73 0.18 0.45 0.09 0.00 0.00 11

MaxMax 0.46 0.46 0.08 0.23 0.15 0.00 0.08 13

MaxMin 0.43 0.57 0.21 0.21 0.14 0.00 0.00 14

L1 0.64 0.28 0.04 0.20 0.04 0.08 0.00 25

L2 0.36 0.53 0.24 0.24 0.05 0.07 0.05 59

L3 0.00 1.00 0.00 1.00 0.00 0.00 0.00 3

NE 0.50 0.50 0.00 0.00 0.50 0.00 0.00 2

No. of Subjects 58 82 26 43 13 6 4 150

Notes: The table shows for each of the behavioral rules in initial play (by row) the proportion of subjects identified as following
each of the behavioral rules in repeated play. For each row, the proportions across the four columns referring to the four main
behavioral rules (No-Change, Adaptive, Sophisticated and Sophisticated 2 ) should sum up to 1. Furthermore, for each row, the
proportions across the three adaptive behavioral models (AdaptiveS , AdaptiveA, AdaptiveS) should sum to the value in the column
for Adaptive. We exclude 48 subjects whose behavior is equally compatible with more than one type in one part or the other.

We can finally reproduce the contingency table replacing the No-Change type by

all models that we considered in initial play, as shown in Table 12. The two most

important models, L2 and the non-strategic ones, show a very similar distribution

over the models considered in repeated play. In other words, the non-strategic models

and the L2 behavioral types show frequencies very similar to the ones before of the

models used in initial play and an adaptive learning model, showing once again that

the naivete and sophistication in the first play show little correlation with naivete and

sophistication in repeated play.
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The full table, where we disaggregate the No-Change into the different behavioral

types included in part 1, is shown in Table A7 in the Appendix. Sometimes, subjects

whose behavior is best described by No-Change change type between the first and the

second parts. However, if a subject is identified as No-Change, it is more likely that this

subject is identified as using exactly the same behavioral type as in the first part. For

example, subjects identified as following the L2 behavioral rule are identified mostly as

following one of two behavioral rules in the second part: either L2 or Adaptive (either

AdaptiveS or AdaptiveA).

More importantly, replacing No-Change does not change the estimated frequency

of Adaptive or the correlation of sophistication between initial and repeated play. We

therefore conclude that the results are robust to replacing the No-Change type with

the models considered in initial play.
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C Additional Tables

Table A1: Summary of Socio-Demographic Variables of the Subject Population

3× 3 Games 11− 20 Game

Variables Mean Values Stand. Dev. Mean Values Stand. Dev.

Men 0.41 0.39

Age 21.73 2.99 20.97 2.76

Spanish 0.87 0.95

University Entry Grade (out of 10) 6.85 1.16 7.58 1.46

Distribution over Field of Study:

Social Science 0.77 0.91

Applied Science 0.17 0.04

Natural Science 0.04 0.03

Distribution over risk choices:

1.5ewith 0.50 or 1.5ewith 0.50 0.31 0.27

1.3ewith 0.50 or 1.8ewith 0.50 0.11 0.13

1.1ewith 0.50 or 2.1ewith 0.50 0.26 0.25

0.9ewith 0.50 or 2.4ewith 0.50 0.07 0.05

0.7ewith 0.50 or 2.7ewith 0.50 0.04 0.08

0.6ewith 0.50 or 2.8ewith 0.50 0.04 0.04

0.4ewith 0.50 or 2.9ewith 0.50 0.02 0.02

0ewith 0.50 or 3ewith 0.50 0.16 0.17

Cognitive reflection test:

Percent correct in cognitive reflection test: Q1 0.28 0.31

Percent correct in cognitive reflection test: Q2 0.17 0.39

Percent correct in cognitive reflection test: Q3 0.41 0.56

Notes: Men takes a value of 1 if the subject is male. Age reflects the age in years. Spanish takes a value of 1 if the subject

is Spanish. University Entry Grade is normalized to a grade out of 10. Social Science, Applied Science and Natural Science

take values of 1 if the subject is studying a social, applied or natural science. Risk Choice was elicited as in Eckel and

