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Abstract

This paper models an agent that ranks actions with uncertain payoffs after
observing a signal which may have been generated by multiple objective informa-
tion structures. Assuming that the agent’s preferences conform to the multiple
priors model (Gilboa and Schmeidler (1989)), we show that a simple behavioral
axiom characterizes a generalization of Bayesian updating. Intuitively, our axiom
requires that whenever all possible sources of information agree that an action
with uncertain payoffs is more “likely” to be better than one with certain payoffs,
the agent prefers the former. We also provide axiomatizations for various special
cases. Additionally, we explore a scenario where a signal’s informational content
is purely subjective. We analyze the presence of a subjective set of information
structures under full Bayesian updating for two extreme cases: (i) no ex-ante state
ambiguity, and (ii) no signal imprecision.
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1 Introduction

Individuals often acquire information before making a choice. However, in many
situations, they are unable to completely determine the acquired information’s
source. Since the same information can have different meanings depending on its
source, individuals may have a hard time processing it if they are unsure about
its true source. Here, we aim to provide a theory of how agents process such
information.

To illustrate this, we provide an example inspired by early research conducted
during the COVID-19 pandemic.1 Consider a policymaker who must choose to
adopt a costly novel security measure. They are aware that a study has shown
this measure reduces the risk of an accident. However, she is unsure if the data
employed in the study comes from a reliable source. If the data was collected
properly, the results suggest the measure should be adopted. However, if the data
is unreliable or of poor quality, the results are meaningless. With no additional
evidence about the data quality, both cases are plausible. Then, how should the
policymaker process such information?

This paper aims to provide a behavioral foundation for belief updating under
unspecified information source. We take as primitives and outcome space X, an
objective state space Ω, an objective signal space S, and a set of information
structures L ⊆ {ℓ : Ω → ∆(S)}, where ∆(S) is the set of probability measures
over S. We refer to L as an imprecise information structure. The idea behind
our definition is that L is the set of identifiable information sources. The agent
is assumed to have an ex-ante preference ⪰0 and signal-conditional preferences
(⪰s)s∈S over actions that have uncertain payoffs. We interpret ⪰s to be the agent’s
preferences conditional on observing signal s generated by some ℓ ∈ L. We assume
that ex-ante ⪰0 and ex-post ⪰s conforms to the Gilboa and Schmeidler (1989)
maxmin expected utility model (MEU).

Our theory is built on the premise that if all identifiable information structures
recommend choosing an action with uncertain payoffs over one with determinis-
tic payoffs, the agent should select the former. Imposing this condition as an
axiom yields a representation for the ex-post preferences (Theorem 2.1), and con-
sequently, an updating rule. For any action f : Ω → X, the utility of f after
observing s is given by:

Us(f) = min
q∈ρ(M0,L,s)

∫
u(f)dq

1During the early days of the pandemic, over 66 clinical prediction models were proposed in peer-
reviewed literature on the effect of a mask mandate. However, further research revealed that all these
models suffered a high risk of bias due to concerns surrounding the data quality, statistical analysis,
and reporting. See Collins et al. (2020) for a discussion.
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Here, M0 represents the set of priors, and ρ(M0,L, s) is a subset of the convex
hull of all posteriors generated by “point-wise” Bayesian updating. We term this
updating rule as the generalized Bayesian updating (GBU) rule.

Because of the normative nature of our axiom, it can be viewed as a benchmark
for any new updating theory that challenges the Bayesian approach within the
MEU framework. Essentially, any updating rule that goes against it needs a good
reason, backed by an example, to show why it’s a reasonable choice.

In our context, signals are not considered payoff-relevant; that is, an action’s
payoff does not depend on the realized signal. This departure from the typical
axiomatic literature on belief updating, where signals are often modeled as subsets
of Ω, is a distinct feature of our framework. Unlike the conventional approach, our
setting does not assume signals to be subsets of Ω. This assumption allows us to
disentangle the agent’s attitude towards imprecise information from their attitude
towards uncertainty. If signals were modeled as subsets of Ω, this separation
would not be feasible. Additionally, our approach helps us test our axioms in
a laboratory setting, as our framework serves as a theoretical representation of
experiments conducted in Epstein and Halevy (2022) and Shishkin et al. (2021).

Our updating rule generalizes both full Bayesian updating (FBU) and maxi-
mum likelihood updating (MLU), both of which are widely popular. However, the
conceptual rationale behind why an agent may adopt either is not entirely clear.
FBU updates each subjective prior belief under each objectively-given possible
information structure. Thus, while the agent can have a subjective view of the
uncertainty about the state space, she does not have a subjective view of the
uncertainty about the information source. Meanwhile, MLU utilizes the realized
signal to jointly discriminate among priors and information structures; specifi-
cally, it evaluates each information structure using the prior that maximizes the
likelihood of the observed signal.

A more conservative or intermediate approach can involve evaluating each
information structure using all priors. That is, an agent may prefer considering an
information structure that has a reasonable likelihood according to all priors than
that with maximal likelihood according to a single prior and minimal likelihood
according to another. We establish the axiomatic foundations for such a rule in
Theorem 4.1.

Psychology research has consistently demonstrated that when updating in-
formation, individuals can exhibit susceptibility to certain biases. Many studies
reveal a tendency to selectively consider information structures aligned with their
pre-existing beliefs, a phenomenon commonly referred to as confirmation bias.2

In our framework, given a signal, the probability that the signal originated in
each state induces a likelihood ranking over states. If the agent can articulate a

2See Rabin and Schrag (1999) for a review of evidence in psychology.
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likelihood ranking over states and is prone to confirmation bias, they may limit
their consideration to information structures aligned with the agent’s pre-existing
likelihood ranking. GBU allows for such updating; its axiomatic foundations are
described in Theorem 4.2.

Our analysis hinges on the assumption that imprecise information is objective.
However, in numerous situations, information may be private or lack a reliable
description. Then, assuming the observability of L is not appropriate. Further,
its nature should be inferred from behavior. In Section 5, assuming a FBU rule, we
provide necessary and sufficient conditions on the ex-ante and ex-post preferences
for them to be related by a subjective set of information structures L in scenarios
with a single prior belief or when L is a singleton.

The paper proceeds as follows: This introduction concludes with a literature
review. Axioms and the implied updating rule are described in Sections 2.2 and
2.3, respectively. Section 3 contains a detailed discussion of the model properties.
Special cases of the GBU rule are investigated in Section 4. Section 5 delves into
the consideration of subjective information structures. Concluding remarks are
presented in Section 6. All proofs are provided in Appendix A.

1.1 Related Literature

In recent years, there has been a growing interest in belief updating under ambi-
guity. Papers in this line of research may be classified into two categories. Some
allow the payoff-relevant state space to be perceived ambiguous, but information is
assumed precise. Some other papers further incorporates objective but imprecise
information into their analyses.

Gul and Pesendorfer (2021) presents a theory of updating for the Choquet
Expected Utility model (Schmeidler (1989)). Their updating rule is based on
the requirement that a random variable that resolves gradually is evaluated by
backwards induction. On the other hand, Suleymanov (2018), Cheng (2022), Tang
(2022), and Kovach (2023) offer distinct axiomatic updating rules for the Maxmin
Expected Utility model. The motivation for their work stems from the descriptive
shortcomings of the Maximum Likelihood Updating and Full Bayesian updating
rules, axiomatized by Gilboa and Schmeidler (1993) and Pacheco Pires (2002),
respectively. In all these papers, information is considered payoff-relevant, and
the information itself is precise in the sense that it is an event. In contrast, our
work focuses on imprecise information that is not necessarily payoff-relevant.

Like us, Dominiak et al. (2021) model imprecise information as sets of prob-
ability measures that contain the “true” distribution. They provide an updating
rule for the Subjective Expected Utility model that selects the posterior that min-
imizes the distance between her prior and the set she is provided with. Their
updating rule has a somewhat similar flavor to ours due to the fact that they
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allow the distance to be subjective.
Jaffray (1989), Ahn (2008), Dumav and Stinchcombe (2013), Olszewski (2007),

Gajdos et al. (2008), and Riedel et al. (2018) consider settings in which the objects
of choice are “merged” with imprecise information. More specifically, Jaffray
considers a preference over belief functions. Gajdos et al. (2008) and Riedel et al.
(2018) assume the agent can choose the set of data-generating processes that
contains the true law. The rest of the authors study preferences over sets of
lotteries. All of these assumptions imply that imprecise information is payoff-
relevant.

There are also papers particularly focusing on learning under imprecise in-
formation. Epstein and Schneider (2007,8,10) provide a non-axiomatic updating
rule for imprecise information (therein referred to as ambiguous signals). They
introduce a thought experiment that highlights its importance. In a dynamic
setting, they provide conditions under which their updating rule delivers conver-
gence in beliefs after repeated sampling. Reshidi et al. (2022) further investigate
when beliefs converge under a more general data-generating process. Like Epstein
and Schneider (2007), Lanzani (2023) also studies a learning problem. However,
unlike Epstein and Schneider, he assumes robust control preferences. He shows
how a miss-pecification concern can lead to different preferences under uncertainty
arising in the limit.

In recent years, we also have experimental study on how individuals react to
imprecise information. Building on Epstein and Schneider’s thought experiment,
Epstein and Halevy (2022) provides a definition of aversion towards signal am-
biguity and tests it in an experimental setting. The key difference between our
work and theirs is that they study the attitude towards the information as op-
posed to how to process it, which is our focus. Shishkin and Ortoleva (2023) tests
if new information dilates the set of prior beliefs. Such a dilation is a significant
implication of full Bayesian updating.

Finally, outside the updating literature but within the imprecise information
literature, Wang et al. (2023) axiomatize a selection criterion for imprecise infor-
mation. They provide conditions under which a choice function over “theories”
always selects the ones that pass a likelihood ratio test.

