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Abstract

This paper presents a model of non-infinitesimal firm-to-firm trade via

competition in supply and demand functions relating quantities to prices.

The main features of the model are two: first, firms have endogenous mar-

ket power in both input and output markets; second, firms internalize their

position in the supply chain. The former is important to rank market power

across firms: in models in which firms are restricted to affect only output

or only input prices the ranking of market power can be reversed. The

latter is important for the assessment of aggregate distortions: final prices

and distortions are higher than in a model where firms do not take their

position in the supply chain into account. An equilibrium exists for gen-

eral non-parametric technology, provided the best replies are convex-valued,

under suitable regularity and boundedness assumptions. Under a suitable

parametric functional form, the equilibrium is in linear schedules.
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1 Introduction

Production of goods in modern economies typically features long and intercon-

nected supply chains.1 Moreover, many authors find that market power is a siz-

able phenomenon, some even argue increasing,2 and many firms are large relative

to their sector or even the whole economy.3 How are prices formed in an input-

output network of non-price-taking firms? How is surplus split? How efficient is

the process?

This paper provides a strategic non-cooperative model of large firms interacting

in an input-output network consisting of many specific supply-customer relation-

ships. It does so introducing the technique of competition in schedules, or supply

and demand functions, to the modeling of general equilibrium oligopoly. The main

interest lies in the fact that such a technique allows to have a fully strategic model

in which firms understand and take into account their position in the network,

and have market power on both inputs and outputs markets simultaneously, in an

endogenously determined way. These features are rarely both present in input-

output models of the macroeconomy,4 but I argue that they are important to

analyze market power in input-output networks. In particular, the fact that firms

are fully strategic and take their position in the network into account can gener-

ate large differences in the magnitude of distortions due to imperfect competition.

The fact that firms have market power on both input and output markets, as

opposed to only outputs, can generate large differences in the ranking of market

power across firms or sectors. Both effects are particularly stark especially when

supply chains are long. These results suggest that the technique of competition

in supply and demand functions can be important for the researcher interested in

analyzing and estimating economies with market power, especially in the presence

of complex input-output networks.

Formally, firms have each a set of input and output goods, some of which are

in turn outputs or inputs of other firms,5 and these trade relationships, or input-

output links, are exogenous. Firms play a simultaneous game in which the available

actions are supply and demand schedules, relating quantities of the traded goods

to prices: as in a double auction, the realized price on every trade relationship is

1Recently the focus of a large literature, see Carvalho and Tahbaz-Salehi (2018), Bernard
et al. (2018).

2See De Loecker et al. (2020), Berry et al. (2019).
3Now known as superstar firms since Autor et al. (2020).
4With some exceptions, see the discussion in the literature section.
5For the purpose of the model, two different instances of the same good, that are traded

between different producers at possibly different prices are labeled as different “goods”

2



the one where demand and supply cross. The classic metaphor for the price-taking

general equilibrium behavior is that a “walrasian” auctioneer proposes prices and

collects supply and demand “bids”, until all markets clear. The approach followed

in this paper takes this metaphor one step further, applying it to non-infinitesimal

firms. The auctioneer acts as a market maker in financial markets, collecting firms’

conditional schedules. Firms, being non-infinitesimal, fully internalize the mech-

anism and submit their schedules to affect prices in their favor. Such schedules

are meant not as a literal description of the workings of the market6, but as an

abstraction of a bargaining procedure, parsimonious but powerful enough for the

complexity of the problem.

The detailed contributions are the following. First, I show that an equilibrium

exists under general regularity and boundedness conditions on the set of feasible

schedules (Theorem 1), I provide necessary conditions for equilibrium in the form

of a system of partial differential equations (Theorem 2), and a condition under

which the equilibrium is ex-post, in the sense that firms would not change their

decisions even after the realization of uncertainty (Corollary 3.1). Then, I provide

a parameterized functional form for the transformation functions of firms that al-

lows to considerably simplify the analysis, allowing the existence of an equilibrium

in linear strategies.7 I use this parameterized functional form to show the qualita-

tive effect of the two aforementioned features of the model, namely: the fact that

firms have market power on both input and output markets simultaneously, and

that firms explicitly take their position in the supply chain into account. Theorem

4 shows that the former fact can completely reverse the relative ranking of market

power in a supply chain compared to a more standard model in which firms have

market power only on outputs (Section 5). The latter fact has the effect of pre-

dicting larger distortions compared to models in which firms take as given prices

and quantities on markets in which they are not directly participating (Theorem

5). Proposition 2 shows that such increased distortions can be arbitrarily high,

hence potentially of empirical relevance. In the rest of the Introduction, I expand

on each of the contributions.

Theorem 1 shows existence of an equilibrium under general regularity and

boundedness assumptions on the technology, consumer demands, and the set of

feasible schedules, and under the assumption that the best reply correspondences

are convex-valued (or, in particular, single-valued). As in the seminal Klemperer

and Meyer (1989) paper on Supply function equilibrium, uncertainty in the realized

6Although they are in some cases, e.g. the electricity or financial markets.
7By which I mean that the best response over all feasible schedules is linear.
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prices is key to avoiding a huge multiplicity of best replies. In this paper, the

uncertainty comes from stochastic parameters in the transformation function of

firms, which can be seen as input (and output)-specific productivity shocks. This

is sufficient to generate enough variation in the schedules so that the equilibrium

prices span all the feasible set, and the best reply is not indeterminate. The

result departs from other existing results in the literature in that it does not

impose parametric functional forms,8 and the presence of firm-to-firm trade.9 The

regularity and boundedness assumptions on the set of feasible schedules allow

to use Banach spaces techniques and the Ky Fan fixed point theorem to show

existence, rather than looking for an equilibrium as a solution to a system of

differential equations.10 The existence result provided can be of interest also to

the modeling of financial markets where traders have price impacts, departing

from the standard CARA - gaussian setting.

Theorem 2 indeed expresses the necessary conditions for an equilibrium in the

form of a system of partial differential equations, and clarifies that the equilib-

rium in this model is not ex-post (as in Klemperer and Meyer (1989)), due to

network effects. Corollary 3.1 illustrates that the equilibrium is ex-post under a

measurability condition, stating that the residual demand and supply depend on

a number of uncertain parameters equal to the degree of each firm in the network.

This condition says that the degrees of freedom of each firm are as many as the

independent sources of uncertainty. The condition is satisfied if the residual sched-

ules are linear (the case to which the parametric model in the following section is

dedicated), or if the network is a sequence of sectors linearly connected, a network

I label regular layered supply chain. This shows that the ex-post or ex-ante nature

of the equilibrium depends on an interaction of the schedules’ functional form and

the network structure.11

In Section 4 I introduce a parametric functional form for the technology such

that the equilibrium is in linear schedules. This delivers a tractable framework

8As Malamud and Rostek (2017)
9Contrary to Wilson (2008) or Holmberg and Philpott (2018) that study an oligopoly where

a transmission network affects the demand.
10As Klemperer and Meyer (1989), Glebkin et al. (2020).
11 Rostek and Yoon (2021a) show that even in some cases when the equilibrium is not ex-

post, if schedules are linear the optimization can still be expressed as a pointwise optimization
over quantities given price impacts. This is not true anymore in the model of the present
paper for nonlinear schedules: the crucial problem is that the way prices respond to a change in
schedules (or quantities) is itself uncertain, because it depends on the realization of the stochastic
parameters in the other markets. As clarified by Theorem 2, the optimization over quantities
alone would miss this effect, even conditioning on the price impact. The consequence is that the
optimization cannot be performed on prices anymore, but has to be done directly on schedules.
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that can be used to derive the further insights discussed in Sections 5 and Sec-

tion 6, and is amenable to numerical simulations and estimation. Tractability is

also a consequence of the fact that with linear schedules the measurability as-

sumption discussed above applies, and the equilibrium is ex-post, for any network

structure.12 The technology introduced is flexible enough to incorporate different

degrees of complementarity and substitutability. Such a parametric functional

form also has an independent interest, since it is to the best of my knowledge

the only alternative to Cobb-Douglas and Leontief allowing a completely analytic

solution of general equilibrium with perfect competition in an IO network; and

has the advantage to allow a solution for different degrees of substitutability. In

what follows, I use such a parametric functional form to derive further insights on

the implications of the model for the study of market power.

In Section 5 I discuss the mechanisms behind differnces in market power across

firms, and the relation to network position. In particular, Theorem 4 shows that

if in the S&D equilibrium firms are constrained to have price impact only on

the output market the result is a completely reversed ranking of market power

(as measured by markups or markdowns) with respect to a situation where firms

are constrained to have price impact only on the input market. The reason is

that, when input prices are taken as given, the markups are determined by the

elasticity of the residual demand alone, and depending on network position this

can have radically different effects with respect to a situation in which output

prices are taken as given, and markdowns are determined by the elasticity of the

residual supply alone. As already mentioned, in the full-blown S&D equilibrium,

instead, firms have market power on both inputs and outputs, in an endogenously

determined way. These considerations suggest that models that impose restrictions

on which prices a firm can affect might be problematic when we are concerned with

the relative ranking of market power across firms. Naturally, if the modeler has

strong reasons to assume that firms have direct control over certain prices but not

others, building these restrictions into the models is the reasonable thing to do.

If these assumptions are just a modeling device, though, it might be important to

use models in which firms have a priori ability to affect all prices. This is true in

particular when modeling general input-output networks that connect many firms

that are very different in terms of the nature of their processes and products, and

so very specific assumptions on which prices firms can or cannot control are harder

to justify.

12A case widely used in financial market models, e.g. Malamud and Rostek (2017) and others
discussed in the literature.
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Theorem 5 compares the baseline model to a model in which firms fail to

internalize the network structure in computing the residual demand they face:

this is operationalized by assuming that firms take as given the prices in the

markets further down or upstream from their direct customers or suppliers. The

theorem shows that, in this case, the welfare loss due to oligopolies is smaller:

namely the price impact matrices are smaller (in the positive semidefinite sense).13

In particular, if a firm does not internalize some reactions in the network, this

amounts to that firm perceiving a larger elasticity of demand and supply and, as a

consequence, is able to charge smaller markups and markdowns. This is because,

in the S&D equilibrium, the elasticity of demand depends on the schedules chosen

by directly connected firms, but also indirectly connected firms. The reason is that,

in equilibrium, a change in a price triggers a change in all other prices of connected

firms: failing to account for some of these pass-through effects means firms perceive

a different elasticity of demand.14 The exercise also has an independent interest in

that it shows that the model can easily incorporate restrictions to the rationality

of the firms in cases in which the complete rationality assumptions maintained so

far seem extreme. Proposition 2 further shows that the effect can be arbitrarily

large when a supply chain is very long. These considerations suggest that when in

a supply chain firms are large and have a sizable price impact,15 having a model

that properly accounts for all strategic effects is important to correctly assess the

magnitude of distortions.

The rest of the paper is organized as follows. Section 2 defines the general

nonparametric model. Section 3 presents the existence results. Section 4 describes

the parametric version of the model. Sections 5 and 6 explore the insights the

model yields about relative and aggregate market power. Section 7 concludes.

The main proofs are in the Appendix, the others are in the Online Appendix.

1.1 Related literature

This paper contributes to three lines of literature: the literature on competition in

supply and demand functions, the literature on production networks or networked

13A different interpretation would arise from the perspective of estimation of some structural
parameters: for the same final price a model assuming that firms internalize their position in
the supply chain would imply that market power is smaller. The important point is still that
the difference can be large and this calls for a model that properly accounts for these effects.

14The literature on outsourcing and endogenous supply chains provides evidence that firms
are aware of their supply chain and take its structure and their position in it into account in
their decisions, see e.g. Berlingieri et al. (2020), Alfaro et al. (2019).

15Firms that have large dimension with respect to their own sector or the whole economy are
often called superstar firms since Autor et al. (2020), and are the subject of a large literature.
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markets, and the literature on general equilibrium oligopoly.

My contribution to the literature on competition on supply and demand func-

tions is to introduce the technique to the modeling of general equilibrium oligopoly,

and providing a general existence result. The literature has studied the situation

where the demand firms receive comes from a network structure with a large di-

mension of uncertainty, in Wilson (2008), Holmberg and Philpott (2018), Ruddell

et al. (2017), but their firms only supply to a node in the network, do not trade

among themselves. Firm-to-firm trade is studied in a bilateral setting in Weretka

(2011) and Hendricks and McAfee (2010), always constraining the schedules to a

parametric functional form. In the finance literature the model is used to study

simultaneous demand and supply of heterogeneous assets: Malamud and Rostek

(2017), as well as Rostek and Yoon (2021a), Rostek and Yoon (2021b) and Rostek

and Weretka (2012) analyze a parametric model yielding an equilibrium in linear

strategies akin to the one in Section 4; Glebkin et al. (2020) and Du and Zhu

(2017) study general functional forms, but in a centralized market (corresponding

to a trivial network). Ausubel et al. (2014) and Woodward (2021) study gen-

eral functional forms in the context of centralized auctions. Vives (2011) studies

market power arising from asymmetric information, rather than network position.

My contribution to the production networks literature is to provide a model

of competition in an input-output network in which all firms have market power

on both input and output markets, and are fully strategic internalizing their po-

sition in the supply chain. Many models explicitly assume that firms have power

to decide/affect prices only on one side of the market. To this class belong the

workhorse sequential oligopoly games in Spengler (1950), Salinger (1988), Ordover

et al. (1990), Hart et al. (1990).16 and the recent Carvalho et al. (2020). These

models all feature sequential moves in which downstream firms take input prices

as given and, hence, one-sided market power. In another class of models authors

assume that output prices are equal to the marginal cost times a markup. The

concept of the marginal cost itself implicitly implies price-taking in the input mar-

ket: indeed, it arises from the price-taking cost minimization problem of the firm.

Hence, it is implicitly assuming unilateral market power. To this category belong

Grassi (2017), Bernard et al. (2022), Baqaee (2018), Baqaee and Farhi (2019),

Baqaee and Farhi (2020), Huremovic and Vega-Redondo (2016), Magerman et al.

(2020), Dhyne et al. (2019), Huneeus et al. (2021), Arkolakis et al. (2021), Pasten

et al. (2020), Pellegrino (2019). In Galeotti et al. (2021) only primary producers

charge a markup, while the intermediate firms behave competitively, thus abstract-

16And used in classic textbook treatments, such as Tirole (1988).
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ing from the balance of market power among firms that trade with each other. The

exception is Acemoglu and Tahbaz-Salehi (2020), that follows a mixed approach:

input prices are taken as given when firms decide their input mix, but are then

determined in equilibrium through a link-level alternating offers game, relyin on

exogenously specified bargaining weights. My results complements theirs, provid-

ing a model that does not rely on the choice of exogenously specified bargaining

weights.

Except for Acemoglu and Tahbaz-Salehi (2020), all these papers feature also

the implicit or explicit assumption that firms do not internalize the effect of their

decisions on sectors/firms further downstream beside the direct customers. Some-

times this is a consequence of the assumption of a continuum of firms in each sector

(and so sector-level aggregates are taken as given by every individual firm),17 other

times it is explicitly assumed.18 This is the motivation for the exercise of Section

6, as described in the Introduction.

I contribute to the literature on general equilibrium with market power by

providing a fully strategic model of the production side with endogenous market

power and firm-to-firm trade; furthermore, the game does not depend on price

normalization, and can incorporate general assumptions on owner’s preferences

as in Azar and Vives (2021). In the recent literature on “general oligopolistic

competition” (Azar and Vives (2021), Azar and Vives (2018) and Ederer and

Pellegrino (2022)) do not consider firm-to-firm trade, while in the while in the

literature on general equilibrium matching Fleiner et al. (2019) study firm-to-firm

trade with distortions that are exogenous wedges rather than the outcome of a

strategic setting as in the present paper.

2 The Model

In this section I introduce the primitives of the model, that is the firms and their

technology, the input-output network, and the utility of the consumer. Firms

play a game in which the strategies are supply and demand schedules. Finally, I

introduce the technical assumptions needed for the subsequent results.

17This is the case in, e.g. Baqaee (2018) and various others listed in the literature.
18E.g., in Grassi (2017), Kikkawa et al. (2019).
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2.1 General setting

Firms and Production Network There are N firms and M goods: their

sets are respectively denoted N and M. Each good might be produced by more

firms, and each firm may produce more than one good. I write i → g if firm i

produces good g, and g → i if firm i needs good g for production. Each firm

produces using labor, and a set of inputs produced by other firms, which I denote

as N in
i . The set of goods produced by firm i is N out

i . The consumers’ utility

depends directly on a subset of goods, denoted C ⊆ M. Firms, goods and the

connections defined above define a directed bipartite graph G = (N ,M, E), where

E = {(i, g) | i → g or g → i} is the set of existing connections. I refer to G as

the input output network of this economy. Note that in this setting, a good is

identified by the fact that is exchanged by a number of firms for a specified price.

