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Abstract

I use a combination of a structural dynamic factor model and quantile regressions
to study how monetary policy affects the predicted distributions of GDP growth and
inflation in the US. The non-linear methodology leads to the following new findings: first,
the conditional distributions of both GDP growth and inflation display multimodality
as the norm rather than the exception. Second, contractionary monetary policy shocks
shift the expected distribution of GDP growth to the left and deepen its two humps.
The expected distribution of inflation is marginally shifted left as well, but importantly,
the second mode related to high inflation is exacerbated. Expansionary policy almost
resolves the bimodality of GDP growth in favor of the “good” equilibrium and decreases
the spread of the inflation distribution.
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1 Introduction

Central bankers need to assess the risks of extreme events, such as very poor (or very
good) expected economic performances and price rises or falls to conduct policy.2 For
example, after the Great Recession, special focus has been dedicated to monitoring fi-
nancial market conditions to expose potential threats to economic stability coming from
the banking and financial services sector. As a consequence, the academic literature on
growth-at-risk (Adrian et al., 2019) and inflation-at-risk (Lopez-Salido & Loria, 2024) has
expanded significantly. This literature studies how the tails of the expected distributions
of GDP growth and inflation changes over time. In this paper, I look at the question
whether adjustments in the monetary policy stance of the Federal Reserve can combat
the buildup of risks of unusually bad economic outcomes. To do this, I study the response
of the entire conditional distributions of GDP growth and inflation to monetary policy
shocks in the US, using a combination of a structural dynamic factor model (DFM) and
quantile regressions.

A significant hurdle in the x-at-risk literature is the selection of the set of variables that
constitute the information set which produces the expected distribution of macroeconomic
variables of interest. Instead of relying on hand-picking or statistical variable selection I
resolve this issue by simply using a set of factors extracted from the FRED-QD data base.
These capture information on industrial production, employment, financial markets and
other segments of macroeconomic importance and arguable constitute a comprehensive in-
formation set to be used to compute conditional distributions. Equipped with the factors,
I rely on the quantile regression methodology of Adrian et al. (2019) and fit individual
quantiles of the annual percentage change of GDP and of the PCE price index. Obtain-
ing the impulse responses (IRFs) of the individual quantiles and of the full distribution is
achieved using a version of the methodology of Forni et al. (2021) and Adrian et al. (2021).

I document the following new findings: contrary to Adrian et al. (2019), the left tail of
expected GDP growth is not significantly more volatile than the right tail, suggesting that
variable selection matters strongly for their result. Moreover, multimodality is the norm
rather than the exception for GDP growth and strongly present for inflation, although
in the latter case it is more a phenomenon around recessions. Contractionary monetary
policy shocks shift the expected GDP distribution to the left, in line with standard find-
ings and emphasizes the two humps in the steady state distribution. Expected inflation is
reduced, but a significant probability mass associated with unchanged or even increased
inflation after the monetary policy shock persists. Therefore, the inflation distribution
spreads out. The Federal Reserve induces changes in the economy which reduce inflation
on average but is unable to control tail risks. Expansionary monetary policy briefly shifts
the probability mass into the “good” mode of GDP growth and reduces the spread of the
inflation distribution.

This paper adds to the literature on growth-at-risk and inflation-at-risk. Much of
the existing research in this area has focused on determining the best set of conditioning
variables to accurately describe the expected distributions of inflation and growth, for
the purpose of in-sample analysis (see Giglio et al. (2016), Adrian et al. (2019), Adrian

2Minutes of FOMC meeting on 28/29 January 2020 p.9: link.

2

https://www.federalreserve.gov/monetarypolicy/files/fomcminutes20200129.pdf


et al. (2022), and Lopez-Salido & Loria (2024)) or out-of-sample now-/forecasting (see
Ghysels et al. (2018), Plagborg-Møller et al. (2020), Adams et al. (2021), Carriero et
al. (2022)). Some important contributions for causal analysis of macro shocks include
Duprey & Ueberfeldt (2020), Boire et al. (2021), Forni et al. (2021), and Loria et al.
(2023). Given the focus on identifying causal effects in this paper, I opt for a factor ap-
proach as this has been shown to resolve important empirical puzzles in causal analysis of
monetary policy (see Forni & Gambetti (2010) and Kerssenfischer (2019)) and captures
a large set of information that can be used consistently for the prediction of the condi-
tional quantiles of a large number of time series, without having to manually adjust the
information set each time. Factors in quantile regressions have been studies by Ando &
Tsay (2011) and can produce good forecasting results for the mean (J. Stock & Watson,
2002) and reasonable out-of-sample results for conditional quantiles (Carriero et al., 2022).

Multimodality of the conditional distribution of GDP growth has been shown in Adrian
et al. (2021) and Forni et al. (2021). It appears to arise during recessionary periods more
than in normal times, an observation echoed in this paper as well. Adrian et al. (2021)
discuss how poor financial conditions induce the multimodality and conjecture that bad
policy decisions can lead to persistent selection of the worse equilibrium. This does not
seem to hold for monetary policy which can actually select the “good” equilibrium if it
is expansionary, but does not select the bad one if it is contractionary. The authors’
research differs from this paper in the sense that I study the effect of monetary policy
shocks on the predicted distributions of GDP growth and inflation, while they study the
joint behavior of economic and financial conditions with no particular focus on monetary
policy. Forni et al. (2021) on the other hand establish the methodological basis for this
paper but focus on how changes in the tails of the predicted distributions affect real and
financial outcomes. The multimodality in their paper obtains again in recessionary peri-
ods, although the set of predictors and their estimation procedure differ.

In a paper closely related to this one, Boire et al. (2021) use a QR-SVAR to study the
response of the GDP growth distribution in six developed countries to monetary and fiscal
policy shocks. They find mostly location effects for monetary policy and shape effects for
fiscal shocks. In this paper, on the other hand, my approach suggests shape effects to be
present in the short run. In another study close to this one, Loria et al. (2023) analyze
how different macroeconomic shocks – monetary policy included – affect the conditional
quantiles of GDP growth using the quantile regression model of Adrian et al. (2019) as
a case study. They find that monetary policy drives the conditional distribution of fore-
casted GDP growth to the left and that the effect on the 5th quantile is more negative
than the effect on the 95th quantile. Their study differs from this paper in the following
ways: first, they use the conditional quantiles of Adrian et al. (2019), whereas I construct
new forecasted quantiles using a factor approach. Second, they use local projections to
gauge the effect of the monetary policy shock, whereas I use a combination of quantile
regression and a dynamic factor model. Lopez-Salido & Loria (2024) study inflation-at-
risk for a panel of OECD countries using a Phillip’s Curve predictive setup. They find
that inflation expectations have been the key predictor of inflation-at-risk over the past 20
years and that asymmetry in the expected distribution of inflation is induced by financial
variables. I take their observations as an important motivation for including factors in
my setup that summarize information in forward looking variables. Third, I construct
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quantile forecasts also for inflation and study their reaction to the monetary policy shock.
Such forecasts are constructed also in Adams et al. (2021) using financial conditions and
forecast errors from the Survey of Professional Forecasters (SPF) as predictors instead of
the factor approach used in this paper. The findings in Loria et al. (2023) are broadly
in line with those of this paper, in the sense that the forecasted distribution of GDP
growth moves to the left in response to a monetary contraction. This research is also
related to the literature on the effects of monetary policy on different measures of uncer-
tainty. For instance, Bekaert et al. (2013) study the effect of monetary policy shocks on a
“risk aversion” and an “uncertainty” component of the Chicago Board Options Exchange
(CBOE) volatility index (VIX). They find that expansionary monetary policy shocks lead
to a decreases in both risk aversion and uncertainty, pointing to a risk-taking channel for
monetary policy.

