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Abstract

Consumers can either acquire product information at some cost or base their purchase
decision solely on whatever information the seller provides. The optimal information de-
sign by a monopoly firm deters information acquisition completely and induces a purchase
if and only if the consumer’s valuation exceeds a certain threshold. As the information
acquisition cost increases, the probability of a purchase increases, consumer welfare dete-
riorates while profit and social welfare are improved until they reach their first best level.
The ability of the firm to inform the consumer may either benefit or hurt the consumer
so that, if providing information is costly, the firm informs either too much or too little
as compared to a second best social optimum.
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1 Introduction

When we contemplate buying an unfamiliar product, we can obtain a wealth of information

through online sources such as consumer reviews, forums, specialized blogs or online publica-

tions. Acquiring such information however takes time and we might prefer to save the associated

cost by only relying on the information the seller of the product willingly provides. The present

paper explores how the availability of independent information sources for consumers affects

the seller’s disclosure strategy and the buyers’ well being. Does the buyer benefit from having

acess to that information? Does the information provided by the seller improve the consumers’

situation by allowing them to save on the cost of acquiring information?

We consider a simple setting where a firm sells a product to a buyer who initially does

not know his valuation. The firm may provide some certifiable information to the buyer.

After learning that information and the product’s price, the buyer decides whether to collect

additional information at some cost or to take his purchase decision only relying on the firm’s

information.

We show that the firm optimally designs its product information so as to completely deter

information acquisition by the buyer. The optimal disclosure is characterized by a threshold

on the match between the product and the consumer such that the latter learns whether or not

the match is above the threshold but learns no farther information. As the cost of information

acquisition increases, the information disclosed to a consumer who purchases the product is

deteriorated (i.e. the threshold decreases). As a result, the probability that the consumer buys

the product increases. This optimal information disclosure allows the firm to increase its price

up to a point where it can extract the entire expected consumer surplus. If the information

acquisition cost is high enough so that the consumer has zero expected surplus, then a farther

increase of that cost induces a decrease in price until information acquisition becomes costly

enough so the firm achieves a first best outcome: the consumer buys if and only if he has

valuation above marginal cost and the entire surplus is extracted by the seller.
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An increased cost of information for the consumer results in a lower consumer welfare. The

source of this deteriorated welfare is that, because he buys a product about which the firm

provides poorer information, his expected loss from buying with a negative surplus becomes

larger. However, profit increases and social surplus always improves if the consumer’s informa-

tion acquisition becomes more costly.

The impact of the seller’s optimal information disclosure on the buyer is twofold. On the

one hand, he saves on the information cost he would incur if the seller provided no information.

On the other hand, optimal information design allows the seller to capture more surplus from

the consumer than if the consumer was perfectly informed. We characterize situations where

the externality of seller information imparted on the buyer is either positive or negative. Hence,

if providing information is costly, the firm will either over provide or under provide information

as compared to what is socially optimal.

A similar problem is analyzed in Wang (2017). However, he does not consider optimal

information design and restricts the firm’s disclosure strategy to be the one introduced by

Lewis and Sappington (2014). Our work is also related to the literature on optimal product

information disclosure as in Saak (2006) or Anderson and Renault (2006) as well as to the

analysis of optimal information design when the receiver can obtain information independently

at some cost in Matyskova and Montes (2023).

The model is presented in the next section. Section 3 provides useful preliminary results.

The equilibrium is presented in Section 4, which also provides some welfare analysis.

2 Model

The match value is v ∈ V = [0, 1], drawn from the distribution function G, with strictly positive

and twice continuously differentiable density. We assume that g(v)
1−G(v)

is strictly increasing, so

the profit p(1 − G(p)) is strictly quasi-concave and pM ∈ argmaxp p(1 − G(p)) is unique and
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satisfies

pM =
1−G(pM)

g(pM)
.

Let πM = maxp p(1−G(p)) = pM(1−G(pM)) be the monopoly profit. The prior expected

match is

µ = E(v) =

∫ 1

0

vdG(v).

Timing:

1. nature determines the match v according to the prior G; nobody observes it;

2. the firm chooses a price p and an information disclosure policy X : V → ∆(M) for some

message space M ;

3. the consumer observes the price p, the information disclosure policy X and the realized

signal generated by that policy, denoted X̄.

