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Abstract
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show that PHEV subsidies were used by consumers to purchase larger and heavier vehi-
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1 Introduction

Reducing our environmental footprint is of high priority for many economies worldwide. One

of the main strategies to combat emissions is the introduction of policies encouraging the

development and adoption of emissions reducing innovations. The environmental benefit of

such innovations sometimes depends on consumer’s usage behavior. Plug-in hybrid vehicles

(PHEVs) provide an example – PHEVs when their battery is fully charged reduce driving re-

lated carbon emissions to a third of its internal combustion engine vehicle (ICE) counterpart,

yet when driven uncharged, PHEVs emit three-folds more emissions than officially claimed.

PHEVs sales in Europe increased rapidly over the past years, from a market share of less

than 1 percent in 2016, to a share of 10 percent in 2021. Part of this increase is attributed to

generous subsidy schemes for PHEVs, which governments across Europe offer. The increase

in PHEVs is also partly attributed to supply side efforts – as I show, for some automobile

manufacturers, PHEVs had a key role in achieving compliance with the EU emissions reg-

ulations. Notwithstanding the introduction of new innovations in the automobile industry,

the transportation sector is one of the few sectors in the EU which saw CO2 emissions rise,

compared to their 1990 levels.1 In order to evaluate and design better policies for emissions

reductions in the transportation sectors, it is important to understand the contribution of

PHEVs to CO2 emissions.

This paper contributes an empirical examination of consumers’ adoption and usage pat-

terns of new emission-reducing innovations and their impact on carbon emissions. I quantify

the environmental benefits of PHEVs adoption in Germany by taking into account PHEVs

charging behavior, and evaluate the effects purchase subsidies had on consumers’ PHEVs

purchasing decision. Moreover, as PHEVs consumers are not informed of uncharged PHEVs

fuel consumption values,2 I quantify the role this lack of information has on purchasing deci-

sions. This paper also extends the literature analyzing emission standards (Reynaert, 2020;

1See figure C.1 in the appendix.
2Fuel consumption values of PHEVs are not advertised by automobile manufacturers.
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Jacobsen, 2013; Goldberg, 1998) by offering a framework to analyze manufacturers reaction

to emission standards.

I present evidence on the lack of PHEVs charging, and calculate PHEVs real-usage fuel

consumption values. On the supply side, I show that for some manufacturers, sales of PHEVs

were important for achieving compliance with the EU emissions standards. These stylized

facts combined portray an alarming picture: a significant share of the declared emission

reductions do not translate to real world emission reductions. These results motivates my

analysis of consumer purchasing decisions. I estimate a discrete choice model of consumers

demand in the automobile market, I use the estimated model to evaluate consumers’ choices

under two main counterfactual scenarios: (1) had subsidies for PHEVs not been in place

and (2) had consumers been informed of uncharged fuel consumption values of PHEVs. A

back on the envelope calculation shows that in the short term, elimination of subsidies for

PHEVs can reduce yearly carbon emissions by 167,139 tons. This is the equivalent of the

yearly carbon emissions due to energy consumption of 52,916 households. Moreover, I show

that eliminating PHEVs subsidies reduces the number of SUV sold by 10 percent, which

indicates that the subsidies were used by some consumers as an upgrading opportunity.3

This paper relates to a burgeoning literature analyzing the impact of policies on the adop-

tion of energy efficient technologies (Houde and Aldy, 2017; Allcott et al., 2015; Boomhower

and Davis, 2014; Davis et al., 2014), and in particularly the adoption of energy efficient

technologies in the automobile industry (Muehlegger and Rapson, 2022; Chen et al., 2021;

Clinton and Steinberg, 2019; Chandra et al., 2010). The literature is unanimous in its con-

clusion that energy-efficiency programs mostly target inframarginal consumers – consumers

who would have purchased energy efficient products also without these programs. Houde

and Aldy (2017) use difference-in-differences approach to evaluate consumers’ response to

the U.S. energy efficient appliance rebate program. They find that in the long run, the pro-

3Recent research (for example Anderson and Auffhammer (2013)) indicates that the safety external-
ity SUVs impose on non-SUV drivers might even exceed the environmental externality of these vehicles.
Therefore the reduction of the market share of SUVs might serve in itself as a policy goal.
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gram didn’t increase the market share of energy efficient appliances, since most consumers

participating in the program would have purchased energy efficient appliances in any case.

The implied energy reduction of the program is small, because the rebates were used to

upsize participants’ appliances, which in turn led to a higher energy consumption in com-

parison to participants’ previously owned smaller models. Boomhower and Davis (2014) and

Davis et al. (2014) evaluate an appliance replacement program in Mexico using difference-

in-differences and regressions discontinuity approaches respectively. Boomhower and Davis

(2014) find that over two thirds of the participants in the program are inframarginal and

would have replaced their old appliances also without the program. Davis et al. (2014) show

that usage behavior reduced the energy saving outcome of the program – program partic-

ipants used their new air conditioners more often than before their program participation,

hence reducing the program’s energy savings. In the market for automobiles Chen et al.

(2021) and Chandra et al. (2010) evaluate energy-efficiency programs using difference-in-

differences and structural demand model approach respectively. Both find most consumers

to be inframarginal. Notwithstanding the rapid growth in the literature analyzing the adop-

tion of Battery electric vehicles (BEVs)4 and PHEVs (Remmy, 2022; Springel, 2021; Xing

et al., 2021; Clinton and Steinberg, 2019; Holland et al., 2019; Li, 2019; Li et al., 2017; Yu

et al., 2016), the literature focuses mainly on the network effects of charging stations on

BEVs adoption (Remmy, 2022; Springel, 2021; Li, 2019; Li et al., 2017; Yu et al., 2016)

rather than consumers’ substitution patterns and the derived environmental benefits. Xing

et al. (2021) and Holland et al. (2019) are the exceptions: Xing et al. (2021) use a struc-

tural demand estimation framework to assess what BEVs and PHEVs buyers would have

purchased had these vehicles not existed. They show that assessments of environmental

benefits which ignore these substitution patterns would overestimate the adoption benefits.

Holland et al. (2019) estimate the effect of BEVs adoption on local pollutant such as PM2.5

and SO2 by exploiting survey data on second choice vehicle to determine BEVs replacement

4I use the term BEVs to describe pure electric vehicles, which don’t posses an additional internal com-
bustion engine for propulsion.
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vehicle. They find that high-income groups benefit from BEVs adoption, yet low-income

groups experience an increase in local pollution.

The rest of the paper is organized as follows: section 2 introduces the German market

for automobiles and the EU emission standards. Section 3 presents the data. Section 4

presents stylized facts on the charging behavior of PHEVs and reduced form evidence on the

important role PHEVs had in achieving compliance with EU emissions regulations. Section 5

presents the demand and supply model. Section 6 describes the model’s estimation procedure

and presents the estimation results, which are used in section 7 to evaluate the impact the

subsidies had on consumer adoption of PHEVs and carbon emissions. Section 8 concludes

and discusses the findings.

2 Industry and policy background

2.1 National subsidies for Germany

Germany is the largest market for automobiles in Europe, and is the largest adopter of

PHEVs and BEVs in the EU. In 2021, Germany accounted for 25 percent of new vehicle

sales, 36 percent of all PHEVs sales, and 36 percent of BEVs sales in the EU.5 Germany

is also a home to numerous automobile manufacturers. In 2015, the automobile industry

accounted for 4.5 percent of total gross value added in Germany.

In 2016, the government announced a subsidy scheme for BEVs and PHEVs. The sub-

sidies, available to private consumers as well as companies, foundations, and associations,

were offered for selected vehicles6 which were purchased after May 18 2016 and remained

registered by the buyer for at least six months. For a PHEV to be eligible for the subsidy it

must emit no more than 50g CO2 per kilometer, and its price must be below 65,000 Euros

5For comparison, the next largest markets are France and Italy, which accounted for 18 percent and 15
percent of new vehicles sales in the EU, respectively.