2 General Model

2.1 Preliminary Definitions

We consider a set Ω of states of the world, set S of signals, and set X of conse-
quences. We assume Ω and S are finite, and X is a compact and convex subset of
a linear space. This is the case in Anscombe and Aumann (1963), where X is the
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set of all lotteries over some finite set of prizes. Let n denote the cardinality of Ω.
Each choice alternative is an action, or called act, that yields a state-dependent

outcome. Formally, an act is a function f : Ω → X. The set of all acts is denoted
by F . We write x for the constant act f such that f(ω) = x for all ω ∈ Ω. Given
f, g ∈ F and α ∈ [0, 1], we use αf + (1− α)g to denote the act in F which equals
αf(ω) + (1− α)g(ω) in state ω.

An information structure is a function ℓ : Ω → ∆(S) where ∆(S) is the set
of all probability measures over S. We only consider information structures that
satisfy the following property:

∀ s ∈ S, there exists ω ∈ Ω such that ℓ(s|ω) > 0.

As shown later, this assumption is made purely for exposition purposes. An
imprecise information structure is a finite set of such information structures. If
the set only contains a single information structure, we refer to it as a precise
information structure. Generic imprecise information structures are denoted by
L.

Let ∆(Ω) denote the set of all probability measures on Ω. Given a probability
measure q ∈ ∆(Ω), an information structure ℓ, and a signal s, we use BU(q, ℓ, s)
to denote the probability measure given by Bayesian updating:

BU(q, ℓ, s)(ω) =
ℓ(s|ω)q(ω)∑
ω ℓ(s|ω)q(ω)

whenever it exists. Furthermore, for any set of measures M ⊆ ∆(Ω), imprecise
information structure L, and signal s ∈ S, BU(M,L, s) denotes the set of all
posteriors generated by point-wise Bayesian updating :

BU(M,L, s) = {BU(q, ℓ, s) | q ∈ M, ℓ ∈ L}.

Finally, for any set C ⊆ ∆(Ω), ch(C) denotes its convex hull.
The following example illustrates how an experiment regarding signal ambigu-

ity in the literature can fit within our framework.

Example 2.1. Consider the following experimental setting in Epstein and Halevy
(2022). Consider an urn, called a payoff urn, containing 100 balls. A fair coin
was flipped; if the result was heads, the urn contains 75 red and 25 black balls.
If the result was tails, the urn contains 25 red and 75 black. A decision maker
must choose a color to bet on. They can sample a ball from a signal urn before
making their decision. The signal urn can be either identical to the payoff urn, or
constructed by adding 1000 extra red and black balls each into the payoff urn.

This experimental setting can be formulated by our model as follows. The state
of nature is the composition of the payoff urn: Ω = {(75, 25), (25, 75)}. A bet on
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a color is an act. For instance, betting 1 dollar on red yields a lottery that wins 1
dollar with probability 0.75 in the first state, and a lottery that wins 1 dollar with
probability 0.25 in the second state. By sampling a ball from a signal urn, two
possible signal realizations can happen: “red” or “black”. Consider S = {R,B}.
If the signal urn is identical to the payoff urn, the information structure, say
ℓ1, is such that ℓ1(R|(75, 25)) = 3

4 and ℓ1(R|(25, 75)) = 1
4 . If the signal urn

is constructed by adding extra balls in the payoff urn, the information structure,
say ℓ2, is such that ℓ2(R|(75, 25)) = 1075

2100 and ℓ2(R|(25, 75)) = 1025
2100 . Since no

additional clue about the signal’s composition is available, the signal is imprecise
and can be represented by L = {ℓ1, ℓ2}.

2.2 Axioms and Representation

Our primitive is a family of preferences over acts (⪰0, (⪰s)s∈S) and an imprecise
information structure L. We impose two axioms on (⪰0, (⪰s)s∈S), of which the
first is that the preferences admit a MEU representation.

A utility function U : F → R is MEU if there exists an affine function u :
X → R, and a closed and convex set of probability measures M over Ω such that

U(f) = min
q∈M

∫
Ω
u(f)dq. (1)

Consider that (M, u) represents ⪰ if the utility function given by (1) represents
⪰.

MEU Utility ⪰s admits representation by (Ms, u) for all s ∈ S∪{0}. Moreover,
each q0 ∈ M0 has full support.

This axiom is not stated in terms of behavior, which is presumably the only
observable. However, its behavioral foundations are widely known. Further, it
imposes that all priors have full support; our model says nothing about updating
zero-probability events.

Our main axiom is based on reasoning in contingent planning. Suppose that
the agent can either choose a constant act x whatsoever, or set a contingent plan
where if a particular signal s∗ is realized then switch to choose act f instead x.
If all the identifiable information structures suggest the agent to take the plan,
then she should actually choose f over x when s∗ is realized. However, since the
signals are not payoff-relevant, there seems no straightforward way to formulate
this condition. We begin by demonstrating that our primitives are sufficiently
rich to identify this condition if the agent satisfies Reduction: she is indifferent
between a two-stage lottery and its equivalent one-stage counterpart.

Consider an act f and a constant act x, along with an information structure
ℓ ∈ L. Further, extend the ex-ante preference to acts in which the signals are
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payoff-relevant: {F : Ω × S → X}. Suppose the agent is told that ℓ is the true
information structure, and is asked to choose between the constant act x and
signal act :

F (ω, s) =

{
f(ω) if s = s∗

x if s ̸= s∗
.

Figure 1(a) visually represents this signal act. Notably, given a state of the world,
there is no ambiguity about the probability of observing s–it is precisely ℓ(·|ω) ∈
∆(S). As both acts yield identical payoffs when ℓ generates s ̸= s∗, the agent only
needs to compare them under the assumption that s∗ occurred. Consequently,
they will prefer F to x if they believe that, conditional on observing s∗, they will
prefer f to x.

For a given state ω, the signal act F yields the same expected payoffs as a
lottery that pays f(ω) with probability ℓ(s∗|ω) and x with probability 1− ℓ(s∗|ω).
Therefore, under Reduction, the agent is indifferent between F and an act that
pays ℓ(s∗|ω)f(ω)+ (1− ℓ(s∗|ω))x for each state ω. Figure 1(b) illustrates such an
act.

x

f(ωn)

x

s∗

s

f(ω1)

s∗

s

ωn

ω1 .

.

.

.

.

(a) Signal Act

ℓ (s∗|ωn) f(ω1) + (1− ℓ (s∗|ωn))x

ℓ (s∗|ω1) f(ω1) + (1− ℓ (s∗|ω1))x

ωn

ω1 .
.
.
.
.

(b) AA Act

Figure 1

Thus,

F ⪰0 x ⇐⇒

ℓ(s∗|ω1)f(ω1) + (1− ℓ(s∗|ω1))x
...

ℓ(s∗|ωn)f(ωn) + (1− ℓ(s∗|ωn))x

 ⪰0 x

which means that we can identify when the agent expects preferring f over x after
observing s if they knew ℓ is the true source of information.
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To introduce our main axiom, we establish some notation. For each f, x ∈ F ,
ℓ ∈ L, and s ∈ S, let f ℓ,s

x denote the act that equals ℓ(s|ω)f(ω) + (1− ℓ(s|ω))x in
state ω.

Total Information Agreement For any f, x ∈ F and s ∈ S,

f ℓ,s
x ⪰0 x for all ℓ ∈ L =⇒ f ⪰s x.

Given our discussion, the Total Information Agreement asserts that if, under all
information structures, the act f is deemed better than the constant act x after
observing signal s, the agent should prefer f over x after observing s.

2.3 Representation: Generalized Bayesian Updating

Our first result is an axiomatization of the GBU described in the introduction.

Theorem 2.1. Let (⪰0, (⪰s)s∈S) be a family of preferences over F that satisfies
MEU utility and L an imprecise information structure. Then, (⪰0, (⪰s)s∈S) sat-
isfies the Total Information Agreement if and only if Ms ⊆ ch(BU(M0,L, s)) for
all s ∈ S.

Theorem 2.1 only provides the conditions for the set of posteriors to be a
subset of ch(BU(M0,L, s)). We now provide the necessary axiom required to
replace “⊆” with “=”.

Default to Certainty For all f, x ∈ F and s ∈ S,

x ⪰0 f
ℓ,s
x for some ℓ ∈ L =⇒ x ⪰s f.

To interpret Default to Certainty, note that the Total Information Agreement
imposes constraints on the agent’s behavior in a highly specific scenario. It be-
comes relevant only when every conceivable source of information unanimously
indicates a preference for an uncertain payoff act over a certain one. Nevertheless,
this constraint will not have an impact when different information sources lead to
divergent preferences based on the generated signal. For instance, an agent may
favor an act f over a constant act x if they knew ℓ is the source of information;
however, their preference may reverse if they knew ℓ′ is the source. Default to
Certainty asserts that in such situations where preferences depend on the source
of information, the agent consistently opts for the constant act.34

3Faro and Lefort (2019) uses a similar axiom to characterize FBU in a precise information context.
4Observe that Total Information Agreement and Default to Certainty together imply that the ex-

post preference is completely determined by the ex-ante preference: f ⪰s x if and only if f ℓ,s
x ⪰0

x for all ℓ ∈ L. This further implies that the ex-post preferences are forced to follow MEU even if we
did not presume it.
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Proposition 2.1. Suppose (⪰0, (⪰s)s∈S) and L satisfy the axioms of Theorem
2.1. Then, (⪰0, (⪰s)s∈S) satisfies Default to Certainty if and only if Ms =
ch(BU(M0,L, s)) for all s ∈ S.

3 Discussion

The relationship between Theorem 2.1 and the standard Bayesian model deserves
special attention. The latter arises when we enhance MEU Utility by requiring
that belief sets are singletons and assume L as a singleton. This adjustment
has a significant implication for interpreting the Total Information Agreement.
Specifically, under the SEU axioms, Bayesian updating is characterized by conse-
quentialism and dynamic consistency (see Ghirardato (2002)). Consequentialism
requires that when an event is learned, the value of an act does not depend on
what it yields outside of the event. On the other hand, dynamic consistency re-
quires that if two acts agree outside of an event, the preference between these
acts do not change when this event is learned. Given that signals in our context
are not payoff-relevant, Consequentialism cannot be directly assumed. Yet, it is
implicitly used in our reasoning for Total Information Agreement. To see this,
let F be the signal act described in the discussion surrounding Total Information
Agreement. Note that F ≿0 x implies F ≿s x under the classic notion of dynamic
consistency. Then we can argue by Consequentialism that F ∼s f since the signal
act F agrees with f when s∗ is realized. In fact, Total Information Agreement
reduces to Dynamic Consistency plus Consequentialism when ex-ante and ex-post
preferences adhere to SEU, and the realized signal is the occurence of an event.

