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1 Introduction

The advent of the digital age has transformed marketplaces. Two salient features specifically

distinguish online markets from traditional ones: (a) the enormous product variety that they

entail, and (b) the availability and use of vast amounts of consumer data. This paper examines

how multi-product sellers’ access to consumer data affects welfare.

Whereas large brick-and-mortar bookstores hold between 40,000 and 100,000 book ti-

tles, Amazon sells several millions of titles (Brynjolfsson, Hu, and Smith, 2003). Shein

launches about 6,000 new SKUs every day, and in total stocks about 600,000 distinct prod-

ucts (Economist, 2021). Zalando, an online fashion retailer, has 65,539 items in the category

“Men’s T-Shirts & Polos” alone.1 Similarly, online shoe retailers may offer over 50,000 dis-

tinct models, whereas traditional retailers usually stock at most a few thousand ones (Quan

and Williams, 2018).

While the online shelf space is virtually unlimited, consumers’ attention and time are

limited. Hence, a central problem for online retailers is to direct consumers towards products

which they are likely to value. As an input to advertising and recommender systems, but also

to pricing algorithms, online retailers’ information about consumers plays a crucial role.

Comprehensive privacy regulation in the European Union has fundamentally modified

access to consumer data. The General Data Protection Regulation prohibits the collection,

storage, use, and dissemination of personal data unless at least one of several conditions is

fulfilled, for example consent (Regulation (EU) 2016/679, Article 6). Moreover, antitrust

authorities globally appear to take a more aggressive stance towards market power in data-

driven industries. The Digital Markets Act prescribes that platforms do not combine, without

additional consent, their personal data with those collected by subsidiaries (Regulation (EU)

2022/1925, Article 5). The US Federal Trade Commission has filed a lawsuit against Meta

(Federal Trade Commission v. Meta Platforms, Inc.), the parent company of Facebook, al-

leging that it systematically accumulated market power through its acquisitions of Instagram

and WhatsApp.

On this background, we address the following questions: Which producer-consumer sur-

1https://en.zalando.de/men-clothing-shirts/; accessed February 27, 2023.
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plus pairs are attainable when multi-product sellers have access to consumer data? Can

regulation enhance the privacy of consumers without sacrificing efficiency or consumer sur-

plus? Why do online retailers often refrain from personalized pricing although they have so

much data? What are the welfare consequences of data intermediation, and which data do

intermediaries supply? What are the effects of competition in the data market?

In our model, a monopolistic seller possesses an inventory containing distinct products,

and each consumer wishes to buy a single product. The seller’s information induces a mar-

ket segmentation, as in Bergemann, Brooks, and Morris (2015). In particular, each market

segment is represented by a probability distribution over the set of possible valuation vectors

for the different products of the seller. The seller’s problem is to choose, for each market,

which product to offer and at what price.

The central result of our paper (Theorem 1) characterizes the combinations of producer

and consumer surpluses that result from market segmentation. This characterization rests

on the observation that when product variety is large, the combinations of producer and

consumer surpluses obtained through market segmentation approximately coincide with the

producer-consumer surplus pairs obtained in a much simpler auxiliary setting. Specifically,

in this auxiliary setting a designer chooses the distribution of consumers’ valuations for a

single product, subject to certain constraints.

We explore the effect of market segmentation on social welfare and the distribution of

surplus. Efficiency requires each consumer to purchase the product that he values the most.

But if the seller can identify for each consumer the product that he values the most then, in

equilibrium, the prices at which products are sold must be high. By this logic, we show that

along the Pareto frontier social welfare decreases as consumer surplus goes up (Proposition

1). Hence, when product variety is large, efficiently transferring surplus from the seller to

consumers through market segmentation is not possible; in this sense segmentation is less

potent with multiple products than with a single product (Bergemann, Brooks, and Morris,

2015). We show on the other hand that transferring surplus from the seller to consumers all

the while improving the latter’s privacy is possible. This property is important when, as is

quite common, privacy is perceived as having intrinsic value.

Interestingly, in sharp contrast to single-product settings, price discrimination has no
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role to play when the number of products is large. We prove that the surplus pairs that result

from market segmentation approximately coincide with the surplus pairs induced by market

segmentations under which the seller chooses not to price discriminate (Proposition 3). Our

analysis thus sheds light on the use of price discrimination, by showing that product steering

effectively makes price discrimination redundant. It is perhaps unsurprising therefore that

whereas targeted ads and personalized product recommendations are common, overt price

discrimination (personalized pricing) appears not to be widespread (see, e.g., Cavallo, 2017;

OECD, 2018; DellaVigna and Gentzkow, 2019).

We then study market segmentation arising from the sale of consumer data by interme-

diaries. To this end, we augment the model by an initial stage in which data intermediaries

propose data policies to a consumer. A data policy specifies which data will be made avail-

able to the seller, provided that the consumer gives his consent. The intermediaries that

obtain the consumer’s consent subsequently sell their data to the seller of the products.

We precisely pin down producer and consumer surplus for a monopolistic and a com-

petitive data market, respectively (Proposition 4). In particular, we show that competition

between data intermediaries results in greater consumer surplus, but reduces social welfare

because the seller ends up offering less suitable products. We go on to show that competition

in the data market may further benefit consumers by giving them more privacy (Proposi-

tion 5). Our results thus suggest that efforts made to limit the market power of data-driven

businesses (exemplified by the Digital Markets Act and the lawsuit against Meta) can signif-

icantly improve consumer welfare.

The rest of the paper is organized as follows. The related literature is discussed below.

The model is presented in Section 2. Section 3 states and proves the central theorem of

the paper. In Section 4, we examine the effect of market segmentation on social welfare,

and the relation between consumer privacy and welfare. We show in Section 5 that price

discrimination is irrelevant for the set of producer-consumer surplus pairs feasible through

market segmentation. Section 6 studies online markets with data intermediaries. Finally,

Section 7 concludes. Omitted proofs are in the Appendix; the Online Appendix contains

further proofs and extensions.
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1.1 Related Literature

We contribute to the study of market segmentation initiated by Bergemann, Brooks, and

Morris (2015). The study of market segmentation in multi-product monopolies starts with

Ichihashi (2020); other major contributions include Hidir and Vellodi (2021), Haghpanah

and Siegel (2022a,b), and Pram (2021). In a single-product setting, Bergemann, Brooks,

and Morris (2015) characterize the entire set of producer-consumer surplus pairs attainable

by market segmentation. Obtaining a similar characterization in a multi-product setting is

notoriously hard. We show that letting the number of products tend to infinity renders this

problem solvable.

Ichihashi (2020) and Hidir and Vellodi (2021) study consumer-optimal market segmen-

tation. As in our model, consumer data can be used for steering and pricing. Ichihashi (2020)

compares the properties of consumer-optimal market segmentation in two pricing regimes:

one in which the seller commits to one price, and one in which the seller sets prices after

having observed the market segment to which the consumer belongs. The author proves

that letting the seller personalize prices: (a) induces inefficient trade whereby the seller oc-

casionally offers a product that is not the consumer’s most-preferred product; (b) decreases

producer surplus; (c) increases consumer surplus.2 Hidir and Vellodi (2021) explore a setting

in which individual consumers exert a form of control over the market segment to which they

belong. Specifically, each consumer chooses his preferred market segment through cheap-

talk communication. The authors introduce the notion of an incentive-compatible market

segmentation, and show that the consumer-optimal incentive-compatible segmentation con-

sists of pooling segments wide enough to keep prices low but narrow enough to guarantee

trade. In contrast to these papers, we do not focus on situations in which consumers have

perfect control of the seller’s information. We characterize, and study the properties of,

the entire set of surplus pairs induced by arbitrary market segmentation as product variety

becomes large.

The model of Haghpanah and Siegel (2022b) is more general than ours, both in terms of

2The fact that personalized pricing results in lower producer surplus provides a possible explanation for

why this form of price discrimination seems quite rare.
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consumers’ preferences, and in terms of selling mechanisms considered. The authors prove

that any market in which profit maximization leads to inefficiency can be segmented in a way

that increases welfare in the sense of Pareto. Haghpanah and Siegel (2022a) find conditions

under which the multi-product counterpart of the “surplus triangle” of Bergemann, Brooks,

and Morris (2015) corresponds to the set of feasible producer-consumer surplus pairs. Pram

(2021) explores a different setting in which individual consumers exert some control over

the market segment to which they belong. Specifically, each consumer communicates hard

information, and thus chooses his preferred market segment from within a subset of seg-

ments. The author precisely characterizes those situations in which some equilibrium Pareto

dominates the equilibrium without evidence.

Our paper also contributes to recent economic research on markets with data interme-

diaries. In Hidir and Vellodi (2021), a single online platform provides consumer data to

sellers, and each consumer faces an opportunity cost of participation. The authors show that

a higher opportunity cost leads to lower product prices and lower match quality between con-

sumers and products. This key insight resonates with our results if one interprets the higher

opportunity cost as being due to greater competition among online platforms. De Cornière

and De Nijs (2016) consider a setting where online platforms auction advertising slots. To

the extent that an increase in the number of slots plays the same role as a decrease in the

number of bidders, competition between platforms benefits consumers by inducing lower

prices in the product market. In Bounie, Dubus, and Waelbroeck (2022), data intermediaries

first acquire costly information, and then choose the information sold to downstream firms.

Competition between data intermediaries benefits consumers because it induces the former

to acquire less information, which in turn reduces extraction by sellers in the product market.

Bergemann and Bonatti (2015) and Ichihashi (2021) offer different perspectives than

the aforementioned papers, and put forth that competition need not benefit consumers. In

Bergemann and Bonatti (2015), the key aspect is that raising the price at which information

about one consumer is sold to downstream firms reduces the demand for information about

all other consumers. By contrast, in Ichihashi (2021) data intermediaries can compensate

customers through monetary transfers, and so the degree of competitiveness in the market

for data leaves trade efficiency in the product market unaffected.
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A distinct literature studies steering of consumers by intermediaries seeking out com-

missions (e.g., Armstrong and Zhou, 2011; Hagiu and Jullien, 2011; Inderst and Ottaviani,

2012; de Cornière and Taylor, 2019; Teh and Wright, 2022). In Nocke and Rey (2022), a

multi-product monopolist influences the search of consumers for suitable products via the

design and pricing of its product line. Finally, a large literature studies the economics of

privacy (see Acquisti, Taylor, and Wagman, 2016, for a survey). An important focus of this

literature is on intertemporal price discrimination based on customer recognition (see, e.g.,

Taylor, 2004; Villas-Boas, 2004; Acquisti and Varian, 2005; Conitzer, Taylor, and Wagman,

2012; Bonatti and Cisternas, 2020). In this paper, we abstract from the collection of data and

directly compare the privacy afforded to consumers by different market segmentations.

2 Baseline Model

Throughout the paper,

X := {x1, . . . ,xm}, 0 < x1 < · · ·< xm,

and f is a distribution in ∆X that has full support.3

There is a seller (she) with an inventory containing n variants of a product; the seller

possesses an infinite supply of each product. There is also a continuum of unit-demand

consumers.4 Any consumer’s valuations for the n products can be represented by some vector

v ∈ Xn, with vk (the kth component of the vector v) indicating this consumer’s valuation for

product k. We use the generic notation µ for a probability distribution over Xn, that is,

µ ∈ ∆Xn; we refer to such a distribution as a market. The k-marginal of a market µ is

denoted by µk.5

3The notation ∆Y indicates the set of all distributions with finite support over the set Y . Our assumptions

that f has full support and that x1 > 0 merely simplify the exposition.
4That is, the value attached by a consumer to any set of products is equal to the consumer’s maximum

valuation for a single item in this set.
5Thus, µk ∈ ∆X , with µk(x) = ∑

v: vk=x
µ(v) for all x ∈ X .
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The proportion µ̄(v) of consumers whose valuations are given by the vector v satisfies

µ̄(v) = ∏
k

f (vk), ∀v ∈ Xn. (1)

We refer to the market µ̄ defined through (1) as the aggregate market.

A typical element of ∆∆Xn is denoted by τ; if

∑
µ

τ(µ)µ(v) = µ̄(v), ∀v ∈ Xn, (2)

then τ is called a market segmentation. For a fixed market segmentation τ , the problem of

the seller is to choose for each market comprised in the support of τ , which product to offer

and at what price.

We use the generic notation ρ for a strategy of the seller, with ρµ(k, p) representing

the probability that the seller offers product k at price p in market µ . We suppose that if a

consumer’s valuation for product k equals vk then, when offered product k at price vk, the

consumer decides to buy. The producer surplus generated by the strategy ρ is6

Πτ(ρ) := ∑
µ

τ(µ)∑
k,p

ρµ(k, p)p ∑
x≥p

µk(x);

the corresponding consumer surplus is

Uτ(ρ) := ∑
µ

τ(µ)∑
k,p

ρµ(k, p) ∑
x≥p

µk(x)(x− p).

We say that a surplus pair (π,u) is feasible if there exist a market segmentation τ as well as

a strategy ρ∗ ∈ argmaxρ Πτ(ρ) such that π = Πτ(ρ
∗) and u = Uτ(ρ

∗). The set of feasible

surplus pairs is denoted by Sn.

Additional expository assumptions: we assume that p 7→ p∑x≥p f (x) possesses a unique

maximizer, which we denote by p0. Then, letting

π0 := p0 ∑
x≥p0

f (x),

we assume that π0 ∈ X .

6The mass of consumers is normalized to one, to save on notation.
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2.1 Discussion of the Model

A market segmentation could either depict geographically distinct markets, or summarize

information available to an online seller, perhaps due to the seller’s access to consumers’

browsing histories or the use of cookies. An online seller might be able to determine, say, the

age and nationality of each consumer. In this case, a market would represent the distribution

of valuations within a given age group of a certain nationality.

