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1 Introduction

Jump bidding, or increasing the bid with more than the minimum bid increment is observed in a wide

range of auctions, from FCC wireless spectrum auctions (Cramton, 1997) to online auction settings

(Easley and Tenorio, 2004) and has been called “an endemic feature of real-world ascending auctions”

(Grether et al., 2015). This despite the fact that the opposite strategy of incremental bidding –

increasing the bid with the minimum bid increment until your valuation is reached – is often thought

to be the dominant strategy in these auctions (Isaac et al., 2007). Grether et al. (2015) hence conclude

that the ubiquity of jump bidding presents a puzzle for standard auction theory. The literature to

date offers two main explanations for the prevalence of jump bidding: a desire to speed up the auction

process (Isaac et al., 2007; Plott and Salmon, 2004), and a motive to signal one’s (high) private

valuation for an item to prevent entry or bidding by others (Avery, 1998; Easley and Tenorio, 2004;

Daniel and Hirshleifer, 2018).

Note: For expository clarity, the figure shows the bid distribution for jump bids in the range e1-101. This range covers
96.21% of all 2, 279, 212 jump bids in the data. Similar spikes at multiples of five occur at higher values.

Figure 1: Histogram of all jump bids in the range e1-101.

As a first main contribution we present new data from a large business to consumer (B2C) first-price

auction platform in the Netherlands in which the aforementioned motives for jump bidding are by and

large absent yet around 43% of all submitted bids are jump bids. This presents another puzzle because
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in the studied setting jump bids cannot speed up the auction process and no successful signalling seems

to be going on. Furthermore, the data show that more than half of the jump bids (57.5%) are towards

a multiple of five euro, see Figure 1. In fact, our data not only show an overrepresentation of multiples

of five in the set of jump bids, but also in the set of all bids, the set of early bids, the set of last second

bids, and in the set of winning bids.

Existing models of jump bidding do not explicitly link jump bids to round number biases.1 We

hypothesize that next to strategic motives, behavioural considerations that generate round number

biases play an important role in explaining the prevalence of jump bidding. As a second main contri-

bution, we examine and test the implications of different behaviorial theories on the decision to bid

a round number. The literature suggests several reasons why round numbers play a role in markets:

left-digit bias (Lacetera et al., 2012; Busse et al., 2013; Repetto and Soĺıs, 2020), round (mental)

budgets (Argyle et al., 2020), round reference points or goals (Pope and Simonsohn, 2011; Allen et al.,

2017), a preference to pay round amounts (Lynn et al., 2013), round numbers reflecting uncertainty or

being the salient choices from an imprecision interval (Manski and Molinari, 2010; Butler and Loomes,

2007), focal points in negotiation Pope et al. (2015), picking a round number may be associated with

a lack of effort or a lack of knowledge (Herrmann and Thomas, 2005), clustering at round numbers

may reflect satisficing behaviour where round numbers may be ’good enough’ (Gideon et al., 2017)

or round numbers may give a signal about someone’s valuation (Backus et al., 2019). The strategic

setting of the auctions could strengthen the impact of some of these explanations. For example, even

if a person does not have a round budget, the person may jump toward a round number to drive others

with round budgets out of the market.

A reduced form analysis provides strongly suggestive evidence that bidders who win an auction

with a multiple of five bid tend to overbid. For example, when we simply split winning bids for every

item into above and below average winning bids, multiples of five are more prominent in the set of

above average winning bids. Also, regressing the winning bid in an auction on a rich set of auction

and bid characteristics and plotting the residuals shows positive residuals at multiples of five, which is

indicative of overbidding. The reduced form estimates indicate that multiple-5 bidders tend to overbid

by on average 5%. This is more in line with an lack of knowledge or attention explanation for round

1For example, the bid with which Julianus won the auction of the Roman empire is an often-used example of a (naive)
jump bid (Klemperer and Timin, 2001; Offerman et al., 2022) but the fact that this final bid of 20,000 sesterces is a
round number bid has been ignored.
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bidding than with a signaling or round budget explanation. Further evidence in line with a lack of

knowledge explanation is that bidders get less likely to bid multiples of five with experience. Also, for

a given item, experienced bidders win auctions with on average lower bids, suggesting that experience

lowers the tendency to overbid.