4. the consumer chooses a ∈ A = {drop, buy, search};

5. if the consumer drops he gets 0; if he buys he gets v − p; if he searches, he pays s > 0,

observes v, then buys if v ≥ p and drops if v < p. The firm gets p if the consumer buys,

and 0 if the consumer drops.

Remark 1 Wang restricts attention to the following class of information disclosure policies:

the firm chooses η ∈ [0, 1]: for each v, the signal is m = v with probability η, and m is drawn

from the distribution function G with probability 1− η. Then, the conditional expected match

of the consumer when he observes message m is

E(v | m) = ηm+ (1− η)µ.

Observe that η = 1 corresponds to full information disclosure and η = 0 corresponds to no

information disclosure. ⋄
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3 Preliminary results and benchmaks

Proposition 1 It is without loss of generality to consider a threshold information disclosure

policy such that the consumer is recommended to buy when v ≥ ṽ and is recommended to

drop when v < ṽ, for some ṽ ∈ [0, 1]. That is, M = {drop, buy}, X(buy | v) = 1 if v ≥ ṽ,

X(drop | v) = 1 if v < ṽ, and the consumer follows the recommended action. In addition, at

the optimum for the firm we have p > ṽ.

Proof. (Sketch) First, from the revelation principle (?), it is without loss of generality to

let M = A, i.e., the information disclosure policy is a recommendation system X : [0, 1] →

∆(A) and we let X(a | s) denote the probability of receiving signal a if the valuation is v.

In addition, it is without loss of generality to require obedience from the consumer, i.e., to

require that the consumer chooses action a when getting the signal a. Hence, X(a | s) is the

probability that the consumer plays a when the match value is v. In particular, we can impose

incentive compatibility constraints for those who receive signal buy: EX(v | buy) ≥ p so they

don’t drop and EX(v | buy) − p ≥ EX(v | buy; v ≥ p) − p − s so they don’t search (where

EX(v | a) is the expectation of the match according to the posterior induced by X when the

signal is a). Similarly, incentive compatibility constraints for those who receive signal drop are:

EX(v | drop) − p < 0 so they do not buy and EX(v | drop; v ≥ p) − p − s < 0 so they do not

search.

Now consider some incentive compatible disclosure policy X0. We show that there exists

a disclosure policy X such that X(search) = 0 yielding the same probabilities of buying and

dropping, as X0 (where X(a) is the unconditional probability of signal a with policy X). Take

X defined as follows: if v ≥ p then X(buy | v) = X0(buy | v) + X0(search | v) and X(drop |

v) = X0(drop | v); if v < p then X(buy | v) = X0(buy | v) and X(drop | v) = X0(drop | v) +

X0(search | v). Then we have EX(v | buy) = X0(buy)
X(buy)

EX0(v | buy) + X0(search|v≥p)[1−G(p)]
X(buy)

EX0(v |

search; v ≥ p). The first expectation is at least p from IC of X0 and the second is at least

p by construction so a buyer receiving signal buy does not deviate to D. He will not search
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either because his benefit from searching (which only arises when v < p) is smaller than with

disclosure policy X0. The arguments for showing that a buyer who receives the drop signal will

not want to deviate are symmetric.

Next, consider some disclosure policy X0 such that X0(search) = 0. Let ṽ be the unique

solution to 1 − G(ṽ) = X0(buy) and define a disclosure policy X such that X(buy | v) = 1 if

v ≥ ṽ and X(drop | v) = 1 otherwise. First, there is no information acquisition with either X0

or X and they both yield the same probability of purchase. Furthermore, if X0 ̸= X, then there

exists a non zero measure subset of [ṽ, 1] such that X0(buy | v) < 1 and some non zero measure

subset of [0, ṽ] such that X0(buy | v) > 0, which implies that EX0(v | buy) < EX(v | buy),

EX0(v | drop) > EX(v | drop) and, for p > ṽ, EX(v | buy) − EX(v | buy; v ≥ p) = EX(v |

buy; v < p) > EX0(v | buy; v < p) so that, if X0 is incentive compatible then so is X.

Given X above, a firm charging p < ṽ could increase p slightly without violating any

incentive compatibility constraint and hence make more profit. So we must have p ≥ ṽ.

From this result, the program of the firm is:

max
p,ṽ

p(1−G(ṽ))

under the obedience constraints

E(v | v ≥ ṽ)− p ≥ 0 (1)

E(v | v ≥ ṽ)− p ≥ Pr(v ≥ p | v ≥ ṽ)E(v − p | v ≥ p)− s (2)

Observe that the profit is quasi-concave in ṽ and p (iso-profit curves are strictly convex).