Theorem 2.1 delivers a representation, and thus, an updating rule for imprecise
information. Formally, GBU is a function ρ : (M,L, s) 7→ M′ such that M′ ⊆
ch(BU(M,L, s)).

Because the GBU rule imposes little structure on the set of posteriors for the
conditional preferences, the model can accommodate diverse behavior. However,
some may view the model as “too general” as it permits the posteriors to not be
generated by the Bayesian updating of any feasible information source. Indeed, it
may be the case that:

ρ(M0,L, s) ⊆ ch(BU(M0,L, s))\BU(M0,L, s). (2)

One reason to allow (2) is to nest the case in which the agent has possibly non-
singleton beliefs over L. To illustrate, consider Example 2.1. The prior belief is
a singleton belief µ that is uniform. Suppose that the signal realization is “Red”.
Then, BU(µ, ℓ1, R)((75, 25)) = 3

4 , and BU(µ, ℓ2, R)((75, 25)) = 1075
2100 . If the agent

subjectively believes that with probability λ, the true information structure is ℓ1,
the actual posterior belief is neither 3

4 nor 1075
2100 , but λ

3
4 + (1− λ)10752100 . In general,
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an agent may embrace a set Λ of probability measures over L. Then, the agent’s
set of posteriors is given by following:

ρ(M0,L, s) = {p ∈ ∆(Ω)|p =
∑
ℓ∈L

λ(ℓ)BU(q, ℓ, s), q ∈ M0, λ ∈ Λ},

which may not contain BU(q, ℓ, s) for any q ∈ M0 and ℓ ∈ L.
Another potential concern is that the GBU allows the agent to use different

ℓ’s depending on the signal. If one follows a “maximum likelihood” type of rule,
the ℓ’s that have the maximal likelihood of generating s may differ than the
ones generating s′. Similarly, an agent who only considers information structures
that “confirm” their own beliefs may consider different information structures
depending on the signal’s realization. We further investigate these types of rules
in Section 4. In the next section, we discuss the necessary conditions needed to
rule out this feature of the model.

Next, we discuss the uniqueness properties of the model. Because we assumed
that the preferences conform to the MEU model, (M0, (Ms)s∈S) are unique.5

This does not mean that the information structures used to construct the posterior
set are unique. In general, there is no hope for an identification result. As the
following example shows, the Bayesian updating of a set of priors M0 and two
different subsets of a given L may lead to the same set of posteriors.

Example 3.1. Consider a binary state space Ω = {ω1, ω2} and binary signal space
S = {s1, s2}. The prior belief q0 is uniform, q0 = (1/2, 1/2). Let Mi be the set of
posteriors given signal si. Since we only have two states, we can identify a belief
by its assessment on ω1. Suppose that M1 = [5/8, 7/8] and M2 = [1/8, 3/8].

Consider the following two distinct sets of information structures:

L1 = {ℓ : ℓ(s1|ω1) ∈ [5/8, 7/8]; ℓ(s1|ω2) = ℓ(s2|ω1)}, and

L2 = {ℓ : k ∈ [5/8, 7/8]; ℓ(s1|ω1) = 4k(1− k); ℓ(s1|ω2) = 4(1− k)2}.

Then, under FBU, these two sets of information structures both induce M1 and
M2. That is, given the unconditional and conditional preferences, from which
we can identify q0, M1, and M2, we cannot distinguish if the set of information
structures adopted by the agent is L1 or L2. Hence, if L = L1 ∪ L2, there is no
hope for identifying the set of information structures used.

We discuss the impossibility of providing a measure of aversion to updating
imprecise information in the current framework. The main reason is that the
current framework does not allow the agent to choose between facing imprecise
and precise information. Indeed, any measure of aversion towards a phenomenon

5See the uniqueness result in Gilboa and Schmeidler (1989).
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requires a comparison between the phenomenon and an object that does not suffer
from the phenomenon.6 Therefore, to provide such a measure, we would need a
different setting. One possibility would be pairs of menus of acts and imprecise
information structures. Although our analysis may be adapted to such a setting,
as most of the experimental literature does not consider menus, we feel that it
would obscure the message of the paper.

3.1 Consistent Updating

As we just discussed, our model allows the agent to use different information
structures for different signals. The following axiom ensures that we avoid the
case that ℓ plays a role after observing s′ if it is ignored after observing s.

Consistency Across Signals For any f, g, x, x′ ∈ F and s, s′ ∈ S,

if x ⪰0 f
ℓ,s
x and f ⪰s x, then

gℓ,s
′

x′ ⪰0 x
′ and g ⪰s′ x

′ =⇒ gℓ
′,s′

x′ ⪰0 x
′ for some ℓ′ ∈ L,

where gℓ
′,s′

x′ ⪰0 x′ holds with indifference (strictness) if g ⪰s′ x
′ holds with

indifference (strictness).

Recall that from the discussion of Total Information Agreement, x ⪰0 f ℓ,s
x

and f ⪰s x reveal that the agent is ignoring the possibility that ℓ generated s.
Therefore, any behavior that considering ℓ which may lead to after observing

another signal s′, such as gℓ,s
′

x′ ⪰0 x and g ⪰s x′, has to be rationalizable by

another information structure ℓ′ (gℓ
′,s′

x′ ⪰0 x
′).

To state the result, we need some notations. For any closed and convex set of
priors M, E(M) denotes all of its extreme points.

Proposition 3.1. Suppose (⪰0, (⪰s)s∈S) and L satisfy the axioms of Theorem
2.1. Then, (⪰0, (⪰s)s∈S) satisfies Consistency Across Signals if and only if for all
s, s′ ∈ S and ℓ ∈ L

BU(q0, ℓ, s) ̸∈ Ms ∀ q0 ∈ M0 =⇒ BU(q′0, ℓ, s
′) ̸∈ E(Ms′) ∀ q′0 ∈ M0.

Proposition 3.1 states that if ℓ is ignored after observing s, it cannot be an
extreme point of Ms′ . Note that only the extreme points of Ms′ matter for
behaviors in the MEU model. Specifically,

min
q∈Ms

∫
Ω
u(f)dq = min

q∈E(Ms)

∫
Ω
u(f)dq

for all f . Therefore, our axiom ensures that if the agent does not consider ℓ after
s, they never consider it whenever it could affect their preferences.

6For example, to check if an agent is averse to ambiguity, one needs to observe a choice between
acts and lotteries.
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4 Specializations

Here, we discuss several special cases of the GBU. We separate the discussion into
two classes motivated by statistics and behavioral biases.

4.1 Statistical GBU

From a statistical perspective, it is natural to only consider pairs (q, ℓ) that pass
some statistical test. We model a test as a function ϕ : (M,L, s) 7→ (M′,L′) ⊆
M×L. We refer to such rules as statistical GBU rules (SGBU):

ρ(M0,L, s) = ch(BU(ϕ(M0,L, s), s)).

Clearly, FBU (3) and MLU (4) are special cases of SGBU:

ϕ(M0,L, s) = (M0,L) (3)

ϕ(M0,L, s) = {(q0, ℓ)|(q0, ℓ) ∈ arg max
(q0,ℓ)∈M0×L

∫
Ω
ℓ(s|ω)dq0}. (4)

In the introduction, we discussed how MLU uses the signals to jointly dis-
criminate among priors and information structures. Each information structure is
evaluated according to the prior which maximizes the likelihood of the observed
signal. We propose the following conservative approach: evaluate each informa-
tion structure using all priors. The following special case of SGBU, referred to as
maximum robust likelihood updating (MRLU), formalizes this idea:

ϕMRLU (M0,L, s) = {(q0, ℓ)|q0 ∈ M0, ℓ ∈ argmax
ℓ∈L

min
q∈M

∫
Ω
ℓ(s|ω)dq}). (5)

The axioms that characterize (5) are strengthenings of Total Information
Agreement and Default to Certainty. They basically require the agent to only
consider information structures they believe are the most likely to generate the
observed signal. We now show how this can be identified in our framework if the
agent satisfies Reduction.

Consider a signal s∗ ∈ S and two constant acts x, y such that x ≻ y. Consider
an extension of ⪰0 to pairs of signal acts and information structures (F, ℓ). The
idea is that conditional on each state ω, ℓ(·|ω) describes the probability law on S.

Suppose we ask the agent to choose between (F, ℓ1) and (F, ℓ2), where

F (ω, s) =

{
x s = s∗

y s ̸= s∗.

Figures 2 (a) and 2 (b) illustrate (F, ℓ1) and (F, ℓ2), respectively. The agent will
choose (F, ℓ2) over (F, ℓ1) if and only if they think ℓ2 is more likely to generate
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s∗ than ℓ1. Further, by an identical argument to the one in the motivation of
Total Information Agreement, (F, ℓi) ∼0 x

ℓi,s
∗

y for i = 1, 2. Hence, for a given x, y,
we can identify which information structures the agent believes are more likely to
generate a given signal.

y

ℓ1 (s∗|ωn)

1− ℓ1 (s∗|ωn)

x
y

ℓ1 (s∗|ω1)

1− ℓ1 (s∗|ω1)

x

ωn

ω1

.

.

.

(a) Signal Act 1

y

ℓ2 (s∗|ωn)

1− ℓ2 (s∗|ωn)

x
y

ℓ2 (s∗|ω1)

1− ℓ2 (s∗|ω1)

x

ωn

ω1

.

.

.