That is, the framework can accommodate for a firm selling the same physical

good to different groups of customers for different prices: simply, this case would

show up in the model as two distinct goods. I denote douti = |N out
i | the out-degree

(number of outputs) of i, and dini = |N in
i | the in-degree (number of inputs) of firm

i, excluding labor.

Remark 2.1. In the case in which each firm produces only one good, and the

goods are all distinct, we can identify the sets of firms and goods and say that

two firms are connected if one is a customer of the other. This is the more

standard approach in the literature. Figure 1 illustrates the standard (Left) and

the bipartite (Right) representation followed here, in the example of a tree network.

The production possibilities available to firm i are described by a transforma-

tion function Φi. This is a function of the input and output quantities, and also

on a vector of stochastic parameters εi = (εig)g∈Ni
, one for each good traded by i.

These can be thought of as technological shocks, increasing or decreasing the input

quantity needed to achieve a certain level of output. As in Mas-Colell et al. (1995),

input quantities are negative, while output quantities are positive. The production

possibility set of firm i is thus {(qgi)i→g, (qig)g→i, `i | Φi((qgi)g, (−qig)g, `i, εi) ≤ 0}.
The reason to describe the technology as a transformation function is, besides

generality, to treat symmetrically inputs and outputs: goods are allowed to be

both, depending on what is more convenient given the market conditions and the

implied prices. This a standard approach taken also in Mas-Colell et al. (1995). In

our contest it allows a considerable technical simplification, allowing to abstract

from corner solutions: negative quantities are allowed, they simply mean trade in

the opposite direction.
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Figure 1: Left: bipartite representation of the production network: the circles
are the firms, the squares are goods. An arrow from a good to a firm means the
firm buys the good, an arrow from a firm to a good means that the firm sells the
good. Right: classic representation of the network, where nodes are firms and links
represent the flow of goods. In this example, in which each firm has one distinct
output good, the two are equivalent. In general this representation is ambiguous,
because it does not allow to see whether, e.g. 5 and 6 output is the same good or
two distinct goods.

The price of good g is denoted pg, so that for a firm buying and producing

quantities (qgi)i→g, (qig)g→i, `i, the nominal profit is:

Πi =
∑
g,i→g

pgqgi −
∑
g,g→i

pgqig − w`i

Consumers There is a continuum of identical consumers or, equivalently, a

representative consumer. She gets utility U((cg)g∈C, L, εi,c) from a subset of goods

C ⊆ M, and disutility from labor L; similarly to the firms, I am going to assume

that the utility also depends on a vector of stochastic parameters εc = (εg,c)g∈C,

one for each good consumed. Denote the demand for good i derived by U as

Di,c, and the labor supply as L. The profits of the firms are rebated to the

representative consumer, so that the total income is wL + Pro, where Pro =∑
i Proi is the aggregate profit. Welfare in this economy is the utility of the

consumers in equilibrium: U(c∗, L∗), where c∗ and L∗ are the equilibrium values

of consumption and labor: since the profits are rebated, such welfare also includes

the producers surplus.

Notation Bold symbols are used to denote vectors of prices and stochastic pa-

rameters: p is the vector of all prices, except the wage w, pini = ((pg)g∈N in
i

) are

the prices of all input goods of firm i, and similarly pouti is the price vector for the

outputs, so that p′i = (pouti ,pini )
′
. Similarly, pc = (pg)g∈C is the vector of prices
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of goods consumed by the consumer. The analogous notations hold for stochastic

parameters, so that, e.g., ε is the vector that stacks all the stochastic parameters

of all firms.

When A is a function of many variables, ∇A = (∂1A, . . . , ∂nA)′ denotes the

(column) vector of partial derivatives (the gradient). HA denotes the matrix of

second derivatives, that is the Hessian of A. When A is a vector function of x,

∂xA denotes the square matrix with on each row the gradient of Ai with respect

to x (the Jacobian matrix).

If B is a matrix, B−i denotes the same matrix to which row and column i have

been removed. If b is a vector, b−i denotes the same vector to which element i has

been removed. B ≥ C denotes the fact that B − C is positive semidefinite (even

when they are not symmetric).

The Game I: players and actions The competition among firms take the

form of a game in which firms compete choosing in supply and demand functions.

This means that the players of the game are the firms, and the actions available to

each firm i are a family of functions defined over a set Fi of tuples of input-output

prices, wage, and a set of firm-specific stochastic parameters Ei: Si : (w,pi, εi) ∈
Fi × Ei → Rdi+1, where Fi × Ei ⊂ R2(di+1). Such functions are called schedules,

and Si = (Si,−Di,−`i), composed by profiles of supply functions for outputs

Si = (Sgi)i→g, demand functions for intermediate inputs Di = (Dig)g→i, and for

labor `i.
19 The set of feasible supply and demand schedules for firm i (defined

below) is denoted Ai, and A =
∏

i∈N Ai.
In the general model of this section we are not restricting traded quantities to

be positive. This is a matter of interpretation: since trade has a direction, negative

quantities can simply be interpreted as trade flowing in the opposite direction.20

This approach simplifies the analysis because rules out corner solutions in which

firms decide not to buy some inputs (or sell some outputs) at all. Section 4 takes

a more applied stance, and studies the existence of an equilibrium not allowing for

negative quantities (that is, trade flows in the opposite direction as prescribed).

The Game II: prices and payoffs To complete the definition of the game,

we have to define the payoffs. These are, in short, the expected profits calculated

in the prices that satisfy the market clearing conditions. The market clearing

19The sign convention makes formulas simpler allowing the derivative to be positive semidefi-
nite.

20Indeed, this is the interpretation followed by classic treatments of production theory, such
as Mas-Colell et al. (1995).

11



conditions are: ∑
j,g→j

Djg(pj, w, εj) =
∑
k,k→g

Sgk(pk, w, εk) if g ∈M

Dcg(pc, w, εc) =
∑
k,k→g

Sgk(pk, w, εk) if g ∈ C∑
i

`i(pi, w, εi) = L(w,pc, εc)

Define a function MC : RM × E → RM such that (normalizing the wage to 1):

MCg =
∑
k,k→g

Sgk(pk, w, εk)−
∑
j,g→j

Djg(pj, w, εj) if g ∈M

MCg =
∑
k,k→g

Sgk(pk, w, εk)−Dcg(w, pc, εc) if g ∈ C (1)

Throughout the paper I am going to assume that Walras’ law is specified and the

schedules are homogeneous of degree zero. Hence the market clearing conditions

can be stated as MC(p, w, ε) = 0. Formally, we have the following definition.

Definition 2.1 (Pricing function and payoffs). Call E = ×i∈NE . Define a feasible

pricing function as a function (p∗, w∗) : E → RM such that MC(p∗(ε), w∗(ε), ε) =

0 for all ε ∈ E .

The payoff of firm (player) i is the mapping from supply and demand schedules

in Ai to real numbers defined by the profits, normalized by the wage:

πi(Si, Di, `i) = EF

(∑
g,i→g

p∗g(ε)Sg,i(p
∗
i (ε), w

∗(ε), εi)−
∑
g,g→i

p∗g(ε)Dig(p
∗
i (ε), w

∗(ε), εi)

−w∗(ε)`i(p∗i (ε), w∗(ε), εi)) /w

In summary, we defined a game: G = (N , (Ai)i∈N , (πi)i∈N ). Proposition 1

below shows that the pricing function exists, so the payoffs are well defined, and

moreover that the equilibrium does not depend on the normalization of prices. I

call a Nash equilibrium of this game a Supply and Demand function equilibrium.

Notice that the equilibrium defines a probability distribution over all the endoge-

nous objects; prices, quantities, hence welfare. In Sections 5 and 6, concerned

with the implications for market power and welfare, I am going to consider the

limit of the equilibrium of the game for uncertainty that vanishes. Namely, I am

going to consider profiles of prices and quantities of traded goods pg ∀g ∈M, and

qgi, qjg for all links i → g and g → j, that realize in a Nash Equilibrium of the
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game Gn defined identically as above, but where the sequence of distributions Fn

converges to a distribution with mass in 0: ε
D−→ 0 (always mantaining support

E .21

Generalizations: objectives of the firm While the price normalization is

inconsequential, the uniform normalization of profits is. Hence, in the appendix

(Section 3) Theorem 1 and 2 are proven under the more general assumption that

there are two distinct types of agents, workers and owners, and firms optimize the

indirect utility of shareholders, following Azar and Vives (2021). The construction

in the main text corresponds to the case in which owners are identical and only

value a good produced independently from the network, whose price is in fixed

proportion with the wage. This is equivalent to the approach followed in Ederer

and Pellegrino (2022), and the polar opposite of the assumption mantained in

Azar and Vives (2021), in which owners have the same utility as consumers. Both

are evidently abstractions: in the main text I follow the former to for two reasons:

first, our focus is on the effect of endogenous market power on firm-to-firm trade,

rather than the interactions of market power and owner’s incentives, that are

instead the focus of Azar and Vives (2021). Second, such an assumption simplifies

the parametric solution of the model in Section 4, since it allows to obtain a linear

equilibrium.

2.2 Assumptions

In this paragraph I collect all the assumptions needed for Theorems 1 and 2.

Assumption 1 - Demand Consumers have aggregate demand Dc that has neg-

ative semidefinite jacobian with corank 1 with respect to both prices pc, w.

It is positive definite with respect to stochastic parameters εc; moreover all

demands are positive and differentiable.

Assumption 2 - Technology The transformation function Φi is differentiable,

convex and increasing in the quantities qi = (qout,−qin): ∇Φi >> 0. It

satisfies the Inada condition that limqj→0 ∂qjΦi = +∞. The joint support of

the distribution F of all stochastic parameters ε = ((εi)i∈N , εc), call it E , is

the closure of an open set, bounded in norm by Ke (hence compact), and

the distribution admits a differentiable density f .

21So the stochastic variation in ε is used to “identify” the equilibrium schedules, but when
computing the equilibrium predictions I am considering the case in which the shock vanishes.
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Assumption 3 - Feasible schedules Define Ai as the set of schedules such

that:

a) Homogeneity each schedule Si is homogeneous of degree 0 in pi, w;

b) Feasibility each schedule Si satisfies the technology constraint, that is, for any

possible (pi, w, εi), it must be:

Φi(Si(pi, w, εi), εi) ≤ 0 (2)

c) Regularity the schedules Si are infinitely differentiable and have Jacobian deriva-

tive with respect to prices ∂pi,wSi that is positive semidefinite with rank

di − 122; the derivative with respect to stochastic parameters ∂εiSi is

positive definite.

d) Bounds The feasible schedules are bounded in the following norm: ‖Si‖g =

E
∫
|Si(pi, εi)|g(p)dp, where g is a positive integrable function whose

integral is 1. Namely, there is a KS such that ‖Si‖g ≤ KS. There

exist constants k and K such that for all p, w, ε ‖∂εiSi‖2 ≤ K and

∂pi,wSi ≥ kIi, where ‖·‖2 is the spectral matrix norm, and Ii is the

identity matrix of appropriate dimension.

e) Limits If p/w → ∞, or pg/w → 0 for some g, there is at least one i, g such

that Si,g →∞.

Denote A =
∏

iAi.

Most of these assumptions are technical in nature: in particular, the bound-

edness and regularity assumptions are crucial in establishing compactness of the

feasible set. Assumption e) says that the schedules are such that for extreme val-

ues of prices, at least on demand or supply diverges: this is used to show existence

of a positive market clearing price vector. As part of the proof of Theorem 1 I

am going to show that there is a bounded set of prices, bounded away from zero,

where we can focus without loss of generality: the sup norm in the definition above

is to be considered in such a bounded set.

For a given vector of parameters εi, the assumptions on the transformation

function are quite standard: if the firm has a single output y produced with

a strictly concave increasing production function fi (for example a CES with de-

creasing returns to scale), then Φi(y, q1, . . . , qn) = y−fi(−q1, . . . ,−qn, εi) (remem-

bering that negative quantities represent inputs) is indeed convex and increasing

22The rank cannot be maximum because of homogeneity in prices.
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in the q variables. The assumptions on stochastic parameters guarantee that they

represent productivity parameters, each of which has an independent effect.

Example 1. In the single output case, consider a strictly concave production

function f̂i, and the schedule adopted by a price taking profit maximizing firm Ŝi.

Now consider the transformation function Φi(y, q1, . . . , qn, εi) = y− εi− f̂i(−εi1−
q1, . . . ,−εin− qn). In this context an example of a schedule satisfying the assump-

tions above is:

Dig = −εig + D̂ig ∀g → i, Si = εi + Ŝi

It is immediate to verify that it satisfies the technology constraint. The deriva-

tive ∂pi
Si is the same as ∂pi

Ŝi, and is a standard property of production theory

that this is positive semidefinite. If the production function satisfies the Inada

conditions, the limits in Assumption 3e) are also satisfied. The bounds are sat-

isfied in every set bounded and bounded away from zero. Moreover, ∂εiSi is the

identity, hence positive definite, and satisfies the bounds.23 In the multiple output

case, the reasoning is analogous.

The regularity and boundedness assumptions 3c) − d) guarantee that the de-

mand and schedules are well behaved, enough to solve the market clearing system.

The various boundedness assumptions are useful for various technical steps, and

ultimately to guarantee compactness of the set of schedules, that is necessary to

use the Schauder fixed point theorem in Theorem 1.

Example 2. Standard Supply Function Equilibrium

The model by Klemperer and Meyer (1989) can be seen as a special case of

this setting, in which there is only one sector, the network G is empty, the only

uncertainty is on the consumers, and the labor market is competitive. Their set-

ting is a “partial” equilibrium one, in which the consumers do not supply labor

to firms but appear only through a demand function D(·), and firms have a cost

function for production C(·), that does not explicitly represent payments to any-

one. Nonetheless, under the simplifying assumption of a competitive labor market

(introduced later in Section 4), the game played by the firms is precisely the same:

if the transformation function is Φ(qi,−`i) = qi − C(`i), and the consumer utility

gives rise to a demand of the form Dc+εc, the game G played by firms is precisely

the same as in Klemperer and Meyer (1989).

23For an example in which ∂εi
Si is positive definite but not diagonal we can con-

sider the transformation function Φi(y, q1, . . . , qn, εi) = y − εi
εi+

∑
g εig+1 − fi(− εi1

εi+
∑

g εig+1 −
q1, . . . ,− εin

εi+
∑

g εig+1 − qn).
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Consumers

Figure 2: A layered supply chain. Left: bipartite representation, the squares
represent goods, the circles firms. Right: firm-only representation.

Example 3 (Regular layered supply chain). A regular layered supply chain is a

production structure in which firms are divided in m layers, as in Figure 2. There

are m goods, each produced by all the firms in a layer; there are n firms per layer.

Firms in layer i+ 1 sell to firms in layer i, firm 0 sells its output to the consumer,

and firms in layer m are the only ones to use labor.

3 Existence

In this section I present Theorems 1, 2 and Corollary 3.1. First, I prove as a

preliminary result that a pricing function exists and is unique, hence the payoffs

above are well-defined (Proposition 1 below), and moreover the set of feasible

prices is bounded, that is going to be important for the argument of Theorem 1.

Proposition 1 (Feasible pricing and price normalization). 1. There exist a fea-

sible pricing function (p, w) : E × A → RM
+ , and is unique up to normaliza-

tion. Moreover, the payoffs are independent of price normalization.

2. Normalizing the wage to 1, the image of the pricing function P = p(E ×A)

is bounded, that is there is a kp > 0 such that for any p ∈ P ‖p‖2 < kp.

The proof relies on the regularity assumptions 3c) and the limits in 3e) to show

that the pricing function exists thanks to a global form of the implicit function

theorem. The uniqueness up to normalization follows from homogeneity of the

schedules, that translates into homogeneity of the excess supply MC. The second

part follows from the bounds in Assumption 3d) and an application of the mean

value theorem.

Thanks to the normalization by the wage, the profits depend only on price

ratios, and so the game does not depend on the specific price normalization. For

16



this reason, from now on, I am going to focus on homogenized schedules obtained

normalizing the wage to 1, writing, with a slight abuse of notation, Si(pi, εi) for

Si(pi, 1, εi). Moreover, since the technology constraint is binding, from now on we

focus on Si,−` = (Si,−Di), that is the profile of schedules for input and output

goods excluding labor. Because of the above assumptions ∂pi
Si is positive definite.

3.1 Existence

The main argument is a fixed point theorem. The main obstacle is establishing

compactness of the set of feasible schedules. In order to do this it is crucial first

to limit the domains of the schedules to a compact set. In general, for a compact

domain D, define A(D) as the set of schedules in A that are restricted to D × E .

