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1 Introduction

A large portion of products traded in upstream or downstream markets are perishable in con-
sumption but can be stored for future consumption. The relevance of consumer storage has
been empirically documented, especially in anticipation of higher future prices (e.g., Erdem
et al. 2003; Hendel and Nevo 2004, 2006a, 2006b; Osborne 2018; Perrone 2017; Pesendorfer
2002; Pires 2016; Wang 2015). This suggests that a firm selling a storable good is inclined to
devote significant attention to future changes in market conditions. Natural examples studied
in the economic literature are intertemporal fluctuations in demand (Dudine et al. 2006) or in
production costs (Antoniou and Fiocco 2023).

In this paper, we characterize a firm’s dynamic pricing policy and consumers’ storage in-
centives in the presence of consumers whose preferences vary over time. Departing from the
extant literature, we consider time-varying preferences that differ between the purchase stage
and the consumption stage. For a wide range of products, consumers can only form beliefs
about their tastes at the time of purchase and learn their actual valuation at the time of con-
sumption. This is typically the case of experience goods (e.g., wine, medications, health care
and beauty products). As emphasized in the literature on consumer naïveté, some consumers
hold biased beliefs about their preferences and revise their decisions over time for different
reasons, such as present-focus preferences, preference reversals and time inconsistency (e.g.,
Ericson and Laibson 2019; Laibson 1997; O’Donoghue and Rabin 1999; Strack and Taubinsky
2022).

Time-varying preferences for storable goods imply that the quantity purchased for stor-
age, referred to as ex ante storage, may depart from the quantity actually stored, referred to as
ex post storage. The firm benefits from ex ante storage, which stimulates current sales. Con-
versely, ex post storage is detrimental to the firm because it depresses future sales. We show
that the firm faces a trade-off when promoting ex ante storage. To suitably identify the forces
behind this trade-off, we first examine a setting characterized by consumer naïveté. A fraction
of the consumer population consists of ‘sophisticated’ consumers that hold unbiased beliefs
and perfectly know their preferences at the purchase stage. The remaining fraction is formed
by ‘naïve’ consumers that hold biased beliefs at the purchase stage and learn their actual pref-
erences at the consumption stage. Naïfs may either underestimate or overestimate their pref-
erences when purchasing the good.1 With naïve underestimating consumers, the firm benefits
from promoting ex ante storage because it anticipates that naïfs shall consume a larger quan-
tity after learning their higher valuation for the good and thus the amount of ex ante storage
translates into further consumption. The presence of consumers that become aware of their
stronger preferences inflates future demand and leads to rising prices over time. However, the
promotion of ex ante storage comes at the firm’s cost that sophisticates accumulate this amount
in the form of ex post storage, which is consumed without being bought at a higher price in the
future. The firm prefers to stimulate ex ante storage for sufficiently small values of the storage
cost. The price is set below the static monopoly level to encourage ex ante storage, especially as
long as static monopoly prices are feasible. Conversely, when naïve consumers overestimate

1Our insights qualitatively carry over to a setting where underestimating consumers coexist with overestimating
consumers. We refer to the discussion in Section 4 for details.
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their preferences, ex ante storage is detrimental to the firm because it cannot induce further
consumption. Demand falls in the future and prices decline over time. As consumers do not
have any incentives to buy for storage purposes in anticipation of lower future prices, ex ante
storage disappears. However, naïfs still prefer to store ex post by keeping some leftovers for
future consumption after learning their lower valuation for the good, provided that the storage
cost is sufficiently small. Naïfs’ ex post storage is such that the level of consumption equalizes
their marginal utilities over time. To dampen the amount of ex post storage, which depresses
future sales, the firm increases the price above the static monopoly level.

Equipped with the results under consumer naïveté, we turn to a setting where all con-
sumers are rational and hold unbiased beliefs but they are uncertain about their preferences
at the purchase stage. This allows us to endogenize the firm’s choice between allowing ex
ante storage (which leads to ex post storage as well) and only ex post storage. Notably, under
consumer naïveté, this choice is crucially driven by whether naïfs underestimate or overes-
timate their preferences, which inflates or curbs future demand, respectively. Furthermore,
with naïve underestimating consumers, only sophisticates store ex post and, with naïve over-
estimating consumers, ex ante storage vanishes. With rational consumers, the levels of ex ante
and ex post storage are simultaneously determined in a non-trivial manner. As buyers that dis-
cover high valuation for the good are induced to consume the entire quantity bought, a crucial
condition for the identification of ex ante and ex post storage is that the level of consump-
tion by buyers with low evaluation equalizes their marginal utilities over time. Remarkably,
this condition is directly satisfied for all consumers in a classical setting where preferences are
invariant between the purchase and the consumption stage. When promoting ex ante stor-
age, the firm benefits from further consumption by buyers that discover high valuation for the
good. However, buyers with low valuation accumulate in the form of ex post storage not only
the entire amount of ex ante storage but also the difference between their expected and actual
demand. We show that, as a result of this trade-off, the firm prefers to stimulate ex ante storage
when future demand is sufficiently high. Otherwise, the firm opts for allowing only ex post
storage. Interestingly, we find that allowing only ex post storage can be more profitable for the
firm even when ex ante storage is feasible. As ex ante storage stimulates current sales and ex
post storage depresses future sales, this result might appear prima facie surprising. To gain
some insights, it is helpful to note that allowing only ex post storage reduces ceteris paribus
the quantity bought and stored for future consumption. Furthermore, as prices tend to de-
crease over time, buyers are more inclined to consume rather than store the good. The firm’s
dynamic pricing policy and the associated distortions from the static monopoly level resemble
those derived under consumer naïveté. Although consumers are ex ante identical, the firm
implements ex post discrimination by favoring consumption by buyers with high valuation
for the good.

Our analysis is conducted in a fairly general setting and can be extended in different di-
rections. Specifically, we consider the case where the firm offers a nonlinear pricing policy in
the form of a contract menu that screens consumers according to their actual valuation for the
good, once it has been realized. In addition to the standard informational rents stemming from
superior information, consumers can gain from postponing their purchases in anticipation of
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a discount that the firm provides in the future because they can resort to the quantity stored.
Consumers that discover high valuation for the good are better off than in the static solution,
whereas consumers that learn low valuation incur larger losses. Furthermore, we compare
our results derived under the firm’s lack of commitment to future prices with those under full
commitment. When the firm prefers to promote ex ante storage, price comparisons crucially
depend on the shape of demand. With only ex post storage, prices move in different directions
across periods. As argued in Section 6, our results deliver a range of potentially significant
testable predictions and policy implications in markets where consumers exhibit preferences
that vary over time.

Structure of the paper. The rest of the paper is organized as follows. Section 2 describes the
related literature. Section 3 sets out the formal model and derives the equilibrium features of
dynamic pricing and storage under consumer naïveté. Section 4 turns to a setting with rational
consumers. Section 5 examines different extensions. Section 6 concludes the analysis with
testable predictions and policy implications. The Appendix collects the main formal proofs.
The Supplementary Appendix provides additional formal results and associated proofs.

2 Related literature

Our paper belongs to the extensive literature on storable goods. The influential work of Bén-
abou (1989) characterizes a firm’s optimal pricing policy in an inflationary environment where
a continuum of speculators engage in storage activities detrimental to the firm. Jeuland and
Narasimhan (1985) identify price discrimination across consumers as an explanation for tem-
porary discounts. In a setting where a share of consumers can store, Hong et al. (2002) show
that consumer storage generates equilibrium price dispersion. Our study is closely related to
the seminal paper of Dudine et al. (2006), which considers a monopoly market for storage
goods where demand fluctuates deterministically over time. Differently from our framework,
consumer preferences do not change between the purchase stage and the consumption stage,
which implies that ex ante storage coincides with ex post storage. In a setting à la Dudine et
al. (2006), Antoniou and Fiocco (2019) show that a firm unable to commit to future prices ex-
hibits strategic incentives to hold inventories when facing the possibility of buyer stockpiling.
Adopting a supply side perspective, Antoniou and Fiocco (2023) find that with intertemporal
cost variations price dynamics hinge upon the curvature of demand and the magnitude of the
consumer storage cost. Hendel et al. (2014) study nonlinear pricing of storable goods and find
cyclical patterns in prices and sales. Heterogeneity in the consumers’ ability to store implies
that larger bundles are more likely to be on sale. Adding consumer storage into Su’s (2007)
analysis of a seller’s dynamic pricing in the presence of strategic buyers, Su (2010) shows that
the seller may set a constant fixed price or provide periodic price promotions at predictable
time intervals. Hendel and Nevo (2013) investigate intertemporal price discrimination across
consumers with heterogeneous storage abilities and derive temporary price reductions. Mi-
traille and Thille (2009) show that, when production is controlled by a monopolist, speculators’
competitive storage affects both the level and the volatility of price. The economic effects of
storability have also been studied in competitive environments. In a market where two firms
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compete in quantities, Anton and Das Varma (2005) show that competition for consumer stor-
age leads to price cuts and equilibrium prices rise over time. Under price competition with
differentiated goods, Guo and Villas-Boas (2007) find that preference heterogeneity generates
differential propensity for consumer storage, which strengthens future competition and may
prevent consumer storage from occurring in equilibrium. Nava and Schiraldi (2014) examine
firms’ incentives to implement periodic price reductions in order to enforce collusion. In a
market characterized by imperfectly competitive production, Mitraille and Thille (2014) find
that firms’ incentives to sell to speculators can be quite strong, which may lead to sufficiently
high prices to drive consumers out of the market. In a subsequent work, Mitraille and Thille
(2016) show that in an infinite horizon game producers’ incentives to sell to speculators are
non-monotonic in the number of producers.

Our work can also contribute to the fast-growing literature on consumer naïveté. The pi-
oneering work of Strotz (1955) recognizes that individuals may exhibit time inconsistent be-
havior because the discount applied to a future utility depends on the time distance from the
present date. In a setting where consumers exhibit hyperbolic discount functions (which in-
duce dynamically inconsistent preferences) and may invest in an illiquid asset as an imperfect
commitment device, Laibson (1997) shows that consumption tracks income and provides a
rationale for asset-specific marginal propensities to consume. O’Donoghue and Rabin (1999)
consider present-biased preferences (which give stronger relative weight to the earlier moment
as it gets closer) and find that naïve people, who fail to foresee their self-control problems,
procrastinate immediate-cost activities but preproperate (do too soon) immediate-reward ac-
tivities. In a two-period model where an ex ante inferior choice may tempt the decision-maker
in the second period, Gul and Pesendorfer (2001) characterize a range of axioms that allow
both a preference for commitment and self-control. Eliaz and Spiegler (2006) derive the menu
of contracts that the principal offers to an agent with dynamically inconsistent preferences in
order to screen the agent’s types, which differ in their degree of sophistication, and show that
the principal can exploit more naïve types to a larger extent. Fudenberg and Levine (2006)
develop a ‘dual-self’ model where in each stage game the long-run self chooses a self-control
action and then the short-run (completely myopic) self takes the final decision. Heidhues and
Kőszegi (2009) investigate costly yet futile attempts at self-control for consumption of a harm-
ful product and find that higher sophistication often decreases welfare. Incorporating uncer-
tainty about the nature of temptation into the classical Strotz (1955) model, Dekel and Lipman
(2012) find a connection with the self-control model of Gul and Pesendorfer (2001). Based on
limited attention, implementation errors or costly decision making, Fudenberg and Strzalecki
(2015) characterize a generalization of discounted logistic choice, where the attractiveness of
menus is adjusted to reflect the agent’s choice aversion. Heidhues and Kőszegi (2017) inves-
tigate naiveté-based price discrimination through which offers are conditioned on external
information about consumer naïveté and find that the exploitation of consumer’s mistakes can
lead to Pareto-inferior outcomes and often reduces total welfare. In a market for durable goods
with positive network externalities where consumers can be sophisticated or naïve in terms of
beliefs about future network sizes, Hattori and Zennyo (2018) show that the firm may charge
the sequential-diffusion pricing that makes sophisticated consumers early adopters. Heidhues
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and Strack (2021) demonstrate that, when a partially-naive quasi-hyperbolic discounter re-
peatedly chooses whether to complete a task, the probability of completing it conditional on
not having done so earlier increases towards the deadline. Strack and Taubinsky (2022) char-
acterize the conditions under which time inconsistency can be identified and its degree can
be estimated. We refer to Ericson and Laibson (2019) for an excellent review of models about
intertemporal choice, which devotes special attention to present-focus preferences and pref-
erence reversals. Consumer naïveté has also been experimentally and empirically estimated.
Read and van Leeuwen (1998) perform a field experiment where participants are asked to
choose a snack to be delivered after seven days and at that designated time they have the (un-
expected) opportunity to revise their choices. Participants turn out to be dynamically incon-
sistent because they choose far more unhealthy snacks for immediate choice than for advance
choice. DellaVigna and Malmendier (2004) show that the optimal contract between profit max-
imizing firms and consumers with time inconsistent preferences and naïve beliefs matches the
empirical observations in a range of industries, such as credit card, gambling, health club, life
insurance, mail order, mobile phone, and vacation time-sharing. Analyzing a data set from
three US health clubs, DellaVigna and Malmendier (2006) find that consumer behavior is dif-
ficult to reconcile with standard preferences and beliefs, which suggests that consumers are
overconfident about future self-control or about future efficiency. The experimental evidence
in Halevy (2015) challenges the view that present-bias preferences are the main source of time
inconsistent choices. Acland and Levy (2015) experimentally document the presence of par-
tial naïveté with respect to present bias and of habit formation in gym attendance. In Fedyk’s
(2022) online laboratory experiment, participants exhibit significant present bias, naïveté about
their present bias, and sophisticated beliefs about others’ present bias.

3 Consumer naïveté

3.1 The model

Consumers. We consider a two-period market for a storable good characterized by a con-
tinuum of consumers normalized to unity. A fraction λ ∈ (0, 1) of the consumer population
consists of ‘sophisticated’ consumers and the remaining fraction 1 − λ is formed of ‘naïve’
consumers. Specifically, sophisticated consumers hold unbiased beliefs and perfectly know
their preferences at the purchase stage. They have a quasi-linear utility function Us (xτ, yτ) =

us (xτ) + yτ that depends on the consumption level xτ and money yτ in period τ ∈ {1, 2}.
The continuously differentiable function us (·) is increasing and concave in xτ, i.e., us′ (·) > 0
and us′′ (·) < 0, with the standard normalization us (0) = 0. Naïve consumers hold biased
beliefs about their preferences. At the first period purchase stage naïfs believe that they share
the same utility Us (xτ, yτ) as of sophisticates. However, at the consumption stage they realize
that their actual preferences are characterized by Un (xτ, yτ) = un (xτ) + yτ, where un (·) dif-
fers from us (·). This implies that consumers are ex ante identical but ex post heterogeneous.2

2Our results qualitatively carry over to a more complicated setting where naïfs also differ ex ante from sophis-
ticates in terms of beliefs. As it will clear below, what matters for our analysis is that (at least some) consumers
exhibit preferences that vary between the purchase and the consumption stage.
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The continuously differentiable function un (·) is increasing and concave in xτ, i.e., un′ (·) > 0
and un′′ (·) < 0, with the standard normalization un (0) = 0. We identify two main classes of
naïve consumers according the direction of their belief biases.

Underestimating consumers: Naïfs that underestimate their preferences exhibit un′ (·) > us′ (·)
and |un′′ (·)| ≥ |us′′ (·)| for any consumption level xτ.

Overestimating consumers: Naïfs that overestimate their preferences exhibit un′ (·) < us′ (·) and
|un′′ (·)| ≤ |us′′ (·)| for any consumption level xτ.

Underestimating consumers anticipate a lower utility than the actual one for any consumption
level, whereas overestimating consumers expect a higher utility than what eventually materi-
alizes.3

Consumers can store the good in the first period for consumption in the second period
at a unit cost c ≥ 0. Without loss of insights, we assume no discounting on the second
period. Given any price sequence {pτ}2

τ=1, consumers purchase qτ and then consume xτ

in each period τ ∈ {1, 2}. They also choose the storage level z in the first period, which
constitutes the amount of the good to be stored for consumption in the second period. At
the first period purchase stage all consumers maximize the aggregate net utility Ψs (xτ, z) ≜

∑2
τ=1 [Us (xτ, yτ)− qτ pτ] − cz. Sophisticated consumers allocate the quantity bought in the

first period between consumption and storage, i.e., q1 = x1 + z, whereas the quantity bought
in the second period satisfies q2 = x2 − z because in the second period consumers can enjoy the
quantity stored in the first period. However, after buying in the first period, naïve consumers
learn their actual preferences and maximize Ψn (xτ, z) ≜ ∑2

τ=1Un (xτ, yτ)− q1 p1 − q2 p2 − cz.
Given the quantity q1 bought in the first period (which coincides with the one of sophisticates),
naïfs adjust the levels of consumption and storage according to their actual preferences, i.e.,
q1 = x1 + z, whereas the quantity bought in the second period satisfies q2 = x2 − z. For
any consumer of type i = s, n (where s stands for sophisticates and n for naïfs), we define
by Di (pτ) ≜ arg maxq

{
ui (q)− qpτ

}
the static demand function associated with utility Ui (·),

which is continuously differentiable and decreasing with the price pτ, i.e., Di′ (pτ) < 0. For
later purposes, we also define by σ (pτ) ≜ λDs (pτ)+ (1 − λ) Dn (pτ) the aggregate demand in
period τ ∈ {1, 2} when all consumers know their actual preferences. Ex ante storage S (p1, pe

2)

represents the amount of the good that consumers buy for storage purposes at the first period
purchase stage when facing the first period price p1 and expecting the second period price pe

2.
Ex post storage S (p1, pe

2) denotes the level of storage that consumers actually carry in the sec-
ond period. As naïfs have incentives to revise their consumption and storage decisions after
learning their preferences, the amount of ex post storage S (p1, pe

2) may differ from the amount
of ex ante storage S (p1, pe

2).

Firm. A monopolistic firm operates in the market. The firm’s aggregate profit is Π ≜ Π1 + Π2,
where the first period profit Π1 and the second period profit Π2 are respectively given by

Π1 = p1 [Ds (p1) + S (p1, pe
2)] and Π2 = p2

[
σ (p2)− S (p1, pe

2)
]

. (1)

3The relation between un′ (·) and us′ (·) ensures that the difference in the corresponding static demand functions
exhibits the same sign for any price. The relation between un′′ (·) and us′′ (·) implies that such difference does not
decrease (in absolute value) with the price. This assumption allows a sharper characterization of our results and is
imposed only for technical tractability.
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When purchasing the good in the first period, naïfs believe that their preferences coincide
with those of sophisticates. The first period demand for consumption Ds (p1) is inflated by
the level of ex ante storage S (p1, pe

2). In the second period, however, all consumers are aware
of their actual preferences and the demand for consumption becomes σ (p2). Ex post storage
S (p1, pe

2) curbs the second period demand because consumers resort to this quantity stored in
the first period in order to satisfy their consumption needs in the second period. Due to the
lack of commitment to future prices, the firm maximizes its continuation profit in each period.
Production costs are normalized to zero. The firm’s profit Πτ in period τ satisfies the following
standard assumption.

Profit concavity Π′′
τ (pτ) < 0, τ ∈ {1, 2}.

This ensures that the second-order conditions for profit maximization are fulfilled.

Timing and equilibrium concept. The first period of the game includes the following three
stages. First, the firm sets the price for the good. Second, consumers purchase a quantity of
the good. Third, consumers learn their actual preferences and consumption takes place. In
the second period the game evolves as in the first period, with the only difference that all
consumers know their actual preferences. The solution concept is the subgame perfect Nash
equilibrium.

3.2 Two relevant benchmarks

We start our analysis with two benchmark cases. First, we consider the case where all con-
sumers are perfectly aware of their actual preferences. The firm’s static profit maximization
problem in period τ ∈ {1, 2} writes as

max
pτ

pτσ (pτ) .

As the firm faces the same problem in each period, the equilibrium static monopoly price pm
τ

remains constant over time. Hence, consumers do not exhibit any incentives to store and the
firm’s dynamic profit maximization problem reduces to a replica of the static problem.

Now, we turn to the case where a fraction 1−λ of the consumer population consists of naïfs
believing that they have the same preferences as sophisticates but consumers cannot store. This
identifies the static solution in the presence of consumer naïveté. In the first period, the firm’s
profit maximization problem is given by

max
p1

p1Ds (p1) , (2)

which determines the first period equilibrium static monopoly price psm
1 . In the second pe-

riod, all consumers know their actual preferences and the firm’s profit maximization problem
becomes

max
p2

p2σ (p2) , (3)

which yields the second period equilibrium static monopoly price pm
2 . The sequence of static
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monopoly prices evolves over time according to the direction of naïfs’ belief biases. When naïfs
underestimate their preferences at the first period purchase stage, demand grows in the second
period and thus the static monopoly prices rise over time, i.e., psm

1 < pm
2 . The firm increases the

price in the second period because naïfs have learned their higher valuation for the good. As
described in Section 5, for sufficiently small values of the storage cost, consumers’ eagerness to
store prevents the firm from achieving the static solution. Conversely, when naïfs overestimate
their preferences at the first period purchase stage, demand falls in the second period and thus
the static monopoly prices decline over time, i.e., psm

1 > pm
2 . Anticipating a lower future price,

consumers do not have any incentives to store at the purchase stage. However, after learning
their actual preferences, naïfs are inclined to revise their consumption and storage decisions.
This can generate some amount of ex post storage that affects the firm’s pricing policy. Below,
we disentangle our analysis according to naïfs’ belief biases.