The rest of this paper is organsied as follows: section 2 presents how the DFM is
combined with quantile regressions to obtain quantile IRFs. Section 3 describes the data
set, transformations, and model specification. Section 4 presents the results. Section 5
offers a discussion of the results and section 6 concludes.

2 Econometric Approach

The main relationship that I use in this paper is an extension of the QR-SVAR of Forni
et al. (2021) and is given by

Qt+h,τ = βτ (L)Wft = βτ (L)WH(L)ut (1)

Qt+h,τ stands for the h period ahead prediction of the conditional quantile of a variable
of interest. In this paper, the variables of interest are GDP growth and inflation. βτ (L) is
a polynomial in the lag-operator L of the coefficients βτ obtained from a quantile regres-
sion of the variable of interest on a set of predictors, selected by the matrix W . The set
of predictors is made up of the static factors ft that are extracted from a large macroe-
conomic data set. The factors are assumed to follow an invertible VAR relationship and
therefore, can be cast into the corresponding moving average (MA) representation. The
structural MA representation is then given by H(L)ut, where H(L) are the structural im-
pulse responses and ut are the structural shocks. The monetary policy shock is identified
using the dynamic factor model approach of Forni & Gambetti (2010). This relationship
exploits the high information content in the static factors as potentially useful predictors
for the conditional quantiles of the variables of interest and simultaneously makes use of
large information approach to the identification of monetary policy shocks that has been
shown to perform similarly to other accepted methods such as high-frequency identifica-
tion (Kerssenfischer, 2019).

In what follows I explain in more detail the two main relationships – quantile regres-
sion and factor model – their specification, treatment and identification of the structural
shocks.
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2.1 The Dynamic Factor Model

The methodology used to estimate factors and identify the structural shocks is based
on the dynamic factor model of Forni & Gambetti (2010). Given a large data set of
macroeconomic variables with cross sectional dimension N and time span T the following
relationship is assumed to be present in the set:

xit = χit + ξit (2)

Here, xit is one of the N variables in the data set at time t. χit is the common
component and ξit is the idiosyncratic component. Common and idiosyncratic components
are assumed to be orthogonal. The idiosyncratic components of different variables are
allowed to be mildly correlated. The latter implies that the factor model is approximate
and note exact (Bai & Ng, 2002). In addition, I assume that the common component
χit is driven by r common factors ft. The importance each of these r factors has for the
common component is captured by a vector of loadings ai. Hence,

χit = aift (3)

Next, I assume that the common factors follow a VAR which is assumed to be invertible
and given by

D(L)ft = ϵt (4)

with D(L) a matrix polynomial of coefficients in the lag operator L and ϵt a vector of
zero-mean reduced form shocks. As in Forni & Gambetti (2010), the number of structural
shocks ut driving the common factors ft need not be equal to the number of factors r.
Instead, it is possible that the number of deep shocks q is smaller than the number of
factors, i.e. q ≤ r. This is captured by a rotation R such that ϵt = Rut.

D(L)ft = Rut (5)

The vector ut is assumed to be vector white noise and holds the deep shocks in the
economy. One of these shocks is assumed to be a monetary policy shock which can be
identified in the following way.

2.2 Identification of the Monetary Policy Shock

Beginning from equation (5), invertibility provides that the factors can be written as

ft = D(L)−1Rut (6)

For any orthogonal matrix H equation (6) can be rewritten as

ft = D(L)−1RH ′Hut = D(L)−1SHut = S(L)Hut = H(L)ut (7)

which is the relation used in model (1) with S = RH ′, S(L) = D(L)−1S and
H(L) = S(L)H. Similar to the SVAR literature, the model is not identified without
further assumptions on the matrix H. The objective is to identify a monetary policy
shock in the same way that traditional recursive SVARs, as for example, Christiano et
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al. (1999) do – by imposing that the monetary policy shock does not contemporane-
ously affect slow moving variables such as GDP or prices, but can contemporaneously
affect financial variables and interest rates. However, it is not possible to impose such
restrictions on the factors ft directly as they lack a concrete interpretation. Hence, I im-
pose the restriction with a view to the common component χit of the macro panel instead.

Using equations (7) and (3) we obtain the structural IRFs of the common components
bi(L) from

χit = aiD(L)−1RH ′Hut = aiS(L)vt = ci(L)vt = ci(L)Hut = bi(L)ut (8)

where ci(L) = aiS(L) and bi(L) = ci(L)H. Therefore, the IRFs in bi(L) have to fulfill the
identifying assumptions. In the Cholesky case preferred in this paper, this is achieved by
selecting exactly m = q variables from xit and ordering them according to the assumed
recursive structure. Since,

Bm(L) = Cm(L)H (9)

the restrictions are imposed contemporaneously by setting

H = Cm(0)
−1Gm (10)

where Cm(0)
−1 is the inverse of the non-structural IRF on impact and Gm is the lower

triangular Cholesky factor of Cm(0)Cm(0)
′.

2.3 Quantile Regressions

The second step consists in running a predictive regression of the variables of interest –
GDP growth and inflation – on the respective sets of predictors, the factors in model (1).
While OLS regressions are concerned with the mean response of the dependent variable
to changes in different explanatory variables, quantile regression (Koenker & Bassett Jr,
1978) is concerned with the median and other quantiles of the distribution of the depen-
dent variable. In that sense, it is more robust to potential outliers that may distort the
mean and, in addition, allows the study of the drivers of more extreme outcomes of GDP
growth and inflation, such as τ = 0.05, 0.1, 0.9, 0.95, which are the common quantiles
studied in the literature on “growth-at-risk”.

Koenker (2005) shows that β̂τ solves the minimization problem of the conditional
sample quantile function Qt,τ as in

min
β∈Rp

n∑
i=1

ρτ (yi − x′
iβ) (11)

where p is the number of regressors, ρ is the loss function ρτ (u) = u(τ − 1(u < 0))
with ui = yi − x′

iβ and yi being the dependent variable. This is a linear-programming
problem that can be solved using simplex methods. Hence, the quantile regression that I
run is given by

Qt+h,τ = βτ (L)Wft (12)
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Throughout the paper, the generic issue of “quantile-crossing” is dealt with using the
methodology of Chernozhukov et al. (2010).