The model supposes that the seller offers a single product in each market. We capture

thereby situations in which a firm has a large inventory consisting of many different vari-

ants of a given good or service, and where the number of variants is far greater than the

constraints imposed by consumers’ limited attention or cognitive costs, thus forcing sellers

to make strategic choices with regard to the products they offer in any given market. This

feature is central to online retailing, among other things (Brynjolfsson, Hu, and Smith, 2003;

Anderson, 2006). Note that, what we refer to as a product in the model might in practice

represent a sub-category of products, such as “Italian movies from the 1960’s”, for example.

Our model allows the seller to engage in third-degree price discrimination. In online

markets, this assumption seems realistic. At any rate, we show in Section 5 that, when

product variety is large, whether or not the seller can price discriminate is inconsequential

for our results.

Finally, the model supposes that a consumer’s valuation for one product is statistically

independent of his valuation for other products. Naturally, in certain applications a con-

sumer’s valuations for different products may be correlated; for instance, books by the same

author, or from the same genre, might be valued similarly. We show in Section OA.2 of the

Online Appendix that our main results carry through in a version of the model that allows

for correlation between valuations. Similarly, we show in Section OA.3 that our main results

carry through when the set of possible valuations is a continuum.

3 The Welfare Bounds of Market Segmentation

In this section, we characterize the set of feasible surplus pairs when product variety is large.
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We begin with a couple of key definitions. Firstly, for i ∈ {1, . . . ,m}, define gi ∈ ∆X by

gi(x j) :=


0 if j < i,

xi/x j − xi/x j+1 if i ≤ j < m,

xi/xm if j = m.

It is readily checked that

p ∑
x≥p

gi(x) =

p for all p ∈ {x1, . . . ,xi},

xi for all p ∈ {xi+1, . . . ,xm}.
(3)

Thus, if the seller had a single product and the “demand” for this product were given by gi,

then the seller would be indifferent between all prices in {xi, · · · ,xm}; furthermore, if she

were to choose the price xi, the surplus of the consumers would be equal to ∑x≥xi gi(x)(x−

xi). The latter remark motivates the definition of a mapping u : [x1,xm]→ R such that

u(xi) := ∑
x≥xi

gi(x)(x− xi), (4)

and

u
(
(1−λ )xi +λxi+1

)
:= (1−λ )u(xi)+λu(xi+1), ∀λ ∈ [0,1]. (5)

Finally, let

S :=
{
(π,u) ∈ R2 | π ∈ [π0,xm],u ∈ [0,u(π)]

}
.

Figure 1 illustrates S for X = {1,2,3,4,5,6,7} and π0 = 2. As product variety becomes

large, the set S approximately coincides with the feasible surplus pairs.

Theorem 1. For every n ∈ N, the set Sn of feasible surplus pairs is contained in S. More-

over, for every (π,u) ∈ S, there exists a sequence
(
(πn,un)

)
n∈N such that (πn,un) ∈ Sn and

(πn,un) −→
n→∞

(π,u).

To shed light on Theorem 1, we will first argue that S may be viewed as the surplus pairs

attainable in a single-product setting without market segmentation, but where the valuation

distribution is an object of design.
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Figure 1: The set of feasible surplus pairs as product variety becomes large

Formally, consider the following auxilliary setting, with a single product and a single

market.7 The valuations of the consumers are distributed according to f̂ ∈ ∆X ; Π f̂ (ρ̂) de-

notes the producer surplus generated by the pricing strategy ρ̂ , and U f̂ (ρ̂) the corresponding

consumer surplus.8 Say that a surplus pair (π,u) is attainable if there exist a valuation distri-

bution f̂ and a pricing strategy ρ̂∗ ∈ argmaxρ̂ Π f̂ (ρ̂) such that π = Π f̂ (ρ̂
∗) and u =U f̂ (ρ̂

∗).

One shows that the surplus pairs attainable in this auxiliary setting are9

{
(π,u) ∈ R2 | π ∈ [x1,xm],u ∈ [0,u(π)]

}
.

We conclude by Theorem 1 that, as n → ∞, the feasible surplus pairs approximately coincide

with the surplus pairs attainable in a single-product setting without market segmentation, but

where the valuation distribution is an object of design subject to the constraints that (a) the

support of this distribution is contained in X , (b) the resulting surplus of the seller is not

smaller than π0.

Specifically, the first part of Theorem 1 tells us that, regardless of the market segementa-

tion, the seller obtains a surplus π ∈ [π0,xm], while the surplus of the consumers is bounded

from above by u(π).

The second part of the theorem tells us that, as product variety becomes large, any ele-

ment of S may be approximately attained through market segmentation. The basic idea is

7In particular, in this setting a strategy ρ̂ of the seller consists simply of a price distribution.
8As in the baseline model, suppose that any consumer who is indifferent between buying and not buying

always decides to buy.
9See Lemma 1 in Condorelli and Szentes (2020).
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as follows. Pick some xi ∈ X such that xi ≥ π0. For each product k ∈ {1, · · · ,n}, and inde-

pendently across products, divide the consumers in two groups such that in one group, the

valuation for product k is distributed according to gi. Mark every consumer in this group with

the label ak = yes, and every other consumer with the label ak = no. This creates 2n mar-

kets; each market consists of the consumers with the same sequence of labels a∈ {yes,no}n.

We show that if ak = yes for some product, the seller can do no better than to offer such a

product at a price of xi. When n is large, the only market with ak = no for all products is

vanishingly small. By segmenting the aggregate market in this way, we thus generate surplus

approaching xi for the seller and u(xi) for consumers.

3.1 Proof of Theorem 1

Readers uninterested in the technical details of the analysis can jump to Section 4 without

loss. Our proof of Theorem 1 builds on three lemmas.

Lemma 1. If (π,u) ∈ Sn then u ≤ u(π).

Proof. We treat below the case π ∈ X ; the proof for the remaining case is similar, and

therefore omitted. As (π,u) ∈ Sn, there exist a market segmentation τ and a strategy ρ of

the seller that is optimal given τ , such that π = Πτ(ρ) and u = Uτ(ρ). Then, define the

distribution h ∈ ∆X by

h(x) := ∑
µ

τ(µ)∑
k,p

ρµ(k, p)µk(x), ∀x ∈ X .

Letting xi be the element of X such that π = xi, we have for any q ∈ {xi, · · · ,xm}:

∑
µ

τ(µ)∑
k,p

ρµ(k, p)q ∑
x≥q

µk(x) ≤ ∑
µ

τ(µ)∑
k,p

ρµ(k, p)p ∑
x≥p

µk(x)

= Πτ(ρ) = π = q ∑
x≥q

gi(x).

The inequality in the previous sequence follows from ρ being optimal given τ; the last

equality follows from (3). Dividing through by q, we see that gi first-order stochastically
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dominates h. Hence,

u = ∑
µ

τ(µ)∑
k,p

ρµ(k, p) ∑
x≥p

µk(x)(x− p)

= ∑
µ

τ(µ)∑
k,p

ρµ(k, p) ∑
x≥p

µk(x)x−π

≤ ∑
µ

τ(µ)∑
k,p

ρµ(k, p)∑
x

µk(x)x−π

= ∑
x

h(x)x−π

≤ ∑
x

gi(x)x−π

= u(π).

In what follows, we say that a distribution τ ∈ ∆∆Xn is the product of distributions

(τk)n
k=1 in ∆∆X , if τ(µ)> 0 implies

µ(v) = ∏
k

µk(vk), ∀v ∈ Xn, (6)

and

τ(µ) = ∏
k

τ
k(µk). (7)

Lemma 2. Let τ be the product of (τk)n
k=1. If

∑
µk

τ
k(µk)µk(x) = f (x) for all k ∈ {1, · · · ,n} and all x ∈ X , (8)

then τ is a market segmentation.

The proof of this elementary result is relegated to the appendix. Our last lemma identifies

points of S which may be approached by feasible surplus pairs as the number of products

becomes large.

Lemma 3. For every xi ∈ {π0, . . . ,xm} and every p ∈ {xi, . . . ,xm}, there exists a sequence(
(πn,un)

)
n∈N such that (πn,un) ∈ Sn for every n, and

(πn,un) −→
n→∞

(
xi, ∑

x≥p
gi(x)(x− p)

)
. (9)
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Proof. Let xi ∈{π0, . . . ,xm}, and p∈{xi, . . . ,xm}. Choose λ ∈ (0,1) such that λgi(x)≤ f (x)

for all x ∈ X , and define

h(x) :=
f (x)−λgi(x)

1−λ
. (10)

Note that h(x)≥ 0 for all x ∈ X , and ∑x h(x) = 1, whence h ∈ ∆X . Moreover,

λgi(x)+(1−λ )h(x) = f (x), ∀x ∈ X . (11)

We claim that

max
q

q ∑
x≥q

gi(x) = p ∑
x≥p

gi(x) = xi ≥ max
q

q ∑
x≥q

h(x). (12)

The equalities in (12) follow from (3). The fact that

xi ≥ q ∑
x≥q

h(x), ∀q ≤ xi,

is immediate, as h is a distribution. Lastly, for all q > xi:

xi ≥ π0 ≥ q ∑
x≥q

f (x) = λq ∑
x≥q

gi(x)+(1−λ )q ∑
x≥q

h(x) = λxi +(1−λ )q ∑
x≥q

h(x).

So

xi ≥ q ∑
x≥q

h(x), ∀q > xi,

which finishes the proof of (12).

Next, define τk ∈ ∆∆X by

τ
k(gi) = λ = 1− τ

k(h),

and let τ be the product of (τk)n
k=1. By coupling (11) with Lemma 2, notice that τ is a market

segmentation.

Now let ρ be a strategy of the seller with the following properties. For every market µ

in the support of τ such that µk = gi for some product k, offer any such product at price p.

If µk = h for all products k ∈ {1, · · · ,n}, on the other hand, offer any product at some fixed

price

q′ ∈ argmax
q

q ∑
x≥q

h(x).
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By (12), the strategy ρ is optimal given τ . The resulting surplus of the seller is

πn := Πτ(ρ) = (1− (1−λ )n)xi +(1−λ )nq′ ∑
x≥q′

h(x);

the consumer surplus is

un :=Uτ(ρ) = (1− (1−λ )n) ∑
x≥p

gi(x)(x− p)+(1−λ )n
∑

x≥q′
h(x)(x−q′).

Then (πn,un) ∈ Sn, and since λ > 0, the limit in (9) is established.

We are now ready to prove the theorem.

Proof of Theorem 1. The strategy ρ given by ρµ(1, p0) = 1 for every µ yields surplus π0

to the seller, so the seller can guarantee herself a surplus of π0 regardless of the market

segmentation. The first part of the theorem then follows from Lemma 1.

We now prove the second part of the theorem. Let (π ′,u′) and (π ′′,u′′) be arbitrary points

in the set S. Suppose (π ′
n,u

′
n) ∈ Sn for every n, with

(π ′
n,u

′
n) −→n→∞

(π ′,u′).

Similarly, suppose (π ′′
n ,u

′′
n) ∈ Sn for every n, with

(π ′′
n ,u

′′
n) −→n→∞

(π ′′,u′′).

Let τ ′n and τ ′′n be market segmentations inducing the surplus pairs (π ′
n,u

′
n) and (π ′′

n ,u
′′
n), re-

spectively. The set of market segmentations is evidently convex. Furthermore, note that for

all ζ ∈ [0,1], some optimal strategy of the seller given (1− ζ )τ ′n + ζ τ ′′n yields a surplus of

(1− ζ )π ′
n + ζ π ′′

n for the seller and (1− ζ )u′n + ζ u′′n for the consumers. We conclude that

there exists a sequence
(
(πn,un)

)
n∈N such that (πn,un) ∈ Sn for every n, and

(πn,un) −→
n→∞

(1−ζ )(π ′,u′)+ζ (π ′′,u′′).

Now, for all xi ∈{π0, . . . ,xm}, Lemma 3 gives us sequences
(
(π ′

n,u
′
n)
)

n∈N and
(
(π ′′

n ,u
′′
n)
)

n∈N

such that, firstly, (π ′
n,u

′
n) and (π ′′

n ,u
′′
n) belong to Sn for every n, and secondly,

(π ′
n,u

′
n) −→n→∞

(
xi,u(π)

)
and (π ′′

n ,u
′′
n) −→n→∞

(xi,0).

We conclude using the previous observation that, for every (π,u)∈ S, there exists a sequence(
(πn,un)

)
n∈N such that (πn,un) ∈ Sn for every n and (πn,un) −→

n→∞
(π,u).
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4 Social Welfare and Consumer Privacy

In view of Theorem 1, we refer to the set of maximal elements of S as the Pareto frontier;

that is, a surplus pair (π,u) belongs to the Pareto frontier if (i) u = u(π) and (ii) u(π)> u(π ′)

for all π ′ ∈ (π,xm]. The social welfare at a surplus pair (π,u) is defined as π +u.

We start this section by showing that, along the Pareto frontier, increasing the surplus of

consumers, or decreasing the producer surplus, implies lowering social welfare. To see this,

note that, for 1 ≤ i ≤ m−1 and p ∈ {xi+1, · · · ,xm}, (3) gives

xi = p ∑
x≥p

gi(x)< xi+1 = p ∑
x≥p

gi+1(x).