Grossman (2002), where choices are ordered from safest to riskiest. Finally, the cognitive reflection test includes questions

from Toplak et al. (2014) designed to avoid the possibility that the original test from Frederick (2005) is already known by

the subjects. The questions are as follows: 1. If John can drink one barrel of water in 6 days, and Mary can drink one

barrel of water in 12 days, how long would it take them to drink one barrel of water together? (correct answer 4 days;

intuitive answer 9); 2. Jerry received both the 15th highest and the 15th lowest mark in the class. How many students are

in the class? (correct answer 29 students; intuitive answer 30); 3. A man buys a pig for $60, sells it for $70, buys it back

for $80, and finally sells it for $90. How much has he made? (correct answer $20; intuitive answer $10).
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Table A2: Separation of Different Behavioral Rules with Additional Alternative Be-
havioral Models

A IA MaxMax MaxMin L1 L1A L1IA L1MaxMax L1MaxMin L2 L3 NE

A 0.00

IA 0.60 0.00

MaxMax 0.46 0.62 0.00

MaxMin 0.71 0.65 0.57 0.00

L1 0.57 0.76 0.50 0.79 0.00

L1A 0.25 0.62 0.36 0.64 0.64 0.00

L1IA 0.64 0.98 0.64 0.71 0.50 0.57 0.00

L1MaxMax 0.75 0.73 0.64 0.57 0.79 0.50 0.64 0.00

L1MaxMin 0.71 0.65 0.93 0.64 0.71 0.71 0.64 0.57 0.00

L2 0.75 0.58 0.57 0.64 0.71 0.57 0.79 0.5 0.79 0.00

L3 0.86 0.80 0.86 0.64 0.79 0.71 0.43 0.50 0.50 0.71 0.00

NE 0.57 0.51 0.86 0.64 0.79 0.57 0.50 0.86 0.57 0.79 0.57 0.00

Notes: The table reports the proportion of strategies across all 14 games in which the different behavioral models predict

different strategies. The minimum possible separation value is 0, which occurs when the two models prescribe the same

strategy in all 14 games, and the maximum possible separation value is 1, which occurs when the two models predict a

different strategy in each of the 14 games.
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Table A3: Behavioral Type Identification for Initial Play: Additional Behavioral Types

Minimum Number of Perfect Guesses

No constraints 7 9 11

Main Alt. Main Alt. Main Alt. Main Alt.

A 0.14 0.10 0.14 0.10 0.10 0.07 0.14 0.11

IA 0.07 0.06 0.07 0.05 0.01 0.01 0.00 0.00

MaxMax 0.08 0.10 0.08 0.10 0.08 0.06 0.05 0.04

MaxMin 0.10 0.12 0.11 0.11 0.11 0.09 0.10 0.07

L1 0.17 0.15 0.18 0.16 0.21 0.17 0.33 0.25

L1A 0.06 0.06 0.04 0.00

L1IA 0.04 0.04 0.03 0.04

L1MaxMax 0.11 0.11 0.14 0.21

L1MaxMin 0.01 0.01 0.01 0.00

L2 0.39 0.25 0.39 0.26 0.48 0.38 0.38 0.29

L3 0.02 0.00 0.02 0.00 0.00 0.00 0.00 0.00

NE 0.02 0.02 0.02 0.02 0.01 0.01 0.00 0.00

No. of Subjects 174 161 169 159 91 104 21 28

Notes: The table displays the population frequencies estimated for the main specification shown in Table 3 and

when we add alternative models in initial play. We exclude 37, 30, 9 and 0 subjects whose behavior is equally

compatible with more than one type when we impose no constraints and when we impose the criteria of 7, 9

and 11 perfect guesses, respectively.