2.4 Combining Quantile Regression and Dynamic Factor Model

From the estimated coefficients β̂τ (L) and given the selection of regressors Wft I can pin
down the impulse response functions of the conditional quantiles of GDP growth and in-
flation for a monetary policy shock. This allows an assessment of whether the uncertainty
around future economic conditions is reduced, increased or not affected by policy action.
Moreover, since I study the three quantiles individually it may be that downside risk (as
measured by Q05) is affected differently than upside risk (as measured by Q95) by the
shock.

The IRFs are given by

IRFGDP
τ = ̂βGDP

τ (L)WGDPH(L) (13)

IRF π
τ = β̂π

τ (L)WπH(L) (14)

Since I include all factors as regressors, the matrices W are identity matrices in both
cases. To repeat, the matrix polynomial H(L) is given by D(L)−1SH as described in
equation (7). The above expressions can also be used to carry out an analysis of the
forecast error variance of the quantiles and decompose the conditional time series for
each quantile into the contributions coming from the monetary policy shock and other,
undetermined factors.

3 Data and Model Specification

The data set for the factor model is the collection of US quarterly macroeconomic vari-
ables of McCracken & Ng (2020), which is gathered by FRED of the Federal Reserve Bank
of St. Louis. The data set contains 248 variables from Q1:1959 to Q4:2023 and is built
on top of the data set used in J. Stock & Watson (2012). Variables are transformed to
induce stationarity. Price series are kept in single differences since the quantile regression
outcome for inflation-at-risk is also single differenced. The appendix reports all variables
that are included, their transformations and the variation explained by the static factors.

The data set contains missing values and outliers. Outliers are problematic for prin-
cipal components analysis and are dealt with as suggested in McCracken & Ng (2020) by
omitting values whose difference from the median is larger than ten times the interquartile
range. These outliers are replaced by missing values. To deal with the missing values I
use the expectation maximization algorithm of McCracken & Ng (2020). I tweak their
procedure by using the selection criterion of Alessi et al. (2010) which is a refined version
of the criterion of Bai & Ng (2002) to determine the optimal number of factors at each
iteration. The optimal number of static factors to include in ft is determined to be be-
tween r = 8 and r = 15. For parsimony, I prefer the lower of the two as my benchmark
and check robustness of the results against the upper bound. Factors are estimated using
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the principal component estimator.

In a second step, I determine the lag length to be used in the VAR for the factors
using the Hannan-Quinn, Schwarz and Akaike information criteria. These suggest p = 1
(HQ, SC) and p = 3 (AIC). Again, for parsimony, I choose p = 1 and check robustness
of the results for p = 3. Finally, the number of dynamic factors or primitive shocks is de-
termined using the criterion of Bai & Ng (2007), which suggests to set q = 4 when r = 8.
For the purpose of identification m = q = 4 identifying variables are required. I use the
variables for real GDP (GDPC1), the PCE price index (PCECTPI), the Federal Funds
Rate (FEDFUNDS), replaced by the shadow rate (Wu & Xia, 2016) between Q4:2008
and Q1:2022, and the USD-CHF exchange rate (EXSZUS), in that order. This setup is
similar to Forni & Gambetti (2010) and implies that the monetary policy shock is the
third one in ut. It does not drive GDP or prices on impact, but can contemporaneously
influence the Federal Funds Rate and the exchange rate.

In the quantile regression exercise I follow Adrian et al. (2019) and set τ = 0.05, 0.5, 0.95
to capture the tail behavior of the conditional distribution of the dependent variables real
GDP growth (GDPC1) and PCE inflation (PCECTPI). Four quarter ahead growth rates
(h = 4) are computed as the difference of the logs between t and t− 4 and multiplied by
100. The median is useful for comparison to the mean and to compute descriptive statis-
tics such as the Kelley skewness of the conditional distributions implied by the estimates.
The forecast horizon is h = 4 quarters. For the estimation of the quantile regression part
in model (1), there are r = 8 static factors available as potential predictors, as well as
their lags. To keep the model simple I do not include additional predictors and do not
add lags to the quantile regressions. Hence, the matrix W in equation (1) is an identity
matrix and βτ (L) is just βτ .

4 Results

4.1 Monetary Policy Shock IRFs

Figure 1 shows the impulse responses of the four identifying variables to the Cholesky
monetary policy shock, scaled to a 100 basis points increase in the Federal Funds Rate.
The shock decreases the levels of GDP and prices and affects the exchange rate between
Swiss Francs and US Dollars in line with the overshooting principle of Dornbusch (1976).
The classical “price puzzle” and “delayed-overshooting puzzle” do not obtain and the
results are in line with Cholesky-DFM results presented in Forni & Gambetti (2010) as
well as Kerssenfischer (2019). Notice that this can be shown to obtain regardless of using
the real exchange rate or nominal one as I do (Kim et al., 2017). We conclude that the
shock is well identified.
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Figure 1: Point estimates of the impulse responses of the identifying variables to a contractionary 100bp
monetary policy shock with bootstrapped 90% confidence intervals.
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4.2 Quantile Regression Predictions

Figure 2 shows the time-varying quantiles as predicted using the factor approach from
equation (12) for annual real GDP growth and PCE inflation. As distinct from other
forecasts in the literature, the median and Q95 predictions of GDP growth appear more
volatile, while the higher volatility of Q05 that is observed in Adrian et al. (2019) and
Forni et al. (2021) is also featured as shown in Table 1. These differences may be due to
conditioning on a larger set of information. In fact, for every quantile considered here at
least three of the factors are highly significant predictors. Moreover, the factors do not
suffer from collinearity by construction which may influence results as well. Especially the
downside growth risk increases around the recessionary periods in the mid 1970s, early
1980s, early 1990s and 2000s as well as the Great Recession are clearly visible. However,
the model predicts a very rapid recovery of downside growth risk and median risk after the
2007-2008 recessionary episode. The COVID period is not included in the quantile range
at all. Moreover, the interquantile range decreases markedly with the Great Moderation
as shown in Figure 3. During most periods the expected distribution of GDP growth was
negatively (left) skewed which suggests a longer left tail relative to the right tail.

As for the predicted quantiles of PCE inflation, a downward trend is observable with
sharp increases in the right tail in the recessions of the 1970s and 1980s but a pronounced
drop in the lower tail during the Great Recession and COVID-19. The fall in the in-
terquantile range is not as clear cut as with GDP growth, but during the period of the
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Great Moderation, the spread measure is less volatile up to the Great Recession. Ac-
cording to the non-normalized Kelley skewness, PCE inflation predictions were almost
always positively (right) skewed, which suggests a longer right tail with more extremely
high predictions. By a similar token, Table 1 shows that the upper tail was much more
volatile than the lower tail over the considered horizon.
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Figure 2: h=4 predicted quantiles (Top line: Q95, Light grey line: Q50, Bottom line: Q05) of GDP
growth and PCE inflation. Red dashed line is the realized series.
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Figure 3: Top graph is interquantile range over time (Q95-Q05), bottom graph is non-normalized Kelley
skewness (Q95+Q05-2×Q50).
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Table 1: Standard deviations of predicted quantiles and correlation coefficient for the extreme quantiles.