To be precise, Si is restricted to the projection of D on the space of input and

output prices of i, call it Di. Second, it is necessary to consider the closure

of A(D), denoted Ai, with respect to the ‖·‖∞-norm on the set of schedules:

‖Si‖∞ = maxD×E |Si(pi, w, εi)|, which is well defined thanks to the compactness

of D×E . Lemma A.2 in the Appendix shows that the pricing function is Lipschitz,

and so can be extended without problems toA(D). To obtain compactness, thanks

to the Ascoli-Arzelà theorem, the last piece we need is to choose an upper bound

K to the norm of the price derivatives ‖∂pi
Si‖2 < K:24 denote A(D)

K
the set

of schedules that satisfie this bound. The formal statement of the theorem is as

follows.

Theorem 1. If the best reply correspondences are convex-valued, there exists a

compact domain P̃ ⊆ P such that the game G has a pure strategy Nash equilibrium

in A(P̃)
K

.

Furthermore, all prices in P̃ can arise for some value of ε, and P̃ is the closure

of an open set (in particular, it has positive measure).

The second part of the statement guarantees that, thanks to our assumptions

on stochastic parameters, the equilibrium spans a set of prices that is “large”

enough, in particular in which derivatives are meaningful.

The proof of the first part applies the Ky Fan fixed point theorem to A(P̃ )
K

.

Via a standard argument the differentiability and boundedness assumptions on

the schedules in A(P̃ )K are enough to guarantee equicontinuity, and applying the

Ascoli-Arzelà theorem we obtain that the closure is compact. Assumption 2 on

24This assumption cannot be included directly in the definition of A because it can be incom-
patible with 3e).
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the technology is also sufficient to show that A(P̃)
K

is convex. Hence, if the best

reply is convex-valued, there exist a fixed point by Ky Fan’s fixed point theorem.

For the second part, thanks to the assumptions of positive definiteness of ∂εiSi we

can show that the pricing function is locally (right-)invertible, and this allows to

conclude that the set of feasible prices is the closure of an open set.

3.2 Necessary conditions for equilibrium

In this section I derive necessary conditions for best replies and describe the in-

sights that emerge on the structure of the equilibrium.

The necessary conditions are best expressed in terms of the residual schedule,

the schedule that collects the residual demands and supplies that the firm faces

on all its input-output connections. It can be formally constructed as follows.

Definition 3.1 (Conditional pricing function and residual schedule). Given a

profile of schedules (Si)i∈N , the pricing function conditional on i is the function

p−i(· | i), defined on pi, w, ε that satisfies the market clearing conditions 1, ex-

cluding those relative to the input and output prices of i.:

MCg(p−i(pi, w, ε | i),pi, ε) = 0 ∀g /∈ Ni

The residual schedule of firm i is:

Sr(pi, w, ε) = −
∑
j 6=i

Sj(pj(pi, w, ε | i), εj)

The next lemma sums up some properties of the residual schedules that are

going to be useful.

Lemma 3.1. Under Assumptions 1,2 and 3, the residual schedule is homogeneous

of degree zero in pi, w, differentiable, has positive semidefinite derivative ∂pi,wS
r
i

of corank 1 (i.e. has maximum rank minus 1).

Theorem 2. Remember that Si,−` denotes the schedule played by firm i excluding

labor demand (and similarly for Sri,−`). Assume a schedule profile Si ∈ A is

twice differentiable, the spectral norm ‖‖2 of the schedules is differentiable, and

the boundary of P̃ is differentiable. Si is a best reply to the profile S−i only if

satisfies the following partial differential equation for all (pi, εi) ∈ P × E:

E
[
([∂pi
Si,−`] + [∂pi

Sri,−`])−1
(
−Si,−` + ∂pi,wS

r
i ((pi, 1)′ − λ∇Φi)

)
+Ki | pi, εi

]
= 0

(3)
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and the technology constraint: Φi(Si, εi) = 0.

Ki is a term, whose expression can be found in the Appendix, that collects

all the terms involving the boundedness and positive definiteness constraints; it is

equal to 0 if and only if none is binding.

The first order condition can be understood as follows. The term −Si,−` +

∂pi
Sri ((pi, 1)′ − λ∇Φi) represents the sensitivity of the profit to a variation in the

prices. In this context the “marginal cost” of producing an additional unit of

output is an ill-suited concept: indeed, the standard marginal cost is intimately

connected with the assumption of taking input prices as given, being the multiplier

in the standard cost minimization problem. In our setting, where firms have some

market power on all input and output markets, the relevant generalization is the

marginal value of relaxing the technology constraint, which is exactly the multi-

plier λi, times ∇Φi, that represents the marginal product of each input/output.

Hence the vector (p′i, 1)′ − λi∇Φi can be thought as the vector of markups (for

outputs) and markdowns (for inputs). The reason why the schedule without labor

demand Si,−` appears in the expression is because we normalized the wage to 1:

this is inconsequential, as we showed that price normalization does not affect the

payoffs nor the schedules. Then, we can see that this term of the FOC has a very

similar intuition to the standard Lerner equation: the higher the responsiveness

of demand/supply to prices, the smaller the markups/markdowns that can be

charged.

The term ([∂pi
Si,−`] + [∂pi

Sri,−`])−1 represents the sensitivity of the prices to

a variation in the schedules. Again, the schedules without labor demand appear

because of the normalization of the wage. The key difference from Klemperer and

Meyer (1989) is the presence of the expectation in the expression. The reason

is somewhat different from Holmberg and Philpott (2018) and Wilson (2008), in

which the equilibrium is not ex-post because of the possibility of binding transmis-

sion capacities in an otherwise linear transmission network. To understand why

this is the case, consider Figure 3. A seller faces a residual demand of the form

εDD
r
U + εc, where εD and εc are two distinct sources of uncertainty. Computing

first the optimal prices for given εD, and varying εc, we find the red curve (Left

panel). This is what happens computing the best reply in a standard supply func-

tion competition. But now note that εD changes the slope of the residual demand,

so is also affecting the optimal price, and in such a way that the optimal price

realizes a different demand quantity. Hence if we represent on the same graph

(Right panel) the optimal price quantity pairs varying εD, they do not lie on the

red line, they form another curve. Hence, no single supply function can touch
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εDD
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εDD

r
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Optimal prices for different εD
and given εc

Figure 3: A supply function is not equivalent to ex-post price setting when uncer-
tainty has enough dimensions.

all the ex-post optimal points, but has to trade-off between them, depending on

the relative probability. This is the reason why the expectation appears in the

necessary conditions. Moreover, in general the optimization is also not pointwise,

in the sense described by Rostek and Yoon (2021a). Namely, the optimization

in schedules is not equivalent to a pointwise optimization in quantities traded,

taking the price impacts as given. It would be only in case the price sensitivity

term ([∂pi
Si,−`] + [∂pi

Sri,−`])−1 drops from equation 3, which happens only when is

measurable with respect to pi, εi, as discussed in the following section. In general

such a sensitivity might depend on the realization of the residual uncertain pa-

rameters in a way that correlates with the slope of the residual demand, modifying

the marginal impact of changing the schedule, and hence the optimal choice.

The proof proceeds computing the Gateaux derivative along a direction, then

imposing that all Gateaux derivatives are zero: since this is true for any direction

ηi, this allows to conclude that the expression in the Theorem is zero. The term

Ki is obtained differentiating the constraints, and applying integration by parts

to transform the terms with the derivatives of ηi in terms depending only on η.

The additional regularity conditions, such as second order differentiability, and

differentiability of the spectral norm, are necessary to deal with these constraints,

since the constraints involve derivatives of the schedules. The differentiability

of the boundary of the feasible price set P̃ is necessary to apply the divergence

theorem, that is key step in obtaining the expression above.
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3.3 Unique best reply

In case the degrees of freedom of the firms are exactly the same as the uncertain

parameters they face we can prove that best replies are single-valued. In this case

the equilibrium is ex-post, and the partial differential equation 3 boils down to an

implicit equation. The key assumption needed for this is the following:

Assumption 4-Measurability for each firm i, there exist a function fi such

that the residual demand is measurable with respect to (pi, εi), that is it

satisfies Sri (pi, ε) = fi(pi, εi).

The immediate consequence of this assumption is that the residual schedule is

completely known once we know pi and εi, hence there is no residual uncertainty

and hence the expectation in 3 is trivial. So, for an interior solution for which the

positive definite constraints are not binding, the FOC reduces to:

(
−Si,−` + ∂pi

Sri (p′i − λ∇Φi(−Sri , εi))
)

([∂pi
Si,−`] + [∂pi

Sri,−`])−1 = 0

where now the term 1
Pi

([∂pi
Si,−`] + [∂pi

Sri,−`])−1 simplifies away, and we are left

with:

Si,−` = ∂pi
Sri ((pi, 1)− λi∇Φi(−Sri , εi)) (4)

This is an equation that directly defines the best reply schedule Si,−` as a function

of prices and schedules played by competitors. Hence it is immediate to conclude

that in this context the best reply is unique. Moreover we recover both the point-

wise optimization and the ex-post equilibrium as in Klemperer and Meyer (1989).

We can summarize the above discussion as follows.

Corollary 3.1. Under Assumptions 1, 2, 3 and 4, if the constraints are not binding

(Ii = Ji = 0), the best reply is single valued in the interior of A(P̃).

The measurability assumption is not vacuous. An example that satisfies it

for any network is when the profile of schedules played is linear, case to which

are devoted the Sections from 4 on. In this case the function fi is actually a

constant, independent of ε and pi.
25 The following is another example, where it

is not the functional form, but the structure of the network that determines the

measurability.

Example 4 (Regular layered supply chain). In the context of a regular layered

supply chain each firm has 1 degree of freedom, because it has to decide a schedule

25In the notation of Section 4, it is the inverse of the price impact matrix, Λ−1i .
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for inputs and outputs, constrained by the technology. Hence, it is sufficient one

stochastic parameter to generate enough variation in the realized prices to span

the whole feasible set. Assume that the only stochastic parameter is the one of

consumer demand εc, while the trasformation functions of firms, and the schedules,

are all deterministic.26 In this case the measurability assumption is satisfied,

because, under the assumptions above, realizations of the stochastic parameter εc

are one to one with price variation, for any firm. Details are in Online Appendix

D.6.

4 Parametric version

In this Section I introduce a specific parametric functional form for the technology

that allows to have an equilibrium in linear schedules.27 In order for the game

to have this type of equilibrium, another simplifying assumption is needed, the

assumption that labor markets are competitive. As clarified below, this means that

the quantity of labor bought by firms is not determined via a double auction in

which firms internalize the effect on the labor supply via the wage, but it is chosen

taking the wage as given.28

4.1 Technology

As in other contexts with supply and demand functions, the most tractable case

is when the equilibrium schedules are linear: linearity allows to have fixed point

equations in coefficient matrices, and to reduce the problem to a finite dimensional

one. For the best reply to be linear, we need the best reply optimization problem

to be quadratic in prices (or in quantities), but the technology constraints to

remain linear. Standard functional forms as the translog or the CES do not

satisfy this requirement, and lead to complex nonlinear differential equations for

the determination of equilibrium schedules.

26Or, equivalently, the distribution of εi is a Dirac for all i.
27Naturally, no linear function is homogeneous of degree zero. What is meant here is that

schedules are linear when choosing a normalization: in the present case, we are going to nor-
malize the wage w to 1. We already proved that the equilibrium is independent of the price
normalization chosen, hence this normalization is inconsequential. Nevertheless, it is going to
greatly simplify our task analytically.

28Competitiveness of the labor market is an abstraction, as we know that monopsony on the
labor market is a relevant phenomenon (see e.g. the discussion in Azar and Vives (2021)).
However, our main focus is on modeling market power in firm-to-firm trade. Moreover, one
of the main takeaways of this paper is that full blown strategic interaction across the supply
chain increase the aggregate impact of market power (Theorem 5): in this regard, neglecting
monopsony power in the labor market is a conservative assumption.
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In the main text, I introduce the technology in the simplest way, introducing

what I define “handling costs” below. In Online Appendix E.4, I show that such

handling costs can be microfounded with a standard constant returns technology

nesting perfect substitutes and perfect complements.

I first introduce a useful concept to deal with technologies with multiple out-

puts.

Definition 4.1. Given a profile of input quantities qini ), a production allocation

zi = ((zi,kj)j→i,i→k) ∈ Rdini douti is an allocation of input quantities to output pro-

duction lines. That is, it has to satisfy the resource constraint: qij =
∑

k zi,kj for

all j ∈ N in
i .

Given a production allocation, the vector of outputs produced is qki =
∑

j ωijzi,kj.

We sum up these relationship in matrix form as: qi = Uizi, where qvi =

(−(qki)k, (qij)j), and and Ui vertically stacks Iout,in ⊗ ωi, and −Iin,out ⊗ uin. The

idea is that with multiple outputs, intermediate input quantities qij have to be

allocated to the production of one among the output goods: zi,kj is the amount of

input j allocated to the production of the output k.

Definition 4.2 (Handling costs). In addition to raw input payments, choosing the

production allocation zi has “handling” costs, paid in labor units, and quadratic

in the quantities chosen:

ε′iqi +
1

2ki
z′iΣizi +

1

2

∑
k

`2
i,k (5)

for some positive definite matrix Σi.

The matrix Σi codifies the (purely technological) patterns of substitutability

and complementarity: Σi,jk > 0 means that, ceteris paribus, buying both inputs

j and k has a higher cost than only using one of the two: this captures substi-

tutability; on the contrary, Σi,jk < 0 captures complementarity. When Σi = I

inputs are nor substitutes nor complements.

Example 5. Consider a case with a single output. If Σi = (1− σi) I + σJ , where

J is a matrix of ones, the profit becomes:

πi = pi
∑

ωijqij −
∑
j

pjqij − εi
∑
j

qij −
1

2ki

∑
q2
ij −

σi
2ki

∑
j,k

qijqik

If σi is close to 1, the quadratic term becomes close to (
∑
qij)

2, that is only the
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aggregate quantity matters: inputs are good substitutes. If σi is negative, inputs

instead are complements.

If there is just one sector as in 2, the game is the same as the linear-quadratic

example of Klemperer and Meyer (1989).

The “handling costs” can be interpreted as all the costs connected with storage,

transportation, inventory, and general management related tasks that have to be

performed in order to use that input in production. This is the same assumption

followed in Bimpikis et al. (2019), and can be seen as the extension to an input-

output setting of the standard quadratic cost function commonly used. Indeed, if

a sector uses no intermediate inputs but only labor, the costs reduce to 1
2
l2i , and

qi = li, so that in this case the functional form reduces to a standard technology

with quadratic cost function, used for example by Pellegrino (2019), Klemperer

and Meyer (1989) and many others.

The parameters εi = ((εig)i→g, (εig)g→i) act reducing the productivity of la-

bor, and so increasing the amount of labor necessary to achieve the same level

of production. They are stochastic, and follow a joint distribution F with also

the corresponding consumer parameters introduced below. Each firm knows only

its own vector εi, but not the one of others.29 As common in supply and de-

mand function models, the uncertainty will be crucial in achieving a unique best

response.

Consumers Similarly, the utility function of the consumers is quadratic in con-

sumption and (quasi-)linear in disutility of labor L:

U(C,L) = (Ac + εc)
′B−1

c C − 1

2
C ′B−1

c C − L

where remember C = (Cg)g∈C is the vector of quantities consumed, and we assume

Bc positive definite. This means that the consumer has demands of the form (on

the support): Dc = A + εc − Bc
pc

w
. The parameter vector εc = (εgc)g→c and

ε follow a joint distribution F . The only assumption on F we make is that its

support contains an open set around 0.

4.2 Existence

The parametric version is formally not a special case of the previous setting,

because the transformation function that generates it is not differentiable (see

29Or, equivalently, the uncertainty is realized after the choice of supply and demand functions.

24



Online Appendix E.4), and the assumption of competitive labor market. Hence,

a separate existence result is required. In exchange, it is not necessary to assume

ex-ante a bound on the norms of the derivatives, as in Theorem 1.30 Moreover,

since the parametric functional form is meant to facilitate quantitative analysis, in

this section I provide a result in which traded quantities are positive, that is trade

happens in the direction specified by the network. For that is useful to introduce

a sector level version of the model, as follows.

Sector level version Define a sector as a set of identical firms: all the firms

with the same technology and with identical input-output connections, call their

number ni. They all produce the same goods and sell them to the same other

firms. For an example, consider the layered supply chain in Example 3. This

allows to simplify the analysis analyzing the sector-level network, solving for only

one coefficient matrix per sector. This simplification is useful in a number of

ways. First, it allows to show that there is an equilibrium with positive trade, as

explained below. It is also useful to generate insights, as in the analysis of the

layered supply chain in the next section. Moreover, since we only need to solve for

one coefficient matrix Bi per sector, hence the number of equations one needs to

solve is (typically) much smaller, and this can be important for numerical work.