The first constraint guarantees that the buyer does not prefer to drop when suggested to buy.

The second constraint guarantees that the buyer does not prefer to search when suggested to

buy. Since p ≥ ṽ, the obedience contraint when suggested to drop is always satisfied. Notice

that the obedience constraints can be rewritten as∫ 1

ṽ

(v − p)g(v)dv ≥ 0 (∆)
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s ≥
∫ p

ṽ
(p− v)g(v)dv

(1−G(ṽ))
:= ϕ(ṽ, p). (Σ)

These constraints satisfied at equality are respectively denoted by (∆b) and (Σb):∫ 1

ṽ

(v − p)g(v)dv = 0 (∆b)

s =

∫ p

ṽ
(p− v)g(v)dv

(1−G(ṽ))
:= ϕ(ṽ, p). (Σb)

Observe that the LHS of (∆b) is the consumer welfare. Social welfare is simply
∫ 1

ṽ
vg(v)dv,

which is independent of the price and is increasing in the probability of trade 1−G(ṽ).

Define the ∆b (Σb, respectively) curve as the set of points (ṽ, p) such that (∆b) ((Σb),

respectively) is satisfied.

Full disclosure Full disclosure is equivalent to the case ṽ = p. In this case both constraints

(∆) and (Σ) are always satisfied strictly, the firm maximizes p(1−G(p)), so p = pM and π = πM .

Full disclosure is also equivalent to s = 0.

No disclosure With no disclosure we cannot use the approach above because consumers

might search (at least for low s). So for each price p ≤ µ, either (Σ) with ṽ = 0 is satisfied,

all buy and the profit is p. Or (Σ) with ṽ = 0 is not satisfied, they all search, and the profit is

p(1−G(p)). For ṽ = 0, (Σ) can be rewritten as

ΦG(p) :=

∫ p

0

(p− v)g(v)dv ≤ s ⇐⇒ p ≤ Φ−1
G (s),

where Φ−1
G is increasing. So under no disclosure we have:

If s ≤ ΦG(πM), the optimal price is min{pM , µ}, with profit πM if pM ≤ µ or µ(1 − G(µ))

if pM ≥ µ;

If ΦG(πM) ≤ s ≤ s2 := ΦG(µ), the optimal price is Φ−1
G (s) ≤ µ with profit Φ−1

G (s);

If s ≥ s2, the optimal price is µ with profit µ

(This is actually almost what is done before Proposition 1 in Wang).
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4 Profit maximization

The firm extracts all surplus when both constraints are satisfied for p = µ and ṽ = 0, so the

profit is µ. For p = µ and ṽ = 0, (∆) is binding, so the firm gets the first best if (Σ) is satisfied,

i.e.,

s ≥
∫ µ

0

(µ− v)g(v)dv := s2

Hence, if s ≥ s2 the firm gets its first best and if s < s2 then at least one constraint binds.

If s < s2 it cannot be the case that only constraint (∆) binds because then the program of

the firm is to maximize

E(v | v ≥ ṽ)(1−G(ṽ)) =

∫ 1

ṽ

vg(v)dv,

which is decreasing in ṽ, so the optimal threshold would be ṽ = 0, with p = µ, which is the

first best and is incentive-compatible only for s ≥ s2.

Therefore, we have:

Lemma 1 If s ≥ s2 the firm gets its first best: the price and profit is p = µ, no information is

disclosed (ṽ = 0) and only (∆) binds. If s < s2, then either both constraints (∆) and (Σ) bind,

or only (Σ) binds.

Note: If (∆) and (Σ) bind, then p and ṽ is the solution of the system∫ 1

ṽ

(v − p)g(v)dv = 0 (3)

(1−G(ṽ))s =

∫ 1

p

(v − p)g(v)dv. (4)

Lemma 2 Along the Σb curve, we have

dṽ

dp
=

1−G(ṽ)

g(ṽ)

G(p)−G(ṽ)∫ p

ṽ
1−G(v) dv

> 1.
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Proof. First observe that, by integrating by parts, we have

ϕ(ṽ, p) =

∫ p

ṽ
G(v)−G(ṽ) dv

1−G(ṽ)
.