Metric ∆GDP h=4 ∆PCE h=4
σ05 1.80 2.00
σ50 1.48 1.91
σ95 1.61 2.62
ρ5,95 0.85 0.87

Multimodality: I use the adaptive kernel method of Portnoy & Koenker (1989) to
fit a Gaussian kernel to the implied conditional quantiles from the factor approach for
both GDP growth and inflation. The initial bandwidth is computed by the rule of thumb
in Silverman (1986) (p.48). This initial bandwidth is used to get a sense of regions of low
density in the distribution which should receive larger bandwidths. In a second step, the
adaptive procedure allows the “bumps” of the fitted densities to have different bandwidths
(Silverman, 1986) (p. 101). The sensitivity of the adaptive bandwidths is set to α = 0.5
as suggested in Silverman (1986) (p. 102).3 This approach is more flexible than the t-skew
distribution of Azzalini & Capitanio (2003) which Adrian et al. (2019) use as it does not
force the distribution to be unimodal. In fact, using this approach, Figure 4 shows that
the GDP growth distribution is bimodal most of the time and the same goes for PCE
inflation, although this is more pronounced in recessionary periods. The finding echoes
Adrian et al. (2021) and Forni et al. (2021) and suggests the presence of good and bad
states the economy can be expected to converge to given current economic conditions.

3The procedure is adapted from the R package quantreg, function akj.
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Figure 4: Count of modes in the kernel fitted distributions implied by the conditional quantiles from
factor regressions for GDP growth and PCE inflation.
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Conditional distributions during the financial crisis: Figure 5 shows the Gaus-
sian kernel fitted distributions of expected GDP growth and inflation for the years of the
Great Recession. The evolution of the distribution shows that even before the crisis, the
GDP growth distribution had been bimodal, with a mode near zero growth and a positive
mode. As the recession unfolds, the information set captured by the factors leads the
expected distribution to shift leftwards while maintaining the bimodality feature. This
only disappears in the recovery. Contrary to this, the expected distribution of inflation is
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unimodel almost throughout the crisis as prices only dropped signficantly towards its end.
The model anticipated the deflationary episode of the third quarter of 2009 reasonably
well, but overpredicts its persistence.

Figure 5: Four quarters ahead predicted PDFs of GDP growth and PCE Inflation between Q2:2007 and
Q1:2010. The year in the title of each plot is the year for which the expected distribution is computed,
not the year when the expectation is formed, which would be h = 4 quarters earlier.
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Model evaluation: Evaluating the fit of the model is not straightforward in the case
of quantile regressions, as no direct equivalent to the usual R2 measure and its adjusted
versions exists. Koenker & Machado (1999) propose a metric called R1. This statistic
evaluates the loss implied by the residuals of the quantile regression (V1) at each quantile
against the alternative of running the regressions only on a constant (V0).

15



V 1τ =
T∑
i=1

ρτ (u
1
i )

V 0τ =
T∑
i=1

ρτ (u
0
i )

R1 = 1− V 1

V 0

The values will be close to one if the loss of the V0 model is large relative to the V1
model. Table 2 reports the R1 measures for the quantile regressions of GDP growth and
the inflation measure at the prediction horizon of four. The performance of the model over
the simple model is very good for the extreme quantiles and for the median. Especially
for PCE inflation the inclusion of additional information in the predictive regressions is
beneficial. In addition, Table 3 compares the fit of the model of Adrian et al. (2019) and
a QAR(1) for both variables of interest using the maximimum available sample including
the NFCI from 1971. Both score consistently worse than the factor approach. The results
suggest that the factor approach is suitably information rich.

Table 2: Measures of fit from factor quantile regressions computed for the quantiles of interest.

Quantile R1 ∆GDP h=4 ∆PCE h=4
Q5 0.9853 0.9940
Q50 0.9413 0.9634
Q95 0.9859 0.9838

Table 3: Measures of fit computed for the quantiles of interest using the specification of Adrian et al.
(2019) which includes the lagged dependent variable and the NFCI or a QAR(1). Forecast horizon is
h = 4, the column names are the regressors used.

Quantile R1 ∆GDP + NFCI ∆PCE + NFCI ∆GDP ∆PCE
Q5 0.9430 0.9780 0.9367 0.9780
Q50 0.8364 0.8940 0.8302 0.8940
Q95 0.9566 0.9548 0.9556 0.9507

4.3 Quantile Impulse Responses

Figure 6 shows the responses of the predicted conditional quantiles to the 100bp contrac-
tionary monetary policy shock at horizon h = 4. The IRFs can be interpreted as follows:
a 100 bp monetary polic shock alters current macroeconomic conditions such that the
expected year-on-year distribution of GDP growth and inflation is affected as portrayed.
For example, all forecasted quantiles for GDP growth decrease on impact and return to
zero after around five quarters. The initial reaction of downside risk is significantly weaker
than for upside risk. The median result is in line with the mean effect depicted in Figure
1. This suggests that the predictions for GDP growth become more pessimistic and the
distribution shifts to the left. As distinct from this, we observe a clear spreading of the
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predicted distribution of PCE inflation, which is a result of the left tail moving further
left and the right tail moving further right. Since the median also moves to the left (again
in line with the mean results), this implies a skewing of the distribution as well as a
spreading – the right tail becomes longer.
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Figure 6: Point estimates of the impulse responses of the quantiles of h=4 GDP growth and PCE
inflation to a 100bp monetary policy shock. Bootstrapped 90% confidence intervals. Top graph is Q5
response, middle graph is Q50 response, bottom graph is Q95 response.
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From the responses of the conditional quantiles we can compute how the contrac-
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tionary monetary policy shock affects the interquantile range and the (Kelley) skewness
in each case. Both the predicted GDP growth and inflation distributions get spread out.
The skewness of GDP growth decreases relative to the steady state, for PCE inflation it
becomes more positive, as shown in Figure 7.

Figure 7: Response of interquantile range (top) and non-normalized Kelley skewness (bottom) to the
100 bp contractionary monetary policy shock. All responses are at h = 4. 90% bootstrap intervals shaded
in grey.
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To explore the effects of monetary policy shocks on the conditional quantiles in more
detail, I compute the forecast error variances as well as a historical decomposition for
the fitted time series’ of each quantile for the q = 4 primitive shocks. This provides
some information about whether the movement in the quantiles is largely attributable
to monetary policy or rather to the other three unidentified shocks. The results are re-
ported in Table 4. The monetary policy shock explains a sizable share of the variation in
the conditional quantiles of GDP growth, especially of the lower tail. This suggests that
policymakers should indeed take the ramifications of their decisions for growth risks into
account. Furthermore, the short term importance of monetary policy for the upper tail
of the predicted distribution of inflation is around 45% which decreases to 16% over the
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horizon of 40 periods.

Table 4: Forecast error variance decomposition of GDP growth quantiles and inflation quantiles to a
monetary policy shock at different forecast horizons, j periods after the event of the shock.