An auction setting may amplify the impact of behavioral biases, because it ‘fishes out the fools’

who overbid (Malmendier and Szeidl, 2020). Malmendier and Lee (2011) and Malmendier and Szeidl

(2020) show that a relatively small fraction of overbidders suffices for a large fraction of auctions to end

with overbidding. So, a relatively small fraction of bidders with round number biases that cause them

to overbid may have a large impact on auction outcomes. To identify the population share of biased

and non-biased bidders, we construct a structural model that we apply to the empirical distribution

of winning bids. This is the third main contribution we make. The structural estimates determine

for a range of different auction items the fraction of multiple-5 bidders with round number bias in

the population and to quantify the loss in expected surplus that these bidders experience compared

to non-biased bidders with the same valuation for the item. This allows us to answer the question

whether these bidders strike on average a better or worse deal than other bidders and to distinguish

between several round number bias explanations. On the one hand, round number bidders may strike

a good deal if bidders set a round budget to prevent themselves from overbidding in the heat of the

moment, or if round bidders successfully scare away competitors by signalling a high valuation. On

the other hand, if round bidding is the result of a lack of effort or attention or if round bids are placed

by bidders who think that bidding a round number is ’good enough’ instead of bidding more precise,

round winning bidders may on average strike a bad deal. Hence, these explanations lead to different

predictions regarding whether bidding round numbers leads to overbidding or not.

The remainder of this paper is structured as follows: in section 2 we discuss our data, in section 3 we

discuss the extent of round and jump bidding in our data, in section 4 we discuss how different round

number biases may impact bidding and derive hypotheses, and in section 5, we analyse multiple-5

bidding in more detail.
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2 Data

The auction data in this paper comes from a large Dutch online Business-to-Consumer (B2C) auction

platform and contains auctions and bids submitted between November 8th 2016 and April 6th 2017.2

The set up of the platform and the rules that govern the individual auctions have a number of

attractive features for studying bidding behavior in general and for identifying behavioral motives to

jump bid in particular. First, the site hosts auctions for a wide range of items, from overnight stays

in hotels, to concert tickets, headphones, and watches. The empirical patterns we find are observed

across items, which speaks for the generality of our findings. Second, all auctions have a fixed end

time (hard closing rule).3 This ensures that jump bids cannot speed up the auction process. The

hard closing rule also makes signalling more difficult, because there always is a threat of a last-second

bid that leaves the highest standing bidder without time to respond. Hence, early signalling is less

effective in discouraging competition because competitors can simply wait until the last seconds to

place a bid that cannot be challenged by the initial bidder. Our data show that most auctions are won

by bids in the final seconds and not by bidders who place early (jump) bids, suggesting that signalling

is indeed not successful.4 Third, most items are auctioned repeatedly, resulting in many observations

per item. This allows us to calculate a good benchmark for item value and to use a rich set of fixed

effects in our analysis. Finally, bidders can only bid integer amounts and the maximum bid increment

is e50.5 This discretization of the strategy set simplifies the analysis.

Table 1 contains summary statistics at the item-, auction-, and bid-level. Our dataset contains

5, 304, 211 bids, spread over 678, 449 auctions, for a total of 2, 502 different items. Winning prices are

typically relatively low, the mean winning bid is around e26.6, and 99.0% of winning bids are below

e150. The average auction length is around 116 minutes, and around 28% of auctions last 10 minutes

or less. The average bid increment is 3.40 euro, and 43% of bids is a jump bid.

2From our raw dataset, we exclude a small amount of items and auctions. We drop auctions which last longer than
1 day (1136 auctions, or 0.15%), and a small amount of auctions for which the first bid was recorded incorrectly (142
auctions, or 0.02%). Also, we exclude items for which less than 30% of the auctions has at least 2 bids. We do this to
exclude items that are not that popular and have many of their auctions end with a winning bid at the lowest possible
value of e1. This exclusion criterion results in us dropping 77 items (2.99% of items), which entails 118.922 auctions
(14.91% of auctions) and 145.603 bids (2.67% of bids).

3The bidder who submitted the highest bid when the timer hits 0 wins the auction and pays her bid plus administration
costs (around e5) and potentially shipping costs for items that need to be physically transported to the winner (also
around e5).

4Around 81% all bids are placed before the final five seconds of an auction yet the winning bid is placed in the final
5 seconds in about 81% of all auctions.