Hence,
∂ϕ

∂p
=

G(p)−G(ṽ)

1−G(ṽ)
> 0, (5)

∂ϕ

∂ṽ
= − g(ṽ)

(1−G(ṽ))2

∫ p

ṽ

1−G(v) dv < 0. (6)

It follows that
dṽ

dp
= −

∂ϕ
∂p

∂ϕ
∂ṽ

=
1−G(ṽ)

g(ṽ)

G(p)−G(ṽ)∫ p

ṽ
1−G(v) dv

.

Because g(v)
1−G(v)

is increasing, we have∫ p

ṽ

1−G(v) dv =

∫ p

ṽ

1−G(v)

g(v)
g(v) dv <

∫ p

ṽ

1−G(ṽ)

g(ṽ)
g(v) dv =

1−G(ṽ)

g(ṽ)
(G(p)−G(ṽ)),

so
dṽ

dp
=

1−G(ṽ)

g(ṽ)

G(p)−G(ṽ)∫ p

ṽ
1−G(v) dv

>
1−G(ṽ)

g(ṽ)

G(p)−G(ṽ)
1−G(ṽ)
g(ṽ)

(G(p)−G(ṽ))
= 1.

Lemma 3 Along the ∆b curve, we have

dṽ

dp
> 0,

and the profit is strictly decreasing in ṽ.

Proof. The first part directly follows from the fact that the LHS of (∆b) is decreasing in p

and increasing in ṽ. For the second part, observe that (∆b) implies p =
∫ 1
ṽ vg(v)dv

1−G(ṽ)
so the profit

is p(1−G(ṽ)) =
∫ 1

ṽ
vg(v)dv which is decreasing in ṽ.

From the previous lemmas we know that each constraint (∆b) and (Σb) defines an increasing

relation between ṽ and p. Consider the ∆b and Σb curves in the plane with ṽ in the horizontal

axis and p in the vertical axis. The next lemma shows that (for s < s2) the curve Σb starts at
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ṽ = 0 below the curve ∆b.

Lemma 4 Under (∆b), if ṽ = 0, then p = µ. Under (Σb), if ṽ = 0, then p is increasing in s,

and p ∈ [0, µ) if s < s2.

Proof. The first part directly follows from (∆b). The second part directly follows from the

definition of s2 the fact that, for ṽ = 0, (Σb) is equivalent to ϕ(0, p) =
∫ p

0
(p− v)g(v)dv = s, and

ϕ(0, p) is increasing in p.

Let ṽ∗ and p∗ be the solution of the firm’s program and assume that the first best is not

incentive-compatible, i.e., s < s2. From the previous lemmas we know that ṽ∗ and p∗ is on the

Σb curve, on the left of the first point of intersection of ∆b and Σb. It is exactly at the point

of intersection (when both constraints (∆b) and (Σb) bind) or strictly before (when only the

constraint (Σb) binds) .

Lemma 5 If at the optimum both (∆) and (Σ) bind, then ṽ∗ and p∗ are strictly decreasing in

s.

Proof. Consider the ∆b and Σb curves in the plane with ṽ in the horizontal axis and p in

the vertical axis. Notice that the obedience constraints are satisfied for all pairs (ṽ, p) below

these curves. From Lemmas 2 and 3 both curves are increasing. From Lemma 3 we also know

that the profit on the ∆b curve increases when moving to the left. Hence, if at the optimum of

the firm both (Σ) and (∆) bind, then it must be at the first point for which the curves cross,

i.e., for the lowest value of ṽ for which (∆b) and (Σb) are satisfied.

At this point (ṽ∗, p∗), we know from Lemma 4 that the Σb curve crosses the ∆b curve from

below. If it was not the case, it would be possible for the firm to move along the ∆b curve to

the left (decreasing ṽ) by keeping (Σ) satisfied (but not binding), hence increasing its profit.

Next, observe that the Σ curve moves upwards when s increases (i.e., the largest p that

satisfies (Σ) is increasing in s), because ϕ is increasing in p and decreasing in ṽ. This implies

that the first crossing point of the curves, i.e., the optimal solution (ṽ∗, p∗), moves to the left on
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the ∆b curve. We conclude that if both (Σ) and (∆) bind, then ṽ∗ and p∗ are strictly decreasing

in s

Lemma 6 If at the optimum only (Σ) binds, then p∗ > pM , ṽ∗ is decreasing in s, and p∗ is

increasing in s.

Proof. For every admissible value of p, let ṽ(p) be the value of ṽ such that (Σb) is satisfied.