Horizon Q05 Q50 Q95

∆GDP h=4

j=0 0.14 0.15 0.36
j=1 0.37 0.43 0.20
j=8 0.41 0.44 0.30
j=40 0.36 0.38 0.28

Q05 Q50 Q95

∆PCE h=4

0.10 0.00 0.45
0.10 0.03 0.32
0.11 0.05 0.16
0.11 0.07 0.16

For the historical decomposition in Figure 13 I compute the contribution of the mon-
etary policy shocks according to equations (14) together with the time series of the struc-
tural shocks ut, the residual is the difference between the fitted quantile and the monetary
policy shock’s contribution.
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Figure 8: Historical decomposition of the quantiles of GDP growth and inflation into the contribution
of the unit variance monetary policy shock and the residual component.
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The results of this exercise are shown in Figure 8. The plots reveal that the monetary
policy shock played an important role in the downside risk during the 1970s recession,
but has been keeping the 5th quantile higher during the Great Moderation. Its overall
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impact on the quantiles for inflation is limited to the early sample between the 1960s and
the 1980s. If anything, it seems to have somewhat contained excessive upside risk after
the year 2000. In summary, while there are some signs that monetary policy can combat
downside growth risk and upside inflation risk, it seems far fetched to call for monetary
policy as a means of containing macroeconomic risk, given its historically negligible role.

4.4 Distributional IRFs

The quantile IRFs above are marginal moments that cannot be used to characterize the
movement of the full expected distributions of GDP growth and inflation as the central
bank alters the economic conditions through the release of the monetary policy shock. To
construct such distributional IRFs, I opt for an alteration of the method of Adrian et al.
(2021) which consists in perturbing the quantile regression inputs and then computing the
implied fitted value for all quantiles of interest. This is achieved by deviating the factors
away from their mean for h = 40 periods according to the impulse response coefficients
estimated for equation (6). Next, the original quantile coefficients are used to obtain the
fitted values. To these newly fitted quantiles I can then use the Portnoy & Koenker (1989)
adaptive kernel procedure to obtain the full distribution for each of the h = 40 periods.
Given that the kernel fitting step is non-linear, this procedure allows for size and sign
effects of the monetary policy shock.

The distributional changes are depicted in Figure 9. In response to the monetary policy
shock, the predicted distribution of GDP growth shifts left and the left mode becomes
more distinguished. The effect recedes after around two quarters and the distribution is
nearly back to its initial shape after eight quarters. Interestingly, this result does not
fully mirror for an expansionary shock. The “bad” mode is essntially dissolved as the
distribution shifts right. Again, the expected distribution returns to its initial position
relatively quickly. In the case of inflation, the initial distribution is slightly right-skewed.
In line with the description above, this skewness is further increased by the monetary
policy contraction, but reversed by an expansion. Moreover, we can see the second mode
being pushed furhter to the right for the contraction which suggests that the centrla bank
is unable to contain upside inflation risk while seemingly reducing prices on average. The
contraction rather induces additional uncertainty into the economy which makes a wider
range of future inflation values likely. This puts into question the usefulness of monetary
policy as a risk management tool.
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Figure 9: Response of fitted distribution to 100 bp monetary policy shocks. Steady state distribution
is fitted to the predicted distribution using the median values of the regressors. All forecast distributions
are at h=4.
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5 Discussion

The results presented above taken together suggest that contractionary monetary policy
is an inadequate tool for controlling macroeconomic risk. Rather, it appears to exacer-
bate the “bad” equilibria existing in the conditional distributions of GDP growth and
inflation. However, expansionary shocks can indeed reduce the interquantile range of the
distribution and may in fact select the better of the two dominant probability accumula-
tion points. Therefore, our results can be interpreted as evidence for a supporting role of
looser monetary policy for extended growth and less price volatility, whereas its role in
returning inflation to lower levels is associated with significant macroeconomic and un-
certainty costs. Possible explanations for these mechanisms can be traced back as far as
Bernanke (1983).Given that contractionary monetary policy increases the range of possi-
ble outcomes, this may activate an “options” channel which induces agents to save instead
of invest which contributes to lower growth. Explanations for non-linear amplification of
monetary policy are usually drawn from financial frictions (see Brunnermeier & Sannikov
(2014) or Adrian et al. (2021)). For example, if financial conditions are tightened after
the monetary policy intervention, this can cause constraints on borrowing to start to
bind pushing the economy away from the flexible equilibrium. Another explanation for
asymmetric effects of monetary policy shocks is given in Debortoli et al. (2023). The au-
thors show that downward wage rigidity in the labor market can keep the economy away
from full employment for longer after contractionary shocks than after expansionary ones.
Claus & Nguyen (2020) offer a treatment of the asymmetric responses of consumer expec-
tation to monetary policy shocks. They show that not only inflation expectations, but also
economic expectations of activity and readiness to spend react quickly and non-linearly
to monetary tightening and easing. The plethora of possible amplification mechanisms –
spanning financial markets, labor markets and consumer confidence channels – as well as
the possibly involved non-linearities that can arise in response to monetary policy shocks
suggests that it is necessary to allow for a rich set of conditioning variables to characterize
the conditional distributions of GDP growth and inflation as I have done here.

A striking feature of the results is the continued presence of multiple modes in the
distributions of GDP growth and inflation. The emergence of additional modes in the con-
ditional distributions of GDP growth and inflation can be seen as evidence that monetary
policy can lead to multiplicity of economic equilibria. Such multiplicity can arise for ex-
ample if the central bank’s reaction to inflation is insufficiently strong in a New-Keynesian
framework (Lubik & Schorfheide, 2004). This leads to an indeterminate propagation of
monetary policy with potentially many outcomes receiving positive probability. Lubik &
Schorfheide (2004) show that depending on the selected equilibrium contractionary shocks
can decrease growth by different magnitudes, which is in line with the two modes in the
predicted GDP growth distribution representing different equilibria where the contraction
has different intensities. Similarly, they show that depending on the selected equilibrium
prices can in fact increase shortly after the introduction of the contractionary policy,
which is observable in the right mode of Figure 9 in panel c).

Multiple equilibria are a salient feature of economic models which feature some form
of coordination failure (Cooper & John, 1988). A discussion in the context of global
games is provided in Morris & Shin (2002). Essentially, multiplicity arisis if the optimal
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strategies of the involved players are affected the others’ strategies, for example in supplier
networks, demand across different economic sectors or trade. Special cases of such failures
are the famed bank runs of Diamond & Dybvig (1983) as extended to the financial panics
of Gertler et al. (2020) or the uncertainty traps of Fajgelbaum et al. (2017). All these
models have in common a deviation from a deterioration of fundamentals which keeps
agents from jointly coordinating on the first-best actions which leads them to get stuck
in a less desirable equilibrium. The research in the present paper shows that there exists
the possibility to select among different equilibria almost throughout the entire sample
period since the 1960s. While multiplicity is stronger during the first half of the sample
as suggested in Lubik & Schorfheide (2004), strategic complementarities are omnipresent
throughout and expansionary monetary policy can help selecting the better state.