Table A4: Separation of the Three Relevant Subjects’ Behavior from other Behavioral
Models

A IA MaxMax MaxMin L1 L1A L1IA L1MaxMax L1MaxMin L2 L3 NE

Subject 31 0.57 0.58 0.71 0.71 0.50 0.57 0.57 0.57 0.64 0.36 0.71 0.57

Subject 85 0.54 0.65 0.50 0.71 0.57 0.50 0.50 0.64 0.79 0.36 0.79 0.64

Subject 86 0.57 0.55 0.64 0.71 0.50 0.57 0.57 0.50 0.64 0.43 0.79 0.71

Notes: The table reports the proportion of strategies across all 14 games in which the three subjects’ behavioral models

predict different strategies from the rest of the considered models. The minimum possible separation value is 0, which

occurs when the two models prescribe the same strategy in all 14 games, and the maximum possible separation value is

1, which occurs when the two models predict a different strategy in each of the 14 games.
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Table A5: Behavioral Type Identification for Initial Play: Additional Behavioral Types

Minimum Number of Perfect Guesses

No constraints 7 9 11

Main Alt. Main Alt. Main Alt. Main Alt.

A 0.10 0.05 0.10 0.05 0.07 0.06 0.11 0.07

IA 0.07 0.04 0.06 0.04 0.01 0.01 0.00 0.00

MaxMax 0.07 0.06 0.08 0.06 0.06 0.05 0.04 0.02

MaxMin 0.09 0.07 0.09 0.07 0.09 0.07 0.07 0.04

L1 0.16 0.13 0.16 0.13 0.17 0.13 0.25 0.16

L1A 0.04 0.02 0.04 0.02 0.04 0.02 0.00 0.00

L1IA 0.04 0.02 0.04 0.02 0.03 0.02 0.04 0.02

L1MaxMax 0.11 0.10 0.11 0.10 0.14 0.11 0.21 0.13

L1MaxMin 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00

L2 0.30 0.17 0.30 0.17 0.38 0.20 0.29 0.18

L3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NE 0.02 0.01 0.02 0.01 0.01 0.01 0.00 0.00

Subject 31 0.05 0.05 0.06 0.07

Subject 85 0.13 0.13 0.12 0.16

Subject 86 0.14 0.14 0.14 0.16

No. of Subjects 161 150 159 150 104 121 28 45

Notes: The table displays the population frequencies estimated for the main specification shown in Table 3 and

when we add alternative models in initial play. We exclude 48, 45, 21 and 0 subjects whose behavior is equally

compatible with more than one type when we impose no constraints and when we impose the criteria of 7, 9

and 11 perfect guesses, respectively.
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Table A6: Behavioral Type Identification for Repeated Play: No-Change replaced by
Behavioral Rules from Initial Play

Minimum Number of Perfect Guesses

No constraints 7 9 11

Main Alt. Main Alt. Main Alt. Main Alt.

No-Change 0.34 0.35 0.41 0.50

A 0.04 0.04 0.04 0.03

IA 0.02 0.02 0.01 0.00

MaxMax 0.04 0.04 0.04 0.03

MaxMin 0.05 0.05 0.05 0.06

L1 0.08 0.08 0.08 0.15

L2 0.13 0.13 0.13 0.03

L3 0.01 0.01 0.01 0.00

NE 0.01 0.01 0.01 0.00

Adaptive 0.57 0.55 0.56 0.55 0.54 0.56 0.46 0.65

AdaptiveS 0.16 0.17 0.17 0.17 0.21 0.23 0.28 0.38

AdaptiveA 0.28 0.29 0.28 0.29 0.28 0.30 0.15 0.24

AdaptiveIA 0.13 0.09 0.11 0.09 0.05 0.03 0.02 0.03

Sophisticated 0.06 0.04 0.06 0.04 0.02 0.02 0.04 0.06

Sophisticated 2 0.04 0.03 0.03 0.03 0.03 0.04 0.00 0.00

No. of Subjects 176 171 166 168 117 119 46 34

Notes: The table displays the population frequencies estimated for the main specification shown in Table 4 and

when we replace the No-Change type with all the models included in initial play as in Table 3. We exclude 27, 23,

10 and 0 subjects whose behavior is equally compatible with more than one type when we impose no constraints

and when we impose the criteria of 7, 9 and 11 perfect guesses, respectively.
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D Translation of Instructions

D.1 3× 3 Games

The original instructions were in Spanish. Here we provide a translation of the instruc-

tions into English.