6The eligible vehicles were published in a list by the Federal Office of Economics and Export Control
(BAFA).
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(the same price limit applies to BEVs as well). The subsidy scheme was designed to be paid

half by the government and half by the automobile manufacturers. It was set at 3,000 Euros

for PHEVs, and 4,000 for BEVs. By 2021, the subsidies rates rose to 6,750 and 9,000 Euros

for PHEVs and BEVs with a net price below 40,000 Euros, and 5,625 and 7,000 Euros for

PHEVs and BEVs with a net price between 40,000 and 65,000 Euros. The subsidies were in

place until the end of 2022. From 2023 on, PHEVs weren’t subsidized anymore.7

2.2 The EU emissions standard

As of 2022, the EU carbon emission standard for passenger vehicles is one of the strictest

standards worldwide. For comparison, as of 2022, the U.S. standard for passenger vehicles

is set at 148.5g CO2/km while the European standard is 95g CO2/km. The EU carbon

emissions standard sets a target on the manufacturers’ weight-adjusted average of carbon

emissions of all vehicles sold in the EU. Surplus of emissions is not tradable or storable for

future years. The standards were initially announced in 2007 at a level of 130g CO2/km and

came into force in 2014. Many automobile manufacturers complied with the initial standard

well before it became binding. In 2014, a stricter standard of 95g CO2/km was announced.

Automobile manufacturers had time until 2021 – the year the standard became fully effective

– to adjust their fleet accordingly.8 Penalties are imposed on non-compliers. In 2021, all

automobile manufacturers complied with the standard and paid no penalty fees.

For illustration, equation (1) shows how a manufacturer’s fleet emissions are calculated:

EEU
i =

∑
j∈i

qj(ej − α(wj − w0))∑
j∈i

qj
(1)

where qj denotes the EU-wide sales of vehicle j of fleet i, ej is the carbon emissions of vehicle

7On January 2023, the government introduced new, significantly lower subsidy rates for BEVs only.
82020 was a transitional year in which the standard became partially binding.

5



j, wj is the weight of the vehicle, α is a weight adjustment factor, and w0 is a pivot weight

which is equal to the average weight of new passenger vehicles registered in the previous

three years. From 2020 on, the value of α was set at a value 0.0333 and the value of w0

was 1,379.88.9 Notice that the standard penalize the carbon emissions of light-vehicles while

subsidizing the emissions of heavy-vehicles.

3 Data

3.1 Vehicle sales and characteristics

The data used in this paper covers the universe of vehicle registrations in the EU between

the years 2014-2021. I use new vehicle registrations as a proxy for sales. For the main

analysis presented in this paper, I use the subset of new vehicles registered in Germany

during 2015 – 2021.10 Each vehicle is defined as a brand-model-trim combinations, which

captures the brand, model, series, motor-type and body-type combination. An example of a

brand-model-trim vehicle in the dataset is “BMW X1 xDrive25e” where BMW is the brand,

X1 is the model name and xDrive25e is the trim. I complement the vehicle registrations data

with data on vehicle characteristics for vehicles sold in Germany: the list price and an array

of characteristics such as horsepower, size, weight, fuel consumption and battery range. To

identify which vehicles were subsidized, I use the official lists of eligible vehicles published by

the Federal Office for Economic Affairs and Export Control. In addition, I use information

from the Federal Statistical Office regarding median households’ income by year. I eliminate

brand-model-trims with low sales.11 A market in my data is a year; there are in total 2,322

brand-model-trim/year observations. I define the market size as a quarter of households in

a given year.12 Table 1 shows the mean and standard deviation for key variables in the final

9Source: Regulation (EU) 2019/631 of The European Parliament and of the Council.
10The main analysis focuses on Germany due to data availability: I do not observe prices for vehicles sold

in other EU countries.
11Additional details are presented in appendix A.1.
12This definition assumes that a households considers to purchase a new vehicle every four years.
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dataset for Germany, in addition to a breakdown of the means for the years 2015 and 2021.

Table 1: Summary statistics of Vehicles’ sales and characteristics in Germany

All years 2015 2021

Mean SD Mean Mean

Sales (1,000 units) 4.5 4.7 4.5 4.2

Price/income 1.5 0.8 1.4 1.9

Fuel Costs (per km) 6.1 2.0 6.4 6.2

Fuel consumption (l/100 km) 4.9 1.5 5.0 4.7

Volume (m3) 12.5 2.0 12.1 12.9

Horsepower 158.3 79.2 134.9 198.7

Weight (kg) 1,488.1 325.6 1,404.3 1,645.5

PHEV 0.1 0.3 0.0 0.2

BEV 0.0 0.2 0.0 0.1

Number of models 339.6 45.2 309.0 219.0

Notes: The table presents means and standard deviations of the main characteristics of vehicles sold in Germany for all years
and for the years 2015 and 2021 separately. The total number of observations (trim-model/market) is 2,322 where a market refer
to a given year - 7 in total.The variable Price/income include subsidies for PHEVs and BEVs from 2016 on. Fuel consumption
values exclude values for BEVs due to the different measurement scales.

Even though the average vehicle sold in 2021 was larger, heavier, and more powerful, it was

more energy efficient than the averagely sold vehicle in 2015. Compared to a share of zero

in the sample in 2015,13 20 percent of the vehicles sold in 2021 were PHEVs and 10 percent

were BEVs. The number of different vehicles sold in 2021 decreased significantly compared

to 2015. This is due to discontinuation of many diesel model-trims.

Table 2: Summary statistics by motor

2015 2021

ICE PHEV BEV ICE PHEV BEV

Share out of sales 99.4% 0.4% 0.2% 62.2% 13.0% 24.7%

Price/income 1.3 2.3 1.7 1.3 2.4 1.3

Volume (m3) 11.7 11.8 9.8 11.7 14.1 11.1

Weight (kg) 1338.8 1670.7 1391.8 1345.2 2008.3 1579.9

Fuel Costs (per km) 6.4 2.3 4.0 6.5 2.3 4.6

Fuel consumption (l (kWh)/100 km) 4.9 1.7 13.8 4.8 1.6 15.2

Number of models 297 7 5 156 35 28

Notes: The table presents summary statistics by motor type (ICE, PHEV or BEV) in the years 2015 and 2021 for vehicles sold
in Germany. The variable Price/income include subsidies for PHEVs and BEVs from 2016 on. All variables except “share out
of sales” are sales weighted averages.

13This is not a result of the elimination of low selling vehicles mentioned above: in 2015 the share of BEV
and PHEV sales was less than 0.01 percent.
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Table 2 provides a more disaggregated view at sales weighted averages broken down by year

and motor type. Prices of BEVs decreased significantly between 2015 and 2021, the decrease

is partly attributed to the generous subsidies, and to the introduction of cheaper BEVs

models by the manufactures. PHEVs prices remained constant even after the introduction

of subsidies, which indicates that sold PHEVs got more expensive in 2021 than in 2015.

PHEVs weigh on average about 50 percent more than their ICE counterparts, which explains

the dramatic increase in manufacturers’ fleets’ sales-weighted weight with a high share of

PHEVs sales obsereved in figure 2. Even though, the weight of the average sold ICE remained

constant during 2015-2021, the weight of the average sold PHEVs increased by more than

a fifth. With an average volume (height × width × length) of 14.1 m3, PHEVs are also

significantly larger than the averagely sold ICE vehicles and BEVs with respective average

volumes of 11.7 m3 and 11.1 m3. The higher prices (after subsidies) of PHEVs and their

larger size indicate that PHEVs target more affluent consumers. Therefore the environmental

impact of PHEVs subsides hinges on the substitution patterns towards PHEVs: had there

been no subsidies for PHEVs would these consumers still participate in the market and buy

a large ICE vehicle?

