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Abstract

Bailouts increase moral hazard and exacerbate risk taking (strategic e�ect). However, they

also decrease the probability of actual failure, thereby increase �rm value, which in turn

decreases the individual incentive to take risk (value e�ect). I study the interplay of these

countervailing e�ects in a stochastic dynamic game. The strategic e�ect dominates in concen-

trated markets, but �rms take less risk in fragmented markets in the presence of bailouts. The

overall e�ect of bailouts on systemic risk in steady state depends on competitive and entry

conditions. Contrary to conventional wisdom, bailouts can reduce systemic risk overall.
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1 Introduction

Systemic risk is the threat that the market becomes dysfunctional. When policy makers consider

a market to be fundamentally important (for macroeconomic and/or political reasons), they often

bail out �rms to prevent the market from collapsing. Systemic bailouts are not limited to the

banking industry: in the past the state has provided �nancial support to e.g. money market
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mutual funds, insurance companies (AIG) or the Big Three automobile manufacturers (Chrysler,

Ford, General Motors).1 Furthermore, state support does not have to be �nancial assistance, it can

take other forms, such as regulatory forbearance. Consider the audit market: since its indictment

brought Arthur Andersen down in 2002, it is often speculated that the remaining four auditors

are just �too-few-to-fail� and hence regulators have shied away from �rm actions against Big Four

auditors on a number of occasions (e.g. Business Week 2003, The Economist 2004 and 2005, WSJ

2004, NYT 2005, Forbes 2013, FT 2015 and 2017).2 While the forms of systemic rescues can be

di�erent, they are a fundamental concern in all markets for the same reason: insulating �rms from

the risk of failure exacerbates moral hazard and thereby increases risk taking and systemic risk.

Policy makers have long argued that the anticipation of systemic bailouts increases moral

hazard.3 Indeed, strategic complementarities can emerge, because �rms anticipating bailouts un-

derstand that their ultimate survival also depends on rivals' survival strategies: �if we all fail, we

don't fail... so if we all take much risk, we don't actually take much risk�.4 However, there is

a countervailing e�ect at work: systemic bailouts decrease the probability of actual failure and

thereby increase the (charter) value of �rms, which in turn reduces the individual incentive to take

risk.5 The overall e�ect of bailouts is therefore ambiguous at both individual �rm and systemic

level. At �rm level, I show that which e�ect dominates depends on market structure: �rms in

concentrated markets take less risk in the absence of anticipated systemic bailouts, but they be-

come riskier in fragmented markets compared to the case when they could count on bailouts. At

the systemic level, risk taking fuels �rm failures, which (along with entry) drives market structure

dynamics in my model. I calculate measures of systemic risk in steady state and �nd that the

model con�rms conventional wisdom in some parameter regions: bailouts make the market more

1There is a push at the Financial Stability Board to extend the existing framework of 'Systemically Important
Financial Institutions', currently covering banks and insurers, to all types of �nancial institutions (FSB 2015).

2One cannot help but wonder whether the three leading Credit Rating Agencies, which apply the exact same
business model as auditors, emerged unharmed from the recent �nancial crisis because of similar concerns.

3For instance, Brandao-Marques et al (2013) �nd empirical evidence for higher expected government support
increasing banks' risk taking.

4There is much anecdotal evidence that �rms take risk in a strategic space by taking into account rivals' be-
haviour. In banking for instance, the famous comment of Chuck Prince (former CEO of Citigroup) in 2007 is a
much quoted example: �As long as the music is playing, you've got to get up and dance�.

5The so-called charter value e�ect dates back to the seminal work of Keeley (1990), which argued that the
introduction of competition reduced charter values and caused banks to take more risk. See also, e.g. Cordella and
Yeyati (2003) or Gropp et al (2011), which emphasise the role of the charter value e�ect in mitigating the e�ect of
moral hazard in banking.
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systemically risky. However, the model also cautions in two important ways. First, a market with

bailouts can exhibit less systemic risk in some parameter regions (low demand and sluggish entry).

Second, even when the market with bailouts is more systemically risky, the di�erence in expected

systemic risk is often not large, which highlights the important counteracting e�ect of �rm value.6

To fully analyse the implications of systemic bailouts, several modelling features are indispens-

able. First, because risk taking involves a dynamic trade o� between instantaneous pro�ts and

survival in a strategic context, the framework of a game with in�nite horizon is important. Second,

competition, entry, market structure, and risk taking must all be determined endogenously in order

to capture the rich set of mechanisms at play and to develop a deeper understanding of industry

dynamics.7 I employ a reduced-form framework whereby �rms face a trade-o� typical in �nancial

markets: a more conservative (i.e. less risky) business strategy brings lower pro�ts today, but

higher probability of survival tomorrow. In my model, the bene�t of survival depends on future

pro�ts, which are in turn determined by how many other �rms will likely compete with the �rm in

the future. A �rm chooses its survival probability taking into account its current and future rivals'

surviving strategies, the entry process and the resulting industry dynamics. Note that to focus

on the strategic build up of systemic risk, I do not incorporate contagion and/or aggregate risk,

�rms face identical, but independent idiosyncratic risk and choose their exposure to this risk in a

strategic space. I introduce systemic bailouts by assuming that if the system (i.e. all incumbent

�rms) fails, then �rms will be bailed out and can start afresh in the next period.8 I look at how

the presence of bailouts changes strategies and show that bailouts introduce strategic complemen-

6The paper analyses the e�ect of bailout policies on (individual and systemic) risk and leaves aside important
issues, such as the direct costs of systemic bailouts, which are typically (but not always) large.

7There is long standing research into how the triad of competition, market structure and risk are related in
banking. Empirical as well as the theoretical literature have con�icting �ndings (see surveys e.g. Beck 2008 or
VanHoose 2017). Schaeck et al (2009) suggests that both market structure and competition can have independent
e�ects on risk taking. The relationships among these three factors are further complicated by the fact that in banking
competition and market structure may be related in an unusual way: Claessens and Laeven (2004) found a positive
relationship between competition and market structure. It is therefore important to analyse the incentives of risk
taking in a setup, where competition and market structure are two distinct concepts and determined endogenously,
as in my model.

8Bailouts in systemic crises almost always involve sector wide support schemes, so this blanket bailout policy
is arguably close to what we tend to observe in practice. See also e.g. bailout of car manufacturers in the USA
2008-2014, UK bank rescue package 2008, Norwegian, Finnish, Swedish banking crisis in the early 1990s, so-called
secondary banking crisis 1973-75 in the UK. In the case of the Troubled Asset Relief Program (TARP), while only
10% of banking organizations received funds through the Capital Purchase Program, recipients accounted for 70%
of total assets in the market. Governments have also adopted a mild stance towards all Big Four accounting �rms
since 2002, which have successfully avoided litigation as a result.
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tarities in risk taking. That is, when rivals take more risk, the �rm anticipating systemic bailout

also has an incentive to increase its risk exposure. I call this reaction the strategic e�ect. It turns

out that the balance between the strategic and charter value e�ects critically depends on market

structure.

Risk creates a dynamic trade o� between instantaneous pro�t and survival. While I o�er a

model of banking in Section 6, I focus on this dynamic trade o� in a stylised model for much of the

analysis and do not model the banking business in detail for several reasons. First, a bank can take

risk in numerous ways without altering the basic nature of the dynamic trade-o�. For instance,

reducing the stock of liquid assets increases pro�ts in the short run, but will also expose the

bank more in a future liquidity crisis and thereby reduces the probability of survival.9 Likewise,

choosing to lend to riskier borrowers would yield higher interest revenue, but would naturally

increase the probability of bankruptcy tomorrow.10 Similarly, increasing the maturity mismatch

between liabilities and assets would increase interest margin, but also the probability of default.

And so on. Singling out any of these channels would appear ad hoc; modelling them all would

be too complex. Importantly, the channel through which the bank builds up its risk exposure is

immaterial in what follows, what matters is that taking more risk today increases current pro�ts

at the expense of the probability of survival tomorrow. The second reason for not modelling the

banking business in detail is that all �rms face the dynamic trade o� between current pro�ts

and survival probability to some extent. For instance, an automobile manufacturer can save on

R&D expenditure and thereby increase pro�ts today, but this will jeopardise the �rm's survival

in tomorrow's market. Indeed, this was arguably a major factor in the bailout of the car industry

between 2008-2014 in the USA: for many years US car manufacturers had not kept pace with the

development of small, fuel e�cient models, which turned out to be an important problem when

fuel prices started to rise.

Systemic rescue is not limited to banking either. For instance, money market mutual funds,

insurance companies (AIG) or the Big Three automobile manufacturers (Chrysler, Ford11, General

Motors) were also provided government support in the past. Looking further away, state support

9See Section 6 and Appendix B for the details of this model.
10See Appendix D.
11Ford did not face imminent bankruptcy in 2008, but asked to be included in the bailout program anyway.
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does not have to be �nancial assistance, it can take many forms. Consider the audit (or Credit

Rating Agency, CRA) market, where auditors (CRA) face a very similar dynamic trade o�: they

can increase current fees by yielding to client pressure and issuing biased audit opinions (ratings),

while also risking their reputation and ultimately their market survival tomorrow.12 Since its

indictment brought Arthur Andersen down in 2002, it is often speculated that the remaining four

auditors are just �too-few-to-fail� and hence regulators have shied away from �rm actions against

Big Four auditors on a number of occasions (e.g. Business Week 2003, The Economist 2004 and

2005, WSJ 2004, NYT 2005, Forbes 2013, FT 2015 and 2017). Similarly to bailouts, regulatory

forbearance is a fundamental concern, because insulating accounting �rms (CRA) from the risk

of failure exacerbates moral hazard and deteriorates the quality of audit reports (ratings), which

play a fundamental role in �nancial markets.

The current model builds on Tóth (2012) and can be considered a much simpli�ed version

of Ericson and Pakes (1995), who developed a framework for the empirical analysis of dynamic

oligopoly models with heterogeneous �rms. The models in this literature are designed for empirical

work and therefore have to be rich enough to be taken to data. For this reason, �rm heterogeneity,

uncertainty at both �rm and market levels, and entry and exit are crucial ingredients in these

studies. As a result, the computation of the Markov Perfect Equilibria (MPE) is typically highly

complex and thus many of these models allow only for a handful of �rms in practice. To ease

computational burden, there have been much development in this literature (see for a survey

Aguirregabiria et al 2021). I take a fundamentally di�erent approach. Observed and unobserved

heterogeneity are of course essential parts of any empirical framework, but I do not take my model

to data, so I can sacri�ce one of the major hurdles in computation, �rm heterogeneity, and assume

�rms are homogeneous and focus on symmetric equilibrium. Also, in my model the only source of

uncertainty external to the �rm is rivals' entry costs, the distribution of which is �xed over time.