The profit of the firm when (Σ) binds is

p(1−G(ṽ(p)).

The FOC is

(1−G(ṽ(p))− pṽ′(p)g(ṽ(p)) = 0.

Putting ṽ′(p) from Lemma 2 into the FOC yields

1− p
G(p)−G(ṽ(p))∫ p

ṽ(p)
(1−G(v)) dv

= 0, (7)

which simplifies to∫ p

ṽ(p)

1−G(v)− pg(v) dv =

∫ p

ṽ(p)

(
1−G(v)

g(v)
− p

)
g(v) dv = 0. (8)

Because g(·)
1−G(·) is increasing and p > ṽ(p) at the optimum p = p∗, we have 1−G(p)

g(p)
< 1−G(v)

g(v)
for

v > ṽ(p), so ∫ p

ṽ(p)

(
1−G(p)

g(p)
− p

)
g(v) dv <

∫ p

ṽ(p)

(
1−G(v)

g(v)
− p

)
g(v) dv = 0.

This inequality implies
1−G(p∗)

g(p∗)
< p∗, (9)

and therefore p∗ > pM = 1−G(pM )
g(pM )

.
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Now, taking the derivative of (8) with respect to s at the optimum yields, after simplification:

dp∗

ds
=

1−G(ṽ∗)− p∗g(ṽ∗)

1− 2G(p∗) +G(ṽ∗)− p∗g(p∗)

dṽ∗

ds
. (10)

Note that the denominator is negative,

1− 2G(p∗) +G(ṽ∗)− p∗g(p∗) < 0, (11)

because 1−2G(p∗)+G(ṽ∗)−p∗g(p∗) = 1−G(p∗)−p∗g(p∗)+G(ṽ∗)−G(p∗), 1−G(p∗)−p∗g(p∗) < 0

and G(ṽ∗)−G(p∗) < 0.

Next, we use the binding constraint (Σb), which gives

dϕ

ds
=

dṽ∗

ds

∂ϕ

∂ṽ∗
+

dp∗

ds

∂ϕ

∂p∗
= 1.

Using (5) and (6) we get:

dp∗

ds
=

1−G(ṽ∗)

G(p∗)−G(ṽ∗)
+

g(ṽ∗)
∫ p∗

ṽ∗
(1−G(v)) dv

(G(p∗)−G(ṽ∗))(1−G(ṽ∗))

dṽ∗

ds
. (12)

Combining (10) and (12) we get:

dṽ∗

ds

(
1−G(ṽ∗)− p∗g(ṽ∗)

1− 2G(p∗) +G(ṽ∗)− p∗g(p∗)
−

g(ṽ∗)
∫ p∗

ṽ∗
(1−G(v)) dv

(G(p∗)−G(ṽ∗))(1−G(ṽ∗))

)
=

1−G(ṽ∗)

G(p∗)−G(ṽ∗)
. (13)

Observe that the RHS of (13) is positive, the second fraction of the LHS is positive, and the

denominator of the first fraction of the LHS is positive as observed in (11). To show that
dṽ∗

ds
< 0 it remains to show that the numerator of the first fraction of the LHS of of (13) is

positive, which amounts to show that p∗ < 1−G(ṽ∗)
g(ṽ∗)

. To prove this inequality, we use (7) and

the fact that 1−G(v)
g(v)

is decreasing in v:

p∗ =

∫ p∗

ṽ∗
(1−G(v))

g(v)
g(v) dv

G(p∗)−G(ṽ∗)
<

∫ p∗

ṽ∗
(1−G(ṽ∗))

g(ṽ∗)
g(v) dv

G(p∗)−G(ṽ∗)
=

(1−G(ṽ∗))

g(ṽ∗)

∫ p∗

ṽ∗
g(v) dv

G(p∗)−G(ṽ∗)
=

1−G(ṽ∗))

g(ṽ∗
.

(14)

We conclude that dṽ∗

ds
< 0, and hence from Equations (10), (11) and (14) that dp∗

ds
> 0.

12



From these lemmas we get the following proposition:

Proposition 2 For s ≤ s2, if the information acquisition cost s increases, then the probability

of a purchase, the profit and the social welfare increase.

Proof. Caveat: this proposition requires that the optimal solution is continuous, (e.g., this is

the case of the problem is convex).

The fact that the probability of a purchase and social welfare increase in s follows from the

fact that ṽ∗ is decreasing in s at the second best, whether only (Σ) binds (Lemma 6) or both

(∆) and (Σ) bind (Lemma 5).

