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Abstract

A committee of n experts from a university department must
choose whom to hire from a set of m candidates. Their honest judg-
ments about the best candidate must be aggregated to determine the
socially optimal candidates. However, experts’judgments are not ver-
ifiable. Furthermore, the judgment of each expert does not necessarily
determine his preferences over candidates. To solve this problem, a
mechanism that implements the socially optimal aggregation rule must
be designed. We show that the smallest quota q compatible with the
existence of a q-supermajoritarian and Nash implementable aggrega-
tion rule is q = n −

⌊
n−1
m

⌋
. Moreover, for such a rule to exist, there

must be at least m
⌊
n−1
m

⌋
+ 1 impartial experts with respect to each

pair of candidates.
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1 Introduction

A committee of n experts from a university department must choose whom
to hire from a set of m candidates. Although all experts have the same infor-
mation about the candidates, their honest judgments about who is the best
do not necessarily coincide (for example, the experts may differ in the impor-
tance they assign to different characteristics of the candidates). Therefore,
experts’ judgments must be aggregated to decide the winning candidates.
The problem is that judgments are not verifiable. Furthermore, the judgment
of each expert does not necessarily determine his preferences over candidates.
For example, an expert might be interested in hiring a candidate who is his
friend, even if he does not think that candidate is the best. To solve this
problem, we should design a mechanism (or voting system) that provides the
right incentives for the experts to choose the candidates prescribed by the
judgment aggregation rule. The aggregation rule is said to be implementable
when this can be done.
As usual in implementation problems, whether a judgment aggregation

rule is implementable may depend on the characteristics of that rule. How-
ever, in this setting, an additional element is decisive: how experts’ judg-
ments and preferences are related. For example, an aggregation rule might
be implementable if all experts prefer the candidates they consider to be the
best to win, but not if all experts have the same friend whom they want to
favor.
Concerning the characteristics of the aggregation rule, we focus on super-

majority rules. An aggregation rule is q-supermajoritarian (with
⌊
n
2

⌋
+ 1 ≤

q ≤ n) if, whenever at least q experts have the same judgment about the
best candidate, that is the only candidate selected by the rule. Note that the
smaller q, the more stringent the q-supermajority criterion.
Regarding the relationship between judgments and preferences, following

Amorós (2020), we say that an expert is impartial with respect to two candi-
dates if the planner knows that, whenever the expert honestly believes that
one of the two candidates is the best, he prefers that candidate to the other.
Our goal is to study the existence of q-supermajoritarian aggregation

rules that are Nash implementable. Specifically, we are interested in study-
ing (1) what is the smallest quota q compatible with the existence of a q-
supermajoritarian and Nash implementable aggregation rule and (2) what
requirements this imposes on the impartiality of the group of experts.
Concerning the first point, we show that n −

⌊
n−1
m

⌋
is a lower bound on
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q for the existence of a q-supermajoritarian aggregation rule that is Nash
implementable (Proposition 1). This lower bound holds even in the most
favorable situation where all experts are impartial with respect to all pairs
of candidates.
About the second point, we show that, for a Nash implementable and

(n−
⌊
n−1
m

⌋
)-supermajoritarian aggregation rule to exist, for each pair of can-

didates, there must be at least m
⌊
n−1
m

⌋
+ 1 experts who are impartial with

respect to them (Proposition 2). In particular, if for at least one pair of
candidates, there are precisely m

⌊
n−1
m

⌋
+ 1 impartial experts, those experts

must be impartial with respect to all other pairs of candidates (Proposi-
tion 2). Moreover, in this case, the existence of a Nash implementable and
(n −

⌊
n−1
m

⌋
)-supermajoritarian aggregation rule is guaranteed (Proposition

3).

Related literature
Amorós (2020, 2021) are the closest papers to ours. They analyze the

same setting as our paper and study necessary conditions for implementa-
tion in an ordinal equilibrium concept.1 Amorós (2020) demonstrates that
implementing a majoritarian aggregation rule in an ordinal equilibrium con-
cept requires all experts to be impartial with respect to all pairs of candi-
dates.2 Amorós (2021) generalizes this result and shows that implementing
a q-supermajoritarian aggregation rule in an ordinal equilibrium concept re-
quires that, for each pair of candidates, there are at least 2(n−q)+1 experts
who are impartial with respect to them. In particular, this condition im-
plies that implementing a (n −

⌊
n−1
m

⌋
)-supermajoritarian aggregation rule

requires at least 2
⌊
n−1
m

⌋
+ 1 impartial experts for each pair of candidates.