3.3 Underestimating consumers

As all consumers are convinced of having utility Us (·) at the first period purchase stage, they
choose the same level of ex ante storage, namely, the amount of the good bought for storage
purposes and intended for future consumption before their actual preferences are realized.
Differentiating the aggregate net utility Ψs (·) (defined in Section 3) with respect to the storage
level z subject to the associated constraints yields ∂Ψs/∂z = −p1 − c + pe

2. When consumers
store a unit of the good in the first period for consumption in the second period, they incur a
cost equal to the first period price inflated by the storage cost, i.e., p1 + c. Buying in the second
period, consumers expect to pay the second period price pe

2. Then, if p1 + c < pe
2 (i.e., ∂Ψs/∂z >

0), consumers prefer to buy the amount of the good that allows storing the entire quantity
consumed in the second period. If p1 + c = pe

2 (i.e., ∂Ψs/∂z = 0), consumers are indifferent
between buying for storage purposes and waiting until the second period to purchase the
good. If p1 + c > pe

2 (i.e., ∂Ψs/∂z < 0), consumers prefer to buy only for current consumption.
Ex ante storage S (p1, pe

2) reflects the storage level z that maximizes the aggregate net utility
Ψs (·) subject to the associated constraints. In line with the main literature (e.g., Anton and Das
Varma 2005; Dudine et al. 2006), ex ante storage is given by

S (p1, pe
2) =


σ (p1 + c) if p1 + c < pe

2

[0, σ (p1 + c)] if p1 + c = pe
2

0 if p1 + c > pe
2.

(4)

As shown below, the last two cases are the only relevant outcomes in equilibrium.4 Through-
out the paper, we refer to p1 + c ≥ p2 as the storability constraint.5

Three pricing policies are potentially at the firm’s disposal. The first pricing policy is such
that the storability constraint is strictly satisfied, i.e., p1 + c > p2. This removes consumers’

4In anticipation that actual preferences will be realized before the second period starts, for p1 + c < pe
2 the level

of ex ante storage corresponds to the entire second period demand σ (p1 + c), provided that arbitrage is allowed.
Otherwise, consumers intend to store Ds (p1 + c). This can be incorporated into our model without affecting the
qualitative results.

5For expositional convenience, we sometimes refer to p2 instead of pe
2, because the expected price coincides with

the equilibrium price in the second period (under perfect forsight and no uncertainty).
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storage incentives and leads to the static monopoly prices, provided that they can be imple-
mented, as described below.6 The second pricing policy makes the storability constraint bind-
ing, i.e., p1 + c = p2. At the purchase stage, consumers are indifferent between storing the
good in the first period and purchasing it in the second period. The third pricing policy, i.e.,
p1 + c < p2, induces consumers to buy the good in order to store the entire demand in the
second period. Yet, this pricing policy is not implementable because the firm succumbs to the
temptation to reduce the price in the second period, which enhances its profit through higher
sales.7

As the firm cannot commit to future prices, we find from the second period profit in (1) that
the firm’s dynamic profit maximization problem is subject to the following sequential optimality
constraint

p2
(
S (p1, pe

2)
)
≜ arg max

p̃2

p̃2
[
σ ( p̃2)− S (p1, pe

2)
]

. (5)

The second period price p2 (·) maximizes the firm’s second period profit for any level of ex post
storage S (p1, pe

2) ≥ 0 inherited from the first period. As argued in Section 3.1, ex post storage
S (p1, pe

2) may differ from ex ante storage S (p1, pe
2) because naïve consumers have incentives to

adjust their consumption and storage decisions after learning their actual preferences. Notably,
if the storability constraint is binding, i.e., p1 + c = p2, consumers are indifferent about the
amount of ex ante storage but the sequential optimality constraint (5) dictates the amount of
ex post storage.

As discussed in Section 3.2, when naïve consumers underestimate their preferences, the
first period static monopoly price psm

1 is lower than the second period static monopoly price pm
2 .

The static solution is still implementable under the possibility of storage as long as consumers
do not have any (strict) incentives to store, i.e., psm

1 + c ≥ pm
2 . There exists a threshold c̃u ≜

pm
2 − psm

1 > 0 for the storage cost c such that the static solution is implementable if and only if
it satisfies the following static feasibility constraint

c ≥ c̃u. (6)

The storage cost c must be sufficiently large to dissuade consumers from buying in the first
period to store for consumption in the second period at the static monopoly prices. Otherwise,
consumers are inclined to store and the static solution cannot be achieved.

The firm’s dynamic problem is affected by the possibility of storage at least when the static
feasibility constraint (6) fails to hold. As a lower storage cost makes consumers more eager to
store, we find that there exists a threshold cu > 0 for the storage cost c below which storage
can emerge in equilibrium.8 The dynamic storage solution must satisfy the following dynamic
feasibility constraint

c < cu. (7)

6Intuitively, after discovering their higher valuation for the good, a fortiori naïve consumers do not intend to
engage in storage activities.

7We refer to the proof of Lemma 1 for technical details.
8Further details can be found in Proposition 1.
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For c ≥ cu, storage definitely harms the firm because it is too costly. Notably, the firm faces
the following trade-off. On the one hand, although consumers behave identically at the first
period purchase stage, the firm benefits from storage by anticipating that naïve consumers
shall discover their higher valuation for the good and prefer to consume in the first period
more than what they initially planned. On the other hand, storage is detrimental to the firm
because prices are linked through the binding storability constraint, i.e., p1 + c = p2, and thus
the firm forgoes c for each unit of the good bought at p1 and stored in the first period, which is
consumed without being bought at p2 in the second period.

We can now proceed with the equilibrium characterization. Given the firm’s profit Π ≜

Π1 + Π2, where Π1 and Π2 are described in (1), and the sequential optimality constraint (5),
the firm’s dynamic profit maximization problem writes as

max
{p1,p2}

Π (p1, p2) s.t. (5). (8)

Before solving for the equilibrium, in the following lemma we provide the main features of the
static and dynamic solution.

Lemma 1 A. The static solution is feasible if and only if c ≥ c̃u. Prices are psm
1 and pm

2 , where
psm

1 + c ≥ pm
2 .

B. The dynamic storage solution is feasible if and only if c < cu. Prices are p∗u
1 and p∗u

2 = p∗u
1 + c,

with ex ante storage S∗u > 0 and ex post storage S∗u
= λS∗u > 0. For c ≥ cu, the dynamic solution

exhibits no storage. Prices are p∗∗u
1 = p∗∗u

2 − c and p∗∗u
2 = pm

2 .

The results in point A of Lemma 1 directly follow from the static feasibility constraint (6).
When the storage cost is large enough, i.e., c ≥ c̃u, the firm can charge the first period static
monopoly price psm

1 at which consumers do not have any (strict) incentives to store, i.e., psm
1 +

c ≥ pm
2 . Hence, the second period static monopoly price pm

2 satisfies the sequential optimality
constraint (5). A rise in the fraction λ of sophisticates (with lower valuation for the good) curbs
the second period demand σ (·) (defined in Section 3) and leads to a reduction in the second
period static monopoly price pm

2 . This implies that a higher λ reduces the threshold c̃u, which
relaxes the static feasibility constraint (6).

Point B of Lemma 1 formalizes the dynamic solution. In this case, the possibility of storage
affects the firm’s dynamic pricing policy. We know from the dynamic feasibility constraint
(7) that the firm can induce consumers to store when the storage cost is relatively small, i.e.,
c < cu. Prices are linked through the binding storability constraint, i.e., p∗u

2 = p∗u
1 + c, which

makes consumers indifferent about storage. The firm can adjust the first period price to ma-
nipulate storage through the sequential optimality constraint (5). Specifically, the firm can
promote storage by cutting the first period price. A reduction in the first period price leads to
a lower price in the second period as well (due to the binding storability constraint) and thus
requires a higher amount of storage to dampen the second period demand net of storage so
that the sequential optimality constraint (5) is satisfied. As previously discussed, the firm ben-
efits from inducing consumers to store at the first period purchase stage, because it anticipates
that naïfs shall consume a larger quantity after learning their higher valuation for the good.
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This yields the level of ex ante storage S∗u > 0. Notably, the firm prefers to set prices such
that only sophisticates store some quantity for future consumption, which leads to the level of
ex post storage S∗u

= λS∗u > 0. Any price that induces naïfs to carry some quantity in the
second period would be unduly low for the firm, which would lose c for each unit sold at p1

and stored in the first period rather than sold at p2 = p1 + c in the second period. Under cer-
tain circumstances, ex post storage S∗u

declines with the fraction λ of sophisticates. The reason
is that a higher λ translates into a lower number of naïfs, which makes storage less attractive
to the firm. In this case, the threshold cu declines with λ as well, which tightens the dynamic
feasibility constraint (7).9 When the storage cost is large enough, i.e., c ≥ cu, the dynamic stor-
age solution cannot be implemented because the dynamic feasibility constraint (7) is violated.
Prices are still linked through the binding storability constraint but the second period price is
set at the static monopoly level, as implied by the sequential optimality constraint (5).

Given the static feasibility constraint (6) and the dynamic feasibility constraint (7), we find
from Lemma 1 that for c̃u < c < cu the static solution and the dynamic storage solution are
both implementable. In the following lemma, we establish the condition under which this
interval is non-empty.

Lemma 2 There exists a threshold λ̃ such that cu > c̃u if and only if λ < λ̃.

Lemma 2 shows that the threshold for the dynamic storage solution is higher than the one
for the static solution, i.e., cu > c̃u, if and only if the fraction λ of sophisticated consumers is
small enough, i.e., λ < λ̃.10 In this case, there exists a range for the storage cost, i.e., c̃u < c <

cu, such that the firm can choose between the static solution and the dynamic storage solution.
As shown in the proof of Lemma 2, the condition λ < λ̃ corresponds to the case where for
c = c̃u (the threshold for the feasibility of the static solution) the firm benefits from storage
at the static monopoly prices and consumers are indifferent about it (because the storability
constraint is binding), i.e., ∂Π (psm

1 , psm
1 + c) /∂S|c=c̃u > 0, with psm

1 + c̃u = pm
2 . Thus, the

threshold for the dynamic storage solution exceeds the one for the static solution, i.e., cu >

c̃u. The idea is that, when the number of sophisticates is small enough, i.e., λ < λ̃, storage
becomes particularly profitable for the firm because a large portion of consumers consists of
naïfs that consume in the first period the entire quantity bought. Conversely, a relatively large
number of sophisticates, i.e., λ > λ̃, is equivalent to the case where for c = c̃u storage is
detrimental to the firm at the static monopoly prices and consumers are indifferent about it,
i.e., ∂Π (psm

1 , psm
1 + c) /∂S|c=c̃u < 0, with psm

1 + c̃u = pm
2 . In this case, the threshold for the

dynamic storage solution lies below the one for the static solution, i.e., cu < c̃u, which implies
that the two solutions are mutually exclusive.

We are now in a position to characterize the levels of prices and storage that emerge in
equilibrium.

9As shown in the proof of Lemma 1, a sufficient (albeit not necessary) condition for S∗u to decrease with λ is
that p∗u

1 (weakly) rises with λ. This mitigates consumers’ storage incentives even further. Under linear demand
functions (with parallel shift), we find that S∗u and cu unambiguously decrease with λ.

10In the proof of Lemma 2, we characterize an arguably mild condition for the uniqueness of the threshold λ̃,
according to which the second period profit function must be relatively concave (i.e., Π′′′

2
(

pm
2
)
≤ 0). Notably, this

constitutes a sufficient (albeit not necessary) condition.

12



Proposition 1 A. Let λ ≤ λ̃. In equilibrium, (i) for c < ĉu, where ĉu ∈ [c̃u, cu], the dynamic storage
solution arises, and (ii) for c ≥ ĉu, the static solution arises.

B. Let λ > λ̃. In equilibrium, (i) for c < cu, the dynamic storage solution arises, (ii) for cu ≤ c <

c̃u, the dynamic solution without storage arises, and (iii) for c ≥ c̃u, the static solution arises.

Proposition 1 indicates that the equilibrium solution and the associated values of prices
and storage crucially depend on the fraction λ of sophisticates and the magnitude of the stor-
age cost c. We know from Lemma 2 that, if the number of sophisticates is relatively small,
i.e., λ < λ̃, the firm can choose between the static solution and the dynamic storage solu-
tion for intermediate values of the storage cost, i.e., c̃u < c < cu. As shown in point A of
Proposition 1, in this case there exists a threshold ĉu ∈ [c̃u, cu] such that for c < ĉu storage
emerges in equilibrium, despite the static solution being feasible for c ≥ c̃u.11 Intuitively, the
firm promotes storage as long as its cost is relatively small. It follows from Lemma 1 that the
equilibrium prices are linked through the binding storability constraint and only sophisticates
store ex post, whereas naïfs consume the entire quantity bought. For c ≥ ĉu, the firm sets the
static monopoly prices in equilibrium.

We know from Lemma 2 that, when the number of sophisticates is relatively large, i.e.,
λ > λ̃, the static solution and the dynamic storage solution are mutually exclusive. As point
B of Proposition 1 indicates, in this case the firm implements the dynamic storage solution
whenever it is feasible, i.e., c < cu. For cu ≤ c < c̃u, storage is definitely harmful to the
firm but the static monopoly prices cannot be implemented. The dynamic solution without
storage characterized in Lemma 1 emerges in equilibrium, with prices being linked through
the binding storability constraint. The firm raises the first period price such that the second
period price is at the static monopoly level, which satisfies the sequential optimality constraint
(5) in the absence of storage. The static monopoly prices are charged in equilibrium whenever
possible, i.e., for c ≥ c̃u.

To better appreciate the main features of the firm’s equilibrium pricing policy, we charac-
terize the price distortions from the static monopoly level. Our findings are summarized in the
following proposition.

Proposition 2 A. In the first period, the equilibrium price exhibits the following features: (i) for c < c̃u

it is higher than the static monopoly price if λ > λ, (ii) for c̃u ≤ c < ĉu, it is lower than the static
monopoly price, and (iii) otherwise, i.e., for c ≥ max {c̃u, ĉu}, it coincides with the static monopoly
price.

B. In the second period, the equilibrium price is lower than the static monopoly price in the presence
of storage. Otherwise, it coincides with the static monopoly price.

The results in point A of Proposition 2 identify the price distortions in the first period.
When the storage cost is sufficiently small that the static feasibility constraint (6) is violated,
i.e., c < c̃u, the firm raises the first period price above the static monopoly level if the number
of sophisticates is relatively large, i.e., λ > λ. As these consumers carry the quantity stored
in the second period, storage is detrimental to the firm and the first period price is distorted

11It holds ĉu = c̃u = cu if and only if λ = λ̃.
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upward in order to mitigate consumers’ storage incentives. When the dynamic solution with-
out storage emerges in equilibrium, the firm exacerbates the distortion of the first period price
above the static monopoly level in order to remove storage. For c̃u ≤ c < ĉu, we know from
Proposition 1 that storage emerges in equilibrium, despite the static solution being feasible.
This interval is non-empty for λ < λ̃. The firm benefits from storage because a relatively
large share of consumers is naïve and thus resorts to the quantity intended for storage in or-
der to satisfy the first period consumption needs. The first period price is distorted below the
static monopoly level in order to stimulate storage. When the storage cost is large enough,
i.e., c ≥ max {c̃u, ĉu}, it follows from Proposition 1 that the static monopoly prices are imple-
mented.12 Notably, we find that, under linear demand functions (with parallel shift), in the first
period the equilibrium price in the presence of storage is lower than the static monopoly price
if and only if the storage cost is large enough. When storage is relatively costly for consumers,
the firm reduces the first period price below the static monopoly level to promote storage.

Point B of Proposition 2 shows that in the second period the equilibrium price cannot ex-
ceed the static monopoly level. This result directly follows from the sequential optimality con-
straint (5). As storage curbs the second period demand faced by the firm, the second period
price in the presence of storage lies below the static monopoly level. When storage vanishes,
the firm sets the static monopoly price in the second period.

Finally, we investigate the impact of the share λ of sophisticates in the consumer population
on the firm’s equilibrium pricing policy in the presence of storage. Our results are formalized
in the following proposition.

Proposition 3 In the presence of storage, the equilibrium price increases with λ in each period if it is
sufficiently lower than the static monopoly price in the first period.

Proposition 3 shows that in each period a higher number of sophisticates can inflate the
equilibrium price with storage. Put differently, instead of magnifying consumers’ exploitation
and exacerbating the firm’s market power, consumer naïveté can lead to lower prices. To
appreciate the rationale for this result, it is helpful to recall that naïfs end up consuming the
quantity intended for storage. Thus, a higher number of naïfs strengthens the firm’s incentives
for price cuts in order to stimulate storage. A sufficient (albeit not necessary) condition for this
result is that the equilibrium price is sufficiently lower than the static monopoly price in the
first period. In this case, the firm significantly benefits from promoting storage that translates
into additional consumption by naïfs.13 Notably, we find that, under linear demand functions
(with parallel shift), the equilibrium price in the presence of storage increases with the number
of sophisticates in each period if and only if it is lower than the static monopoly price in the

12Recall from Proposition 1 that, for λ ≤ λ̃, the threshold ĉu is such that the static solution is more profitable than
the dynamic storage solution if and only if c > ĉu. As ĉu ∈ [c̃u, cu], we have max {c̃u, ĉu} = ĉu. For λ > λ̃, the static
solution is implemented whenever possible, i.e., for c ≥ c̃u, which implies that max {c̃u, ĉu} = c̃u. We refer to the
proof of Proposition 2 for further details.

13We know from Lemma 1 that, in the dynamic solution without storage, the second period price coincides with
the static monopoly level. A higher number of sophisticates (with lower valuation for the good) mitigates the
second period demand and the corresponding price. It follows from the binding storability constraint that the first
period price declines as well (see the proof of Proposition 3 for technical details). In the static solution, the first
period price clearly does not depend on the share of sophisticates because all consumers behave identically at the
purchase stage.
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first period. As discussed after Proposition 2, this is the case if and only if the storage cost is
large enough.

3.4 Overestimating consumers

When overestimating their preferences, at the first period consumption stage naïve consumers
realize that their actual valuation for the good is lower than what they believed. As demand
falls in the second period, consumers expect that prices decrease over time, i.e., pe

2 > p1, which
removes their incentives to buy the good in the first period for storage purposes. In other
terms, ex ante storage vanishes, i.e., S (p1, pe

2) = 0. Sophisticated consumers do not revise
their storage decisions. However, after discovering their lower valuation for the good, naïfs
may choose to leave some quantity for future consumption. Thus, although prices decline
over time, ex post storage can emerge, i.e., S (p1, pe

2) > 0. Intuitively, this occurs if naïfs’ actual
preferences for the good are sufficiently weaker than what they believed. After buying the
amount of the good that corresponds to the demand for consumption Ds (p1) driven by the
believed utility Us (·), naïfs learn their actual preferences and choose the consumption level
in the first period in order to maximize their actual utility Un (·), given the first period price
p1 and the second period expected price pe

2. Let si (p1, pe
2) be the amount of ex post storage

per consumer of type i = s, n. We have ss (p1, pe
2) = 0 because sophisticated consumers do

not store ex post. The level of consumption Ds (p1)− sn (p1, pe
2) per naïve consumer equalizes

marginal utilities over time, i.e., un′ (Ds (p1)− sn (p1, pe
2)) + c = un′ (Dn (pe

2)), where the first
period marginal utility from consumption is inflated by the storage cost c forgone for each
unit consumed. As the marginal utility from consumption in the second period reflects the
corresponding price, i.e., un′ (Dn (pe

2)) = pe
2, ex post storage per naïve consumer writes as

sn (p1, pe
2) = max {0, Ds (p1)− Dn (pe

2 − c)} . (9)

After learning their actual preferences, naïve consumers store the difference (if positive) be-
tween the quantity bought Ds (p1), which corresponds to the demand for consumption with
the believed utility Us (·), and the quantity consumed Dn (pe

2 − c) according to the actual
utility Un (·). Substituting the static monopoly prices psm

1 and pm
2 (derived in Section 3.2)

into the expression for sn (·) in (9), we find that sn (·) decreases with the storage cost c, i.e.,
∂sn (psm

1 , pm
2 ) /∂c = Dn′ (pm

2 − c) < 0. Solving sn (psm
1 , pm

2 ) = Ds (psm
1 )− Dn (pm

2 − c) = 0 for c,
we obtain that there exists a threshold c̃o ≜ pm

2 − Dn−1 (Ds (psm
1 )) such that the static solution

is feasible if and only if c ≥ c̃o. For sufficiently small values of the storage cost, i.e., c < c̃o,
naïve consumers intend to store some quantity of the good for future consumption after learn-
ing their lower valuation. In this case, the static solution cannot be implemented. As demand
falls in the second period, this occurs despite the fact that the static monopoly prices decline
over time, i.e., psm

1 > pm
2 . The firm’s dynamic problem is described in (8), where ex ante stor-

age vanishes and ex post storage stems from (9). In the following proposition, we derive the
equilibrium prices and storage.

Proposition 4 In equilibrium, (i) for c < co, the dynamic storage solution arises, which yields prices
p∗o

1 and p∗o
2 , with p∗o

1 > p∗o
2 , as well as ex post storage S∗o

> 0, (ii) for co ≤ c < c̃o, the dynamic
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solution without storage arises, which yields prices p∗∗o
1 and p∗∗o

2 = pm
2 , with p∗∗o

1 > pm
2 , and (iii) for

c ≥ c̃o, the static solution arises, which yields prices psm
1 and pm

2 , with psm
1 > pm

2 .