Market conditions (i.e., prices, technology, etc.) are deterministic at the outset, and hence the

stochastic evolution of the market is solely governed by �rms' survival strategies and the entry

that ensuing failures generate. These assumptions vastly simplify computations and I can analyse

12Both auditors and credit rating agencies are paid by the companies which they audit and rate. As a result of
this con�ict of interest, auditors and credit rating agencies have an incentive to provide dishonest audit reports and
in�ated ratings.
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the e�ect of market structure with arbitrary number of �rms. Importantly, these assumptions are

also crucial to deliver meaningful analytical results.13

Previous articles have analysed the e�ect of systemic risk and bailouts in banking: see e.g.

Suarez (1994), Cordella and Yeyati (2003), Acharya and Yorulmazer (2007, 2008), Diamond and

Rajan (2012) and Farhi and Tirole (2012), Allen et al (2018), Dell'Aricciaa and Ratnovski (2019).

However, none of these articles analyse an oligopolistic setting (imperfect competition), where

the e�ect of market structure can be studied. My contribution to this literature is three-fold:

�rst, I analyse the e�ect of bailouts on risk taking and systemic risk in the setting of imperfect

competition and show that market structure is key to understand the e�ect of bailouts; second, I

develop a general framework which suits a wide range of market settings, including, but not limited

to, banking; three, as a microfoundation, I develop a simple model of liquidity risk in Section 6.14

A growing number of studies build on the IO literature spearheaded by Ericson and Pakes

(1995) and analyses �nancial intermediation in a stochastic dynamic framework, see e.g. Egan

et al (2017), Wang et al (2020), Corbae and D'Erasmo (2021), Clark et al (2021). Corbae and

D'Erasmo (2013), which is based on Allen and Gale (2004), study in a stochastic dynamic game,

inter alia, the e�ect of bailout on risk taking. Their study is di�erent from the present paper

in two important respects. First, they exogenously impose some features on market structure by

de�ning national and regional banks along with a (non-strategic) competitive fringe, a framework

developed in Ifrach and Weintraub (2017) in order to alleviate computational burden. Second, they

analyse the e�ect of �too-big-to-fail� bailout policy: national banks are bailed out if they produce

negative pro�ts. They �nd that while national banks become riskier, smaller banks decrease their

risk exposure leading to a net e�ect of reduction in risk. The concept of systemic risk that I am

investigating is very di�erent. In Corbae and D'Erasmo (2013) the strategic aspect of systemic

risk build-up due to bailouts is missing (the bailout of a national bank does not depend on the

failure of other banks), whereas this strategic e�ect is the focus in my study.

13The dynamic stochastic games which are designed for empirical analysis of industry dynamics are usually too
complex for analytical purposes: they deliver �very little in the way of analytical results of applied interest; i.e. just
about anything can happen.� (Doraszelski and Pakes 2007)

14The model is also formally equivalent to, and thus can be thought of as, a dynamic extension of the static
banking model of Allen and Gale (2004), as demonstrated in Appendix D. The results of Allen and Gale (2004) are
overturned in this dynamic setting, which highlights the crucial role of (truly) dynamic models in understanding
the interplay between risk and competition.
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The article is organised as follows. In Section 2, I introduce the environment, in Section 3

I analytically derive some of the fundamental properties of the models without entry. Entry is

introduced in Section 4, and I discuss computation of the equilibria in detail, derive the steady

state distributions and calculate measures of systemic risk numerically for the baseline model in

Section 5. In Section 6, I present a microfoundation based on a model of liquidity risk and also

demonstrate the robustness of the results discussed in Section 5. Section 7 concludes.

2 Environment

I analyse dynamic strategic interaction among �rms. In particular, the �rms' current decisions

a�ect their own as well as their rivals' future payo�s and they take into account the implications

of their decisions on their own and their rivals' future behaviour, which naturally a�ect future

payo�s. I follow the standard structure of the Ericson and Pakes (1995) framework and assume

that competition among �rms has two di�erent dimensions. In every period, �rms engage in an

(for now unmodelled) static �market game�, from which they get a symmetric equilibrium payo�

M(n) ≥ 0 (static dimension), where n ∈ {0, 1, 2, ...} is the number of �rms present in the market.

Crucially, I assume the decisions taken in this market game have no dynamic implications and as a

result its equilibrium payo� can be calculated independently and imported into the computation of

dynamic policies. Then �rms make forward looking investment decisions x ∈ [0,∞), and thereby

choose their probability of survival f (x) ∈ [0, 1) (dynamic dimension), where f ( · ) is continuously

di�erentiable, strictly increasing and concave.

Time is discrete and in�nite, �rms discount the future with a common factor β ∈ (0, 1). In the

full model, each period will consist of two phases, a production and an entry phase, but for now I

discuss the production phase below.

Production Phase

At the beginning of each production phase, �rms engage in an unmodelled price or quantity

competition and realise instantaneous pro�tM(n) in a symmetric equilibrium of this market game.

Similarly to previous literature on industry dynamics (for a survey, see Doraszelski and Pakes 2007
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or Aguirregabiria et al 2021), I assume that the distribution of future states, conditional on the

current state and investments, is independent of the prices (or quantities) that �rms set in the

market game. The market game thus can be modelled in a static framework and the reduced form

pro�t function M(n) can simply be fed into the dynamic optimization problem as a primitive of

the stochastic dynamic game. The function M(n) essentially captures exogenous factors such as

demand conditions, product substitutability, production costs, regulation, etc.

I will assume that M(n) ≤ M(n − 1) for n > 2, M(2) < M(1), 0 ≤ M ( · ) < ∞, and

lim
n→∞

M(n) = 0, which conform with standard models of homogeneous as well as di�erentiated

product (Bertrand or Cournot) competition and hence this speci�cation essentially captures all

cases typically considered in the literature. As discussed in the introduction, I will use this reduced

form pro�t function for much of the analysis and leave the market game unmodelled in order to

allow the setup to encompass many potential market settings. The focus of my analysis will be

on the dynamic trade o� between pro�ts and survival. For a possible microfoundation based on a

model of banking, see Section 6 below.

In each period, each �rm i = 1, ..., n chooses its investment xi ∈ [0,∞) and thereby its proba-

bility of survival f (xi) ∈ [0, 1) and thus realises its per-period net pro�t π(xi;n) = z (M(n), xi). I

make the following assumptions on the instantaneous pro�t function:

Assumption 1.

a) π(x;n) ≤ π(x;n − 1) for n > 2, π(x; 2) < π(x; 1) for ∀x ∈ [0,∞), −∞ < π(·, ·) < ∞,

0 ≤ π(0;n) <∞ for ∀n, and lim
n→∞

π(0;n) = 0.

b) ∂π(x;n)/∂x, ∂π(x;n)/∂x∂x < 0 for ∀n and ∀x ∈ [0,∞). Also, ∂π(0;n)/∂x = 0.

c) f : [0,∞)→ [0, 1), f (0) = 0, f ′ (x) > 0, f ′′ (x) ≤ 0 for ∀x ∈ [0,∞).

The function π(x;n) decreases with the number of �rms n and it is also decreasing in x:

higher probability of survival tomorrow comes at the expense of lower pro�ts today.15 This simple

formulation captures the basic trade o� that most �rms face in practice: the �rm can increase its

probability of survival at the cost of sacri�cing current pro�ts. The reduced form pro�t function

15The assumptions on the second derivatives of π ( · ;n) and f ( · ) are su�cient (but not necessary) conditions for
the objective functions to be concave.
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can be microfounded in several ways. The speci�cation π(x;n) = M(n) − g(x), where g(x) is an

increasing convex function representing the (�xed) cost of investment, is the workhorse in the IO

literature (see e.g. Aguirregabiria et al 2021).16 In banking, it is also possible to think of g(x)

as monitoring cost, where more monitoring ensures a lower probability of default, similarly to

e.g. Dell'Ariccia et al (2014), Martinez-Miera and Repullo (2017), or Dell'Ariccia and Ratnovski

(2019).17

The �xed cost nature, i.e. g(x) enters additively into the pro�t function, is a common modelling

feature both in the literature spearheaded by Ericson and Pakes (1995) and also in studies on

unobserved quality. This assumption has technical advantages and also serves an important general

purpose. In any static game, �rms would never choose to produce negative pro�ts. While this

is perfectly reasonable in a static setting, �rms in a dynamic environment may �nd it optimal

to operate at a loss today in the hope of pro�ts tomorrow. In order to allow for this possibility,

the dynamic leg of the optimisation problem enters additively. However, one may not �nd the

�xed cost nature realistic in general and in models of banking in particular. Therefore, I o�er an

alternative microfoundation of the market game in Section 6 based on a model of banking, where

π(x;n) =M(n)q(1− x) for x ∈ [0, 1]. As we will see shortly, the �rm behaviour generated by this

framework will be very di�erent, so Section 6 will also serve as a useful robustness check.

If the production phase started with n �rms, then the probability that at the end of the produc-

tion phase �rm i faces a market structure consisting of n− k �rms in total is f (xi) Pr(k|f (x−i)),

where k is the number of rivals who have just failed and Pr(k|f (x−i)) is the probability mass func-

tion of the convolution of n − 1 Bernoulli distributions with success probabilities f (x−i), where

f (x−i) = [f (xj)]j 6=i.

The strategies are assumed to be Markov and I focus on symmetric Markov Perfect Equilibrium

16The easiest way to think about this pro�t function is to consider a market, where survival requires constant
innovation. For instance, suppose in each period the old product is displaced by the new product. A �rm invests in
R&D at the cost of g (x) and successfully innovates tomorrow's new product (and hence survives) with probability

f (x). Firms can then play a e.g. homogeneous product Cournot (M (n) = (α/ (n+ 1))
2
) or a horizontally di�er-

entiated Salop game (M (n) = α/n2). Tóth (2012) also provides a microfoundation for this speci�cation based on
the unobserved quality literature.

17In reality, monitoring costs have both �xed and variable components. The marginal cost of monitoring is
implicitly assumed to be constant and captured in M(n), when π(x;n) = M(n) − g(x). In other studies, the cost
of monitoring is usually related to the number of projects that a bank �nances; see Section 6 for such an approach.
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(MPE) in pure strategies. That is, strategies depend only on payo� relevant information. The

payo� relevant information is condensed into a state variable, which is the number of �rms n.

First, I consider the model without entry, so each period only consists of the production phase,

and analytically derive some important properties of the dynamic stochastic game. Later on, I

introduce entry, so that each period will consist of a production and an entry phase, and analyse

the properties of the steady state numerically.

3 The models without entry

In what follows, I introduce the concept of bailout into the model, discuss the dynamic programs

with and without bailout in the absence of entry and derive analytical results.