3.2 PHEVs charging behavior

PHEVs have the potential to emit less emissions compared to their ICE counterparts by

substituting fuel for electricity. In order to achieve the officially declared carbon emissions

values drivers need to charge their PHEVs regularly. Therefore, PHEVs carbon emissions are

highly dependent on the driver’s charging behavior. Manufacturers don’t publish uncharged

PHEVs fuel consumption values, therefore to evaluate the real-usage fuel consumption and

carbon emissions of PHEVs, I employ data on PHEVs usage patterns which was obtained

from a German based app which helps drivers track vehicle’s related costs. For each user

I observe their vehicle type (brand, model and production year) and their vehicle’s related

costs and refueling instances. I focus on refueling observations which took place between
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2015-2022. For each user-vehicle pair, I observe data on the refueling and battery charging

date, the odometer reading, and the quantity of fuel and electricity charged. This data allows

me to observe the real frequency with which drivers refuel their PHEVs and subsequently

the real fuel consumption values of PHEVs. Since the data is user generated, I clean the

data from unreasonable and incomplete observations. Additionally I retain only observations

that can be matched to the sales and characteristics data described in section 3.1. The final

dataset contains 391,594 observations for 77 PHEV models14 and 4,087 users with an average

of 95.8 observations per user.15

Table 3: Summary statistics of PHEV’s usage data

Mean SD Minimum Maximum

Share of charging instances 0.5 0.5 0.0 1.0

Distance since last charging (km) 218.9 731.2 0.0 96,324.0

Distance since last fueling (km) 774.7 546.6 2.6 24,300.0

kWh charged (kWh) 21.3 67.9 0.0 3,000.0

kWh charged (kWh/100km) 2.5 8.0 0.0 200.0

Battery capcity (kWh) 116.2 37.2 44.0 400.0

Battery range (km) 131.9 25.6 93.0 311.5

Liters fueled 35.6 16.5 0.1 1,090.0

Fuel consumption (l/100km) 5.5 2.3 0.8 15.4

Offical fuel consumption (l/100km) 1.6 0.4 0.6 3.5

Production year 2,018.6 2.6 2,009.0 2,022.0

Horsepower 234.6 73.9 122.0 680.0

Price (EUR) 45,273.4 12,923.4 29,900.0 185,736.0

Subsidized 0.8 0.4 0.0 1.0

Diesel 0.1 0.2 0.0 1.0

SUV 0.4 0.5 0.0 1.0

Winter 0.2 0.4 0.0 1.0

Spring 0.2 0.4 0.0 1.0

Summer 0.3 0.4 0.0 1.0

Notes: The table presents means, standard deviation, minimum and maximum values of the main PHEVs usage variables and
the PHEVs matched characteristics. The total number of observations (user/vehicle/date combinations) is 391,594.

Table 3 presents the summary statistics of the PHEVs usage data. The table shows that

about half of the recorded observations are of battery charging type (the rest are of gaso-

14A total of 83 PHEV models were sold in Germany between 2015-2021.
15Additional details on the data preparation process are in appendix A.2.
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line/diesel refueling). The high distance values some observations exhibit, is a result of users

bundling a couple of refueling instances into one entry in the app.16 Charging instances occur

more frequently than fueling instances distance-wise. The average charged amount of kWh

(kilowatts hours), both per a charging instance and per 100 kilometers, is lower than the

battery capacity, which might be due to the longer charging times required for PHEVs com-

pared with BEVs.17 This observation highlights the underutilization of the electric motor by

PHEVs drivers. A striking result is the large difference between the real fuel consumption

of PHEVs drivers and the official fuel consumption: a 3.4 folds difference! This translates

to a 3.4 folds difference between the real carbon emissions values and the official ones.18 If

real average usage emissions values were used, fewer PHEVs in the sample would have been

subsidized in Germany, as PHEVs have to emit no more than 50 g/km carbon emissions

in order to be eligible for subsidies. About 80 percent of the vehicles in the sample are

subsidized, and about 40 percent of the vehicles are Sport Utility Vehicles (SUVs). Only 10

percent of the models in the sample are fueled with diesel.

4 Reduced form evidence on PHEVs

4.1 Usage behavior of PHEV

In order to determine uncharged PHEVs fuel consumption values, I use the refueling data to

estimate the PHEVs fuel consumption under different battery charging scenarios. For that

purpose I estimate the following equation using an OLS estimator:

16For example, the observation with 24,300 kilometers since last fueling instance corresponds to a purchase
of 780 liters of fuel, which corresponds to a fuel consumption value of 3.2 liters per 100 kilometers (the official
fuel consumption of the vehicle is 1.4).

17BEVs are usually equipped with a fast charging plug which reduces significantly the time needed to fully
charge the battery.

18A vehicle’s carbon emissions are proportional to its fuel consumption: one liter of gasoline (diesel) emits
2.3 (2.6) kilograms of carbon emissions.
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Consumptionit = βkWhkWhit + βxXit + ϵit (2)

where consumption is the quantity of fuel bought (gasoline or diesel) in a full tank refill

divided by the distance since the last full-refueling times 100,19 kWh is is a measure for the

utilization of the electric motor of the PHEVs: it is the sum of kWh charged per kilome-

ter driven since the last full-refueling.20 X includes 3 sets of control variables: (1) vehicle

characteristics which potentially affect fuel consumption such as: officially stated fuel con-

sumption, volume, dummy variable for diesel and brand dummies; (2) time fixed effects

- dummies for season of the year (winter, spring and summer) and year dummies, which

control for potential weather effects on fuel consumption and changes in charging behavior

due to charging network expansions which are common to all users, and lastly (3) a set user

dummies which control for driver specific driving style which affects fuel consumption. I use

the coefficients estimates to predict the fuel consumption of PHEVs under different values

of kWh charged per 100 km.

Table 4 shows the estimated coefficients of equation (2). A significant share of the variation

in fuel consumption is explained when fixed effects are included: R-squared value of 0.51.

As expected the charging coefficient is negative and significant. The coefficient of -3.28

magnitude suggests that charging 100 kWh for 100 kilometers driven, would reduce the fuel

consumption of the vehicle by 3.38 l/100km. In order to gain better intuition regarding

the relationship between battery charging, official and real-usage fuel consumption values,

column (3) presents the estimation results when only user and year fixed effects are added

as control variables. Column (3) clearly illustrates the importance of charging PHEVs for

low fuel consumption. When PHEVs are not charged (i.e. kWh charged is zero), even the

19The fuel consumption values in the vehicle sales and characteristics data are in liters per 100 kilometer
units.

20In contrast to the fuel consumption variable, kWh is not a measure of electricity consumption since
instances of partial recharging are included. Additional details on the treatment of partial refueling instances
are presented in appendix A.2.
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most efficient PHEV sold in Germany achieves fuel consumption of 4.37 l/100km.21 For the

calculation of the counterfactual fuel consumption values, column (2) coefficients estimates

will be used.

Table 4: Real fuel consumption regression results

(1) (2) (3)

Intercept -2.63 -2.26 3.23

(0.36) (1.28) (0.47)

kWh charged (kWh/km) -4.89 -3.38 -3.28

(0.38) (0.24) (0.24)

offical fuel consumption (l/100km) 0.25 0.79 1.43

(0.09) (0.26) (0.28)

horsepower (100 ps) 0.39 0.05

(0.07) (0.14)

weight (100 kg) 0.04 0.20

(0.05) (0.11)

volume 0.51 0.22

(0.07) (0.19)

diesel -0.84 -0.88

(0.15) (0.44)

winter 0.48 0.53

(0.02) (0.02)

spring 0.03 0.01

(0.02) (0.02)

summer 0.04 0.06

(0.02) (0.02)

R-squared 0.21 0.51 0.50

User fixed effects No Yes Yes

Year fixed effects No Yes Yes

F-statistics 115.30 69.99 111.25

Observations 180,458 180,457 180,457

Notes: The table shows the coefficient estimates and standard errors of OLS regressions of PHEVs fuel consumption on electric
motor utilization and controls. Column (1) shows the regression estimates when no fixed effects are used; Column (2) presents
the OLS regression results when the full set of fixed effects and control variables is used; In order to gain intuition regarding
the relationship between the official announced fuel consumption, the amount of electric motor utilization and the real fuel
consumption values, column (3) presents the OLS regressions estimates when the only controls used are user and year fixed
effects. The number of observations is lower than the total sample since only refueling instances are used. Standard errors are
clustered on the user level.