Proposition 4 shows that, when naïve consumers overestimate their preferences, storage
arises in equilibrium for relatively small values of the storage cost, i.e., c < co, in line with the
case of underestimating consumers. This occurs especially when the fraction λ of sophisticated
consumers is large enough, because their stronger preferences for the good inflate the second
period demand and the corresponding price, which stimulates storage. Differently from the
case of underestimating consumers, naïfs engage in storage activities. After finding the good
less valuable than at the purchase stage, naïfs decide to keep some leftovers for future con-
sumption, which generates the aggregate level of ex post storage S∗o

> 0. It follows from the
previous analysis that S∗o

equalizes naïfs’ intertemporal marginal utilities. For any given first
period price, the level of ex post storage s∗o per naïve consumer increases with λ. Anticipating
a rise in the second period price driven by a higher number of sophisticates (with stronger
preferences for the good), naïve consumers are more inclined to store. In this case, the thresh-
old co increases with λ as well, which makes storage more likely to emerge in equilibrium.14

Furthermore, the equilibrium prices are not linked through the binding storability constraint
but through the amount of storage. As shown in Proposition 4, for intermediate values of the
storage cost, i.e., co ≤ c < c̃o, storage cannot emerge any longer but the static solution is still
unfeasible. The first period equilibrium price is such that ex post storage vanishes, whereas the
second period equilibrium price reflects the static monopoly level, as implied by the sequential
optimality constraint (5). Proposition 4 also indicates that the static solution is implemented
whenever it is feasible. This occurs if and only if the expression in (9) is non-positive at the
static monopoly prices and thus consumers do not have any (strict) incentives to store, i.e.,
c ≥ c̃o. Notably, the threshold c̃o increases with the fraction λ of sophisticated consumers,
thereby making the static solution more difficult to achieve. As previously discussed, a higher
λ inflates the second period demand and the corresponding price, which magnifies naïfs’ in-
centives to store. Notably, we find from Proposition 4 the equilibrium prices always decrease
over time.

To better appreciate the impact of overestimating consumers on the firm’s equilibrium pric-
ing policy, we identify the price distortions with respect to the static monopoly level. Our
results are formalized in the following proposition.

Proposition 5 A. In the first period, the equilibrium price exhibits the following features: (i) for c < c̃o,
it is higher than the static monopoly price, and (ii) for c ≥ c̃o, it coincides with the static monopoly price.

B. In the second period, the equilibrium price is lower than the static monopoly price in the presence
of storage. Otherwise, it coincides with the static monopoly price.

Point A of Proposition 5 indicates that the first period price distortions substantially dif-
fer from the case of underestimating consumers. Storage is definitely detrimental to the firm
because it cannot stimulate further consumption in the first period and curbs demand in the

14A sufficient (albeit not necessary) condition for s∗o to increase with λ is that p∗o
1 (weakly) decreases with λ,

which encourages storage to a further extent. Under linear demands (with parallel shift), we find that s∗o and co

definitely increase with λ. Technical details can be found in the proof of Proposition 4.
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second period. When the static solution is not feasible, i.e., c < c̃o, the firm mitigates con-
sumers’ storage incentives by raising the first period price above the static monopoly level.
The upward price distortion persists when storage cannot emerge and the static solution is
still unfeasible. For c ≥ c̃o, it follows from Proposition 4 that the static solution applies. In line
with the case of underestimating consumers, the results in point B of Proposition 5 directly
follow from the sequential optimality constraint (5).

Finally, we investigate how the share λ of sophisticates in the consumer population shapes
the firm’s equilibrium pricing policy in the presence of storage. We obtain the following results.

Proposition 6 In the presence of storage, the equilibrium price decreases with λ in the first period and
increases with λ in the second period if λ is high enough.

Proposition 6 indicates that the equilibrium prices with storage move in different directions
across periods in response to an increase in the fraction λ of sophisticates, especially when λ is
high enough. In particular, the first period equilibrium price tends to decrease with λ. Given
that a higher number of sophisticated consumers (with stronger preferences for the good) in-
flates the second period demand and the corresponding price, one might expect that the firm
should raise the first period price in order to alleviate naïfs’ stronger storage incentives. To ap-
preciate the rationale for our findings, it is helpful to note that ceteris paribus a larger portion
of sophisticates reduces the impact of naïfs’ aggregate storage on the second period demand,
which allows the firm to mitigate the price distortion from the static monopoly level. The sec-
ond period equilibrium price tends to increase with the number of sophisticates because the
second period demand becomes higher.15

To gain further insights, we also consider linear demand functions (with parallel shift). We
find that, when sophisticates’ willingness to pay is not too high, the first period equilibrium
price unambiguously decreases with λ, in line with our previous analysis. Otherwise, it is
concave in λ. Thus, for sufficiently small values of λ, a higher λ increases the first period equi-
librium price. For any given first period price, a rise in λ induces the firm to inflate the second
period price because of higher demand. This makes more attractive to the firm to sell in the
second period and discourage storage through a higher first period price. As the magnitude of
the responsiveness of the second period price to λ rises with sophisticates’ willingness to pay,
the positive price effect of λ dominates the (previously discussed) negative effect and thus the
first period equilibrium price increases with λ when sophisticates’ willingness to pay is high
enough. For sufficiently large values of λ, the negative effect is relatively pronounced due to
the limited impact of naïfs’ aggregate storage on the second period demand, which implies
that the first period equilibrium price decreases with λ. We also find that the second period
equilibrium price definitely increases with λ, because the positive effect stemming from higher
demand outweighs the negative effect of higher storage per naïve consumer. It follows from
our discussion that, when the share of naïfs in the consumer population is relatively large (i.e.,

15In the dynamic solution without storage characterized in Proposition 4, the equilibrium price increases with
the number of sophisticates in each period. A higher λ inflates the second period demand and the corresponding
static monopoly price that the firm charges in equilibrium. The first period equilibrium price rises as well in order
to ensure that storage vanishes in equilibrium (see the proof of Proposition 6 for technical details). In the static
solution, the first period equilibrium price clearly does not depend on the fraction of sophisticates because all
consumers behave in the same manner at the purchase stage.
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for λ low enough), the firm reduces the price in each period in response to a higher number of
naïfs, which makes consumers better off.

4 Rational consumers

We now consider a setting where all consumers are uncertain about their preferences at the
first period purchase stage and hold unbiased beliefs. In other words, all consumers are ra-
tional. At the first period purchase stage consumers assign a probability θ ∈ (0, 1) of having
high utility Uh (xτ, yτ) = uh (xτ) + yτ and a complementary probability 1 − θ of having low
utility Ul (xτ, yτ) = ul (xτ) + yτ in period τ ∈ {1, 2}. The utility Uk (xτ, yτ), with k = h, l,
depends on the consumption level xτ and money yτ. The continuously differentiable function
uk (·) is increasing and concave in xτ, i.e., uk′ (·) > 0 and uk′′ (·) < 0, with the standard nor-
malization uk (0) = 0. Furthermore, it holds uh′ (·) > ul′ (·) for any consumption level xτ. Let
D̃ (pτ) ≜ arg maxq

{
θuh (q) + (1 − θ) ul (q)− qpτ

}
the static demand function stemming from

the consumer expected utility maximization problem, which is continuously differentiable and
decreasing with the price pτ, i.e., D̃′ (pτ) < 0.

Our analysis can be decomposed into two main cases according to whether consumers buy
the good in the first period for storage purposes or not. Intuitively, this crucially depends on
the evolution of prices over time. In particular, when prices are expected to increase in the sec-
ond period, ex ante storage S (p1, pe

2) can emerge in equilibrium. It follows from the analysis
in Section 3 that it can hold S (p1, pe

2) > 0 only if prices are linked through the binding stora-
bility constraint, i.e., p1 + c = p2. After learning their preferences, buyers choose the amount
of consumption that determines for the residual part the level of ex post storage S (p1, pe

2) car-
ried in the second period. If prices move over time such that the storability constraint is not
binding, i.e., p1 + c > p2, which occurs (at least) with a declining price sequence, ex ante stor-
age S (p1, pe

2) vanishes and only ex post storage S (p1, pe
2) can emerge in equilibrium. Notably,

the evolution of prices over time is driven by the magnitude of demand faced by the firm.
In the first period, the demand for consumption D̃1 (p1) at the purchase stage corresponds to
the (previously derived) static demand function D̃ (p1) stemming from the consumer expected
utility maximization problem. In the second period, after consumers have learned their pref-
erences, the demand for consumption D̃2 (p2) consists of high demand Dh (p2) for the share θ

of consumers with high valuation for the good and low demand Dl (p2) for the residual share
1− θ of consumers with low valuation, where Dk (p2) ≜ arg maxq

{
uk (q)− qp2

}
, for k = h, l.16

In addition, we allow for a general magnitude of the second period demand for consumption
D̃2 (·) according to a parameter ζ, where ∂D̃2/∂ζ > 0. The role of ζ will become clear in the
subsequent analysis.

For any level of ex post storage S (p1, pe
2) ≥ 0 inherited from the first period, the firm’s

dynamic profit maximization problem is subject to the following sequential optimality constraint

p2
(
S (p1, pe

2)
)
≜ arg max

p̃2

p̃2

[
D̃2 ( p̃2, ζ)− S (p1, pe

2)
]

. (10)

16Notably, we adopt a general formulation for D̃2 (·) that may also stem from consumer expected utility maxi-
mization problem when consumers are uncertain about their preferences in the second period as well.
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The firm does not have any incentives to reduce the first period price to the extent that even
consumers with high valuation store ex post in equilibrium. As these consumers could be
inclined to store only if ex ante storage is promoted and thus the storability constraint is bind-
ing, i.e., p1 + c = p2, the firm would sell all consumers some units at p1 instead of p2, thereby
incurring a cost equal to c.17 For any given first period price p1 and second period expected
price pe

2, we denote by s (p1, pe
2) the level of ex ante storage for each consumer (which is iden-

tical across consumers) and by sk (p1, pe
2) the level of ex post storage per consumer of type

k = h, l. We have sh (p1, pe
2) = 0 because consumers with high valuation do not store ex post.

In line with the analysis in Section 3.4, after learning their preferences, in the first period con-
sumers with low valuation choose the amount of consumption that equalizes their marginal
utilities over time. Given the quantity D̃1 (p1) + s (p1, pe

2) purchased in the first period, the
level of consumption D̃1 (p1) + s (p1, pe

2)− sl (p1, pe
2) per consumer with low valuation is such

that ul′
(

D̃1 (p1) + s (p1, pe
2)− sl (p1, pe

2)
)
+ c = ul′ (Dl (pe

2)
)
, where the first period marginal

utility from consumption is inflated by the storage cost c forgone for each unit consumed.18 As
the marginal utility from consumption in the second period reflects the corresponding price,
i.e., ul′ (Dl (pe

2)
)
= pe

2, the condition for the equalization of marginal utilities writes as

sl (p1, pe
2) = max

{
0, D̃1 (p1) + s (p1, pe

2)− Dl (pe
2 − c)

}
. (11)

Intuitively, consumers with low valuation store the difference (if positive) between the quan-
tity purchased D̃1 (p1) + s (p1, pe

2) and the quantity consumed Dl (pe
2 − c) after learning their

preferences. If the storability constraint is binding, i.e., p1 + c = p2, the sequential optimal-
ity constraint (10) and the condition for the equalization of marginal utilities in (11) jointly
determine the levels of (aggregate) ex ante storage S (p1, pe

2) = s (p1, pe
2) and (aggregate) ex

post storage S (p1, pe
2) = (1 − θ) sl (p1, pe

2). If the storability constraint is not binding, i.e.,
p1 + c > p2, the sequential optimality constraint (10) identifies the second period price p2

and the condition for the equalization of marginal utilities in (11) dictates the level of ex post
storage S (p1, pe

2) = (1 − θ) sl (p1, pe
2), whereas ex ante storage vanishes, i.e., S (p1, pe

2) = 0.
The static solution is feasible as long as all consumers, after learning their preferences, ab-

stain from storing at the static monopoly prices pm
1 and pm

2 , where pm
1 = arg maxp1 p1D̃1 (p1)

and pm
2 = arg maxp2 p2D̃2 (p2, ζ). This occurs if and only if, irrespective of consumers’ valua-

tion for the good, the first period marginal utility from consuming the entire quantity, inflated
by the storage cost c, is (weakly) higher than the second period marginal utility from con-
sumption, i.e., uk′

(
D̃1 (pm

1 )
)
+ c ≥ uk′ (Dk (pm

2 )
)
= pm

2 , for k = h, l. As consumers with low

valuation are more eager to store ex post, this condition reduces to D̃1 (pm
1 )− Dl (pm

2 − c) ≤ 0.
Hence, there exists a threshold c̃ ≜ pm

2 − Dl−1
(

D̃1 (pm
1 )

)
such that the static solution is feasi-

ble if and only if c ≥ c̃. Remarkably, this condition is more stringent than in the case where
consumers perfectly know their preferences, i.e., pm

1 + c ≥ pm
2 . Even in the absence of storage

incentives at the purchase stage, consumers that discover low valuation for the good may be

17A fortiori, consumers with high valuation do not store ex post when the storability constraint is not binding.
We refer to the proof of Proposition 7 for technical details.

18The condition that consumers with high valuation do not store ex post, i.e., uh′
(

D̃1 (p1) + s
(

p1, pe
2
))

≥

uh′
(

Dh (pe
2
))

, is to be checked ex post.
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inclined to store for the following period. This complicates the firm’s problem by making static
monopoly prices more difficult to implement.

The firm’s aggregate profit is given by Π ≜ Π1 + Π2, where

Π1 = p1

[
D̃1 (p1) + S (p1, pe

2)
]

and Π2 = p2

[
D̃2 (p2, ζ)− S (p1, pe

2)
]

.

Given the sequential optimality constraint (10), the firm’s dynamic profit maximization prob-
lem writes as

max
{p1,p2}

Π (p1, p2) s.t. (10). (12)

To convey our main results in a more compelling manner, we focus on the relevant case where
the storage cost c is sufficiently small that storage emerges in equilibrium. In the following
proposition, we establish the main equilibrium features of prices and storage.

Proposition 7 A. When ζ is sufficiently high, ex ante storage S∗ > 0 and ex post storage S∗
> 0

emerge in equilibrium for c < c∗. Prices are p∗1 and p∗2 = p∗1 + c.
B. Otherwise, only ex post storage S∗∗

> 0 emerges in equilibrium for c < c∗∗. Prices are p∗∗1 and
p∗∗2 , with p∗∗1 + c > p∗∗2 .

To better appreciate the rationale for the results in Proposition 7, it is helpful to consider
the difference between the level of ex ante storage S (p1, pe

2) at the first period purchase stage
and the level of ex post storage S (p1, pe

2) that the firm expects to arise in the second period. It
follows from the condition for the equalization of marginal utilities in (11) that

∆S (p1, pe
2) ≜ S (p1, pe

2)− S (p1, pe
2) = θS (p1, pe

2)− (1 − θ)
[

D̃1 (p1)− Dl (pe
2 − c)

]
. (13)

If ∆S (p1, pe
2) > (<) 0, storage stimulates (depresses) the firm’s sales. Promoting ex ante stor-

age can be beneficial to the firm only if it induces additional sales that translate into further
consumption. Otherwise, consumers carry these sales in the second period and, as prices are
linked through the binding storability constraint, i.e., p2 = p1 + c, the firm loses c for each unit
bought at p1 instead of p2. As the expression for ∆S (·) in (13) reveals, the firm faces a trade-off
when promoting ex ante storage. On the one hand, ex ante storage stimulates the firm’s cur-
rent sales that translate into further consumption by buyers with high valuation for the good
(occurring with probability θ) because they consume the entire quantity bought. On the other
hand, buyers with low valuation for the good (occurring with probability 1− θ) accumulate in
the form of ex post storage not only the entire amount of ex ante storage but also the difference
between their expected and actual demand, which depresses the firm’s future sales.

When the firm removes ex ante storage through prices such that the storability constraint
is not binding, i.e., p1 + c > p2, ex post storage still persists. As ex ante storage stimulates
the firm’s current sales but ex post storage depresses the firm’s future sales, one might think
that the firm should promote ex ante storage whenever possible. To gain some insights, it
is important to note that, for any given prices, preventing ex ante storage allows the firm to
mitigate consumers’ incentives to store ex post. For any first period price p1, consumers buy a
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lower quantity compared to the case where ex ante storage is promoted. Furthermore, as prices
with only ex post storage are not linked through the binding storability constraint, i.e., p1 + c >
p2, the firm charges a relatively low second period price, which encourages consumption to
a further extent. In particular, given the condition for the equalization of marginal utilities in
(11), we find from p1 + c > p2 that the demand for consumption Dl (pe

2 − c) of buyers with
low valuation outweighs the corresponding demand Dl (pe

2 − c) = Dl (p1) in the presence of
ex ante storage.

Proposition 7 shows that the choice between promoting ex ante storage and only ex post
storage crucially depends on the magnitude of the second period demand D̃2 (·), as driven
by the parameter ζ. When ex ante storage is allowed, a rise in the second period demand
D̃2 (·) magnifies consumers’ incentives to buy the good for storage purposes in anticipation of
a higher second period price. Given that ex ante storage is gathered by all consumers but ex
post storage is only accumulated by consumers with low valuation (with probability 1 − θ), a
higher second period demand makes ex ante storage more profitable for the firm. When only
ex post storage emerges, an increase in the second period demand D̃2 (·) leads to a higher sec-
ond period price, which merely encourages storage by consumers with low valuation. Thus,
promoting only ex post storage becomes less attractive for the firm. As shown in point A of
Proposition 7, when the second period demand D̃2 (·) is relatively high (as implied by a suffi-
ciently high ζ), the firm promotes ex ante storage S∗ > 0, which translates into ex post storage
S∗

> 0, and charges prices linked through the binding storability constraint, i.e., p∗2 = p∗1 + c,
provided that the storage cost is relatively small. Otherwise, as point B of Proposition 7 indi-
cates, the firm allows only ex post storage S∗∗

> 0 by setting prices such that the storability
constraint is not binding, i.e., p∗∗1 + c > p∗∗2 , as long as storage is relatively cheap.19 Using lin-
ear demands (with parallel shift), we find that there exists a threshold ζ such that promoting
ex ante storage is profit superior if and only if ζ > ζ. As ζ > 0, this occurs when the second
period demand D̃2 (·) is sufficiently higher than the first period demand D̃1 (·).

It is worth noting that the results about ex ante storage in point A of Proposition 7 reflect
those with naïve underestimating consumers derived in Section 3.3. Such buyers are more
inclined to consume after learning their higher valuation for the good and inflate the second
period demand. The firm prefers to implement a pricing policy that yields ex ante storage in
order to stimulate their consumption. In the same vein, the results about only ex post storage
in point B of Proposition 7 correspond to those with naïve overestimating consumers derived
in Section 3.4. Such buyers are more reluctant to consume after learning their lower valuation
for the good and dampen the second period demand. The firm opts for a pricing policy that
allows only ex post storage in order to mitigate consumers’ storage incentives.

As in the setting with consumer naïveté, we now examine the price distortions from the
static monopoly level.

Proposition 8 A. In the first period, in the presence of ex ante storage, the equilibrium price exhibits
the following features: (i) for c < c̃, it is lower (higher) than the static monopoly price if ζ is low (high)

19When D̃2 (·) is significantly high, the second period price p2 rises to the extent that the condition p1 + c > p2 is
violated and thus the firm cannot resort to only ex post storage. Conversely, when D̃2 (·) is relatively low, ex ante
storage cannot be promoted.
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enough and θ is high (low) enough, and (ii) for c ≥ c̃, it is lower than the static monopoly price. In the
second period, it is lower than the static monopoly price.

B. In the first period, in the presence of only ex post storage, the equilibrium price is higher than the
static monopoly price. In the second period, it is lower than the static monopoly price.

The results in point A of Proposition 8 indicate that, when the static solution is not feasible,
i.e., c < c̃, the first period price distortions in the presence of ex ante storage are driven by the
magnitude of demand, as captured by the parameter ζ, and by the probability θ that consumers
exhibit high valuation for the good. It follows from the discussion after Proposition 7 that, in
the presence of ex ante storage, a decrease in the second period demand D̃2 (·), as implied
by a lower ζ, mitigates the level of ex ante storage because consumers expect a lower second
period price. Facing a lower first period demand, the firm prefers to reduce the corresponding
price. Furthermore, a rise in the probability θ of high valuation for the good makes it more
attractive for the firm to lower the first period price in order to stimulate ex ante storage. As
a result, when ζ is sufficiently low and θ is sufficiently high, the firm prefer to distort the first
period price below the static monopoly level. An upward price distortion occurs for ζ high
enough and θ low enough. When the static solution is feasible, i.e., c ≥ c̃, the first period price
is definitely lower than the static monopoly level. In order to promote ex ante storage, the firm
implements a downward price distortion. As the results in point B of Proposition 8 reveal, in
the presence of only ex post storage, the firm prefers to distort the first period price above the
static monopoly level in order to curb the amount of the good bought in the first period and
stored for the second period. Given that ex post storage emerges irrespective of whether ex
ante storage is promoted or not, we find from the sequential optimality constraint (10) that the
second period price unambiguously lies below the static monopoly level.

The results about price distortions in a setting with rational consumers formalized in point
A of Proposition 8 are significantly related to those with naïve underestimating consumers
derived in Section 3.3. Specifically, we know from Proposition 2 that, for sufficiently small
values of the storage cost, if the number of sophisticates is large enough, the first period price
exceeds the static monopoly level. As such consumers have lower valuation for the good, this
corresponds to the condition of θ low enough with rational consumers. Given that a lower θ

curbs demand also in the first period, the condition of ζ high enough ensures that the amount
of ex ante storage is sufficiently large to induce the firm to charge a first period price above the
static monopoly level. Differently from consumer naïveté, in a setting with rational consumers
we can also characterize the conditions under which the first period price lies below the static
monopoly level. The reason is that, with naïve underestimating consumers, the second pe-
riod demand rises with the number of naïfs, which corresponds to a higher θ with rational
consumers. The condition of ζ low enough ensures that the amount of ex ante storage is suffi-
ciently small to induce the firm to charge a first period price below the static monopoly level.
Along the same lines, the results about price distortions formalized in point B of Proposition
8 correspond to those with naïve overestimating consumers derived in Section 3.4. As Propo-
sition 5 shows, the first period price is unambiguously distorted above the static monopoly
level in order to mitigate ex post storage by naïve consumers that exhibit lower valuation for
the good.
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5 Robustness and extensions

Our work is robust and can be extended in different directions. We refer to the Supplementary
Appendix for the formal proofs of our descriptive claims.