However, our paper shows that these necessary conditions for implementa-
tion are not suffi cient when the ordinal equilibrium concept is Nash equi-
librium. Firstly, a corollary of our Proposition 1 is that no majoritarian
aggregation rule is implementable in Nash equilibrium, even if all experts
are impartial with respect to all pairs of candidates. Secondly, our Propo-
sition 2 shows that the necessary condition of impartiality for implementing
a (n−

⌊
n−1
m

⌋
)-supermajoritarian aggregation rule is stronger than stated by

1An equilibrium concept is ordinal if it only depends on the ordinal preferences of the
agents, not on the cardinal utility. For example, dominant strategy and Nash equilibria
are ordinal, but Bayesian equilibrium is not.

2A majoritarian aggregation rule is a q-supermajoritarian rule for the smallest possible
q (i.e., q =

⌊
n
2

⌋
+ 1).
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Amorós (2021) when the ordinal equilibrium concept is Nash equilibrium, as
m
⌊
n−1
m

⌋
+ 1 > 2

⌊
n−1
m

⌋
+ 1 if m > 2.

Some papers study a simpler model where all experts have the same
judgment (e.g., Amorós, 2013; Yadav, 2016). In this case, the only reasonable
rule selects the candidate that all experts judge to be the best. The condition
over the impartiality of the experts for this rule to be implementable only
requires that, for each pair of candidates, there is at least one expert who is
impartial with respect to them. Another series of papers analyze the problem
of selecting a ranking of candidates instead of a subset of winners (e.g.,
Amorós, 2009b; Adachi, 2014). The definitions of judgment, aggregation
rule, or impartiality are different in this problem, and then the conditions for
implementation are not comparable with our results.
Amorós (2009a) studies the problem of selecting alternatives based on

agents’preferences. In this setting, the unequivocal majority of a rule is the
number of agents such that, whenever at least this many experts agree on the
top alternative, only this alternative is chosen. He shows that n−

⌊
n−1
m

⌋
is a

lower bound for the unequivocal majority of any Maskin-monotonic rule. Al-
though this result closely resembles our Proposition 1, they are independent
results. The reason is that, while in Amorós (2009a) a rule chooses alterna-
tives based on preferences, in our work, a rule chooses candidates based on
judgments (and judgments do not determine preferences).3

Mackenzie (2020) studies how the pope is elected in the Roman Catholic
Church. This problem is a particular case of our model where the cardi-
nals are both the experts and the candidates. Holzman and Moulin (2013)
study the problem of choosing one winner when the experts are the candi-
dates themselves and each expert only cares about winning and is indifferent
among everyone else so that his preferences do not depend on his judgment.
Mackenzie (2015) analyzes a stochastic version of the Holzman and Moulin
(2013) model. Tamura (2016) establishes a characterization result in the
context of impartial nomination rules that satisfy anonymity, symmetry, and
monotonicity.

The rest of the paper is organized as follows. In Section 2, we describe
the model and notation. In Section 3, we state and prove the results. In
Section 4, we offer concluding remarks.

3Moreover, Amorós (2009a) only considers strict preferences, while our model allows
for indifferences.
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2 Setting

Let E be a set of n ≥ 2 experts and C a set of m ≥ 2 candidates. Each
expert i has an (honest) judgment about the best candidate, Ji ∈ C. The
experts’judgments must be aggregated to determine the deserving winner.
The aggregation procedure is represented by a social choice rule (SCR),
namely a correspondence F : Cn → 2C\{∅} that associates each possible
profile of experts’judgments with a non-empty subset of candidates.
Our focus in this paper is on supermajoritarian SCRs. For each J ∈ Cn

and x ∈ C, let ExJ = {i ∈ E | Ji = x}.

DEFINITION Let q ∈ N be such that
⌊
n
2

⌋
+ 1 ≤ q ≤ n. An SCR F is q-

supermajoritarian if, whenever J ∈ Cn is such that |ExJ | ≥ q for some x ∈ C,
then F (J) = x.