THANK YOU FOR PARTICIPATING IN OUR EXPERIMENT!

We will now start the experiment. From now on, you are not allowed to speak, look

at what other participants do or walk around the room. Please turn off your phone.

If you have any questions or need help, raise your hand and one of the researchers

will talk with you. Please, do not write on these instructions. If you do not follow

these rules, YOU WILL BE ASKED TO LEAVE THE EXPERIMENT, AND NO

PAYMENT WILL BE GIVEN TO YOU. Thank you.

The university and the research projects have provided the funds for carrying of

this experiment. You will receive 3 euros for having arrived on time. Additionally, if

you follow the instructions correctly, you have the possibility to earn more money. This

is a group experiment. The amount that you can earn depends on your decisions, the

decisions of other participants, and chance. Different participants can earn different

amounts.

No participant will be able to identify another by their decisions or by their profits

in the experiment. The researchers will be able to observe the profits of each partic-

ipant at the end of the experiment, but we will not associate the decisions that you

have made with the identity of any participant.

EARNINGS:

During the experiment you can earn experimental points. At the end, each exper-

imental point will be exchanged for euros, and 1 experimental point is worth exactly

0.5 euros. Everything that you win will be paid in cash in a strictly private way at the

end of the experimental session.

Your final earnings will be the sum of the 3 euros that you receive for participating

plus what you earn during the experiment.

Each experimental point equals 50 cents, so 2 experimental points equals 1 euro

(2x0.5 = 1 euro).

If, for example, you earn a total of 20 experimental points, you will receive a total

of 13 euros (3 euros as payment for participation and 10 Euros from the conversion of

the 20 experimental points to euros).
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If, for example, you earn 4 experimental points, you will obtain 5 euros (4x0.5 = 2

and 2 + 3 = 5).

If, for example, you earn 44 experimental points, you will obtain 25 euros (44x0.5 =

22 and 22 + 3 = 25).

PARTS OF THE EXPERIMENT:

The experiment consists of two parts. You will participate by operating a computer.

In the first part, there will be 14 rounds where you will make 14 decisions. In the second

part, there will also be 14 rounds where you will make 14 decisions. At the end of the

experiment, when you have completed the two parts of the experiment, the computer

will randomly choose two of the 28 rounds, and you will be paid for the experimental

points that you received in those two rounds chosen at random, plus the 3 euros for

participating.

Before you begin each part of the experiment, we will explain in detail what kinds

of decisions you can make and how you can obtain experimental points.

When we are all ready, we will start the first part of the experiment by explaining

the instructions of this part in detail.

FIRST PART OF THE EXPERIMENT:

The first part of the experiment consists of 14 rounds. In each of the 14 rounds,

you will be paired with a participant chosen at random from this session. The other

participant will be different in each of the rounds, so you will never be paired with the

same participant more than once. From now on, we will refer to you as ”you” and the

other participant as ”the other participant”.

In each round, you will have to make a decision by choosing among three possible

options. Each decision will be presented in the form of a table similar to the one below

(but with different values). You will see the corresponding table each time you have to

choose an option. Each row of the table corresponds to an option that you can choose.

The decision that you must make is to choose one option. The other participant will

also have to choose, independently of you, from their options, which correspond to the

columns of the table. That is, you choose from the rows, while the other participant

chooses from the columns. However, to simplify things, the experiment is programmed

in such a way that all the participants - including the person with whom you are

matched - see their decision as shown in the example. That is, each of you will be

presented with your possible actions in the rows of the table, and your experimental

points will be shown in red. At the time of making your choice, you will not know
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the option chosen by the other participant, and when the other participant is choosing

their option, they will not know the option that you have chosen.

The number of experimental points that you earn in each of the rounds depends on

the option that you have chosen and the option that the other participant has chosen.

The table of experimental points that you see below is an example of what you will

see in each of the rounds.