When only (Σ) binds, the profit is increasing in s because both the price and the probability

of purchase increase (Lemma 6).

When both (∆) and (Σ) bind, the fact that the profit is increasing in s follows from Lemma

3 and the fact that ṽ∗ is decreasing in s.

Proposition 3 Consumer welfare is strictly decreasing in s when at the optimum only (Σ) is

binding, and is constant (equal to zero) otherwise. In particular, consumer welfare is lower

under optimal disclosure than under full disclosure.

Proof. Trivial when (∆) is binding. When only (Σ) binds, we know that from Lemma 6 that

ṽ∗ is decreasing in s, and p∗ is increasing in s. Let s′ > s, (ṽ, p) the optimal solution at s,

(ṽ′, p′) the optimal solution at s′, and CW =
∫ 1

ṽ
(v − p)g(v) dv, CW ′ =

∫ 1

ṽ′
(v − p′)g(v) dv the

corresponding social welfare. We have ṽ′ < ṽ and p′ > p and

CW ′ =

∫ 1

ṽ′
(v − p′)g(v) dv =

∫ ṽ

ṽ′
(v − p′)g(v) dv +

∫ 1

ṽ

(v − p′)g(v) dv.

The first term is negative because p′ > p > ṽ, and the second term is smaller than CW because

p′ > p. We conclude that CW ′ < CW .

Proposition 4 There exists s1 ∈ (0, s2) such that, at the optimal solution, if s ∈ (0, s1) then
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only (Σ) is binding, and if s ∈ (s1, s2) then both (∆) and (Σ) are binding.

Proof. (sketch) Regarding the possibility that the drop constraint does not bind for

some s although it binds for some lower search cost. Here is an argument for why, if both

constraints bind for some s < s2 then they both bind for all search costs in [s, s2]. It is based on

the uniqueness of the solution to the profit maximization problem subject to (Σ) omitting (∆)

(so this would apply for ρ-linear 1 − G). So take the lowest s at which both constraints bind,

call it s0 and the corresponding solution (ṽ0, po). At that point, (∆) is only weakly binding in

the sense that (ṽ0, po) would still be the solution if that constraint was omitted (in other words,

the Lagrange multiplier for (∆) is zero). Then if we consider the profit maximizing solutions

for s > s0 ignoring (∆), it would involve ṽ < ṽ0 and p > p0. However this would always violate

(∆) because staring at (ṽ0, p0) and decreasing ṽ, it is necessary to decrease p as well in order

for (∆) to remain satisfied. Hence, for all s ∈ [s0, s2] the two constraints must bind.

4.1 Information externality imparted by the firm on the consumer

Will be completed in later versions.

5 Welfare under optimal, full, and no disclosure

We compare profit, consumer and social welfare in different scenarios (full/mandatory disclo-

sure, no disclosure, optimal disclosure, Wang disclosure).

For every v, qb(v) be the probability that the consumer buys and qs(v) the probability that

the consumer searches. The profit, consumer welfare and social welfare are denoted as follows:

Π =

∫ 1

0

qb(v)pg(v) dv

CW =

∫ 1

0

(qb(v)(v − p)− qs(v)s) g(v) dv

SW = Π+ CW =

∫ 1

0

(qb(v)v − qs(v)s) g(v) dv.
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5.1 Full disclosure

Under full disclosure we have p = pM , qb(v) = 1v≥pM , qs(v) = 0 and:

ΠFD =

∫ 1

pM

pMg(v) dv

CW FD =

∫ 1

pM

(v − pM)g(v) dv

SW FD =

∫ 1

pM

vg(v) dv.

5.2 Optimal disclosure

Under optimal disclosure we have qs(v) = 0 and qb(v) = 1v≥ṽ so

ΠOD =

∫ 1

ṽ

pg(v) dv

CWOD =

∫ 1

ṽ

(v − p)g(v) dv

SWOD =

∫ 1

ṽ

vg(v) dv.

5.2.1 First best, s ≥ s2

The firm extracts all surplus: p = µ, ṽ = 0, qb(v) = 1, qs(v) = 0, ΠOD = SWOD = µ and

CWOD = 0.

5.2.2 Second best, s1 ≤ s ≤ s2, both (∆) and (Σ) bind

Because (∆) binds we have CWOD = 0, so ΠOD = SWOD = p(1−G(ṽ)) which is increasing in

s up to µ when s ≥ s2.