Roughly speaking, q-supermajoritarianism requires that whenever a can-
didate is judged as best by at least q experts, the SCR selects only that can-
didate. Note that the higher q, the less demanding the q-supermajoritarian
condition.
Experts have preferences over candidates that may depend on their judg-

ments. Let < denote the class of all complete, reflexive, and transitive pref-
erence relations over C. A preference function for an expert i is a mapping
Ri : C → < that associates with each possible judgment Ji a preference
relation Ri(Ji) (the strict part is denoted Pi(Ji)).
Let [C]2 denote the collection of pairs of candidates. Following Amorós

(2020), we say that an expert is impartial with respect to a pair of candidates
if the planner knows that whenever the expert believes one of the two can-
didates is the best, he prefers that candidate to the other. Each expert i is
characterized by a set of pairs of candidates with respect to whom the plan-
ner knows that i is impartial, Ii ⊂ [C]2. A preference function Ri : C −→ <
is admissible for i at Ii if, for every Ji, x, y ∈ C such that Ji = x and xy ∈ Ii,
we have x Pi(Ji) y. Let R(Ii) be the class of all preference functions that are
admissible for i at Ii.
A jury configuration is a profile I = (Ii)i∈E. A profile R ≡ (Ri)i∈E is

admissible at I if Ri ∈ R(Ii) for every i ∈ E. Let R(I) denote the set of
admissible profiles of preference functions at I. Given a jury configuration
I, a state is a profile (J,R) ∈ Cn × R(I). A mechanism is a pair Γ =
(M, g), where M ≡ ×i∈EMi, Mi is a message space for expert i, and g :
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M → C is an outcome function. A profile m ∈ M is a Nash equilibrium
of Γ at state (J,R) if, for every i ∈ E and m̂i ∈ Mi, g(mi,m−i) Ri(Ji)
g(m̂i,m−i). Let N(Γ, J, R) ⊂ M denote the set of Nash equilibria of Γ at
(J,R). The corresponding candidates selected by the mechanism are denoted
g(N(Γ, J, R)).
Given a jury configuration I, a mechanism Γ = (M, g) implements an

SCR F in Nash equilibrium if, for each state (J,R) ∈ Cn×R(I), g(N(Γ, J, R))
= F (J).

3 Results

A well-known result in the literature on mechanism design states that every
Nash implementable SCR is Maskin-monotonic: no outcome can be dropped
from being chosen unless its desirability deteriorates for at least one agent
(Maskin, 1999). Amorós (2020) showed that, in our setting, Maskin-monoton-
icity is equivalent to the following condition: if some candidate x is socially
considered to be a deserving winner when the profile of judgments is J but
not when the profile is Ĵ , then there must be some expert i who judges x as
the best candidate at J but not at Ĵ and who is impartial with respect to
the pair JiĴi.

DEFINITION Given a jury configuration I, an SCR F satisfies impartiality
of relevant experts (IRE) if, for every J, Ĵ ∈ Cn and x ∈ C, if x ∈ F (J) and
x /∈ F (Ĵ), then there exists i ∈ E with Ji = x 6= Ĵi and JiĴi ∈ Ii.

LEMMA 1 Given any jury configuration I, if an SCR F is Nash imple-
mentable, it satisfies IRE.

Although Lemma 1 can be obtained as a corollary of Maskin (1999; The-
orem 2) and Amorós (2020; Proposition 1), we include a new proof in the
Appendix for completeness.
Whether an SCR satisfies IRE depends on the following two elements: (1)

the properties of the SCR itself and (2) the jury configuration. Regarding
the properties of the SCR, in this paper, we are interested in SCRs that
are q-supermajoritarian for some q ∈

[⌊
n
2

⌋
+ 1, n

]
. Note that the smaller

q, the more demanding the q-supermajoritarian requirement, and therefore
the more diffi cult it will be to find a q-supermajoritarian SCR that satisfies
IRE. Regarding the jury configuration, the most favorable situation for an
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SCR to satisfy IRE is that all experts be impartial with respect to all pairs
of candidates, i.e., Ii = [C]2 for every i ∈ E (if an SCR does not satisfy IRE
for this jury configuration, it does not satisfy it for any other).
Next, we establish some conditions on the two previous elements for a

q-supermajoritarian SCR to be implementable in Nash equilibrium. First,
we show that n −

⌊
n−1
m

⌋
is a lower bound on q for the existence of a q-

supermajoritarian SCR that satisfies IRE. This lower bound holds even in
the most favorable situation where all experts are impartial with respect to
all pairs of candidates.

PROPOSITION 1. Given any jury configuration I, no Nash implementable
SCR is q-supermajoritarian with q < n−

⌊
n−1
m

⌋
.

Proof. Suppose by contradiction and w.l.o.g. that a Nash implementable
SCR F is q-supermajoritarian with q = n−

⌊
n−1
m

⌋
−1 (if F is q̂-supermajoritarian

with q̂ < n −
⌊
n−1
m

⌋
− 1, it is q-supermajoritarian with q = n −

⌊
n−1
m

⌋
− 1).