(b) Signal Act 2

Figure 2

To state the next axiom, we need some notation. Let ≥s
x,y be the binary

relation over L such that ℓ ≥s
x,y ℓ′ if xℓ,sy ⪰0 x

ℓ′,s
y , and let

argmax(L,≥s
x,y) = {ℓ ∈ L|ℓ ≥s

x,y ℓ′ for all ℓ′ ∈ L}.

Likelihood Information Agreement For any x, y, z, f ∈ F such that x ≻0 y
and s ∈ S,

f ℓ,s
z ⪰0 z for all ℓ ∈ argmax(L,≥s

x,y) =⇒ f ⪰s z.

The likelihood information agreement (LIA) guarantees that the set of poste-
riors is a subset of the set of the convex hull of the set of posteriors generated
by the point-wise Bayesian updating of (5). The following axiom strengthens set
contention to equality.

Likelihood Default to Certainty For any x, y, z, f ∈ F such that x ≻0 y and
s ∈ S,

z ⪰0 f
ℓ,s
z for some ℓ ∈ argmax(L,≥s

x,y) =⇒ z ⪰s f.

The interpretation of both axioms is analogous to the one of Total Information
Agreement and Default to Certainty.

13



Theorem 4.1. Let (⪰0, (⪰s)s∈S) be a family of preferences over F that satis-
fies MEU utility and L an imprecise information structure. Then, (⪰0, (⪰s)s∈S)
satisfies LIA if and only if

Ms ⊆ ch(BU(ϕMRLU (M0,L, s), s)) (6)

for all s ∈ S. Moreover, the set contention in (6) is replaced with equality if and
only if (⪰0, (⪰s)s∈S) also satisfies the Likelihood Default to Certainty.

Note that for the case in which the agent holds a single prior q0, Theorem 4.1
delivers a characterization of a version of the MLU rule. Specifically, the agent
will only consider the information structures ℓ ∈ L such that:

ℓ ∈ argmax
ℓ′∈L

∫
Ω
ℓ(s|ω)dq0.

Hence, our result can be viewed as an imprecise information counterpart of the
Gilboa and Schmeidler (1993) result for precise information.

4.2 Behavioral GBU

One of the more robust findings in the empirical literature on updating is that
people tend to only update information that confirms their prior beliefs. This
phenomenon is called confirmatory bias (Rabin and Schrag (1999)). Here, we
argue that our model is well-suited to accommodate it. Because confirmatory
bias and state space ambiguity do not share a conceptual link, we focus on the
case in which M0 = {q0}.

When the agent’s ex-ante prior beliefs can be described by a single probability
distribution, we can recover the agent’s probabilistic ranking among the states of
the world. Indeed, for any x, y ∈ F such that x ≻0 y, one can recover the ranking
by observing the agent’s preferences over the following acts:

fω(ω
′) =

{
x ω′ = ω

y ω′ ̸= ω
.

Let ⪰∗ be the binary relation over Ω induced by the ranking.
Intuitively, we can use ⪰∗ to define whether an information structure ℓ provides

information consistent with the agents prior: For a given signal s, ℓ(s|ω) is the
likelihood that it was generated by state ω. Hence, the information will confirm
the agent’s ex-ante beliefs if the order among the ℓ(s|ω)’s is the same as their
ranking among states. Formally, we say that ℓ(s|·) s-confirms ⪰∗ if

ω ⪰∗ ω′ ⇐⇒ ℓ(s|ω) ≥ ℓ(s|ω′).

An agent who suffers from confirmatory bias will only consider information
that confirms their beliefs. The following axiom captures this.
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Confirmatory Information Agreement For any f, x ∈ F ,

f ℓ,s
x ⪰0 x for all ℓ ∈ L that s-confirms ⪰∗ =⇒ f ⪰s x.

The Confirmatory Information Agreement guarantees that the set of posteriors
is a subset of the convex hull of the posteriors generated by point-wise Bayesian
updating of the information structures that confirm the agent’s beliefs (whenever
it is non-empty). The following axiom strengthens set contention to equality.

Confirmatory Default to Certainty For any f, x ∈ F such that x ≻0 y and
s ∈ S,

x ⪰0 f
ℓ,s
x for some ℓ ∈ L that s-confirms ⪰∗ =⇒ x ⪰s f.

Theorem 4.2. Let (⪰0, (⪰s)s∈S) be a family of preferences over F that satisfies
MEU utility and L an imprecise information structure. Assume M0 is a singleton;
for each s ∈ S, there exists some ℓ ∈ L that s-confirms ⪰∗. Then, (⪰0, (⪰s)s∈S)
satisfies the Confirmatory Information Agreement if and only if

Ms ⊆ ch(BU(M0, {ℓ ∈ L|ℓ s-confirms ⪰∗}, s)) (7)

for all s ∈ S. Moreover, the set contention in (7) is replaced with equality if and
only if (⪰0, (⪰s)s∈S) also satisfies the Confirmatory Default to Certainty.

5 Subjective Information Structures

We have assumed that L is both observable and objective. This is not always an
appropriate assumption. For example, an agent may receive a signal without a
clear description of its content and may construct L by themself. In such cases,
L becomes purely subjective and can only be inferred from observable behavior.
Here, we study when the ex-ante and ex-post preferences are consistent with the
existence of a subjective L.

As in the previous analysis, we consider a family of preferences over acts (⪰0

, (⪰s)s∈S) that admit a MEU representation. We establish the necessary and
sufficient conditions on behavior for these preferences to be linked by the FBU of
a subjective L under two specific scenarios: (i) no ex-ante state ambiguity, and
(ii) no signal imprecision. The general case poses a significant challenge and is
left for future research.

To introduce our axioms, we need some preliminaries. For any MEU preference
⪰ represented by (M, u), let ⪰̄ denote the preference over acts represented by

max
q∈M

∫
Ω
u(f)dq.
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Observe that for any acts f, g and constant act x satisfying x = αf + (1−α)g for
some α ∈ (0, 1), we have

f⪰̄x if and only if x ⪰ g.

Thus, ⪰̄ can be understood as a conjugate of ⪰ and can be recovered from ⪰.

5.1 No ex-ante state ambiguity

First, we consider the situation where the state space is ex-ante unambiguous,
meaning that the agent possesses a single prior belief, and thus, the ex-ante pref-
erence ⪰0 is SEU with belief q0.

We begin by considering the case in which the ex-post preference ⪰s are all
SEU with belief ps. A necessary and sufficient condition for the existence of
a likelihood function ℓ such ps = BU(q0, ℓ, s) for all s ∈ S is that q0 lies in the
convex hull of {ps|s ∈ S}. This property is equivalent to an adaptation of dynamic
consistency to our setting: For any act f and constant act x, if f ⪰s x for all
s ∈ S, then f ⪰0 x. Intuitively, if f is preferred to x under any signal realization,
then f is also preferred to x ex-ante.

In scenarios where ex-post preferences can be MEU, the above dominance prop-
erty is insufficient to determine the existence of L such that Ms = BU(q0,L, s).
Our main finding in this section demonstrates that the following stronger domi-
nance property is a necessary and sufficient condition for this relationship.

P1 For any f, x ∈ F ,

f⪰̄sx for some s ∈ S and f ⪰s′ x for all s′ ̸= s =⇒ f ⪰0 x.

If, f≻̄sx or f ≻s′ x as well for some s′ ̸= s, then f ≻0 x.

To see why P1 is stronger, observe that f ⪰ x implies f⪰̄x, but the converse
fails. However, under SEU, ⪰= ⪰̄ makes P1 equivalent to dynamic consistency.

Proposition 5.1. Let (⪰0, (⪰s)s∈S) be a family of preferences over F . Assume
(u, q0) represents ⪰0 and (u,Ms) represents ⪰s for all s ∈ S. Then, (⪰0, (⪰s)s∈S)
satisfies P1 if and only if there exists L such that Ms = BU(q0,L, s) for all s.

To aid the intuition for the result, we describe the necessity of P1. Given ⪰,
f⪰̄sx requires the existence of a belief ps in Ms under which the utility of f is no
less than the utility of x. Under FBU, ps = BU(q0, ℓ, s) for some ℓ ∈ L. Moreover,
for any other signal s′, the Bayesian posterior of q0 and ℓ, say ps′ , also lies in Ms′ .
Thus, f ⪰s′ x implies that the utility of f under ps′ is no less than the utility of
x. Since the prior q0 must lie in the convex hull of the posteriors {ps|s ∈ S}, we
obtain f ⪰0 x.
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5.2 No signal imprecision

We now consider the case in which the ex-ante and ex-post preferences are MEU,
and focus on the existence of a precise information structure.

To state our axioms, we introduce some notation. For any x, y, z ∈ X and
states ω, ω′, let [x, ω|y, ω′|z] denote the act that yields x in state ω, y in state ω′,
and z in any other state.

P2 For any f ∈ F , state ω and outcomes(y0ω′)ω′∈Ω\{ω}, (y
s
ω′)ω′∈Ω\{ω} such that

f(ω) =
∑

ω′ ̸=ω

ys
ω′

|Ω|−1 =
∑

ω′ ̸=ω

y0
ω′

|Ω|−1 for all s ∈ S,{
x ⪰s [f(ω

′), ω′|ysω′ , ω|x];
x⪰̄s[f(ω

′), ω′|ysω′ , ω|x] if f(ω′) ⪰s x
for all s ∈ S and ω′ ̸= ω

=⇒

{
x ⪰0 [f(ω

′′), ω′′|ysω′′ , ω|x];
x⪰̄0[f(ω

′′), ω′|ysω′′ , ω|x] if f(ω′′) ⪰0 x
for some ω′′.