Given the above technology, and normalizing the wage to 1, the best reply

problem of firm i is:

max
(zi,kj)k,j ,pi,`i

∑
k

pkiD
r
ki(pi, ε)−

∑
j

pijS
r
ij(pi, ε)− εi

∑
zi,kj −

1

2

∑
z2
i,kj − `i (6)

subject to: Dij =
∑

k zi,kj for all j ∈ N in
i and Ski =

∑
j ωijzi,kj + αi

√
`i for all

k ∈ N out
i . The choice is both over the schedules, the optimal combination of inputs

and outputs, and the quantity of labor (because in this section labor markets are

assumed competitive).

The residual schedule arising from a profile of linear schedules is still linear,

and has the form:

Sri = −Ãi − Λ−1
i p

a
i + Λε,iε

for a coefficient matrix Λi that we label the price impact of i. The expression

arises from the partial solution of the market clearing equations, that here are a

linear system Mp = A + εc, where the matrix M is build from the profile of

30In Appendix E.5 I show that the parametric model of Section 4 has an equilibrium with
nonnegative trade, namely the direction of trade is the one specified rather than being endoge-
nous.
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coefficients (Bi)i. A formal proof of this fact is in Online Appendix E. Because of

linearity, the Measurability assumption is satisfied. Hence, the best response can

be written as a finite dimensional optimization in the following form. 31 Define

the perfect competition matrix for sector i as Ci = UiΣ
−1
i U ′i + α2

i , where αi is a

diagonal matrix with on the diagonal αi,k, and Ui vertically stacks Iout,in⊗ωi, and

−Iin,out⊗uin. A calculation shows that this is the matrix of demands and supplies

chosen by a firm that takes prices as given.32

The following theorem states conditions for existence, and a characterization

of the equilibrium.

Theorem 3. Assume that at least one of the αi, with i connected to the final

consumer, is positive.33

1. If each good is traded by at least 3 firms, there are sets Ei, P̃i and matrices

B̃i, B
ε
i such that Si = B̃ipi + Bε

i εi are a Supply and Demand function

equilibrium;

2. The equilibrium coefficient matrices satisfy: that satisfies the following fixed-

point equation:

Bi = Λ−1
i − Λ−1

i

(
Ci + Λ−1

i

)−1
Λ−1
i (7)

3. in the sector level model where ni ≥ 2 for all i, there is a subset of links E0

such that a Supply and Demand function equilibrium exists in the subnetwork

defined by E0 and all traded quantities are positive.34

The condition that each good is traded by at least three firms is common to

linear equilibria in supply or demand functions (e.g. Malamud and Rostek (2017),

Woodward (2021)).

31Notice that this does not follow directly from Theorem 3.1 for the usual reason that here
the technology is not differentiable. For an extended proof see the Appendix.

32 See Appendix E.1.
33If all the αi are 0, a trivial equilibrium in which every supply and demand function are

constantly 0, and so no unilateral deviation yields any profit because there would not be trade
anyway, is always present. To avoid this, it is sufficient to assume that at least one of the αi,
with i connected to the final consumer, is positive. The theorem states that even with all αi = 0
a non-trivial equilibrium will also exist.

34In some specific networks it is possible to prove that there are no corner solutions in equi-
librium, that is no links need to be cancelled. See Appendix .
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The expression for the best reply highlights the role of the price impact. If

αi > 0, that implies Ci is invertible, the equation simplifies to:

Bi =
(
C−1
i + Λi

)−1

The proof builds from Theorem 2 in Malamud and Rostek (2017), showing that

there exist a profile of matrices satisfying equation 7. The important addition is

to show that there exist an equilibrium where trade is positive. In such a case we

allow the possibility of inactive links, that is links over which the specific schedules

are identically 0. This is easier to analyze in the sector level model because in

such a case each group of firm has exactly one schedule involved in each link.

As a result, if all other firms do not trade on a given link, there is no unilateral

deviation that can generate trade. Hence, restricting the analysis to a subset

of links does not affect equilibrium reasoning: this allows to cancel links where

the unconstrained equilibrium calculation would yield negative trade. The proof

shows that the recursive elimination always ends, and so an equilibrium exists.

Details are in the Appendix.

5 Relative market power

In this section I use the parametric functional form just introduced to discuss the

implications of the supply and demand function equilibrium for the assessment of

relative market power among firms. For example, consider a competition authority

that wants to understand in which sector of the production network market power

is stronger, and where the antitrust efforts should be focused. I show that the fact

that in this model firms have market power on both input and output markets (in

an endogenous way) can fundamentally change the ranking of market power with

respect to a more standard model in which market power is only on outputs.

5.1 Markups and markdowns

The first order conditions for the best reply problem give us the following expres-

sion:

Si,−` = Λ−1
i (pi − λi) (8)

where λi is the vector of the multipliers relative to each input and output con-

straint in 6. We can see that the equation is very similar to equation 3, where the

positive definiteness constraints and the expectation are not needed. The vector
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λi represents the marginal values of each input/outputs and, as discussed in the

context of the general necessary conditions, µi = pi − λi represents a measure of

market power in each input and output market.

In equilibrium, they are equal to:

µi =

(
µouti

−µini

)
= Λiq

∗
i = (B−1

i − C−1
i )qv∗i

The expression above suggests that, for given quantities produced, the markups

are intuitively “decreasing” in Bi: the steeper the schedules, the smaller the ability

of firms to affect prices, the smaller the markups. The expression above pins down

the exact relationship, taking into account all the cross-price effects. In the case

of the layered supply chain, where Bi is a number, this intuition can be made

precise.

5.2 The layered supply chain

The layered supply chain introduced in Example 3, allows sharper characteriza-

tions.35 Since all firms in each layer are identical, this is an instance of the sector

level model described in the previous section, and Bi is a number. In this case the

best reply equation reduces to:

Bi =
Λi + (ni − 1)Bi

Λi + (ni − 1)Bi + 1

and where Λi is the “sector level” price impact and is: Λi =
(

1
Λout
i

+ 1
Λin
i

)−1

for

i < N , where Λin
i is the slope of the aggregate residual supply for layer i, and

Λout
i is the aggregate residual demand. ΛN = Λout

N is the slope of the residual

demand for layer N (as the effect on the input price is not internalized). The

next proposition characterizes markups and markdowns in this case. Moreover,

it shows what is the effect of firms having bilateral market power on both inputs

and outputs.

Theorem 4. In a symmetric Supply and Demand Function Equilibrium for the

layered supply chain, if ni = nj for any i, j, then markups are larger the more

35The case analyzed here is slightly different from the one analyzed in Example 3, because
there no firms use labor but firm N at the beginning of the chain. Here, instead, due to the
specific form of the technology, intermediate firms also use labor, in the form of payment of
handling costs. Because the labor market is competitive, this has no effect and firms still have
to determine one input and one output schedule.
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upstream the layer is, while markdowns are larger the more downstream a layer

is.

If firms do not internalize their price impact on the input price, markups are

increasing going upstream, while there are no markdowns. If firms do not inter-

nalize their price impact on the output price, but only the input, then markdowns

are increasing going downstream, and there are no markups.

The intuition for the result above is simple: upstream firms perceive a smaller

elasticity of the residual demand on output markets the more they are upstream,

and so charge higher markups. The opposite happens with residual supply and

markdowns. In a supply chain as the one described, if ni is constant across layers,

the situation is completely symmetric, and so increase in markups and markdowns

exactly offset each other: mi + Mi is constant. Hence, each layer extracts the

same surplus, if they have the same level of competition. If some layer is more

competitive, the corresponding firms have lower profits. This yields insights on

what happens in general networks: markups still tend to be higher upstream and

markdowns downstream, and the general pattern of interactions determines which

effect prevails.

If firms instead do not internalize their effect on input prices, but only outputs,

the symmetry is broken, because firms consider the effect of network position on

the elasticitiy of demand only on, e.g., the output side. Below, I discuss how the

same insight can be gathered from the classic model of sequential oligopoly that

is well known in IO. The important similarity is that firms take input prices as

given, but upstream firms perceive a smaller elasticity of demand, internalizing

the pass-through of price changes: this yields the prediction that markups are

higher upstream.

This result yields important insights on the hidden consequences of using mod-

els in which competition is artificially constrained to be unilateral. If such a mod-

eling strategy is not motivated by the specifics of the market studied, but is just an

assumption imposed for tractability, as in production network models, the result

above suggests that implication for the relative ranking of market power among

firms can be severely changed. The supply and demand function equilibrium pro-

vides a setting in which the modeler does not have to choose on which side of the

market firms can affect prices, rather the price impact is an additional prediction

that can be asked to the model.

Benchmark: sequential oligopoly This setting provides a good setting to

gain intuition on the differences of the Supply and Demand Function Equilibrium
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with the more classic sequential competition models.

Consider the following classic IO model:36 at each stage of the supply chain

firms compete à la Cournot, taking as given the input price they face. Hence

market power is unilateral by construction. This means that firms in sectors 1

and 2 play first, simultaneously, committing to supply a certain quantity. Then

firms in sector 0 do the same, taking the price of good 1 and 2 as given. The

model can then be solved by backward induction.

Call p0 the inverse demand of the consumer, and assume for simplicity it is

concave (this can be sometimes relaxed, as shown below). Assume the technology

is linear: f(q) = Aq. Capital letters mean sector level quantities, lower case letters

are used for firm level quantities.

The markups of firms in sector 0 is equal to the elasticity of the inverse demand,

in absolute value. Throughout, I denote elasticities by η:

µ0 = −ηp0

What is the markup of upstream sectors? The first order conditions of firms in

sector 0 imply that the inverse demand faced by firms in sector 1 is:

p1 = (p′0 (AQ1)AQ1 + p0 (AQ1))A

The markup of firms in sector 1 are then:

µ1 =− ηp1 = −
(

p′0AQ

p′0AQ+ p0

(ηp′0 + 1) +
p0

p′0AQ+ p0

ηp0

)
=
−p′0AQ

p′0AQ+ p0︸ ︷︷ ︸
>0

( ηp′0︸︷︷︸
>0

+1) +
p0

p′0AQ+ p0

µ0

>
p0

p′0AQ+ p0

µ0 > µ0

which puts in evidence that the optimization introduces a force that tends to

increase the markup, through the pass-through, represented by the term p0
p′0f+p0

.

The reasoning can be similarly extended to a chain of any lenght.

36This is a version of the simplest setting e.g. in Salinger (1988). A similar model, in prices,
is Ordover et al. (1990)
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5.3 General networks

This section describes how the network of input-output relationships affects the

equilibrium of the model. The matrix of coefficients of the market clearing system,

M , contains the fundamental network information in this setting.

Indeed, inverting the matrix M and collecting the diagonal D on both sides

we get:

M−1 = D−1/2(I −D1/2LD1/2)−1D−1/2

which shows that M−1 is, modulo a normalization, has the familiar form of a Leon-

tief inverse matrix. It is standard that entries of matrices of this form constitute

a measure of the (weighted) number of undirected paths connecting the goods in

the network.

To understand how the price impact Λi (whose expression is obtained in Propo-

sition 3) relates to the input-output connections consider as an example a tree, as

in Figure 1. To obtain the price impact of, say, node 2 we have first to eliminate

the links of the graph connecting input and output goods of 2. Since the network

is a tree now we have two separate subnetworks, as illustrated for sector 2 in Fig-

ure 4. The entries of the matrix Λ2 count the number of weighted paths between

input and outputs of 2. But since in the reduced network input and output links

are disconnected, the matrix is diagonal, and can be partitioned into:

Λi =

(
Λout
i 0

0 Λin
i

)

where Λout
i is the (weighted) number of self loops of the output link in the reduced

graph, while Λin
i is the matrix with on the diagonal the number of self loops of

the input links. Figure 4 illustrates the situation for i = 2. The mechanism

is similar to the line network: the more upstream the sector is, the larger the

portion of the network in which the ”self-loops” have to be calculated, hence the

more elastic the demand the node is facing. This is because a larger portion of the

network is involved in the determination of the demand, and each price variation

will distribute on a larger fraction of firms.

Consider instead the network in Figure 5. What is the price impact of firm

2? In Figure 6 is represented the network induced between goods: 12 denotes the

good sold by firm 1 to 2 and 10 the good sold by firm 2 to 0, that are supposed

different. In the right panel, is represented the subnetwork useful to calculate

the price impact of firm 2, that is the links that remain once eliminating firm 2.
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12

3456

0

12

3456

Figure 4: The relevant subnetworks for the calculation of the price impact for
node 2. Left: output, right: inputs.

Since now even in the reduced graph input and output goods of firm 2 are still

connected, this means that Λ2 is not diagonal anymore.

C0

1

2

Figure 5: A simple production network: c represents the consumer demand, while
the other numbers index the firms.

6 Aggregate impact of market power

In this section I explore the question of how the strategic interactions along the

supply chains affect welfare. In the supply and demand function competition

model we can easily explore the case in which firms, instead of internalizing the

full effects of their commitment to a schedule on other firms and markets, are

boundedly rational and are just able to take into account the behavior (sched-

ule) of their direct neighbors, but not of other nodes of the network at larger

distance.37 More generally, in this section I explore the consequence of firms that

have a limited ability to correctly internalize the behavior of the other indirectly

connected firms at Ti steps in the network. If Ti = ∞ we are back in the model

37 Ideally, we want to explore the consequence of including in models such as Baqaee (2018)
the fact that firms internalize the impact of their decision on further downstream customers and
upstream suppliers. In such models it is not clear how to do so.
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0

2

10

12 0
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Figure 6: (Left) the goods network of the production network depicted in Figure
5. (Right) The subnetwork of the goods network in Figure 5 for the calculation of
the price impact of firm 2.

of the previous sections. To do that, I change the definition of residual demand

perceived by firms, as follows.

Definition 6.1 (Local residual schedule). Suppose all firms other than i play

linear symmetric schedules S−i. We can decompose the market clearing matrix

as: M = D − L, where L is a matrix such that λ1(D−1/2LD−1/2) < 1. Define

L̃ = D−1/2LD−1/2. The local realized prices conditional on i at level Ti are the

function defined as:

p−i(pi, ε | i, Ti) = D
−1/2
i

Ti∑
k=0

L̃k−iD
−1/2
i (A−i −MCi

pi) (9)

The local residual schedule at level Ti is the profile of demand and supply functions

faced by i, Sr(· | i, Ti) = (−Dr
i (· | i, Ti), Sri (· | i, Ti)), when evaluating prices in

other markets following p−i(· | i, Ti):

Dr
gi(pi, ε | Ti) =

∑
g→k

Dkg(pk(pi, ε | i, Ti), εk)︸ ︷︷ ︸
demand for good g

−
∑

k→g,k 6=i

Sgkpk(pi, ε | i, Ti), εk)︸ ︷︷ ︸
supply by competitors

Srig(pi, εi | Ti) =
∑
j→g

Sgj(pj(pi, ε | i, Ti), εj)︸ ︷︷ ︸
supply of good j

−
∑

g→j,j 6=i

Djg(pj(pi, ε | i, Ti), εj)︸ ︷︷ ︸
demand by competitors

∀g ∈ Ni

Because of linearity, its expression is:

Sri (· | i, Ti) =

(
−Dr

i (· | i, Ti)
Sri (· | i, Ti)

)
=

(
B̂i −M ′

Ci
D
−1/2
−i

Ti∑
k=0

L̃−iD
−1/2
−i MCi

)
pi

The expression above simply states that firm i, when reasoning about the
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impact of a variation in its output price (that it can directly affect via the choice

of a supply function) on other prices through the network, it taking into account

only up to Ti steps. To see this, note that M−1
−i = D

−1/2
i

∑∞
k=0 L̃

k
−iD

−1/2
i , that is

the coefficient matrix of the full residual schedule, cfr 3. The coefficient matrix of

the conditional prices at level Ti is a truncation of this sum at level Ti, and can

be understood in this way. Rewrite the system of market clearing equations:

M−ip−i = A−i −MCi
pi =⇒ D−ip−i = L−ip−i +A−i −MCi

pi

and solve it to get: p−i = D−1
−i (L−ip−i +A−i −MCi

pi).

This expression means that firm i understands the prices of goods sold, e.g.,

downstream by its customers depend in turn on the prices those customers face

in input and output markets. If Ti = 0, these prices at distance 1 are considered

constants, and as a result p−i = A−i − MCi
pi. If Ti is higher, instead we can

substitute iteratively the expression for prices, getting exactly:

p−i = D
−1/2
i L̃Ti+1

−i D
−1/2
i p−i +D

−1/2
i

Ti∑
k=0

L̃k−iD
−1/2
i (A−i −MCi

pi)

Now, to get the equation 9 in the definition, we neglect the higher order term

D
−1/2
i L̃Ti+1

−i D
−1/2
i p−i. Since the equation is linear, and the only thing affecting

the best reply equations are the derivatives, this is the simplest way to capture

exactly the fact that firms internalize the impact of its decisions up to distance Ti

in the network. For example Ti = 0 means that the firm is considering all p−i as

constants.