5.2.3 Second best, s < s1, only (Σ) binds

CWOD is decreasing in s from CWOD = CW FD =
∫ 1

pM
(v − pM)g(v) dv when s = 0 to 0 when

s ≥ s1.
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ΠOD and SWOD are increasing in s.

Conclusion: For every s > 0, ΠOD > ΠFD, SWOD > SW FD and CWOD < CW FD.

5.3 No disclosure

For s ≥ s2 it is equivalent to optimal disclosure.

For ΦG(πM) ≤ s ≤ s2 := ΦG(µ) nobody searches and all buy and we have:

ΠND = Φ−1
G (s)

CWND =

∫ 1

0

(v − Φ−1
G (s))g(v) dv

SWND =

∫ 1

0

vg(v) dv = µ.

For s < ΦG(πM) all search and all v above p buy and we have, with p = min{pM , µ}:

ΠND = p(1−G(p)) =

∫ 1

p

pg(v) dv

CWND =

∫ 1

p

(v − p)g(v) dv − s

SWND =

∫ 1

p

vg(v) dv − s.

OBSERVATION: SWND > SWOD > SW FD for ΦG(πM) ≤ s ≤ s2 := ΦG(µ).
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Appendix

Uniform Case

No disclosure

xxx Also do no disclosure

Optimal disclosure

In the uniform case, µ = 1
2

and the first best is incentive-compatible iff s ≥ 1
8
. Hence, it remains

to solve the case s < 1
8
.

When both constraints (∆) and (Σ) are binding we get ṽ = 1−8s, p = 1−4s, and therefore

π = p(1− ṽ) = 8s(1−4s), which is equal to 1
2

(the first best) when s = 1
8

and 0 if s = 0. Hence,

this is not the optimum when s is small enough. The program when only (Σ) binds is

max
ṽ

p(1−G(ṽ))

under the constraints

E(v | v ≥ ṽ)− p ≥ 0 (D)

E(v | v ≥ ṽ)− p = Pr(v ≥ p | v ≥ ṽ)E(v − p | v ≥ p)− s (S)

In the uniform case it is:

max
ṽ

p(1− ṽ)

under the constraints
1 + ṽ

2
≥ p (D)

1 + ṽ

2
− p =

(1− p)2

2(1− ṽ)
− s (S)

Equation (Σ) has two solutions:

ṽ1 = p− s−
√

s(2− 2p+ s) and ṽ2 = p− s+
√
s(2− 2p+ s).
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ṽ = ṽ2 is not optimal for the first because then its profit is lower than 1
4
, which is dominated

by full disclosure. To see this, observe that when ṽ = ṽ2 the profit of the firm is

p(1−ṽ2) = p(1−p+s−
√

s(2− 2p+ s)) = p(1−p)+p(s−
√
s(2− 2p+ s)) ≤ 1

4
+p(s−

√
s(2− 2p+ s)),

and we have

p(s−
√
s(2− 2p+ s)) ≤ 0 ⇐⇒ s−

√
s(2− 2p+ s) ≤ 0 ⇐⇒ s2 ≤ s(2− 2p+ s)

⇐⇒ s ≤ 2− 2p+ s ⇐⇒ 0 ≤ 2(1− p),

which is always satisfied. Hence, let

ṽ(p) = p− s−
√
s(2− 2p+ s),

be the only possible optimal solution when (Σ) is binding. The program of the firm is

max
p

p(1− ṽ(p))

under the constraint

p ≤ 1 + ṽ(p)

2

The solution is

p =
1

2
+

3s+
√
s
√
16 + 9s

16
=

2

3
− 1

3
ṽ

for s ≤ 1
10

. For s > 1
10

both constraints are binding and we get the previous solution. The

solution is continuous: for s = 0 we get p = 1/2 and for s = 1
10

we get p = 3/5 which is the

1− 4s found before.

Note that we have at the optimum 1− ṽ > p for all s > 0 (they coincide at s = 0 only).

For s < 1
10

the price is increasing in s, from 1
2

to 3
5
, then it is decreasing from 3

5
to 1

2
at

s = 1
8
.

ṽ is always decreasing in s: it is 1
2

at s = 1
2
, 1

5
at s = 1

10
, and it is 0 for s ≥ 1

8
.
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For all s ∈ (0, 1
8
) the profit is strictly higher than in Wang.
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