To understand P2, consider utility acts (i.e., X ⊂ R and u(x) = x) for simplicity.
Suppose that |Ω| = 3. Thus, an act is an element of R3. Suppose that, for
instance, we have for all s ∈ S,

x ⪰s (x− a1, x, x+ bs1) and x ⪰s (x, x− a2, x+ bs2),

where a1, a2 > 0 and bs1 + bs2 = k for all s. We can interpret these rankings as
follows. Given a constant act x, we lower its payoff in ω1 by a1, and we increase
its payoff in ω3 by bs1 as compensation. However, the compensation is not large
enough to fully compensate for the loss in ω1. Thus, the first ranking follows.
Similarly, if we lower the payoff in ω2 by a2, we increase the payoff in ω3 by bs2 as
compensation. The second-ranking suggests that this compensation is not large
enough. As bs1 + bs2 = k for all s, we can say that k is too small as a total stake
for compensation for any signal realization. Then, P2 says that k is also too small
from the ex-ante perspective. We can never split k into b01 and b02 such that

(x− a1, x, x+ b01) ⪰0 x and (x, x− a2, x+ b02) ⪰0 x.

In terms of the MEU model, P2 captures the following “convex hull” implica-
tion of a single subjective information structure. Consider a state ω. As we show
in the proof, if Ms = BU(M0, ℓ, s) for all s ∈ S, then for all ω′ ̸= ω,∑

s

ℓ(s|ω) max
p∈Ms

p(ω′)

p(ω)
=

∑
s

ℓ(s|ω)× ℓ(s|ω′)

ℓ(s|ω)
× max

q∈M0

q(ω′)

q(ω)
= max

q∈M0

q(ω′)

q(ω)
.
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This means that the vector (max
q∈M0

q(ω′)
q(ω) )ω′ ̸=ω lies in the convex hull of the set

{( max
p∈Ms1

p(ω′)
p(ω) )ω′ ̸=ω, ..., max

p∈Ms|S|

p(ω′)
p(ω) )ω′ ̸=ω}. An implication is that for all reals k

and (rω′)ω′ ̸=ω,∑
ω′ ̸=ω

rω′ max
p∈Ms

p(ω′)

p(ω)
≥ k ∀ s ∈ S

 ⇒
∑
ω′ ̸=ω

rω′ × max
q∈M0

q(ω′)

q(ω)
≥ k.

P2 follows from this dominance property. Specifically, the necessity of P2
follows from the fact that for any MEU preference ⪰ represented by (M, u),{

x ⪰ [f(ω′), ω′|yω′ , ω|x];
x⪰̄[f(ω′), ω′|yj , ω|x] if f(ω′) ⪰ x

if and only if

[u(x)− u(f(ω′))]max
p∈M

p(ω′)

p(ω)
≥ u(yω′)− u(x).

Hence, P2 allows us to find an information structure ℓ such that

max
p∈Ms

p(ω′)

p(ω)
=

ℓ(s|ω′)

ℓ(s|ω)
× max

q∈M0

q(ω′)

q(ω)

for all ω, ω′ and s ∈ S. Yet, this is not enough to establish Ms = BU(M0, ℓ, s).

By Proposition 2.1, we need that f ℓ,s
x ⪰0 x ⇔ f ⪰s x. This implication is captured

by the following axiom.

P3 For any state ω, acts f, g, x such that f(ω) = g(ω), and outcomes (yω′)ω′∈Ω\{ω},
the following two statements are true:

(i) If for all ω′ ̸= ω,{
[yω′ , ω′|g(ω′), ω|x]⪰̄sx;

[yω′ , ω′|g(ω′), ω|x] ⪰s x if x ⪰s yω′
and

{
x ⪰0 [yω′ , ω′|f(ω′), ω|x];
x⪰̄0[yω′ , ω′|f(ω′), ω|x] if yω′ ⪰0 x

then, x ⪰0 g implies x ⪰s f .

(ii) If for all ω′ ̸= ω,{
x ⪰s [yω′ , ω′|g(ω′), ω|x];
x⪰̄s[yω′ , ω′|g(ω′), ω|x] if yω′ ⪰s x

and

{
[yω′ , ω′|f(ω′), ω|x]⪰̄0x;

[yω′ , ω′|f(ω′), ω|x] ⪰0 x if x ⪰0 yω′

then, g ⪰0 x implies f ⪰s x.
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To illustrate P3, consider utility acts and assume |Ω| = 3. We set f = (f1, f2, f3)
and g = (g1, g2, g3) where f3 = g3. Suppose that

(a1, x, g1) ⪰s x and (x, a2, g2) ⪰s x

where x > a1 and x > a2. The former suggests that g1, under signal s, is good
enough in the following sense: if we lower the payoff of a constant act x in ω1 to
a1 and replace its payoff in ω3 by g1 as a compensation, we improve the act. The
latter ranking also suggests that g2 is good enough under signal realization s in a
similar sense. Suppose also that

x ⪰0 (a1, x, f1) and x ⪰0 (x, a2, f2).

Again, they suggest that f1 and f2 are not good enough from ex-ante perspective.
Now P3 requires that we cannot conversely have g worse than x ex-ante but f
better than x ex-post.

The existence of a precise information structure under MEU preferences and
full-Bayesian updating is characterized by P2 and P3, as shown in the following
proposition.

Proposition 5.2. Let (⪰0, (⪰s)s∈S) be a family of preferences over F that satisfies
MEU Utility. Then, (⪰0, (⪰s)s∈S) satisfies P2 and P3 if and only if there exists
ℓ such that Ms = BU(M0, ℓ, s) for all s ∈ S.

This proposition illustrates the challenge in identifying subjective information
from (⪰0, (⪰s)s ∈ S). Indeed, P2 and P3 are not straightforward axioms. Each
axiom governs, in terms of the ex-ante preferences, the extent to which an agent is
willing to transfer utility across states for different signal realizations. The more
general case where L is allowed to not be a singleton also requires an understanding
of how discipline the transfers. Imposing these regularities is particularly challeng-
ing due to the non-payoff-relevance of information. Indeed, taking as primitive an
ex-ante preference ⪰0 over signal acts F : Ω × S → X can simplify the analysis.
In this framework, ⪰s can be the preference induced by ⪰0 over acts that yield
the same payoff whenever s is not realized. However, such complexities cannot be
avoided while attempting to understand the behavioral implications of imprecise
information in non-payoff-relevant contexts. Moreover, our analysis suggests that
there is no simple way to capture the trade-offs.

6 Concluding Remarks

We posit a theory of updating under imprecise information that generalizes FBU
and MLU. Although both these rules are widely popular, a conceptual reason to

19



adopt either is missing.7

The ability to accommodate different attitudes towards updating is partic-
ularly significant in certain applications. For instance, Beauchêne et al. (2019)
shows that under FBU, a sender can extract the full surplus from a receiver in
a Bayesian persuasion style game.8 However, once we allow for a more general
updating rule, such a result may not hold. This opens the door for a richer theory
of persuasion under imprecise information.

Our framework was inspired by the experimental literature, where observa-
tions are typically limited to ex-ante and conditional on signal preferences. Here,
signals are often considered to be payoff irrelevant and information structures are
commonly employed. We hope that the constructive nature of our axioms offers
some guidance on how to test behavior under imprecise information.

Lastly, our analysis has been normative, with the Total Information Agreement
presented as an attractive property that delivers a generalization of Bayesian up-
dating. Consequently, it serves as a test for any updating theory that challenges
Bayesianism within the MEU framework. Essentially, any updating rule that
contravenes the Total Information Agreement must be supported by an exam-
ple demonstrating its unreasonableness. We view this aspect of the paper as a
separate contribution as it can offer valuable guidance for future research.

7One can draw a parallel with the three-color Ellsberg paradox. As formalized by Gajdos et al.
(2008), the agent has no reason to consider all the objectively possible probabilistic beliefs (priors).
The same intuition applies to our setting: the agent has no reason to consider all objectively possible
information structures.

8An equally striking result holds in a cheap talk game with FBU. See Kellner and Le Quement
(2018).
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Appendix A Proofs

The necessity of the axioms is obvious in each of our representation theorems.
Therefore, we only prove sufficiency.

Throughout, it is assumed that ⪰s is represented by (u,Ms) for all s ∈ S∪{0}.
Finally, each proof of sufficiency makes use of the following lemma.

Lemma A.1. Assume ⪰ and ⪰′ admit MEU representations (u,M), (u,M′)
respectively such that M ̸⊆ M′. Then there exists an act f and a constant act x
such that f ∼ x and f ≻′ x.

The proof follows from an identical argument from the uniqueness result in
Gilboa and Schmeidler (1989).

A.1 Proof of Theorem 2.1

Let (Ms)s∈S∪{0} be the sets of probability measures described by MEU Utility.
Suppose (⪰s)s∈S∪{0} satisfies Total Information Agreement (TIA) and assume by
way of contradiction that Ms ̸⊆ ch(BU(M0,L, s)) for some s ∈ S.

By Lemma A.1, there exists an act f and a constant act x such that

u(x) <

∫
Ω
u(f)dBU(q′, ℓ, s) for all (q′, ℓ) ∈ M0 × L.

Fix (q, ℓ) ∈ M0 × L, then

u(x) <

∫
Ω
u(f)dBU(q, ℓ, s)(∫

Ω
ℓ(s|ω)dq

)
u(x) <

∫
Ω
u(f)ℓ(s|ω)dq(∫

Ω
ℓ(s|ω)dq

)
u(x) +

(
1−

∫
Ω
ℓ(s|ω)dq

)
u(x) <

∫
Ω
u(f)ℓ(s|ω)dq +

(
1−

∫
Ω
ℓ(s|ω)dq

)
u(x)

u(x) <

∫
Ω
u(ℓ(s|ω)f(ω) + (1− ℓ(s|ω))x)dq.

Thus, u(x) <
∫
Ω u(ℓ(s|ω)f(ω) + (1 − ℓ(s|ω)x))dq for all q ∈ M0 and ℓ ∈ L.

Therefore, u(x) < min
q∈M0

∫
Ω u(ℓ(s|ω)f(ω) + (1 − ℓ(s|ω)x))dq for all ℓ ∈ L. Hence,

f ℓ,s
x ≻0 x for all ℓ ∈ L and x ⪰s f , a contradiction of TIA.