5.1 Nonlinear pricing

It is interesting to explore the case of a nonlinear pricing policy (e.g., Antoniou and Fiocco
2019; Hendel et al. 2014). Intuitively, the firm has incentives to design a contract menu that
discriminates across consumers in order to extract their surplus. As consumers share the same
beliefs about their preferences at the first period purchase stage, a contract menu can be of-
fered only in the second period. By the revelation principle, this menu constitutes an incentive
compatible mechanism that induces consumers to select the contract intended for their type.
Standard arguments indicate that consumers with high valuation for the good receive some in-
formational rents associated with the gains from selecting the contract intended for consumers
with low valuation. This is the case of naïfs in the presence of naïve underestimating con-
sumers (analyzed in Section 3.3) and of sophisticates in the presence of naïve overestimating
consumers (analyzed in Section 3.4). Notably, the opportunity to consume the quantity stored
provides consumers with some additional surplus in the second period, which leads the firm
to offer a discount on the second period payment. The firm intends to recoup such a discount
by charging a higher upfront payment in the first period. Anticipating this, consumers have
incentives to skip their purchases in the first period and enjoy the discount in the second pe-
riod at the cost of no consumption (and no storage) in the first period. We find that, with naïve
underestimating consumers, naïfs’ reluctance to accept a high upfront payment allows them
to retain some surplus, which can be augmented by informational rents in the second period.
Conversely, when overestimating their preferences, naïfs may even end up with losses because
they are willing to accept an excessively high upfront payment. The firm is able to fully extract
the surplus of sophisticated consumers unless they benefit from postponing their purchases or
exploiting their superior information in the second period.

The pricing policy in the static solution is rather straightforward. As consumers cannot
resort to the quantity stored for second period consumption, the firm does not offer any dis-
count in the second period, which removes consumers’ incentives to postpone their purchases.
In the first period, sophisticates are always left with zero surplus. Naïfs make gains (losses)
when underestimating (overestimating) their preferences because the firm chooses an exces-
sively low (high) payment with respect to their actual valuation for the good. Irrespective of
being sophisticated or naïve, consumers with high valuation can obtain some informational
rents in the second period.

The comparison in terms of consumer surplus between the dynamic storage solution and
the static solution delivers results of some interest. To identify the major effects at play in a
tractable manner, we consider the case where the number of consumers with high valuation
is large enough. This sterilizes the additional standard effects arising from consumers’ infor-
mational advantage because the firm does not serve consumers with low valuation and thus
fully captures the informational rents of consumers with high valuation. To fix ideas, suppose
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that storage is costless.20 We find that in the dynamic storage solution the firm prefers to sell
in bulk the entire quantity in the first period such that buyers with high valuation consume
efficiently in the second period. This removes consumers’ incentives to skip their purchases
in the first period. Consequently, sophisticates obtain zero surplus in the dynamic storage so-
lution. As the firm can fully extract their surplus in the static solution as well, sophisticates
are indifferent between the two solutions.21 When underestimating their preferences, naïfs are
better off compared to static solution because they (partially) retain the gains from consuming
the quantity stored. Conversely, the firm exploits naïve overestimating consumers by extract-
ing higher utility from storage than what eventually materializes. This imposes higher losses
on naïfs with respect to the static solution.

5.2 Price commitment

To identify the price effects attributable to the firm’s lack of commitment, we examine the sit-
uation where the firm can credibly commit to future prices. This allows us to compare the
results under limited commitment derived in our analysis with those under full commitment.
When the firm prefers to promote ex ante storage — as in the case of naïve underestimating
consumers (Section 3.3) or a sufficiently high future demand with rational consumers (Section
4) — the equilibrium prices under full commitment are still linked through the binding stora-
bility constraint, which makes consumers willing to buy for storage purposes. Intuitively, this
emerges for sufficiently small values of the storage cost. Under full commitment, the firm is
able to induce consumers to store the entire second period demand. Under limited commit-
ment, however, consumers anticipate that, in response to a large amount of storage, the firm
succumbs to the temptation to charge a relatively low price in the second period in order to
stimulate its sales. Ex ante and ex post storage coexist also under full commitment because
consumers with low valuation for the good still carry some quantity in the second period.
Notably, the price comparison between the two commitment regimes ultimately depends on
the price responsiveness of the extra gain from storage accruing to the firm under full com-
mitment compared to limited commitment. We show that the equilibrium prices under full
commitment are higher than under limited commitment if and only if the firm’s extra gain
from storage under full commitment increases with the price. As at the same prices the level
of storage is higher under full commitment, a price rise enhances the firm’s extra gain from
storage under full commitment for any given storage difference between the two commitment
regimes. Put differently, limited commitment magnifies the firm’s incentives for a price reduc-
tion in order to promote storage. A sufficient (albeit not necessary) condition for the firm’s
extra gain from storage under full commitment to increase with the price and thus for limited
commitment to yield lower prices is that the storage difference between the two commitment
regimes (weakly) increases with the price. Equivalently, the price impact on storage must be
larger (in absolute terms) under limited commitment than under full commitment. Given that
the amount of storage coincides with the second period demand under full commitment and

20Clearly, our qualitative results carry over to sufficiently small values of the storage cost.
21The static solution could make sophisticates better off in the (unlikely) situation where they receive some in-

formational rents only in the static solution.
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stems from sequential optimality under limited commitment, this condition crucially depends
on the shape of demand. In particular, it is satisfied as long as the second period demand is
not too convex.

When the firm prefers to induce only ex post storage — as in the case of naïve overestimat-
ing consumers (Section 3.4) or a sufficiently low future demand with rational consumers (Sec-
tion 4) — the equilibrium prices under full commitment are such that the storability constraint
is no longer binding, in line with limited commitment. Consumers with low valuation store
ex post for sufficiently small values of the storage cost. We find that the comparison between
the equilibrium prices under the two commitment regimes now varies across periods. Being
ex post storage identical at the same prices (as implied by the condition for the equalization of
marginal utilities), a rise in the first period price is definitely more effective at reducing storage
under full commitment. This is because under limited commitment consumers are more re-
luctant to decrease their amount of storage in anticipation of the firm’s opportunistic behavior.
Thus, for any given second period price, full commitment strengthens the firm’s incentives
to inflate the first period price in order to dampen storage. Furthermore, the opportunity to
credibly announce future prices implies that, for any given first period price, the firm prefers
to set a lower second period price than under limited commitment in order to stimulate first
period consumption by buyers with low valuation, which leads to a reduction in their amount
of storage. Such insights are corroborated in a framework with linear demands (and parallel
shift), where full commitment generates a higher equilibrium price in the first period and a
lower equilibrium price in the second period with respect to limited commitment.

6 Concluding remarks

We examine a market where a firm sells a storable good to consumers with time-varying prefer-
ences that differ between the purchase stage and the consumption stage. Time-varying prefer-
ences induce consumers to revise their consumption and storage decisions. Hence, the amount
purchased for storage, i.e., ex ante storage, which stimulates the firm’s current sales, may de-
part from the quantity actually stored, i.e., ex post storage, which depresses the firm’s future
sales. We show that the firm’s dynamic pricing policy and consumers’ storage incentives cru-
cially hinge upon on the trade-off that the firm faces when promoting ex ante storage. For
the sake of exposition, we first consider a setting where some consumers are naïve and hold
biased beliefs about their preferences at the purchase stage. When naïve consumers under-
estimate their preferences, demand grows over time and the firm may resort to price cuts in
order to encourage ex ante storage, which translates into further consumption. Conversely,
with naïve overestimating consumers, demand falls over time and the firm may prefer to raise
prices in order to dampen ex post storage, whereas ex ante storage is removed. Then, we turn
to a setting with all rational consumers that hold unbiased beliefs and are uncertain about their
preferences at the purchase stage. Endogenizing the firm’s choice between allowing ex ante
storage and only ex post storage, we find that the firm promotes ex ante storage when future
demand is high enough. Otherwise, only ex post storage emerges.

Our work delivers different predictions that lend themselves to an empirically testable val-
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idation. As a firm selling a storable good may prefer to cut prices with growing demand and
raise prices with declining demand, our results suggest that storability introduces some form
of counter-cyclicality of prices. This translates into relatively low markups in growing markets
and high markups in shrinking markets. Our analysis also provides some insights into the
impact of uncertainty on price levels. As with stable deterministic demand the firm clearly
charges the same price over time but with expected constant random demand the firm in-
creases the current price to dampen ex post storage (at least with linear demands and parallel
shift), uncertainty tends to inflate prices for storable goods in the short run. An additional
result that deserves empirical investigation is the presence of storage even when prices decline
over time. Notably, our analysis delivers potentially significant policy implications, especially
in terms of welfare consequences of consumer naïveté. Contrary to what common wisdom
suggests, we find that, instead of magnifying consumers’ exploitation and exacerbating the
firm’s market power, consumer naïveté can reduce prices and make consumers better off. This
unveils unintended anticompetitive effects of regulatory interventions that are meant to ‘ed-
ucate’ consumers and simplify their decision problems by enlarging the scope for mandatory
disclosure of different aspects of prices and product characteristics. An accurate evaluation of
consumers’ expectations and biases about their preferences is therefore of paramount impor-
tance in markets for storable goods.

Appendix

Proof of Lemma 1. The firm faces the following three pricing options: (I) p1 + c > p2; (II)
p1 + c = p2; (III) p1 + c < p2.

(I) Suppose p1 + c > p2. It follows from (4) that ex ante storage is S (p1, pe
2) = 0. The firm’s

dynamic maximization problem in (8) can be decomposed in two static problems. In the first
period, the firm’s maximization problem is given by (2). Differentiating the maximand in (2)
with respect to p1 yields

ϕ1 (p1) ≜ Ds (p1) + p1Ds′ (p1) , (A1)

where ϕ′
1 (·) < 0 (by profit concavity). In the second period, the firm’s maximization problem

is given by (3). Differentiating the maximand in (3) with respect to p2 yields

ϕ2 (p2) ≜ σ (p2) + p2σ′ (p2) , (A2)

where ϕ′
2 (·) < 0 (by profit concavity). The first period static monopoly price psm

1 satisfies
ϕ1 (psm

1 ) = 0 and the second period static monopoly price pm
2 satisfies ϕ2 (pm

2 ) = 0. We find
that

psm
1 = − Ds (psm

1 )

Ds′
(

psm
1

) and pm
2 = − σ (pm

2 )

σ′ (pm
2 )

. (A3)

The static solution is feasible if and only if psm
1 + c ≥ pm

2 or, equivalently, c ≥ c̃u, where
c̃u ≜ pm

2 − psm
1 . Applying the implicit function theorem to ϕ2(pm

2 ) = 0, where ϕ2(·) is defined
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by (A2), yields

∂pm
2

∂λ
=

Dn (pm
2 )− Ds (pm

2 ) + pm
2 [Dn′ (pm

2 )− Ds′ (pm
2 )]

Π′′
2 (pm

2 )
. (A4)

With naïve underestimating (overestimating) consumers, it holds ∂pm
2 /∂λ < (>) 0 (by profit

concavity). As psm
1 → pm

2 at λ → 1 and psm
1 does not depend on λ, we find that c̃u ≜ pm

2 − psm
1 >

0 and ∂c̃u/∂λ < 0.
(II) Suppose p1 + c = p2. It follows from (4) that ex ante storage is S (p1, pe

2) ∈ [0, σ (p1 + c)].
The firm’s dynamic maximization problem is given by (8). Proceeding backward and using
p2 = p1 + c, we find from the first-order condition for the firm’s second period maximization
problem associated with the sequential optimality constraint (5) that ex post storage is S (p1) =

max {0, ϕ2 (p1 + c)}, where ϕ2 (·) is defined by (A2). The following two cases emerge.
(IIa) Let S (p1) > 0. This case identifies the dynamic storage solution. As sophisticated con-
sumers know their actual preferences at the purchase stage, their level of ex ante storage co-
incides with their level of ex post storage. If naïve consumers exhaust the good in the first
period after learning their actual preferences, we obtain that S (p1) = ϕ2(p1 + c) = λS (p1).
Otherwise, naïve consumers also carry some quantity in the second period and S (p1) =

ϕ2 (p1 + c) ∈ (λS (p1) , S (p1)]. First, we consider S (p1) = ϕ2 (p1 + c) = λS (p1), which im-
plies S (p1) = ϕ2 (p1 + c) /λ. The firm’s maximization problem becomes

max
p1

p1 [Ds (p1) + S (p1)] + (p1 + c) [σ (p1 + c)− λS (p1)] . (A5)

Using (A1) and (A2), the first-order condition for p1 can be written as

λϕ1 (p1) + ϕ2 (p1 + c) + [p1 (1 − λ)− cλ] ϕ′
2 (p1 + c) = 0. (A6)

The equilibrium prices with storage are

p∗u
1 =

λ

1 − λ
c − λϕ1 (p∗u

1 ) + ϕ2 (p∗u
1 + c)

(1 − λ) ϕ′
2

(
p∗u

1 + c
) and p∗u

2 = p∗u
1 + c. (A7)

The equilibrium ex ante storage is S∗u ≜ S (p∗u
1 ) = ϕ2 (p∗u

1 + c) /λ and the equilibrium ex post
storage is S∗u

≜ S (p∗u
1 ) = ϕ2 (p∗u

1 + c). We now characterize the condition for the feasibility
of the dynamic storage solution, i.e., S∗u

> 0. Differentiating S∗u
with respect to c yields

∂S∗u
/∂c = (∂p∗u

2 /∂c) ϕ′
2 (p∗u

2 ) < 0, where the inequality follows from ∂p∗u
2 /∂c > 0 and ϕ′

2 (·) <
0 (by profit concavity). To show ∂p∗u

2 /∂c > 0, we compute the derivative of the left-hand
side of the first-order condition for p∗u

2 — obtained by replacing p1 with p2 − c in (A6) —
with respect to c. This yields after some manipulation −λϕ′

1 (p∗u
2 − c)− ϕ′

2 (p∗u
2 ) > 0, where

the inequality follows from ϕ′
τ (·) < 0, τ ∈ {1, 2} (by profit concavity). It follows from the

implicit function theorem that ∂p∗u
2 /∂c > 0. Now, we demonstrate that S∗u

> 0 at c = 0. This
corresponds to σ (p∗u

1 ) + p∗u
1 σ′ (p∗u

1 ) > 0. Using (A2), this is equivalent to p∗u
1 = p∗u

2 < pm
2 .

Substituting ϕ2 (pm
2 ) = 0 into the left-hand side of the first-order condition for p∗u

1 in (A6)
evaluated at c = 0 yields λϕ1(pm

2 ) + pm
2 (1 − λ) ϕ′

2(pm
2 ) < 0, where the inequality follows from

ϕ1 (pm
2 ) < 0 (as pm

2 > psm
1 ) and ϕ′

2 (·) < 0 (by profit concavity). This implies that p∗u
1 = p∗u

2 <
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pm
2 and thus S∗u

> 0 at c = 0. As S∗u
< 0 for c arbitrarily large, we find from ∂S∗u

/∂c < 0 (see
above) that there exists a unique threshold cu > 0 such that S∗u

> 0 if and only if c < cu.
Now, we derive the condition ensuring that S∗u

decreases with λ, which implies that cu

decreases with λ as well. Taking the derivative of S∗u
= S (p∗u

1 (λ) , λ) with respect to λ yields

dS∗u

dλ
=

∂S (p∗u
1 )

∂p1

∂p∗u
1

∂λ
+

∂S∗u

∂λ
.

Given that S∗u
follows from the first-order condition for p2, as implied by the sequential opti-

mality constraint (5), we find that

∂S∗u

∂λ
= Ds (p∗u

2 )− Dn (p∗u
2 ) + p∗u

2
[
Ds′ (p∗u

2 )− Dn′ (p∗u
2 )

]
< 0,

where the inequality follows from the assumptions about naïve underestimating consumers.
Furthermore, we obtain that

∂S (p∗u
1 )

∂p1
= 2σ′ (p∗u

1 + c) + (p∗u
1 + c) σ′′ (p∗u

1 + c) < 0,

where the inequality follows from profit concavity. Thus, a sufficient (albeit not necessary)
condition for dS∗u

/dλ < 0 is that ∂p∗u
1 /∂λ ≥ 0. It follows from dS∗u

/dλ < 0 that ∂cu/∂λ <

0. Using linear demand functions of the form Ds (pτ) = αs − βpτ and Dn (pτ) = αn −
βpτ, where αn > αs, we find from (A7) that the equilibrium prices with storage are p∗u

1 =

[(1 − λ) (αn − 2βc) + 2αsλ] / (4β) and p∗u
2 = p∗u

1 + c. We also obtain that the equilibrium
ex post storage is S∗u

= [αn (1 − λ)− 2βc (1 + λ)] /2, which yields dS∗u
/dλ < 0, and that

cu = αn (1 − λ) / [2β (1 + λ)], which yields ∂cu/∂λ < 0.
Now, suppose that at the equilibrium prices in (A7) naïfs carry some quantity in the second

period, i.e., S (p∗u
1 ) = ϕ2 (p∗u

1 + c) ∈ (λS (p∗u
1 ) , S (p∗u

1 )]. Intuitively, when the preferences of
sophisticates and naïfs are sufficiently similar, or the storage cost is small enough, naïfs may
also be inclined to store some amount of the good after learning their actual preferences. This
occurs if and only if naïfs’ marginal utility from consuming the entire quantity bought in the
first period, inflated by the storage cost c, is lower than their marginal utility in the second
period, which coincides with the price, i.e., un′ (Ds (p∗u

1 ) + S (p∗u
1 )) + c < un′ (Dn (p∗u

2 )) = p∗u
2

or, equivalently, un′ (Ds (p∗u
1 ) + S (p∗u

1 )) < p∗u
1 . Note that the firm’s profit is maximized in

the benchmark case (described in Section 3.2) where all consumers are perfectly aware of their
preferences before purchasing in the first period. As ∂S (·) /∂p1 < 0 (see above), the firm
has an incentive to reduce the first period price from the benchmark case of perfectly aware
consumers up to the level where only sophisticates store ex post. Any lower price would
induce naïfs to store ex post as well. It follows from the objective function of the firm’s
maximization problem in (A5) that each unit of ex post storage would impose a cost c on
the firm. This implies that, if at the equilibrium prices in (A7) naïfs store ex post, the firm
prefers to set higher prices that mitigate the distortion from the benchmark case of perfectly
aware consumers. The equilibrium prices become p̃∗u

1 and p̃∗u
2 = p̃∗u

1 + c, where p̃∗u
τ > p∗u

τ ,
τ ∈ {1, 2}. Specifically, p̃∗u

1 and S ( p̃∗u
1 ) are such that only sophisticates store ex post, i.e.,
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S ( p̃∗u
1 ) = ϕ2 ( p̃∗u

1 + c) = λS ( p̃∗u
1 ), and naïfs’ marginal utility from consuming the entire quan-

tity bought in the first period is equal to the price, i.e., un′ (Ds ( p̃∗u
1 ) + S ( p̃∗u

1 )) = p̃∗u
1 . With

linear demands Ds (pτ) = αs − βpτ and Dn (pτ) = αn − βpτ, where αn > αs, we find that
there exists a unique threshold α̃s ≜ [αn (3λ − 1) + 2βc (1 + λ)] / (2λ) such that for αs ≤ α̃s the
prices with storage p∗u

1 and p∗u
2 previously characterized emerge in equilibrium. For αs > α̃s,

the equilibrium prices become p̃∗u
1 = [αn (1 − 2λ) + 2αsλ − 2βc] / (2β) and p̃∗u

2 = p̃∗u
1 + c. To

complete our proof, we show that naïfs’ ex post storage cannot be sustained in equilibrium. It
follows from the sequential optimality constraint (5), where ex post storage S (p1) is replaced
by sophisticates’ ex post storage Ss

(p1), weighted by λ, and by naïfs’ ex post storage Sn
(p1),

weighted by 1 − λ, that the first-order condition for the firm’s second period maximization
problem is σ (p2)− λSs

(p1)− (1 − λ) Sn
(p1) + p2σ′ (p2) = 0. Naïfs’ ex post storage Sn

(p1)

is such that their marginal utility from consumption in the first period, inflated by the stor-
age cost c, is equal to their marginal utility in the second period, which coincides with the
price, i.e., un′

(
Ds (p1) + Ss

(p1)− Sn
(p1)

)
+ c = un′ (Dn (p2)) = p2. Note that the quantity

intended for storage at the purchase stage Ss
(p1) is the same as for sophisticates (because all

consumers behave identically) and corresponds to sophisticates’ ex post storage (because they
do not revise their storage decisions). This implies from p1 + c = p2 that Sn

(p1) = Ds (p1) +

Ss
(p1) − Dn (p1). Using the first-order condition for the firm’s second period maximization

problem yields Ss
(p1) = σ (p1 + c) + (p1 + c) σ′ (p1 + c) + (1 − λ) [Dn (p1)− Ds (p1)] and

Sn
(p1) = σ (p1 + c) + (p1 + c) σ′ (p1 + c) − λ [Dn (p1)− Ds (p1)]. The firm’s maximization

problem writes as

max
p1

p1

[
Ds (p1) + Ss

(p1)
]
+ (p1 + c)

[
σ (p1 + c)− λSs

(p1)− (1 − λ) Sn
(p1)

]
.

Using the envelope theorem, the first-order condition for p1 is given by

Ds (p1) + Ss
(p1) + p1

[
Ds′ (p1) + Ss′

(p1)
]
− (p1 + c)

[
λSs′

(p1) + (1 − λ) Sn′
(p1)

]
= 0.