From Lemma 1, because F is implementable in Nash equilibrium, it satisfies
IRE.

Case 1. n ≤ m.

Because n ≤ m, then q = n − 1. Let J ∈ Cn be such that Ji 6= Jj for
every i, j ∈ E (because n ≤ m, such a profile exists). Let x ∈ F (J). Let
y ∈ C\{x} and Ĵ ∈ Cn be such that, for every i ∈ E, (i) if Ji 6= x then Ĵi = y
and (ii) if Ji = x then Ĵi = Ji. Because Ji 6= Jj for every i, j ∈ E , there is

at most one expert i with Ji = x. Therefore,
∣∣∣Ey

Ĵ

∣∣∣ ≥ n− 1. Hence, because

F is q-supermajoritarian for q = n − 1, F (Ĵ) = y. Then, x ∈ F (J) and
x /∈ F (Ĵ). However, there is no i ∈ E with Ji = x 6= Ĵi, which contradicts
that F satisfies IRE, regardless of the jury configuration I.

Case 2. m < n.

Suppose now that m < n. Let C1, C2 ⊂ C be such that C1 ∩ C2 = ∅,
C1 ∪ C2 = C, |C1| = n −m

⌊
n
m

⌋
, and |C2| = m − n + m

⌊
n
m

⌋
. Let J ∈ Cn

be such that, (i) for each x ∈ C1, |ExJ | =
⌊
n
m

⌋
+ 1, and (ii) for each x ∈ C2,

|ExJ | =
⌊
n
m

⌋
. Let x ∈ F (J). Let y ∈ C\{x} and Ĵ ∈ Cn be such that,

for every i ∈ E, (i) if Ji 6= x then Ĵi = y and (ii) if Ji = x then Ĵi = Ji.

Note that there are at most
⌊
n
m

⌋
+ 1 experts with Ji = x. Therefore,

∣∣∣Ey
Ĵ

∣∣∣ ≥
n −

⌊
n−1
m

⌋
− 1. Because F is q-supermajoritarian for q = n −

⌊
n−1
m

⌋
− 1,

F (Ĵ) = y. Then, x ∈ F (J) and x /∈ F (Ĵ). However, there is no i ∈ E with
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Ji = x 6= Ĵi, which contradicts that F satisfies IRE, regardless of the jury
configuration I.

Proposition 1 implies that if we are interested in q-supermajoritarian
SCRs that are implementable in Nash equilibrium, we must discard those
whose quota q is less than n−

⌊
n−1
m

⌋
, regardless of the jury configuration.

An SCR is considered majoritarian if it is (
⌊
n
2

⌋
+ 1)-supermajoritarian.

Amorós (2020) demonstrated that implementing a majoritarian aggregation
rule in an ordinal equilibrium concept requires all experts to be impartial with
respect to all pairs of candidates. Notably, unless m = 2, n = 2, or m = 3
and n = 4, we have n−

⌊
n−1
m

⌋
>
⌊
n
2

⌋
+1. Thus, an immediate consequence of

Proposition 1 is that, even under the total impartiality requirement stated by
Amorós (2020), no majoritarian SCR is implementable when the equilibrium
concept is Nash equilibrium.
From Proposition 1, a natural question arises: is q = n −

⌊
n−1
m

⌋
the

smallest supermajoritarian quota compatible with Nash implementation? In
other words, is there any q-supermajoritarian SCR with q = n−

⌊
n−1
m

⌋
that

is implementable in Nash equilibrium?
To answer this question, we first study what conditions the jury configu-

ration must satisfy for such an SCR to exist. Our following result shows that,
for a q-supermajoritarian SCR with q = n −

⌊
n−1
m

⌋
to satisfy IRE, the jury

configuration has to be such that, for each pair of candidates, there are at
least m

⌊
n−1
m

⌋
+ 1 experts who are impartial with respect to them. The jury

configuration can satisfy this condition in many different ways. The most
obvious of these is that, for every pair of candidates, all experts are impar-
tial with respect to them. Suppose on the contrary that, for at least one pair
of candidates, there are precisely m

⌊
n−1
m

⌋
+1 experts who are impartial with

respect to them. It turns out that, in this case, those same experts must be
totally impartial in that they are impartial with respect to all pairs of candi-
dates. For each jury configuration I and each pair of candidates xy ∈ [C]2,
let EIxy be the group of experts that are impartial with respect to xy, i.e.,
EIxy = {i ∈ E | xy ∈ Ii}. Let EI be the group of experts who are impartial
with respect to every pair of candidates, i.e., EI = {i ∈ E | xy ∈ Ii for every
xy ∈ [C]2}.