Figure 1 shows the kernel estimated distribution of PHEVs’ carbon emissions - the official

21The most efficient PHEV I observe in the sample is Volvo V60 with a fuel consumption value of 0.8 l/100
km. For comparison, Toyota Yaris is the most efficient ICE vehicle in the sample with a fuel consumption
value of 2.8 l/100 km.
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Figure 1: Distribution of estimated CO2 emissions

Notes: The figure shows four kernel estimated distributions of PHEVs carbon emissions: the official values and the real-usage
values are taken directly from the usage data; the estimated values are estimated using the coefficient estimates presented in
table 4, column (2) under two scenarios: when the battery is not charged (kWh is set to Zero) and when the battery is fully
charged (kWh is set to official battery capacity divided by the battery driving range).

values, the average real-usage values which are taken directly from the data, and the esti-

mated values under two different battery scenarios: no charging (kWh is set to zero) and

fully-charged battery (kWh is set to official battery capacity divided by the battery driving

range). The “no charging” scenario follows closely the real-usage emissions distribution,

which is expected as the average amount charged per 100 km driven is very low in the data

(on average 2.5 kWh/100 km). Notwithstanding the high variation in real-usage carbon

emissions values, the overlap between the real-usage and the official values distributions is

small, and most of the real-usage values are above the official ones. The figure shows a

clear bunching of official emissions values right below the value of 50 g/km which is the car-
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Figure 2: Compliance of manufacturers in 2014 and 2020

Notes: The figure plots the EU-wide sales weighted average of vehicles’ carbon emissions and weight for each of Europe’s most
sold automobile manufacturers. The starting point of each arrow is the sales-weighted carbon emissions and weight averages in
2014. The end of each arrow reflects the corresponding values for each manufacturer in 2020. The end of each dashed arrow
reflects the corresponding values for each manufacturer in 2020 had no PHEVs been sold. The dashed upper diagonal line
depicts the standard in 2014, the dashed lower diagonal line is the standard values in 2020.

bon emissions threshold for the eligibility of a PHEV for a subsidy. Although some overlap

exists between the official carbon emission values and the estimated “full’ battery” values,

the ‘full’ battery” values exhibit much higher variation. This discrepancy is not surprising

given that real driving behavior and weather conditions deviate greatly from conditions used

in laboratory tests.An additional illustration of the results is available in table D.1 in the

appendix.
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4.2 Manufacturers’ compliance strategies

Figure 2 illustrates the development of average fleet emissions of manufacturers with the

highest sales in the EU. Up to 2020, most automobile manufacturers have over-complied with

the old EU fleet emissions targets set in 2007. The figure demonstrates that the reductions in

average fleet emissions were driven both by an increase in weight and a decrease in emissions

of sold vehicles. The dashed arrows illustrates the fleets’ average emissions and weight had

the manufacturers not sell any PHEVs. Sales of PHEVs had a major role in the successful

compliance of BMW, Daimler (Mercedes-Benz) and Ford with the EU standard.22

Table 5: Summary statistics of EU fleet sales

CO2 g/km weight kg PHEV BEV sales

2014 2020 2014 2020 2014 2020 2014 2020 2014 2020

BMW 131.7 113.8 1,581.0 1,655.8 0.5% 11.9% 0.4% 4.8% 799,550 816,584

DAIMLER 131.6 117.6 1,579.0 1,736.4 0.1% 14.5% 0.5% 5.9% 686,711 742,519

FIAT 121.6 119.5 1,217.0 1,289.2 0.0% 1.3% 0.0% 1.0% 733,467 617,357

FORD 122.3 109.3 1,388.5 1,576.8 0.4% 10.9% 0.0% 1.5% 1,176,013 951,285

HYUNDAI 130.1 103.8 1,321.3 1,400.5 0.0% 1.3% 0.0% 14.4% 409,504 399,434

KIA 130.9 103.9 1,352.3 1,401.4 0.1% 7.5% 0.0% 9.1% 347,451 413,593

RENAULT 113.9 103.3 1,268.1 1,333.9 0.0% 1.1% 1.2% 9.2% 1,715,193 1,486,998

PSA 110.1 96.7 1,269.4 1,311.4 0.2% 2.4% 0.0% 4.0% 1,360,966 1,754,325

TOYOTA 112.8 96.3 1,309.4 1,386.4 6.3% 0.9% 0.0% 0.1% 539,080 682,608

VW 125.8 112.1 1,397.6 1,498.2 0.1% 4.2% 0.1% 6.7% 3,160,154 2,964,391

Total 121.8 107.5 1,364.4 1,454.2 0.5% 5.0% 0.3% 5.6% 10,928,089 10,829,094

Notes: The table presents the fleets’ averages of Europe’s most selling manufacturers. The columns PHEVs and BEVs present
the share of these vehicles out of the whole EU fleet, the columns sales display the manufacturers’ total sales in the EU.

Table 5 present the emissions and weight values for each of the manufacturers presented in

figure 2. The columns PHEV and BEV present the respective shares of PHEVs and BEVs

out of the total EU fleet. Daimler (Mercedes-Benz), BMW and Ford have significantly

increased the share of PHEVs in their fleets - by 14.4, 11.4 and 10.5 p.p. respectively. This

is more than double the average of Europe’s top selling manufacturers (5 percent). These

22In 2020, all manufacturers complied with the standard due to two special transitional period excep-
tions: first, only 95 percent of the vehicles sold were taken into account in order to calculate the fleets’
weight-average emissions, and second, manufacturers were able to reduce their fleets’ emissions by using spe-
cial innovation credits which were awarded to manufacturers that developed and deployed special emission
reducing innovations. These special exceptions didn’t apply in 2021.
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brands combined account for 29 percent of the total sales in Germany.23

As figure 2 shows, Daimler, BMW and Ford also present the highest increase of sales weighted

average weight. This increase is partially explained by the increased share of sold PHEVs.24

4.3 Decomposition of EU fleet emissions

In order to evaluate the forces behind the reduction in emissions, I decompose the EU fleet’s

carbon emissions weight-adjusted average into four terms as follows:25

∆Ēt =
∑
j

sj,t−1∆ej,t︸ ︷︷ ︸
∆ within

+
∑
j

∆sj,tẽj,t−1︸ ︷︷ ︸
∆ between

+
∑
j

∆sj,t∆ej,t︸ ︷︷ ︸
∆ cross term

+
∑

j∈New

sj,tẽj,t −
∑

j∈Exit

sj,t−1ẽj,t−1︸ ︷︷ ︸
net entry

(3)

where Ēt is the carbon emissions weight-adjusted average of all vehicles sold in the EU in

year t, sj,t is the share of vehicle model j out of all sales in the EU in year t, ẽj,t = ej,t− ēt−1,

ẽj,t−1 = ej,t−1 − ēt−1 and ēt =
∑
j

sj,tej,t.
26 For this exercise, I define vehicle model j as a

brand/ model /motor type combination, an example of a vehicle model is “BMW X1 plug-in

hybrid” .