Thus

∑
x≥p

gi(x)< ∑
x≥p

gi+1(x), ∀p ∈ {xi+1, · · · ,xm},

whence gi+1 first-order stochastically dominates gi. By Shaked and Shanthikumar (2007,

Thm. 1.A.8), we conclude that

xi +u(xi) = ∑
x≥xi

xgi(x)< ∑
x≥xi+1

xgi+1(x) = xi+1 +u(xi+1).

In other words, xi +u(xi) is strictly increasing in i. The previous remark establishes:

Proposition 1. Along the Pareto frontier, increasing consumer surplus implies lowering so-

cial welfare.

A central insight of Bergemann, Brooks, and Morris (2015) is that, in a single-product

setting, market segmentation can be used as a tool to efficiently redistribute the gains from

trade. Proposition 1 shows that, contrastingly, when the number of products is large, effi-

ciently transferring surplus from the seller to the consumers through segmentation is infea-

sible. The broad idea is simple. Whereas in a single-product setting efficiency obtains as

long as trade occurs with probability 1, with product variety efficiency also requires each

consumer to buy one of the products that he values the most. When product variety is large,

the goal of achieving efficiency thus collides with that of inducing low prices. Along the

Pareto frontier, the transfer of surplus from seller to consumers is achieved by segmenting

the aggregate market in a way that leads the seller to occasionally offer products which do

not accurately fit consumers’ tastes.
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We next examine the link between consumer privacy and welfare. We formalize the

notion of privacy by building on Blackwell (1953). Specifically, we say that a market seg-

mentation τ ′ is finer than τ if there exists a function ξ : supp τ → ∆∆Xn such that, for every

µ ∈ supp τ ,

µ(v) = ∑
µ̃

ξ (µ̃ | µ)µ̃(v), ∀v ∈ Xn,

and

τ
′(µ̃) = ∑

µ

τ(µ)ξ (µ̃ | µ).

Intuitively, τ ′ is obtained by splitting every market µ comprised in the support of τ .10 The

market segmentation τ can thus be viewed as giving greater privacy to consumers than τ ′.

Giving consumers greater privacy evidently harms the seller. The effect of consumer

privacy on the welfare of consumers is a lot more complex. On the one hand, privacy prevents

the seller from extracting surplus through personalized prices. On the other hand, making

detailed information available to the seller enables the latter to improve the match quality

between consumers and products.

We now argue that if P′ = (π ′,u′) and P = (π,u) are two points on the Pareto frontier

such that u′ > u, then we can “move” from point P to P′ by giving consumers greater privacy.

Slightly more generally:

Proposition 2. Let (π,u) and (π ′,u′) be two points in S, with π ′ < π . For every n ∈

N, there exist market segmentations τn,τ
′
n, where τn is finer than τ ′n, and strategies ρn ∈

argmaxρ Πτn(ρ) as well as ρ ′
n ∈ argmaxρ Πτ ′n(ρ), such that

(
Πτn(ρn),Uτn(ρn)

)
−→
n→∞

(π,u) and
(
Πτ ′n(ρ

′
n),Uτ ′n(ρ

′
n)
)
−→
n→∞

(π ′,u′).

The proof of Proposition 2 rests on two basic ideas. Firstly, different market segmen-

tations typically lead the seller to offer different products. Secondly, for a given market

10Interpreting τ and τ ′ as distributions of posterior beliefs induced by Blackwell–experiments α and α ′,

respectively, our notion corresponds to α ′ being “sufficient” for α , one of several equivalent definitions of

“more informative” in Blackwell (1953).
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segmentation, the seller tends to offer the subset of products reagarding which the segmen-

tation is “most informative” (that is, with regard to which the market segmentation best

distinguishes consumers). Now suppose π ′ < π , and we want to find market segmentations

τ and τ ′ respectively generating surplus π and π ′ for the seller. Proceed as follows. Firstly,

partition the products in two subsets of equal size, say K1 and K2. Then construct τ ′ by sep-

arating consumers exclusively with respect to their valuations for the products in K1. Under

the market segmentation τ ′, the seller offers products in the subset K1 and obtains surplus π ′.

Finally, construct τ by splitting every market in the support of τ ′ according to consumers’

valuations for the products in K2. Under this finer market segmentation τ , the seller offers

products in the subset K2 and obtains surplus π > π ′.

5 Irrelevance of Price Discrimination

We say that a strategy ρ involves price discrimination if some product k is sold at different

prices depending on the market in which this product is offered.11

It is easy to see that price discrimination may strictly benefit the seller. For example,

suppose X = {x1,x2}, let τ be the market segmentation comprising 2n markets separating

consumers with different valuation vectors, and ρ∗ some strategy of the seller that is optimal

given τ . Now let µ− denote the market in the support of τ in which every consumer’s valua-

tion vector equals (x1, · · · ,x1), and µk the market in which every consumer values product k

at x2 and all other products at x1. Then any product offered by the seller in market µ− must

be sold at a price of x1, whence ρ∗
µ−(k,x1)> 0 for some product k ∈ {1, · · · ,n}. On the other

hand, the definition of the market µk implies ρ∗
µk(k,x2) = 1. So any strategy of the seller that

is optimal given τ∗ involves price discrimination.

We now argue that price discrimination is irrelevant for the characterization of feasible

surplus pairs in Theorem 1: in the limit, when the number of products grows without bound,

any surplus pair that is feasible at all is also feasible without price discrimination.

Formally, we say that a surplus pair (π,u) is feasible without price discrimination if

there exist a market segmentation τ , as well as a strategy ρ∗ ∈ argmaxρ Πτ(ρ), such that

11That is, formally, if there exist k, µ ̸= µ ′, and p ̸= p′ such that ρµ(k, p)> 0 and ρµ ′(k, p′)> 0.
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π = Πτ(ρ
∗), u = Uτ(ρ

∗), and ρ∗ does not price discriminate. The set of surplus pairs that

are feasible without price discrimination is denoted by S̃n.

Proposition 3. For every n∈N, the set S̃n of surplus pairs that are feasible without price dis-

crimination is contained in the set S. Moreover, for every (π,u) ∈ S, there exists a sequence(
(πn,un)

)
n∈N such that (πn,un) ∈ S̃n and (πn,un) −→

n→∞
(π,u).

Consider again the simple binary valuation setting examined above. We illustrate the

underlying idea of the proposition by showing that, as product variety becomes large, the

surplus pair (x2,0) maximizing the surplus of the seller can almost be attained without price

discrimination. To this end, let τ be the market segmentation with 2n−1 markets separating

consumers whose vectors of valuations differ in some other component than the first one, and

let µ− denote the market in the support of τ in which every consumer values all products

k ̸= 1 at x1. Now let ρ∗ be some strategy of the seller such that:

• in market µ−, the seller offers product 1 at a price of x1;

• in any other market µ contained in the support of τ , the seller offers at a price of x2

one of the products k ̸= 1 to which all consumers in the market µ attach value x2.

Notice that the strategy ρ∗ is optimal given τ ,12 and does not price discriminate. Further-

more, the proportion of consumers who belong to some market µ ̸= µ− approaches 1 as n

tends to infinity, whence
(
Πτ(ρ

∗),Uτ(ρ
∗)
)

approaches the surplus pair (x2,0).

More generally, Proposition 3 shows that product steering makes price discrimination

redundant when product variety is large.

6 Online Markets with Data Intermediaries

We have until now examined the implications of market segmentation in very general terms.

In particular, we have remained agnostic regarding the source of market segmentation. In

this section, we study market segmentation arising from the sale of consumer data by data

12In particular, the additional expository assumptions of the baseline model imply for X = {x1,x2} that

x1 > x2 f (x2), whence price x1 is optimal for product 1 in market µ−.
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intermediaries. By building on the analysis of the previous sections, we determine the impli-

cations of data markets for welfare and consumer privacy.

The setting is as follows. There are a seller with an inventory comprising n products, and

a unit-demand consumer. The consumer’s valuation for product k is denoted by Vk, and the

valuation vector by V = (V1, . . . ,Vn). These valuations are initially unknown to all parties;

the common prior probability assigned to V = v is given by µ̄(v), defined by (1).

The setting also comprises l ≥ 1 data intermediaries, each of whom chooses a data policy,

that is, a tuple (D,φ) where D is a set of signals and φ a mapping

φ : Xn → ∆D.

Under data policy (D,φ), the signal d ∈ D is drawn with probability φ(d | v) if the con-

sumer has valuation vector V = v. The signals of different data intermediaries are drawn

independently conditional on V.

There are two stages: Stage 1 describes the data market, and Stage 2 describes the product

market. The timeline is depicted in Figure 2.

Stage 1 (data market). First, every data intermediary j = 1, . . . , l chooses a data policy

(D j,φ j), as well as a fee t j at which it intends to sell the data d j generated by this policy.

Afterwards, the consumer selects a subset of data intermediaries, say J ⊆ {1, . . . , l},

comprising all data intermediaries receiving his consent. The seller then purchases

data from a subset of data intermediaries J∗ selected from the set J.

Stage 2 (product market). First, the valuation vector V is drawn from the distribution µ̄ .

Then, the signals of the data intermediaries j ∈ J∗ are drawn according to their data

policies. The seller observes these signals, and chooses which product to offer and at

what price. Lastly, the consumer decides whether to buy.

The payoff of a data intermediary is its revenue from selling data. If the consumer buys

the product offered by the seller, his payoff equals his valuation minus the price; otherwise

his payoff is zero. The payoff of the seller equals her revenue minus the cost ∑ j∈J∗ t j paid to

acquire data.
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Stage 1 (data market)

Each j
chooses

(D j,φ j), t j

Consumer
chooses J
(consent)

Seller
chooses J∗

(data purchase)

Stage 2 (product market)

Nature
draws

V,(d j)
J∗
j=1

Seller
observes (d j)

J∗
j=1;

chooses (k, p)

Consumer
buys or

not

Figure 2: Timeline

The solution concept is perfect Bayesian equilibrium, with two refinements: firstly, the

data intermediaries use pure strategies; secondly, the seller breaks ties in favor of the con-

sumer, both when purchasing data and when choosing a product-price combination.

6.1 Discussion of the Model

A key assumption of the model is that the data intermediaries must obtain the consent of

the consumer before selling information to the seller. This assumption is consistent with the

EU General Data Protection Regulation (Regulation (EU) 2016/679, Article 6), among other

things.

Our assumption that the data intermediaries sell information to the seller directly accords

with the business model of firms such as Acxiom, Nielsen, and Oracle, for example. On the

other hand, online platforms acting as data intermediaries, such as Google and Facebook, do

not sell information per se, but sell instead access to targeted consumer segments. To keep

the analysis focused, we disregard in this paper the distinction between direct and indirect

sale of information.13

The assumption that the data intermediaries know precisely the consumer’s valuation

vector evidently lacks realism, and merely ensures tractability. In particular, in practice one

of the gains from having multiple data intermediaries may be that different intermediaries

possess complementary information about consumers’ preferences. Such considerations are

beyond the scope of our analysis.

Finally, the model makes a number of technical assumptions. The assumption that a data

13See Federal Trade Commission (2014) and Bergemann and Bonatti (2019) for details about the various

business models of data intermediaries.
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intermediary simultaneously chooses its data policy and the fee at which it intends to sell its

data simplifies the structure of the game, but is irrelevant for our results. Our assumption that

the seller breaks ties in favor of the consumer ensures that each data market outcome at the

end of Stage 1 induces both a unique expected revenue for the seller and a unique expected

payoff for the consumer. Our focus on pure strategies circumvents possible miscoordination

among data intermediaries.

6.2 Data Intermediation and Welfare

We now characterize the equilibrium payoffs when the number of products is large.14

Define

u0 := ∑
x≥p0

f (x)(x− p);

intuitively, u0 captures the consumer surplus resulting from the market segmentation attach-

ing mass 1 to the aggregate market. Let also

πA := max
{

π ∈ [π0,xm] | u(π) = u0
}
.

To simplify the statement of the next proposition, we assume that the function u possesses

a unique maximizer in [π0,xm],15 which we denote by πB. Figure 3 illustrates the points

A=
(
πA,u(πA)

)
and B=

(
πB,u(πB)

)
in an example where X = {1,2,3,4,5,6,7} and π0 = 2.

Proposition 4. For every n ∈ N, fix some equilibrium. Let (πn,un)n∈N be the corresponding

combinations of expected revenue of the seller and expected payoff of the consumer. If l = 1,

then (πn,un) −→
n→∞

(
πA,u(πA)

)
; if l > 1, then (πn,un) −→

n→∞

(
πB,u(πB)

)
.

The proposition can be understood as follows. A monopolistic data intermediary (l =

1) fully extracts the seller’s gain from purchasing data. This results in a data policy that

maximizes the seller’s expected revenue, subject to the constraint that the consumer gives

his consent. By contrast, when the data market is competitive (l > 1), the implemented

14We omit a proof of the existence of an equilibrium. Lemma B1 in Section B of the Appendix implies

that both consumer-optimal and seller-optimal data policies exist. Based on this, it is straightforward to deduce

existence of an equilibrium.
15This is the case if ∑x≥xi gi(x)(x− xi) ̸= ∑x≥xi+1

gi+1(x)(x− xi+1) for all i = 1, . . . ,m−1.
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Figure 3: The welfare consequences of competition in the data market

payoff pair maximizes the consumer’s expected payoff, subject to the constraint that the

seller purchases the data.

We sketch here the main ideas of the proof. Every data market outcome at the end of

Stage 1 induces a market segmentation τ . In the current setting, τ(µ) represents the proba-

bility that the seller’s posterior belief concerning the consumer’s valuations (after observing

the signals) is equal to µ . Thus, every data market outcome induces an expected revenue

πn for the seller, and an expected payoff un for the consumer, such that (πn,un) belongs to

the set Sn of feasible surplus pairs defined in Section 2.16 We then prove that Sn satisfies a

number of properties which enable us to pin down both the expected revenue of the seller and

the expected payoff of the consumer in any equilibrium. Finally, an application of Theorem

1 yields the convergences stated in Proposition 4.