PROPOSITION 2. Given a jury configuration I, suppose a Nash imple-
mentable SCR F exists that is q-supermajoritarian with q = n −

⌊
n−1
m

⌋
.

Then:
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(1)
∣∣EIxy∣∣ ≥ m

⌊
n−1
m

⌋
+ 1 for every xy ∈ [C]2, and

(2) if
∣∣EIxy∣∣ = m

⌊
n−1
m

⌋
+1 for some xy ∈ [C]2, then

∣∣EI∣∣ = m
⌊
n−1
m

⌋
+1.4

Proof. From Lemma 1, because F is Nash implementable, it satisfies IRE.

Step 1. If J ∈ Cn and x ∈ C are such that |ExJ | ≤
⌊
n−1
m

⌋
, then x /∈ F (J).

Suppose by contradiction that x ∈ F (J). Let Ĵ ∈ Cn and y ∈ C be such
that (i) Ĵi = Ji for every i ∈ ExJ , and (ii) Ĵi = y for every i /∈ ExJ . Then∣∣∣Ey

Ĵ

∣∣∣ ≥ n −
⌊
n−1
m

⌋
. Because F is q-supermajoritarian with q = n −

⌊
n−1
m

⌋
,

F (Ĵ) = y. Then, x ∈ F (J) and x /∈ F (Ĵ). However, there is no i ∈ E with
Ji = x 6= Ĵi, which contradicts that F satisfies IRE.

Step 2.
∣∣EIxy∣∣ ≥ m

⌊
n−1
m

⌋
+ 1 for every xy ∈ [C]2.

Suppose by contradiction that
∣∣EIxy∣∣ ≤ m

⌊
n−1
m

⌋
for some xy ∈ [C]2.

Then, there are at least n − m
⌊
n−1
m

⌋
experts who are not impartial with

respect to xy, i.e.,
∣∣E/EIxy∣∣ ≥ n − m

⌊
n−1
m

⌋
. Let J ∈ Cn be such that (i)

|EzJ | =
⌊
n−1
m

⌋
for every z ∈ C\{x}, (ii) |ExJ | = n − (m − 1)

⌊
n−1
m

⌋
, and (iii)

Ji = x for n − m
⌊
n−1
m

⌋
of the experts who are not impartial with respect

to xy.5 Because |EzJ | =
⌊
n−1
m

⌋
for every z ∈ C\{x}, by Step 1, we have

F (J) = x. Let Ĵ ∈ Cn be such that (i) Ĵi = y for every i /∈ ExJ , (ii) Ĵi = y

for every i /∈ EIxy, and (iii) Ĵi = Ji for every i ∈ ExJ ∩ EIxy. Then,
∣∣∣Ey

Ĵ

∣∣∣ =

(m− 1)
⌊
n−1
m

⌋
+n−m

⌊
n−1
m

⌋
= n−

⌊
n−1
m

⌋
. Because F is q-supermajoritarian

with q = n −
⌊
n−1
m

⌋
, F (Ĵ) = y. Then, x ∈ F (J) and x /∈ F (Ĵ). However,

there is no i ∈ E with Ji = x 6= Ji and JiĴi /∈ Ii, which contradicts that F
satisfies IRE.

Step 3. If J ∈ Cn and x ∈ C are such that x ∈ F (J) and |ExJ | =
⌊
n−1
m

⌋
+

α for some α ≥ 1 then, for every y ∈ C\{x}, we have
∣∣ExJ ∩ EIxy∣∣ ≥ ⌊n−1m ⌋

+1.

Suppose by contradiction that, for some y ∈ C\{x},
∣∣ExJ ∩ EIxy∣∣ ≤ ⌊n−1m ⌋

.
Let Ĵ ∈ Cn be such that (i) Ĵi = x for every i ∈ ExJ ∩ EIxy and (ii) Ĵi = y

for every i /∈ ExJ ∩ EIxy. Note that
∣∣∣Ey

Ĵ

∣∣∣ ≥ n −
⌊
n−1
m

⌋
. Because F is q-

supermajoritarian with q = n −
⌊
n−1
m

⌋
, F (Ĵ) = y. Then x ∈ F (J) and

4If n ≤ m, the condition stated in point (1) of Proposition 2 only requires that, for
each pair of candidates, there is at least one expert who is impartial with respect to them.
If n > m, the condition is more stringent. In particular, if n − 1 is a multiple of m, the
condition requires that all experts be impartial with respect to all pairs of candidates.