“∆ within” captures the average change of existing products’ emissions due to technological

gains.27 “∆ between” captures the average change in existing products’ emissions due to

changes in the sales-mix, that is substitution between products, which can occur either

because of changes in consumers’ tastes or because of changes in manufacturers’ marketing

strategies. “∆ cross” measures the correlation between emissions and market shares, this

component is crucial to ensure correct measurement of the other terms. The “net entry”

23Together with the Volkswagen group, they account for two thirds of the whole German market.
24On average PHEVs weight more than their ICE counterpart as they accommodate an additional electric

motor.
25This decomposition exercise has a long tradition in the productivity literature which started with Foster

et al. (2007), for a most recent application see De Loecker et al. (2020).
26Following Haltiwanger (1997), I demean the vehicle model emissions by the appropriate share weighted

averaged emissions.
27Since the emissions are weight adjusted, in principal emissions reductions might be due to increased

vehicle weight. Running the same exercise while separating between the weight and the emissions component
indicates that this is not the case.

16



Figure 3: Decomposition of the change in EU fleet emissions

Notes: The figure shows the development of carbon emissions weight-adjusted average of all vehicles sold in the EU and the
results of three counterfactual scenarios which use 2014 as the base year: the development of weight-adjusted emissions if
manufacturers were only reducing the emissions of existing models (within), the development of weight-adjusted emissions if
manufacturers were only changing the sales-mix of their existing products (between), and the development of weight- adjusted
emissions if manufacturers were only introducing new products (Net entry). The cross term is omitted as it is almost constant
at an average value of 0.4.

term captures the change in average emissions due to the introduction of new vehicle models

net the discontinuation of old vehicle models.

Figure 3 plots the results of the decomposition exercise. I set the initial emissions level to 2014

levels, when the stricter standard was announced, and cumulatively add the changes of each

component in equation (3). The red line plots the carbon emissions weight-adjusted average

of all vehicles sold in the EU (Ēt). The other three plotted terms (within, between and net

entry) can be interpreted as counterfactual experiments which explore the development of
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carbon emissions weight-adjusted average had these terms were the only force in play.28

The first counterfactual (blue + line) shows the evolution of the carbon emissions weight-

adjusted average if manufacturers only been reducing emissions values of existing products.

Up until 2017, manufacturers were constantly reducing the emission values of existing vehi-

cles, between 2017-2019 this trend was reversed, with a sharp decline in 2020. This sharp

decline might hint on potential gaming of emission tests.29 The second counterfactual (or-

ange × line) shows the path of carbon emissions weight-adjusted average if only changes

in the mix-sales were taking place. Compared with 2014, a shift towards more emissions-

intensive vehicles is observed. A reverse of the trend is noticeable in 2020, which might

be due to manufacturer efforts to steer consumers towards less emissions-intensive vehicles.

The third counterfactual (green square line) shows the evolution of carbon emissions weight-

adjusted average if the only change taking place was the net entry of new vehicles. Given the

definition of a vehicle model for the analysis (brand/model group/motor type combination),

net entry is driven almost entirely by the introduction of PHEVs and BEVs as they capture

the highest share of new product introductions in the years leading up to 2020.30 Evidently,

net entry didn’t play a role in emission reduction efforts up to 2019. To summarize, the

decomposition exercise shows that the main forces behind of the sharp decline in emission

in 2020 are net entry and the technological improvements of existing vehicles.

Figure 4 shows the results of the decomposition exercise for manufacturers with most sales

in Germany. The impact of the net entry component is especially high for BMW, Daimler,

and Ford. These manufacturers, as table 5 shows are also the ones with the highest share of

PHEVs in their fleet in 2020.

These results illustrates the important role new product introductions had in complying

with the new emissions standard. These results combined with the information in table 5

28The cross term is left out as its value is always close to zero.
29See work by Reynaert (2020) and Reynaert and Sallee (2021) for more details regarding emission gaming

in the European automobile market.
30Automobile manufacturers rarely introduce a whole new model group, instead they usually introduce

new releases of the same existing model group lines.
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Figure 4: Decomposition of the change in fleet emissions of selected manufacturers

Notes: The figure show the development of carbon emissions weight-adjusted averages of vehicles sold in the EU and the results
of three counterfactual scenarios using 2014 as a base year, for the four most sold manufacturers in Germany: the development
of carbon emissions weight-adjusted average if manufacturers were only improving the emissions of existing model (within),
the development of carbon emissions weight-adjusted average if manufacturers were only changing the sales-mix of existing
products (between), and the development of carbon emissions weight-adjusted average if manufacturers were only introducing
new products (Net entry). The cross term is omitted.

regarding the share of PHEVs in EU fleets, indicate that some of the documented decrease

in emissions might have taken place only on paper, since it assumes PHEVs are charged

regularly. As I illustrate in section 3.2, most PHEVs are not regularly charged and therefore

their corresponding emission values are higher than officially claimed. In order to evaluate

the effect of government subsidies for PHEVs on emissions, consumers’ vehicle purchasing

decisions in the absence of incentives for PHEVs needs to be evaluated. For that purpose, I

develop and estimate a consumer choice model for the market of automobiles.
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5 Structural model

5.1 Demand

To evaluate the environmental implications of the introduction of PHEVs subsidies in Ger-

many, I use a random-coefficient discrete choice model to describe consumers’ vehicle pur-

chasing decision. This choice of modeling, which relays on Berry et al. (1995), follows a

long tradition in the industrial organization literature that analyses automobile markets.31

I model demand to be static, which assumes that consumers don’t take into account future

prices and future available products. Each consumer i maximizes her utility by deciding

whether to purchase a vehicle among J available products or to opt for the outside good.

The outside good consists of all other unobservable options which do not consist of purchas-

ing a new vehicle, such as using public transportation or buying a used vehicle. The utility

consumer i derives from purchasing vehicle j in year t is:

uijt = βitxjt + αpjt + ξjt + ϵijt (4)

where xjt is the (1×K) vector of observed vehicle characteristics, pjt is the price of vehicle

j, ξjt is a demand shock that is observed by consumers and manufacturers but not by the

econometrician, and ϵijt is an individual specific taste shock which is assumed to be a i.i.d

draw from type-1 extreme value distribution with a scale parameter normalized to 1. The

mean utility of the outside good is normalized to 0, hence consumers who choose the outside

good receive a utility of ϵi0t. βit, a (K × 1) vector, and α are parameters which capture the

marginal utilities of the product characteristics and price. Let βk
it be the marginal utility of

characteristic xk
it then:

βk
it = βk

0 + βk
νν

k
it (5)

31For recent applications in the automobile market see for example: Reynaert (2020), Springel (2021),
Xing et al. (2021), and Grigolon et al. (2018).
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where βk
0 captures the mean marginal utility of characteristic k across all consumers, and βk

ν

captures the standard deviation of characteristic k’s marginal utility. Let

δjt = β0xjt + αpjt + ξjt (6)

be the mean utility – the non-idiosyncratic part of the utility for product j, which is common

to all consumers and let

µijt = (xjt)Σνit (7)

be the individual deviations from the mean utility captured by the interaction of consumers’

taste preferences with product characteristics, where Σ is a (K×K) diagonal matrix with its

diagonal equal to (β1
ν ,...β

K
ν ). Then, after integrating over the distribution of ϵ, the probability

that consumer i purchases vehicle j in year t is

Prijt =
exp(δjt + µijt)

1 +
∑J

q=1 exp(δqt + µqt)
(8)

and the predicted aggregated market share of vehicle j in year t is:

sjt =

∫
i

PrijtdF (νit) (9)

Lastly, the corresponding price elasticities are equal to:

∂skt
∂pjt

pjt
skt

=


− pjt

skt

∫
αsit(1− sijt)dF (νit) if j = k

− pjt
skt

∫
αsijtsiktdF (νit) otherwise

(10)
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5.2 Supply

I model the supply side using a static game where manufacturers have complete information

on all observable and unobservable product characteristics. I do not model the manufactur-

ers’ decision which products to offer. In addition, I assume manufacturers cannot change

product characteristics in the short term. Given the set of offered products and their char-

acteristics, after the realization of the demand and costs shocks, manufacturers determine

their products’ prices.

I follow previous literature on emission standards (Reynaert (2020), Jacobsen (2013) and

Goldberg (1998)) and incorporate the EU carbon emission standard in the profit maximiza-

tion problem:

max
pj∈it

Πit =
∑
j∈i

(pjt + γkt −mcjt)sjtMt

s.t.