First, note that even a single �rm (monopoly) is able to serve the market in this model, the

market stops functioning only when all �rms fail. Consequently, systemic failure is de�ned as the

event when all incumbent �rms fail (i.e. there is no �rm at the end of the production phase).18

Second, the fact that the market is fully functional as a monopoly means that the government

need not take action unless systemic failure occurs. Third, the government bails out all �rms in

a systemic failure. This bailout policy is the most consistent with modelling assumptions (e.g.

symmetry) and yields a tractable analytical framework. Arguably, this blanket bailout policy is

also the closest to what we observe in practice.19 Fourth, bailout takes a simple form, the market

is restored to its previous state.

In particular, if there are n �rms in the market who all invest y (n) ∈ [0,∞) and thus survive

with probability f (y (n)) ∈ [0, 1) in a symmetric equilibrium, then a systemic failure occurs with

18In principle, one could de�ne systemic failure as the state when there is no �rm in the market at the end of
the entry, rather than the production phase. In other words, a systemic crisis would happen when each incumbent
�rm has failed and no one has entered the market. This de�nition, however, would arguably be in con�ict with the
concept of a bailout: de novo entry is typically slow in practice and bailouts happen, because the market cannot be
without �rm even for a short time period.

19See e.g. bailout of car manufacturers in the USA 2008-2014, UK bank rescue package 2008, Norwegian, Finnish,
Swedish banking crisis in the early 1990s, so-called secondary banking crisis 1973-75 in the UK, and governments
have also adopted a mild stance towards all Big Four accounting �rms since 2002, which have successfully avoided
litigation as a result (see references in the Introduction). In the case of the Troubled Asset Relief Program (TARP),
while only 10% of banking organizations received funds through the Capital Purchase Program, recipients accounted
for 70% of total assets in the market. However, di�erent bailout policies can be introduced in principle as I discuss
in the next footnote below.
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probability (1− f (y (n)))n, in which case bailouts ensue and the production phase ends as if no

�rm has failed, i.e. with n �rms again.

The dynamic programs of �rm i without and with systemic bailout are as follows

v(n;x−i) = max
0≤xi≤1

{
π(xi;n) + βf (xi)

n−1∑
k=0

V (n− k) Pr(k|f (x−i))

}

ṽ(n; y−i) = max
0≤yi≤1

{
π(yi;n) + βf (yi)

n−1∑
k=0

Ṽ (n− k) Pr(k|f (y−i))

+ βṼ (n) (1− f (yi)) Pr(n− 1|f (y−i))

}

In a symmetric equilibrium, we have that

V (n) = π(x (n) ;n) + β
n−1∑
k=0

V (n− k)
(
n− 1

k

)
(1− f (x(n)))k(f (x(n)))n−k

Ṽ (n) = π(y (n) ;n) + β
n−1∑
k=0

Ṽ (n− k)
(
n− 1

k

)
(1− f (y(n)))k(f (y(n)))n−k

+βṼ (n) (1− f (y(n)))n

where x(n), y(n) are the equilibrium investments in the games without and with bailouts,

respectively.20 First, I establish some basic properties of the value functions. All proofs are

relegated to the Appendix.

Proposition 1. The value functions V (n), Ṽ (n) are strictly positive and decreasing.

Proof. See Appendix.

The value functions are decreasing, because the pro�t from the market gameM (n) is decreasing

with the number of �rms, and also because the prospect of reaching a more concentrated, and thus

20In general, if ω ∈ [0, 1] portion of the n failing �rms get randomly bailed out in a systemic failure, then

the last expression in the second program should be modi�ed as ω̄βṼ (nω) (1− f (yi)) Pr(n − 1|f (y−i)), where
nω = {u|u− 1 < ωn ≤ u}, u ∈ Z+ and ω̄ = nω/n.
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lucrative, state (market) is more remote. This, however, does not necessarily mean that �rms will

invest less in survival in more fragmented markets, as we will see in Section 6.

A crucial di�erence between the models with and without bailout is the strategic e�ect that

emerges in the presence of bailout. This e�ect can be easily illustrated in the simplest case, a

duopoly without entry:

v(2;xj) = max
0≤xi≤1

{π(xi;n) + βf (xi) (f (xj)V (2) + (1− f (xj))V (1))}

ṽ(2; yj) = max
0≤yi≤1

{
π(yi;n) + βf (yi)

(
f (yj) Ṽ (2) + (1− f (yj)) Ṽ (1)

)
+ β (1− f (yi)) (1− f (yj)) Ṽ (2)

}

Di�erentiating the �rst order condition and using the implicit function theorem yields

∂xi
∂xj

= − βf ′ (xi) f
′ (xj) (V (2)− V (1))

∂π(x;n)/∂x∂x+ βf ′′ (xi) (f (xj)V (2) + (1− f (xj))V (1))
< 0

This is always negative, because the denominator is negative (Assumption 1) and so is the

numerator as the value function is decreasing (Proposition 1). That is, investments in survival are

strategic substitutes in the model without bailout, i.e. a �rm has an incentive to take less risk if

the rival takes more. In the model with bailout, however, we have that

∂yi
∂yj

= −
βf ′ (yi) f

′ (yj)
(
2Ṽ (2)− Ṽ (1)

)
∂π(y;n)/∂y∂y + βf ′′ (yi)

(
f (yj) Ṽ (2) + (1− f (yj))

(
Ṽ (1)− Ṽ (2)

))
Here the denominator is negative again (Assumption 1 and Proposition 1), but 2Ṽ (2) − Ṽ (1)

in the numerator may not be negative, and indeed in most cases it is not (see below), even when

the value function is decreasing. When ∂yi/∂yj is positive, investments are strategic complements:

if a �rm takes more risk, then its rival also has an incentive to decrease its probability of survival.

This is because the �rm counting on bailout recognises that its ultimate survival depends on rival's

survival strategy too: �if we both fail, we don't fail... so if we both take much risk, we don't actually

take much risk�. This has important implications for risk taking behaviour as well as systemic risk.
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Next, I prove the presence of a �rm value e�ect, that is, systemic bailouts increase �rm values

for all market structures.

Proposition 2. There is a (charter) value e�ect, i.e. Ṽ (n) > V (n) for ∀n.

Proof. See Appendix.

The result is intuitive: the government e�ectively reduces the (expected) cost of failure by

bailing out �rms and thereby increases the continuation value, which naturally increases �rm

value. Firms with higher value care more about the future and have a natural incentive to invest

more in survival. This is the important countervailing force that not only alleviates, but for certain

market structures overwhelms the strategic e�ect discussed above.

In sum, the strategic e�ect induces �rms to invest less, the charter value e�ect induces them

to invest more, and the sum of these e�ects determines whether �rms take more or less risk in the

presence of systemic bailouts. The next proposition establishes that whether the strategic or �rm

value e�ect is stronger depends on market structure, and thus market structure plays a pivotal

role in determining individual as well as systemic risk.

Proposition 3. For monopoly, x (1) > y (1). However, there exists an n∗ such that �rms in the

market without bailout take more risk in equilibrium, i.e. x (n) < y (n) for all n > n∗.

Proof. See Appendix.

Proposition 3 suggests that fragmented markets behave di�erently to concentrated markets.

Firms that do not expect systemic bailouts take less risk when the market is concentrated (x (n) >

y (n)), while they are riskier when there are many �rms in the market (x (n) < y (n)). In other

words, when there are few �rms in the market the strategic e�ect dominates the �rm value e�ect,

while in more fragmented markets the reverse is true.

This is not a trivial result. On the one hand, when the market is concentrated the strategic e�ect

is particularly strong, because the probability of a systemic failure ((1− f (y (n)))n), the e�ect of

a �rm's risk taking on the probability of a systemic failure, and the value of the bailed out �rm

are all relatively large. On the other hand, the value e�ect is also strong in concentrated markets:
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the di�erence between �rm values across the two market settings is large, because bailouts have

a signi�cant impact on the actual survival probabilities when n is small (f (x (n)) vs. f (y (n)) +

(1− f (y(n)))n). Recall that the only di�erence between the two models is what happens in

systemic failure (state zero, i.e. all �rms fail), and when the expected value of this state is non-

negligible, it will increase both the strategic and value e�ects. Therefore, both the strategic and

value e�ects are relatively large in concentrated markets, while they are both smaller in fragmented

markets. Essentially, Proposition 3 implies that while both e�ects decrease with n, the strategic

e�ect diminishes faster than the charter value e�ect and thus the charter value e�ect becomes

dominant for su�ciently fragmented markets. Consequently, �rms take less risk when they can

count on government bailout compared to the case when they cannot, if n is su�ciently large.

This result is surprising, primarily because conventional wisdom would not suggest that �rm value

can play such a pivotal role when it's so small.

Another way to understand the result in Proposition 3 is to note that a �rm can survive in the

market with bailout either through the �market process� at the private expense of costly investment,

or through the �bailout process� in systemic failure. Firms in all states compare the cost and bene�t

of surviving through the market process (cost of investment y and the probability of ending up in a

more concentrated market, respectively) with the cost and bene�t of surviving through the bailout

process (zero and the probability of ending up in the same market, respectively), conditional on

rivals' strategies. The probability of systemic failure is higher in more concentrated markets by the

virtue of fewer �rms for any given level of investment. In addition, �rm value is already fairly high

in concentrated markets, so the status quo, and thus the �bailout process�, is an attractive option.

Furthermore, the less rivals invest in survival, the larger the probability of systemic failure, which

gives a �rm an additional incentive to increasingly bet on survival through the bailout process and

reduce its investment in more concentrated markets, compared to the market without bailout.

It is easy to see that while the monopoly in the market without bailout has a natural incentive

to invest in survival, a monopoly in the market with bailout does not have to invest (y (1) = 0),

because its failure is a systemic event by de�nition and thus it will survive with certainty regardless.

Consequently, Ṽ (1) > V (1). One may argue that this is the driving force behind much of the
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results. This is not true, all results go through by assuming and exogenously imposing Ṽ (1) = V (1)

(suppose e.g. the monopoly market is always nationalised).21 The driving force behind the model is

emerging strategic complementarities in the presence of bailouts. Furthermore, note that monopoly

per se does not play a special role in the model: if the government imposed a �oor on the minimum

number of �rms to prevent the monopoly state altogether and ensure that there are always at least,

say, two �rms in the market, a duopoly in this case would behave just like a monopoly: they would

not invest in survival (y (2) = 0), because any failure would trigger the bailout process.22

In sum, markets with and without bailouts behave di�erently, and market structure has a signif-

icant impact on individual risk taking across the two market settings. But how does this translate

into systemic risk, how does (steady state) market structure a�ect the risk of systemic failure? In

order to answer these questions, I now introduce entry, derive the steady state distributions, and

calculate measures of systemic risks numerically.