Example:

For example, if this round is chosen at random and you select the first option

(row) and the other participant selects the second option (column), you will obtain 20

experimental points, and the other participant will receive 12 experimental points.

As another example, if this round is chosen at random and you select the third

option (row) and the other participant selects the first option (column), you will obtain

18 experimental points and the other participant will receive 14 experimental points.

These are just two examples to better understand how decisions affect the experi-

mental points that you can earn and do not aim to suggest what decisions you should

make.

To make a selection, click on the white button next to the desired option. Then,

the button will turn red to indicate which option you have selected. Once you have

chosen an option, the choice is not final, and you can change your selection as many
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times as you want by clicking on another button until you press the “OK” button that

will appear in the lower right corner of each screen. Once you click “OK”, the selection

will be final, and you will proceed to the next round. You will not be able to move to

the next round until you have chosen an option and clicked “OK”. You will not have

any time restrictions. Take as much time as you need in each round. When all of you

have made your decisions in each of the 14 rounds, we will explain the second part of

the experiment.

Summary:

� Your experimental points will be shown in red, and the experimental points of

the other participant will be shown in blue.

� You will participate in 14 different rounds. In each of the rounds, the table

of experimental points will be different, and you will be paired with a different

participant chosen at random from this session.

� In each round, you can choose among three different options (rows), and the

experimental points that you earn depend on the option that you select, the

option that the other participant selects, and whether that round is chosen at

random at the end of the experiment.

We will start the first part of the experiment in a few moments. Before starting the

first part, you will see a new example, and you will have to answer several questions.

If you have any questions or need help at any time during the experiment, please raise

your hand, and one of the investigators will talk to you.
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Questions:

1.Please write the experimental points that you would earn in this round, if this

round is randomly chosen for payment, and if you chose the second option and the

other participant chose the third option.

2.Please write the experimental points that the other participant would earn in this

round, if this round is randomly chosen for payment, and if you chose the third option

and the other participant chose the second option.

3.Please state if the following statement is true or false: “Two rounds will be ran-

domly selected for payment. The two rounds can be from part 1, from part 2, or 1

from part 1 and the other from part 2.”

SECOND PART OF THE EXPERIMENT:

The second part of the experiment also consists of 14 rounds and will work similarly

to the first part. That is, the tables of experimental points that you will see in each of

the 14 rounds in this second part will be the same as those you saw in the first part of

the experiment. As in the first part, in each of the 14 rounds, you will be paired with

a participant chosen at random from this session. However, in each of the rounds, the
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other participant with whom you have been paired in this part does not have to be

the same as the participant with whom you were paired in the first part. The pairing

is performed again at random. In each of the rounds, the other participant, chosen at

random, will be different, so you will never be paired with the same participant more

than once.

As in the first part, both you and the other participant can choose among three

possible options. The experimental points that you can earn in each of the rounds

depend on the option that you select and the option that the other participant selects,

as well as on whether that particular round is chosen at random at the end of the

experiment.

Unlike in the first part, in this case, when you see the table of experimental points,

you can also observe the option that you chose in the first part and the option that

was chosen in the first part by the participant with whom you are paired in this part.

The option that you both chose in the first part will be indicated by an arrow and will

say “You chose” and “The other chose”. The information that you observe will be the

same for the participants with whom you are paired.

The table of experimental points that you see is an example of what you will see in

each of the rounds.

Example:
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As in the first part, if, for example, this round is chosen at random and you select

the first option (row) and the other participant selects the second option (column), you

will earn 20 experimental points, and the other participant will earn 12 experimental

points.

As another example, if this round is chosen at random and you select the third

option (row) and the other participant selects the first option (column), you will obtain

18 experimental points, and the other participant will receive 14 experimental points.

These are just two examples to help you understand how decisions affect the ex-

perimental points that you earn and are not intended to suggest what decisions you

should make.

Unlike in the first part, in this part of the experiment, you can observe, as indicated

in the example, which option you chose and which option the other participant chose

in the first part. For example, in the example table, you chose the second option (row),

and the other participant chose the second option (column). The other participant can

also observe the option that you chose and the option that he/she chose; you both have

the same information. Now you will have to make a choice again.