Using the expressions for Ss′
(p1) and Sn′

(p1), along with Sn
(p1) = Ds (p1)+Ss

(p1)−Dn (p1),
the first-order condition for p1 can be rewritten after some manipulation as

Sn
(p1)+Dn (p1)+ p1

[
λDs′ (p1) + (1 − λ) Dn′ (p1)

]
− c

[
2σ′ (p1 + c) + (p1 + c) σ′′ (p1 + c)

]
= 0.

Substituting this condition into ϕ2 (·), where ϕ2 (·) is defined by (A2), we obtain −Sn
(p1) −

λ [Dn (p1)− Ds (p1)] + c [2σ′ (p1 + c) + (p1 + c) σ′′ (p1 + c)]. Given that the expression in the
first square brackets is positive (with naïve underestimating consumers) and the expression
in the second square brackets is negative (by profit concavity), we find that for Sn

(p1) > 0 it
holds p2 = p1 + c ≥ p1 > pm

2 . This violates the sequential optimality constraint (5) and thus
the solution with naïfs’ ex post storage cannot be sustained in equilibrium.
(IIb) For c ≥ cu, consumers do not store. This identifies the dynamic solution without storage.
We find from the sequential optimality constraint (5) that the equilibrium prices are

p∗∗u
1 = p∗∗u

2 − c and p∗∗u
2 = pm

2 . (A8)
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As the firm’s maximization problem in (A5) allows for any S (·), option (IIa) dominates option
(IIb) whenever it is feasible, i.e., S∗u

> 0.
(III) Suppose p1 + c < p2. It follows from (4) that ex ante storage is S (p1) = σ (p1 + c).

Given that at least sophisticates carry their entire ex ante storage in the second period, ex post
storage cannot be lower than λσ (p1 + c). For any first period price p1, this level of ex post
storage is (weakly) higher than the one in option (IIa), where S (p1) = λS (p1) and S (p1) ∈
[0, σ (p1 + c)]. It follows from the sequential optimality constraint (5) that the firm prefers to set
a second period price p2 that does not exceed the level p1 + c in option (IIa). This contradicts
the supposition p1 + c < p2 and thus option (III) is not implementable.

Proof of Lemma 2. Set c = c̃u, where c̃u ≜ pm
2 − psm

1 . It follows from the static feasibility
constraint (6) that the static solution is feasible. As psm

1 + c̃u = pm
2 , substituting ϕ1 (psm

1 ) = 0
and ϕ2 (pm

2 ) = 0, where ϕ1 (·) is defined by (A1) and ϕ2 (·) by (A2), into the left-hand side
of the first-order condition for p∗u

1 in (A6) at c = c̃u yields [psm
1 (1 − λ)− c̃uλ] ϕ′

2 (pm
2 ). As

ϕ′
2 (·) < 0 (by profit concavity), we find that at c = c̃u it holds psm

1 > p∗u
1 if and only if

psm
1 (1 − λ)− c̃uλ > 0. As ∂S (·) /∂p1 < 0 (see the proof of Lemma 1), it holds cu > c̃u if and

only if psm
1 (1 − λ)− c̃uλ > 0. To see this, note that, if psm

1 (1 − λ)− c̃uλ > 0, we have psm
1 > p∗u

1

and thus a price decrease from psm
1 to p∗u

1 at c = c̃u leads from zero storage to positive storage
(as ∂S (·) /∂p1 < 0), which implies that cu > c̃u. Furthermore, if cu > c̃u, a price change from
psm

1 to p∗u
1 at c = c̃u leads from zero storage to positive storage, which implies psm

1 > p∗u
1 (as

∂S (·) /∂p1 < 0) and thus psm
1 (1 − λ)− c̃uλ > 0. As c̃u ≜ pm

2 − psm
1 , there exists a threshold

λ̃ ≜ psm
1 /pm

2 > 0 such that psm
1 (1 − λ)− c̃uλ = psm

1 − λpm
2 > 0, or equivalently cu > c̃u, if and

only if λ < λ̃. Note from the firm’s maximization problem in (A5) that psm
1 (1 − λ)− c̃uλ > 0

is equivalent to ∂Π (psm
1 , psm

1 + c) /∂S|c=c̃u > 0, where psm
1 + c̃u = pm

2 .
We now characterize the condition under which the threshold λ̃ is unique. To this aim,

define Υ (λ) ≜ psm
1 − λpm

2 . As Υ (λ) → psm
1 > 0 for λ → 0 and Υ (λ) → 0 for λ → 1, a sufficient

(albeit not necessary) condition for a unique threshold λ̃ > 0 such that Υ (λ) > 0 if and only if
λ < λ̃ is that Υ (λ) is (weakly) convex in λ, i.e., ∂2Υ/∂λ2 = −2 (∂pm

2 /∂λ)− λ
(
∂2 pm

2 /∂λ2) ≥ 0.
It follows from (A4) that

∂2 pm
2

∂λ2 =
∂pm

2
∂λ

2 [Dn′ (pm
2 )− Ds′ (pm

2 )] + pm
2 [Dn′′ (pm

2 )− Ds′′ (pm
2 )]

Π′′
2 (pm

2 )

+
Dn (pm

2 )− Ds (pm
2 ) + pm

2 [Dn′ (pm
2 )− Ds′ (pm

2 )]

[Π′′
2 (pm

2 )]
2

×
{

2
[
Dn′ (pm

2 )− Ds′ (pm
2 )

]
+ pm

2
[
Dn′′ (pm

2 )− Ds′′ (pm
2 )

]
− ∂pm

2
∂λ

Π′′′
2 (pm

2 )

}
.

Then, it holds ∂2Υ/∂λ2 ≥ 0 if and only if

λ
∂pm

2
∂λ

{
2
[
Dn′ (pm

2 )− Ds′ (pm
2 )

]
+ pm

2
[
Dn′′ (pm

2 )− Ds′′ (pm
2 )

]}
Π′′

2 (pm
2 )

+ 2
[
Π′′

2 (pm
2 )

]2 ∂pm
2

∂λ
+ λ

{
Dn (pm

2 )− Ds (pm
2 ) + pm

2
[
Dn′ (pm

2 )− Ds′ (pm
2 )

]}
×

{
2
[
Dn′ (pm

2 )− Ds′ (pm
2 )

]
+ pm

2
[
Dn′′ (pm

2 )− Ds′′ (pm
2 )

]
− ∂pm

2
∂λ

Π′′′
2 (pm

2 )

}
≤ 0.
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Using (A4), we find after some manipulation that ∂2Υ/∂λ2 ≥ 0 if and only if

2
[
2Dn′ (pm

2 ) + pm
2 Dn′′ (pm

2 )
]
− λ

∂pm
2

∂λ
Π′′′

2 (pm
2 ) ≤ 0.

As the expression in square brackets is negative (by profit concavity) and ∂pm
2 /∂λ < 0 (see

(A4) with naïve underestimating consumers), we find that a sufficient (albeit not necessary)
condition for ∂2Υ/∂λ2 ≥ 0 is that Π′′′

2 (pm
2 ) ≤ 0. Thus, if Π′′′

2 (pm
2 ) ≤ 0, there exists a unique

threshold λ̃ such that cu > c̃u if and only if λ < λ̃, where λ̃ ≜ psm
1 /pm

2 > 0. Using linear
demand functions Ds (pτ) = αs − βpτ and Dn (pτ) = αn − βpτ, where αn > αs, we obtain
from (A1) and (A2) that psm

1 = αs/ (2β) and pm
2 = [αn (1 − λ) + αsλ] / (2β). This implies that

Υ (λ) ≜ psm
1 − λpm

2 > 0 if and only if λ < λ̃, where λ̃ = αs/ (αn − αs) > 0 (it holds λ̃ < 1 if and
only if αn > 2αs).
Proof of Proposition 1. First, suppose λ ≤ λ̃. It follows from Lemma 2 that cu ≥ c̃u, where
cu = c̃u if and only if λ = λ̃. Let Πm be the firm’s profit in the static solution (derived in point
(I) of Lemma 1) and Π∗u be the firm’s profit in the dynamic storage solution (derived in point
(IIa) of Lemma 1). At c = c̃u it holds Π∗u ≥ Πm, where Π∗u = Πm if and only if cu = c̃u. To see
this, note that at c = c̃u the firm obtains the static monopoly profit by charging the prices psm

1

and pm
2 = psm

1 + c. As S∗u
> 0, a revealed preference argument shows that the firm is better off

by implementing the dynamic storage solution (which is feasible) through the prices p∗u
1 and

p∗u
2 = p∗u

1 + c. At c = cu it holds Πm ≥ Π∗u, where Πm = Π∗u if and only if cu = c̃u, because
the dynamic solution yields no storage (as shown in point (IIb) of Lemma 1) and the static
solution arises from an unconstrained maximization problem. Note that Πm is independent of
c, whereas ∂Π∗u/∂c = [p∗u

1 (1 − λ)− cλ] ϕ′
2 (p∗u

1 + c) /λ. As ϕ′
2 (·) < 0 (by profit concavity),

we have ∂Π∗u/∂c < 0 if and only if p∗u
1 (1 − λ) − cλ > 0. For c > c̃u, it follows from the

static feasibility constraint (6) that pm
2 < psm

1 + c. As the sequential optimality constraint (5)
implies p∗u

2 < pm
2 , we find that p∗u

2 = p∗u
1 + c < psm

1 + c, which implies p∗u
1 < psm

1 . Using
(A1) and (A2), we obtain from p∗u

1 < psm
1 and p∗u

2 < pm
2 that λϕ1 (p∗u

1 ) + ϕ2 (p∗u
1 + c) > 0. As

ϕ′
2 (·) < 0 (by profit concavity), it follows from the first-order condition for p∗u

1 in (A6) that
p∗u

1 (1 − λ)− cλ > 0 and thus ∂Π∗u/∂c < 0. Recalling that at c = c̃u it holds Π∗u ≥ Πm and
at c = cu it holds Πm ≥ Π∗u (where the equalities follow if and only if c̃u = cu), we find from
the intermediate value theorem that there exists a unique threshold ĉu ∈ [c̃u, cu] such that for
c < ĉu it holds Π∗u > Πm and for c ≥ ĉu it holds Πm ≥ Π∗u, with Πm = Π∗u if and only
if c = ĉu. If follows from Lemma 1 that in equilibrium (i) for c < ĉu the dynamic storage
solution (characterized in point (IIa) of Lemma 1) arises, and (ii) for c ≥ ĉu the static solution
(characterized in point (I) of Lemma 1) arises. Now, suppose λ > λ̃. It follows from Lemma 2
that c̃u > cu. It follows from Lemma 1 that in equilibrium (i) for c < cu the dynamic storage
solution (characterized in point (IIa) of Lemma 1) arises, (ii) for cu ≤ c < c̃u the dynamic
solution without storage (characterized in point (IIb) of Lemma 1) arises, and (iii) for c ≥ c̃u

the static solution (characterized in point (I) of Lemma 1) arises.
Proof of Proposition 2. First, we show the price comparisons in the first period. For c < c̃u, the
static feasibility constraint (6) is violated. We know from Proposition 1 that either the dynamic
storage solution or the dynamic solution without storage is implemented in equilibrium. First,
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we consider the dynamic storage solution. Substituting ϕ1 (psm
1 ) = 0, where ϕ1 (·) is defined

by (A1), into the first-order condition for p∗u
1 in (A6) yields [psm

1 (1 − λ)− cλ] ϕ′
2 (psm

1 + c) +
ϕ2 (psm

1 + c). It follows from c < c̃u or, equivalently, psm
1 + c < pm

2 that ϕ2 (psm
1 + c) > 0.

As ϕ′
2 (·) < 0 (by profit concavity), we find that, for c < c̃u, there exists a unique threshold

λ ≜ psm
1 / (psm

1 + c) such that a sufficient (but not necessary) condition for p∗u
1 > psm

1 is that
λ > λ. Now, we consider the dynamic solution without storage. Using (A8), we obtain from
c < c̃u or, equivalently, psm

1 + c < pm
2 = p∗∗u

2 that p∗∗u
1 = p∗∗u

2 − c > psm
1 . For c̃u ≤ c < ĉu,

where ĉu ∈ [c̃u, cu], we know from Proposition 1 that the dynamic storage solution emerges
in equilibrium. This interval is non-empty for λ < λ̃. We find from c ≥ c̃u or, equivalently,
psm

1 + c ≥ pm
2 that p∗u

1 < psm
1 . To see this, we proceed by contradiction. Note that p∗u

1 ≥ psm
1

implies p∗u
2 = p∗u

1 + c ≥ psm
1 + c ≥ pm

2 . This violates p∗u
2 < pm

2 , as implied by the sequential
optimality constraint (5). For c ≥ max {c̃u, ĉu}, it follows from Proposition 1 that the static
solution applies in equilibrium. Specifically, if λ ≤ λ̃, the static solution arises in equilibrium
for c ≥ ĉu, with ĉu ∈ [c̃u, cu], which implies ĉu ≥ c̃u or, equivalently, ĉu = max {c̃u, ĉu}. If
λ > λ̃, the static solution arises in equilibrium whenever it is feasible, i.e., for c ≥ c̃u, which
implies c̃u ≥ ĉu or, equivalently, c̃u = max {c̃u, ĉu}. Turning to the price comparisons in the
second period, we find from the sequential optimality constraint (5) that in the presence of
storage it holds p∗u

2 < pm
2 . In the absence of storage, the second period equilibrium price is pm

2 .
Using linear demand functions Ds (pτ) = αs − βpτ and Dn (pτ) = αn − βpτ, where αn > αs,
we obtain that p∗u

1 < psm
1 (where p∗u

1 and psm
1 are derived in the proofs of Lemmas 1 and 2) if

and only if c > (αn − 2αs) / (2β).
Proof of Proposition 3. Taking the derivative of the left-hand side of the first-order condition
for p∗u

1 in (A6) with respect to λ yields

Ω ≜ ϕ1 (p∗u
1 ) +

∂ϕ2 (p∗u
1 + c)

∂λ
− (p∗u

1 + c) ϕ′
2 (p∗u

1 + c) + [p∗u
1 (1 − λ)− cλ]

∂ϕ′
2 (p∗u

1 + c)
∂λ

.

It follows from the implicit function theorem (and the binding storability constraint) that
∂p∗u

τ /∂λ > 0, τ ∈ {1, 2}, if and only if Ω > 0. Let p∗u
1 < psm

1 . This implies from (A1) that
ϕ1 (p∗u

1 ) > 0. Two cases emerge. First, suppose ∂ϕ′
2 (p∗u

1 + c) /∂λ ≥ 0. As p∗u
1 + c = p∗u

2 < pm
2

due to the sequential optimality constraint (5), we obtain that λϕ1 (p∗u
1 ) + ϕ2 (p∗u

1 + c) > 0.
This implies from (A6) that p∗u

1 (1 − λ) − cλ > 0. As ϕ′
2 (·) < 0 (by profit concavity) and

∂ϕ′
2 (·) /∂λ ≥ 0 (by supposition), we find from ∂ϕ2 (·) /∂λ < 0 (with naïve underestimating

consumers), where ϕ2 (·) is given by (A2), that a sufficient (albeit not necessary) condition for
Ω > 0 or, equivalently, ∂p∗u

τ /∂λ > 0, τ ∈ {1, 2}, is that ϕ1 (p∗u
1 ) > |∂ϕ2 (p∗u

1 + c) /∂λ|. Now,
suppose ∂ϕ′

2 (p∗u
1 + c) /∂λ < 0. The expression for Ω can be rewritten as

Ω ≜ ϕ1 (p∗u
1 )+

∂ϕ2 (p∗u
1 + c)

∂λ
− (p∗u

1 + c)
[

ϕ′
2 (p∗u

1 + c) + λ
∂ϕ′

2 (p∗u
1 + c)

∂λ

]
+ p∗u

1
∂ϕ′

2 (p∗u
1 + c)

∂λ
.

Given that ϕ′
2 (·) < 0 (by profit concavity) and ∂ϕ′

2 (·) /∂λ < 0 (by supposition), the ex-
pression in square brackets is negative. It follows from ∂ϕ2 (·) /∂λ < 0 (with naïve un-
derestimating consumers), where ϕ2 (·) is given by (A2), that a sufficient (albeit not neces-
sary) condition for Ω > 0 or, equivalently, ∂p∗u

τ /∂λ > 0, τ ∈ {1, 2}, is that ϕ1 (p∗u
1 ) >
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|∂ϕ2 (p∗u
1 + c) /∂λ + p∗u

1 [∂ϕ′
2 (p∗u

1 + c) /∂λ]|. Hence, we can conclude that ∂p∗u
τ /∂λ > 0, τ ∈

{1, 2}, if ϕ1 (p∗u
1 ) is large enough or, equivalently, if p∗u

1 is sufficiently lower than psm
1 . Using lin-

ear demand functions of the form Ds (pτ) = αs − βpτ and Dn (pτ) = αn − βpτ, where αn > αs,
we obtain that ∂p∗u

τ /∂λ < 0, τ ∈ {1, 2}, if and only if c > (αn − 2αs) / (2β) (where p∗u
τ is

derived in the proof of Lemma 1). It follows from the proof of Proposition 2 that this condition
is equivalent to p∗u

1 < psm
1 . Now, we consider the case where the dynamic solution without

storage emerges in equilibrium. Using (A8), we find from (A4) that ∂p∗∗u
τ /∂λ < 0, τ ∈ {1, 2}.

Finally, we consider the case where the static solution emerges in equilibrium. Using (A3), we
obtain that psm

1 is independent of λ and ∂pm
2 /∂λ < 0.

Proof of Proposition 4. We know from Section 3.4 that the static solution is feasible if and only
if c ≥ c̃o. As at psm

1 = limλ→1 pm
2 we have pm

2 = un′ (Dn (pm
2 )) > un′ (Ds (psm

1 )) (due to un′′ (·) <
0 and the assumptions about naïve overestimating consumers), it holds c̃o > 0 for λ high
enough. Taking the derivative of c̃o with respect to λ yields ∂c̃o/∂λ = ∂pm

2 /∂λ > 0, where the
inequality follows from (A4). Using linear demand functions of the form Ds (pτ) = αs − βpτ

and Dn (pτ) = αn − βpτ, where αs > αn, we find from (A3) that c̃o = (αs − αn) (1 + λ) / (2β) >

0. For c < c̃o, the static solution is not feasible. The firm’s dynamic profit maximization
problem is given by (8), where (aggregate) ex post storage S (p1, pe

2) = (1 − λ) sn (p1, pe
2) in the

sequential optimality constraint (5) stems from (9). Proceeding backward, the firm’s second
period maximization problem writes as

max
p2

p2
[
σ (p2)− S (p1, pe

2)
]

.

The first-order condition for p2 is given by

σ (p2) + p2σ′ (p2)− S (p1, pe
2) = 0. (A9)

As pe
2 = p2, the firm’s first period maximization problem becomes

max
p1

p1Ds (p1) + p2
[
σ (p2)− S (p1, p2)

]
s.t. (9) and (A9). (A10)

It follows from the envelope theorem that the first-order condition for p1 is

Ds (p1) + p1Ds′ (p1)− p2
dS (p1, p2)

dp1
= 0. (A11)

Applying the implicit function theorem to (9) and (A9) yields

dS (p1, p2)

dp1
=

(1 − λ) Ds′ (p1) [2σ′ (p2) + p2σ′′ (p2)]

2σ′ (p2) + p2σ′′ (p2) + (1 − λ) Dn′ (p2 − c)
< 0, (A12)

where the inequality follows from ϕ′
2 (·) < 0 (by profit concavity). Using (A9) and (A11), we

find that the equilibrium prices with storage are given by

p∗o
1 = −

Ds (p∗o
1 )− p∗o

2
[
dS (p∗o

1 , p∗o
2 ) /dp1

]
Ds′

(
p∗o

1

) and po∗
2 = −σ (po∗

2 )− S (p∗o
1 , p∗o

2 )

σ′ (po∗
2 )

. (A13)
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Given that p∗o
1 > psm

1 and po∗
2 < pm

2 (see the proof of Proposition 5) as well as psm
1 > pm

2 (see Sec-
tion 3.2), it holds p∗o

1 > po∗
2 . Inserting (A13) into (9), the equilibrium (aggregate) ex post storage

is S∗o
≜ S (p∗o

1 , p∗o
2 ) = (1 − λ) s∗o = (1 − λ) [Ds (p∗o

1 )− Dn (p∗o
2 − c)]. Using linear demands

Ds (pτ) = αs − βpτ and Dn (pτ) = αn − βpτ, where αs > αn, we find from (A13) that the equi-
librium prices are p∗o

1 =
[
αs (7 − 3λ2)+ 4αn (1 − λ)2 + 2βc (1 − λ)2

]
/ [8β (2 − λ)] and p∗o

2 =

(3 − λ) [αs (3λ − 1) + 4αn (1 − λ) + 2βc (1 − λ)] / [8β (2 − λ)]. Inserting p∗o
1 and p∗o

2 into (9),
the equilibrium ex post storage is S∗o

= (1 − λ) [αs (3 + λ)− 4αn − 2βc (3 − λ)] / [4 (2 − λ)].
Substituting ϕ1 (psm

1 ) = 0, with ϕ1 (·) defined by (A1), for c = c̃o (where the static so-
lution is feasible) into the right-hand side of the first-order condition for p∗o

1 in (A11) yields
−p2

[
dS (psm

1 , p2) /dp1
]
> 0, where the inequality follows (A12). Thus, we obtain that p∗o

1 >

psm
1 , which implies from (A12) that ex post storage should become negative for c = c̃o. As this

is not feasible, there exists a threshold co < c̃o such that for co ≤ c < c̃o the dynamic storage
solution and the static solution are both unfeasible. In this case, the dynamic solution without
storage emerges in equilibrium. The first period equilibrium price is such that storage van-
ishes, i.e., Ds (p1)− Dn (p2 − c) = 0, and the second period equilibrium price reflects the static
monopoly price due to the sequential optimality constraint (5). Thus, the equilibrium prices
are given by

p∗∗o
1 = Ds−1 (Dn (pm

2 − c)) and p∗∗o
2 = pm

2 . (A14)

Given that p∗∗o
1 > psm

1 (see the proof of Proposition 5) and psm
1 > pm

2 (see Section 3.2), it holds
p∗∗o

1 > pm
2 .