4 The models with entry

In the previous section a period only consisted of a production phase. I now introduce entry, so

each period will consist of a production and an entry phase.

Entry Phase

First, I describe in detail the entry phase for the model without bailout, the case with bailout is

analogous. In each period, production is followed by an entry phase, where N e ∈ Z+ potential

entrants may enter sequentially.23 Let the �xed cost of entry be F , which are identically and

independently distributed across potential entrants with CDF ρ ( · ) and support [0,∞]. Each

21This can be easily illustrated for Proposition 2 when n = 2 and Ṽ (1) = V (1). In equilibrium, V (2) =

π(x;n) + β
(
f (x)

2
V (2) + f (x) (1− f (x))V (1)

)
and Ṽ (2) ≥ π(x;n) + β

(
f (x)

2
Ṽ (2) + f (x) (1− f (x))V (1)

)
+

β (1− f (x))
2
Ṽ (2), because x maximises the programme without bailout. Subtracting the �rst from the second

equation, we get
(

1− βf (x)
2
)(

Ṽ (2)− V (2)
)
≥ β (1− f (x))

2
Ṽ (2) > 0.

22A �oor on the minimum number of �rms does not change the qualitative results, the duopoly would in e�ect
take over the role of the monopoly state in this case. The duopoly would now be the most lucrative state that �rms
can reach (the �prize�) and �rm values would decrease as a result. Duopoly would also attract less entry and this
state would therefore linger on longer (i.e. would be less transitory) than monopoly.

23Time �stops� within each period; there is discounting only across periods.
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entrant knows her own �xed cost of entry before entering. An entrant's �xed cost is private

information, but all entrants know the distribution of �xed costs. Thus, entrants are heterogeneous

and despite the sequential structure, they are unable to foresee the entry process with certainty

within a period. In particular, n �rms in the market (incumbents surviving in the production phase

and entrants who have already entered in this period) will expect the lth entrant to enter with

(endogenous) probability ρl,n, where l = 0, .., N e. Note that heterogeneity before entry induces a

non-degenerate distribution of the number of entrants in each state.24 Let the equilibrium value

function at the end of the lth entry round be Wl(n). (That is, n includes the lth entrant if it has

entered the market.) Then,

Wl(n) = Wl+1(n+ 1)ρl+1,n +Wl+1(n)(1− ρl+1,n) (1)

The probabilities ρl,n are determined endogenously: given that the lth entrant enters if Wl(n+

1)−F > 0, the probability of entry is ρl,n = ρ(Wl(n+1)). The sequential nature of entry facilitates

a simple recursive formulation of the entry process. In particular, for the �rst entrant the value

of being in the market is just the expected equilibrium �rm value over the distribution of the

second entrant's entry decision, which in turn depends on the third entrant's decision and so on

until the last entry round. As there is no further entry after the last entry round in a period,

WNe(n) = V (n), where V (n) is the (symmetric) equilibrium value function of the �rm in the

production phase without bailout.

As before, the strategies are assumed to be Markov and I focus on symmetric Markov Perfect

Equilibrium (MPE) in pure strategies. That is, strategies depend only on payo� relevant infor-

mation and the state variable is the number of �rms n. The summary of timing within a period

is as follows. Production phase: 1. Firms choose prices/quantities and M(n) is determined in a

symmetric equilibrium; 2. �rms choose x;25 3. failures and exits occur. Entry phase: 4. N e �rms

enter sequentially, the lth entrant enters with probability ρl,n when there are n �rms already in

the market (surviving incumbents and previous entrants).

24An alternative way to obtain a non-degenerate distribution of entrants in each state would be simultaneous
entry, where entrants use mixed strategies.

25Note that �rms can also choose prices (or quantities) and x simultaneously.
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The dynamic program of �rm i in the market without bailout is as follows

v(n;x−i) = max
0≤xi≤1

{
π(xi;n) + βf (xi)

n−1∑
k=0

W0(n− k) Pr(k|f (x−i))

}
(2)

and the resulting value function in a symmetric equilibrium is

V (n) = π(x (n) ;n) + β

n−1∑
k=0

W0(n− k)
(
n− 1

k

)
(1− f (x(n)))kf(x(n))n−k (3)

where W0(n − k) is the value of a (surviving) �rm at the end of the production phase, just

before the �rst entrant makes its entry decision, and f (x(n)) are the (symmetric) equilibrium

survival probabilities.

The steady state distribution can be derived observing that at each market structure there

are failures (�deaths�) and �rm entries (�births�), thus the Markov chain produces a birth-death

process. The derivation of the steady state distribution can thus follow the standard procedure

(see Grimmett and Stirzaker 2001, ch 6.11), see Appendix C for the details.

I make a few comments on existence. In both models, the second order conditions are negative,

due to ∂π( · ;n)/∂ ( · ) ∂ ( · ) < 0 and f ′′ ( · ) ≤ 0 (Assumption 1), so the best replies are unique.

Moreover, in the model without bailout, the reaction functions are continuous and downward

sloping and thus a symmetric equilibrium in pure strategies exists. However, existence in pure

strategies in the model with bailout is not ensured, because while the reaction functions are

still continuous, in the presence of strategic complementarities nothing guarantees in general that

the reaction functions intersect. In the computations I did not come across instances when the

equilibrium did not exist in pure strategies.

For the purpose of computations, two sets of numerical results are presented. First, I present

results with the speci�cation π( · ;n) = M(n) − g ( · ), which is a standard framework in the IO

literature. Second, I will also discuss results when π( · ;n) = M(n)q(1 − ( · )) after providing a

microfoundation for this speci�cation, a simple banking model.
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5 Baseline model: π( · ;n) =M(n)− g ( · )

In what follows, I describe the details of the computation for the baseline model π( · ;n) =

M(n) − g ( · ) and also discuss the numerical results. The algorithm for the alternative speci�-

cation π( · ;n) =M(n)q(1− ( · )) in Section 6 (banking model) is analogous.

5.1 Computation

The computed Markov Perfect Equilibrium in pure strategies is such that given optimal policies the

value functions satisfy the Bellman equations (3) and (7), and given the value functions investment

policies satisfy the �rst order conditions, up to some su�ciently small error.26 This implies that

�rms choose optimal policies based on their beliefs on future industry structure, and these beliefs

are consistent with rivals' behaviours. For the numerical analysis I use the following cost and

survival probability functions:

g(h) =
h2

1− h
, g′(h) =

1

(1− h)2
− 1, f(h) = h, 0 ≤ h < 1

These functions conform to Assumption 1 and lead to simple analytical �rst order conditions to

the programmes (2) and (6), which (after rearranging and imposing symmetry) yield, respectively:

x(n) = 1− 1√
1 + β

n−1∑
k=0

W0(n− k)
(
n−1
k

)
(1− x(n))k(x(n))n−1−k

(4)

y(n) = 1− 1√
1 + β

n−1∑
k=0

W̃0(n− k)
(
n−1
k

)
(1− y(n))k(y(n))n−1−k − βW̃0(n)(1− y(n))n−1

(5)

The equilibrium pro�t function from the market game and the entry probability function that

I use for the calculations are as follows, respectively,

26This error is typically smaller than 10−10 after 30 iterations and after about 100 iterations the error reaches
machine precision (10−16).
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M(n) = α2/ (n+ 1)2 , 0 < α <∞

ρ (a) = 1− e−γa, 0 < γ <∞

For the speci�cation of M(n), I choose the equilibrium pro�t from a standard Cournot game

to illustrate the performance of the dynamic model, where α can be interpreted as a demand

parameter or market size. The calculations of course could be executed with the same qualitative

results using other static games (e.g. in Salop's circular modelM(n) = α/n2, where α is the travel

cost and a measure of the level of product di�erentiation or market power). As mentioned before,

M(n) captures exogenous factors in general and hence α can be thought of in numerous ways.27 In

what follows, I refer to α as a demand parameter (high α indicates strong demand). The parameter

γ shifts the distribution of the �xed cost of entry. I set the discount factor β = 0.97. As customary

in the literature (see e.g. Aguirregabiria et al 2021), I set the maximum number of �rms that can

be in the market at any time equal to 20 and allow for 5 potential entrants in each period. The

qualitative results are not sensitive to the pre-set maximum number of �rms, the only reason for

displaying results for (maximum) 20 �rms is visual presentation.28 Furthermore, the main results

are remarkably robust to the speci�cation of instantaneous pro�t and functional forms as we will

see in the next section.

Computations are done in Matlab R2018b. The algorithm that solves the model iterates over

the value and policy functions until convergence.29 In the computations, I set all initial values for

the value and policy functions equal to zero, results are completely invariant to starting values,

so the equilibrium can be regarded as �numerically unique�. An iteration consists of the following

steps for e.g. the case without bailout (the other case is analogous):

1. Using the values V (n) for all n from the previous iteration, calculate Wl(n) backwards for

all l, n, starting at WN(n) = V (n), and then Wl(n) = Wl+1(n+1)ρl+1,n+Wl+1(n)(1−ρl+1,n)

for all l < N , where ρl,n = ρ(Wl(n+ 1)). At the end, one has W0(n) for all n.

27For an alternative speci�cation and a microfoundation for M (n), see Section 6.
28The maximum number of �rms is immaterial, because in the parameter range investigated states close to 20 are

not reached in the steady state (see Figures 1 and 2). If one wishes to investigate other parameter ranges (and/or
functional forms) the maximum number of �rms can be adjusted so that it is not �binding� (i.e. it is not reached
in steady state).

29It is possible in principle to solve for the equilibrium by solving the system of non-linear equations, which de�ne
the equilibrium. However, this method struggles when the discount factor is high and the number of �rms is large
(n > 10).
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2. Using the values of W0(n) from step 1 above and the values of x(n) from the previous

iteration, update the policy function using the �rst order condition (4) for all n.

3. Using W0(n) and x(n) from step 1 and 2, update the value function V (n) for all n, using

equation (3).

The simple structure of the stochastic dynamic game ensures that the algorithm calculates the

equilibrium in a matter of minutes, even with hundreds of �rms.

5.2 Numerical results

I focus on two parameters, α and γ, to assess the e�ect of competition on the e�ect of individual

risk taking and systemic risk. I will interpret α as a demand parameter, higher values indicating

stronger demand and leading to higher pro�tsM(n) at all market structures. The other parameter

γ measures the intensity of entry: higher γ increases the probability of entry at all market structures

and the competitive threat that incumbent �rms face (�outside competition�).