∑
j∈i qjte

adjusted
jt∑

j∈i qjt
≤ κ

(11)

where pjt, mcjt, and sjt are respectively the price, marginal costs, and the market share of

vehicle j manufactured by manufacturer i at year t. Mt is the market size at year t. γkt is the

government subsidy. eadjustedjt = (ej −α(wj −w0)) where ej is the official carbon emissions of

the vehicle, wj is the vehicle’s weight, α and w0 are given parameters governing the emissions

weight adjustments. κ is the emissions standard value. The Lagrangian associated with (11)

yields the following first-order condition with respect to price:

qjt +
∑
k∈i

(pkt + γkt − (mckt + λiLjt))
∂skt
∂pjt

= 0 (12)

where Ljt is the distance of each product from the emissions target and λi is the scalar

Lagrange multiplier for manufacturer i, which is associated with the emissions standard

constraint, and captures the shadow costs of complying with the standard. Equation (12)
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can be inverted to obtain the value of the sum of the marginal costs and the standard’s

shadow costs. In my analysis, I use the total sum of the marginal costs and the shadow

costs of the regulation, as the paper’s focus is on the effects of the government subsidies on

consumer choice while taking the emission standards and the products set as given.

6 Estimation

I include in the model taste parameters for BEV and volume for which I estimate both a

mean and standard deviation. I specify α to be proportional to income yit. Additionally I

include a set of vehicle characteristics for which I estimate only the mean taste: fuel costs per

km, volume, horsepower, and dummies for PHEV and BEV, vehicle class,32 body type,33

brand, and market. I closely follow the common estimation procedure outlined in Berry

et al. (1995) and account for computation concerns raised in Knittel and Metaxoglou (2014).

Detailed description of the estimation procedure is presented in appendix B.

6.1 Instruments

Instruments have two roles in identifying the demand model parameters. First, instruments

are needed to account for a common endogeneity concern since prices might be correlated

with the unobservable characteristics (which are observed by the manufacturers but not

by the econometrician). Second the instruments are needed in order to identity the taste

parameters. I address recent concerns regarding the performance of the “traditional” BLP

instruments,34 by employing the refinement proposed by Gandhi and Houde (2019) which

improves the instruments performance. Specifically, the set of instruments includes all char-

acteristics except of price, and a set of “differentiation instruments”: the number of own

products which belong to the same product set of j and are within a certain band of j:

32The classes are micro-vehicle, minicompact, subcompact, compact, mid-size, and executive.
33The body types are hatchback, notchback, station wagon, van and SUV.
34Traditional BLP instruments usually consist of the sum of characteristics of other products produced by

the same firm, and the sum of characteristics of competitors’ products.
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∑
j‘ ̸=j,j′∈C(j) 1(|xk

jt − xk
j′t| < κk),35 and the number of competitors’ products which belong

to the same product set of j and are within a certain band of j. I use two product set

definitions to calculate the instruments: (1) all vehicles which share the same vehicle class.

(2) all vehicles which are produced by the same manufacturer.

To improve the efficiency of the taste parameters estimates, I follow Reynaert and Verboven

(2014) approach to compute Chamberlain (1987) optimal set of instruments: the expected

value of the derivatives of ξ with respect to the estimated parameters, which are evaluated

at its initial estimated parameters values.36

6.2 Results

Table 6 report the estimated coefficients of the demand model and their standard errors.

Two specifications are presented: a Logit specification which was estimated following a two-

staged GMM procedure, and a Random-Coefficients Logit specification which was estimated

following the procedure described above.

As expected the demand parameters show that consumers dislike higher prices and higher

fuel costs; consumers also on average dislike PHEVs and BEVs. The standard errors of

the BEV coefficient are high, which indicates heterogeneity in the taste for BEVs. The

estimated coefficients indicates that although there is a general aversion from PHEVs, some

consumers might choose to buy them due to their advertised low fuel costs, larger size and

lower subsidized prices compared to other vehicles of the same size. The estimated standard

deviation for the marginal utility of volume is significant yet low, which indicate that the

tastes for volume are similar across consumers, hence volume has a low weight in governing

substitution patterns. The standard deviation coefficient for BEV is both statistically and

economically significant, it indicates that buyers of BEVs would substitute toward other

BEVs, were the price of their chosen vehicle to increase.

35For dummy variables the indicator variables are replaced by 1(|xk
jt − xk

j′t| = 0).
36Additional details on the computation of Chamberlain (1987) optimal set of instruments are given in

appendix B.
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Table 6: Demand estimation results

Logit RC logit RC logit S.D.

Intercept -8.00 -7.92

(0.51) (0.56)

Price/income -5.93 -5.73

(0.93) (0.77)

Fuel costs (Euro/km) -0.14 -0.14

(0.05) (0.04)

Horsepower 0.04 0.04

(0.01) (0.01)

Volume 0.72 0.61 0.08

(0.12) (0.07) (0.03)

PHEV -2.90 -2.90

(0.55) (0.47)

BEV -0.56 -1.59 2.31

(0.21) (1.16) (0.36)

Notes: The table reports the estimated coefficients of the demand model. The first column presents the estimates of the mean-
taste coefficients of a Logit specification estimated by two-staged GMM. The second and third columns presents respectively
the mean and standard deviation parameters of a Random Coefficient Logit specification estimated following the procedure
described above with additional details available in appendix B.

7 Counterfactual simulations

I use the estimated model to compare the outcomes of two changes to the current status quo

where both PHEVs and BEVs are subsidized and consumers are not aware of the fuel con-

sumption of uncharged PHEVs. The first change consists of informing consumers of PHEVs’

fuel consumption values when uncharged. As I don’t model consumers’ decision to charge

the vehicle, informing consumers regarding uncharged fuel consumption values will result in

increasing the dis-utility of PHEVs, and therefore will reduce mechanically the market shares

of PHEVs. This in turn might be a plausible assumption following the evidence presented

in section 3.2 regarding the low share of drivers who charge their vehicles, and the observa-

tion that consumers don’t increase the amount of charging after learning the uncharged fuel

consumption values.37 The second change is the elimination of subsidies for PHEVs. I start

37In the sample of PHEVs users, charging behavior remains unchanged after users learn about the vehicles
fuel consumption values when uncharged. This behavior might be a result of the difficulty to spontaneously
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the counterfactual analysis by using the estimated demand model parameters to simulate

the demand outcomes of the proposed changes in fuel costs and prices, while holding the

manufacturers list prices fixed. In a second step, I conduct again the counterfactual analysis

and simulate the short-term equilibrium effect by calculating the new prices manufacturers

will set using the first order condition described in equation (12).38 In the second step I

simulate two scenarios: (1) the subsidies for PHEVs are eliminated and (2) the subsidies are

eliminated and consumers are informed about the fuel costs of PHEVs when uncharged. In

order to compute manufacturers’ price adjustments, I assume constant marginal costs and

use the first order condition described in equation (12) to recover manufacturers marginal

costs. As mentioned in section 5.2 the computed marginal costs include also the emission

standard’s shadow costs. The implied markups (price over marginal cost) are on average 18

percent.

Table 7 presents the results of the counterfactual analysis. The first column presents the

market outcomes of 2021 (henceforth the status quo). Columns (1) – (4) present the out-

comes’ changes under the different counterfactual scenarios: column (1) presents the change

in demand and subsequently market outcomes when consumers are informed about PHEVs

fuel consumption when uncharged. In section 3.2, I show that many consumers don’t charge

their PHEVs. This behavior doesn’t change after consumers learn the uncharged fuel con-

sumption values. Therefore, it is reasonable to assume that had consumers been aware of the

uncharged fuel consumption costs, these consumers would have chosen a different vehicle,

rather than charge the vehicle more often. The results presented in column (1) can serve

as an upper bound on the effect of fuel consumption information on PHEVs sales, as some

consumers aware of the uncharged fuel costs might nevertheless purchase the vehicle and

decide to charge it more often. Column (2) shows the counterfactual results when subsidies

for PHEVs are eliminated and list prices remain unchanged.

charge vehicles: as of 2022, a subscription to a charging network is needed in order to charge a vehicle using
public infrastructure.