Note that combining Propositions 1 and 4 shows that competition in the data market

benefits consumers at the cost of a loss in social welfare. Specifically, while competition in

the data market helps to reduce prices in the product market, it also results in lower match

quality between consumers and products.

6.3 Data Intermediation and Consumer Privacy

We saw in the previous subsection that competition in the data market increased consumer

surplus along the Pareto frontier (Proposition 4). On the other hand, we saw in Section 4

that, along the Pareto frontier, greater consumer surplus was compatible with more privacy

16Specifically, (πn,un) belongs to the subset of Sn that consists of the surplus pairs which are consistent

with the seller breaking ties in favor of the consumer.
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Figure 4: Illustration of equilibrium data policies, assuming x1 = 1, x2 = 2, f (x2) = 1/4.

Horizontal axis: probability Pr[vk∗ = x2]; vertical axis: consumer’s expected payoff.

(Proposition 2). We now combine these insights to show that competition in the data market

ultimately benefits consumers by giving them more privacy. We assume here that valuations

are binary (X = {x1,x2}), which will allow us to characterize equilibrium data policies.

We first illustrate the general idea by way of an example in which x1 = 1, x2 = 2, and

f (x2) = 1/4. As x1 > x2 f (x2), in the absence of any data the seller offers an arbitrary product

at a price of x1. The probability that the consumer’s valuation for the offered product is equal

to x2 is then f (x2). The seller thus obtains a payoff of 1, while the consumer obtains an

expected payoff equal to

f (x2)(x2 − x1) =
1
4
.

Figure 4, Panel (a), illustrates the equilibrium in the case of a monopolistic data interme-

diary. In order to enable the seller to increase her revenue, the data intermediary identifies,

with probability 1/2, a product for which the consumer’s valuation is x2. With the remaining

probability, the data intermediary identifies a product to which the consumer is equally likely

to attach value x1 or x2. In the latter case, the seller offers said product at a price of x1, leav-

ing the consumer with a surplus of (x2 − x1) every time his valuation is x2. The consumer

thus obtains an expected payoff of

1
2
· 1

2
(x2 − x1) =

1
4
,

making him indifferent between consenting to the policy or not. The seller, on the other
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hand, obtains an expected revenue equal to

1
2

x1 +
1
2

x2 =
3
2
,

allowing the monopolistic data intermediary to extract 1/2 through the ex ante fee.

Figure 4, Panel (b), illustrates the equilibrium in the case of a competitive data market.

Competition among data intermediaries results in the consumer’s most-preferred data policy.

This data policy identifies with probability 1 a product to which the consumer is equally

likely to attach value x1 or x2 (and, thus, transmits less information than the data policy of

a monopolistic data intermediary). The seller offers said product at a price of x1, giving the

consumer an expected payoff of
1
2
(x2 − x1) =

1
2
.

In order to generalize the previous example, we rank the privacy afforded by different

data policies according to Blackwell–informativeness. A data policy (D,φ) is more informa-

tive than another data policy (D′,φ ′) if there exists a function σ : D → ∆D′ such that

φ
′(d′ | v) = ∑

d∈D
φ(d | v)σ(d′ | d), ∀d′ ∈ D′,∀v ∈ Xn.

Thus, (D′,φ ′) is a garbled version of (D,φ). Below, say that the seller purchases data given

by (D,φ) if in Stage 1 the seller purchases data from a single data intermediary, say j, and

(D j,φ j) = (D,φ).

Proposition 5. Let X = {x1,x2}. Fix l′ ∈ N with l′ > 1, and n ∈ N with n ≥ (ln f (x2)+

ln(x2−x1)− lnx1)/ ln f (x1). There exist two data policies, (D,φ) and (D′,φ ′), as well as an

equilibrium for l = 1 and an equilibrium for l = l′, such that:

• (D,φ) is more informative than (D′,φ ′);

• in the equilibrium for l = 1, the seller purchases data given by (D,φ);

• in the equilibrium for l = l′, the seller purchases data given by (D′,φ ′);

• the expected payoff of the consumer is greater in the equilibrium for l = l′ than in the

equilibrium for l = 1.

Proposition 5 thus formalizes the idea that competition in the data market benefits con-

sumers by giving them more privacy.
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7 Conclusion

We have studied the welfare consequences of market segmentation in a multi-product monopoly.

Our central result is an approximation of the feasible producer-consumer surplus pairs when

product variety is large. This characterization revealed a trade-off between consumer surplus

and social welfare. We also showed that, when product variety is large, price discrimination

has no role to play. Specifically, product steering makes price discrimination redundant.

Finally, we have shown that greater consumer surplus is compatible with more privacy. In

particular, along the Pareto frontier, increasing consumer surplus can be achieved by giving

consumers greater privacy. We applied our results to study market segmentation arising from

the sale of consumer data by data intermediaries, and showed that competition in the data

market can give consumers both greater surplus and greater privacy.
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Appendix

A Omitted Proofs for Sections 3–5

Proof of Lemma 2. Since τ is the product of (τk)n
k=1, notice that µ ∈ supp τ if and only if

(6) holds and µk ∈ supp τk for every k. Then, using (6), (7), and (8) gives

∑
µ

τ(µ)µ(v) = ∑
µ1∈supp τ1,

··· ,
µn∈supp τn

∏
k

τ
k(µk)µk(vk)

= ∏
k

 ∑
µk∈supp τk

τ
k(µk)µk(vk)


= ∏

k
f (vk) = µ̄(v),

for all v ∈ Xn.

Proof of Proposition 2. We will use the following lemma. Its proof is analogous to the

proof of Lemma 2, and therefore omitted.

Lemma A1. For every k ∈ {1, . . . ,n}, let τk ∈ ∆X and ξ k : ∆X → ∆∆X satisfy

∑
µk

τ
k(µk)µk(x) = f (x), ∀x ∈ X ,

∑
µ̃k

ξ
k(µ̃k | µk)µ̃k(x) = µk(x), ∀x ∈ X ,∀µk ∈ ∆X .

Define ⟨τk,ξ k⟩ ∈ ∆X by

⟨τk,ξ k⟩(µ̃k) = ∑
µk

τ
k(µk)ξ

k(µ̃k | µk), ∀µ̃k ∈ ∆X . (A.1)

Let τ be the product of (τk)n
k=1, and τ̂ be the product of (⟨τk,ξ k⟩)n

k=1. Then both τ and τ̂ are

market segmentations, and τ̂ is finer than τ .

We can now prove the proposition. We treat below the case (π,u) = (xi,u(xi)) and

(π ′,u′) = (x j,u(x j)) with xi,x j ∈ X and xi < x j; the proof for the remaining cases is sim-

ilar, and therefore omitted.
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Let λi ∈ (0,1), and define hi ∈ ∆X by

hi(x) :=
f (x)−λigi(x)

1−λi
,

as in the proof of Lemma 3. Moreover, let λ j ∈ (0,1), and define h j ∈ ∆X analogously.

Next, for n > 1, define τk
n ∈ ∆∆X by

τ
k
n(gi) = λi = 1− τ

k
n(hi), ∀k ∈ {1, . . . ,n÷2}

(where ÷ denotes division with remainder), and

τ
k
n( f ) = 1, ∀k ∈ {(n÷2)+1, . . . ,n}.

Moreover, define ξ k
n : ∆X → ∆∆X by

ξ
k
n (g j | f ) = λ j = 1−ξ

k
n (h j | f ), ∀k ∈ {(n÷2)+1, . . . ,n},

and ξ k
n (µk | µk) = 1 if k ∈ {1, . . . ,n÷2} or µk ̸= f . Lastly, let τn be the product of (τk

n)
n
k=1,

and τ̂n the product of (⟨τk
n ,ξ

k
n ⟩)n

k=1, where ⟨τk
n ,ξ

k
n ⟩ was defined in (A.1). By Lemma A1,

both τn and τ̂n are market segmentations, and τ̂n is finer than τn.

Every market µ in the support of τn satisfies µk ∈ {gi,hi} for all k ∈ {1, . . . ,n÷2}, and

µk = f for all k ∈ {(n÷2)+1, . . . ,n}. By (12), there exists a strategy ρn ∈ argmaxρ Πτn(ρ)

with the following property:

For every market µ ∈ supp τn satisfying µk = gi for some k ∈ {1, . . . ,n÷ 2},

offer a product k for which µk = gi at a price of xi.

Because the probability that µk = gi for some k ∈ {1, . . . ,n÷ 2} is 1− (1− λi)
n÷2, which

tends to 1 as n grows without bound, it holds that

lim
n→∞

Πτn(ρn) = lim
n→∞

(1− (1−λi)
n÷2)xi,

lim
n→∞

Uτn(ρn) = lim
n→∞

(1− (1−λi)
n÷2) ∑

x≥xi

gi(x)(x− xi).

Consequently,

lim
n→∞

(
Πτn(ρn),Uτn(ρn)

)
=
(
xi,u(xi)

)
.

Every market µ in the support of τ̂n satisfies µk ∈ {gi,hi} for all k ∈ {1, . . . ,n÷2}, and

µk ∈ {g j,h j} for all k ∈ {(n÷2)+1, . . . ,n}. By (12), and since x j > xi, there exists a strategy

ρ̂n ∈ argmaxρ Πτ̂n(ρ) with the following property:
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For every market µ ∈ supp τ̂n satisfying µk = g j for some k∈{(n÷2)+1, . . . ,n},

offer a product k for which µk = g j at a price of x j.

Then, as above,

lim
n→∞

(
Πτ̂n(ρ̂n),Uτ̂n(ρ̂n)

)
=
(
x j,u(x j)

)
.

Proof of Proposition 3. The first part of the proposition follows from Theorem 1 because

S̃n ⊆ Sn.

We next prove the second part. We treat below the case π = xi ∈ X and u = ζ u(xi), where

ζ ∈ [0,1]; the proof for the remaining case is similar, and therefore omitted.

Let λ ∈ (0,1), and let h ∈ ∆X be given by (10). We claim that

xi ≥ π0 ≥ max
p

p ∑
x≥p

h(x). (A.2)

The first inequality holds because (π,u) ∈ S. We next show the second inequality. For all

p ≤ xi,

π0 ≥ p ∑
x≥p

f (x) = λ p ∑
x≥p

gi(x)+(1−λ )p ∑
x≥p

h(x) = λ p+(1−λ )p ∑
x≥p

h(x).

Hence, (1−λ )p∑x≥p f (x)≥ p∑x≥p f (x)−λ p = (1−λ )p∑x≥p h(x). For all p > xi,

π0 ≥ p ∑
x≥p

f (x) = λ p ∑
x≥p

gi(x)+(1−λ )p ∑
x≥p

h(x) = λxi +(1−λ )p ∑
x≥p

h(x).

In either case, we obtain π0 ≥ p∑x≥p h(x), which finishes to prove (A.2).

Next, let Kxi and Kxm be two disjoint subsets of {1, · · · ,n}, each containing (n− 1)÷ 2

elements (where ÷ denotes division with remainder). Let k0 ∈ {1, · · · ,n}\ (Kxi ∪Kxm). For

each p ∈ {xi,xm}, define τ
p
k ∈ ∆∆X by

τ
p
k (gi) = λ = 1− τ

p
k (h), ∀k ∈ K p,

and

τ
p
k ( f ) = 1, ∀k ∈ {1, . . . ,n}\K p.

Lastly, let τ p be the product of (τ p
k )

n
k=1. By coupling (11) with Lemma 2, notice that τ p is a

market segmentation. Consequently, the mixture

τ := ζ τ
xi +(1−ζ )τxm
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is a market segmentation too.

Each market µ in the support of τ satisfies exactly one of the following conditions:

(a) µk = gi for some k ∈ Kxi;

(b) µk = gi for some k ∈ Kxm;

(c) µk ∈ {h, f} for all k ∈ Kxi ∪Kxm .

Now let ρ be a strategy of the seller with the following properties:

• for every market µ ∈ supp τ satisfying (a), offer one of the products k ∈ Kxi for which

µk = gi at a price of xi;

• for every market µ ∈ supp τ satisfying (b), offer one of the products k ∈ Kxm for which

µk = gi at a price of xm;

• for every market µ ∈ supp τ satisfying (c), offer product k0 at price p0.

By (A.2), the strategy ρ is optimal given τ . Furthermore, note that ρ does not price discrim-

inate: the products in Kxi (respectively, Kxm) are always offered at a price of xi (respectively,

xm), and product k0 is always offered at price p0.

The resulting surplus of the seller is

πn := Πτ(ρ) =
(
1− (1−λ )(n−1)÷2)xi +(1−λ )(n−1)÷2

π0;

the consumer surplus is

un :=Uτ(ρ) = ζ
(
1− (1−λ )(n−1)÷2)

∑
x≥xi

gi(x)(x− xi)+(1−λ )(n−1)÷2
∑

x≥p0

f (x)(x− p0).

So (πn,un) ∈ S̃n, and as λ > 0,

(πn,un) −→
n→∞

(
xi,ζ u(xi)

)
.

B Proofs for Section 6

The proofs of Propositions 4 and 5 build on a characterization of the expected revenues of the

seller and the expected payoffs of the consumer that can result from arbitrary data policies.