A.2 Proof of Proposition 2.1

Given Theorem 2.1, we only need to show that if (⪰, (⪰s)s∈S) also satisfies Default
to Certainty (DTC), then ch(BU(M0,L, s)) ⊆ Ms.
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Fix s ∈ S and assume by way of contradiction there exists p∗ ∈ ch(BU(M0,L, s))
such that p∗ ̸∈ Ms. By Lemma A.1, there exists f and x such that

∫
Ω u(f)p∗ <

min
q′∈Ms

∫
Ω u(f)dq′ = u(x).

Since p∗ ∈ ch(BU(M0,L, s)), then there exist (q1, ℓ1), ..., (qn, ℓn) ∈ M0 × L
such that p∗ =

∑
i αiBU(qi, ℓi, s) and∫

Ω
u(f)p∗ =

∑
i

αi

∫
Ω
u(f)dBU(qi, ℓi, s).

Hence, there exists i such that
∫
Ω u(f)dBU(qi, ℓi, s) ≤

∫
Ω u(f)dp∗. Let q = qi and

ℓ = ℓi. Then, ∫
Ω
u(f)dBU(q, ℓ, s) < u(x)∫

Ω
u(f)ℓ(s|ω)dq +

(
1−

∫
Ω
ℓ(s|ω)dq

)
u(x) < u(x)

(∫
Ω
ℓ(s|ω)dq

)
+

(
1−

∫
Ω
ℓ(s|ω)dq

)
u(x)∫

Ω
u(f(ω)ℓ(s|ω) + (1− ℓ(s|ω))x)dq < u(x).

Hence, min
q∈M0

∫
Ω u(f(ω)ℓ(s|ω) + (1 − ℓ(s|ω))x)dq < u(x). This implies that there

exists ℓ ∈ L such that x ≻0 f
ℓ,s
x . Thus, by DTC, x ≻s f , a contradiction.

A.3 Proof of Proposition 3.1

By assumption, BU(M0, ℓ, s) ∩Ms = ∅. Thus, by a hyperplane separating argu-
ment, there exists f such that∫

Ω
u(f)dqs < c <

∫
Ω
u(f)dBU(q0, ℓ, s)

for all q0 ∈ M0 and qs ∈ Ms. Let x be such that x ∼s f . Then f l,s
x ≻0 x and

x ⪰s f .
Next, assume that there exists ℓ ∈ L, s′ ∈ S and q′0 ∈ M0 such that

BU(q′0, ℓ, s
′) ∈ E(Ms′). Observe that BU(q′0, ℓ, s

′) ∈ E(Ms′) implies there ex-
ists an act g such that

min
q∈Ms′

∫
Ω
u(g)dq =

∫
Ω
u(g)dBU(q′0, ℓ, s

′) <

∫
Ω
u(g)dq for all q ∈ Ms′\{BU(q′0, ℓ, s

′)}.

Let y be the constant act such that u(y) =
∫
Ω u(g)dBU(q′0, ℓ, s

′). Then, gℓ,sx ∼0 x

and g ∼s x. Moreover, gℓ
′,s
x ≻0 for all ℓ′ ∈ L. Hence, for Consistency Across

Signals to hold, either BU(M0, ℓ, s)∩Ms ̸= ∅ or BU(q′0, ℓ, s
′) ̸∈ E(Ms′) for all q

′
0.
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A.4 Proof of Theorem 4.1

Suppose (⪰0, (⪰s)s∈S) satisfies Likelihood Information Agreement (LIA) and as-
sume by way of contradiction that

Ms ̸⊆ ch({BU(q, ℓ, s)|q ∈ M0, ℓ ∈ argmax
ℓ∈L

max
q∈M0

∫
Ω
ℓ(s|ω)dq})

for some s ∈ S.
Let L∗∗

s = argmax
ℓ∈L

min
q∈M0

∫
Ω ℓ(s|ω)dq. By Lemma A.1, there exists f and x such

that

u(x) = min
q∈ch(BU(M0,L∗∗

s ,s))

∫
Ω
u(f)dq ≤ min

(q,ℓ)∈M0×L∗∗
s

∫
Ω
u(f)dBU(q, ℓ, s)

Hence, for all q ∈ M0 and ℓ ∈ L∗∗
s

u(x) <

∫
Ω
u(f)dBU(q, ℓ, s)

u(x) <

∫
Ω
u(f)ℓ(s|ω)dq + u(p)(1−

∫
Ω
ℓ(s|ω)dq).

Thus,

u(x) < min
q∈M0

∫
Ω
u(f)ℓ(s|ω)dq + u(x)(1−

∫
Ω
ℓ(s|ω)dq).

If we can show that ℓ ∈ argmax(L,≥s
x,y) implies ℓ ∈ L∗∗

s for any x, y such that
u(x) > u(y), we will have a contradiction of LIA. To see that ℓ ∈ max(L,≥s

x,y)
implies ℓ ∈ L∗∗

s note that ℓ ≥s
x,y ℓ′ if and only if

min
q∈M0

[u(x)

∫
Ω
ℓ(s|ω)dq + u(y)(1−

∫
Ω
ℓ(s|ω)dq)] ≥ min

q∈M0

[u(x)

∫
Ω
ℓ′(s|ω)dq + u(y)(1−

∫
Ω
ℓ′(s|ω)dq)]

which holds if and only if

min
q∈M0

∫
Ω
ℓ(s|ω)dq ≥ min

q∈M0

∫
Ω
ℓ′(s|ω)dq.

Hence, ℓ ∈ max(L,≥s
x,y) implies ℓ ∈ argmax

ℓ∈L
min
q∈M0

∫
Ω ℓ(s|ω)dq = L∗∗

s .

Next, we prove that Likelihood Default to Certainty (LDC) implies equality
of the sets described in the Theorem.

Let ch({BU(q, ℓ, s)|ℓ ∈ argmax
ℓ∈L

min
q∈M0

∫
Ω ℓ(s|ω)dq and q ∈ M0}) ≡ MMM

s . We

only need to show that MMM
s ⊆ Ms.
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Assume by way of contradiction that MMM
s ̸⊆ Ms. Then, by Lemma A.1,

there exists f and x such that

min
q∈MMM

s

∫
Ω
u(f)dq < min

q∈Ms

∫
Ω
u(f)dq = u(x).

Fix q′ ∈ arg min
q∈MMM

s

∫
Ω u(f)dq. Then, by an analogous argument as in the proof

of Proposition 2.1, there exists (q, ℓ) ∈ M× L∗∗ such that
∫
Ω u(f)dBU(q, ℓ, s) ≤∫

Ω u(f)dq′. Hence, ∫
Ω
u(f)dBU(q, ℓ, s) < u(x)∫

Ω
ℓ(s|ω)u(f)dq + (1−

∫
Ω
ℓ(s|ω)dq)u(x) < u(x)

min
q∈M

∫
Ω
ℓ(s|ω)u(f)dq + (1−

∫
Ω
ℓ(s|ω)dq)u(x) < u(x).

Thus, x ≻0 f ℓi,s
x . Moreover, ℓ ∈ argmax

ℓ∈L
min
q∈M0

∫
Ω ℓ(s|ω)dq, thus, ℓ ≥s

x,y l′ for all

ℓ′ ∈ L and x, y sych that u(x) > u(y). By LDC, x ≻s f , a contradiction.

A.5 Proof of Theorem 4.2

Suppose (⪰s)s∈S∪{0} the satisfies Confirmatory Information agreement (CIA) and
assume by way of contradiction Ms ̸⊆ ch(BU(M0, {ℓ ∈ L|ℓ confirms ⪰∗}, s))).
Then, by Lemma A.1, there exists f and x such that

u(x) = min
q∈Ms

∫
Ω
u(f)dq <

∫
Ω
u(f)dBU(q, ℓ, s) for all (q, ℓ) ∈ M0 × {ℓ ∈ L|ℓ confirms ⪰∗}.

An identical argument as in Theorem 2.1 shows that f ℓ,s
x ≻0 x for all ℓ ∈ {ℓ ∈

L|ℓ confirms ⪰∗}. This contradicts CIA as x ∼s f .
Next, we show that MCM

s ≡ ch(BU(M0, {ℓ ∈ L|ℓ confirms ⪰∗}, s))) ⊆ Ms

under Confirmatory Default to Certainty (CDC). Assume by way of contradiction
that this is not the case. Then, by Lemma A.1, there exists f, x such that

min
p∈MCM

s

∫
Ω
u(f)dp < min

q∈Ms

∫
Ω
u(f)dp = u(x).

Fix p ∈ argminp∈MCM
s

. Then an analogous argument as in the proof of Proposi-
tion 2.1, establishes that there exists (q, ℓ) ∈ M0 × {ℓ ∈ L|ℓ confirms ⪰∗} such
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that
∫
Ω u(f)dBU(q, ℓ, s) ≤

∫
Ω u(f)dp. Hence,∫

Ω
u(f)dBU(q, ℓ, s) < u(x)∫

Ω
ℓ(s|ω)u(f)dq + (1−

∫
Ω
ℓ(s|ω)dq)u(x) < u(x)

min
q∈M0

∫
Ω
ℓ(s|ω)u(f)dq + (1−

∫
Ω
ℓ(s|ω)dq)u(x) < u(x).

Thus, x ≻0 f ℓ,s
x . Moreover, ℓ ∈ {ℓ ∈ L|ℓ confirms ⪰∗}. Therefore, CDC, x ≻s f ,

a contradiction.

A.6 Proof of Proposition 5.1

We first prove the necessity of statement 1. Take any s ∈ S. Suppose that
f⪰̄sx and f ⪰s′ x for all s′ ̸= s. Since f⪰̄sx, there exists ps ∈ Ms such that
ps · (u ◦ f) ≥ u(x). Since Ms = BU(q0,L, s), there exists ℓ ∈ L such that
ps = BU(q0, ℓ, s). Let ps′ = BU(q0, ℓ, s

′) for all s′ ̸= s. Since Ms′ = BU(q0,L, s′),
ps′ ∈ Ms′ . Now for all s′ ̸= s, because f ⪰s′ x, we have ps′ · (u ◦ f) ≥ u(x). Since
q0 lies in the convex hull of ps, ps′ , ..., we have q0 · (u ◦ f) ≥ u(x). In addition, if
f≻̄sx or f ≻s′ x for some s′ ̸= s, we obtain q0 · (u ◦ f) > u(x). This proves the
necessity of statement 1.