Definition 6.2. A Local Supply and Demand Function equilibrium at levels

(Ti)i∈N is a profile of supply and demand schedules (Si)i∈I such that:

1. for any firm i, Si is a best reply to S−i, given the residual schedule at level

Ti, Sri (· | Ti):

2. the prices and quantities (p(ε), q(ε)) solve the market clearing conditions

for any feasible realization of ε.

The basic difference with the game analyzed so far is that in the firms op-

timization the prices of sectors not directly connected with i are taken as given.

Indeed, in the constraints of the optimization there are only the market clearing

conditions relative to the links directly connected to i. This is the analogous in this

setting of models such as Baqaee (2018), Grassi (2017), Levchenko et al. (2016).
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The next theorem explores the welfare implications of this behavioral assump-

tion.

Theorem 5. In a Local S&D equilibrium at levels (2Ti)i∈N , all price impacts are

smaller than in the maximal S&D, and increasing in all the parameters Ti.

If there is just one consumer good, its price is increasing in all the parameters

Ti.

The result says that limitations to internalize nodes further away in the network

is detrimental to firms, because it lowers their ability to charge higher (lower) prices

for outputs (inputs). The reason why we focus on even levels (2Ti) is because if

one compares the equilibrium with Ti to the one with Ti+1, in the one with Ti+1

firm internalize the effect on firms that are directly in competition with them for

surplus: hence they might want to reduce the price impact. If the increment is

sufficiently large instead this does not happen. This is a direct consequence of the

fact that the slope (in matrix sense) of the residual schedule perceived at level 2Ti

is decreasing in Ti in the positive semidefinite sense, that is, if Ti > T ′i :

B̂i −M ′
Ci
D
−1/2
−i

2Ti∑
k=0

L̃−iD
−1/2
−i MCi

<

B̂i −M ′
Ci
D
−1/2
−i

2T ′i∑
k=0

L̃−iD
−1/2
−i MCi


as proven in the appendix.

Strategic complementarities once again allow to transform this in an equilib-

rium statement.

Theorem 5 is a qualitative result. The following proposition shows that in

some examples the inefficiencies due to market power can be very different for

different short-sightedness parameters Ti. Unsurprisingly, this bites in particular

in networks in which the supply chain has many steps further downstream and

upstream, as in long production chains.

Proposition 2. Consider a layered production chain of N layers, with 2 firms

per layer. Denote W l the welfare if Ti = 0 for all i, and W g the welfare loss if

Ti =∞ for all i.

If N goes to infinity, the relative welfare loss W l−W g

W l goes to 1.

7 Conclusion

This paper provides a way to model oligopoly in general equilibrium as a game in

which firms fully internalize their position in the supply chain and have market
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power both over inputs and outputs, in an endogenously determined way. I show

that such features are desirable in a input-output model with market power: if

absent, both the aggregate and the relative ranking of distortions due to imperfect

competitions is crucially affected. This suggests that, when modeling complex net-

works of large firms with market power, simplifying assumptions might affect in a

sizable way the results. The parametric functional form introduced is suitable for

quantitative work, and the strategic complementarity structure of the equilibrium

makes it computationally tractable: the exploration of the quantitative implica-

tions of the supply and demand function equilibrium for the analysis of market

power is an interesting avenue for future research.
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Appendix

A Proofs of Section 3

As anticipated in the text, the proofs of this section are done under a more general

assumption for the payoffs, consistent with the literature on general equilibrium
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oligopoly (in particular Azar and Vives (2021)), namely, that firms optimize the

indirect utility of their owners. The details are as follows.

Workers and Owners As in Azar and Vives (2021), there are two types of

agent: workers, and owners. There is a continuum of identical workers or, equiv-

alently, there is a representative worker, whose utility is U((cg)g∈C, L, εi,c). The

workers have aggregate demand Dw
c that has negative semidefinite jacobian with

maximum rank (which is |C| − 1) with respect to both prices pc and stochastic

parameters εc

The owners, instead, do not work, but own the firms. They are a continuum,

partitioned in N groups, and owners in group i collectively own all the shares of

firm i. They have utility functions homogeneous of degree 1, generating aggregate

indirect utilities Vi = Π
Pi

, where Πi is the profit of firm i, Pi is a function of

prices, homogeneous of degree 1 (the price index relative to owners of group i) and

differentiable. These assumptions are enough to generate an aggregate demand

that is differentiable and has negative definite jacobian as in the main text.

As anticipated, firms optimize the indirect utility of shareholders. Hence the

payoff of firm i is:

πi(S) = E
Πi

Pi
= E

(∑
i→g

pg
Pi
Sg,i(pi, εi)−

∑
g→i

pg
Pi
Dig(pi, εi)−

w

Pi
`i(pi, εi)

)

Note that this depends only on ratios pg/Pi, hence not on price normalization.

The assumption followed in the main body, of firms maximizing profits Πi, can

be recovered as a special case of this setting assuming that the owners’ utility

only depends on only one good, o, and, moreover, such a good is produced from

a continuum of firms that use only labor as input (hence are isolated from the

network). Hence in this case the price indices are all Pi = w, and we recover the

main text formulation.

A.1 Proof of Proposition 1

We are going to need the following Lemmas, proved in the online Appendix.

Lemma A.1. Under Assumptions 3c, d) the map MC has positive definite jaco-

bian derivative ∂pMC. Moreover, there are k and K such that ‖∂pMC‖2 ≤ K

and ‖∂pMC−1‖2 ≤ k−1.

41



Lemma A.2. There is a constant Kp such that the derivatives of the pricing

function with respect to the stochastic parameters, and the (Fréchet) derivatives

with respect to the schedules are bounded above: ‖∂εp‖ ≤ Kp and ‖∂Sip‖opg ≤ Kp.

Here ‖·‖opg denotes the operator norm: relative to the ‖·‖g norm in the domain: if

A is a linear operator Ai → RM , ‖A‖opg = max{‖ASi‖ | ‖Si‖g = 1}.

Part 1 First, focus on schedules in A. Fix w. As defined in the text, the market

clearing conditions are: MC(p, ε) = 0.

Assumption 3d) guarantees that the map MC(·, w, ε) : RM
+ → RM is proper.

Indeed, it is continuous, and lim‖MC‖ =∞ if p/w tends to the boundary of RM
+ .

Hence the counterimage of a bounded set is bounded away from the boundary:

hence the counterimage of a compact is compact and the map is proper. Hence,

we can use a global inversion theorem (Theorem 1.8 in Ambrosetti and Prodi

(1995)) to conclude that MC is invertible and onto RM , hence in particular for

each ε ∈ E̊ there is a unique p(ε) st MC(p(ε), ε) = 0. Now, using the implicit

function theorem applied to the map (p, ε) 7→ (MC(p, ε), ε), we can conclude

that p(ε) is differentiable on E̊ , the interior of E . The Lemma A.2 guarantees that

it is Lipschitz, so it can be extended uniquely to the whole of E .

Now let us consider schedules in the closure of A. Lemma A.2 guarantees that

the map p : E × A → RM is Lipschitz, hence it can be extended in a unique way

to the closure of the domain.

So far, we produced a unique function p(w, ε) for each fixed w. Now con-

sider two functions such that MC(p(w, ε), w, ε) = 0 and MC(p′(w′, ε), w′, ε) = 0.

SinceMC is homogeneous of degree zeroMC(p′(w′, ε), w′, ε) = MC(p′(w′, ε)w/w′, w, ε) =

0, and so p′(w′, ε)w/w′ = p(w, ε), that is, the functions are the same up to a

positive normalization. Since the payoffs only depend on price ratios, they are

independent of the normalization chosen.

Part 2 Fix a schedule S i ∈ Ai and a value ε, and call St = tS + (1 − t)S and

εt = tε′+(1−t)ε. By the mean value theorem in Banach spaces (e.g., Proposition

7.2 in Luenberger (1997)):

‖p(S, ε′)−p(S, ε)‖2 ≤ sup
t∈[0,1]

‖∂Sp(εt,St)‖opg ‖(S−S)‖g+ sup
t∈[0,1]

‖∂εp(εt,St)‖2‖(ε′−ε)‖2

Now by the Lemma A.2 and Assumption 3d, such a norm is bounded above by

kp = 2KpKS + 2KpKe, and in particular the image of E × A via p is bounded by

kp.
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A.2 Proof of Theorem 1

Thanks to Proposition 1 the set P is bounded; since it is closed by definition, it is

compact, hence all schedules and their derivatives have upper bounds on it. The

set A(P)K is nonempty, because the schedules introduced in Example 1 satisfy all

the assumptions, if the values K, KS are large enough and k is small enough.

The set of all differentiable schedules that are bounded, with bounded deriva-

tives, and compact domain P × E is equicontinuous (Theorem 14.2 in Treves

(2016)), hence, by the Ascoli-Arzelà theorem, its closure is compact in the sup-

norm. The set A(P)
K

is a subset of such a compact set. Moreover, it is closed by

definition, being the closure of A(P)K . Hence it is a closed subspace of a compact

set, and so is compact. Since the pricing function is Lipschitz, it can be extended

uniquely to such closure: hence the game is well defined also on A(P)
K

.

Since the profit function is continuous, the best reply problem has a solu-

tion. Moreover, by the maximum theorem the solution correspondence is upper-

hemicontinuous (in particular, if single valued, is a continuous function).

It remains to prove that A(P)K is convex. Consider Si and S ′i in Ai(P). All

the regularity assumptions are inherited by any convex combination, and it has

the same domain by definition. The bounds are also inherited:

kIi ≤ α∂pi
Si + (1− α)∂pi

S ′i and ‖α∂pi,wSi + (1− α)∂pi,wS
′
i‖2 ≤ K

and similarly for ∂εiSi. By convexity of Φ, the technology constraint is also satis-

fied:

Φi(αSi + (1− α)S ′i, εi) ≤ αΦi(Si, εi) + (1− α)Φi(S ′i, εi) ≤ 0

which is what we wanted to show.

So, if best replies are convex-valued (or in particular single valued), the best

reply map is continuous on a set A(P)
K

that is compact and convex, hence by the

Ky Fan fixed point theorem the game has an equilibrium.

Denote the equilibrium profile as S∗. Now, it is possible to further restrict

the domain of each schedule to P̃i = pi(E ,S∗), that is the image of E via the

equilibrium profile. This in general might be smaller than P . Nevertheless, the

profile S∗ remains an equilibrium. Indeed, all the price values in P \ pi(E ,S∗)
have probability zero, so they do not affect the payoffs. Hence we can restrict each

schedule to P̃i = pi(E ,S∗), to have an equilibrium in which the whole domain is

spanned. Finally, the following Lemma (proven in the Online Appendix) uses the

positive definiteness of ∂εiSi to guarantee that each P̃i is the closure of an open
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set.

Lemma A.3. Under Assumptions 1-3, Pi is the closure of an open set.

A.3 Proof of Theorem 2

We derive necessary conditions for an solution in A. The positive definiteness

constraints on the Jacobian can be expressed as: det[∂pi,wS
H − kI]j ≥ 0, where

[A]j, j = 1, . . . di are the principal minors of a matrix A, and ∂pi,wS
H is the

symmetric part of the Jacobian. The others are det[∂εiSH ]j ≥ 0, always for all

j = 1, . . . di. The necessary conditions for optimization are the usual Lagrange

multiplier equations (Luenberger (1997)). The Lagrangian is:

Li(Si) = E

[
p′i,−`Si,−` + S1 − λiΦi(Si, εi)−

∑
j

λpj det[∂pi,wS
H − kI]j −

∑
j

λej det[∂εiSH ]j

−λp+(K2 − ‖∂pi,wS‖
2
2)− λe+(K2 − ‖∂pi,wSi‖

2
2)
]

where pi(S, ε) is the unique pricing function (from Proposition 1) such that the

wage is 1.

We have to show that this is Fréchet differentiable, and the necessary condition

is setting the Fréchet differential to 0. To do so, in the following Lemma (proven

in the Online Appendix) we compute the Gateaux differential in the direction

etai. Under the assumption we made on ηi, it is always possible to choose h small

enough such that Si + hηi ∈ A.

Lemma A.4. Assume that ∂P̃ has differentiable boundary. The Gateaux differ-

ential of the Lagrangian in a direction ηi, satisfying the above assumptions, is:38

E
[
η′i,−`Gi

]
, where:

Gi = ([∂pi
Si,−`]+[∂pi

Sri,−`])−1

(
Sri + ∂pi,−`

Sri,−`((pi, 1)− λi∇Φi)−
p′iSi
Pi
∇pi,−1Pi

)
+Ki

where Ki =
∑

j I
p
i,j +

∑
j Iei,j + Qpi + Qei is the term with the derivatives of the

38Note that the component of η relative to labor does not directly enter the equation, but this
is not strange because it is implicitly determined by the technology constraint.
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four constraints.

Ipi,j =Dp
j (0)λpjT

p
1j + T̃ p2j where T̃ p2j,m = divpi

(
λpjD

p
j (0)f̃iT

p
2,m

)
/f̃i

and T p1j and T p2j,m are the vectors such that:

tr
(
[∂pi

(SHi )]−1
j

(
∂h[∂pi

(SHi + hηHi )]j
))

= T p1jηi,−` +

j∑
m=1

T p2j,m∂pi
(ηi)m

Iei,j =De
j(0)λejT

e
1j + T̃ e2j where T̃ e2j,m = ∂εi

(
λejD

e
j(0)fi(εi | ε−i)T e2j

)
/f(εi | ε−i)

and T e1j and T e2j,m are the vectors such that:

tr
(
[∂εi(SHi )]−1

j

(
∂h[∂εi(SHi + hηHi )]j

))
= T e1jηi,−` +

j∑
m=1

T e2j,m∂εi(ηi)m

Qpm =λp+Q
p
1 + Q̃p

2 where Q̃p
2,m = divpi

(λp+Q
p
2,mf̃i)/f̃i

and the vectors Qp
1, Qp

2,m are such that:

∂h‖∂pi,wSi‖
2
2 |h=0= Qe

1ηi,−` +
∑
m

Qp
2,m∂pi

ηi,m

Qem =λe+Q
e
1 + Q̃e

2 where Q̃e
2,m = divεi(λ

e
+Q

e
2,mfi)/fi

and the vectors Qe
1, Qe

2,m are such that:

∂h‖∂εiSi‖2
2 |h=0= Qe

1ηi,−` +
∑
m

Qe
2,m∂εiηi,m

The assumption of differentiable boundary is necessary to apply the divergence

theorem, and integrate by parts the derivative of the constraints, eliminating the

derivatives of ηi from the expression.

Now by the law of iterated expectations we can rewrite the expectation as

E[η′i,−`(pi, εi)E[Gi | pi, εi]], and by the arbitrariness of ηi the FOC is equivalent

to E[Gi | pi, εi] = 0. Using Lemma A.3 to conclude that Sri = −Si for all the

possible prices, we obtain the expression in the main text, noting that in that case

∇pi,−`
Pi = 0.

B Proofs of Section 5

B.1 Proof of Theorem 4

The proof follows from the following lemmas, proven in the Online Appendix F.
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Lemma B.1.

Λi = ((Λout
i )−1 + (Λin

i )−1)−1 =

∏
k 6=i nkBkBc∏

k 6=i nkBk +Bc

∑
j 6=i
∏

k 6=i,k 6=j nkBk

(10)

ΛN = ((Λout
N )−1 + (Λin

N )−1)−1 =

∏
k 6=1 nkBkBc∏

k 6=1 nkBk +Bc

∑
j 6=1

∏
k 6=1,k 6=j nkBk

(11)

Lemma B.2. In equilibrium ni ≥ nj implies B∗i ≥ B∗j .

Calculations reveal that:

µouti = pi − λouti =

Λin
i

Λout
i +Λin

i

(1 +Bi) +
Λout
i Λin

i

Λout
i +Λin

i

(pi − pi−1)

µini = λini − pi−1 =

Λout
i

Λout
i +Λin

i

(1 +Bi) +
Λout
i Λin

i

Λout
i +Λin

i

(pi − pi−1)

Now by the previous lemma Bi = Bj for all sectors and so market clearing

conditions imply that pi − pi−1 is constant across sectors. Moreover by Lemma

B.2 also
Λout
i Λin

i

Λout
i +Λin

i
is. Now inspecting the right hand side of the expressions we see

that the markup is decreasing with Λout
i , which is itself decreasing as one goes

upstream. Then it follows that the markup is increasing going upstream, and

symmetrically for the markdown.