You can make your decision in the same way as in the first part by clicking on

the button of the option that you want to choose and confirming by pressing “OK”.

You will not have any time restrictions. Take as much time as you need in each of

the rounds. When all of you have made your decisions in each of the 14 rounds, the

experiment will end.

Summary:

� Your experimental points will be shown in red, and the experimental points of

the other participant will be shown in blue.

� You will participate in 14 different rounds. In each round, the table of experi-

mental points will be different, and you will be paired with a different participant

chosen at random from this session.

� Unlike in the first part, you can now see which option you chose in the first

part and which option the other participant chose in the first part. The other

participant will also be able to observe the option that he or she chose and the

option that you chose.

� In each round, you can choose among three different options (rows), and the

experimental points depend on the option that you have chosen, the option chosen
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by the other participant, and whether that round is chosen at random at the end

of the experiment.

We will start the second part of the experiment in a few moments. If you have any

questions or need help at any time during the experiment, please raise your hand, and

one of the investigators will talk to you.

D.2 11-20 Game

The original instructions were in Spanish. Here we provide a translation of the instruc-

tions into English.

THANK YOU FOR PARTICIPATING IN OUR EXPERIMENT!

We will now start the experiment. From now on, you are not allowed to speak, look

at what other participants do or walk around the room. Please turn off your phone.

If you have any questions or need help, raise your hand and one of the researchers

will talk with you. Please, do not write on these instructions. If you do not follow

these rules, YOU WILL BE ASKED TO LEAVE THE EXPERIMENT, AND NO

PAYMENT WILL BE GIVEN TO YOU. Thank you.

The university and the research projects have provided the funds for carrying out

this experiment. You will receive 3 euros for having arrived on time. Additionally, if

you follow the instructions correctly, you have the possibility to earn more money. This

is a group experiment. The amount that you can earn depends on your decisions, the

decisions of other participants, and chance. Different participants can earn different

amounts.

No participant will be able to identify another by their decisions or by their profits

in the experiment. The researchers will be able to observe the profits of each partic-

ipant at the end of the experiment, but we will not associate the decisions that you

have made with the identity of any participant.

EARNINGS:

During the experiment you can earn experimental points. At the end, each exper-

imental point will be exchanged for euros, and 1 experimental point is worth exactly

0.4 euros. Everything that you win will be paid in cash in a strictly private way at the

end of the experimental session.

Your final earnings will be the sum of the 3 euros you receive for participating plus

what you earn during the experiment.
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Each experimental point equals 40 cents.

If, for example, you earn a total of 11 experimental points, you will receive a total

of 7.4 euros (3 euros as payment for participation and 4.4 euros from the conversion of

the 20 experimental points to euros).

If, for example, you earn 30 experimental points, you will obtain 15 euros (30x0.4 =

12 and 12 + 3 = 15).

If, for example, you earn 99 experimental points, you will obtain 42.6 euros (99x0.4 =

39.6 and 39.6 + 3 = 42.6).

PARTS OF THE EXPERIMENT:

The experiment consists of three parts. You will participate by operating a com-

puter. At the end of the experiment, when you have completed all three parts, the

computer will choose one part at random and you will be paid for the money that you

have received in that part, plus the 3 euros for participating.

Before we start each part of the experiment, we will explain in detail what kind of

decisions you can make and how you can obtain experimental points.

Now we will go on to explain the instructions for part 1 of the experiment.

PART 1 OF THE EXPERIMENT:

In part 1, you will make a decision. You will be paired with a randomly chosen

participant from this session. From now on, we will refer to you as “you” and the other

participant as “the other participant” in these instructions.

You will be asked to choose a number. The experimental points that you can earn

depend on the number you choose, the number that the other participant chooses and

whether this part is randomly selected at the end of the experiment.

You will have to choose a number between 11 and 20. You will always receive the

number of points equal to the number you choose. In addition:

� if you choose the same number as the other participant, you will receive 10 extra

points.