From the graphs in Figures 1 and 2, several general observations can be made, which are

robust across all parameters and parameter ranges. First, there is a clear charter value e�ect:

�rms in markets with bailout always have higher values than the �rms which operate in a market

without bailout. This is very intuitive: by reducing the (expected) cost of failure, the government

increases the continuation value of the �rm, which naturally increases �rm value. Also, observe

that �rm values decrease with the number of �rms, as expected (see the �rst panels of Figures 1 and

2). Second, the di�erences between the individual risks (measured by x(n), y(n), the equilibrium

investments in survival) that �rms take in the two market settings crucially depend on market

structure. In particular, in more concentrated markets �rms with bailout take more risk; but as

the number of �rms grow, they tend to take less risk than the �rms in the market without bailout.

This counterintuitive result is the product of the interplay of the charter value and the strategic

e�ects. Strategic e�ect is the e�ect due to a �rm having an incentive to choose lower probability

of survival when rivals do the same. Charter value e�ect stems from the fact that a �rm has an

incentive to choose higher probability of survival when the (continuation) value of the �rm is higher.

In Figures 1 and 2, when there are few �rms in the market the strategic e�ect dominates, while in
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more fragmented markets the reverse is true. A monopoly counting on bailout always invests zero

in survival, because its failure is always a systemic event and thus it will survive with certainty,

regardless of whether it has failed (and got bailed out) or not.30 But the probability of survival

is less than certain for a duopoly, because now the �rm can de facto fail if there is no systemic

failure (i.e. its rival survives). Therefore, a duopolist has some incentive to invest in survival, but

typically invests less and takes more risk than a duopolist would in the market without bailout.

This is the strategic e�ect. However, the event that everyone fails and gets bailed out becomes ever

less likely in more fragmented markets. As a result, the strategic e�ect diminishes with the number

of �rms. Because the strategic e�ect diminishes faster than the charter value e�ect (�rm values

decrease with n), the charter value e�ect becomes dominant for su�ciently fragmented markets

and consequently �rms take less risk when they can count on government bailout compared to the

case when they cannot. This result is surprising, primarily because conventional wisdom would

not suggest that �rm value can play such a pivotal role when it's so small. Lastly, notice that the

market with bailout is always less concentrated in steady state (see the third panels of Figures 1

and 2). This is the result of entry (higher �rm values attract more entry) and of course the fact

that systemic failures and the resulting bailouts work against market concentration by setting the

market back to its original state.

Figure 1 analyses the e�ect of demand conditions. As α and thus the potential pro�t from

the market game M(n) increases, �rm values naturally increase (�rst column of graphs). This

has the unsurprising e�ect of �rms taking less risk in general (i.e. they increase investments in

survival, second columns of graphs). Consequently, the strategic e�ect plays a much more muted

role, because the event of a systemic failure and the resulting government bailout becomes more

remote for any given n > 1. This in turn means that the di�erence in �rm values across the two

market settings narrows as α increases (�rst column of graphs). As a result, in the region when the

charter value starts to dominate the strategic e�ect (i.e. in fragmented markets), the di�erence in

charter values are so tiny that the di�erence between the investment pro�les across the two market

30It is possible to take the monopoly out of the game (by saying e.g. if there is only one �rm left, then the

government nationalises the �rm), set Ṽ (1) = V (1) and feed this exogenous value into the optimisation problems.
The results are qualitatively the same, as the problem of strategic complementarities does not disappear in the
market with bailout.
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Figure 1: The e�ect of demand (α = 1, 5, 10)
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settings vanishes (although it is still true that x(n) < y(n) for large n). In sum, the two types

of markets still exhibit important di�erences in concentrated markets, but for more fragmented

market structures, the two market types look very much alike for large α. Especially so, when we

consider the steady state distributions in more detail (third column of graphs). For low values of α,

strategic e�ects play an important role, hence the apparent di�erences in �rm values, investment

pro�les, and the resulting steady state distributions. However, as α increases, �rm values and

investments increase, which in turn result in both higher entry and lower failure rates, leading to

relatively fragmented markets in both settings. As discussed, when the markets are fragmented,

the di�erences across the two market types are very small, hence the almost identical steady state

distributions. In other words, for high α the two types of markets look strikingly alike and bailout

policy does not seem to make (much) di�erence.

Figure 2 examines the e�ect of outside competition. For low γ, entry is costly in general and

thus happens infrequently. This increases �rm values in general, because �rms can hold on to

their positions longer in expectation (e.g. it's more probable that a surviving monopolist can start

the next period as a monopolist again). Because �rm values are high, investments are relatively

high, which means that systemic failure is less likely, and hence the strategic e�ect is muted and

the charter value e�ect dominates even when markets are more concentrated. However, as entry

intensi�es (i.e. γ increases), the charter value e�ect starts to dominate only in more fragmented

markets while the di�erence in the investment pro�les between the two market types narrows too

due to the smaller di�erence in �rm values at these states.

I analyse systemic risk in Figures 3 and 4. In particular, for di�erent parameter values I

calculate the weighted average of systemic risk, where the weights are the steady state probabilities.

From the analyses above, the e�ect on the average systemic risk (i.e. the probability that all �rms

fail) is unclear. On the one hand, �rms in the market with bailout invest less and fail with higher

probability when the market is concentrated. On the other hand, they invest more and fail less

often in more fragmented markets, although the di�erence is typically fairly small. Moreover,

the market with bailout is less concentrated in steady state, suggesting the investment pro�les in

fragmented markets would weigh more in the average of systemic risks across states. In Figure 3,
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Figure 2: The e�ect of entry (γ = 0.1, 1, 5)
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Notes: Systemic failure is de�ned as the probability of entering into the state with zero �rms at the end of the
production phase.

Figure 3: Probability of systemic failure
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I de�ne systemic risk for the case without bailout as the probability of systemic failure, i.e. the

probability that the market enters (in the case with bailout: would enter) into state zero at the

end of a production phase and it is calculated as P1(1 − x(1)) + P2(1 − x(2))2 + ..., where Pj is

the steady state probability of state j and x (j) is the equilibrium investment in state j ≥ 1. The

di�erence between the two types of markets in Figure 3 is large when entry is very sluggish (small

γ) and it disappears as I allow for a more intense entry process (increasing γ). However, this is

deceptive. Consider the �rst panel in Figure 3, where the probability of systemic failure in the

market without bailout is so low (near zero). Here the market (almost) never enters into state

zero, simply because the market is (almost) always in state zero (see e.g. the third panel in the

top row in Figure 2).

For this reason, I also calculated the probability of systemic crisis in Figure 4, i.e. for the case

without bailout the probability that the market is (in the case with bailout: would be) in state zero

at the end of a production phase and it is calculated as P0 · 1+P1(1−x(1))+P2(1−x(2))2+ ....31

This shows a very di�erent picture (�rst graph in Figure 4): surprisingly, systemic crisis is more

probable without bailout in adverse demand conditions (low α) and when the market faces little

threat of entry (low γ). This is primarily because, under these market conditions, �rms with

bailout invest substantially more in survival even in concentrated markets as discussed above.

However, in good demand conditions (high α) conventional wisdom is restored and the market

without bailout is substantially less (systematically) risky. This is because high α ensures that

�rms in both market settings invest a lot more in survival and the di�erence between survival

probabilities are fairly small - except in state 1, where the monopoly in the market with bailout

still invests zero. Because entry is suppressed, state 1 occurs with high probability in steady state

and thus has a large impact on the average probability of systemic crisis. As we allow for more

entry, however, the di�erence between the two types of markets disappear for all market conditions

α (last graph in Figure 4).

What is clear from both Figure 3 and 4 is that stronger demand or more intense entry result in

31For the case with bailout, both for systemic failure and systemic crisis the probability is P̃1(1− y(1)) + P̃2(1−
y(2))2 + ... (where P̃j is the steady state probability of state j and y (j) is the equilibrium investment in state j),
because state zero is of course never reached.
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Figure 4: Probability of systemic crisis
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lower systemic risk in general and also that the di�erences between the two market settings vanish

with α and γ. This is the result of the fact that higher α and γ, together or alone, lead to an

(expected) market structure that is fragmented in steady state, and this in turn keeps the strategic

e�ect at bay. The key, therefore, appears to be (endogenous) market structure. As long as there

is government bailout, more concentrated markets will typically exhibit more systemic risk, which

is primarily due to the strategic e�ect at work. However, if circumstances in the market, such

as benign demand conditions, lax competition (e.g. high product di�erentiation, high switching

costs, etc), or intense entry nudge the market towards a fragmented structure, then the fact that

�rms can count on bailouts is not overly concerning from a systemic risk perspective.32

6 Banking models: π( · ;n) =M(n)q(1− ( · ))

In the baseline model, the cost function of survival g( · ) enters additively into the pro�t function.

The �xed cost nature of g( · ) is a common modelling feature both in the literature spearheaded by

Ericson-Pakes (1995) and also in studies on unobserved quality, but it can be found in the banking

literature too (see e.g. Dell'Ariccia et al, 2014 or Martinez-Miera and Repullo, 2017). This

assumption has technical advantages and also serves an important general purpose. In any static

game, �rms would never choose to produce negative pro�ts. While this is perfectly reasonable in a

static setting, �rms in a dynamic environment may �nd it optimal to operate at a loss today in the

hope of pro�ts tomorrow. In order to allow for this possibility, the dynamic leg of the optimisation

problem entered additively in the previous section. However, one may �nd the �xed cost nature

unrealistic in general and in models of banking in particular. Therefore, in what follows I discuss

an alternative speci�cation based on a model of liquidity risk.

The primary goal of this section, therefore, is to provide a simple microfoundation of the market

game, which is closely aligned with traditional models of banking. The secondary objective is

robustness check: we will see that while the model presented here produces fundamentally di�erent

�rm behaviour and market structure dynamics, the main conclusions are unchanged in terms of

32It is perhaps important to emphasise that high α does not necessarily mean that �rms make (much) pro�t in
a period, as pro�t (i.e. M(n)− g(x)) also depends on investment and (endogenous) market structure.
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systemic risk.

6.1 The environment

In the following model of liquidity risk, banks compete for deposits in a Cournot setting and trade

o� higher pro�ts (lower cash reserves) with smaller probability of survival.33 The setup formalises

in a simple way that long term investments make bank liquidity di�cult to adjust in the short

run, and while a liquidity bu�er is costly (in terms of foregone pro�ts), it is essential to weather

uncertain liquidity shocks. The model is also formally equivalent to a dynamic extension of the

(static) credit risk model of Allen and Gale (2004), where banks also compete in the deposit

market in a Cournot setting and trade o� higher returns with lower probability of survival, as

demonstrated in Appendix D. In what follows, I present a brief description of the game, further

details can be found in Appendix B.