If the firms do not take the price impact into account on input markets, the

best reply equations become:

Bi =
Λi + (n− 1)Bi

Λi + (n− 1)Bi + 1
where Λi =

Λout
i

1 + Λout
i

and Λout
i is increasing upstream. Hence, in equilibrium, Bi is decreasing upstream,

which means that markups are increasing.

C Proofs of Section 6

C.1 Proof of Theorem 5

The best reply matrix for firm i at level Ti is: BRi(B−i, Ti) =
(
C−1
i + ΛTi

i

)−1

where ΛTi
i = Bi −M ′

Ci
D
−1/2
−i

∑T ′i
k=0 L̃−iD

−1/2
−i MCi

, where Bi is the diagonal matrix

that on the diagonal has the coefficient Bk,ii for all the neighbors k of i.
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The equilibrium profile of matrix coefficients satisfies Bi = BRi(B−i, Ti) for

each i. The result follows by applying the theory of monotone comparative statics,

and the following Lemma, proven in the Online Appendix.

Lemma C.1. If Ti > T ′i then BRi(B−i, 2Ti) < BRi(B−i, 2T
′
i ).

Hence, by standard arguments we can conclude that in the maximal equi-

librium B∗(T ′i ) ≥ B∗(Ti), which is our first thesis. From this it follows that

M∗(T ′i ) ≥M∗(Ti), and so the price of the unique consumption good satisfies:

pc(Ti) = A′(M∗(Ti))
−1A ≥ A′(M∗(T ′i ))

−1A = pc(T
′
i )

which is what we wanted to show.
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Online Appendix

D Additional proofs of section 3

D.1 Proof of Lemma A.1

Part I: Positive definite

By the lifting procedure as in Malamud and Rostek (2017), we can consider

every supply function as defined on the set of all prices instead then the prices

of the neighboring goods, and similarly having values in tuples of all the goods:

Ŝi : RM
+ → RM . The consistency required is, of course,

Ŝi(pi,p−i, ε) = Si(pi, ε)∀g ∈ Ni Ŝgi(pi,p−i, ε) = 0∀g /∈ Ni

With this notation, we can write the excess supply function as:

MCg =
∑
i

Ŝgi − D̂c + ˆ̀
c

Denote Si,−` the schedule of i excluding (if present) labor demand. Moreover,

MC is homogeneous of degree zero, hence naturally we cannot invert it as a full

function of prices. For convenience we consider it a function of p−w, the vector of

prices excluding the wage.

The Jacobian derivative is:

∂pMC =
∑
i

∂pŜi,−` − ∂pD̂c

This is symmetric if all the derivatives are symmetric. We are going to prove

that, once we normalize by a price, this is also positive definite. By Theorem 6 in

Gale and Nikaido (1965), this implies that the realized prices are well defined on

any convex domain.

Considering any vector x ∈ RM \ {0}, we have

x′∂pMCx =
∑
i

x′(∂piŜi,−` − ∂pD̂)x =
∑
i

x′i∂piSi,−`xi + x′c(−∂pDc)xc

where, as for the prices, we denote xi = (xg)g∈Ni
. Now if there is a λi such that

pi = λi∇Φi for each i, then Si,−` is positive definite, because the original schedules

have co-rank 1. In this case, it follows that ∂pMC is positive definite. If not, Si,−`
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has co-rank 1, and satisfies:

∑
g

uig[Si,−`]hg = 0∀h uig =

(
1

ph
pg −

1

∂phΦi

∇pΦi

)
for some h ∈ Ni

So, if there is a nonzero vector x such that x′∂p−w
MCx = 0, it must be xi = ui

for some i, and xi = 0 otherwise. Where, since ui is nonzero, and the sum is null,

at least two entries of the vector ui are nonzero, corresponding to, say, good g and

h. Then xg = uig 6= 0, and xg is also an element of xj, so also xj = uj. Repeating

the reasoning, we can go on until we reach a firm k such that the good g such that

ukg 6= 0, and g is a good consumed by the consumer: in that case xg cannot be

zero, and we reach a contradiction. Hence the quantity x′∂pMCx is positive, and

the jacobian ∂pMC is positive definite.

Part II: bounds

For the lower bound, by Assumption 3d) we have:

k
∑
i

Îi ≤ ∂pMC =
∑
i

∂pi
Ŝi,−` − ∂pD̂c

where Îi is the lifting of the identity matrix relative to i, having a 1 on the diagonal

whenever g, h are both traded by firm i, and zero otherwise. The sum of such

matrices is still diagonal. In particular, the entry in position g, h is ngk, where ng

is the sum of firms that trade good g, plus (eventually) the consumer. Anyhow

this is larger than 2k, so the matrix is bounded below, and so it can be found a k

such that kI ≤ K
∑

i Ii. Now by definition this is the same as kI ≤ H(∂pMC),

where H(A) = (A+A′)/2 denotes the symmetric part of a matrix. For a property

of the positive semidefinite ordering, it follows that k−1I ≥ H(∂pMC)−1, that

implies k−1 ≥ ‖H(∂pi
MC)−1‖2. By Lemma 2.1 in Mathias (1992) it follows that

‖∂pi
MC−1‖2 ≤ ‖H(∂pMC)−1‖2 ≤ k−1.

Concerning the upper bound, it is sufficient to apply subadditivity of the norm

and again Assumption 3d)

‖
∑
i

∂pi
Ŝi,−` − ∂p‖2 ≤ (N + 1)K = K
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D.2 Proof of Lemma A.2

We have to prove that the Fréchet derivative of p with respect to the schedules is

bounded. By the implicit function theorem is:

∂Sp = −(∂pMC)−1∂SMC

we have to compute the Gateaux derivatives in all the directions η that satisfy the

constraints:

∂SMC(η) = ∂hMC(S + hη,p, ε) = MC(η,p, ε)

Now by Assumption 3d) ‖η‖g < KS, and so ‖∂SMC‖opg ≤
∑

i‖ηi‖2 = NKS.

Moreover, from Lemma A.1 follows ‖(∂pMC)−1‖2 ≤ k−1. Hence, for any η

‖∂SMC(η)‖2 ≤ k−1NKS. By definition of operator norm, the operator norm

of ‖∂Sp‖ is bounded above by the same constant.

Similarly,

‖∂εp‖2 = ‖−(∂pMC)−1∂εMC‖2 ≤ k−1NK

and now define Kp = max{k−1NK, k−1NKS}.

D.3 Proof of Lemma 3.1

Consider the excess supply function, neglecting all g that are produced or used by

firm i. We obtain a function:

MCi
g : (p, ε) 7→MCg(p, ε)∀g /∈ Ni

With a reasoning totally analogous, this is a function that can be inverted, ex-

pressing p−i as a function of pi (including labor). Moreover, this function is

homogeneous of degree 1 in prices.

Now, for g ∈ N , the residual schedule is simply:

Srg (pi, ε) := MCg(p−i(pi),pi, ε)− Sg(pi, εi)

Homogeneity follows immediately. Hence, we normalize the wage to 1.

Define M̂C
i

the function such that M̂C
i

= MCg(p−i(pi),pi, ε) − Sg(pi, εi).
Notice that by definition of the excess supply function this is actually independent

of S. Now, we can compute the derivative of the partially solved prices:

∂pi
p−i = −(∂ ˆMC−ip−i

)−1∂M̂Cpi
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and so define:

∂pi
Sr = ∂pi

Sr = ∂M̂Cipi
− ∂M̂Cip−i

(∂M̂Cp−i
)−1∂M̂Cpi

that is the Schur complement of ∂ ˆMC−ip−i
in the jacobian ∂M̂C, appropriately

reordered to have all g ∈ N in the upper left corner, and all others in the rest:

∂M̂C =

(
∂M̂Cipi

∂M̂Cip−i

∂ ˆMC−ipi
∂ ˆMC−ip−i

)−1

=

(
(∂M̂Cipi

− ∂M̂Cip−i
(∂ ˆMC−ip−i

)−1∂M̂Cpi
)−1 B

C D

)

Hence we conclude that if all schedules have positive definite derivatives then ∂pi
Sr

is positive definite beacause principal submatrices of positive definite matrices are

still positive definite.

D.4 Proof of Lemma A.3

Fix S. Since the stochastic parameters are
∑

i di ≥M , the map p is not invertible.

We can consider a restriction such that it is. Namely, impose that the uncertain

parameters relative to the same good are the same across firms: εgi = εgj for all i,

j and g. Let us denote the stochastic parameters remained independent as ε̃, and

their domain as Ẽ ⊂ RM . This is a compact set, because it is a closed subset of

a compact set. This way, the uncertain parameters behave formally exactly like

prices, and with analogous reasoning as in Proposition 1 we obtain that ∂ε̃MC is

positive definite. Moreover, repeating the reasoning in the proof of Proposition

3.1, we obtain that if we consider constants the parameters relative to one firm i,

this is equivalent to calculate the matrix ∂ε/iMC = ∂ε̃MC − ∂ε̃Ŝi, and this is still

positive definite, exactly as ∂pMC − ˆ∂pS i is still positive definite. In particular,

it is invertible.

Hence, in the interior of Ẽ :

∂ε/ip = −(∂pMC)−1∂ε/iMC

is invertible, and so the map p : Ẽ → RM is locally invertible: for any ε̃ ∈ ˚̃E there

is an open Uε̃ such that p |Uε̃
is invertible. In particular, p(Uε̃) is open, and so

p(˚̃E) = ∪ε̃Uε̃ is open too; hence p(Ẽ) is the closure of an open set.
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D.5 Proof of Lemma A.4

Consider the perturbation in the direction of η: Si + hηi. Write pi(h) for pi(Si +

hηi, εi). Define the functions:

N(h) = −E
[
p′i(h)

Pi(pi(h))
Sri (pi(h), εi)

]
(12)

M(h) = Φi(Sri (pi(h), εi)) (13)

The Gateaux derivatives in direction ηi are N ′(0), M ′(0). Note that we can

exchange derivatives and integrals since all the functions involved have bounded

derivative (and the price space is supposed compact), hence dominated (because

a probability space has finite measure) (see Billingsley (2008), Theorem 16.8). We

have first to compute the derivative of pi(Si + hηi, ε) with respect to h, that by

the chain rule is:

∂hpi(Si,−` + hηi,−`, ε) = ∂Si,−`
piηi,−`

where ∂Si,−`
pi is the Gateaux derivative of the prices as functions of the schedules

chosen, that can be computed via the implicit function theorem:39

[∂Si,−`
pi(ηi)] = −([∂pi

Si,−`] + [∂pi
Sri,−`])−1ηi,−`

where I use the fact that the both the submatrices are positive semidefinite, and the

residual demand is positive definite. Remember that Si,−` denotes the components

of the schedule Si excluding the labor demand, and similarly for Sri,−` and ηi,−`.

Hence, now:

N ′(h) = − ∂

∂h
E
[
p′i(h)

Pi(pi(h))
Sri (pi(h), εi)

]
= −E

[
∂hpi(h)′Sri + p′i∂pSr∂hpi(h)

Pi
− p

′
i(h)(Sri (pi(h), εi))

P 2
i

∇pi
P ′i∂hpi(h)

]
= E

[(
(Sri,−`)′ + p′i∂pSri,−` +

(Si(pi(h), εi))

Pi
∇pi,−1Pi,−`

)
1

Pi
([∂pi
Si,−`] + [∂pi

Sri,−`])−1ηi,−`

]
39Alternatively, we can compute directly ∂hpi using the implicit function theorem, the proce-

dures are identical.
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for any direction ηi. Moreover:

M ′(h) = Φi(Sri (pi(h), εi))

= ∇Φi∂pSri ∂hpi(h)

= −∇Φi∂pSri,−`([∂pi
Si,−`] + [∂pi

Sri,−`])−1ηi,−`

for any direction ηi.

Now we turn to the positive definiteness constraints. DefineDp
j (h) = det[∂pi

(SHi +

hηHi )]j. A standard result in linear algebra gives ∂detA = detAtr(A−1∂A). Hence:

d

dh
Dp
j (h) = det[∂pi

(Si +hηi)− kI]jtr
(
[∂pi

(SHi + hηi)− kI]−1
j ∂h[∂pi

(SHi + hηHi )]j
)

Now the term in the trace is a matrix, and linear in the components of η (via

∂hpi) and its derivatives. Hence there are row vectors T p1j and T p2j,m such that:

tr
(
[∂pi

(Si)− kI]−1
j

(
∂h[∂pi

(SHi + hηHi )]j
))

= T p1jηi,−` +

j∑
m=1, 6=`

T p2j,m∂pi
(ηi)m

and so, for h = 0:

∂hD
p
j (h) |h=0= Dp

j (0)

(
T p1jηi,−` +

j∑
m=1,6=`

T p2j,m∂pi
(ηi)m

)

Now let us analyze the term with ∂pi
(ηi)m. By the law of iterated expectations:

EλpjD
p
j (0)(T2,m∂pi

(ηi)m) = E
(
E
(
λpjDj(0)T2j,m∂pi

(ηi)m | εi
))

Now in the integral E
(
λpjDj(0)T2j,m∂pi

(ηi)m | εi
)
εi is constant. We can do a

change of variables expressing some variables ε̃i ⊂ ε−i as functions of prices:

E
(
λpjDj(0)T2j,m∂pi

(ηi)m | εi
)

=

∫ ∫
P̃
λpjD

p
j (0)T p2j,m∂pi

(ηi)m(pi, εi)f̃i(ε\(εi, ε̃i),pi | εi)dpidε\(εi, ε̃i)

Now in the innermost integral we can integrate by parts the term involving the

derivative of ηi. By the divergence theorem:∫
P̃
λpjD

p
j (0)T p2j,m∂pi

(ηi)m(pi, εi)f̃idpi =

∫
∂P̃
λpjD

p
j (0)T p2j,m(ηi)m(pi, εi)f̃idσ(pi)−

∫
P̃
divpi

[
λpjD

p
j (0)f̃iT

p
2j,m

]
(ηi)m(pi, εi)dpi
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where ∂P̃ is the boundary of P̃ , and the operator div(v1, . . . , vn) =
∑

i ∂ivi is the

divergence. Now by assumption ηi = 0 on ∂P̃ , so the middle integral disappears.

Hence, integrating also over the ε̃i and εi we obtain:

EλpjD
p
j (0)(T p2j,m∂pi

(ηi)m) = −E∂pi

(
λpjD

p
j (0)T p2j,mf̃i

)
/f̃i(ηi)m

Finally, the additional term due to the constraint that ∂pi
Si,−` is positive definite

can be written:

E
(
Ipi,jηi,−`

)
where Ipi,j = Dp

j (0)λpjT
p
1j + T̃ p2j

where T̃ p2j is a vector whose components are: T̃ p2j,m = divpi

(
λpjD

p
j (0)f̃iT

p
2,m

)
/f̃i.

With analogous calculations (even simpler, because we need not perform the

change of variables εi → pi done above), the term relative to ∂εiSi,−` is:

E
(
Iei,jηi

)
where Iei,j = De

j(0)λejT
e
1j + T̃ e2j

where T̃ e2j is a vector whose components are T̃ e2j,m = ∂εi
(
λejD

e
j(0)fi(εi | ε−i)T e2j

)
/f(εi |

ε−i) and T e1j and T e2j,m are the vectors such that:

tr
(
[∂εi(SHi )]−1

j

(
∂h[∂εi(SHi + hηHi )]j

))
= T e1jηi,−` +

j∑
m=1

T e2j,m∂εi(ηi)m

The bounds in the norm yield, remembering that ‖A‖2
2 = ρ(A′A), where ρ is

the maximum eigenvalue, that is simple by assumption, and so by Theorem 4.4 in

Demmel (1997):

∂h‖∂pi
Si‖2

2 =
1

v′pup
v′p∂h(∂pi

S ′i∂pi
Si)up

where vp and up are respectively the right and left eigenvectors relative to ρ. Now:

∂h(∂pi
S ′i∂pi

Si) = ∂h∂pi
S ′i∂pi

Si + ∂pi
S ′i∂h∂pi

Si = 2H(∂h∂pi
S ′i∂pi

Si)

Again, this is linear in the components of ηi,−` and its derivative. Hence there are

vectors Qp
1, Qp

2,m such that:

∂h‖∂pi
Si‖2

2 |h=0= Qp
1ηi,−` +

∑
m

Qp
2,m∂pi

ηi,m)
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Now integrating by parts ∂pi
ηi,m as above we obtain:

E(Qpηi,−`) = 0 where Qpm = λp+Q
p
1 + Q̃p

2

where Q̃p
2,m = divpi

(λp+Q
p
2,mf̃i)/f̃i.