Next, we prove the sufficiency of statement 1. The following claim will be
useful.

Claim 1. Suppose that A1, · · · , AI are closed and convex sets in RN . Then

ri(ch(∪iAi)) ⊂

{
v ∈ RN : ∃wi ∈ Ai, λi > 0 ∀ i s.t.

∑
i

λiwi = v,
∑
i

λi = 1

}
.

Proof. Suppose v ∈ ri(ch(∪iAi)). Take any v′ =
∑

i λiwi with wi ∈ Ai, λi > 0,
and

∑
i λi = 1. Since v ∈ ri(ch(∪iAi)), there exists v′′ ∈ ch(∪iAi) and k ∈ (0, 1)

such that v = kv′ + (1− k)v′′. Since Ai is convex for all i, v′′ can be expressed as
v′′ =

∑
i λ

′
iw

′
i with w′

i ∈ Ai, λ
′
i ≥ 0, and

∑
i λ

′
i = 1. Thus,

v = kv′ + (1− k)v′′ =
∑
i

(kλi + (1− k)λ′
i)
kλiwi + (1− k)λ′

iw
′
i

kλi + (1− k)λ′
i

.

Since λi > 0, kλi + (1 − k)λ′
i > 0. Since Ai is convex,

kλiwi+(1−k)λ′
iw

′
i

kλi+(1−k)λ′
i

∈ Ai.

Therefore v belongs to the set on the right-hand side.
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We will also use the following separating hyperplane theorem: Two non-empty
convex sets A and B can be separated properly if and only if their relative interiors
do not intersect. Here, proper separation means that there is a hyperplane H such
that A and B lie in opposite closed half-spaces with respect to H, and at least
one of the sets A,B is not contained in H.

Suppose that statement 2 fails. There exists a signal realization s and qs ∈ Ms

such that there exist no ∈ Ms′ for each s′ ̸= s such that q0 equals a convex com-
bination of qs, qs′ , · · · . We want to establish a violation of statement 1. Consider
two cases: qs = q0 and qs ̸= q0.

Assume qs = q0. By the claim, q0 /∈ ri(ch(∪s′ ̸=sMs′)). By the aforementioned
separating hyperplane theorem, there exist a vector (vω)ω∈Ω ≡ v and a real r
such that q0 · v = r ≤ q · v for all q ∈ ch(∪s′ ̸=sMs′) where the inequality holds
strictly for some q. Note that we are free to take a positive linear transformation
on v and r, which means that we can choose v and r such that r and vω all lie
in the range of u. Therefore, there exist an act f and a constant act x such that
q0 · (u ◦ f) = u(x) ≤ q · (u ◦ f) for all q ∈ ch(∪s′ ̸=sMs′) where the inequality holds
strictly for some q. Now we have f ⪰s′ x for all s′ ̸= s and f ≻s′ x for some s′ ̸= s.
Since q0 · (u ◦ f) = u(x), f ∼0 x. Since qs = q0 ∈ Ms by assumption, f⪰̄x. Hence
statement 1 fails.

Assume instead qs ̸= q0. Consider the convex set

{q ∈ ∆(S) : ∃λ > 1 s.t. q − qs = λ(q0 − qs)} ≡ C.

By the claim, C is disjoint with ri(ch(∪s′ ̸=sMs′)). By a separating hyperplane
theorem, there exist an act f and an constant act x such that q0 · (u◦f) = u(x) >
q · (u◦f) for all q ∈ C, and q0 · (u◦f) = u(x) ≤ q · (u◦f) for all q ∈ ch(∪s′ ̸=sMs′).
It follows that f ∼0 x and f ⪰s′ x for all s′ ̸= s. Notice that C and {qs} are also
separated by f and x. So qs · (u ◦ f) > u(x), implying f≻̄sx. Hence statement 1
fails.

A.7 Proof of Proposition 5.2

A.7.1 Preliminaries

For ease of exposition, we enumerate the states Ω = {ω1, ..., ωn} and write P2 and
P3 using this notation.

P2 Take any f and fix ωi. Let y0j , y
s
j ∈ X be such that f(ωi) =

∑
j ̸=i

ysj
n−1 =
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∑
j ̸=i

y0j
n−1 for all s ∈ S. Suppose that for all s ∈ S and all j ̸= i{

x ⪰s [f(ωj), ωj |ysj , ωi|x];
x⪰̄s[f(ωj), ωj |ysωj

, ωi|x] if f(ωj) ⪰s x
for all s ∈ S and j ̸= i

=⇒

{
x ⪰0 [f(ωj), ωj |ysωj

, ωi|x];
x⪰̄0[f(ωj), ωj |ysωj

, ωi|x] if f(ωj) ⪰0 x
for some j ̸= i

P3 Take any f, g and fix ωi. Suppose that f(ωi) = g(ωi). Take any yj ∈ X for
each j ∈ {1, ..., n}\{i}. Then the following two statements are true:

(i) For any x ∈ X if for all j ̸= i,{
[yωj , ωj |g(ωj), ωi|x]⪰̄sx;

[yωj , ωj |g(ωj), ωi|x] ⪰s x if x ⪰s yωj

and

{
x ⪰0 [yωj , ωj |f(ωj), ωi|x];
x⪰̄0[yωj , ωj |f(ωj), ωi|x] if yωj ⪰0 x

then x ⪰0 g implies x ⪰s f .

(ii) For any x ∈ X if for all j ̸= i,{
x ⪰s [yωj , ωj |g(ωj), ωi|x];
x⪰̄s[yωj , ωj |g(ωj), ωi|x] if yωj ⪰s x

and

{
[yωj , ωj |f(ωj), ωi|x]⪰̄0x;

[yωj , ωj |f(ωj), ωi|x] ⪰0 x if x ⪰0 yωj

then g ⪰0 x implies f ⪰s x.

Next, we write the implications of the preferences expressed in P2 and P3 in
terms of the MEU representation: Take any MEU preference ⪰ represented by
(M, u). Take any x, y, z ∈ X and any distinct states ωi, ωj ∈ Ω. We have

x ⪰ [y, ωj |z, ωi|x]
⇔ ∃p ∈ M, u(x) ≥ p(ωj)u(y) + p(ωi)u(z) + [1− p(ωi)− p(ωj)]u(x)

⇔ ∃p ∈ M, [u(x)− u(y)]
p(ωj)

p(ωi)
≥ [u(z)− u(x)]

⇐ [u(x)− u(y)]max
p∈M

p(ωj)

p(ωi)
≥ [u(z)− u(x)].

When u(x)− u(y) ≥ 0,

x ⪰ [y, ωj |z, ωi|x] ⇔ [u(x)− u(y)]max
p∈M

p(ωj)

p(ωi)
≥ [u(z)− u(x)].
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Similarly, we have

x⪰̄[y, ωj |z, ωi|x]
⇔ ∀p ∈ M, u(x) ≥ p(ωj)u(y) + p(ωi)u(z) + [1− p(ωi)− p(ωj)]u(x)

⇔ ∀p ∈ M, [u(x)− u(y)]
p(ωj)

p(ωi)
≥ [u(z)− u(x)]

⇒ [u(x)− u(y)]max
p∈M

p(ωj)

p(ωi)
≥ [u(z)− u(x)].

When u(x)− u(y) ≤ 0,

x⪰̄[y, ωj |z, ωi|x] ⇔ [u(x)− u(y)]max
p∈M

p(ωj)

p(ωi)
≥ [u(z)− u(x)].

Consequently,{
x ⪰ [y, ωj |z, ωi|x];
x⪰̄[y, ωj |z, ωi|x] if y ⪰ x

⇔ [u(x)− u(y)]max
p∈M

p(ωj)

p(ωi)
≥ u(z)− u(x),

and {
[y, ωj |z, ωi|x]⪰̄x;

[y, ωj |z, ωi|x] ⪰ x if x ⪰ y
⇔ [u(x)− u(y)]max

p∈M

p(ωj)

p(ωi)
≤ u(z)− u(x).

A.7.2 Necessity

Now we prove the necessity of P2 and P3. Consider P2 first. For any belief
q ∈ ∆(Ω), if p ∈ ∆(Ω) is the Bayesian updating of q given signal s and likelihood
function ℓ, then for any states ωi, ωj ,

p(ωj)

p(ωi)
=

ℓ(s|ωj)

ℓ(s|ωi)
× q(ωj)

q(ωi)
.

Hence Ms = BU(M0, ℓ, s) implies

max
p∈Ms

p(ωj)

p(ωi)
=

ℓ(s|ωj)

ℓ(s|ωi)
× max

q∈M0

q(ωj)

q(ωi)
.

Fixing any i, we have∑
s∈S

ℓ(s|ωi) max
p∈Ms

p(ωj)

p(ωi)
=

∑
s∈S

ℓ(s|ωi)×
ℓ(s|ωj)

ℓ(s|ωi)
× max

q∈M0

q(ωj)

q(ωi)
= max

q∈M0

q(ωj)

q(ωi)
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for any j ̸= i. Hence the vector
(
maxq∈M0

q(ωj)
q(ωi)

)
j ̸=i

∈ R|Ω|−1 is in the convex hull

of

{(
maxp∈Ms

p(ωj)
p(ωi)

)
j ̸=i

: s ∈ S
}
.

For all s ∈ S and all j ̸= i, because{
x ⪰s [f(ωj), ωj |ysj , ωi|x];
x⪰̄s[f(ωj), ωj |ysj , ωi|x] if f(ωj) ⪰s x

,

we have

[u(x)− u(f(ωj))] max
p∈Ms

p(ωj)

p(ωi)
≥ u(ysj )− u(x).

Thus, for all s ∈ S,∑
j ̸=i

[u(x)− u(f(ωj))] max
p∈Ms

p(ωj)

p(ωi)
≥

∑
j ̸=i

[u(ysj )− u(x)].