38In Bertrand competition with multiproduct firms, multiple equilibria are possible. I cannot show that
the found equilibria are unique, yet I find no other solution when changing the starting values.
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Table 7: Results of counterfactual analysis

Status Quo (1) (2) (3) (4)

∆ Informed ∆ No Subs. ∆ No Subs. Manu. Adj. ∆ All changes

Total Sales 927,351 -60,277 -78,277 10,681 -14,259

(10,612) (3,921) (6,605) (5,994)

Total PHEV 121,022 -69,388 -90,018 -70,515 -99,745

(12,220) (4,517) (5,486) (7,842)

Total BEV 230,152 360 474 73,208 73,434

(64) (24) (11,531) (11,552)

Average offical emissios (g/km) 75.02 3.32 4.49 -2.66 -1.41

(0.62) (0.25) (0.66) (0.64)

Average real emissios (g/km) 89.78 -5.06 -5.91 -11.16 -13.57

(0.89) (0.32) (1.35) (1.52)

Government Spending (Billion Euros) 1.78 -0.28 -0.40 0.44 0.45

(0.05) (0.02) (0.07) (0.07)

Profits (Billion Euros) 3.20 -0.21 -0.27 0.04 -0.04

(0.02) (0.02) (0.02) (0.02)

SUVs 306,329 -36,962 -40,151 -31,669 -49,232

(6,231) (2,014) (2,518) (4,191)

Notes: The table presents the results of the counterfactual analysis. The status Quo column shows the market outcomes in
2021 when both PHEVs and BEVs are subsidized. Columns (1)-(4) present the change between the market outcomes in the
simulated scenarios and the status quo. Column (1) assumes consumers are informed about PHEVs fuel consumption when
uncharged, column (2) simulates the market outcomes changes when PHEVs subsidies are eliminated, column (3) re-calculates
scenario (2) while allowing manufacturers to update their prices, in column (4) scenario (3) is recomputed with the addition
of consumers being informed about PHEVs fuel consumption values when uncharged. The standard errors are computed by
taking 200 draws from the estimated parameters variance–covariance matrix (I assume a joint normal distribution). For each
draw of parameters, the supply side is re-estimated and new simulation outcomes are computed.

In both scenarios, between half to two thirds of PHEVs buyers would have left the market

without purchasing a new vehicle. Less than 0.5 percent would have substituted to BEVs.

Though, the average official carbon emissions over all new vehicles sold increases, the average

carbon emissions per vehicle under the premise that PHEVs are not charged decreases by

about 5 percent in both scenarios. The share of SUVs sold decreases by 12 and 15 percent

respectively. This result further indicates that some consumers used PHEVs subsidies as an

upgrade opportunity.39 Column (3) and (4) present the counterfactual results when manu-

facturers update their list prices. In column (3) only the subsidies for PHEVs are eliminated,

39Anecdotal evidence show that the price of some PHEV SUVs was less than a same brand mid-size ICE
vehicle. For example, in 2021, the price after subsidies of a “BMW X2 plug-in hybrid” (a SUV) was 5,000
Euros lower than the “BMW 3” most popular ICE version (a mid-size vehicle) and costed almost the same
as the PHEV version of the “BMW 3”.
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while in column (4) the subsidies are eliminated and consumers know the fuel consumption

values of uncharged PHEVs. These results assume manufacturers keep on offering the same

set of products with the exact same characteristics. In the long term, given the binding EU

emission standards, manufacturers will want to change their offered products, in order to in-

crease sales of low emission products such as BEVs. Therefore the results in column (3) and

(4) underestimate the impact of these changes on emissions, and should be interpreted as a

lower bound. In both scenarios, the manufacturers’ price adjustments increase the uptake of

BEVs by about 32 percent, while reducing sales of PHEVs by 58 percent in scenario (3) and

by 82 percent in scenario (4). Paradoxically the elimination of subsidies for PHEVs increase

the government spending, since manufacturers divert consumers through price adjustments

towards BEVs which are subsidized more generously.

When manufactures update their list prices, both the average official carbon emissions per

vehicle and the average carbon emissions per vehicle when PHEVs are not charged decrease.

To understand the magnitude of such reduction in average carbon emissions, I present a

short back of the envelope calculation: assuming the results of scenario (3) (only subsidies

for PHEVs are eliminated) – 938,032 vehicles would have been sold in Germany in 2021,

with an average official reduction of 2.658g CO2/km. The average yearly mileage of new

vehicles driven domestically in Germany during 2021 was 15,965 kilometer.40 Hence 938,032

× 15,965 × 2.658 equal to 39,805 tons of yearly carbon emissions avoided. The average

German household emitted on average 3.1 tons of carbon emissions in 2019 due to energy

consumption,41 39,805 tons of carbon emissions equals to yearly carbon emissions of 12,840

households. If PHEVs are not charged – as I document is the current case, the amount of

carbon emission avoided from the elimination of PHEVs subsidies equals to 167,139 tons,

which translates to the yearly carbon emission of 52,916 households.

Table 7 indicates that under scenario (3) (PHEVs subsidies are eliminated and manufacturers

update list prices) total profits in the industry increase, to understand who are the potential

40Source: Federal Motor Transport Authority.
41Source: Federal Statistical Office of Germany.
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Figure 5: Change in sales by brand

Notes: The figure shows the percentage change of sales by brand under counterfactual scenario (3) where the PHEVs subsidies
are eliminated and manufacturers adjust their prices accordingly.

beneficiaries from the elimination of PHEVs subsidies, figure 5 shows the percentage change

of sales by brand. As expected brands which produce larger vehicles (and have a higher

share of SUVs sales) lose sales the most from the elimination of PHEVs subsidies, on the

other hand one of the largest beneficiaries under this scenario is Tesla – a manufacturer of

BEVs, and manufacturers of small size vehicles such as KIA, Smart and Mini Copper. It is

interesting to note that mostly European brands lose sales from the elimination of PHEVs

subsidies, while foreign brands gain a substantial increase in sales. This result might not

come as a surprise given that it was the domestic automobile industry who pressured the

government to introduce the subsidies.
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8 Discussion and conclusions

This paper evaluates how product subsidies and ignorance regarding energy consumption af-

fected consumers vehicle purchasing decisions and subsequently carbon emissions. I find that

the elimination of subsidies for PHEVs can prevent yearly 167,139 tons of carbon emissions.

This is partially due to some consumers using the subsidies as an upgrade opportunity to

purchase larger vehicles which wouldn’t have happened had the subsidies not been offered.

Ignorance of consumers regarding fuel consumption values of uncharged PHEVs also had a

hand in encouraging some consumers to purchase vehicles that don’t match their tastes and

cause additional carbon emissions due to energy-inefficient usage. Consumers weren’t the

only party to take advantage of the subsidies on the expense of the environment: domestic

manufactures used PHEVs sales to increase their fleet weight which helped them to achieve

compliance with EU emission standards.

The analysis presented in this paper is done in a static framework and focuses only on man-

ufacturers’ short term response. The static framework I employ does not take into account

purchase-timing considerations: consumers’ price sensitivity might be underestimated if con-

sumers postpone their adoption of innovative vehicles, because they expect the vehicles to

improve and become cheaper in the future. On the other hand, if consumers believe subsi-

dies might not be available in the future, they might decide to bring forward their purchase,

which will lead to an overestimated price sensitivity. Nevertheless, a static model in the

German market should serve as a good approximation, since the subsidies were available

for almost 7 years (as of 2023), and the decision to purchase a vehicle in a given point in

time is mostly affected by current needs rather then future expectations regrading product

development.