In each period, bank i collects deposits di and promises to pay back r (D) on each (per unit)

withdrawal, where D =
∑n

i=1 di and r
′ (·) > 0. Withdrawals can occur intra-period or at the end of

the period. At the beginning of the period, bank i leaves (1− zi) di in cash and invests zi portion

of its deposits zidi in assets, which earn repayment rate R > 1 at the end of the period and zero if

the investment is liquidated before. I assume that cash pays no interest, but it is the only way to

meet random intra-period withdrawals, because investments cannot be liquidated within a period.

The portion of deposits withdrawn intra-period from bank i is a random variable wi ∈ [0, 1] with

Pr (wi ≤ 1− zi) = ψ (zi) and thus the bank is able to meet intra-period liquidity demand with

probability ψ (zi), ψ′ (·) < 0.

Depositors don't observe zi, they do not know a bank's exposure to liquidity risk. Depositors

play an equilibrium strategy where they never deposit in a bank which has ever failed to meet

intra-period withdrawals, banks do not use deposit bases to signal risk and, given this, consumers

rightly ignore deposits when they form their beliefs about unobserved risk. See Appendix B for a

detailed description of strategies and e.g. Rob and Fishman (2005) for a similar example in the

33See e.g. Egan et al (2017) for a recent study where rivalry among banks is modelled as (imperfect) competition
for deposits in a dynamic (albeit stationary) setting. However, in Egan et al (2017) a bank cannot choose its risk
pro�le.
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unobserved quality literature.

If the bank is not able to meet all intra-period withdrawals, it will not operate next period,

because rational depositors will favour rivals with a history of successful repayments in a symmetric

equilibrium (alternatively, one can assume the regulator closes the bank). The bank thus essentially

chooses its level of exposure to an uncertain intra-period liquidity shock by choosing the size of

its liquidity bu�er: choosing less cash increases pro�ts today at the expense of the probability of

survival tomorrow. Bank i's per-period pro�t is equal to (R − r(D))zidi − r(D) (1− zi) di, which

simpli�es to (Rzi−r(D))di. All depositors who did not want to or could not withdraw intra-period

will be fully paid at the end of the period (when R is paid).34

Assuming r ( · ) = ( · )θ and θ ≥ 1, each period bank i maximises the following pro�t function

when choosing di with n banks in the market:

Rz −( n∑
i=1

di

)θ
 di

The �rst order condition after imposing symmetry and the resulting solution are thus:

Rz − θ (nd)θ−1 d− (nd)θ = 0

d∗ =

(
Rz

(θ + n)nθ−1

) 1
θ

Pro�t in symmetric equilibrium is as follows:

(
Rz − (nd∗)

θ
)
d∗ =

(
Rz − Rznθ

(θ + n)nθ−1

)(
Rz

(θ + n)nθ−1

) 1
θ

= θn−
θ−1
θ

(
Rz

θ + n

) 1+θ
θ

Suppose the probability of survival is de�ned as f (x) = x = ψ (z) = 1 − zη, where η ≥ 2. It

is slightly more convenient in the current framework to set up the dynamic optimisation problem

34Note again that there is no point liquidating the bank intra-period, as liquidation is value destroying.
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using the inverse function z = (1− x)
1
η and so the loan rate can be written as R (1− x)

1
η and the

per period pro�t thus takes the form of

π (x;n) =M (n) q (1− x) , where M (n) = θn−
θ−1
θ

(
R

θ + n

) 1+θ
θ

, q (1− x) = (1− x)
1+θ
θη

It can be easily veri�ed that most properties of π (x;n) in Assumption 1 hold, i.e. π (x;n)

is decreasing in n and ∂π (x;n) /∂x < 0, ∂π (x;n) /∂x∂x < 0, provided θ ≥ 1 and η ≥ 2. The

technical assumption ∂π(0;n)/∂x = 0, which ensures interior solution, does not hold, but I will

choose parameter values such that interior solutions result.

The dynamic optimisation problem without bailout is as follows (the case with bailout is

analogous):

v (n;x−i) = max
0≤xi≤1

{
π (xi;n) + βxi

n−1∑
k=0

W0(n− k) Pr(k|x−i)

}
Note that this formulation of the bank's dynamic optimisation problem closely resembles the

dynamic banking models in e.g. Suarez (1994), Faia et al (2021) or Freixas and Rochet (2008,

Chapter 3.5.1). The �rst order condition to the programme above is then:

−(1 + θ)M (n)

θη
(1− xi)

1−θ(η−1)
θη

+ β
n−1∑
k=0

W0(n− k) Pr(k|x−i) = 0

to which the solution is

x∗ = 1−

1 + θ

θη
· M (n)

β

n−1∑
k=0

W0(n− k) Pr(k|x−i)


θη

θ(η−1)−1

The corresponding second order condition is as follows:

−(1 + θ) (θ (η − 1)− 1)M (n)

θ2η2
(1− x)

1−θ(2η−1)
θη

< 0

given θ (η − 1) > 1. In the numerical calculations, I set θ = 1 and η = 4, so that the resulting
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M (n) in this model is similar to that of the baseline model and also to ensure that interior solutions

result. The parameter γ shifts the distribution of the �xed cost of entry and I choose its value so

that the support of the steady state distribution stays within the range of 20 �rms to facilitate

visual presentation of the results. I solve the game using the same algorithm as discussed in the

Computation Section 5.1.

6.2 Banking model, numerical results

As is clear from the Figures 5-8, the main di�erence compared to the baseline model is that banks

behave di�erently, investment in survival increases with n, in contrast to the �ndings in Section

5. This is simply because the cost of survival q (1− x) enters now multiplicatively, rather than

additively. As a result, lower M(n) naturally reduces the cost of survival, which in turn induces

banks to invest more in fragmented markets.35

In the present banking model, the equilibrium investment pro�les x (n) , y (n) increase with

n, because the marginal cost of investment decreases faster with n than the marginal bene�t of

survival. The marginal cost of investment is a function of M(n) and M(n) → 0 as n → ∞. The

marginal bene�t of survival, however, is not only a function of M(n), but also �rm values at all

possible future states, including the lucrative (concentrated) states (i.e. M(1),M(2), ...). Hence,

the investment pro�le increasing with n. In contrast, the marginal cost of investment in survival

is independent of M(n) in the baseline model with per period pro�ts M(n)− g( · ).

Interestingly, while �rm behaviours are very di�erent in the baseline and banking models, the

comparison of the markets with and without bailouts yield strikingly similar results. I present

the graphs without detailed analyses, I only highlight the most important features. Similarly

to the baseline model discussed in the previous section, there is always a charter value e�ect

(Ṽ (n) > V (n)), banks counting on bailout invest less in concentrated and invest more in fragmented

35This is in contrast to the �ndings of Allen and Gale (2004), who �nd that higher n implies more risk taking.
It is, once again, a reminder that static models have important limitations when decisions are made in a dynamic
context. Moreover, simple extensions of static models to dynamic settings with stationary equilibrium are not quite
satisfactory either, because in these dynamic models the future is much like the present, the continuation value is
simply the present discounted value of today's static pro�ts, and thus these models tend to produce very similar
results to static models. In my model, however, decisions about survival a�ect not only whether future pro�ts could
be collected, but they also have dynamic implications for tomorrow's strategic space and thus for the level of future
pro�ts.
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markets (albeit the di�erence is vanishingly small), and the probability of systemic crisis with

bailout is lower for low demand (low R) than without bailout. That is, there is a parameter region

where the market with bailout exhibits less systemic risk, in contrast to conventional wisdom.

7 Conclusions

The stochastic dynamic games presented highlight a complex relationship between market struc-

ture, competition and risk taking, which has important implications for systemic risk. I analyse

two channels through which bailout policies a�ect risk taking behaviour: the strategic e�ect in-

creases the incentive to take risk, while the charter value e�ect reduces it. The interplay of these

two e�ects determine market structure, while market structure in turn drives the interplay between

them. Regarding systemic risk, conventional wisdom is challenged in some parameter regions where

bailout policy reduces systemic risk; in others it is con�rmed that the presence of bailout increases

systemic risk, as policy makers and academics often argue in public debates. However, the ef-

fect of bailout policies on systemic risk seem to be small overall, which points to the important

countervailing role of charter value.

The model is not calibrated for several reasons. First, it is designed to be a general framework

to encompass many market settings and thus it is not rich enough in its current form to bring

it to data. Second, model parameters are not suitable for calibration, because they cannot be

directly mapped into observational data, they are best estimated in a richer structural model with

�rm heterogeneity and uncertainty at both �rm and market levels. Third, complex models are

often calibrated, inter alia, because many parameters need to be pinned down �rst in a meaningful

way to allow the researcher to analyse the variables of interest. However, one advantage of a

general setup and the limited number of parameters is that results can be illustrated for the full

set of parameters and model performance can therefore be comprehensively assessed across all

parameters and their relevant values, as done in this study.

The model and the accompanying Matlab code present a useful framework for future research

and policy analyses. This framework, for instance, can be used to assess and compare di�erent

bailout policies. In particular, this paper analyses the most conservative policy option, where
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Figure 5: Banking model: The e�ect of demand (R = 0.5; 1.5; 2)
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Figure 6: Banking model: The e�ect of entry (γ = 0.01; 0.1; 0.5)
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Figure 7: Banking model: probability of systemic failure

0 0.5 1 1.5 2

R

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
a
b
ili

ty

Probability of Systemic Crisis  (  = 0.001)

0 0.5 1 1.5 2

R

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
a
b
ili

ty

Probability of Systemic Crisis  (  = 0.1)

0 0.5 1 1.5 2

R

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
ro

b
a
b
ili

ty

Probability of Systemic Crisis  (  = 0.5)

Without Bailout With Bailout

Notes: Expected systemic crisis is de�ned as the probability of being in the state with zero �rms at the end of the
production phase.

Figure 8: Banking model: probability of systemic crisis
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bailout occurs only when all incumbent �rms fail. It would be interesting to consider the e�ect

of alternative policies, when the government bails out �rms under less dramatic scenarios, e.g.

when 50% of incumbents fail. The e�ect of a more generous bailout policy is uncertain, because

it ampli�es both the charter value and the strategic e�ects in an unpredictable way, while it also

pushes the market towards a more fragmented structure. I leave these questions for future research.
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Appendix

A PROOFS

Proof of Proposition 1

I show by induction that the value function Ṽ (n) is strictly decreasing, the proof for the case V (n)

is similar. First, I show that Ṽ (2) < Ṽ (1). Then assuming that Ṽ (i) < Ṽ (i− 1) for all i = 2, ..., n,

I will show that Ṽ (n+ 1) < Ṽ (n).