� if you choose exactly one number less than the other participant, you will receive

80 extra points.

When choosing, you will not know the number chosen by the other participant, and

when the other participant is choosing his or her number, he or she will not know the

number that you have chosen either.

Example:
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For example, if this round is chosen at random and...

� if you choose 17 and the other participant chooses 19, then you will receive 17

points and the other participant will receive 19 points.

� if you choose 12 and the other participant chooses 13, then you will receive 92

points and the other participant 13 points.

� if you choose 20 and the other participant chooses 19, then you will receive 20

points and the other participant 99 points.

� if you choose 16 and the other participant chooses 16, then you will receive 26

points and the other participant 26 points.

These are only examples to help you understand how your choices affect the ex-

perimental points that you can earn and are not intended to suggest what choices you

should make.

To make your decision, click on the number that you want to choose. The number

will then turn red to indicate which number you have selected. The choice is not final

and you can change it as many times as you want by clicking on another number until

you click on the “OK” button that will appear in the bottom right corner of each
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screen. Once you have clicked “OK”, the selected number will be final. You will not

have any time restrictions. Take as much time as you need. When you have all made

your choices, we will move on to explain part 2 of the experiment.

Summary:

� You will have to choose a number between 11 and 20. You will always receive

the number of points that you choose. Also,

� if you choose the same number as the other participant, you will receive 10 extra

points.

� if you choose exactly one number less than the other participant, you will receive

80 extra points.

We will start part 1 in a few moments. Before we begin, you will see a new example

and you will have to answer several questions. If you have any questions or need help

at any time, please raise your hand and one of the researchers will come and talk to you.

Questions:
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1.Please write here your points earned in this part if you choose 17 and the other

participant who has been chosen for this round chooses 14, if this part is chosen for

your payment.

2.Please write here the points earned in this part by the other participant if you

choose 19 and the other participant who has been chosen for this part chooses 18, if

this part is chosen for your payment.

3.Please state whether the following statement is true or false: “One part will be

randomly selected for payment.”

PART 2 OF THE EXPERIMENT:

Part 2 of the experiment will work the same as part 1. That is:

� How the experimental points are earned will be exactly the same.

� You will also be paired with another randomly chosen participant from this ses-

sion. The other participant with whom you will be paired in this part will not

be the same as the one in part 1.

� You will not know the number chosen by the other participant in this part 2 of

the experiment, and when the other participant is choosing his or her number

that he or she will not know the number you have chosen in part 2, either.

What is the difference? Now you will be able to see the number that the participant

with whom you are paired in this part chose in part 1. In addition, you will see the

number you chose in part 1. The information that you observe will be the same for

the participants with whom you are paired.

Example:
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In the example table, you chose 16 and the other participant chose 19 in part 1.

The other participant can also observe the number that he or she chose and the number

that you chose: you both have the same information and observe the same thing. Now

you will have to decide which number you want to choose in this part.

These are only examples to help you understand how decisions affect the experi-

mental points you can earn and are not intended to suggest what decisions you should

make.

You can make your decision in the same way as in part 1 by clicking on the number

that you want to choose and confirming by clicking “OK”. You will not have any time

restrictions. Take as much time as you need. When you have all made your decision,

we will move on to explain part 3.

Summary:

� As before, you will have to choose a number between 11 and 20. You will always

receive the number of points that you choose. In addition,

– if you choose the same number as the other participant in this part, you will

receive 10 extra points.

– if you choose exactly one number less than the other participant in this part,

you will receive 80 extra points.
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� The participant with whom you are paired in this part 2 is not the participant

with whom you were paired in part 1.

� Unlike in part 1, you will now be able to see which number you chose in part 1

and the number that the other current participant chose in part 1. The other

participant will also be able to see the number that he or she chose and the

number that you chose.

We will begin part 2 in a few moments. If you have any questions or need help

at any point in the experiment, please raise your hand and one of the researchers will

come and talk to you.

PART 3 OF THE EXPERIMENT:

Part 3 of the experiment will work the same as part 2. That is,

� How you obtain the experimental points will be exactly the same as usual.