Now, we characterize the conditions for the uniqueness of the threshold co below which
the dynamic storage solution applies. Taking the derivative of S∗o

= S (p∗o
1 (c) , c) with respect

to c yields

dS∗o

dc
=

dS (p∗o
1 , p∗o

2 )

dp1

∂p∗o
1

∂c
+

∂S∗o

∂c
.

Applying the implicit function theorem to (9) and (A9) yields

∂S∗o

∂c
=

(1 − λ) Dn′ (p∗o
1 ) [2σ′ (p∗o

2 ) + p∗o
2 σ′′ (p∗o

2 )]

2σ′ (p∗o
2 ) + p∗o

2 σ′′ (p∗o
2 ) + (1 − λ) Dn′ (p∗o

2 − c)
< 0,

where the inequality follows from ϕ′
2 (·) < 0 (by profit concavity). As dS (p∗o

1 , p∗o
2 ) /dp1 < 0

(see (A12)), we find that a sufficient (albeit not necessary) condition for dS∗o
/dc < 0 is that

∂p∗o
1 /∂c > 0. Taking the derivative of the right-hand side of the first-order condition for p∗o

1 in
(A11) with respect to c yields

−∂p2 (p∗o
1 )

∂c
dS (p∗o

1 , p∗o
2 )

dp1
− p∗o

2
∂2S (p∗o

1 , p∗o
2 )

∂p1∂c
.

Applying the implicit function theorem to (9) and (A9) yields

∂p2 (p∗o
1 )

∂c
=

(1 − λ) Dn′ (p∗o
1 )

2σ′ (p∗o
2 ) + p∗o

2 σ′′ (p∗o
2 ) + (1 − λ) Dn′ (p∗o

2 − c)
> 0,
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where the inequality follows from ϕ′
2 (·) < 0 (by profit concavity). As dS (p∗o

1 , p∗o
2 ) /dp1 < 0

(see (A12)), we find from the implicit function theorem that a sufficient (albeit not neces-
sary) condition for ∂p∗o

1 /∂c > 0 is that ∂2S (p∗o
1 , p∗o

2 ) /∂p1∂c ≤ 0. Taking the derivative of
dS (p1, p2) /dp1 in (A12) with respect to c yields after some manipulation

∂2S (p∗o
1 , p∗o

2 )

∂p1∂c
=

(1 − λ)2 Ds′ (p∗o
1 )

[Π′′
2 (p∗o

2 ) + (1 − λ) Dn′ (p∗o
2 − c)]2

{
Π′′′

2 (p∗o
2 ) Dn′ (p∗o

2 − c)
∂p2 (p∗o

1 )

∂c

−Π′′
2 (p∗o

2 ) Dn′′ (p∗o
2 − c)

[
∂p2 (p∗o

1 )

∂c
− 1

]}
.

As ∂p2 (p∗o
1 ) /∂c ∈ (0, 1), sufficient (albeit not necessary) conditions for ∂2S (p∗o

1 , p∗o
2 ) /∂p1∂c ≤

0 and thus for ∂p∗o
1 /∂c > 0 are that Π′′′

2 (p∗o
2 ) ≤ 0 and Dn′′ (p∗o

2 − c) ≤ 0. Such conditions
ensure that dS∗o

/dc < 0, which implies that there exists a unique threshold co below which
the dynamic storage solution applies in equilibrium. With linear demands (see above), we
find that dS∗o

/dc < 0 and co = [αs (3 + λ)− 4αn] / [2β (1 − λ) (3 − λ)], where co > 0 either if
αs ≥ (4/3) αn or if αs < (4/3) αn and λ > (4αn − 3αs) /αs. Finally, we derive the condition
ensuring that s∗o increases with λ, which implies that co increases with λ as well. Taking the
derivative of s∗o = sn (p∗o

1 (λ) , λ) with respect to λ yields

ds∗o

dλ
=

dsn (p∗o
1 , p∗o

2 )

dp1

∂p∗o
1

∂λ
+

∂s∗o

∂λ
.

Applying the implicit function theorem to (9) and (A9) yields

∂s∗o

∂λ
= Dn′ (p∗o

2 − c)
Ds (p∗o

2 )− Dn (p∗o
2 ) + p∗o

2 [Ds′ (p∗o
2 )− Dn′ (p∗o

2 )]

2σ′ (p∗o
2 ) + p∗o

2 σ′′ (p∗o
2 ) + (1 − λ) Dn′ (p∗o

2 − c)
> 0,

where the inequality follows from ϕ′
2 (·) < 0 (by profit concavity) and the assumptions about

naïve overestimating consumers. As dsn (p∗o
1 , p∗o

2 ) /dp1 < 0 (see (A12)), we find that a suffi-
cient (albeit not necessary) condition for ds∗o/dλ > 0 is that ∂p∗o

1 /∂λ ≤ 0. With linear demands
(see above), we find that ds∗o/dλ > 0 and ∂co/∂λ > 0.
Proof of Proposition 5. First, we show the price comparisons in the first period. For c < co,
we know from Proposition 4 that the dynamic storage solution applies in equilibrium. Sub-
stituting ϕ1 (psm

1 ) = 0, with ϕ1 (·) defined by (A1), into the right-hand side of the first-order
condition for p∗o

1 in (A11) yields −p2
[
dS (psm

1 , p2) /dp1
]
> 0, where the inequality follows

(A12). It follows from the implicit function theorem that p∗o
1 > psm

1 . For co ≤ c < c̃o, we
know from Proposition 4 that the dynamic solution without storage applies in equilibrium. As
the second period equilibrium price reflects the static monopoly price due to the sequential
optimality constraint (5) but the static solution would induce naïfs’ ex post storage and thus
cannot be implemented, naïfs’ first period marginal utility un′ (Ds (p1)) must be higher than in
the static solution in order to deter storage. It follows from Ds′ (p1) < 0 and un′′ (Ds (p1)) < 0
that p∗∗o

1 > psm
1 . For c ≥ c̃o, we know from Proposition 4 that the static solution applies in

equilibrium. Turning to the second period equilibrium price, we find from the sequential opti-
mality constraint (5) that in the presence of storage it holds p∗o

2 < pm
2 . In the absence of storage,

the second period equilibrium price is pm
2 .
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Proof of Proposition 6. Taking the derivative of the left-hand side of the first-order condition
for p∗o

1 in (A11) with respect to λ and recalling S (p1, pe
2) = (1 − λ) sn (p1, pe

2) yields

p∗o
2

dsn (p∗o
1 , p∗o

2 )

dp1
− (1 − λ)

[
∂p2 (p∗o

1 )

∂λ

dsn (p∗o
1 , p∗o

2 )

dp1
+ p∗o

2
∂2sn (p∗o

1 , p∗o
2 )

∂p1∂λ

]
.

It follows from the implicit function theorem that the sign of ∂p∗o
1 /∂λ corresponds to the sign of

this expression. As dsn (p∗o
1 , p∗o

2 ) /dp1 < 0 (see (A12)) but the sign of the expression in square
brackets is a priori ambiguous, we find that a sufficient (albeit not necessary) condition for
∂p∗o

1 /∂λ < 0 is that λ is high enough. Taking the derivative of the left-hand side of the first-
order condition for p∗o

2 in (A9) with respect to λ and recalling S (p1, pe
2) = (1 − λ) sn (p1, pe

2)

yields

Ds (p∗o
2 )− Dn (p∗o

2 ) + p∗o
2
[
Ds′ (p∗o

2 )− Dn′ (p∗o
2 )

]
+ sn (p∗o

1 , p∗o
2 )− (1 − λ)

ds∗o

dλ
.

It follows from the implicit function theorem that the sign of ∂p∗o
2 /∂λ corresponds to the sign

of this expression. Given that the difference between the first two terms is positive and the
expression in square brackets is also positive (with naïve overestimating consumers) as well
as sn (p∗o

1 , p∗o
2 ) > 0 but the sign of the last term is a priori ambiguous, a sufficient (albeit not

necessary) condition for ∂p∗o
2 /∂λ > 0 is that λ is high enough. Using linear demand functions

of the form Ds (pτ) = αs − βpτ and Dn (pτ) = αn − βpτ, where αs > αn, we find that for
αs ≤ (6/7) (2αn + βc) it holds ∂p∗o

1 /∂λ ≤ 0 (where p∗o
1 is derived in the proof of Proposition 4),

with ∂p∗o
1 /∂λ = 0 if and only if αs = (6/7) (2αn + βc). For αs > (6/7) (2αn + βc), there exists

a unique threshold λo ≜ 2− (5αs − 4αn − 2βc) /
√
(5αs − 4αn − 2βc) (3αs − 4αn − 2βc) ∈ (0, 1)

such that ∂p∗o
1 /∂λ > 0 if and only if λ < λo. Furthermore, we find that ∂p∗o

2 /∂λ > 0 (where
p∗o

2 is derived in the proof of Proposition 4). Now, we consider the case where the dynamic
solution without storage arises in equilibrium. Using (A14), we obtain from ∂pm

2 /∂λ > 0
(see (A4)) that ∂p∗∗o

1 /∂λ = [1/Ds′ (p∗∗o
1 )] Dn′ (pm

2 − c) (∂pm
2 /∂λ) > 0 and from p∗∗o

2 = pm
2 that

∂p∗∗o
2 /∂λ > 0. Finally, we consider the case where the static solution emerges in equilibrium.

Using (A3), we find that psm
1 is independent of λ and ∂pm

2 /∂λ > 0.
Proof of Proposition 7. It follows from the sequential optimality constraint (10) that the first-
order condition for p2 is given by

D̃2 (p2, ζ) + p2D̃′
2 (p2, ζ)− S (p1, pe

2) = 0. (A15)

First, suppose that the storability constraint is binding, i.e., p1 + c = p2. Below, we show
that this emerges in equilibrium for ζ high enough. Given that S (p1, pe

2) = s (p1, pe
2) and

S (p1, pe
2) = (1 − θ) sl (p1, pe

2), using (11) and (A15) as well as p1 + c = p2 yields

S (p1) =
D̃2 (p1 + c, ζ) + (p1 + c) D̃′

2 (p1 + c, ζ)

1 − θ
+ Dl (p1)− D̃1 (p1) (A16)

and

S (p1) = D̃2 (p1 + c, ζ) + (p1 + c) D̃′
2 (p1 + c, ζ) . (A17)
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It follows from (12) that the firm’s first-period maximization problem writes as

max
p1

p1

[
D̃1 (p1) + S (p1)

]
+ (p1 + c)

[
D̃2 (p1 + c, ζ)− S (p1)

]
s.t. (11) and (A15).

By the envelope theorem, the first-order condition for p1 is given by

D̃1 (p1) + S (p1) + p1

[
D̃′

1 (p1) + S′ (p1)
]
− (p1 + c) S′

(p1) = 0. (A18)

Using (A16) and (A17) yields

S′ (p1) =
2D̃′

2 (p1 + c, ζ) + (p1 + c) D̃′′
2 (p1 + c, ζ)

1 − θ
+ Dl′ (p1)− D̃′

1 (p1)

and

S′
(p1) = 2D̃′

2 (p1 + c, ζ) + (p1 + c) D̃′′
2 (p1 + c, ζ) .

Using (11), we find after some manipulation that the first-order condition for p1 in (A18) can
be rewritten as

Dl (p1)+ p1Dl′ (p1)+ S (p1)+
[
2D̃′

2 (p1 + c, ζ) + (p1 + c) D̃′′
2 (p1 + c, ζ)

] θp1 − (1 − θ) c
1 − θ

= 0.

(A19)

The equilibrium prices with ex ante storage (where the storability constraint is binding) are
given by

p∗1 =
1 − θ

θ
c−

(1 − θ)
[
Dl (p∗1) + p∗1 Dl′ (p∗1)

]
+ D̃2 (p∗1 + c, ζ) + (p∗1 + c) D̃′

2 (p∗1 + c, ζ)

θ
[
2D̃′

2

(
p∗1 + c, ζ

)
+

(
p∗1 + c

)
D̃′′

2

(
p∗1 + c, ζ

)] and p∗2 = p∗1 + c.

(A20)

It follows from (A16) and (A17) that the equilibrium ex ante storage is S∗ ≜ S (p∗1) and the
equilibrium ex post storage is S∗

≜ S (p∗1). A sufficient (albeit not necessary) condition for
S∗ > 0, which ensures the feasibility of the solution with ex ante storage (as S∗ < S∗

), is that
ζ is high enough (as ∂D̃2/∂ζ > 0). There exists a threshold ĉ∗, where ĉ∗ ≤ c̃, such that for
c < ĉ∗ the dynamic solution with ex ante storage emerges in equilibrium (the static solution
is unfeasible). This solution must also satisfy the condition that consumers with high valu-
ation for the good do not store ex post, i.e., D̃1 (p∗1) + S (p∗1) − Dh (p∗1) ≤ 0. Otherwise, the
price would be so low that consumers with high valuation would store ex post as well. In
line with the rationale adopted in the proof of Lemma 1, each unit of ex post storage would
impose a cost c on the firm. Thus, the firm prefers to set the first period equilibrium price
p̃∗1 such that D̃1 ( p̃∗1) + S ( p̃∗1) − Dh ( p̃∗1) = 0. Using linear demand functions of the form
Dh (pτ) = αh − βpτ and Dl (pτ) = αl − βpτ, which yield D̃1 (p1) = θαh + (1 − θ) αl − βp1 and
D̃2 (p2, ζ) = θ

(
αh + ζ

)
+ (1 − θ)

(
αl + ζ

)
− βp2, where αh > αl and ζ ∈ R, we find from (A20)

that the equilibrium prices are p∗1 =
[
θαh + 2 (1 − θ) αl − 2θβc + ζ

]
/ (4β) and p∗2 = p∗1 + c.
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Evaluating the expressions in (A16) and (A17) at p∗1 , we find that the equilibrium ex ante stor-
age is S∗ =

[
θ (2θ − 1) αh + 2θ (1 − θ) αl + ζ − 2 (2 − θ) βc

]
/ [2 (1 − θ)] and the equilibrium

ex post storage is S∗
=

[
θαh + ζ − 2 (2 − θ) βc

]
/2. This solution is feasible for S∗ > 0 or,

equivalently, c < c =
[
θ (2θ − 1) αh + 2θ (1 − θ) αl + ζ

]
/ [2β (2 − θ)]. Furthermore, we find

from Section 4 that the static solution, which yields prices pm
1 =

[
θαh + (1 − θ) αl] / (2β) and

pm
2 =

[
θαh + (1 − θ) αl + ζ

]
/ (2β), is feasible if and only if c ≥ c̃ =

[
2θ

(
αh − αl)+ ζ

]
/ (2β).

As the firm’s profit in the static solution is always higher than in the dynamic solution with
ex ante storage, the firm prefers to implement the static solution whenever possible. Thus, the
dynamic solution with ex ante storage emerges in equilibrium for c < ĉ∗ = min {c, c̃}.

Now, suppose that the storability constraint is not binding, i.e., p1 + c > p2. Below, we
show that this emerges in equilibrium for ζ low enough. As p2 = pe

2 and S (·) = 0, we find
from (12) that the firm’s first-period maximization problem writes as

max
p1

p1D̃1 (p1) + p2

[
D̃2 (p2, ζ)− S (p1, p2)

]
s.t. (11) and (A15).

It follows from the envelope theorem that the first-order condition for p1 is given by

D̃1 (p1) + p1D̃′
1 (p1)− p2

dS (p1, p2)

dp1
= 0. (A21)

Using (A15) and (A21), we obtain that the equilibrium prices with only ex post storage (where
the storability constraint is not binding) are given by

p∗∗1 = −
D̃1 (p∗∗1 )− p∗∗2

[
dS (p∗∗1 , p∗∗2 ) /dp1

]
D̃′

1

(
p∗∗1

) and p∗∗2 = − D̃2 (p∗∗2 , ζ)− S (p∗∗1 , p∗∗2 )

D̃′
2 (p∗∗2 , ζ)

. (A22)

It follows from (11), where S (·) = 0, that the equilibrium ex post storage is S∗∗
≜ S (p∗∗1 , p∗∗2 ) =

(1 − θ)
[

D̃1 (p∗∗1 )− Dl (p∗∗2 − c)
]
. There is a threshold ĉ∗∗, where ĉ∗∗ ≤ c̃, such that for c < ĉ∗∗

the dynamic solution with only ex post storage arises in equilibrium (the static solution is un-
feasible). With linear demands (see above), we find from (A22) that the equilibrium prices are
p∗∗1 =

[
θ
(
9 − 4θ − θ2) αh + (1 − θ)

(
11 − 6θ − θ2) αl + 2 (1 − θ)2 βc + 2 (1 − θ) ζ

]
/ [8β (2 − θ)]

and p∗∗2 = (3 − θ)
[
θ (1 + θ) αh + (3 + θ) (1 − θ) αl + 2 (1 − θ) βc + 2ζ

]
/ [8β (2 − θ)]. Evaluat-

ing the expression in (11), where S (·) = 0, at p∗∗1 and p∗∗2 , we find that the equilibrium ex post
storage is S∗∗

= (1 − θ)
[
θ (5 − θ) αh −

(
1 + 4θ − θ2) αl + 2ζ − 2 (3 − θ) βc

]
/ [4 (2 − θ)], where

S∗∗
> 0 for c < c∗∗ =

[
θ (5 − θ) αh −

(
1 + 4θ − θ2) αl + 2ζ

]
/ [2β (3 − θ)]. As the firm’s profit in

the static solution is always higher than in the dynamic solution with only ex post storage, the
firm prefers to implement the static solution whenever possible. Thus, the dynamic solution
with only ex post storage arises in equilibrium for c < ĉ∗∗ = min {c∗∗, c̃}.

Now, we compare the two dynamic storage solutions. In the solution with ex ante stor-
age, we find from the sequential optimality constraint (5) that, for any p1 and p2 (where
p2 = p1 + c), a rise in D̃2 (·), driven by a higher ζ (due to ∂D̃2/∂ζ > 0), requires an increase
in S (·), which emerges with probability 1 − θ. It follows from the condition for the equaliza-
tion of marginal utilities in (11) that each additional unit of S (·) allows for an additional unit
of S (·). As this is bought by all consumers, the solution with ex ante storage becomes more
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profitable for the firm. Conversely, in the solution with only ex post storage, we find from the
sequential optimality constraint (5) that, for any p1, a rise in D̃2 (·) leads to a higher p2. The
condition for the equalization of marginal utilities in (11) implies that S (·) increases, which
makes this solution less profitable. Consequently, when D̃2 (·) is sufficiently high, the solution
with ex ante storage emerges in equilibrium for c < ĉ∗. Conversely, when D̃2 (·) is sufficiently
low, the solution with only ex post storage emerges in equilibrium for c < ĉ∗∗. Note that, when
D̃2 (·) is significantly high, the second period price p2 is also relatively high, which violates the
storability constraint p1 + c > p2 and makes the solution with only ex post storage unfeasible.
When D̃2 (·) is significantly low, the solution with ex ante storage cannot be implemented, be-
cause the expression for ex ante storage would be negative. Using linear demands (see above),
we find that the difference in the firm’s profits between the solution with ex ante storage and
the solution with only ex post storage increases with ζ. Hence, there exists a unique thresh-

old ζ̂ ≜
√

2 [θ (1 + θ) αh + (1 − θ2) αl − 2 (1 − θ) βc]2 (2 − θ) (1 − θ)/ (2θ)−
(
1 + θ2 − θ

)
αh −(

1 + θ2) (1 − θ) αl/θ + 2βc/θ such that the solution with ex ante storage is more profitable than
the solution with only ex post storage if and only if ζ > ζ̂, where ζ̂ > 0.
Proof of Proposition 8. First, we consider the solution with ex ante storage. We start with the
case c < c̃. Evaluating the first-order condition for p1 in (A18) at pm

1 and using (A17), we obtain
after multiplying by 1 − θ that

(1 − θ)
[

Dl (pm
1 ) + pm

1 Dl′ (pm
1 )

]
+ D̃2 (pm

1 + c, ζ) + (pm
1 + c) D̃′

2 (pm
1 + c, ζ)

+
[
2D̃′

2 (pm
1 + c, ζ) + (pm

1 + c) D̃′′
2 (pm

1 + c, ζ)
]
[θpm

1 − (1 − θ) c] .

It holds p∗1 < (>) pm
1 when this expression is negative (positive). As the expression in the first

square brackets in the second line is negative (by profit concavity), we find that the expression
in the second line is negative if θ is high enough. Furthermore, for ζ low enough, we have
pm

2 < pm
1 + c, which implies that the sum of the last two terms in the first line is negative.