5Note that then
∣∣ExJ ∩ E/EIxy∣∣ = n−m ⌊n−1m ⌋

.
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x /∈ F (Ĵ). Note that, for every i ∈ ExJ with Ĵi 6= x, we have Ĵi = y and
i /∈ EIxy, which contradicts that F satisfies IRE.
Step 4. If

∣∣EIxy∣∣ = m
⌊
n−1
m

⌋
+ 1 for some xy ∈ [C]2, then EIxy ⊂ EI .

Suppose by contradiction that there is some i ∈ EIxy such that i /∈ EI .
Then, there is x̂ŷ ∈ [C]2 \{xy} such that x̂ŷ /∈ Ii. Because x̂ŷ 6= xy, either
x̂ /∈ {x, y} or ŷ /∈ {x, y} (or both). Suppose w.l.o.g. that x̂ /∈ {x, y}.
Let J ∈ Cn be such that (i) Ĵi = x̂, (ii) Ĵj = x for every j /∈ EIxy, (iii)∣∣Ex̂J ∩ EIxy∣∣ =

⌊
n−1
m

⌋
+ 1, and (iv)

∣∣EzJ ∩ EIxy∣∣ =
⌊
n−1
m

⌋
for every z ∈ C\{x̂}.

Note that |ExJ | =
⌊
n−1
m

⌋
+n−m

⌊
n−1
m

⌋
−1,

∣∣Ex̂J ∣∣ =
⌊
n−1
m

⌋
+1, and |EzJ | =

⌊
n−1
m

⌋
for every z ∈ C\{x, x̂}.
Claim 4.1. x /∈ F (J).
Note that n−m

⌊
n−1
m

⌋
−1 is a non-negative integer. If n−m

⌊
n−1
m

⌋
−1 ≥ 1,

then |ExJ | =
⌊
n−1
m

⌋
+ α for some α ≥ 1. In this case, by Step 1 and since∣∣ExJ ∩ EIxy∣∣ =

⌊
n−1
m

⌋
, we have x /∈ F (J). If n − m

⌊
n−1
m

⌋
− 1 = 0, then

|ExJ | =
⌊
n−1
m

⌋
and, by Step 1, x /∈ F (J).

Claim 4.2. x̂ /∈ F (J).
Because

∣∣Ex̂J ∣∣ =
⌊
n−1
m

⌋
+ 1, Ĵi = x̂, and x̂ŷ /∈ Ii, then

∣∣Ex̂J ∩ EIx̂ŷ∣∣ ≤ ⌊n−1m ⌋
.

Therefore,
∣∣Ex̂J ∣∣ =

⌊
n−1
m

⌋
+ α for some α ≥ 1 but

∣∣ExJ ∩ EIxy∣∣ < ⌊
n−1
m

⌋
+ 1.

Hence, by Step 3, x̂ /∈ F (J).
Claim 4.3. z /∈ F (J) for every z ∈ C\{x, x̂}.
Let z ∈ C\{x, x̂}. Because |EzJ | =

⌊
n−1
m

⌋
, by Step 1, we have z /∈ F (J).

From Claims 4.1, 4.2, and 4.3, we have F (J) = ∅, which contradicts that
F is an SCR.

Amorós (2021) demonstrated that if an aggregation rule is q-supermajorit-
arian and implementable in an ordinal equilibrium concept, then, for each
pair of candidates, there are at least 2(n − q) + 1 experts who are impar-
tial with respect to them. As Nash equilibrium is an ordinal equilibrium
concept, a corollary of the previous result is that, if an aggregation rule is
q-supermajoritarian with q = n−

⌊
n−1
m

⌋
and Nash implementable, then, for

each pair of candidates, there are at least 2
⌊
n−1
m

⌋
+1 experts who are impar-

tial with respect to them. However, sincem
⌊
n−1
m

⌋
+1 > 2

⌊
n−1
m

⌋
+1 if m > 2,

our Proposition 2 demonstrates that, in general, the necessary condition of
impartiality is indeed stronger.
Let us then assume that there are m

⌊
n−1
m

⌋
+ 1 experts who are impartial

with respect to every pair of candidates and return to the question at hand: is
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there any q-supermajoritarian SCR with q = n−
⌊
n−1
m

⌋
that is implementable

in Nash equilibrium? The following result shows that the answer to this
question is positive.