� You will also be paired with another randomly chosen participant from this ses-

sion. The other participant with whom you will be paired in this part will not

be the same as the one in part 1 or part 2.

� As always, you will not know the number chosen by the other participant in this

part 3 of the experiment, and when the other participant is choosing his or her

number, he or she will not know the number you have chosen in part 3 either.

� You will see what number you chose in part 1.

What is the difference? Instead of making one decision, you will now make 10

decisions. Why 10? Because now you will not know what number the other participant

chose in part 1. Since you do not know, you will make a decision for each hypothetical

case of the number that he or she might have chosen in part 1. That is, you will make

10 decisions for each hypothetical case of your choice in part 1.

In short, it is like doing part 2 ten times, selecting which number you would choose

in each hypothetical case, where only one will be the real one.

You will be able to switch between two types of screens: the menu screen and the

decision screen.

Example of the menu screen:
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In the menu screen, in the first row you will see which possible numbers could have

been chosen in part 1 by the other participant, from 11 to 20. The numbers that

appear with a green tick are the cases for which you have already chosen a number. In

the second row you will see what you chose in part 1 indicated with a red arrow. In

the third and last row, you will see what you are choosing in this part 3 for each case.

On the menu screen, if you click on each of the numbers in the first row of the other

participant you will enter the corresponding decision screen.

In the example menu screen that we show you, you have made only one decision

out of the possible 10, specifically, the case where the other participant chose 19 in part

1, because only that number has a green tick. You chose 16 in part 1, and if the other

participant had chosen 19 in part 1, in part 3, you choose 19. To choose numbers for the

other hypothetical cases, you must click on any of the other participant’s numbers. This

is just an example and is not meant to suggest how you should make your decisions.

Example of the decision screen:
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In the decision screen, in the first row you will see the information corresponding

to the hypothetical case that you have selected, and you must choose a number by

clicking on a number in the “You can choose” row. In the example screen, you are

in the decision screen for the case where the other participant chose 18, you chose 16,

as indicated by the red arrow in your row. You can move between the hypothetical

cases with the “Previous” and “Next” buttons, and if you click on the “Back to Menu”

button, you will return to the menu screen, where you will see a summary of your

decisions for this part and which decisions you have yet to make.

During the experiment, in the decision screen, you will see that you will have a

choice already made, which is the one you made in part 2 for the hypothetical case

that you came to observe. If you would like, you can also change that decision and

any other decision in this part 3 as many times as you want. You can only finish the

experiment when you give an answer for each of the 10 hypothetical cases.

Remember that you can choose any number you want from 11 to 20, and it can

always be the same or different. These examples are simply to help you understand

the screens that you will encounter and how to interpret them, they are not meant to

suggest how you should make your decisions.

If this part of the experiment is chosen for payment, you will be paid only for

the actual case of the 10 hypothetical decisions. The same will be true for the other
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participant, who will be paid only for the actual case of the 10 hypothetical decisions.

You will not have any time restrictions. Take as much time as you need. When you

have all made your decisions, the experiment will end.

Summary:

� As always, you will have to choose a number between 11 and 20. You will always

receive the number of points you choose. Also,

– if you choose the same number as the other participant chooses in this part,

you will receive 10 extra points.

– if you choose exactly one number less than the other participant in this part,

you will receive 80 extra points. extra points.

� The participant with whom you are paired in this part 3 is different from the one

in part 1 and the one in part 2.

� You will be able to see which number you chose in part 1, and you will be asked

to choose a number for each hypothetical case of the possible number that the

other participant could have chosen in part 1. The other participant will also be

able to see the number he or she chose in part 1 and will also be asked to choose

a number for each hypothetical case of the possible number that you could have

chosen in part 1.

� If this part of the experiment becomes eligible for payoff, you will be paid for

only one of the 10 decisions, i.e., for the decision in the real case.

We will start part 3 in a few moments. If you have any questions or need help at

any point in the experiment, please raise your hand and one of the researchers will

come and talk to you.
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