First, note that Ṽ (n) are non-negative for all n, because choosing y(n) = 0 always ensures at
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least π(0;n) ≥ 0 (Assumption 1). For the monopoly,

Ṽ (1) = max
0≤y≤1

{
π(y; 1) + βf (y) Ṽ (1) + βṼ (1) (1− f (y))

}
= max

0≤y≤1

{
π(y; 1) + βṼ (1)

}

and the solution to this program is simply y (1) = 0, given that π(y; 1) is decreasing in y

(Assumption 1).

For the duopoly, we have in equilibrium,

Ṽ (2)− Ṽ (1) = π(y; 2) + βṼ (1)f (y) (1− f (y)) + βṼ (2)f (y)2 + βṼ (2) (1− f (y))2 − Ṽ (1)

=
π(y; 2) + βṼ (1)f (y) (1− f (y)) + βṼ (1)f (y)2 + βṼ (1) (1− f (y))2 − Ṽ (1)

1− β
(
f (y)2 + (1− f (y))2

)
=

π(y; 2)− π(y; 1)− βṼ (1)f (y) (1− f (y))
1− β

(
f (y)2 + (1− f (y))2

)
< 0

where in the penultimate line in the numerator π(y; 2)− π(y; 1) < 0 by Assumption 1 and the

last expression is non-positive, because 0 ≤ f (y) ≤ 1 and Ṽ (1) ≥ 0, while the denominator is

clearly positive.

Now, assume that Ṽ (i) < Ṽ (i − 1) for all i = 2, ..., n. The following inequality holds for the

value function in a symmetric equilibrium when the RHS is evaluated at y = y (n+ 1), rather than

the maximiser y (n):

Ṽ (n) ≥ π(y;n) + β
n−1∑
k=0

Ṽ (n− k)
(
n− 1

k

)
f (y)n−k (1− f (y))k + βṼ (n) (1− f (y))n

Then, adding and subtracting the continuation value for the n+1 case and also observing that

π(y;n+ 1) ≤ π(y;n) by Assumption 1a,
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Ṽ (n) ≥π(y;n+ 1) + β

n∑
k=0

Ṽ (n+ 1− k)
(
n

k

)
f (y)n+1−k (1− f (y))k + βṼ (n+ 1) (1− f (y))n+1

+ β
n−1∑
k=0

Ṽ (n− k)
(
n− 1

k

)
f (y)n−k (1− f (y))k + βṼ (n) (1− f (y))n

− β
n∑
k=0

Ṽ (n+ 1− k)
(
n

k

)
f (y)n+1−k (1− f (y))k − βṼ (n+ 1) (1− f (y))n+1

On the RHS, the �rst line is just Ṽ (n+ 1) and so

Ṽ (n)− Ṽ (n+ 1) ≥β
n−1∑
k=0

Ṽ (n− k)
(
n− 1

k

)
f (y)n−k (1− f (y))k + βṼ (n) (1− f (y))n

− β
n∑
k=0

Ṽ (n+ 1− k)
(
n

k

)
f (y)n+1−k (1− f (y))k − βṼ (n+ 1) (1− f (y))n+1

Then switching indexes, k = i in the �rst and k = i+1 in the second sums, we can rewrite the

above as

(1− β (1− f (y))n)
(
Ṽ (n)− Ṽ (n+ 1)

)
≥β

n−1∑
i=0

Ṽ (n− i)
(
n− 1

i

)
f (y)n−i (1− f (y))i

− β
n−1∑
i=−1

Ṽ (n− i)
(

n

i+ 1

)
f (y)n−i (1− f (y))i+1

+ βṼ (n+ 1)f (y) (1− f (y))n

Then, using Pascal's identity and the fact that
(
n
l

)
= 0 for l < 0 and l > n, we have that
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(1− β (1− f (y))n)
(
Ṽ (n)− Ṽ (n+ 1)

)
≥β

n−1∑
i=0

Ṽ (n− i)
(
n− 1

i

)
f (y)n−i+1 (1− f (y))i

− β
n−1∑
i=−1

Ṽ (n− i)
(
n− 1

i+ 1

)
f (y)n−i (1− f (y))i+1

+ βṼ (n+ 1)f (y) (1− f (y))n

Now, switching back the indexes,

(
1− β

(
(1− f (y))n + f (y)n+1)) (Ṽ (n)− Ṽ (n+ 1)

)
≥

β
n−1∑
k=1

[
Ṽ (n− k)− Ṽ (n− k + 1)

](n− 1

k

)
f (y)n−k+1 (1− f (y))k

+βṼ (n+ 1)f (y) (1− f (y))n > 0

Note that the RHS is strictly positive, because in the summation sign we have the convex

linear combination of strictly positive values by the inductional hypothesis and note also that

0 < β
(
(1− f (y))n + f (y)n+1) < 1 on the LHS.

Lastly, observe that because Ṽ (n) is strictly decreasing and non-negative, Ṽ (n) must be strictly

positive. QED

Proof of Proposition 2

The proof is by induction. First, I show that Ṽ (1)− V (1) > 0, then assuming Ṽ (i)− V (i) > 0 for

all i = 1, ..., n− 1, I will prove that Ṽ (n)− V (n) > 0.

Observe that for the case of a monopoly, the two maximisation problems are as follows

V (1) = max
0≤x≤1

{π(x; 1) + βf (x)V (1)}

Ṽ (1) = max
0≤y≤1

{
π(y; 1) + βf (y) Ṽ (1) + βṼ (1) (1− f (y))

}
= max

0≤y≤1

{
π(y; 1) + βṼ (1)

}
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As π(y;n) is strictly decreasing in y, by strict concavity of the objective function (Assumption 1)

the unique solution to the second program is simply y (1) = 0 and thus Ṽ (1) = π(0; 1)/ (1− β). If

the optimal solution to the maximisation problem without bailout is x (1) = 0, then V (1) = π(0; 1)

and so Ṽ (1)−V (1) > 0. When x(1) > 0, then Ṽ (1) = π(0; 1)/ (1− β) > π(x (1) ; 1)/ (1− βf (x (1))) =

V (1), because the numerator is decreasing in x (Assumption 1b) and the denominator is increasing

since 0 < f (x (1)) ≤ 1.

Now, I assume that Ṽ (i)− V (i) > 0 for all i = 1, ..., n− 1 and show that this must imply that

Ṽ (n)− V (n) > 0. Since x = x (n) maximises V (n), rather than Ṽ (n),

Ṽ (n) ≥ π(x;n) + β
n−1∑
k=0

Ṽ (n− k)
(
n− 1

k

)
f (x)n−k (1− f (x))k + βṼ (n) (1− f (x))n

Subtract V (n) from both sides to get

Ṽ (n)− V (n) ≥ β
n−1∑
k=0

[
Ṽ (n− k)− V (n− k)

](n− 1

k

)
f (x)n−k (1− f (x))k + βṼ (n) (1− f (x))n

Take the �rst element from the sum on the RHS and rearrange it to the LHS to get

(1− βf (x)n)
[
Ṽ (n)− V (n)

]
≥β

n−1∑
k=1

[
Ṽ (n− k)− V (n− k)

](n− 1

k

)
f (x)n−k (1− f (x))k

+ βṼ (n) (1− f (x))n

>0

On the RHS, the last term in the second line is positive by Proposition 1 and the sum in the

�rst line is also positive by the inductional hypothesis. QED

Proof of Proposition 3

I already established in the proof of the previous proposition that y(1) = 0. The assumption

∂π(0;n)/∂x = 0 (Assumption 1b) ensures interior solution for the market without bailout, therefore
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x(1) > y(1). Now, I show that x(n) < y(n), when n is large enough. The proof is by contradiction.

Suppose x(n) > y(n) for all n. The FOCs for the case n are as follows

βf ′ (x)
n−1∑
k=0

V (n− k)
(
n− 1

k

)
f (x)n−k−1 (1− f (x))k = −∂π(x;n)/∂x

βf ′ (y)

[
n−1∑
k=0

Ṽ (n− k)
(
n− 1

k

)
f (y)n−k−1 (1− f (y))k − Ṽ (n) (1− f (y))n−1

]
= −∂π(y;n)/∂y

where x(n) and y(n) solve the �rst and the second equation above, respectively. If x(n) > y(n),

it must be that the �rst FOC evaluated at y = y(n) is as follows

βf ′ (y)
n−1∑
k=0

V (n− k)
(
n− 1

k

)
f (y)n−k−1 (1− f (y))k > −∂π(y;n)/∂y

because the objective functions are strictly concave (Assumption 1). Subtracting the second

FOC from this inequality and rearranging yields

n−1∑
k=0

[
Ṽ (n− k)− V (n− k)

](n− 1

k

)
f (y)n−k−1 (1− f (y))k − Ṽ (n) (1− f (y))n−1 < 0

This inequality always holds for n = 1, but it cannot hold for a large enough n. To see this,

take out the last element from the summation sign and rewrite

n−2∑
k=0

[
Ṽ (n− k)− V (n− k)

](n− 1

k

)
f (y)n−k−1 (1− f (y))k

+
(
Ṽ (1)− V (1)− Ṽ (n)

)
(1− f (y))n−1 < 0

The �rst expression on the LHS is clearly positive, because the summation is a linear combi-

nation of strictly positive values (Proposition 2). The second expression is positive too for large

enough n, because Ṽ (1)− V (1) > 0 (Proposition 2) and Ṽ (n)→ 0 as n→∞, which follows from

Assumption 1 and Proposition 1. Also, once the term Ṽ (1) − V (1) − Ṽ (n) becomes positive, it

will remain so, because Ṽ (n) is strictly decreasing. QED
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B Details of the Liquidity Risk model in Section 6

As mentioned before, competition among banks is modelled as a Cournot game in the deposit

market, similarly to much of the previous literature. There are three dates T = 0, 1, 2 within the

production phase of each period t, there is no discounting within a period. The set of banks is

denoted N t, with cardinality |N t| = nt.

Depositors. After each depositor deposits one unit of cash at T = 0, the depositor faces an

idiosyncratic liquidity shock and withdraws her money �early� (T = 1) with probability w or

�late� (T = 2) with probability 1 − w. Assuming very large number of depositors, bank i thus

faces a withdrawal rate wi at T = 1. The withdrawal rates wi are random variables, which are

identically and independently distributed across banks and have non-degenerate support on [0, 1]

with Pr (wi ≤ 1− zi) = ψ (zi).36 Liquidity risk is unobserved, i.e. depositors do not observe the

liquidity bu�ers of banks, they only observe if a bank has successfully met its intra-period (i.e.

T = 1) withdrawals previously. Assuming early consumers do not bene�t from late consumption

and vice versa, the expected payo� of a depositor is (wqi + 1− w) r (D), where qi ∈ [0, 1] is the

depositor's belief about bank i being able to meet all early withdrawals and r (D) is the deposit

rate, where D =
∑n

i=1 di.
37

Banks. Bank i faces a large pool of depositors in period t. Each period, bank i chooses its

deposit base di, the amount to invest in loans zidi and consequently its cash reserves (1− zi) di.