We state this characterization in the following subsection.
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B.1 Preliminaries

Every data policy induces a distribution τ ∈ ∆∆Xn of posterior beliefs µ ∈ ∆Xn; furthermore,

this τ is a market segmentation. Conversely: every market segmentation τ is the distribution

of posterior beliefs induced by some data policy (see Kamenica and Gentzkow, 2011).

Next, the profile of data policies
(
(D j,φ j)

)
j∈J∗ has the same informational content as the

“aggregate” data policy (D′,φ ′) with D′ = ∏ j∈J D j and φ ′ given by

φ
′((d j) j∈J∗ | v

)
= ∏

j∈J
φ j(d j | v).

Hence, we can represent any profile of data policies by a single data policy.

Combining the previous observations shows that every data market outcome at the end

of Stage 1 induces a subgame in Stage 2 in which the seller obtains an expected revenue πn

and the consumer obtains an expected payoff un such that (πn,un) belongs to the set Sn of

feasible surplus pairs defined in Section 2. In fact, since here the seller breaks ties in favor of

the consumer, the previous payoffs are uniquely pinned down by the aggregate data policy

(D′,φ ′). We thus say that (D′,φ ′) implements (πn,un). The set of pairs (π,u) which can be

implemented by some data policy (D′,φ ′) will be denoted by Ŝn.

The following two lemmas provide a characterization of the set Ŝn. Their proofs are

relegated to Section OA.1 of the Online Appendix.

Lemma B1. Define πmax
n := ∑v µ̄(v)maxk vk. For every n ∈ N, it holds that:

a)
{

π ∈ R | there exists u ∈ R s.t. (π,u) ∈ Ŝn
}
= [π0,π

max
n ];

b)
{

u ∈ R | (π,u) ∈ Ŝn
}

has a greatest element un(π) for every π ∈ [π0,π
max
n ];

c) un : [π0,π
max
n ]→ R is concave and continuous, and un(π

max
n ) = 0.

Lemma B2. For every n ∈ N, Ŝn ⊆ S. Moreover, for every (π,u(π)) ∈ S, there exists a

sequence
(
(πn,un)

)
n∈N such that (πn,un) ∈ Ŝn and (πn,un) −→

n→∞
(π,u(π)).

B.2 Proofs of Propositions 4 and 5

Proof of Proposition 4. We abbreviate “data intermediary” to “DI”.
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(i) Suppose there is a single DI. Fix some n ∈ N. In every perfect Bayesian equilibrium,

the consumer’s expected payoff is at least u0, which the consumer obtains if he does not give

consent to the proposed data policy. Hence, the seller’s expected gross payoff is at most

max
{

π ∈ R | there exists u ≥ u0 s.t. (π,u) ∈ Ŝn
}
.

By Lemma B1, the maximum exists and is equal to

π
∗
n := max

{
π ∈ [π0,π

max
n ] | un(π) = u0

}
.

In every perfect Bayesian equilibrium, the DI chooses fee π∗
n − π0 and a data policy that

implements (π∗
n ,u0), the consumer consents, and the seller purchases the data.

It remains to show that limn→∞ π∗
n = πA. There are two cases. Case (i): πA coincides with

πB, the unique maximizer of u. Then u(πB) = u(πA) = u0, which implies π∗
n = πB = πA = π0

for all n and hence limn→∞ π∗
n = πA. Case (ii): πA ̸= πB. Then u is strictly decreasing at

πA. By the second part of Lemma B2, we can find n ∈ N such that (π,u) ∈ Ŝn with π

in any neighborhood of πA and u > u(πA) = u0. Consequently, liminfn→∞ π∗
n ≥ πA. On

the other hand, limsupn→∞ π∗
n ≤ πA because Ŝn ⊆ H by the first part of Lemma B2. Thus,

limn→∞ π∗
n = πA

(ii) Suppose there is more than one DI. Fix some n ∈ N. First, we show that the con-

sumer’s expected payoff in every perfect Bayesian equilibrium is equal to

max
{

u ∈ R | there exists π ∈ R s.t. (π,u) ∈ Ŝn
}
.

By Lemma B1, the maximum exists and is

u∗n := max
{

un(π) | π ∈ [π0,π
max
n ]

}
.

By contradiction, suppose the consumer’s expected payoff in some perfect Bayesian

equilibrium is u < u∗n. Let π be the seller’s expected revenue in this equilibrium. Then,

the sum of the expected payoffs of the DIs is at most π −π0. Consequently, there exists a

DI j whose expected payoff is strictly smaller than (π −π0)/2. By Lemma B1, part c), we

can find
(
π ′,un(π

′)
)
∈ Ŝn with π ′ > (π +π0)/2 and un(π

′) > u. Suppose DI j chooses fee

π ′−π0 and a data policy that implements
(
π ′,un(π

′)
)
. We show that the consumer would

give consent to j, and the seller would purchase j’s data.
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Indeed, if the consumer gives consent to DI j alone, then the seller must purchase j’s data,

given our equilibrium restriction that the seller breaks ties in favor of the consumer when

purchasing data. The consumer’s expected payoff is then un(π
′)> u. Suppose the consumer

gives consent to a subset of DIs not including j. This choice was also possible when j did not

deviate, and it would have resulted in the same expected payoff for the consumer. Hence, the

consumer’s expected payoff is at most u < un(π
′) in this case. Suppose finally the consumer

gives consent to a subset J of DIs that includes j. If the seller then does not purchase j’s

data, the consumer’s expected payoff is the same as if he gives consent just to the DIs J \{ j}.

Thus, if DI j chooses chooses fee π ′−π0 and a data policy that implements
(
π ′,un(π

′)
)
,

the consumer consents and the seller purchases the data. With this deviation, j’s payoff is

π ′−π0 > (π −π0)/2, contradicting the hypothesis that j earns (π −π0)/2 in equilibrium.

Hence, the consumer obtains u = u∗n in every perfect Bayesian equilibrium.

Choose π̂n ∈ [π0,π
max
n ] such that un(π̂n)= u∗n. We show limn→∞(π̂n,u(π̂n))= (πB,u(πB)).

Because πB is the unique maximizer of u, un(π̂n) ≤ u(πB) by the first part of Lemma B2.

Hence, limsupn→∞ un(π̂n) ≤ u(πB). By the second part of Lemma B2, liminfn→∞ un(π̂n) ≥

u(πB). Thus, limn→∞ un(π̂n) = u(πB). By contradiction, suppose liminfn→∞ π̂n = π ′ < πB

or limsupn→∞ π̂n = π ′ > πA. Then, un(π
′)≤ u(π ′)< u(πB), contradicting limn→∞ un(π̂n) =

u(πB). Thus, limn→∞ π̂n = πB.

Proof of Proposition 5. Note that for X = {x1,x2}, the assumption p0 ∈ X implies π0 =

p0 = x1. Thus, x1 > f (x2)x2. Moreover, u0 = f (x2)(x2 − x1), and

u(π) =
x2 −π

x2 − x1

x1

x2
(x2 − x1), ∀π ∈ [x1,x2]. (B.1)

Lastly, the hypothesis

n ≥ ln f (x2)+ ln(x2 − x1)− lnx1

ln f (x1)

implies

( f (x1))
n ≤ f (x2)

x2 − x1

x1
. (B.2)

The proof consists of three steps.

Step 1: an equilibrium for l = 1. Suppose l = 1. If the data intermediary proposes

a data policy that implements (π,u), it is optimal for the consumer to give his consent if

u ≥ u0, and it is optimal for the seller to purchase the data if the fee is at most π −π0.
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By Lemma B2, the set of (π,u) that can be implemented by some data policy is com-

prised in the set S. Furthermore,
(
πA,u(πA)

)
maximizes the seller’s expected revenue among

all points in S giving the consumer an expected payoff at least as large as u0. Therefore, if

some data policy (D,φ) implements
(
πA,u(πA)

)
, then an equilibrium exists in which the

data intermediary proposes (D,φ) at fee πA − π0, the consumer gives his consent, and the

seller purchases the data.

We now show that some data policy implements
(
πA,u(πA)

)
. For future reference, note

that (B.1) combined with u(πA) = u0 yield

πA = x2 − f (x2)
x2 − x1

x1
x2.

Consider the data policy (D,φ), where D = {1, . . . ,n}×X and φ is defined as follows.

With probability
πA/x2 − f (x2)

1− ( f (x1))n − f (x2)
,

the first component of the signal is drawn uniformly at random from the set argmaxk′ vk′; by

(B.2), this number is between zero and one. With the remaining probability, the first compo-

nent of the signal is drawn uniformly at random from {1, . . . ,n}. Thus, the first component

displays with some noise a product for which the consumer has the highest valuation across

all products. Based on this information, the posterior probability that vk = x2 when k is

displayed is

πA/x2 − f (x2)

1− ( f (x1))n − f (x2)
(1− ( f (x1))

n)+

(
1− πA/x2 − f (x2)

1− ( f (x1))n − f (x2)

)
f (x2) =

πA

x2
.

If the first component of the signal is k and vk = x2, then the second component is x = x2

with probability
πA − x1

x2 − x1

x2

πA
,

and x = x1 with the remaining probability. If vk = x1, on the other hand, then x = x1 with

probability one. Thus, the second component potentially reveals the consumer’s valuation

for the displayed product k if the valuation is equal to x2. The posterior probability that

vk = x2 based on the two components of the signal is one if x = x2, and

πA

x2

(
1− πA − x1

x2 − x1

x2

πA

)/(
1− πA

x2

πA − x1

x2 − x1

x2

πA

)
=

x1

x2
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if x = x1.

After signal d = (k,x2), the seller knows for sure that she can sell product k at price x2;

doing this is optimal. After signal d = (k,x1), the posterior probability that vk = x2 is x1/x2.

For any product k′ ̸= k, by contrast, the posterior probability that vk′ = x2 is bounded by

the prior probability f (x2)< x1/x2 because k′ may not belong to the products for which the

consumer’s valuation is the highest among all products. Hence, it is again optimal to offer

product k. Furthermore, x1 is an optimal price because x1 = x1/x2 · x2.

The signals d ∈ {(1,x1), . . . ,(n,x1)} have total probability

1− πA

x2

πA − x1

x2 − x1

x2

πA
=

x2 −πA

x2 − x1
.

Consequently, the expected revenue of the seller is

x2 −πA

x2 − x1
x1 +

(
1− x2 −πA

x2 − x1

)
x2 = πA,

and the expected payoff of the consumer is

x2 −πA

x2 − x1

x1

x2
(x2 − x1) = u(πA).

Thus, (D,φ) implements
(
πA,u(πA)

)
.

Step 2: an equilibrium for l = l′. Suppose l = l′. In S, the consumer’s expected payoff

is maximized at
(
πB,u(πB)

)
=
(
x1,u(x1)

)
. Suppose there exists a data policy (D′,φ ′) that

implements
(
x1,u(x1)

)
. Then, there exists an equilibrium in which every data intermediary

proposes (D′,φ ′), along with a fee of zero, the consumer gives his consent to exactly one

intermediary, selected uniformly at random, and the seller purchases its data. To see this,

note that the seller is indifferent whether to purchase the data, and the consumer cannot

benefit by giving his consent to more than one intermediary. If an intermediary deviates to a

data policy that does not implement
(
x1,u(x1)

)
, it would not be optimal for the consumer to

give his consent to this intermediary, and at any fee strictly greater than zero the seller would

not purchase the data.

We present a data policy that implements
(
x1,u(x1)

)
. Consider the data policy (D′,φ ′),

where D′ = {1, . . . ,n}. With probability

x1/x2 − f (x2)

1− ( f (x1))n − f (x2)
,
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the signal is drawn uniformly at random from the set argmaxk′ vk′; this is a number between

zero and one by (B.2) and because x1 > f (x2)x2. With the remaining probability, the signal

is drawn uniformly at random from {1, · · · ,n}.

When (D′,φ ′) displays signal d′ = k, the posterior probability that vk = x2 is

x1/x2 − f (x2)

1− ( f (x1))n − f (x2)
(1− ( f (x1))

n)+

(
1− x1/x2 − f (x2)

1− ( f (x1))n − f (x2)

)
f (x2) =

x1

x2
.

For any product k′ ̸= k, by contrast, the posterior probability that vk′ = x2 is bounded by

the prior probability f (x2)< x1/x2 because k′ may not belong to the products for which the

consumer’s valuation is the highest among all products. Hence, it is optimal to offer product

k, and x1 is an optimal price.

Consequently, the expected revenue of the seller is x1. The expected payoff of the con-

sumer is
x1

x2
(x2 − x1) = u(x1).

Thus, (D′,φ ′) implements
(
x1,u(x1)

)
.

Step 3: (D,φ) is more informative than (D′,φ ′). For every (k,x) ∈ D, define σ( · |

(k,x)) ∈ ∆D′ as follows. With probability

x1/x2 − f (x2)

πA/x2 − f (x2)
,

σ( · | (k,x)) draws k. With the remaining probability, σ( · | (k,x)) draws k′ uniformly at

random from D′. Then,

φ
′(d′ | v) = ∑

d∈D
φ(d | v)σ(d′ | d), ∀d′ ∈ D′,∀v ∈ X ,

so (D,φ) is more informative than (D′,φ ′).
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Online Appendix

The Online Appendix contains the proofs of Lemmas B1 and B2 (Section OA.1) and ex-

tends Theorem 1 to correlated valuations (Section OA.2) and continuous valuations (Section

OA.3).

OA.1 Proofs of Lemmas B1 and B2

To prove the lemmas, we first provide a formal statement of the set Ŝn. We will use the

generic notation ρ for the restriction of the seller’s strategy to the problem of choosing, for

each posterior belief µ , which product to offer and at what price, analogous to Section 2.