As for θ high enough the first term in the first line is relatively small, we find that, for ζ low
enough and θ high enough, the entire expression is negative and thus p∗1 < pm

1 .22 Conversely, if
θ is low enough, the expression in the second line is positive. Furthermore, for ζ high enough,
we have pm

2 > pm
1 + c, which implies that the sum of the last two terms in the first line is

positive. Given that there exist sufficiently large values of ζ such that the expression in the
first line is positive, we find that, for ζ high enough and θ low enough, the entire expression
is positive and thus p∗1 > pm

1 . Using linear demand functions of the form Dh (pτ) = αh − βpτ

and Dl (pτ) = αl − βpτ, where αh > αl , we have p∗1 < pm
1 (where p∗1 and pm

1 are derived in the
proof of Proposition 7) if and only if ζ < ζ ≜ θ

(
αh + 2βc

)
, with ∂ζ/∂θ > 0. Turning to the

case where c ≥ c̃, we show that p∗1 < pm
1 . It follows from the sequential optimality constraint

(10) that p∗2 = p∗1 + c < pm
2 . To show p∗1 < pm

1 , it suffices to demonstrate that pm
2 < pm

1 + c.
Proceeding by contradiction, suppose that pm

2 ≥ pm
1 + c or, equivalently, c ≤ pm

2 − pm
1 . Using

the definition of c̃ (see Section 4), we find that c ≥ c̃ if and only if c ≥ pm
2 − Dl−1

(
D̃1 (pm

1 )
)

.

It follows from D̃1 (p1) > Dl (p1) that pm
2 − Dl−1

(
D̃1 (pm

1 )
)

> pm
2 − pm

1 . This implies that,

22A sufficient (albeit not necessary) condition for the expression in square brackets in the first line to be negative
is that Dh′ (·) ≥ Dl′ (·), which reinforces this result.
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for c ≥ c̃, we cannot have c ≤ pm
2 − pm

1 . Consequently, we conclude that, for c ≥ c̃, it holds
p∗1 < pm

1 .
Now, we consider the solution with only ex post storage. Evaluating the first-order condi-

tion for p1 in (A21) at pm
1 yields −p2

[
dS (pm

1 , p2) /dp1
]
> 0, where the inequality holds if and

only if dS (pm
1 , p2) /dp1 < 0. Applying the implicit function theorem to (11), where S (·) = 0,

and (A15) yields

dS (p1, p2)

dp1
=

(1 − θ) D̃′
1 (p1)

[
2D̃′

2 (p2, ζ) + p2D̃′′
2 (p2, ζ)

]
2D̃′

2 (p2, ζ) + p2D̃′′
2 (p2, ζ) + (1 − θ) Dl′ (p2 − c)

< 0,

where the inequality follows from profit concavity. Then, it holds p∗∗1 > pm
1 . Using the sequen-

tial optimality constraint (10), we find that p∗2 < pm
2 and p∗∗2 < pm

2 .
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1 Introduction

This Supplementary Appendix complements the paper and proceeds as follows. Section 2

extends our model to nonlinear pricing. Section 3 examines the role of the firm’s commitment

to future prices.

2 Nonlinear pricing

In the following remark, we characterize the main features of the dynamic storage solution with

nonlinear pricing. We also compare the dynamic storage solution and the static solution in

terms of consumer surplus.

Remark 1 A. With näıve underestimating consumers, in the dynamic storage solution, sophis-

ticated consumers obtain nonnegative surplus and näıve consumers obtain positive surplus. If

the number of näıve consumers is large enough, sophisticated consumers are as well off and

näıve consumers are better off with respect to the static solution for sufficiently small values of

the storage cost.

B. With näıve overestimating consumers, in the dynamic storage solution, sophisticated

consumers obtain nonnegative surplus and näıve consumers may obtain negative surplus. If the

number of sophisticated consumers is large enough, sophisticated consumers are at most as well

off and näıve consumers are worse off with respect to the static solution for sufficiently small

values of the storage cost.

Proof of Remark 1. The firm offers consumers a nonlinear pricing policy in the form of

a contract menu
{
Qi

τ , P
i
τ

}
that specifies a quantity Qi

τ and a payment P i
τ for consumers of

type i = s, n (where s stands for sophisticates and n for näıfs) in period τ ∈ {1, 2}. As in

the baseline model, a fraction λ ∈ (0, 1) of the consumer population consists of sophisticated

∗Athens University of Economics and Business, Department of Economics, Patision 76, TK 104 34 Athens,
Greece; Humboldt University of Berlin, Institute for Economic Theory I, Spandauer Straße 1, 10178 Berlin,
Germany. Email: fantoniou@aueb.gr

†University of Bergamo, Department of Economics, Via dei Caniana 2, 24127 Bergamo, Italy. Email:
raffaele.fiocco@unibg.it
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consumers and the remaining fraction 1−λ is formed of näıve consumers. We denote the utility

of type i’s consumers by U i (xτ , yτ ) = ui (xτ )+yτ that depends on the consumption level xτ and

money yτ . The continuously differentiable utility function ui (·) is increasing and concave, i.e.,

ui′ (·) > 0 and ui′′ (·) < 0, with the standard normalization ui (0) = 0. To ensure the concavity

of the firm’s profit function, we introduce a (constant) unit cost of production γ > 0.1 First, we

consider the case of näıve underestimating consumers, where un′ (·) > us′ (·). By the revelation

principle, in the second period the firm offers the pricing policy {(Qs
2, P

s
2 ) , (Q

n
2 , P

n
2 )}, where

(Qs
2, P

s
2 ) is designed for sophisticates and (Qn

2 , P
n
2 ) for näıfs. Proceeding backward, the firm’s

second period maximization problem writes as

max
{(Qs

2,P
s
2 ),(Qn

2 ,P
n
2 )}

λ (P s
2 − γQs

2) + (1− λ) (Pn
2 − γQn

2 ) (S1)

subject to the following participation and incentive constraints

us
(
Qs

2 + S
s)− P s

2 ≥ us
(
S
s)

(S2)

un
(
Qn

2 + S
n)− Pn

2 ≥ un
(
S
n)

(S3)

us
(
Qs

2 + S
s)− P s

2 ≥ us
(
Qn

2 + S
s)− Pn

2 (S4)

un
(
Qn

2 + S
n)− Pn

2 ≥ un
(
Qs

2 + S
n)− P s

2 , (S5)

where S
i
denotes the amount of ex post storage inherited from the first period by consumers of

type i = s, n. In line with our main analysis, as all consumers believe that they have the same

preferences at first period purchase stage but näıfs discover higher valuation for the good, näıfs

consume (weakly) more than sophisticates in the first period, which implies that their level of

ex post storage is (weakly) lower, i.e., S
n ≤ S

s
. The participation constraints (S2) and (S3)

ensure that consumers of type i = s, n are willing to accept the second period pricing policy

when obtaining at least the utility ui
(
S
i
)
associated with consumption of the quantity stored

S
i
. The incentive constraints (S4) and (S5) induce consumers to select the contract intended

for their type instead of the one intended for the other type. Following a standard approach,

we show that, as näıfs have higher valuation for the good, the participation constraint (S2)

for sophisticates and the incentive constraint (S5) for näıfs are binding in equilibrium, whereas

the participation constraint (S3) for näıfs and the incentive constraint (S4) for sophisticates

are slack. Combining (S2) and (S5) yields un
(
Qn

2 + S
n) − Pn

2 − un
(
S
n) ≥ un

(
Qs

2 + S
n) −

P s
2 − un

(
S
n) ≥ us

(
Qs

2 + S
s) − P s

2 − us
(
S
s) ≥ 0, where the second inequality follows from

un′ (·) > us′ (·) and ui′′ (·) < 0, for i = s, n (recall S
n ≤ S

s
). Thus, the constraint (S3) is implied

by the constraints (S2) and (S5). Furthermore, the constraints (S2) and (S5) must be binding

in equilibrium, otherwise the firm could increase payments and be better off.2 Substituting the

binding constraints (S2) and (S5) into the firm’s second period maximization problem in (S1)

and taking the first-order conditions for Qs
2 ≥ 0 and Qn

2 ≥ 0 yields

us′
(
Qs

2 + S
s)− (1− λ)un′

(
Qs

2 + S
n)− λγ ≤ 0 (S6)

1Our findings are qualitatively unaffected in the absence of any cost of production, with the main difference
that the quantity offered can be at the highest possible level (which may stem from capacity constraints).

2The constraint (S4) will be checked ex post.
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and

un′
(
Qn

2 + S
n)− γ ≤ 0, (S7)

where the equalities hold for Qs
2 > 0 and Qn

2 > 0, respectively. In equilibrium, it holds Qn
2 ≥ Qs

2.

As un′ (·) > us′ (·), the quantity Qs
2 for sophisticates is such that their consumption Qs

2 + S
s

is distorted below the efficient level, i.e., us′
(
Qs

2 + S
s) − γ > 0. The quantity Qn

2 for näıfs

ensures that for Qn
2 > 0 their consumption Qn

2 + S
n
is efficient, i.e., un′

(
Qn

2 + S
n) − γ = 0.

Notably, sophisticates’ consumption can be efficient even for Qn
2 = 0 because they resort to the

quantity stored.3 Hence, given the first period pricing policy and consumers’ storage decisions,

the second period pricing policy is {(Qs
2, P

s
2 ) , (Q

n
2 , P

n
2 )}, where Qs

2 and Qn
2 respectively satisfy

(S6) and (S7), whereas P s
2 and Pn

2 follow from the binding constraints (S2) and (S5). It holds

Qs
2 = P s

2 = 0 for λ ≤
[
un′

(
S
n)− us′

(
S
s)]

/
[
un′

(
S
n)− γ

]
.

Given the first period pricing policy (Qs
1, P

s
1 ) and the second period (expected) pricing policy

(Qs
2, P

s
2 ), sophisticates’ ex ante and ex post storage Ss = S

s ≥ 0 is given by

Ss = S
s
= argmax

S̃s

us
(
Qs

1 − S̃s
)
+ us

(
Qs

2 + S̃s
)
− P s

1 − P s
2 − cS̃s. (S8)

This yields us′ (Qs
2 + Ss) − us′ (Qs

1 − Ss) − c ≤ 0, where the equality holds for Ss > 0.4 Näıfs’

ex ante storage is also equal to Ss because näıfs believe that they have the same preferences as

sophisticates at the first period purchase stage. Given the first period pricing policy (Qs
1, P

s
1 )

and the second period (expected) pricing policy (Qn
2 , P

n
2 ), näıfs’ ex post storage S

n ≥ 0 is

S
n
= argmax

S̃n

un
(
Qs

1 − S̃n
)
+ un

(
Qn

2 + S̃n
)
− Pn

2 − cS̃n. (S9)

This yields un′
(
Qn

2 + S
n)− un′

(
Qs

1 − S
n)− c ≤ 0, where the equality holds for S

n
> 0.

In anticipation of the second period pricing policy {(Qs
2, P

s
2 ) , (Q

n
2 , P

n
2 )} (as implied by (S1)

with un′ (·) > us′ (·)) and consumers’ storage decisions (as implied by (S8) and (S9)), the firm’s

first period maximization problem writes as

max
{Qs

1,P
s
1}
P s
1 − γQs

1 + λ (P s
2 − γQs

2) + (1− λ) (Pn
2 − γQn

2 ) (S10)

subject to the following participation and non-skipping constraints

us (Qs
1 − Ss)− cSs − P s

1 + us (Qs
2 + Ss)− P s

2 ≥ 0 (S11)

us (Qs
1 − Ss)− cSs − P s

1 + us (Qs
2 + Ss)− P s

2 ≥ us (Qs
2)− P s

2 . (S12)

The participation constraint (S11) ensures that all consumers, believing that they share the same

utility U s (·), are willing to accept the first period pricing policy {Qs
1, P

s
1 }, in anticipation of

the second period pricing policy {Qs
2, P

s
2 }. The non-skipping constraint (S12) ensures that con-

sumers do not have any incentives to remain idle in the first period by skipping their purchases

3Substituting the binding constraints (S2) and (S5) into (S4) yields after some manipulation un
(
Qn

2 + S
n)−

un
(
Qs

2 + S
n) ≥ us

(
Qn

2 + S
s)−us

(
Qs

2 + S
s)
, where the inequality follows fromQn

2 ≥ Qs
2 as well as u

n′ (·) > us′ (·)
and ui′′ (·) < 0, for i = s, n (recall S

n ≤ S
s
).

4As consumers’ expectations are correct in equilibrium, with a small abuse of notation we omit the expectation
operator in the second period pricing policy.
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and buying in the second period. We show that the non-skipping constraint (S12) is binding in

equilibrium.5 Proceeding by contradiction, suppose that the constraint (S12) is slack and thus

us (Qs
2)−P s

2 < 0. As the participation constraint (S2) yields P s
2 ≤ us (Qs

2 + Ss)−us (Ss), it must

hold us (Qs
2) < us (Qs

2 + Ss)− us (Ss). However, this violates us (Qs
2) + us (Ss) ≥ us (Qs

2 + Ss)

(by subadditivity of ui (·), for i = s, n). Hence, the non-skipping constraint (S12) is binding

in equilibrium. Taking the first-order condition for Qs
1 associated with the firm’s maximization

problem in (S10) yields after some manipulation

us′ (Qs
1 − Ss) +Qs′

2 (Qs
1)
[
us′ (Qs

2 + Ss)− us′ (Qs
2)
]
+ Ss′ (Qs

1)
[
us′ (Qs

2 + Ss)− us′ (Qs
1 − Ss)− c

]
+λ

{
us′ (Qs

2 + Ss)
[
Qs′

2 (Qs
1) + Ss′ (Qs

1)
]
− us′ (Ss)Ss′ (Qs

1)− γQs′
2 (Qs

1)
}

+(1− λ)
{
un′

(
Qn

2 + S
n) [

Qn′
2 (Qs

1) + S
n′
(Qs

1)
]
− un′

(
Qs

2 + S
n) [

Qs′
2 (Qs

1) + S
n′
(Qs

1)
]

+us′ (Qs
2 + Ss)

[
Qs′

2 (Qs
1) + Ss′ (Qs

1)
]
− us′ (Ss)Ss′ (Qs

1)− γQn′
2 (Qs

1)
}

−µ
{
us′′ (Qs

2 + Ss)
[
Qs′

2 (Qs
1) + Ss′ (Qs

1)
]
− us′′ (Qs

1 − Ss)
[
1− Ss′ (Qs

1)
]}

−ν
{
un′′

(
Qn

2 + S
n) [

Qn′
2 (Qs

1) + S
n′
(Qs

1)
]
− un′′

(
Qs

1 − S
n) [

1− S
n′
(Qs

1)
]}

−φ
{
us′′ (Qs

2 + Ss)
[
Qs′

2 (Qs
1) + Ss′ (Qs

1)
]
− (1− λ)un′′

(
Qs

2 + S
n) [

Qs′
2 (Qs

1) + S
n′
(Qs

1)
]}

−ψun′′
(
Qn

2 + S
n) [

Qn′
2 (Qs

1) + S
n′
(Qs

1)
]
− γ = 0, (S13)

where µ ≥ 0 and ν ≥ 0 are the Kuhn-Tucker multipliers associated with consumers’ storage

decisions (see (S8) and (S9)) as well as φ ≥ 0 and ψ ≥ 0 are the Kuhn-Tucker multipli-

ers associated with the first-order conditions (S6) and (S7). Thus, with näıve underestimat-

ing consumers, in the dynamic storage solution, the pricing policy consists of the first period

pricing policy (Qs∗u
1 , P s∗u

1 ), where Qs∗u
1 and P s∗u

1 respectively satisfy the first-order condition

(S13) and the binding non-skipping constraint (S12), and of the second period pricing pol-

icy {(Qs∗u
2 , P s∗u

2 ) , (Qn∗u
2 , Pn∗u

2 )} associated with the firm’s maximization problem in (S1) (with

un′ (·) > us′ (·)) that yields the first-order conditions (S6) and (S7). The levels of storage are

Ss∗u for sophisticates and S
n∗u

for näıfs (as implied by (S8) and (S9)). The dynamic storage

solution requires that (at least) sophisticates store, i.e., Ss∗u > 0, which occurs for sufficiently

small values of the storage cost, i.e., for c < us′
(
Qs

2|Ss=0

)
− us′

(
Qs

1|Ss=0

)
.

Let Ψi ≜
∑2

τ=1

[
U i (xτ , yτ )− Pτ

]
− cS

i
be the aggregate net utility of consumers of type

i = s, n. Ignoring money yτ without loss of generality, it follows from the binding constraint

(S12) that sophisticated consumers obtain

Ψs∗u = us (Qs∗u
2 )− P s∗u

2 = us (Qs∗u
2 ) + us (Ss∗u)− us (Qs∗u

2 + Ss∗u) ≥ 0,

where the equality holds if and only if Qs∗u
2 = P s∗u

2 = 0. Näıve consumers obtain

Ψn∗u = un
(
Qs∗u

1 − S
n∗u

)
− cS

n∗u − P s∗u
1 + un

(
Qn∗u

2 + S
n∗u

)
− Pn∗u

2

= un
(
Qs∗u

1 − S
n∗u

)
+ un

(
Qs∗u

2 + S
n∗u

)
− us (Qs∗u

1 − Ss∗u)

−2us (Qs∗u
2 + Ss∗u) + us (Ss∗u) + us (Qs∗u

2 ) + c
(
Ss∗u − S

n∗u
)
> 0.

5Clearly, one constraint must be binding in equilibrium, otherwise the firm could increase the first period
payment and be better off.
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In the static solution, the pricing policy consists of the first period pricing policy (Qsm
1 , P sm

1 ),

where Qsm
1 is such that us′ (Qsm

1 )−γ = 0 and P sm
1 = us (Qsm

1 ), and of the second period pricing

policy {(Qsm
2 , P sm

2 ) , (Qnm
2 , Pnm

2 )} associated with the firm’s maximization problem in (S1) (with

un′ (·) > us′ (·)) that yields the first-order conditions (S6) and (S7), where Ss = S
n
= 0. The

static solution can only emerge in the absence of storage, which occurs for sufficiently large

values of the storage cost, i.e., for c ≥ us′
(
Qs

2|Ss=0

)
− us′

(
Qs

1|Ss=0

)
(see above). Sophisticated

consumers obtain Ψsm = 0 and näıve consumers obtain Ψnm = un (Qsm
1 )+un (Qsm

2 )−us (Qsm
1 )−

us (Qsm
2 ) > 0.

We now compare the dynamic storage solution and the static solution in terms of consumer

surplus. For the sake of convenience, we focus our attention on the case where the number

of näıfs is large enough, i.e., λ ≤ λ̃unl ≜
[
un′

(
S
n∗u

)
− us′ (Ss∗u)

]
/
[
un′

(
S
n∗u

)
− γ

]
(see the

discussion after (S7)). This implies that Qs∗u
2 = P s∗u

2 = 0. Then, it holds Ψs∗u = Ψsm = 0.

Furthermore, we show that it holds Ψn∗u > Ψnm, provided that the storage cost c is small

enough. To proceed in a insightful manner, we fix c = 0. Our results apply for c small enough.

First, we prove that the firm cannot benefit from Qn
2 > 0. It follows from the first-order

condition for Qs
1 in (S13) that the impact of Qs

1 on the firm’s profit Π through Qn
2 evaluated at

Qn
2 = 0 is

∂Π

∂Qs
1

∣∣∣∣
Qn

2=0

= (1− λ)
{
un′

(
S
n) [

Qn′
2 (Qs

1) + S
n′
(Qs

1)
]
− un′

(
S
n)
S
n′
(Qs

1)− γQn′
2 (Qs

1)
}
.

Given that Qn′
2 (Qs

1) = −1 and S
n′
(Qs

1) = 1 (as implied by (S7) and (S9)), it follows from

(S7) that ∂Π/∂Qs
1|Qn

2=0 ≥ 0, which means that the firm does not have any incentives to

decrease Qs
1 in order to get Qn

2 > 0. Thus, it holds Qs∗u
2 = Qn∗u

2 = 0. We obtain from

consumers’ storage decisions (see (S8) and (S9)) that Ss∗u = S
n∗u

= Qs∗u
1 /2, which yields

Ψn∗u = 2 [un (Qs∗u
1 /2)− us (Qs∗u

1 /2)]. As us′ (Qsm
1 ) − γ = 0 and un′ (Qs∗u

1 /2) − γ ≤ 0 (see

(S7)), we find from un′ (·) > us′ (·) that Qs∗u
1 /2 > Qsm

1 , which implies that un (Qs∗u
1 /2) −

us (Qs∗u
1 /2) > un (Qsm

1 ) − us (Qsm
1 ). Furthermore, it follows from Qsm

2 < Qsm
1 < Qs∗u

1 /2 that

un (Qs∗u
1 /2)−us (Qs∗u

1 /2) > un (Qsm
2 )−us (Qsm

2 ). Thus, it holds Ψn∗u > Ψnm. Using quadratic

utility functions of the form us = αsQτ − (β/2)Q2
τ and un = αnQτ − (β/2)Q2

τ , where α
n > αs,

we find that in the dynamic storage solution the first period quantity is Qs∗u
1 = 2 (αn − γ) /β

and storage is Ss∗u = S
n∗u

= (αn − γ) /β. In the second period, we have Qs∗u
2 = Qn∗u

2 = 0.

In the static solution, the first period quantity is Qsm
1 = (αs − γ) /β. In the second pe-

riod, we obtain Qnm
2 = (αn − γ) /β as well as Qsm

2 = 0 for λ ≤ (αn − αs) / (αn − γ) and

Qsm
2 = [αn (λ− 1) + αs − λγ] / (βλ), otherwise. Comparing consumer surplus between the two

solutions yields Ψs∗u = Ψsm = 0 and Ψn∗u > Ψnm > 0.

Now, we turn to the case of näıve overestimating consumers, where us′ (·) > un′ (·). As

all consumers believe that they have the same preferences at first period purchase stage and

näıfs discover lower valuation for the good, sophisticates consume (weakly) more than näıfs

in the first period, which implies that their level of storage is (weakly) lower, i.e., Ss ≤ S
n
.