PROPOSITION 3. Suppose that n ≥ 3. Let I be a jury configuration such
that

∣∣EI∣∣ ≥ m
⌊
n−1
m

⌋
+1. Then, a Nash implementable and q-supermajoritarian

SCR with q = n−
⌊
n−1
m

⌋
exists.

Proof. Let F ∗ be an SCR such that, for each J ∈ Cn:

F ∗(J) = {x ∈ C :
∣∣ExJ ∩ EI∣∣ ≥ ⌊n− 1

m

⌋
+ 1}

First, note that, because
∣∣EI∣∣ ≥ m

⌊
n−1
m

⌋
+ 1, for every J ∈ Cn, there is

at least one x ∈ C such that
∣∣ExJ ∩ EI∣∣ ≥ ⌊n−1m ⌋

+ 1, and then F ∗(J) 6= ∅.
Claim 1. F ∗ is q-supermajoritarian with q = n−

⌊
n−1
m

⌋
.

Let J ∈ Cn be such that |ExJ | ≥ n −
⌊
n−1
m

⌋
for some x ∈ C. Note that∣∣E\EI∣∣ ≤ n−m

⌊
n−1
m

⌋
−1. Moreover, n−

⌊
n−1
m

⌋
≥ n−m

⌊
n−1
m

⌋
−1+

⌊
n−1
m

⌋
+1.

Then
∣∣ExJ ∩ EI∣∣ ≥ ⌊n−1m ⌋

+ 1 and, by definition of F ∗, x ∈ F ∗(J).

Claim 2. F ∗ is implementable in Nash equilibrium.

Case 2.1. m < n.

Maskin (1999) showed that if there are at least three agents, any SCR
satisfying Maskin monotonicity and no veto power is implementable in Nash
equilibrium. In our setting, Maskin monotonicity is equivalent to IRE (Amorós,
2020; Proposition 1). No veto power requires an alternative being F -optimal
whenever it is the most preferred for at least n − 1 agents. Next, we show
that F ∗ satisfies both conditions.

Step 2.1.1 F ∗ satisfies IRE.

Let J, Ĵ ∈ Cn and x ∈ F ∗(J) be such that x /∈ F ∗(Ĵ). Then,
∣∣ExJ ∩ EI∣∣ ≥⌊

n−1
m

⌋
+ 1 and

∣∣∣Ex
Ĵ
∩ EI

∣∣∣ < ⌊n−1m ⌋
+ 1. Therefore, there is at least one expert

i ∈ ExJ ∩ EI such that i /∈ Ex
Ĵ
. Hence, Ji = x 6= Ĵi and, because i ∈ EI ,

JiĴi ∈ Ii.
Step 2.2.2 F ∗ satisfies no veto power.

Note that, for every i ∈ EI , Ri ∈ R(Ii), Ji ∈ C, and x ∈ C\{Ji}, we have
Ji Pi(Ji) x; i.e., the most preferred candidate for each expert i ∈ EI is Ji.
Let (J,R) ∈ Cn×R(I) be such that some candidate x is the most preferred
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for at least n − 1 experts. Then
∣∣ExJ ∩ EI∣∣ ≥ ∣∣EI∣∣ − 1. Hence, because∣∣EI∣∣ ≥ m

⌊
n−1
m

⌋
+ 1,

∣∣ExJ ∩ EI∣∣ ≥ m
⌊
n−1
m

⌋
. Moreover, because m ≥ 2 and

m < n, m
⌊
n−1
m

⌋
≥
⌊
n−1
m

⌋
+ 1. Then,

∣∣ExJ ∩ EI∣∣ ≥ ⌊
n−1
m

⌋
+ 1. Therefore,

x ∈ F ∗(J).

Case 2.2. n ≤ m.

In this case
⌊
n−1
m

⌋
= 0, and then

∣∣EI∣∣ ≥ 1 and, for each J ∈ Cn, F ∗(J) =
{x ∈ C :

∣∣ExJ ∩ EI∣∣ ≥ 1}.
Subcase 2.2.1.

∣∣EI∣∣ > 1.

The proof that F ∗ is implementable in Nash equilibrium is almost iden-
tical to that of Case 2.1, except for the argument that F ∗ satisfies no veto
power. Let (J,R) ∈ Cn × R(I) be such that some candidate x is the most
preferred for at least n − 1 experts. Then, because

∣∣EI∣∣ > 1, x is the most
preferred candidate for at least one expert in EI . Hence, since the most
preferred candidate for each expert i ∈ EI is Ji,

∣∣ExJ ∩ EI∣∣ ≥ 1. Therefore,
x ∈ F ∗(J).