We call ρ a strategy for short. Given a market segmentation τ and a strategy ρ , the expected

gross payoff of the seller is Πτ(ρ) and the expected payoff of the consumer is Uτ(ρ). We

defined these expected payoffs in Section 2.

For convenience, we define ρ on the entire set of posterior beliefs ∆Xn, rather than just for

the beliefs that have positive probability under the relevant market segmentation. A strategy

ρ is optimal for the seller if

∀µ ∈ ∆Xn : (k∗, p∗) ∈ supp ρµ =⇒ (k∗, p∗) ∈ argmax
(k,p)

p ∑
x≥p

µk(x), (OA.1)

and it breaks ties in favor of the consumer if furthermore

(k′, p′) ∈ argmax
(k,p)

p ∑
x≥p

µk(x) =⇒ ∑
x≥p∗

µk∗(x)(x− p∗)≥ ∑
x≥p′

µk′(x)(x− p′). (OA.2)

Thus,

Ŝn =
{(

Πτ(ρ),Uτ(ρ)
)
| ρ satisfies (OA.1) and (OA.2)

}
.

Proof of Lemma B1. a) We first show that Ŝn is convex. Let (π ′,u′) ∈ Ŝn and (π ′′,u′′) ∈ Ŝn.

Thus, there exist market segmentations τ ′,τ ′′ ∈ ∆∆Xn, and strategies ρ ′,ρ ′′ that satisfy

(OA.1) and (OA.2), such that
(
Πτ ′(ρ

′),Uτ ′(ρ
′)
)
= (π ′,u′) as well as

(
Πτ ′′(ρ

′′),Uτ ′′(ρ
′′)
)
=

(π ′′,u′′). Then for λ ∈ (0,1), the mixture τ = λτ ′+(1−λ )τ ′′ is another market segmen-

tation, and
(
Πτ(ρ

′),Uτ(ρ
′)
)
=
(
Πτ(ρ

′′),Uτ(ρ
′′)
)
= λ (π ′,u′)+(1−λ )(π ′′,u′′). Thus, Ŝn is

convex.
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Next, we show that
{

π ∈ R | there exists u ∈ R s.t. (π,u) ∈ Ŝn
}
⊆ [π0,π

max
n ]. Let τ be

any market segmentation and ρ any optimal strategy. Then

Πτ(ρ) = ∑
µ

τ(µ)max
(k,p)

p ∑
x≥p

µk(x)

and, letting k′ be any product, we obtain

Πτ(ρ)≥ p0 ∑
x≥p0

∑
µ

τ(µ)µk′(x) = p0 ∑
x≥p0

f (x) = π0,

and

Πτ(ρ)≤ ∑
µ

τ(µ)∑
v

µ(v)max
k

vk = ∑
v

µ̄(v)max
k

vk = π
max
n .

Now, let τ be such that τ(µ̄) = 1. Then, Πτ(ρ) = π0 if ρ is optimal. Let τ ′ be the

market segmentation that is supported on the Dirac measures of ∆Xn. That is, supp τ ′ ={
δ v ∈ ∆Xn | v ∈ Xn}, where δ v assigns probability 1 to v ∈ Xn, and τ ′(δ v) = µ̄(v). Then,

max(k,p) p∑x≥p δ v
k (x) = maxk vk, implying Πτ ′(ρ) = πmax

n at an optimal ρ . Part a) now

follows, as Ŝn is convex.

b) We start with preliminaries. Define on ∆Xn×{1, · · · ,n}×X the functions (µ,k, p) 7→

p∑x≥p µk(x) and (µ,k, p) 7→ ∑x≥p µk(x)(x − p). For fixed (k, p), µ 7→ p∑x≥p µk(x) and

µ 7→ ∑x≥p µk(x)(x − p) are continuous. Because {1, · · · ,n} × X is finite, it follows that

(µ,k, p) 7→ p∑x≥p µk(x) and (µ,k, p) 7→ ∑x≥p µk(x)(x− p) are continuous. Define the value

function a : ∆Xn → R by

a(µ) := max
(k,p)∈{1,··· ,n}×X

p ∑
x≥p

µk(x),

and the correspondence φ : ∆Xn ⇒ {1, · · · ,n}×X of maximizers by

φ(µ) :=
{
(k, p) ∈ {1, · · · ,n}×X | p ∑

x≥p
µk(x) = a(µ)

}
.

By the continuity of (µ,k, p) 7→ p∑x≥p µk(x), the Maximum Theorem (Aliprantis and Bor-

der, 2006, Thm. 17.31) implies that a is continuous and φ upper hemicontinuous with

nonempty compact values. Moreover, define the value function b : ∆Xn → R by

b(µ) := max
(k,p)∈φ(µ)

∑
x≥p

µk(x)(x− p).
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As (µ,k, p) 7→ ∑x≥p µk(x)(x− p) is continuous and φ upper hemicontinuous with nonempty

compact values, b is upper semicontinuous (see Aliprantis and Border, 2006, Lem. 17.30).

If τ is a market segmentation and ρ a strategy that satisfies (OA.1) and (OA.2), then

Πτ(ρ) = ∑
µ

τ(µ)a(µ) and Uτ(ρ) = ∑
µ

τ(µ)b(µ).

Fix some π ∈ [π0,π
max
n ] for the rest of the proof. The problem of finding a greatest element in{

u∈R | (π,u)∈ Ŝn
}

can be stated as maximzing ∑µ τ(µ)b(µ) over all market segmentations

τ such that ∑µ τ(µ)a(µ) = π .

We momentarily enlarge the choice set of this problem so as to obtain a compact set. Let

∆̃∆Xn be the set of all Borel probability measures ζ on ∆Xn.17 Let Z ⊂ ∆̃∆Xn be the subset

of probability measures ζ that average to the prior belief µ̄ ,∫
µ(v)dζ (µ) = µ̄(v), ∀v ∈ Xn. (OA.3)

We endow ∆̃∆Xn with the weak* topology. Because ∆Xn is compact and metrizable, the

space ∆̃∆Xn is compact (see Aliprantis and Border, 2006, Thm. 15.11). Being a closed

subset, it follows that Z is compact. By the continuity of a, ζ 7→
∫

a(µ)dζ (µ) is continuous.

Hence,
{

ζ ∈ Z |
∫

a(µ)dζ (µ) = π
}

is compact. Furthermore, by the upper semicontinuity of

b, ζ 7→
∫

b(µ)dζ (µ) is upper semicontinuous (see Aliprantis and Border, 2006, Thm. 15.5).

It follows that there exists a maximizer ζ ∗ for the problem

max
ζ∈Z

∫
b(µ)dζ (µ) s.t.

∫
a(µ)dζ (µ) = π.

It remains to show that there exists a market segmentation τ ∈ ∆∆Xn such that

∑
µ

τ(µ)b(µ) =
∫

b(µ)dζ
∗(µ) and ∑

µ

τ(µ)a(µ) = π. (OA.4)

The tuple
(
µ̄,π,

∫
b(µ)dζ ∗(µ)

)
lies in the convex hull of{

(µ,r1,r2) ∈ ∆Xn ×R2 | (r1,r2) =
(
a(µ),b(µ)

)}
.

Because the dimension of this set is finite, Caratheodory’s Theorem allows us to express(
µ̄,π,

∫
b(µ)dζ ∗(µ)

)
as a convex combination of finitely many elements. Denote a generic

17Thus, in contrast to τ ∈ ∆∆Xn, the support of ζ ∈ ∆̃∆Xn need not be finite.
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such element by (µy,ry
1,r

y
2), and let zy > 0 be the corresponding weight. Then, τ∗ ∈ ∆∆Xn

with τ∗(µy) = zy is a market segmentation at which (OA.4) holds.

c) The concavity of un follows from the convexity of Ŝn, which we showed in the proof of

part a). Being concave, un is continuous at every π ∈ (π0,π
max
n ), and limπ→π0 un(π)≥ un(π0)

and limπ→πmax
n un(π) ≥ un(π

max
n ). It only remains to show that these weak inequalities hold

with equality and that un(π
max
n ) = 0.

By contradiction, suppose limπ→π0 un(π) > un(π0). We use again the notation from the

proof of part b). Let (πs)s∈N be a sequence with πs > π0 for all s and lims→∞ πs = π0. Let

ρ be a strategy that satisfies (OA.1) and (OA.2), and let (τs)s∈N be a sequence of market

segmentations such that Πτs(ρ) = πs and Uτs(ρ) = un(π
s) for all s. Then, τs ∈ Z for all s.

As Z is compact and metrizable (see Aliprantis and Border, 2006, Thm. 15.11), there exists a

subsequence
(
τs(t))

t∈N that converges to some ζ ′ ∈Z. By the continuity of ζ 7→
∫

a(µ)dζ (µ)

and the upper semicontinuity of ζ 7→
∫

b(µ)dζ (µ),

π0 = lim
t→∞

Π
τs(t)(ρ) = lim

t→∞
∑
µ

τ
s(t)(µ)a(µ) =

∫
a(µ)dζ

′(µ),

limsup
t→∞

U
τs(t)(ρ) = limsup

t→∞
∑
µ

τ
s(t)(µ)b(µ)≤

∫
b(µ)dζ

′(µ)≤ un(π0).

As in the proof of part b), there exists a market segmentation τ such that ∑µ τ(µ)a(µ) = π0

and ∑µ τ(µ)b(µ) =
∫

b(µ)dζ ′(µ). This yields a contradiction to limπ→π0 un(π) > un(π0).

Hence, limπ→π0 un(π) = un(π0).

By contradiction, suppose limπ→πmax
n un(π) = η > 0. Then, there exist ε,δ > 0 and π

such that πmax
n −π < δ , |η − un(π)| < ε , and ε + δ < η . Let ρ be a strategy that satisfies

(OA.1) and (OA.2), and let τ be a market segmentation such that Πτ(ρ) = π and Uτ(ρ) =

un(π). Then, Πτ(ρ)+Uτ(ρ)> πmax
n −δ +η − ε > πmax

n . But

Πτ(ρ)+Uτ(ρ) = ∑
µ

τ(µ)∑
k,p

ρµ(k, p) ∑
x≥p

µk(x)x

≤ ∑
µ

τ(µ)max
k

∑
x

µk(x)x

≤ ∑
µ

τ(µ)∑
v

µ(v)max
k

vk = ∑
v

µ̄(v)max
k

vk = π
max
n ;
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a contradiction to Πτ(ρ)+Uτ(ρ)> πmax
n . Hence, limπ→πmax

n un(π) = 0. Since

lim
π→πmax

n
un(π)≥ un(π

max
n )≥ 0,

this also proves that un(π
max
n ) = 0.

Proof of Lemma B2. The first part of the lemma holds because

Ŝn ⊆
{(

Πτ(ρ),Uτ(ρ)
)
| ρ satisfies (OA.1)

}
= Sn ⊆ S.

Next, let
(
π,u(π)

)
∈ S, where we may assume π < xm. By Theorem 1, there exists a

sequence
(
(πn,un)

)
n∈N such that (πn,un) ∈ Sn and limn→∞(πn,un) =

(
π,u(π)

)
. Because

limn→∞ πmax
n = xm, we have πn ∈ [π0,π

max
n ] for n sufficiently large, say n > n′. Consider

the sequence
(
(π̃n,un(π̃n))

)
n∈N, where π̃n = π0 for n ≤ n′ and π̃n = πn for n > n′. By

construction,
(
π̃n,un(π̃n)

)
∈ Ŝn. Furthermore, limn→∞ π̃n = π . It remains to show that

limn→∞ un(π̃n) = u(π). Because Ŝn differs from Sn only by the additional condition (OA.2),

according to which the seller breaks ties in favor of the consumer, it holds that un(π̃n) =

max
{

u ∈ R | (π̃n,u) ∈ Sn
}
≥ un for n > n′. Hence, liminfn→∞ un(π̃n) ≥ limn→∞ un. On

the other hand, Ŝn ⊆ S and the continuity of the function u imply limsupn→∞ un(π̃n) ≤

limn→∞ u(π̃n) = u(π) = limn→∞ un. Thus, limn→∞ un(π̃n) = u(π).

OA.2 Correlated Valuations

Here, we present a generalization of the baseline model in Section 2 that allows for correla-

tion between valuations, and show that Theorem 1 extends.

We replace the definition of the aggregate market µ̄ in (1) by

µ̄(v) = f (v1)
n

∏
k=2

(
tδ vk−1(vk)+(1− t) f (vk)

)
, ∀v ∈ Xn,

where t ∈ [0,1) and δ x ∈ ∆X denotes the Dirac measure centered on x ∈ X . Thus, the val-

uation vector corresponds to a Markov chain. With probability t, the valuation for product

k coincides with the one for product k− 1; with probability 1− t, the valuation for product

k has distribution f , the distribution of the first product. The interpretation is that adjacent

products are similar, so that consumers may have similar valuations. The correlation between
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the valuations, captured by t, can be arbitrarily strong; we only exclude perfect correlation.

The original model assumed t = 0 (no correlation).

We show that Theorem 1 extends to this specification. Lemma 1 and thus the first sen-

tence of the theorem obviously still hold. To prove the second sentence of the theorem, we

only need to show that Lemma 3 still holds.

We present an adapted proof of Lemma 3. The broad idea is as follows. Because the

correlation is imperfect, the aggregate market can still be segmented such that, independently

for each product k, the distribution of valuations is either equal to a given gi or some residual.

In contrast to the original proof of Lemma 3, the residual now depends on the valuation for

product k− 1. We then show that the seller always prefers to offer a product for which the

distribution of valuations is gi.