Analogously, for the constraint on ∂εiSi we obtain: Now integrating by parts

∂pi
ηi,m as above we obtain:

E(Qeηi,−`) = 0 where Qpm = λp+Q
e
1 + Q̃e

2

where Q̃e
2,m = divεi(λ

e
+Q

e
2,mfi)/fi, and the vectors Qe

1, Qe
2,m are such that:

∂h‖∂εiSi‖2
2 |h=0= Qe

1ηi,−` +
∑
m

Qe
2,m∂εiηi,m)

D.6 Details of Example 3

Write Di =
∑

j∈iDij for the aggregate demand function from firms in layer i, and

similarly Si =
∑

j∈i Sij for the supply. Hence MC = (S1−D2, . . . , Sn−Dc). Now

consider the matrix:

diag(p)−1∂pMCdiag(p) = ∂p1S1 − ∂p1D2, −∂p2D2
p2
p1
, 0 . . . 0

−∂p1S2
p1
p2

∂p2S2 − ∂p2D3, −∂p3D3
p3
p2
, . . . 0

0 . . . 0 ∂pn−1Sn
pn−1

pn
∂pnSn − ∂pnDc


By homogeneity,

∂pi−1Di

∂piDi
= − pi

pi−1
, and

∂pi−1Si

∂piSi
= − pi

pi−1
, so on each row of this

matrix the sum of the off-diagonal terms is equal to ∂piSi + ∂piDi+1, which is

exactly equal to the diagonal element, but for row 1 and 2, in which one of the

addenda is missing and so the diagonal element is larger. Hence the matrix is

weakly chained diagonally dominant, so positive definite. So, by similarity, also

∂pMC is positive definite, and since it has negative off-diagonal elements, it is an

M -matrix and ∂pMC−1 has all positive entries. Now ∂εMC = (0, . . . ,−∂εDc),

and so ∂εpi > 0 for all i. Moreover if ε→∞ Dc →∞ and ε→∞ Dc → 0, so the

whole price space is reached.

Finally, ∂εpi 6= 0 implies ∂piε 6= 0, that is there exist gi such that ε = gi(pi),

hence the measurability assumption is satisfied.
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E Additional proofs of section 4

Consider first the market clearing equations. If all the firms are using symmetric

linear schedules with coefficients (Bi)i, then the market clearing equations 1 de-

fine a linear system for the prices of goods traded (on active links), because all

equations are linear in prices. That is, (1) translates into:

Mpa = A+Mεε (14)

(15)

where the vector of constants A is zero but for the entries corresponding to links

to the consumer (that have value Aci = Aci). p
a is a vector that stacks all the

prices of the goods traded on active links.

This matrixM is the fundamental source of network information in this setting:

it is a matrix indexed on the set of goods traded on the network, that codifies the

dependence of good g on the price of h.

Under the maintained assumptions, the linear system 1 can be partially solved

to yield the residual conditional prices p−i(· | i):

p−i(p, ε | i) = (M−i)
−1(−MCi

pi +A−i +Mεε)

where M−i and A−i are what remains from the matrices M and A after canceling

all the rows corresponding to the inputs and outputs of i, while MCi
is the set

of columns of M relative to inputs and outputs of i. This can be substituted

in the supply and demand functions of suppliers and customers of i to yield the

expression in the next proposition.

Proposition 3. If all firms j 6= i are using symmetric linear supply and demand

schedules with symmetric positive semidefinite coefficients (Bj)j and positive def-

inite (Bi,ε)i, generically in the values of (Bj)j there exist a domain Fi containing

a neighborhood of εi = 0 such that the residual supply and demand schedule for

active links of sector i is linear and can be written as:

Sri =

(
−Dr

i

Sri

)
= −Ãi − Λ−1

i pai + Λε,iε

Moreover, Λi,ε has full rank, and Λi is symmetric positive definite and equal to

the matrix [M−1
i ]i, where:

• Mi is the matrix obtained by M by setting Bi to 0;
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• if A is a matrix indexed by edges, [A]i is the submatrix of A relative to all

the links that are either entering or exiting i.

The coefficient Λi can be thought as a (sector level) price impact40: the slope

coefficients of the (inverse) supply and demand schedules, describing what effect

on prices firms in sector i can have. It is a measure of market power: the larger

the price impact, the larger the rents firms in that sector can extract from the

market.

E.1 Perfect competition benchmark

If a firm takes prices as given will optimize:

max
qki,qij ,zi,kj

∑
k

pkqki −
∑
j

pjqij −
1

2

∑
k,h

zi,jkΣi,jk,hmzi,hm

subject to:

qki =
∑
j

ωijzi,kj, qij =
∑
k

zi,kj

In vector notation:

max
qki,qij ,zi,kj

p′iqi −
1

2
z′iΣizi

subject to:

Uizi + αi`i = qi

where αi is a diagonal matrix with on the diagonal αi,k, and Ui vertically stacks

Iout,in ⊗ ωi, and −Iin,out ⊗ uin
The FOC yield, defining λi as he vector of multipliers:

0 = −z′iΣ + λ′iUi

0 = −l′i + λ′iαi

pi = λi

so, solving for the quantities: zi = Σ−1
i U ′ipi, li = αiλi, and plugging them into the

constraint yields:

qi = Uizi + αi`i =
(
UiΣ

−1
i U ′i + α2

i

)
pi

That is the demand of firms under perfect competition. Define the matrix Ci =

UiΣ
−1
i Ui + α2

i as the perfect competition matrix for i. If at least one αi > 0, it

40Using a financial terminology. It is also the reason for the notation: in finance it is common
to denote Λ the price impact of traders.
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follows that it is positive definite and symmetric. If Σi = I it reduces to:

Ci =

(
ω′iωiI

out
i uoutω

′
i

ωiu
′
out douti I ini

)

Moreover, the profit is:

πi = p′i
(
UiΣ

−1
i Ui + α2

i

)
pi −

1

2
p′i
(
UiΣ

−1
i Ui + α2

i

)
pi =

1

2
p′iCipi

and since Ci is positive definite, is always nonnegative. We can see that if firms

are all producing the same quantities, as in Section ??, the profits are the same

for all.

It is possible to explicitly compute the walrasian equilibrium allocation with

this technology. Indeed, in this context the market clearing system is Mp = A,

and the matrix M is the sum of the lifted Cis. Now, having the prices, we can just

compute the quantities from the supply/demand functions computed above. This

gives analytic expressions for prices and quantities as functions of the fundamental

parameters.

E.2 Proof of Proposition 3

M is the Jacobian J of Proposition 1 specialized in this linear setting. By the

same Proposition, it is invertible and positive definite.

Lemma E.1. Consider the matrix M̃i obtained from the matrix M by eliminating

the coefficient Bi. It is positive definite (hence invertible) if:

• Assume αi > 0, and that all goods are traded by at least three firms;

• If αi = 0 for some i, and for each of its inputs and outputs there exists other

2 firms that produce and buy it.

(A sufficient condition for the second assumption is that ni ≥ 2 in the sector

level model).

Moreover, the matrix A−i is also positive definite and invertible.

Proof. With an analogous reasoning as in Proposition 1, we obtain that x′M̃ix =∑
j 6=i x

′
jBjxj.

If αi > 0 for all i, all the Bm are positive definite. Hence, the only possibility

for x′M̃ix to be 0 is if some good g is not traded by any of the j firms, in which

case the vector x identically zero for all h 6= g, and an arbitrary number different
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from zero at g nullifies the quadratic form. If all the goods are traded by at least

one other firm, this can never happen.

If αi = 0, then some of the Bi are positive semidefinite, and nullified by the

positive vectors ũi. Since Bc is nullified by the zero vector, the only possibility

for the sum above to be zero is that subtracting firm i creates a disconnected net-

work, whose matrix now is nullified by the vector that has all zeros for the goods

produced in the component where the consumer is, and all the relevant elements

from ũi in the other component. (This might be impossible depending on the

coefficients, but we want to keep the proof independent of specific parameters).

Under the above assumptions canceling firm i never creates a disconnected net-

work. Since all Bi,ε matrices are positive semidefinite, the same reasoning proves

that A−i is positive definite, hence invertible.

Now we prove the main Proposition.

I prove explicitly that there are sets Fi such that p∗i (0) is feasible, such that

the partial solution p∗−i(ε, pi) is linear. Hence, the residual demand is linear on

some set Fi.
Let us calculate it explicitly. The market clearing system of equations condi-

tional on i is:

MCg(p, ε) = 0 ∀g /∈ Ni

that, under the assumption that all schedules of firms are linear, is:

(
MCi

M−i

)( pi

p−i

)
= A−i(ε)

where we reorder the entries of the matrix M to have in the leading upper left

position all the rows that represent equations involving input and output goods of

firm i, and all the columns relative to prices of input and output of i. M−i is M

from which we cancelled all the rows and columns relative to i, MCi
is the matrix

of all columns relative to inputs and outputs of i. Write Mi for the matrix M

subject to this reordering. And solving:

M−ip−i = −MCi
pi +A−i =⇒ p−i = M−1

−i (−MCi
pi +A−i(ε))
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The remaining market clearing conditions are:

Sgi(pi, εi) = Dr
gi(pi, ε) =

∑
g→k

Dkg(pk(pi, ε | i), εk)︸ ︷︷ ︸
demand for good g

−
∑

k→g,k 6=i

Sgkpk(pi, ε | i), εk)︸ ︷︷ ︸
supply by competitors

Dig(pi, εi) = Srig(pi, ε) =
∑
j→g

Sgj(pj(pi, ε | i), εj)︸ ︷︷ ︸
supply of good j

−
∑

g→j,j 6=i

Djg(pj(pi, ε | i), εj)︸ ︷︷ ︸
demand by competitors

∀g ∈ Ni

Using the matrices just defined, and changing the sign of the first equation, we

get:

Sri =

(
−Dr

i

Sri

)
= ([M ]i −Bi)pi +M ′

Ci
p−i

= ([M ]i −Bi −M ′
Ci
M−1
−iMCi

)p+M ′
Ci
M−1
−iA−iε−i

and denoting M̃i the matrix M −EiBiE
′
i, we have that the coefficient matrix can

be rewritten as [M ]i−Bi−M ′
Ci
M−1
−iMCi

= [(M̃i)
−1]−1

i , via block matrix inversion,

and moreover is positive definite. The fact that M̃i is positive definite and hence

invertible follows from the Proposition 1.

Now defining: Λ−1
i = [(M̃i)

−1]−1
i , we obtain the expression in the main text:

Sri = Λ−1
i pi + Ãi(ε)

where Ãi(ε) = M ′
Ci
M−1
−iA−i(ε)

E.3 Proof of Theorem 3

Rewrite best reply as a finite dimensional optimization This paragraph

essentially proves that in the linear case the measurability condition is satisfied.

Assume all other firms in all other sectors are playing a profile of symmetric

linear schedules that for the prices relative to active links have coefficients (Bj)j

which are positive semidefinite. Consider the best reply problem of firm α in sector

i. This is:

max
(Ski)k,(Dij)j ,(zi,kj)k,j

E

(∑
k

p∗kiSki −
∑
j

p∗ijDij − εi
∑

ziα,kj −
1

2

∑
k,j

z2
α,kj

)

subject to the market clearing conditions 1. All the sums run over active links:

prices relative to inactive links do not affect the objective function nor the con-
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straints. I already used the fact that at the optimum it must be liα,kj = εiziα,kj +
1
2
z2
iα,kj.

Using the residual demand, we can rewrite the optimization as:

max
(Ski)k,(Dij)j ,(zi,kj)k,j

E

(∑
k

p∗kiSki −
∑
j

p∗ijDij − εi
∑

zi,kj −
1

2

∑
z2
i,kj

)

subject to:

Dr
ki((p

out
i , pini )∗, ε) =

∑
k

zi,kj((p
out
i , pini )∗, εi), ∀i→ k (16)

Srij((p
out
i , pini )∗, ε) =

∑
j

ωijzi,kj((p
out
i , pini )∗, εi), ∀j → i (17)

Dr
ki(p

out
i , pini , ε) = Ski((p

out
i , pini )∗, εi), ∀i→ k (18)

Srij(p
out
i , pini , ε) = Dij((p

out
i , pini )∗, εi), ∀j → i (19)

Now assume ε is in the set Ei where Proposition 3 applies. Then since Λ−1
i is

invertible the last two conditions in 16 define uniquely a function for the prices of

active links p∗i (ε) : Ei → Rdi . Then we can rewrite the optimization as:

max
(Ski)k,(Dij)j ,(zi,kj)k,j ,p

∗
i

E

(∑
k

p∗kiD
r
ki −

∑
j

p∗ijS
r
ij − εi

∑
zi,kj −

1

2

∑
z2
i,kj

)

subject to:

Dr
ki((p

out
i , pini )∗, ε) =

∑
k

zi,kj((p
out
i , pini )∗, εi), ∀i→ k (20)

Srij((p
out
i , pini )∗, ε) =

∑
j

ωijzi,kj((p
out
i , pini )∗, εi), ∀j → i (21)

(22)

Now (S,D) do not appear explicitly in the problem any more. For the active links,

we can recover them using the information in the pricing function. Indeed, for any

x in the range of p∗i , define:

Ski(x, εi) = Dr
ki(x, ε), ∀i→ k

Dij(x, εi) = Srij(x, ε), ∀j → i
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for some ε ∈ (p∗i )
−1(x). By definition of p∗i , the relation above must be satisfied

for all the elements in the counterimage. For all the non-active links, they are

both identically zero.

Finally, optimizing with respect to a function of the stochastic variable is

equivalent to optimizing ex-post, for any fixed value of ε, as in Klemperer and

Meyer (1989). Hence we can write the best reply problem in its final form:

Optimization The best reply problem here is:

max
pki,pij ,zi,kj

∑
k

pkD
r
ki −

∑
j

pjS
r
ij −

∑
j,k

εi,jkzi,jk −
1

2

∑
k,h

zi,jkΣi,jk,hmzi,hm

subject to:

Dr
ki =

∑
j

ωijzi,kj +
∑
k

αik`ik, Srij =
∑
k

zi,kj

In vector notation:

max
pki,pij ,zi,kj

−p′iSr − ε′izi −
1

2
z′iΣizi

subject to:

Uizi + αi`i = −Sri

where αi is a diagonal matrix with on the diagonal αi,k, and Ui vertically stacks

Iout,in ⊗ ωi, and −Iin,out ⊗ uin.

Call λi the vector of multipliers for input and output constraints respectively.

The Hessian of the problem is a block diagonal matrix with blocks −(Ji + J ′i) and

minus Σi (with respect to the zs), so the problem is concave.

The FOCs yield:

zi :0 = −ε′iUi − z′iΣ + λ′iUi

li :0 = −`′i + λ′iαi

pi :0 = (λ′i − p′i)Λ−1
i − Sr

The first conditions are identical to the perfect competition, except for the multi-

pliers replaced by prices: zi = Σ−1
i U ′i(λi − εi), li = αiλi. Plugging them into the

constraint yields:

−Sri = Uizi + αi`i = Ciλi − UiΣ−1
i U ′iεi
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which is the exact analogue. From the expressions we have we can solve for λi:

λi = (Ci + Λ−1
i )−1(Λ−1

i pi + UiΣ
−1
i U ′iεi)

We have first to show that the FOC define a function in an open set around ε = 0.

Using the expression above and the FOC we can solve for the prices:

−Λ−1
i pi −M ′

Ci
M−1
−iA−iε−i = −Sri = Λ−1

i (pi − λi)

−Λ−1
i pi −M ′

Ci
M−1
−iA−iε−i = Λ−1

i (pi − (Ci + Λ−1
i )−1(Λ−1

i pi + UiΣ
−1
i U ′iεi))

pi = (2Λ−1
i −Λ−1

i (Ci+Λ−1
i )−1Λ−1

i )−1(Λ−1
i (Ci+Λ−1

i )−1UiΣ
−1
i U ′iεi−M ′

Ci
M−1
−iA−iε−i)

The inverse exists because Λ−1
i −Λ−1

i (Ci+Λ−1
i )−1Λ−1

i is positive definite: ‖Λ−1
i (Ci+

Λ−1
i )−1‖ = ‖(CiΛi + I)−1‖ < 1 and the result follows from Theorem 7.7.3 of Horn

and Johnson (2012). Hence is by construction full rank, and also MCi
and A−i.

It follows that the map from the ε−i to prices is surjective, and spans an open set

in the region without corner solutions. Hence the first order conditions pin down

the values of the best reply schedule in an open region of the price space, and we

can write:

Si = −Sr = Λ−1
i (pi − λi)

and using the expression we got for λi:

Si = (Λ−1
i − Λ−1

i (Ci + Λ−1
i )−1Λ−1

i )pi +Bε,iεi

where we defined Bε,i = Λ−1
i (Ci + Λ−1

i )−1UiΣ
−1
i U ′i , that has full rank minus 1,

and moreover, by results in Anderson Jr and Duffin (1969), is positive definite.