Loans pay nothing at T = 1, but pay a return R at T = 2. Assets cannot be liquidated at

T = 1 (liquidation is value destroying). Cash earns no interest. For simplicity, I assume that the

bank makes its decision about the liquidity bu�er at the beginning of the period, observes the

number of early withdrawals subsequently, and the bank does not open intra-period (T = 1) if

early withdrawals exceed its cash reserve (i.e. wi > 1− zi), there are no payments at all at T = 1

in this case.38

36As discussed in the Introduction, I do not incorporate contagion or aggregate risk in the model, hence withdrawal
rates (wi) are uncorrelated.

37Note that late consumers do not gain from withdrawing early in this model, regardless of other depositors'
withdrawal strategy. Late consumers always get paid fully, because the bank's assets cannot be liquidated before
maturity and R is deterministic (no credit risk).

38This is a simplifying assumption, the results are not dependent on it. Alternatively, one could assume that the
available cash is distributed equally among early withdrawals at the expense of a slightly more complicated ex ante
utility of depositors. What matters is that ex ante utility of depositors increases in qi.
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Timing within a period. At T = 0: 1) bank i decides to quit or stay, 2) bank i receives deposits

di and chooses to reserve (1− zi) di as cash, then lend a total sum of zidi to entrepreneurs, who

will pay return R at T = 2. At T = 1: 3) depositor type is (privately) revealed, early withdrawals

are attempted, 4) bank i observes the proportion of early withdrawals wi and if wi ≤ 1− zi, then

it opens and pays out early withdrawals, otherwise it remains closed. At T = 2: the loan pays R

and all consumers who did not want to, or manage to, withdraw at T = 1 get now paid r (D), 5)

all depositors and banks observe which bank failed to meet early withdrawals.

Markov strategies. I will look at Markov strategies that depend on last period payout history.

The last period withdrawal history is de�ned as H t = ×i∈Nt−1 {1, 0}, where 1 corresponds to the

bank successfully meeting all early withdrawal at t − 1 and zero otherwise. Then a depositor's

strategy can be described by the mapping H t → N t. The strategy of banks comprises of three

mappings. Having observed last period withdrawal history, they decide to quit or stay, ςi : H t →

{Quit, Stay}, then incumbents choose di : H t × N t → R+ and the proportion of deposits to be

lent zi : H t ×N t → [0, 1].

Symmetric Nash Equilibrium in Markov strategies

Depositors. Do not deposit in a bank that has not met its intra-period withdrawal demand

before. The equilibrium beliefs of depositors are as follows: (i) if a bank has ever failed to

meet its intra-period withdrawals, then it will always fail to do so with probability one (i.e.,

qti , q
t+1
i , ... = 0), (ii) banks in period t meet their intra-period withdrawal demand with probability

qti = qt = Pr (w < 1− zt∗) = ψ (zt∗) ≡ xt∗ if they have successfully met intra-day period withdrawals

previously.

Banks. Quit if you failed to meet intra-period withdrawals last period. Otherwise stay and choose

your deposit base and probability of survival d, x such that

(
dt∗, x

t
∗
)
= arg max

(dti,xti)

(
Rϕ−1

(
xti
)
− r

(
dti +

∑
j 6=i

dtj

))
dti + βxti

nt−1∑
k=0

W0(n
t − k) Pr(kt|xt−i∗)

These Markov strategies constitute a symmetric subgame perfect Nash equilibrium, because

they maximise the utility of depositors, given their beliefs and the optimal policies of banks, and
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they also maximise the value of the bank, given depositor strategies, beliefs, and the optimal policies

of rival banks, while the beliefs of depositors are correct in equilibrium, i.e. beliefs represent the

probability of the actual behaviour of other players conditional on the information available.39

C Derivation of the Steady State distributions

Each period of the game is taken to be in�nitely small, and thus the in�nitesimal transition

probabilities at time t are given by

Pr (z (t+ dt) = n+m|z (t) = n) =


λndt+ o (dt) if m = 1

µndt+ o (dt) if m = −1

o (dt) if |m| > 1

where limdt→0 o (dt) /dt = 0, and the intensity parameters of the Markov process are �average

birth� λn =
∑N

l=1 ρl,n and �average death� µn = n (1− f (x (n))).40 For a stationary steady state

distribution P = [P0, P1, ...], the �ow into a state must be equal to the �ow out of the state, i.e.

(1− λ0)P0 + µ1P1 = P0

λn−1Pn−1 + (1− λn − µn)Pn + µn+1Pn+1 = Pn for n ≥ 1

Solving this system of equations yields the steady state probabilities as follows

Pn =
λn−1
µn

Pn−1 =
λ0λ1 · · · λn−1
µ1µ2 · · · µn

P0 for n ≥ 1, and P0 =

(
1 +

∞∑
n=1

n−1∏
i=0

λi
µi+1

)−1
In the model without bailout, there is no government intervention, the market evolves undis-

turbed. As a result, the state when there is no �rm in the market (i.e. state zero) happens with

positive probability in the steady state. State zero, however, cannot be reached by de�nition when

there are systemic bailouts. The modi�ed dynamic program of a �rm expecting systemic bailouts

39Note that a Nash equilibrium in Markov strategies is necessarily subgame perfect.
40For a detailed derivation of the transition probabilities, see Tóth (2012).
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is as follows:

ṽ(n; y−i) = max
0≤yi≤1

{
π(yi;n) + βf (yi)

n−1∑
k=0

W̃0(n− k) Pr(k|f (y−i))

+ βW̃0(n) (1− f (yi)) Pr(n− 1|f (y−i))

}
(6)

where the entrants' values and entry probabilities are de�ned analogously to the case without

bailout.41 The resulting value function in a symmetric equilibrium is then

Ṽ (n) = π(y (n) ;n) + β
n−1∑
k=0

W̃0(n− k)
(
n− 1

k

)
(1− f (y(n)))kf(y(n))n−k

+ βW̃0(n) (1− f (y(n)))n (7)

The steady state probabilities are computed similarly to the market without bailouts, except

that one needs to account for the fact that state zero (i.e. no �rm in the market) is never reached

by design (i.e. there is no entry into and exit from state zero), so the modi�ed steady state

probabilities are P̃n =
(
λ̃n−1/µ̃n

)
P̃n−1 for n ≥ 2 with P̃1 =

(
1 +

∑∞
n=1

∏n−1
i=1

(
λ̃i/µ̃i+1

))−1
,

where the parameters of average �births� (entry) λ̃i and average �deaths� (failure) µ̃i are de�ned

analogously to λi and µi.

D A dynamic extension of Allen and Gale (2004)

As in Allen and Gale (2004), each bank chooses a portfolio of perfectly correlated loans in each

period (i.e. idiosyncratic risk is assumed to be diversi�ed away). The bank charges loan interest

rate Rz, which comprises of two components: risk 0 ≤ z ≤ 1 is chosen by the bank and 0 < R ≤ 1

is a constant, which can be thought of as a measure of market power in the loan market, because

lower R reduces loan rates for all risk classes (i.e. z). Thus higher loan rate Rz is associated

41That is, W̃l(n) = W̃l+1(n + 1)ρ̃l+1,n + W̃l+1(n)(1 − ρ̃l+1,n), where ρ̃l,n = ρ(W̃l(n + 1)) for l = 0, .., N and
n ∈ {0, 1, 2, ...}.
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with higher risk z and R is the loan rate that the riskiest portfolio commands (i.e. when z = 1).

Furthermore, I assume that the repayment of loans is structured in a way that �rst interest Rz

and last the principal is paid back (i.e. 1). In particular, the production phase is divided into two

subphases: in the �rst subphase loan is made and interest is paid with certainty; in the second

subphase, the principal (the larger sum) is paid in full with probability x (z) and 0 otherwise,

where x′ (z) < 0, x′′ (z) ≤ 0, x (0) = 1, x (1) = 0, as in Allen and Gale (2004). If the principal too is

paid back, then the bank is able to repay depositors who demand (1 + r(D))di in total at the end

of the period, where D =
∑n

i=1 di and r(D) is the deposit rate with r ( · ) , r′ ( · ) > 0, r′′ ( · ) ≥ 0,

and di is the amount of deposit that bank i collects. If the principal is not paid back, then the

bank fails, because the bank pro�t (Rz − r(D))di is never enough to pay depositors in full in case

the project fails: (Rz − 1− r(D))di < 0, because Rz ≤ 1 by construction.

The assumption that interest is paid �rst with certainty and the uncertain principal last is

meant to capture the fact that debt almost never defaults at the beginning of its lifetime, it

typically generates a steady stream of pro�ts for the bank before default: for instance, if a bank

makes a single loan, which then defaults halfway through its life, then the bank still realises interest

margin and produces pro�t on this loan for a number of years prior to bankruptcy.42 In particular,

over the lifetime of a loan, the �rst installments typically have low default probabilities in practice,

while the default probabilities of later payments are signi�cantly higher. Given that the lifetime of

a loan is a single period in the current model (otherwise z could not be chosen independently across

periods), one simple way to capture this feature is that there are two payments in a period, the

�rst (interest) payment is certain and the second (principal) is stochastic. Note that most debts

have the �interest-�rst-principal-last� feature to some degree.43 This assumption also ensures that

the general model structure of the dynamic game in this section, which is similar to the dynamic

banking models of e.g. Perotti and Suarez (2002) or Freixas and Rochet (2008, Chapter 3.5.1),

42The average maturity of corporate debt at origination is around 12 years and the average maturity at default
is around 5 years, suggesting defaulting �rms tend to service a debt for 7 years on average before default (see e.g.
Davydenko et al 2012).

43For instance, bonds typically pay interest until maturity and principal is paid back only at maturity. Similarly,
debt services on loans are most often structured with loan amortization: initially, interest payments constitute
the dominant part of the annual debt service (in fact, there are many loans with substantial so-called �principal
repayment holiday�) and over the years the share of principal increases gradually and it only becomes the dominant
part of the payments towards the end of maturity. �Interest only� loans also exist (about 30% of UK mortgage
market), where debt service before maturity consists solely of interest payments.
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also keeps in line with the basic framework presented in the paper.

In each period, the bank thus makes pro�t equal to (Rzi−r(D))di+x (zi) (1−1)di. The second

term is the principal payment occurring with probability x (zi), which is returned to depositors at

the end of the period when paid. Banks compete for deposits in a static and will choose z in a

dynamic framework, higher z implying higher risk, i.e. lower probability of survival. This yields a

formally equivalent program to the liquidity risk model above.
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