Proof of Lemma 3. Let xi ∈ {π0, . . . ,xm} and p ∈ {xi, . . . ,xm}. Analogously to the proof of

Lemma 3 for the original model, choose λ ∈ (0,1) such that

λgi(x)≤ tδ y(x)+(1− t) f (x), ∀x,y ∈ X ,

λgi(x)≤ f (x), ∀x ∈ X ,

and define h(· | v0) ∈ ∆X , and, for every y ∈ X , h(· | y) ∈ ∆X , as

h(· | v0) :=
1

1−λ
f − λ

1−λ
gi,

h(· | y) :=
t

1−λ
δ

y +
1− t
1−λ

f − λ

1−λ
gi.

Next, we present a market segmentation τ supported on 2n markets. The markets in the

support of τ are indexed by superscript a ∈ {g,h}n. The notation ζ (ak) will also be used and

means 1 if ak = g and 0 if ak = h. Set

τ(µa) := ∏
k

(
ζ (ak)λ +(1−ζ (ak))(1−λ )

)
, ∀a ∈ {g,h}n.

Market µa is given by

µ
a(v) :=

∏k
(
ζ (ak)λgi(vk)+(1−ζ (ak))(1−λ )h(vk | vk−1)

)
τ(µa)

= ∏
k

(
ζ (ak)gi(vk)+(1−ζ (ak))h(vk | vk−1)

)
, ∀v ∈ Xn.
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Then τ is a market segmentation:

∑
a

τ(µa)µa(v) = f (v1)
n

∏
k=2

(
tδ vk−1(vk)+(1− t) f (vk)

)
= µ̄(v), ∀v ∈ Xn.

Next, consider any market µa. If ak = g for any k ∈ {1, . . . ,n}, then

µ
a
k (x) = ∑

v:vk=x
µ

a(v)

= ∑
v:vk=x

∏
k′

(
ζ (ak′)gi(vk′)+(1−ζ (ak′))h(vk′ | vk′−1)

)
= ∑

v1,...,vk−1

∏
k′<k

(
ζ (ak′)gi(vk′)+(1−ζ (ak′))h(vk′ | vk′−1)

)
gi(x)

= gi(x), ∀x ∈ X .

Hence,

max
q

q ∑
x≥q

µ
a
k (x) = max

q
q ∑

x≥q
gi(x) = p ∑

x≥p
gi(x) = xi. (OA.5)

In the following, we show that if ak = h for any k ∈ {1, . . . ,n}, then

xi ≥ max
q

q ∑
x≥q

µ
a
k (x). (OA.6)

For k = 1,

µ
a
k (x) = ∑

v:vk=x
µ

a(v)

= ∑
v:vk=x

∏
k′

(
ζ (ak′)gi(vk′)+(1−ζ (ak′))h(vk′ | vk′−1)

)
= h(x | v0).

For µa
k = h(· | v0), (OA.6) was shown as (12) in the proof of Lemma 3.

So suppose k ∈ {2, . . . ,n}. Let r∗ ∈ {0 . . . ,k− 1} be the number of products such that

ak′ = h for k′ < k and ak′′ ̸= g for k′ < k′′ < k. Then

µ
a
k (x) = ∑

v:vk=x
µ

a(v)

= ∑
v:vk=x

∏
k′

(
ζ (ak′)gi(vk′)+(1−ζ (ak′))h(vk′ | vk′−1)

)
= ∑

v1,...,vk−1

∏
k′<k

(
ζ (ak′)gi(vk′)+(1−ζ (ak′))h(vk′ | vk′−1)

)
h(x | vk−1)

= ∑
vk−r∗−1,...,vk−1

e(vk−r∗−1)

(
k−1

∏
k′=k−r∗

h(vk′ | vk′−1)

)
h(x | vk−1),
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where e ∈ {gi,h(· | v0)}.

We show by induction that

∑
vk−r−1,...,vk−1

e(vk−r−1)

(
k−1

∏
k′=k−r

h(vk′ | vk′−1)

)
h(· | vk−1) ∈ ∆X

is equal to (
t

1−λ

)r+1

e+
1−
(

t
1−λ

)r+1

1− t
1−λ

(
1− t
1−λ

f − λ

1−λ
gi

)
∈ ∆X

for all r ∈ N. If r = 0, then

∑
vk−1

e(vk−1)h(· | vk−1) = ∑
vk−1

e(vk−1)
t

1−λ
δ

vk−1 +
1− t
1−λ

f − λ

1−λ
gi

=
t

1−λ
e+

1− t
1−λ

f − λ

1−λ
gi.

Suppose equality holds for a given r ≥ 0. Then equality holds for r+1:

∑
vk−r−2,...,vk−1

e(vk−r−2)

(
k−1

∏
k′=k−r−1

h(vk′ | vk′−1)

)
h(· | vk−1)

= ∑
vk−r−2,...,vk−1

e(vk−r−2)

(
k−1

∏
k′=k−r−1

h(vk′ | vk′−1)

)
t

1−λ
δ

vk−1 +
1− t
1−λ

f − λ

1−λ
gi

=
t

1−λ
∑

vk−r−2,...,vk−2

e(vk−r−2)

(
k−2

∏
k′=k−r−1

h(vk′ | vk′−1)

)
h(· | vk−2)+

1− t
1−λ

f − λ

1−λ
gi

=
t

1−λ

( t
1−λ

)r+1

e+
1−
(

t
1−λ

)r+1

1− t
1−λ

(
1− t
1−λ

f − λ

1−λ
gi

)+
1− t
1−λ

f − λ

1−λ
gi

=

(
t

1−λ

)r+2

e+
1−
(

t
1−λ

)r+2

1− t
1−λ

(
1− t
1−λ

f − λ

1−λ
gi

)
.

We have shown that

µ
a
k =

(
t

1−λ

)r∗+1

e+
1−
(

t
1−λ

)r∗+1

1− t
1−λ

(
1− t
1−λ

f − λ

1−λ
gi

)
.
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So

max
q

q ∑
x≥q

µ
a
k (x)

= max
q ∑

x≥g

( t
1−λ

)r∗+1

e(x)+
1−
(

t
1−λ

)r∗+1

1− t
1−λ

(
1− t
1−λ

f (x)− λ

1−λ
gi(x)

)
≤

(
t

1−λ

)r∗+1

max
q

q ∑
x≥g

e(x)+
1−
(

t
1−λ

)r∗+1

1− t
1−λ

max
q

q ∑
x≥g

(
1− t
1−λ

f (x)− λ

1−λ
gi(x)

)

≤
(

t
1−λ

)r∗+1

xi +
1−
(

t
1−λ

)r∗+1

1− t
1−λ

max
q

q ∑
x≥g

(
1− t
1−λ

f (x)− λ

1−λ
gi(x)

)
.

For any q ∈ {x1, . . . ,xi−1}:

q ∑
x≥g

(
1− t
1−λ

f (x)− λ

1−λ
gi(x)

)
≤ 1− t

1−λ
q− λ

1−λ
q,

implying

q ∑
x≥q

µ
a
k (x) ≤

(
t

1−λ

)r∗+1

xi +
1−
(

t
1−λ

)r∗+1

1− t
1−λ

1− t −λ

1−λ
q

=

(
t

1−λ

)r∗+1

xi +

(
1−
(

t
1−λ

)r∗+1
)

q

≤ xi.

For any q ∈ {xi, . . . ,xm}:

q ∑
x≥g

(
1− t
1−λ

f (x)− λ

1−λ
gi(x)

)
≤ 1− t

1−λ
π0 −

λ

1−λ
xi,

implying

q ∑
x≥q

µ
a
k (x) ≤

(
t

1−λ

)r∗+1

xi +
1−
(

t
1−λ

)r∗+1

1− t
1−λ

1− t −λ

1−λ
xi

= xi.

Thus, (OA.6) holds.
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By (OA.5) and (OA.6), there exists an optimal strategy ρ for the seller with the following

property: for every market µa such that ak = g for some product k, offer such a product at

price p.

Lastly, observe that the only market µa with ak ̸= g for all k ∈ {1, . . . ,n} has

τ(µa) = (1−λ )n.

Let πn be the surplus of the seller, and un the consumer surplus, under this market seg-

mentation and such an optimal strategy. Then

lim
n→∞

πn = lim
n→∞

(1− (1−λ )n)xi = xi,

lim
n→∞

un = lim
n→∞

(1− (1−λ )n) ∑
x≥p

gi(x)(x− p) = ∑
x≥p

gi(x)(x− p).

OA.3 Continuous Valuations

Here, we show that Theorem 1 extends to continuous valuations (X = [0,1]).

In this section, ∆Y denotes the set of all distributions (i.e., Borel probability measures)

on space Y . B(·) denotes the Borel σ -algebra. Sets of distributions are endowed with the

weak* topology. All distributions on product spaces in this section are uniquely defined by

its values on the products of the Borel σ -algebras (see Aliprantis and Border, 2006, Thms.

4.44, 10.10, and 15.11). We write “for all products of Borel sets” rather than “for all Borel

sets of the product space” where convenient.

Let X = [0,1], and let f be an atomless distribution in ∆X that has full support. The

aggregate market µ̄ ∈ ∆Xn is now defined by

µ̄(B1 ×·· ·×BL) = ∏
k

f (Bk), ∀B1 ×·· ·×Bn ∈ ∏
k

B(X).

A market segmentation is a distribution τ ∈ ∆∆V of markets µ ∈ ∆Xn that averages to µ̄:∫
µ(B1 ×·· ·×BL)τ(dµ) = ∏

k
f (Bk), ∀B1 ×·· ·×Bn ∈ ∏

k
B(X). (OA.7)

The k-marginal of a market µ ∈ ∆Xn is µk ∈ ∆X , given by:

µk(B) =
∫

v:vk∈B
µ(dv), ∀B ∈ B(X).
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A strategy of the seller is a mapping ρ : ∆Xn ×B({1, . . . ,n}× X) → [0,1] such that

ρ(µ, ·) ∈ ∆({1, . . . ,n}×X) for all µ ∈ ∆Xn and µ 7→ ρ(µ,{k}×B) is measurable for all

{k}×B ∈ B({1, . . . ,n}×X). Thus, a strategy selects, potentially randomly, a product k ∈

{1, . . . ,n} to be offered and a price p ∈ X to be charged for any market µ ∈ ∆Xn.

The producer surplus under market segmentation τ and strategy ρ is

Πτ(ρ) :=
∫ ∫

pµk([p,1])ρ(µ,d(k, p))τ(dµ),

and the consumer surplus is

Uτ(ρ) :=
∫ ∫ ∫ 1

p
(x− p)µk(dx)ρ(µ,d(k, p))τ(dµ)

=
∫ ∫ ∫ 1

p
µk([x,1])dxρ(µ,d(k, p))τ(dµ),

where the second equality uses integration by parts. A strategy ρ∗ is optimal for the seller

under market segmentation τ if

ρ
∗ ∈ argmax

ρ

Πτ(ρ), (OA.8)

A combination of producer and consumer surplus (π,c) is feasible if there exists a market

segmentation τ and an optimal strategy ρ such that (π,u) = (Πτ(ρ),Uτ(ρ)). The set of

feasible surplus pairs is denoted by

Sn :=
{

Πτ(ρ),Uτ(ρ)) | τ satisfies (OA.7), ρ satisfies (OA.8)
}
.

For any π ∈ (0,1], define the distribution gπ ∈ ∆X by

gπ([0,x]) :=


0 if x ∈ [0,π),

1− π

x if x ∈ [π,1),

1 if x = 1.

It is readily checked that

pgπ([p,1]) =

p for all p ∈ [0,π),

π for all p ∈ [π,1].
(OA.9)
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For π ∈ [0,1], let

u(π) :=
∫ 1

π

gπ([x,1])dx =
∫ 1

π

π/xdx =−π lnπ,

and define the set

S :=
{
(π,c) | π ∈ [π0,1],u ∈ [0,u(π)]

}
.

We now show that Theorem 1 extends to this model. Our proof uses three lemmas. The

first lemma is analogous to Lemma 1.

Lemma OA.1. If (π,u) ∈ Sn, then u ≤ u(π).

Proof. Let τ be any market segmentation, and let ρ be any strategy that is optimal given τ

such that Πτ(ρ) = π and Uτ(ρ) = u. Define the distribution h ∈ ∆X by

h(B) :=
∫

µk(B)ρ(µ,d(k, p))τ(dµ), ∀B ∈ B(X).

By the optimality of ρ , we have for any q ∈ [π,1]∫ ∫
qµk([q,1])ρ(µ,d(k, p))τ(dµ) ≤

∫ ∫
pµk([q,1])ρ(µ,d(k, p))τ(dµ)

= Πτ(ρ) = π = qgπ([q,1]).

Dividing through by q, we see that gπ first-order stochastically dominates h. Hence,

u =
∫ ∫ ∫ 1

p
µk([x,1])dxρ(µ,d(k, p))τ(dµ)

=
∫ ∫ ∫

µk([x,1])dxρ(µ,d(k, p))τ(dµ)−
∫ ∫ ∫ p

0
µk([x,1])dxρ(µ,d(k, p))τ(dµ)

≤
∫ ∫ ∫

µk([x,1])dxρ(µ,d(k, p))τ(dµ)−
∫ ∫ ∫ p

0
µk([p,1])dxρ(µ,d(k, p))τ(dµ)

=
∫ ∫ ∫

µk([x,1])dxρ(µ,d(k, p))τ(dµ)−π

=
∫ ∫ ∫

µk([x,1])ρ(µ,d(k, p))τ(dµ)dx−π

=
∫

h([x,1])dx−π

≤
∫

gπ([x,1])dx−π

= u(π),

where we used Fubini’s Theorem for the fifth row.