Moreover, Ci = Bi,εU
′
i +α′iαi. This is the expression of our best response, and the

coefficient matrix is positive definite with a reasoning similar to the one above.

Moreover, if Ci is invertible, by the Woodbury formula the coefficient matrix can

be written as (C−1
i + Λi)

−1.

The equilibrium equations have the same form of the equilibrium equations in

Malamud and Rostek (2017). From their Theorem 2 it follows that there exists a

fixed point, and can be reached iterating the best reply equations from above or

below, for appropriately chosen initial conditions.

There exist a profile of coefficients implying positive trade Now I prove

that there exist one that yields positive trade if we limit ourselves to a subset of

links - that will be the active links in equilibrium.
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Start from the original network G = (N,E). Set n = 0 and L1 = E.

1. Find the unconstrained equilibrium profile B∗n in the network Gi = (N,Ln).

Identify the set of links that have negative trade or negative price En,0.

2. set Ln+1 = Ln/En,0;

The set of links shrink at each step, and when the network is empty there

are no negative trades. Hence there must exist an index ı̂ such that for all i > ı̂

Li = Lı̂. The equilibrium B∗ı̂ , augmented with identically zero functions for all

excluded links, is an equilibrium of the original game.

Generic Equilibrium existence It remains to prove that the profile of matri-

ces (B∗i )i identified above constitute the coefficient matrices of a profile of linear

schedules for an open set F that contains (p∗(0), 0). To prove this, consider the

linear functions defined by (B∗i )i and extend them to the whole price space.

Consider:

(S−1, D)i = B̃i(−p1ũ−1 + pi,−` + ti) + εiBε,i,−1

where ti solves the Linear Complementarity problem:

B̃i(−p1ũ−1+pi,−`+ti)+εiBε,i,−` ≥ 0 t′i,−`(B̃i(−p1ũ−1+pi,−`+ti)+εiBε,i) = 0 ti ≥ 0

This corresponds to the form of the solution of the Optimization 6, where ti is a

function of the Lagrange multipliers on the nonnegativity constraints.

Using this form we see that the market clearing conditions can be written as

a Linear Complementarity Problem:

Bij(pi + ti) + εiBε,i = Bij(pj + tj) + εiBε,j (23)

Bi(pi + ti) + εiBε ≥ 0 (24)

t′i(Bi(pi + ti) + εiBε) = 0 (25)

ti ≥ 0 (26)

The first set of equations can be rewritten as M(p+ t) = A+Mεε and solved

for p + t since M is invertible. So to compute which t variables are not zero it is

sufficient to use the complementary slackness condition. Moreover, it is a standard

result (Cottle et al. (2009), Proposition 1.4.6) that the solution as a function of ε

is piecewise linear. Positive definiteness proves that the solution is unique and so

non-ambiguous (Cottle et al. (2009) Theorem 3.1.6).
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Now the fact that we can express the residual demand as a linear function for

all i relies on the fact that (0, p∗(0)) lies in one of the regions where the function

is linear and not on one of the boundary regions. Now the boundary regions are

identified by a set of equations Fj((Bi)i, ε) = 0 for some indices j, where the F

are affine functions (see Cottle et al. (2009), Prop. 1.4.6.). Each boundary region,

hence, is an hyperplane, and has measure zero. This means that the set of profiles

of coefficients such that 0 is in one of the boundary regions:

BF = {(Bi)i | Fj((Bi)i, 0) = 0∀j}

has itself measure zero (it is a finite union).

Now consider the map O : (ωi)i → (B∗i ) that maps the values of the parameters

to the B∗i that solve 7. I prove that this is one-to-one. To see this, suppose

O((ωi)i) = O((ω′i)i). Then by the construction of 3 we get that Λi((ωi)i) =

Λi((ω
′
i)i), and by the equation 7 we get that the perfect competition matrices

must agree too: (Ci)i = (C ′i)i. From this, inspecting the matrix, it follows that

(ωi)i = (ω′i)i. Moreover it is continuous. By the implicit function theorem, is also

differentiable. It follows that the inverse image of a measure zero set has measure

zero.

Since O is a homeomorphism the preimage of a rare set is rare, and so we

conclude that the property of existence of a linear eqilibrium is generic in (ωi)i.

E.4 Neoclassical microfoundation of handling costs

The structure for the labor costs can be rationalized via a neoclassical production

function, as the next proposition clarifies.

Proposition 4. If the production possibility set of firm i is the set of (qout, qin, `) ∈
Φi such that ∃zi ∈ Rdouti dini such that:

qki =
∑
j

ωij min{fi,kj(`i,k1, . . . , `i,kdini ), zi,kj}+ αki
√
`ki qij =

∑
k

zi,kj

where, for every k, (fi,kj)j is implicitly defined by the equations:

`i,kj = (εi,kωij − εi,j)fi,kj +
1

2ki

∑
h

σi,k,jhfi,kjfi,kh ∀j

where the matrices Σi,k = (σi,k,jh)j,h∈Ni
, and if the ε parameters are small enough

then, at the optimum, the payments to labor and the quantities demanded have
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exactly the relation in equation 4.2, defining Σi as the block matrix that has as

k-th diagonal blocks the matrix Σi,k.

Proof. First, we need to prove that the function fi,kj : Rdouti dini → Rdouti dini describ-

ing the combination of labor tasks to be allocated to deal with zi,jk, is well defined.

It is implicitly defined by:

`i,kj = (εi,kωij − εi,j)fi,kj +
1

2ki

∑
h

σi,k,jhfi,kjfi,kh ∀k, j

For every fixed output k, the vector function (fi,jk)j is defined implicitly by:

Fik((`i,kj)j, (fi,kj)j) = −`i,kj + (εi,kωij − εi,j)fi,kj +
1

2ki

∑
h

σi,k,jhfi,kjfi,kh = 0 ∀j

The Jacobian of Fik with respect to (fi,kj)j is the matrix with entries (εi,kωij +

εi,j)δhj + 1
2ki
σi,k,jhfi,kj + 1

2ki
δjhσi,k,jjfi,kj. This is:

Ji,k = εi,kdiag(ωi)− diag(εini ) +
1

2ki
Σi,kdiag(fi,k·) +

1

2ki
diag(Σi,k)diag(fi,k·)

The matrix Σi,k is positive definite by assumption, and fi,k· > 0, then it follows

that Σi,kdiag(fi,k·) is positive definite, in the sense that x′Σi,kdiag(fi,k·)x > 0 if

x 6= 0, even if not symmetric.41 If the ε are small enough the other terms of

the sum are negligible, so it follows that Jik is positive definite. Hence, on any

convex set we can apply the Gale Nikaido theorem (Gale and Nikaido (1965)) and

conclude that the equation above can be inverted. Hence, this proves that the

equations above define f as a function of the `. This is true on any convex set

in which the f are strictly positive. But fi,kj = 0 if and only if `i,kj = 0, so we

can extend the uniqueness also to the case in which the variables reach 0. So the

above is a well-defined function.

The expression for the handling costs at the optimum is immediate, because

at the optimum it must be fi,kj = zi,kj, and so:

∑
k,j

`i,kj =
∑
k

εi,k
∑
j

ωijzi,kj −
∑
j

εij
∑
k

zi,kj +
1

2ki

∑
k

Σi,kz
′
izi

in matrix notation: ∑
k,j

`i,kj = ε′iUizi +
1

2ki
z′iΣizi

41This follows from Theorem 7.6.3 in Horn and Johnson (2012), because is the product of two
symmetric positive definite matrices, hence has all positive eigenvalues.
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which is what we wanted to show.

The technology above codifies the idea that each input, to be productive, needs

to be complemented with a quantity of labor `ij. Hence, the firm also needs to hire

a quantity of labor
∑

j `ij in addition to `i, that we can think as labor allocated

to generic tasks (e.g. management, organization). Because of the Leontief term,

at the optimum it must be −kiεij +
√
k2
i ε

2
ij + 2ki`ij = qij. This is independent of

the specific market structure or optimization the firm is performing, and simply

follows from avoiding waste of inputs. Inverting this equation we find that the

quantity of labor associated to input j must be: `ij = εijqij + 1
2
q2
ij. Summing

across all j we recover exactly the handling cost formulation in 4.2.

The idea that allows to incorporate substitutability across inputs is to assume

that labor has to be divided into “tasks” li1, li2, . . ., and each input, to be produc-

tive, needs to be complemented with a specific combination of labor allocated to

different tasks fij. The overlap among tasks used for different inputs will produce

the substitutability or complementarity, as the following proposition illustrates.

The parameter ki is a constant that can be thought as the fixed endowment of

capital that the firm has: under this interpretation, the above technology has the

usual property of constant returns to scale.

The profit of the firm, hence, can be written as:

πi = pi
∑

ωijqij + αi
√
`i −

∑
j

pjqij −
∑
j

εijqij −
1

2ki
(
∑

q2
ij + `2

i )

This makes it clear that, for given prices, inputs are neither substitutes nor com-

plements: a competitive firm taking prices as given would not change its demand

for qij when pk changes. Under imperfect competition this is not true anymore.

E.5 Networks with no corner solutions

If the network is a tree such that each sector has just one customer sector, as in

Figure 1, then it is easy to prove that in equilibrium there is trade on all links.

Indeed, in this case is possible to prove that equilibrium prices are all strictly

positive. Then, if i has 0 suppliers, then in equilibrium produces qi = Bipi > 0.

If sector j has only roots as suppliers, since they all produce strictly positive

quantities it follows that qj =
∑
ωjkqk > 0. Iterating the reasoning we obtain

that on all links there is positive trade.
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F Additional proofs of section 5

F.1 Proof of Lemma B.1

By induction, I prove that:

Λi =

∏
k 6=i nkBkBc∏

k 6=i nkBk +Bc

∑
j 6=i
∏

k 6=i,k 6=j nkBk

(27)

ΛN =

∏
k 6=1 nkBkBc∏

k 6=1 nkBk +Bc

∑
j 6=1

∏
k 6=1,k 6=j nkBk

(28)

By induction on the size of the line N . If N = 2 it can be checked by calcula-

tion. Assume it holds for a line of size N−1. To get the corresponding expressions

for a line of size N we must substitute Bc with the objective demand of the last

but one layer, which is Λout
i = nNBNBc

nNBN+Bc
. If we do it we get that for i ≤ N − 1:

Λi =

∏
k 6=i nkBk

nNBNBc

nNBN+Bc∏
k 6=i nkBk + nNBNBc

nNBN+Bc

∑
j 6=i
∏

k 6=i,k 6=j nkBk

and reordering and simplifying the denominator we get the expression above.

Analogously can be done for Λout
1 . Moreover, always by induction we can find:

Λin
1 =

∏
k 6=1 nkBk∑
k 6=1 nkBk

and Λout
1 = Bc, so substituting in the corresponding expression:

Λ1 =
Λout

1 Λin
1

Λout
1 + Λin

1

=

∏
k 6=1 nkBk∑
k 6=1 nkBk

Bc

Bc +
∏

k 6=1 nkBk∑
k 6=1 nkBk

and simplifying we get the desired result.

F.2 Proof of Lemma B.2

To apply the theory of monotone comparative statics, I will prove that if ni ≥ nj

then BRi(x,B−i,j) ≥ BRj(x,B−i,j), that is the best reply of i dominates the best

reply of j conditional on the coefficients of all other sectors.

We have that BRi ≥ BRj if and only if:

Λ
−1

i + (ni − 1)x ≥ Λ
−1

j + (nj − 1)x
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In particular, using the characterization of Λ
−1

i above, we have that this is true if

and only if:

BBcnjx

B(njx+ bC) + njxF
+ (ni − 1)x ≥ BBcnix

B(nix+ bC) + nixF
+ (nj − 1)x

where B and F are only functions of the coefficients B−i,j and their respective

number of firms. This is true if and only if

BBcnj
B(njx+ bC) + njxF

− (nj − 1) ≥ BBcni
B(nix+ bC) + nixF

− (ni − 1)

BBcnj − (nj − 1)(B(njx+BC) + njxF)

B(njx+BC) + njxF
≥ BBcni − (ni − 1)(B(njx+BC) + njxF)

B(nix+BC) + nixF

BBc − (nj − 1)(B(njx) + njxF)

B(njx+ bC) + njxF
≥ BBc − (ni − 1)(B(njx) + njxF)

B(nix+BC) + nixF

which is true if and only if ni ≥ nj because the function is decreasing.

Then we can conclude that if ni ≥ nj then BRi(x,B−i,j) ≥ BRj(x,B−i,j),

and so, using a result from Lazzati (2013) we can conclude that in equilibrium

B∗i ≥ B∗j .

G Additional proofs of Section 6

G.1 Proof of Lemma C.1

BRi(B−i, 2Ti) < BRi(B−i, 2T
′
i ) is equivalent to Λ2Ti

i < Λ
2T ′i
i . Then, with algebraic

manipulations we find:

Λ2Ti
i − Λ

2T ′i
i =

−M ′
Ci
D
−1/2
−i L̃

T ′i
−i

(
M−1
−i − L̃

Ti−T ′i
−i M−1

−i L̃
Ti−T ′i
−i

)
L̃
T ′i
−iD

−1/2
−i MCi

Now, by Schur theorem, the matrix M−1
−i − L̃

Ti−T ′i
−i M−1

−i L̃
Ti−T ′i
−i is positive definite if

and only if the matrix (
M−1
−i L̃

Ti−T ′i
−i

L̃
Ti−T ′i
−i M−i

)
is, and this, in turn, applying the same theorem to the other diagonal matrix, is

positive definite if and only if M−i − L̃
Ti−T ′i
−i M−iL̃

Ti−T ′i
−i is. By a standard property,

this is positive definite if and only if λ1(M−1
−i L̃

Ti−T ′i
−i M−iL̃

Ti−T ′i
−i ) < 1, where by λ1
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we denote the largest eigenvalue. We have:

λ1(M−1
−i L̃

Ti−T ′i
−i M−iL̃

Ti−T ′i
−i ) = λ1(M

−1/2
−i L̃

Ti−T ′i
−i M−iL̃

Ti−T ′i
−i M

−1/2
−i ) = λ1(M

−1/2
−i L̃

Ti−T ′i
−i M

1/2
−i )2

the first equality by similarity, the second because the matrix M
−1/2
−i L̃

Ti−T ′i
−i M

1/2
−i is

normal. Then, by similarity again we can conclude that λ1(M
−1/2
−i L̃

Ti−T ′i
−i M

1/2
−i )2 =

λ1(L̃) < 1. Hence we proved that Λ2Ti
i < Λ

2T ′i
i .

G.2 Proof of Proposition 2

If Ti = ∞, we are in the case covered by Proposition 8, hence all coefficients

Bi = B are the same. The best reply equations are:

B =
Λ + (n− 1)B

Λ + (n− 1)B + 1
where Λ =

nBBc

(N − 1)Bc + nB

so that:(
nBBc

(N − 1)Bc + nB
+ (n− 1)B + 1

)
B =

nBBc

(N − 1)Bc + nB
+ (n− 1)B

From this we see that if N goes to infinity (the chain becomes longer and longer),

then B → n−2
n−1

. If n = 2, B → 0.

If Ti = 0 the equations are the same, but the price impacts are:

Λ0 =
n1B1Bc

n1B1 +Bc

Λi =
n2Bi−1Bi+1

nBi−1 + nBi+1

ΛN =
nBN−1

nBN−1 + 1

In equilibrium, B is bounded below by a positive quantity B∗. This is because

if we calculate the best reply to the profile in which all coefficients are set to be

ε, then, for all sectors but the first and the last:

BR ≥ (2n− 1)ε

(2n− 1)ε+ 1

and the RHS is larger than ε if ε < 2n−2
2n−1

. For the first and last sector a similar con-

dition obtains ε < B∗0 , ε < B∗N . So, an equilibrium cannot involve all coefficients

smaller than min{B∗0 , B∗1 , 2n−2
2n−1
}.

The ratio of welfares is:

W g

W l
=
Qg

Ql

Ac

Bc
− 1

2Bc
Qg − 1

2
N
n
Qg

Ac

Bc
− 1

2Bc
Ql − 1

2
N
n
Ql
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Now:

Qg =
Λg
c

Bc + Λg
c

Ql =
Λl
c

Bc + Λl
c

where Λg
c = nBgBc

NBc+nBg , and Λl
c =

Bc
∏

i nBj

Bc
∑

i

∏
j 6=i nBj+

∏
i nBj

. It follows that both quanti-

ties go to 0, but:

lim
N→∞

Qg

Ql
= lim

N→∞

nBgBc

NBc+nBg

Bc
∏

i nBj

Bc
∑

i

∏
j 6=i nBj+

∏
i nBj

= lim
N→∞

nBg
Bc

1
N

∑
i

1
nBi

+ 1

Bc

= 0

and so also the ratio of welfares goes to 0.
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