6 Conclusion

In this paper I propose a new method to assess how monetary policy shocks influence
the conditional distributions of GDP growth and inflation in the US by combining a
dynamic factor model with predictive quantile regressions. The methodology is general
enough to study the response of any variable included in the data set. I show that the
predictive distributions of both variables shift to the left in response to the shock and
that downside growth risks are exacerbated by the shock even more than upside risks
are reduced. Moreover, the short horizon predicted inflation distribution spreads out.
This suggests that monetary policy may open up uncertainty channels which can have
real consequences. While the policy achieves a reduction in median expected inflation, it
creates potential for more extreme future inflation outcomes as well. Moreover, I show
that contractionary shocks can create additional modes in the expected distributions of
interest, which lead to significant increase in the probability that growth will decline by
much more than on average and even carries the potential for the policy being ineffective
in reducing inflation at all. The finding suggests that the multiplicity of equilibria, which
theory links to weak policy responses, may only obtain when policy is not expansionary.
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Appendix A: Additional evidence on conditional quan-

tiles

A.1: Deviations of tails from the median

To highlight the tail movement implied by the factor quantile regressions, I compute the
deviations of the 5th and the 95th quantiles from the median. This is important as a
prevailing feature of the literature is that the lower tail is much more volatile than the
upper tail for GDP growth. I repeat this also for inflation.

30



Figure 10: Quantile IRFs with differing numbers of static factors.
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Figure 10 clearly shows that there is more variation in the lower tail than in the upper
tail of GDP growth, but not as starkly as in Adrian et al. (2019) or Forni et al. (2021)
where the upper tail is essentially flat. This suggests a key role for the information set
used in the quantile regressions. I find several factors to be highly significant for the upper
quantile. For inflation, on the other hand, the upper tail is in fact much more volatile
than the lower tail. This points to significant upward price pressures being captured by
the factors from the large macroeconomic data base. Again, many of these are significant.
Table
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Table 5: Number of significant factors by quantile. 90% significance is assessed using the rank confidence
intervals of Koenker (1994).

Quantile GDP Growth Inflation

0.05 3 7
0.5 4 7
0.95 3 4

A.2: Multimodality in the Michigan Survey

Bimodality also obtains in the Michigan Survey of Consumers. I consider the cross sec-
tional responses over time for the following two questions:

1. By about what percent do you expect your income to (increase/decrease) during
the next 12 months?

2. By about what percent do you expect prices to go (up/down) on the average, during
the next 12 months?

The monthly kernel fitted distributions (using two rule of thumb bandwidths and
Gaussian kernels) for the years of the Great Recession are depicted in Figure ??. Clearly
there is bimodality in inflation expectations in the consumer cross section over time.
Given that many respondents do not expect any changes in income, there is a strong
mode at zero for expected income changes, but there are signs of additional humps also in
these cross section distributions. I take this observations as indicative of multimodality in
expected distributions beyond the ones computed through the lens of the quantile DFM
used in this paper and as a sign that the expectational channel put forward in Claus &
Nguyen (2020) may be an important amplification mechanism for monetary policy shocks.
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Figure 11: Cross section distributions from Michigan Survey of Consumers. Kernel fits with standard
bandwidths (red line) and bandwidths scaled up for stronger smoothing (blue line).
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(a) Income expectations Jan 2007 - Jun 2008
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(b) Income expectations Jul 2008 - Dec 2009
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(c) Inflation expectations Jan 2007 - Jun 2008
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(d) Inflation expectations Jul 2008 - Dec 2009
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Appendix B: Robustness

I conduct some robustness checks to verify the validity of the approach used in the main
specification. First, I identify the monetary policy shock by using between seven and
fifteen static factors as suggested by the criterion of Alessi et al. (2010). The same
approach is used for the computation of the quantile IRFs. Including more factors in the
model increases the information content, but may also lead to overfitting the quantile
regression and loss of degrees of freedom. Second, I estimate the monetary policy shock
with p = 3 lags for the VAR in equation (5) as suggested by the AIC.

B.0:.1 Changing the number of static factors

Figure (12) shows the responses of the identifying variables to the monetary policy shock
for different numbers of static factors r ∈ [7, 15]. There hardly any qualitative differences.

Figure 12: Responses of identifying variables to 100 basis points monetary policy shock with different
numbers of static factors.
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Figure (13) shows the quantile IRFs that obtain using different numbers of static
factors. Again, the IRFs are similar to the baseline case of r = 8, the GDP growth distri-
bution shifts to the left as both tails are pushed in that direction. An exception occurs
when r = 7, which suggests that this specification does not cover enough information to
yield correct monetary policy shocks. In the case of inflation, for all numbers of factors
the left tail and median shift to the left whereas the right tail moves out further to the
right. For all specifications, the expected distribution spreads out. Overall, the spread of
the expected inflation distribution shows good robustness towards changing the number
of static factors used as regressors for the quantile regression and for the identification of
the monetary policy shock.
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Figure 13: Quantile IRFs with differing numbers of static factors.
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B.0:.2 Changing the number of lags

The AIC criterion suggests p = 3 lags for the VAR of the factors given by equation (4).
In the main exercise I prefer the more parsimonious specification suggested by the HQ
criterion. Figure (14) reports the impulse responses of the identifying variables to the
monetary policy shock when p = 3. There are no major qualitative differences relative
to the baseline case. Therefore, I refrain from reporting the resulting quantile IRFs as
the choice of p does not impact the choice of regressors. As the structural IRF is largely
unaffected, so are the results for the quantile IRFs.

Figure 14: Responses of identifying variables to 100 basis points monetary policy shock with r = 8 and
p = 3.
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Appendix C: Bootstrap procedure

To compute the confidence intervals for the impulse responses I broadly follow the pro-
cedure outlined in J. H. Stock & Watson (2016). First, I use a Wild bootstrap with
changing sign to bootstrap the factor VAR in equation (5). The bootstrapped factors are
then multiplied by the originally estimated matrix of loadings, Â to obtain the common
component χb (the subscript b stands for “bootstrapped”). Second, I add the original
idiosyncratic component ξo to the bootstrapped common component. This step is owed
to the fact that the idiosyncratic components are cross-sectionally weakly correlated. The
proposed method in J. H. Stock & Watson (2016) is to run indivudual AR(p) models
on each idiosyncratic series and bootstrap from there. However, this neglects the cross-
sectional correlation. Third, I multiply the sum of common component χb and ξo by the
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standard deviations of the original data σo and add the mean of the original data µo. This
rescales the bootstrapped data Xb to the scale of the original data.

χb = ÂFb

Xb = σo(χb + ξo) + µ0

Once this new data set is constructed I run it through the machinery of estimating
the DFM and identifying the structural shocks as described in section 2. To compute the
quantile IRFs I use the initial estimates of the βτ coefficients in combination with the
bootstrapped versions of D(L)−1, S,H. The procedure is repeated 500 times and I take
the 95th and 5th percentiles of the empirical distributions of the IRFs as the confidence
bounds.

Appendix D: Variables, Transformations and Good-

ness of Fit

The variables are taken from FRED-QD. For more detailed information on the vari-
ables names see https://s3.amazonaws.com/files.research.stlouisfed.org/fred

-md/FRED-QD appendix.pdf.