Because
∑

j ̸=i

ysj
|Ω|−1 =

∑
j ̸=i

y0j
|Ω|−1 , we have

∑
j ̸=i u(y

s
j ) =

∑
j ̸=i u(y

0
j ). Conse-

quently, ∑
j ̸=i

[u(x)− u(f(ωj))] max
q∈M0

q(ωj)

q(ωi)
≥

∑
j ̸=i

[u(y0j )− u(x)].

This implies that

∃j ̸= i, [u(x)− u(f(ωj))] max
q∈M0

q(ωj)

q(ωi)
≥ u(y0j )− u(x).

Therefore,

∃j ̸= i,

{
x ⪰0 [f(ωj), ωj |ysj , ωi|x];
x⪰̄0[f(ωj), ωj |ysj , ωi|x] if f(ωj) ⪰0 x.

We have established P2.
Now we check P3. By Proposition 2.1, Ms = BU(M0, ℓ, s) implies that f ℓ,s

x ⪰0

x ⇔ f ⪰s x. Fix any i. Suppose that{
[yj , ωj |g(ωj), ωi|x]⪰̄sx;

[yj , ωj |g(ωj), ωi|x] ⪰s x if x ⪰s yj
and

{
x ⪰0 [yj , ωj |f(ωj), ωi|x];
x⪰̄0[yj , ωj |f(ωj), ωi|x] if yj ⪰0 x

for all j ̸= i. Then

u(g(ωj))− u(x) ≥ [u(x)− u(yj)] max
p∈Ms

p(ωj)

p(ωi)
= [u(x)− u(yj)]

ℓ(s|ωj)

ℓ(s|ωi)
max
q∈M0

q(ωj)

q(ωi)

≥ ℓ(s|ωj)

ℓ(s|ωi)
[u(f(ωj))− u(x)].
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Hence

u(g(ωj)) ≥
ℓ(s|ωj)

ℓ(s|ωi)
u(f(ωj)) +

[
1− ℓ(s|ωj)

ℓ(s|ωi)

]
u(x) ∀ j ̸= i.

Moreover, f(ωi) = g(ωi) by assumption. Thus, g state-by-state dominates the act(
ℓ(s|ωj)
ℓ(s|ωi)

f(ωj) +
[
1− ℓ(s|ωj)

ℓ(s|ωi)

]
x
)|Ω|

j=1
. Note that

ℓ(s|ωi)

(
ℓ(s|ωj)

ℓ(s|ωi)
f(ωj) +

[
1− ℓ(s|ωj)

ℓ(s|ωi)

]
x

)|Ω|

j=1

+ (1− ℓ(s|ωi))x = f ℓ,s
x .

Hence

x ⪰0 g ⇒ x ⪰0

(
ℓ(s|ωj)

ℓ(s|ωi)
f(ωj) +

[
1− ℓ(s|ωj)

ℓ(s|ωi)

]
x

)|Ω|

j=1

⇒ x ⪰0 f
ℓ,s
x ⇒ x ⪰s f.

Suppose instead{
x ⪰s [yj , ωj |g(ωj), ωi|x];
x⪰̄s[yj , ωj |g(ωj), ωi|x] if yj ⪰s x

and

{
[yj , ωj |f(ωj), ωi|x]⪰̄0x;

[yj , ωj |f(ωj), ωi|x] ⪰0 x if x ⪰0 yj

for all j ̸= i. Then

u(g(ωj))− u(x) ≤ [u(x)− u(yj)] max
p∈Ms

p(ωj)

p(ωi)
= [u(x)− u(yj)]

ℓ(s|ωj)

ℓ(s|ωi)
max
q∈M0

q(ωj)

q(ωi)

≤ ℓ(s|ωj)

ℓ(s|ωi)
[u(f(ωj))− u(x)].

Hence

u(g(ωj)) ≤
ℓ(s|ωj)

ℓ(s|ωi)
u(f(ωj)) +

[
1− ℓ(s|ωj)

ℓ(s|ωi)

]
u(x) ∀ j ̸= i.

Thus, the act
(
ℓ(s|ωj)
ℓ(s|ωi)

f(ωj) +
[
1− ℓ(s|ωj)

ℓ(s|ωi)

]
x
)|Ω|

j=1
state-by-state dominates g. We

have

g ⪰0 x ⇒
(
ℓ(s|ωj)

ℓ(s|ωi)
f(ωj) +

[
1− ℓ(s|ωj)

ℓ(s|ωi)

]
x

)|Ω|

j=1

⪰0 x ⇒ f ⪰s x.

We have established P3.

A.7.3 Sufficiency

Let |Ω| = N . For each j = 1, · · · , N − 1, let

ϕ0
j = max

q∈M0

q(ωj)

q(ωN )
and ϕs

j = max
p∈Ms

p(ωj)

p(ωN )
∀ s ∈ S.
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Let ϕ0 = (ϕ0
j )

N−1
j=1 ∈ RN−1 and ϕs = (ϕs

j)
N−1
j=1 ∈ RN−1.

Claim that P2 implies that ϕ0 lies in the relative interior of the convex hull
of {ϕs : s ∈ S}. If not, then by a separating hyperplane theorem, there exists
r ∈ RN−1 and k ∈ R such that (i) ϕs · r ≥ k for all s ∈ S, (ii) ϕs · r > k for some
s ∈ S, and (iii) ϕ0 · r ≤ k.

For any s ∈ S, take (ksj )
N−1
j=1 ∈ RN−1 such that (i) ϕs

jrj ≥ ksj for all j =

1, · · · , N − 1, and (ii)
∑N−1

j=1 ksj = k.

Take (k0j )
N−1
j=1 ∈ RN−1 such that (i) ϕ0

jrj ≤ k0j for all j = 1, · · · , N − 1, and (ii)∑N−1
j=1 k0j = k.
Fix x ∈ X. Consider any s ∈ S. Let f be an act such that u(x)− u(f(ωj)) =

rj for all j = 1, · · · , N − 1. Let ysj ∈ X satisfying u(ysj ) − u(x) = ksj for all
j = 1, · · · , N − 1. We have

∀ j ∈ {1, · · · , N − 1}, ϕs
jrj ≥ ksj

⇔∀ j ∈ {1, · · · , N − 1}, [u(x)− u(f(ωj))] max
p∈Ms

p(ωj)

p(ωN )
≥ u(ysj )− u(x)

⇒∀ j ∈ {1, · · · , N − 1},

{
x ⪰s [f(ωj), ωj |ysj , ωN |x];
x⪰̄s[f(ωj), ωj |ysj , ωN |x] if f(ωj) ⪰s x.

Let y0j ∈ X satisfying u(y0j )− u(x) = k0j for all j = 1, · · · , N − 1. We have

∀ j ∈ {1, · · · , N − 1}, ϕ0
jrj ≤ k0j

⇔∀ j ∈ {1, · · · , N − 1}, [u(x)− u(f(ωj))] max
q∈M0

q(ωj)

q(ωN )
≤ u(y0j )− u(x)

⇒∀ j ∈ {1, · · · , N − 1},

{
[f(ωj), ωj |y0j , ωN |x]⪰̄0x;

[f(ωj), ωj |y0j , ωN |x] ⪰0 x if x ⪰0 f(ωj).

We have found a violation of P2. Therefore, we must have ϕ0 in the relative
interior of the convex hull of {ϕs : s ∈ S}.

Let (λs)s∈S be such that (i) λs ∈ (0, 1) for all s ∈ S, (ii)
∑

s∈S λs = 1, and
(iii) ϕ0 =

∑
s∈S λsϕ

s. Let ℓ(s|ωN ) = λs and ℓ(s|ωj) = λsϕ
s
j/ϕ

0
j for each s ∈ S and

each j ∈ {1, · · · , N − 1}. Observe that ℓ(s|ω) > 0 and
∑

s∈S ℓ(s|ω) = 1 for all
s ∈ S and ω ∈ Ω.

Now we verify that Ms = BU(M0, ℓ, s). By Proposition 2.1, it is equivalent

to show f ℓ,s
x ⪰0 x ⇔ f ⪰s x. Take any act f and constant act x. Let g be such

that

g(ω) :=
ℓ(s|ω)
ℓ(s|ωN )

f(ω) +

[
1− ℓ(s|ω)

ℓ(s|ωN )

]
x ∀ ω ∈ Ω.
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For every j < N , pick yj such that

u(x) =
u(yj) +

1
ϕ0
j
u(f(ωj))

1 + 1
ϕ0
j

.

Then we have
u(f(ωj))− u(x)

u(x)− u(yj)
= ϕj

0

and

ℓ(s|ωj)
ℓ(s|ωN )u(f(ωj)) +

[
1− ℓ(s|ωj)

ℓ(s|ωN )

]
u(x)− u(x)

u(x)− u(yj)
=

ℓ(s|ωj)

ℓ(s|ωN )
× ϕ0

j = ϕs
j .

Thus,

u(f(ωj))− u(x) = [u(x)− u(yj)] max
q∈M0

q(ωj)

q(ωN )

and

u(g(ωj))− u(x) = [u(x)− u(yj)] max
p∈Ms

p(ωj)

p(ωN )
.

Therefore, we have{
[yj , ωj |g(ωj), ωi|x]⪰̄sx;

[yj , ωj |g(ωj), ωi|x] ⪰s x if x ⪰s yj
and

{
x ⪰0 [yj , ωj |f(ωj), ωi|x];
x⪰̄0[yj , ωj |f(ωj), ωi|x] if yj ⪰0 x

.

We also have{
x ⪰s [yj , ωj |g(ωj), ωi|x];
x⪰̄s[yj , ωj |g(ωj), ωi|x] if yj ⪰s x

and

{
[yj , ωj |f(ωj), ωi|x]⪰̄0x;

[yj , ωj |f(ωj), ωi|x] ⪰0 x if x ⪰0 yj
.

By P3, we have g ⪰0 x if and only if f ⪰s x. Since ℓ(s|ωN )g+(1−ℓ(s|ωN ))x = f ℓ,s
x ,

we obtain f ℓ,s
x ⪰0 x ⇔ f ⪰s x. This completes the proof.
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