Subcase 2.2.2.
∣∣EI∣∣ = 1.

Let i be the only expert in EI . Then, for each J ∈ Cn, F ∗(J) = Ji.
Because i ∈ EI , the most preferred candidate for i is Ji. Therefore, F ∗

is implementable in Nash equilibrium through the simple mechanism Γ =
(M, g) where Mj = C for every j ∈ E and g(m) = mi for every m ∈M .

4 Concluding remarks

We have studied the problem of the existence of Nash implementable su-
permajority rules to aggregate the judgments of a group of possibly biased
experts. We have stated conditions on the supermajority quota and the
experts’impartiality for these rules to exist.
Here are some suggestions for promising lines of extensions.
a. The general conditions for subgame perfect implementation are less

demanding than those for Nash implementation (see Moore and Repullo,
1988). It would be interesting to study what results can be obtained using a
stage mechanism in which experts make choices sequentially.
b. One of the most significant diffi culties when implementing a rule in

Nash equilibrium is ensuring that the mechanism does not have “bad”equi-
libria that result in candidates other than the socially optimal. Knowing
that some experts have friends or enemies among the candidates may help
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to eliminate these bad equilibria. It would be interesting to extend our work
to this case.
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Appendix

PROOF OF LEMMA 1
Suppose that F is implementable in Nash equilibrium.

Claim 1. For every J, Ĵ ∈ Cn, every x ∈ F (J) with x /∈ F (Ĵ), and every
R, R̂ ∈ R(I), there exist i ∈ E and y ∈ C such that x Ri(Ji) y and y P̂i(Ĵi)
x.

Let Γ = (M, g) be a mechanism implementing F in Nash equilibrium.
Suppose by contradiction that there exist J, Ĵ ∈ Cn, x ∈ F (J) with x /∈
F (Ĵ), and R, R̂ ∈ R(I) such that, for every i ∈ E and y ∈ C, if x Ri(Ji)
y then x R̂i(Ĵi) y. Because Γ implements F in Nash equilibrium, there
exists m ∈ N(Γ, J, R) such that g(m) = x. Then, for every i ∈ E and every
m̂i ∈Mi, x = g(mi,m−i) Ri(Ji) g(m̂i,m−i). Hence, for every i ∈ E and every
m̂i ∈ Mi, x = g(mi,m−i) R̂i(Ĵi) g(m̂i,m−i). Therefore, m ∈ N(Γ, Ĵ , R̂),
which contradicts that Γ implements F in Nash equilibrium because g(m) =
x /∈ F (Ĵ).

Claim 2. Let J, Ĵ ∈ Cn and x ∈ F (J) be such that x /∈ F (Ĵ). Then,
there exists i ∈ E such that, for every Ri, R̂i ∈ R(Ii) there is some y ∈ C
such that x Ri(Ji) y and y P̂i(Ĵi) x.

It follows from Claim 1 and the fact that R(I) has a cartesian product
structure, i.e., R(I) ≡ ×i∈ER(Ii).

Claim 3. Let i ∈ E and x, Ji, Ĵi ∈ C be such that, for every Ri, R̂i ∈
R(Ii) there is some y ∈ C such that x Ri(Ji) y and y P̂ (Ĵi) x. Then,
Ji = x 6= Ĵi and JiĴi ∈ Ii.
From the definition ofR(Ii), the only possibility that for every Ri ∈ R(Ii)

there is some y ∈ C such that x Ri(Ji) y is that Ji = x and xy ∈ Ii. In
this case, from the definition of R(Ii), the only possibility that y P̂i(Ĵi) x for
every R̂i ∈ R(Ii) is that Ĵi = y.

Claim 4. Let J, Ĵ ∈ Cn, and x ∈ F (J) be such that x /∈ F (Ĵ). Then
there exists i ∈ E with Ji = x 6= Ĵi and JiĴi ∈ Ii.
By Claim 2, there exists i ∈ E such that, for every Ri, R̂i ∈ R(Ii) there is

some y ∈ C such that x Ri(Ji) y and y P̂i(Ĵi) x. Then, i ∈ E and x, Ji, Ĵi ∈ C
are such that for every Ri, R̂i ∈ R(Ii) there is some y ∈ C such that x Ri(Ji)
y and y P̂i(Ĵi) x. Hence, by Claim 3, Ji = x 6= Ĵi and JiĴi ∈ Ii.
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