Transformation code 1 means no transformation, 2 means taking first differences, 5
implies difference of the logs, 6 means double difference in the logs, 7 means first difference
of percentage changes. The R2 measure is from a linear regression of the transformed
variable on the r = 8 and r = 16 static factors and a constant.

Variable Trans. ADF p-val. r = 8 r = 16

GDPC1 5 0.01 0.86 0.94
pcecc96 5 0.01 0.65 0.74
PCDGx 5 0.01 0.46 0.53
PCESVx 5 0.01 0.56 0.67
PCNDx 5 0.01 0.46 0.59

GPDIC1 5 0.01 0.71 0.79
FPIx 5 0.01 0.75 0.81
Y033RC1Q027SBEAx 5 0.01 0.67 0.73
PNFIx 5 0.01 0.70 0.76
PRFIx 5 0.01 0.62 0.70

A014RE1Q156NBEA 1 0.01 0.63 0.77
GCEC1 5 0.01 0.20 0.72
A823RL1Q225SBEA 1 0.01 0.15 0.61
FGRECPTx 5 0.01 0.37 0.40
SLCEx 5 0.01 0.39 0.53

EXPGSC1 5 0.01 0.35 0.41
IMPGSC1 5 0.01 0.48 0.54
DPIC96 5 0.01 0.45 0.57
OUTNFB 5 0.01 0.87 0.93
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Variable Trans. ADF p-val. r = 8 r = 16

OUTBS 5 0.01 0.85 0.93

OUTMS 5 0.01 0.96 0.98
INDPRO 5 0.01 0.92 0.95
IPFINAL 5 0.01 0.89 0.92
IPCONGD 5 0.01 0.78 0.87
IPMAT 5 0.01 0.81 0.84

IPDMAT 5 0.01 0.79 0.83
IPNMAT 5 0.01 0.56 0.68
IPDCONGD 5 0.01 0.80 0.85
IPB51110SQ 5 0.01 0.66 0.73
IPNCONGD 5 0.01 0.40 0.65

IPBUSEQ 5 0.01 0.82 0.84
IPB51220SQ 5 0.01 0.06 0.60
TCU 2 0.01 0.93 0.94
CUMFNS 2 0.01 0.91 0.93
PAYEMS 5 0.01 0.96 0.97

USPRIV 5 0.01 0.96 0.97
MANEMP 5 0.01 0.90 0.93
SRVPRD 5 0.01 0.93 0.96
USGOOD 5 0.01 0.93 0.95
DMANEMP 5 0.01 0.90 0.92

NDMANEMP 5 0.01 0.78 0.84
USCONS 5 0.01 0.73 0.82
USEHS 5 0.01 0.74 0.76
USFIRE 5 0.01 0.68 0.69
USINFO 5 0.01 0.40 0.43

USPBS 5 0.01 0.84 0.87
USLAH 5 0.01 0.78 0.85
USSERV 5 0.01 0.83 0.85
USMINE 5 0.01 0.27 0.39
USTPU 5 0.01 0.93 0.94

USGOVT 5 0.01 0.66 0.71
USTRADE 5 0.01 0.88 0.90
USWTRADE 5 0.01 0.86 0.88
CES9091000001 5 0.01 0.11 0.22
CES9092000001 5 0.01 0.66 0.68

CES9093000001 5 0.01 0.70 0.73
CE16OV 5 0.01 0.85 0.88
CIVPART 2 0.01 0.59 0.62
UNRATE 2 0.01 0.89 0.93
UNRATESTx 2 0.01 0.86 0.91

UNRATELTx 2 0.01 0.70 0.79
LNS14000012 2 0.01 0.50 0.56
LNS14000025 2 0.01 0.89 0.91
LNS14000026 2 0.01 0.74 0.81
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Variable Trans. ADF p-val. r = 8 r = 16

UEMPLT5 5 0.01 0.41 0.50

UEMP5TO14 5 0.01 0.68 0.76
UEMP15T26 5 0.01 0.56 0.68
UEMP27OV 5 0.01 0.54 0.70
LNS13023621 5 0.01 0.87 0.91
LNS13023557 5 0.01 0.28 0.37

LNS13023705 5 0.01 0.22 0.35
LNS13023569 5 0.01 0.26 0.35
LNS12032194 5 0.01 0.64 0.68
HOABS 5 0.01 0.92 0.94
HOAMS 5 0.01 0.91 0.95

HOANBS 5 0.01 0.93 0.95
AWHMAN 2 0.01 0.74 0.76
AWHNONAG 2 0.01 0.52 0.56
AWOTMAN 2 0.01 0.68 0.72
HWIx 5 0.01 0.76 0.80

HOUST 5 0.01 0.68 0.88
HOUST5F 5 0.01 0.29 0.48
PERMIT 5 0.01 0.71 0.87
HOUSTMW 5 0.01 0.26 0.51
HOUSTNE 5 0.01 0.26 0.42

HOUSTS 5 0.01 0.52 0.63
HOUSTW 5 0.01 0.51 0.60
splice CMRMTSPL 5 0.01 0.88 0.88
splice retail 5 0.01 0.84 0.90
AMDMNOx 5 0.01 0.67 0.70

ACOGNOx 5 0.01 0.90 0.92
AMDMUOx 5 0.01 0.48 0.51
ANDENOx 5 0.01 0.34 0.40
INVCQRMTSPL 5 0.01 0.63 0.80
PCECTPI 5 0.01 0.96 0.97

PCEPILFE 5 0.01 0.96 0.97
GDPCTPI 5 0.01 0.93 0.94
GPDICTPI 5 0.01 0.77 0.84
IPDBS 5 0.01 0.91 0.93
DGDSRG3Q086SBEA 5 0.01 0.92 0.95

DDURRG3Q086SBEA 5 0.01 0.78 0.89
DSERRG3Q086SBEA 5 0.01 0.91 0.92
DNDGRG3Q086SBEA 5 0.01 0.87 0.92
DHCERG3Q086SBEA 5 0.01 0.90 0.91
DMOTRG3Q086SBEA 5 0.01 0.46 0.68

DFDHRG3Q086SBEA 5 0.01 0.69 0.73
DREQRG3Q086SBEA 5 0.01 0.75 0.79
DODGRG3Q086SBEA 5 0.01 0.52 0.60
DFXARG3Q086SBEA 5 0.01 0.49 0.65
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Variable Trans. ADF p-val. r = 8 r = 16

DCLORG3Q086SBEA 5 0.01 0.59 0.64

DGOERG3Q086SBEA 5 0.01 0.80 0.86
DONGRG3Q086SBEA 5 0.01 0.71 0.72
DHUTRG3Q086SBEA 5 0.01 0.73 0.79
DHLCRG3Q086SBEA 5 0.01 0.78 0.83
DTRSRG3Q086SBEA 5 0.01 0.59 0.60

DRCARG3Q086SBEA 5 0.01 0.63 0.65
DFSARG3Q086SBEA 5 0.01 0.75 0.81
DIFSRG3Q086SBEA 5 0.01 0.22 0.29
DOTSRG3Q086SBEA 5 0.01 0.61 0.65
CPIAUCSL 5 0.01 0.94 0.95