Following the same logic as for the case of näıve underestimating consumers, it can be shown

that the participation constraint (S3) for näıfs and the incentive constraint (S4) for sophisticates

are binding in equilibrium, whereas the participation constraint (S2) for sophisticates and the
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incentive constraint (S3) for näıfs are slack. Substituting the binding constraints (S3) and (S4)

into the firm’s second period maximization problem in (S1) and taking the first-order conditions

for Qs
2 ≥ 0 and Qn

2 ≥ 0 yields

us′
(
Qs

2 + S
s)− γ ≤ 0 (S14)

and

un′
(
Qn

2 + S
n)− λus′

(
Qn

2 + S
s)− (1− λ) γ ≤ 0, (S15)

where the equalities hold for Qs
2 > 0 and Qn

2 > 0, respectively. In equilibrium, it holds Qs
2 ≥ Qn

2 .

Hence, given the first period pricing policy and consumers’ storage decisions, the second period

pricing policy is {(Qs
2, P

s
2 ) , (Q

n
2 , P

n
2 )}, where Qs

2 and Qn
2 respectively satisfy (S14) and (S15),

whereas P s
2 and Pn

2 follow from the binding constraints (S3) and (S4). It holds Qn
2 = Pn

2 = 0

for λ ≥
[
un′

(
S
n)− γ

]
/
[
us′

(
S
s)− γ

]
.

In anticipation of the second period pricing policy {(Qs
2, P

s
2 ) , (Q

n
2 , P

n
2 )} (as implied by (S1)

with us′ (·) > un′ (·)) and consumers’ storage decisions (as implied by (S8) and (S9)), the firm’s

first period maximization problem is given by (S10) subject to the participation constraint (S11)

and the non-skipping constraint (S12). As before, the non-skipping constraint (S12) is binding

in equilibrium. Taking the first-order condition for Qs
1 yields after some manipulation

us′ (Qs
1 − Ss) +Qs′

2 (Qs
1)
[
us′ (Qs

2 + Ss)− us′ (Qs
2)
]
+ Ss′ (Qs

1)
[
us′ (Qs

2 + Ss)− us′ (Qs
1 − Ss)− c

]
+λ

{
us′ (Qs

2 + Ss)
[
Qs′

2 (Qs
1) + Ss′ (Qs

1)
]
− us′ (Qn

2 + Ss)
[
Qn′

2 (Qs
1) + Ss′ (Qs

1)
]

+un′
(
Qn

2 + S
n) [

Qn′
2 (Qs

1) + S
n′
(Qs

1)
]
− un′

(
S
n)
S
n′
(Qs

1)− γQs′
2 (Qs

1)
}

+(1− λ)
{
un′

(
Qn

2 + S
n) [

Qn′
2 (Qs

1) + S
n′
(Qs

1)
]
− un′

(
S
n)
S
n′
(Qs

1)− γQn′
2 (Qs

1)
}

−µ
{
us′′ (Qs

2 + Ss)
[
Qs′

2 (Qs
1) + Ss′ (Qs

1)
]
− us′′ (Qs

1 − Ss)
[
1− Ss′ (Qs

1)
]}

−ν
{
un′′

(
Qn

2 + S
n) [

Qn′
2 (Qs

1) + S
n′
(Qs

1)
]
− un′′

(
Qs

1 − S
n) [

1− S
n′
(Qs

1)
]}

−φus′′ (Qs
2 + Ss)

[
Qs′

2 (Qs
1) + Ss′ (Qs

1)
]

−ψ
{
un′′

(
Qn

2 + S
n) [

Qn′
2 (Qs

1) + S
n′
(Qs

1)
]
− λus′′ (Qn

2 + Ss)
[
Qn′

2 (Qs
1) + Ss′ (Qs

1)
]}

− γ = 0,

(S16)

where µ ≥ 0 and ν ≥ 0 respectively represent the Kuhn-Tucker multipliers associated with

consumers’ storage decisions (see (S8) and (S9)) as well as φ ≥ 0 and ψ ≥ 0 respectively rep-

resent the Kuhn-Tucker multipliers associated with the first-order conditions (S14) and (S15).

Consequently, we find that, with näıve overestimating consumers, in the dynamic storage solu-

tion, the pricing policy consists of the first period pricing policy (Qs∗o
1 , P s∗o

1 ), where Qs∗o
1 and

P s∗o
1 respectively satisfy the first-order condition (S16) and the binding non-skipping constraint

(S12), and of the second period pricing policy {(Qs∗o
2 , P s∗o

2 ) , (Qn∗o
2 , Pn∗o

2 )} associated with the

firm’s maximization problem in (S1) (with us′ (·) > un′ (·)) that yields the first-order conditions
(S14) and (S15). The levels of storage are Ss∗o for sophisticated consumers and S

n∗o
for näıve

consumers (as implied by (S8) and (S9)). The dynamic storage solution requires that (at least)

näıve consumers store, i.e., S
n∗o

> 0, which occurs for sufficiently small values of the storage

cost, i.e., for c < un′
(
Qn

2 |Sn
=0

)
− un′

(
Qs

1|Sn
=0

)
.

Let Ψi ≜
∑2

τ=1

[
U i (xτ , yτ )− Pτ

]
− cS

i
be the aggregate net utility of consumers of type
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i = s, n. Ignoring money yτ without loss of generality, it follows from the binding constraint

(S12) that sophisticated consumers obtain

Ψs∗o = us (Qs∗o
2 )− P s∗o

2

= us (Qs∗o
2 ) + us (Qn∗o

2 + Ss∗o) + un
(
S
n∗o

)
− us (Qs∗o

2 + Ss∗o)− un
(
Qn∗o

2 + S
n∗o

)
≥ 0,

where the equality holds if and only if Qs∗o
2 = P s∗o

2 = 0. Näıve consumers obtain

Ψn∗o = un
(
Qs∗o

1 − S
n∗o

)
− cS

n∗o − P s∗o
1 + un

(
Qn∗o

2 + S
n∗o

)
− Pn∗o

2

= −us (Qs∗o
1 − Ss∗o)− us (Qs∗o

2 + Ss∗o) + un
(
Qs∗o

1 − S
n∗o

)
+us (Qs∗o

2 ) + un
(
S
n∗o

)
− c

(
S
n∗o − Ss∗o

)
⋚ 0.

In the static solution, the pricing policy consists of the first period pricing policy (Qsm
1 , P sm

1 ),

where Qsm
1 is such that us′ (Qsm

1 ) − γ = 0 and P sm
1 = us (Qsm

1 ), and of the second period

pricing policy {(Qsm
2 , P sm

2 ) , (Qnm
2 , Pnm

2 )} associated with the firm’s maximization problem in

(S1) (with us′ (·) > un′ (·)) that yields the first-order conditions (S14) and (S15), where Ss =

S
n

= 0. The static solution can only emerge in the absence of storage, which occurs for

sufficiently large values of the storage cost, i.e., for c ≥ un′
(
Qn

2 |Sn
=0

)
− un′

(
Qs

1|Sn
=0

)
(see

above). Sophisticated consumers obtain Ψsm = us (Qnm
2 )− un (Qnm

2 ) ≥ 0 and näıve consumers

obtain Ψnm = −us (Qsm
1 ) + un (Qsm

1 ) < 0.

We now compare the dynamic storage solution and the static solution in terms of consumer

surplus. For the sake of convenience, we focus our attention on the case where the number

of sophisticates is large enough, i.e., λ ≥ λ̃onl ≜
[
un′

(
S
n∗o

)
− γ

]
/
[
us′

(
S
s∗o

)
− γ

]
(see the

discussion after (S15)). This implies that Qn∗o
2 = Pn∗o

2 = 0. We show that Ψs∗o ≤ Ψsm and

Ψn∗o < Ψnm, provided that the storage cost c is small enough. To proceed in a insightful

manner, we fix c = 0. Our results apply for c small enough. First, we prove that the firm

cannot benefit from Qs
2 > 0. It follows from the first-order condition for Qs

1 in (S16) that the

impact of Qs
1 on the firm’s profit Π through Qs

2 evaluated at Qs
2 = 0 is

∂Π

∂Qs
1

∣∣∣∣
Qs

2=0

= us′ (Qs
1 − Ss) +Qs′

2 (Qs
1)
[
us′ (Ss)− us′ (0)

]
+ Ss′ (Qs

1)
[
us′ (Ss)− us′ (Qs

1 − Ss)
]

+ λ
{
us′ (Ss)

[
Qs′

2 (Qs
1) + Ss′ (Qs

1)
]
− us′ (Ss)Ss′ (Qs

1)− γQs′
2 (Qs

1)
}
.

We find from consumers’ storage decisions (see (S8) and (S9)) that Ss is such that the ex-

pression in the last square brackets in the first line vanishes, which implies Ss = Qs
1/2. As

Qs′
2 (Qs

1) = −1 and Ss′ (Qs
1) = 1, it follows from (S14) that ∂Π/∂Qs

1|Qs
2=0 > 0, which means

that the firm does not have any incentives to decrease Qs
1 in order to get Qs

2 > 0. Thus, it

holds Qs∗o
2 = Qn∗o

2 = 0. As Ψs∗o = 0, we have Ψs∗o ≤ Ψsm. Furthermore, we obtain from con-

sumers’ storage decisions (see (S8) and (S9)) that Ss∗o = S
n∗o

= Qs∗o
1 /2, which yields Ψn∗o =

−2 [us (Qs∗o
1 /2)− un (Qs∗o

1 /2)] < 0. As us′ (Qsm
1 )− γ = 0 and us′ (Qs∗o

1 /2)− γ ≤ 0 (see (S14)),

we find that Qs∗o
1 /2 ≥ Qsm

1 , which implies that us (Qs∗o
1 /2)−un (Qs∗o

1 /2) ≥ us (Qsm
1 )−un (Qsm

1 ),

where the inequality follows from us′ (·) > un′ (·). Thus, it holds Ψn∗o < Ψnm. Using quadratic

utility functions of the form us = αsQτ − (β/2)Q2
τ and un = αnQτ − (β/2)Q2

τ , where α
s > αn,

we find that in the dynamic storage solution the first period quantity is Qs∗o
1 = 2 (αs − γ) /β
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and storage is Ss∗o = S
n∗o

= (αs − γ) /β. In the second period, we have Qs∗o
2 = Qn∗o

2 = 0.

In the static solution, the first period quantity is Qsm
1 = (αs − γ) /β. In the second pe-

riod, we obtain Qsm
2 = (αs − γ) /β as well as Qnm

2 = [αn − λαs − (1− λ) γ] / [β (1− λ)] for

λ < (αn − γ) / (αs − γ) and Qnm
2 = 0 otherwise. Comparing consumer surplus between the two

solutions yields 0 = Ψs∗o ≤ Ψsm and Ψn∗o < Ψnm < 0.

3 Price commitment

In the following remark, we characterize the main features of the dynamic storage solution when

the firm can commit to future prices.

Remark 2 A. With näıve underestimating consumers, under full commitment, the dynamic

storage solution arises in equilibrium for c < ĉcu. This yields prices pcu1 and pcu2 = pcu1 + c as

well as ex ante storage Scu > 0 and ex post storage S
cu

= λScu > 0.

B. With näıve overestimating consumers, under full commitment, the dynamic storage so-

lution arises in equilibrium for c < cco. This yields prices pco1 and pco2 , with pco1 > pco2 , as well

as ex post storage S
co
> 0.

Proof of Remark 2. First, we consider the case of näıve underestimating consumers. Following

the same rationale as in the proof of Lemma 1, the firm does not have any incentives to promote

storage by näıve consumers. As storage can emerge only if the storability constraint is binding,

i.e., p1 + c = p2, the firm’s maximization problem writes as

max
p1

p1 [D
s (p1) + S (p1)] + (p1 + c) [σ (p1 + c)− λS (p1)] .

The firm’s profit increases with S (·) if and only if p1 (1− λ) − cλ > 0. In this case, the firm

prefers to promote full storage, i.e., S (p1) = σ (p1 + c). Otherwise, no storage emerges in

equilibrium. For p1 (1− λ)− cλ > 0, the firm’s maximization problem reduces to

max
p1

p1D
s (p1) + [(2− λ) p1 + (1− λ) c]σ (p1 + c) .

The first-order condition for p1 is

Ds (p1) + p1D
s′ (p1) + (2− λ)σ (p1 + c) + [(2− λ) p1 + (1− λ) c]σ′ (p1 + c) = 0. (S17)

The equilibrium full commitment prices with storage are given by

pcu1 = −D
s (pcu1 ) + (2− λ)σ (pcu1 + c) + (1− λ)σ′ (pcu1 + c) c

Ds′ (pcu1 ) + (2− λ)σ′ (pcu1 + c)
and pcu2 = pcu1 + c. (S18)

The equilibrium full commitment levels of ex ante and ex post storage are respectively Scu ≜

S (pcu1 ) = σ (pcu1 + c) and S
cu

= λScu = λσ (pcu1 + c). As pcu1 (1− λ) − cλ > 0 for c small

enough, there exists a threshold ĉcu such that for c < ĉcu the dynamic storage solution arises in

equilibrium. In line with the proof of Lemma 1 of the paper, we find that, if at the equi-

librium prices in (S18) näıfs store ex post, the firm prefers to set higher prices that mit-

igate the distortion from the benchmark case of perfectly aware consumers. The equilib-

rium full commitment prices become p̃cu1 and p̃cu2 = p̃cu1 + c, where p̃cuτ > pcuτ , τ ∈ {1, 2}.
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Specifically, p̃cu1 and S (p̃cu1 ) are such that only sophisticates store ex post, i.e., S (p̃cu1 ) =

λS (p̃cu1 ) = λσ (p̃cu1 + c), and näıfs’ marginal utility from consuming the entire quantity bought

in the first period is equal to the price, i.e., un′ (Ds (p̃cu1 ) + S (p̃cu1 )) = p̃cu1 . Using linear de-

mand functions of the form Ds (pτ ) = αs − βpτ and Dn (pτ ) = αn − βpτ , where αn > αs,

we find from (S18) that in equilibrium the full commitment prices with storage are pcu1 =[
(2− λ) (1− λ)αn +

(
1 + 2λ− λ2

)
αs − (3− 2λ)βc

]
/ [2β (3− λ)] and pcu2 = pcu1 + c, with ex

ante storage Scu =
[
(4− λ) (1− λ)αn −

(
1 + λ2 − 4λ

)
αs − 3βc

]
/ [2 (3− λ)]. The dynamic

storage solution is more profitable than the dynamic solution without storage if and only if c <

ĉcu1 =
{
6 (1− λ)αn + 4λαs +

[(
1− 2λ2

)
(αn − αs) + λ (αn + αs)

]√
2 (3− 2λ)

}
/ [2β (3 + 2λ)].

As the firm’s profit in the dynamic storage solution decreases with c when the static solution

is feasible, i.e., for c ≥ c̃ (see Section 3.3 of the paper), the firm’s profit is higher in the dy-

namic storage solution than in the static solution if and only if c < ĉcu2 =
λ(1−λ)αn+(3+λ2−2λ)αs

β(4λ−3) −
√
3−λ

β(4λ−3)

√
(1 + 2λ2 − 3λ)2 αn2 + (1 + 4λ− 3λ2 − 4λ3 − 4λ4)αs2 + 2 (1− λ) (2− λ− 4λ2 + 4λ3)αnαs.

Thus, the dynamic storage solution arises in equilibrium if and only if c < ĉcu = ĉcu1 for ĉcu1 < c̃

and if and only if c < ĉcu = ĉcu2 , otherwise.

Now, we move to the case of näıve overestimating consumers. As p2 = pe2, the firm’s

maximization problem writes as

max
{p1,p2}

p1D
s (p1) + p2

[
σ (p2)− S (p1, p2)

]
,

where S (p1, p2) = (1− λ) sn (p1, p2) and s
n (p1, p2) = Ds (p1)−Dn (p2 − c) (see the expression

(9) of the paper). The first-order conditions for p1 and p2 are respectively given by

Ds (p1) + p1D
s′ (p1)− (1− λ) p2D

s′ (p1) = 0 (S19)

and

σ (p2) + p2
[
σ′ (p2) + (1− λ)Dn′ (p2 − c)

]
− (1− λ) [Ds (p1)−Dn (p2 − c)] = 0. (S20)

The equilibrium full commitment prices are pco1 and pco2 that simultaneously satisfy the first-

order conditions (S19) and (S20). The equilibrium full commitment ex post storage is S
co

≜

S (pco1 , p
co
2 ) = (1− λ) sco = (1− λ) [Ds (pco1 )−Dn (pco2 − c)]. As limλ→1 p

co
1 = limλ→1 p

co
2 , we

have S
co
> 0 for λ high enough and c low enough. Thus, there exists a threshold cco such that

the dynamic storage solution arises in equilibrium for c < cco. Substituting pm1 into the left-hand

side of the first-order condition for pco1 in (S19) yields − (1− λ) p2D
s′ (pm1 ) > 0, which implies

that pco1 > pm1 . Substituting pm2 into the left-hand side of the first-order condition for pco2 in (S20)

yields − (1− λ) [Ds (p1)−Dn (pm2 − c)− p2D
n′ (pm2 − c)] < 0, which implies that pco2 < pm2 . As

pm1 > pm2 , we obtain that pco1 > pco2 . Using linear demand functions Ds (pτ ) = αs − βpτ and

Dn (pτ ) = αn−βpτ , where αs > αn, we find from (S18) that in equilibrium the full commitment

prices with storage are pco1 =
[(
3 + λ− 2λ2

)
αs + 2 (1− λ)2 αn + (1− λ)2 βc

]
/
[
β
(
7− 2λ− λ2

)]
and pco2 = [(3λ− 1)αs + 4 (1− λ)αn + 2 (1− λ)βc] /

[
β
(
7− 2λ− λ2

)]
, with ex post storage

S
co

= (1− λ)
[(
3 + λ2

)
αs −

(
5 + λ2 − 2λ

)
αn − 2 (3− λ)βc

]
/
(
7− 2λ− λ2

)
, where S

co
> 0 if

and only if c < cco =
[(
3 + λ2

)
αs −

(
5 + λ2 − 2λ

)
αn

]
/ [2β (3− λ)]. As cco < c̃, we find that

the dynamic storage solution arises in equilibrium if and only if c < cco.

9



In the following remark, we compare the equilibrium prices under full commitment and

limited commitment in the most relevant case where the storage cost c is sufficiently low that

storage emerges in equilibrium irrespective of the commitment regime. To this aim, with näıve

underestimating consumers, we introduce the extra gain from storage accruing to the firm under

full commitment at the price p1, i.e., Γ (p1) ≜ [p1 (1− λ)− cλ] [Scu (p1)− S∗u (p1)].
6

Remark 3 A. With näıve underestimating consumers, in the presence of storage, the equi-

librium prices under full commitment are higher than under limited commitment, pcuτ > p∗uτ ,

τ ∈ {1, 2}, if and only if the extra gain from storage under full commitment increases with the

price in equilibrium, ∂Γ (pcu1 ) /∂p1 > 0.

B. With näıve overestimating consumers, in the presence of storage, under full commitment

the firm has an incentive to charge a higher first period price and a lower second period price

compared to limited commitment.

Proof of Remark 3. First, we consider the case of näıve underestimating consumers. Substi-

tuting the first-order condition for pcu1 in (S17) into the left-hand side of the first-order condition

for p∗u1 in (A6) of the paper yields after some manipulation

1− λ

λ

[
(1− λ)σ (pcu1 + c) + (pcu1 + c)σ′ (pcu1 + c)

]
+
pcu1 (1− λ)− cλ

λ

[
(2− λ)σ′ (pcu1 + c) + (pcu1 + c)σ′′ (pcu1 + c)

]
= −∂Γ (pcu1 )

∂p1
.

Thus, it holds pcuτ > p∗uτ , τ ∈ {1, 2}, if and only if ∂Γ (pcu1 ) /∂p1 > 0. Note that S∗u (p1) =

[σ (p1 + c) + (p1 + c)σ′ (p1 + c)] /λ < Scu (p1) = σ (p1 + c) (as storage cannot exceed the second

period demand), where S∗u (p1) and Scu (p1) are respectively derived in the proofs of Lemma

1 of the paper and of Remark 2. This implies that the expression in the first square brackets

is negative. Hence, as pcu1 (1− λ) − cλ > 0, a sufficient (albeit not necessary) condition for

∂Γ (pcu1 ) /∂p1 > 0 is that the expression in the second square brackets is nonpositive, which

occurs if and only if ∂S∗u (pcu1 ) /∂p1 ≤ ∂Scu (pcu1 ) /∂p1. This is satisfied when σ (·) is not too

convex. Consequently, we have pcuτ > p∗uτ , τ ∈ {1, 2}, as long as σ (·) is not too convex.

Now, we move to the case of näıve overestimating consumers. Substituting pcu1 (p2) in

the first-order condition (S19) into the left-hand side of (A11) of the paper for a given p2

yields p2

{
(1− λ)Ds′ (pcu1 (p2))−

[
dS

∗o
(pcu1 (p2) , p2) /dp1

]}
< 0, where the inequality follows

from (A12) of the paper.7 Thus, for a given p2, the firm has an incentive to set a higher

price under full commitment than under limited commitment. Substituting pcu2 (p1) in the

first-order condition (S19) into the left-hand side of (A9) of the paper for a given p1 yields

− (1− λ) pcu2 (p1)D
n′ (pcu2 (p1)− c) > 0. Thus, for a given p1, the firm has an incentive to set a

lower price under full commitment than under limited commitment. Using linear demands (see

the proof of Remark 2), we find that pco1 > p∗o1 and pco2 < p∗o2 .
6For the sake of clarity, with a small abuse of notation we denote by Scu (p1) and S∗u (p1) the level of storage

as a function of p1 under full commitment and limited commitment, respectively.
7In line with the proof of Remark 2, for the sake of clarity, with a small abuse of notation we denote by pcu1 (p2)

the price under full commitment as a function of p2 (and pcu2 (p1) mutatis mutandis). Furthermore, S
∗o

(p1, p2)
identifies the level of storage under limited commitment as a function of p1 and p2.
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