48



The next lemma is analogous to Lemma 3.

Lemma OA.2. Let e,h ∈ ∆X and λ ∈ (0,1) such that

λe(B)+(1−λ )h(B) = f (B) ∀B ∈ B(X), (OA.10)

max
x

xe([x,1])≥ max
x

xh([x,1]). (OA.11)

Let p ∈ argmaxx xe([x,1]). There exists a sequence
(
(πn,un)

)
n∈N such that (πn,un) ∈ Sn and

(πn,un) −→
n→∞

(
pe([p,1]),

∫ 1

p
e([x,1])dx

)
. (OA.12)

Proof. Fix some n ∈ N. We present a market segmentation τ supported on 2n markets. The

markets in the support of τ are indexed by superscript a ∈ {e,h}n. The notation ζ (ak) will

also be used and means 1 if ak = e and 0 if ak = h. Set

τ(µa) := ∏
k

(
ζ (ak)λ +(1−ζ (ak))(1−λ )

)
, ∀a ∈ {e,h}n.

Market µa is given by

µ
a(B1 ×·· ·×Bn) :=

∏k
(
ζ (ak)λe(Bk)+(1−ζ (ak))(1−λ )h(Bk)

)
τ(µa)

= ∏
k

(
ζ (ak)e(Bk)+(1−ζ (ak))h(Bk)

)
, ∀B1 ×·· ·×Bn ∈ ∏

k
B(X).

Then τ is a market segmentation:

∑
a

τ(µa)µa(v) = ∏
k

f (Bk) = µ̄(v), ∀B1 ×·· ·×Bn ∈ ∏
k

B(X).

Consider any market µa. If ak = e for any k ∈ {1, . . . ,n}, then

µ
a
k (B) =

∫
v:vk∈B

µ(dv) = e(B), ∀B ∈ B(X).

If ak = h for any k ∈ {1, . . . ,n}, then µa
k = h.

Next, we describe a strategy ρ as follows:

• For every market µa in the support of τ such that ak = e for some product k, offer any

such product at price p. Note that for such markets, µa
k′ ∈ {e,h} for all k′ ∈ {1, . . . ,n}.

• For the unique market µa in the support of τ such that ak = h for all products k, offer

product k = 1 at some price p0 ∈ argmaxx xh([x,1]).
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• For every posterior outside of the support of τ , offer product k = 1 at price p0.

We have not specified how ρ selects among products k with ak = e, but this indeterminacy

will not matter. Note furthermore that V is compact and metrizable, which implies that

∆Xn is metrizable (Aliprantis and Border, 2006, Thm. 15.11). Hence, any finite subset of

∆Xn is a Borel set. Because the support of τ is finite, this implies that µ 7→ ρ(µ,{k}×B) is

measurable for all k ∈ {1, . . . ,n} and all B∈B(X), as required by the definition of a strategy.

By (OA.10), ρ satisfies optimality (OA.8).

Lastly, observe that the only market µa with ak = h for all k ∈ {1, . . . ,n} has

τ(µa) = (1−λ )n.

Let πn be the surplus of the seller, and un the consumer surplus, under this market seg-

mentation and such an optimal strategy. Then

lim
n→∞

πn = lim
n→∞

(1− (1−λ )n)pe([p,1]) = pe([p,1]),

lim
n→∞

un = lim
n→∞

(1− (1−λ )n)
∫ 1

p
e([x,1])dx =

∫ 1

p
e([x,1])dx.

Lemma OA.2 is not directly useful because the distributions gπ have an atom at x = 1

whereas f is atomless. We will approximate the respective gπ by atomless distributions. To

this end, we now introduce a third lemma, which has no analog in the original model.

Fix some π ∈ (π0,1), some p ∈ [π,1], and some ε ∈ [0,1]. For N ∈ N, let

π = xN
0 < xN

1 < ... < xN
N = 1

be a collection of points in [π,1] of equal distance. For each i = 1, . . . ,N, define

α
ε,N
π,p (i) :=

(1− ε)gπ([xN
i−1,x

N
i ])+ εδ p([xN

i−1,x
N
i ])

f ([xN
i−1,x

N
i ])

,

where δ p ∈ ∆X denotes the Dirac measure centered on p. Let

λ
N
π,p := min

ε∈[0,1]
i∈{1,...,N}

1

aε,N
π,p(i)

and note that λ N
π,p ∈ (0,1) because gπ and δ p are distributions and assign probability one to

[π,1] whereas f assigns probability strictly less than one to [π,1]. For each i = 1, . . . ,N, let
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furthermore

β
ε,N
π,p (i) =

1
1−λ N

π,p
−

λ N
π,p

1−λ N
π,p

α
ε,N
π,p (i).

We now introduce two distributions in ∆X : the distribution eε,N
π,p, which has support [π,1] and

is given by

eε,N
π,p([x,x

N
i ]) := α

ε,N
π,p (i) f ([x,xN

i ]), ∀x ∈ [xN
i−1,x

N
i ],∀i = 1, . . . ,N,

and the distribution hε,N
π,p given by

hε,N
π,p([0,xi]) :=

1
1−λ N

π,p
f ([0,x]), ∀x ∈ [0,π),

hε,N
π,p([x,xi]) := β

ε,N
π,p (i) f ([x,xN

i ]), ∀x ∈ [xN
i−1,x

N
i ],∀i = 1, . . . ,N.

Then, f is a mixture of eε,N
π,p and hε,N

π,p:

λ
N
π,peε,N

π,p(B)+(1−λ
N
π,p)h

ε,N
π,p(B) = f (B) ∀B ∈ B(X). (OA.13)

Lemma OA.3. Let π ∈ (π0,1) and p ∈ [π,1]. For every ε ∈ (0,1], let (pε,N)N∈N be a

sequence of prices such that

pε,N ∈ argmax
x

xeε,N
π,p([x,1]), ∀N ∈ N.

Then it holds that

lim
ε→0

lim
N→∞

pε,Neε,N
π,p([p

ε,N ,1]) = π, (OA.14)

lim
ε→0

lim
N→∞

∫ 1

pε,N
eε,N

π,p([x,1])dx =
∫ 1

p
gπ([x,1])dx. (OA.15)

Moreover,

lim
ε→0

max
x

xhε,N
π,p([x,1])< π0, ∀N ∈ N. (OA.16)

Proof. Let êε
π,p ∈ ∆X be the distribution given by

êε
π,p(B) := (1− ε)gπ(B)+ εδ

p(B), ∀B ∈ B(X).

To prove (OA.14), we first show

lim
N→∞

pε,N = p, (OA.17)

lim
N→∞

eε,N
π,p([p

ε,N ,1]) = êε
π,p([p,1]). (OA.18)

51



Fix some ε ∈ (0,1]. For all x ∈ [xN
i−1,x

N
i ] and all i = 1, . . . ,N −1,

eε,N
π,p([x,1]) =

êε
π,p([x

N
i−1,x

N
i ])

f ([xN
i−1,x

N
i ])

f ([x,xN
i ])+ êε

π,p([x
N
i ,1]).

Hence,

lim
N→∞

eε,N
π,p([x,1]) = êε

π,p([x,1]), ∀x ∈ [π,1). (OA.19)

It follows that if p < 1, then limN→∞ pε,N = p because x 7→ xêε
π,p([x,1]) is uniquely maxi-

mized at x = p by (OA.9). If p = 1, then limN→∞ pε,N = p because

lim
N→∞

xN
N−1eε,N

π,p([x
N
N−1,1]) = lim

N→∞
xN

N−1êε
π,p([x

N
N−1,1]) = êε

π,p({1})

This shows (OA.17).

If pε,N ∈ [xN
i−1,x

N
i ], then

eε,N
π,p([p

ε,N ,1])≤ eε,N
π,p([x

N
i−1,1]) = êε

π,p([x
N
i−1,1])≤ êε

π,p

([
pε,N − 1−π

N
,1
])

,

where the last inequality holds because [xN
i−1,x

N
i ] has length (1−π)/N. Hence,

limsup
N→∞

eε,N
π,p([p

ε,N ,1])≤ limsup
N→∞

êε
π,p

([
pε,N − 1−π

N
,1
])

≤ êε
π,p([p,1])

because x 7→ êε
π,p([x,1]) is upper semicontinuous. On the other hand,

liminf
N→∞

eε,N
π,p([p

ε,N ,1])≥ êε
π,p([p,1])

because otherwise

liminf
N→∞

pε,Neε,N
π,p([p

ε,N ,1]) = p liminf
N→∞

eε,N
π,p([p

ε,N ,1])< pêε
π,p([p,1]),

which contradicts the optimality of pε,N . This shows (OA.18). Together, (OA.17) and

(OA.18) imply

lim
N→∞

pε,Neε,N
π,p([p

ε,N ,1]) = pêε
π,p([p,1]).

Letting ε go to zero concludes the proof of (OA.14):

lim
ε→0

lim
N→∞

pε,Neε,N
π,p([p

ε,N ,1]) = pgπ([p,1]) = π.
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Next, we show (OA.15). For given ε ∈ (0,1], the Dominated Convergence Theorem

implies

lim
N→∞

∫ 1

pε,N
eε,N

π,p([x,1])dx =
∫

lim
N→∞

1[pε,N ,1](x)e
ε,N
π,p([x,1])dx

=
∫

1[p,1](v)êε
π,p([x,1])dx

=
∫ 1

p
êε

π,p([x,1])dx

where the second equality holds by (OA.19) and (OA.17). Letting ε go to zero yields

(OA.15).

Finally, we prove (OA.16). Fix N ∈ N. For any ε ∈ (0,1], we have

hε,N
π,p([x,1]) = 1− 1

1−λ N
π,p

f ([0,x])< f ([x,1]), ∀x ∈ [0,π).

Hence

lim
ε→0

max
x∈[0,π]

xhε,N
π,p([x,1])< max

x∈[0,π]
x f ([x,1])≤ π0.

On the other hand, if x ∈ [xN
i−1,x

N
i ], i = 1, . . . ,N −1, then

hε,N
π,p([x,1]) =

1
1−λ N

π,p
f ([x,1])−

λ N
π,p

1−λ N
π,p

(
êε

π,p([x
N
i−1,x

N
i ])

f ([xN
i−1,x

N
i ])

f ([x,xN
i ])+ êε

π,p([x
N
i ,1])

)
.

By the Maximum Theorem,

lim
ε→0

max
x∈[xN

i−1,x
N
i ]

xhε,N
π,p([x,1]) = max

x∈[xN
i−1,x

N
i ]

xh0,N
π,p([x,1]), ∀i = 1, . . . ,N −1.

Analogously,

lim
ε→0

max
x∈[xN

N−1,1]
xhε,N

π,p([x,1]) = max
x∈[xN

N−1,1]
xh0,N

π,p([x,1]).

It remains to show that

max
x∈[π,1]

xh0,N
π,p([x,1])< π0. (OA.20)

Note that if x ∈ {xN
0 , . . . ,x

N
N−1}, then

xe0,N
π,p([x,1]) = xgπ([x,1]) = π > π0 ≥ x f ([x,1])

and thus

e0,N
π,p([x,1])> f ([x,1]).

53



Because the ratio
e0,N

π,p([x,xN
i ])

f ([x,xN
i ])

=
gπ([xN

i−1,x
N
i ])

f ([xN
i−1,x

N
i ])

is the same for all x ∈ (xN
i−1,x

N
i ), i = 1, . . . ,N, it follows that

e0,N
π,p([x,1])> f ([x,1]), ∀x ∈ [π,1].

Using (OA.13), we conclude

h0,N
π,p([x,1])< f ([x,1]), ∀x ∈ [π,1],

and thus

xh0,N
π,p([x,1])< x f ([x,1])≤ π0, ∀x ∈ [π,1],

which implies (OA.20).

We are now ready to prove Theorem 1.

Proof of Theorem 1. Let (π,u)∈ S. Because the function p 7→
∫ 1

p gπ([x,1])dx is continuous,

there exists a price p ∈ [π,1] such that

u =
∫ 1

p
gπ([x,1])dx.

The function π 7→ u(π) =−π lnπ is continuous. To prove the theorem, we may therefore

assume 1 > π > π0, because if for any such π and any uπ ∈ [0,u(π)] there exists a sequence(
(πn,un)

)
n∈N converging to (π,uπ), then there also exists a sequence converging to (π,u)

for π ∈ {π0,1} and any u ∈ [0,u(π)].

We now apply Lemma OA.3. For every ε ∈ (0,1], let (pε,N)N∈N be a sequence of prices

such that

pε,N ∈ argmax
x

xeε,N
π,p([x,1]), ∀N ∈ N.

Then by Lemma OA.3,

lim
ε→0

lim
N→∞

pε,Neε,N
π,p([p

ε,N ,1]) = π,

lim
ε→0

lim
N→∞

∫ 1

pε,N
eε,N

π,p([x,1])dx =
∫ 1

p
gπ([x,1])dx.
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To prove the theorem, it therefore suffices to show that for any ε below some cutoff and for

any N above some cutoff, there exists a sequence
(
(πn,un)

)
n∈N such that (πn,un) ∈ Sn and

(πn,un) −→
n→∞

(
pε,Neε,N

π,p([p
ε,N ,1]),

∫ 1

pε,N
eε,N

π,p([x,1])dx
)
.

Invoking Lemma OA.3, let ε be small enough and N big enough such that

pε,Neε,N
π,p([p

ε,N ,1])≥ π0 ≥ max
x

xhε,N
π,p([x,1]).

Then, such a sequence
(
(πn,un)

)
n∈N exists by Lemma OA.2.
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