CPILFESL 5 0.01 0.89 0.92
WPSFD49207 5 0.01 0.88 0.93
PPIACO 5 0.01 0.85 0.91
WPSFD49502 5 0.01 0.86 0.92
WPSFD4111 5 0.01 0.31 0.49

PPIIDC 5 0.01 0.85 0.90
WPSID61 5 0.01 0.86 0.89
WPU0531x 5 0.01 0.21 0.54
WPU0561x 5 0.01 0.70 0.73
OILPRICEx 5 0.01 0.82 0.86

AHETPIx 5 0.01 0.70 0.76
CES2000000008x 5 0.01 0.34 0.52
CES3000000008x 5 0.01 0.47 0.58
COMPRMS 5 0.01 0.79 0.92
COMPRNFB 5 0.01 0.57 0.78

RCPHBS 5 0.01 0.55 0.76
OPHMFG 5 0.01 0.66 0.81
OPHNFB 5 0.01 0.67 0.83
OPHPBS 5 0.01 0.66 0.81
ULCBS 5 0.01 0.58 0.91

ULCMFG 5 0.01 0.82 0.90
ULCNFB 5 0.01 0.59 0.90
UNLPNBS 5 0.01 0.37 0.89
FEDFUNDS 1 0.39 0.92 0.95
tb3ms 1 0.41 0.92 0.95

tb6ms 1 0.43 0.93 0.96
gs1 1 0.45 0.94 0.96
GS10 1 0.61 0.92 0.96
MORTGAGE30US 1 0.67 0.95 0.97
AAA 1 0.63 0.92 0.96

BAA 1 0.62 0.92 0.96
BAA10YM 1 0.01 0.70 0.80
mrtggs10 1 0.01 0.58 0.73
tb6m3m 1 0.01 0.11 0.42
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Variable Trans. ADF p-val. r = 8 r = 16

gs1tb3m 1 0.01 0.39 0.66

gs10tb3m 1 0.01 0.34 0.83
cpf3mtb3m 1 0.02 0.86 0.94
BOGMBASEREALx 5 0.01 0.30 0.55
M1REAL 5 0.01 0.53 0.70
M2REAL 5 0.01 0.62 0.75

BUSLOANSx 5 0.01 0.55 0.62
consumerx 5 0.01 0.49 0.64
NONREVSLx 5 0.01 0.53 0.75
REALLNx 5 0.01 0.43 0.56
REVOLSLx 5 0.01 0.63 0.72

TOTALSLx 5 0.01 0.65 0.83
DRIWCIL 1 0.01 0.62 0.84
TABSHNOx 5 0.01 0.61 0.86
TLBSHNOx 5 0.01 0.41 0.61
LIABPI 5 0.01 0.29 0.58

TNWBSHNOx 5 0.01 0.59 0.85
NWPI 1 0.92 0.59 0.79
TARESA 5 0.01 0.53 0.83
HNOREMQ027Sx 5 0.01 0.36 0.60
TFAABSHNOx 5 0.01 0.53 0.83

vxoclsx 1 0.01 0.39 0.61
USSTHPIx 5 0.01 0.46 0.64
SPCS10RSAx 6 0.01 0.72 0.82
SPCS20RSAx 6 0.01 0.81 0.90
TWEXAFEGSMTHx 5 0.01 0.60 0.97

EXUSEU 5 0.01 0.63 0.91
EXSZUS 5 0.01 0.09 0.49
EXJPUS 5 0.01 0.03 0.43
EXUSUK 5 0.01 0.25 0.48
EXCAUS 5 0.01 0.47 0.50

UMCSENT 1 0.02 0.66 0.73
USEPUINDXM 2 0.01 0.70 0.81
B020RE1Q156NBEA 2 0.01 0.56 0.64
B021RE1Q156NBEA 2 0.01 0.62 0.75
GFDEGDQ188S 2 0.01 0.56 0.75

GFDEBTNx 2 0.01 0.39 0.50
IPMANSICS 5 0.01 0.93 0.96
IPB51222S 5 0.01 0.06 0.62
IPFUELS 5 0.01 0.38 0.44
UEMPMEAN 2 0.01 0.55 0.70

CES0600000007 2 0.01 0.61 0.65
TOTRESNS 5 0.01 0.25 0.51
NONBORRES 7 0.01 0.25 0.32
GS5 2 0.01 0.26 0.41
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Variable Trans. ADF p-val. r = 8 r = 16

TB3SMFFM 1 0.01 0.65 0.73

T5YFFM 1 0.01 0.42 0.83
AAAFFM 1 0.02 0.60 0.88
WPSID62 5 0.01 0.65 0.83
PPICMM 5 0.01 0.41 0.47
CPIAPPSL 5 0.01 0.63 0.70

CPITRNSL 5 0.01 0.83 0.87
CPIMEDSL 5 0.01 0.71 0.75
CUSR0000SAC 5 0.01 0.90 0.94
CUSR0000SAD 5 0.01 0.66 0.77
CUSR0000SAS 5 0.01 0.83 0.86

CPIULFSL 5 0.01 0.91 0.92
CUSR0000SA0L2 5 0.01 0.94 0.96
CUSR0000SA0L5 5 0.01 0.94 0.95
CES0600000008 5 0.01 0.76 0.82
DTCOLNVHFNM 5 0.01 0.19 0.48

DTCTHFNM 5 0.01 0.37 0.63
INVEST 5 0.01 0.33 0.48
hwium 2 0.01 0.67 0.81
claims 5 0.01 0.78 0.84
splice BUSINV 5 0.01 0.74 0.82

splice ISRATIO 2 0.01 0.79 0.86
conspi 2 0.01 0.34 0.72
cp3m 2 0.01 0.72 0.89
compapff 1 0.01 0.87 0.91
PERMITNE 5 0.01 0.29 0.41

PERMITMW 5 0.01 0.49 0.69
PERMITS 5 0.01 0.61 0.74
PERMITW 5 0.01 0.53 0.65
NIKKEI225 5 0.01 0.23 0.36
NASDAQCOM 5 0.01 0.51 0.77

CUSR0000SEHC 5 0.01 0.81 0.89
TLBSNNCBx 5 0.01 0.18 0.34
TLBSNNCBBDIx 1 0.01 0.59 0.70
TTAABSNNCBx 5 0.01 0.35 0.63
TNWMVBSNNCBx 5 0.01 0.35 0.57

TNWMVBSNNCBBDIx 2 0.01 0.34 0.71
TLBSNNBx 5 0.01 0.31 0.50
TLBSNNBBDIx 1 0.01 0.49 0.67
TABSNNBx 5 0.01 0.50 0.80
TNWBSNNBx 5 0.01 0.45 0.75

TNWBSNNBBDIx 2 0.01 0.26 0.70
CNCFx 5 0.01 0.24 0.74
S P 500 5 0.01 0.62 0.86
S P indust 5 0.01 0.59 0.84
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Variable Trans. ADF p-val. r = 8 r = 16

S P div yield 2 0.01 0.60 0.76

S P PE ratio 5 0.01 0.45 0.64
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