The presented counterfactual results account only for manufacturers’ price adjustments and

not for product set adjustments, therefore the estimates presented in this paper act as a lower

bound for the potential reduction in carbon emissions of the explored scenarios. In the long

term, given the binding EU carbon emissions standard, manufacturers will wish to divert
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more sales toward low emitting vehicles by changing the characteristics of their vehicles

and the set of offered vehicles, which subsequently will lead to further carbon emissions

reductions.

This paper illustrates that the adoption alone of low emissions innovations is not always

enough. Consumers must be aware of how to use these products efficiently energy-wise, and

be informed about the costs of not doing so before the purchase is made. As the paper

shows, a failure to do so can lead to an increase of emissions that is usually left unobserved.

An increasing number of products are marketed as environmentally friendly due to their low

energy consumption, though, just like PHEVs, their energy consumption might be higher

due to consumers’ usage behavior. Other examples are house appliances with energy efficient

“eco” modes. Consumers are usually informed only of energy consumption values under

the most efficient mode of use and they are rarely aware of the whole range of possible

energy consumption values the different usage modes entail. Therefore, understanding and

quantifying the environmental harm of energy-inefficient usage is important in order to design

policies that are effective at reducing emissions. A main policy implication of the presented

results is that subsidization alone of innovations, which require specific consumers behavior

in order to achieve energy-efficiency, can be detrimental for the environment and achieve the

opposite effect as intended.

In the absence of a good charging infrastructure, PHEVs offer a good substitute for BEV,

since when charged they reduce emissions significantly on short-distance trips compared

to ICE vehicles, and allow for long-distance trips regardless of the charging infrastructure

state. Given the low charging rates of PHEVs documented in this paper, understanding how

to catalyze drivers to charge their PHEVs is a key in unlocking the full potential of this

innovation. Future research should explore this topic further.
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Appendix

A Data preparation

A.1 Vehicle Sales and characteristics

I follow closely the literature of demand estimation for automobile and reduce the sample

size for tractability. I follow the procedures employed by Reynaert (2020) and Grigolon et al.

(2018): for each year I eliminate the 10 percent models with the least amount of sales, then

for each year/ model/ motor combination I retain the the trims which are responsible for

at least 20 percent of the sales of the respective year/ model/ motor combination, lastly I

exclude trims with less than 100 sales in a given year. Brand/ model/ trim combination can

be offered with different technical specifications (such as horsepower and consequently fuel

consumption values) and therefore with different prices, for each brand-trim combination I

take the median value of the brand-trim characteristics .

A.2 PHEVs charging behavior

I remove observations with a missing value or a negative value for distance since last refueling

instance or with a missing refueling quantity. For each observation I calculate the fuel

consumption per 100 km value as quantity of fuel purchased in a full-tank refuel divided by

the distance driven since last full-tank refuel and multiply it by 100. Fuel quantities of partial

tank refueling instances are summed up and added to the most adjacent full-tank refueling

instances. For each of the 3 fuel types: electricity diesel and gasoline, I remove observations

with consumption values in the the upper and lower 0.5% percentiles . In addition, I remove

users with less than 10 refueling and charging instances and users that have documented

less then 5,000 kilometers of distance traveled. Lastly, by using the brand, model name and

type of fuel used (gasoline / diesel) I match the PHEV’s usage data to the vehicle sales and

characteristics data. For each brand-model-fuel match I retain the match with the closest

production year and horsepower values, observations with unmatched vehicles models are

removed.

B Estimation details

I denote θ as the vector of parameters to be estimated. θ consists of the taste parameters for

BEV and volume for which I estimate both a mean and standard deviation. I specify α to

34



be proportional to income yit. Additionally I include in θ a set of vehicle characteristics for

which I estimate only the mean taste, these include fuel costs per km, volume, horsepower,

dummies for PHEV and BEV, vehicle class42, body type43, brand, and market. I estimate

the parameters by minimizing the GMM criterion:

min
θ

ξ(θ)′ZWZ ′ξ(θ) (A.1)

The identifying assumption is E[ξ|Z] = 0, where ξ(θ) is the remaining unexplained variation

in market shares which is commonly referred to as the unobserved product characteristics,

Z is a matrix of instruments and W is a weighting matrix. Since ξ(θ) enter the market

shares non-linearly, I follow the work of Berry et al. (1995) and first approximate the market

shares using a Monte Carlo simulation. Then I find the mean-utility parameter value that

equates the approximated market shares to the observed ones using a contraction mapping

and subsequently calculate ξ for each market. Following the critique introduced in Knittel

and Metaxoglou (2014), I account for a variety of computational issues to ensure that I

obtain a global minimum: (i) I approximate the market share integral for each market using

200 draws of a Halton sequence; (ii) I use a tight convergence criteria for the contraction

mapping: 1e− 14; (iii) I do a grid search over a set of starting values to search for a global

minimum; (iv) I check the first and second order conditions to verify the solution.

To improve the efficiency of the non-linear taste parameters variance estimates, I follow

Reynaert and Verboven (2014) approach to compute Chamberlain (1987) optimal set of

instruments - the expected value of the derivatives of ξ with respect to θ which are evaluated

at its initial estimate θ̂. To compute Chamberlain’s optimal set of instruments, I first derive

an approximation of the optimal set of instruments using the GMM estimates of the linear

parameters as an initial guess for θ, I then use the approximated optimal set of instruments

and the instruments described above to estimate the non-linear model’s parameters. The

estimated θ̂ is then used to compute the optimal set of instruments by evaluating the Jacobian

of the mean utilities with respect to θ̂. Finally, I re-estimate the model using the computed

optimal set of instruments.

C Additional figures

Figure C.1 plots the carbon emissions development for the five most carbon intensive sectors

in the EU taking 1990 levels as the base values. Out of the five most carbon intensive sectors

42The classes are micro-vehicle, minicompact, subcompact, compact, mid-size, and executive.
43The body types are hatchback, notchback, station wagon, van and SUV.
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Figure C.1: CO2 developmenet in Europe by indsuty

Notes: The figure plots the development of carbon emissions between the years 1990 and 2020, for the most carbon intensive
industries in the European Union. The values of the base year (1990) are normalized to 100.

in the EU only the transportation related sectors (Domestic transport and international

shipping) experience and increase in carbon emissions compared to their 1990 levels.

D Additional tables

Table D.1 shows official, real-usage and estimated values for the most selling PHEVs in 2021.

The table illustrates the deviations between official and real-usage fuel consumption values,

and the estimated carbon emissions values under full battery and empty battery regimes.
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Table D.1: Fuel consumption values for best selling PHEVs in 2021
offical estimated full battery real-usage estimated no charging no. obs.

AUDI A3 1.4 2.4 4.1 4.8 145

BMW X1 1.9 3.8 4.5 5.7 334

FORD KUGA 1.4 2.2 4.7 4.7 1506

MITSUBISHI OUTLANDER 1.8 3.4 5.5 5.7 538

VOLKSWAGEN GOLF 1.2 2.1 5.2 4.5 275

Notes: The table presents the official and real usage carbon emission values which are computed directly form the data, in
addition to the estimated carbon emissions values under full battery and empty battery regimes for the 5 best selling PHEVs
in Germany in 2021.

Table D.2 presents the model’s out of sample fit. To evaluate the estimated model ability

to predict consumer purchasing decision, I use vehicle registration data for the year of 2014,

which is not used in the estimation procedure to evaluate the model’s out of sample fit.

Table D.2: Model fit
True Prediction

Price/inocme 1.30 1.16

Fuel costs 7.72 7.92

CO2 126.96 126.46

Volume 11.70 11.37

Weight 1,348.30 1,292.36

SUV 0.23 0.21

Notes: The table presents the true sales-weighted averages of vehicles characteristics for the year 2014 and their model’s
estimates using only the coefficients estimates of the demand model’s taste parameters. The estimation was done by setting
year fixed effects and demand unobservables to zero.
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