5Bidders can observe the highest bid submitted so far and the bid history.
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Table 1: Summary statistics

Minimum Maximum Mean Median Total
Item level Items 2,502

Auctions per item 1 13480 271 90 -
Bids per item 5 110999 2120 769 -
Average Winning Bid (euro) per item 1.77 2533.67 40.76 21.50 -

Auction level Auctions 678,449
Bids per auction 1 118 7.83 7 -
Winning Bid (euro) 1 4814 26.64 19 -
Auction duration (minutes) 1 1440 115.76 33 -

Bid level Bids 5,304,211
Bid increment 1 50 3.4 1 -
Jump bid (%) - - 42.97 - -
Bid placed in Final Stage (%) - - 19.15 - -
Winning Bid placed in Final Stage (%) - - 81.12 - -

Notes: The entries denote summary statistics at three different levels: item level, auction level, and bid level.

Throughout, we distinguish between what we call the “Early Stage” of an auction and the “Final

Stage”. In the Early Stage, bidding happens sequentially and bidders have time to observe and respond

to bids placed by opponents. In the Final Stage, it is likely that bidders do not have sufficient time

to respond to new bids because of the hard closing rule. Hence, the auction in these final seconds

resembles a sealed-bid first price auction in which bidders need to take into account what others may

do simultaneously. Ockenfels and Roth (2006) make a similar distinction between early sequential

bidding and a final simultaneous bid phase.6 We define the Final Stage as the final five seconds of

an auction.7 Figure 2 shows the empirical distribution of time remaining in seconds when bids are

submitted, for winning bids and all bids separately.8 Auctions are often won by bids placed in the

final five seconds (about 81% of all auctions), despite the fact that the fast majority of bids (around

81%) is placed before these final seconds. The prominence of the final five seconds is not limited to

short auctions. Also in one-hour, two-hour, and three-hour auctions, 81%, 78%, and 78% of winning

bids, respectively, are placed in the final five seconds.

6TO DO: add something about empirical auction papers disregarding this early stage, hickman papers etc.
7TO DO: In Online Appendix Section XX we show that changing the cut-off from the final five seconds to the final

2, 3, . . . , 10 seconds leaves our results unaltered.
8Note that taking the final five seconds as the terminal sealed-bid period sets us apart from other papers. For example,

in Bodoh-Creed et al. (2021) the final stage sealed-bid auction is specified as the last 60 minutes in an auction, and in
Hickman et al. (2017) it is defined as the final 30 minutes. These five seconds suggests themself from our specific data:
in our data, 81% of winning bids is placed in the final five seconds. Compare that with the eBay data in Bodoh-Creed
et al. (2021), where 85% of winning bids is placed within the final 60 minutes. So, we choose a relatively comparable
cut-off when looking at the amount of winning bids inside versus outside the Final Stage. Compared to taking the final
60 minutes, we feel that a sealed-bid assumption is more justified in our setting.
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Figure 2: Empricial distribution of seconds remaining when bids are submitted

3 Round number bidding and jump bidding

Next, we discuss jump bids and round (multiple of five) bidding. Table 2 shows some selected statistics.

Jump bids and multiples of five feature very prominently: 42.97% of bids are jump bids, 30.58% of

bids are multiples of five, and 57.51% of jump bids is towards a multiple of 5. Out of all winning bids,

32.81% is a multiple-5 bid. If bids would be distributed uniformly, around 20% of bids would be a

multiple of five. A simple binomial test clearly rejects the null that the actual percentage of 33% is

equal to 20% (p < 0.0001). With 10% out of all bids, bids one euro below a multiple of 5 (M5−) are

underrepresented (18% of all bids is one euro above a multiple of 5 (M5+)). If we classify all bids

above two as M5, M5+, ’M5 + 2’,M5−, and ’M5 − 2’, and run a Pearson chi-square test, the null

hypothesis of equal frequencies is firmly rejected (p < 0.0001).

To further visualize and quantify the prominence of M5 bids, we use an approach similar to Pope

et al. (2015). First, we compute for each bid value the number of bids and the number of winning bids,

and regress the log of these numbers on a high-order polynomial function of the bid value and next

plot the residuals.9 This allows us to eliminate a smooth, underlying distribution of bid values and

to look at unexplained differences. Figure 3 plots these residuals. In this figure, the M5 bids clearly

9In these graphs and in the regression below, we focus on bids below 200 because of the limited amount of observations
above this bid value, reported patterns are very similar without this restriction.
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Table 2: Selected statistics on round and jump bids

Percentage that is:
Percentage of all Multiple-5 Winning Jump Submitted in
5, 304, 211 bids. Bid Bid Bid Final Stage

All bids 100.00 30.58 12.79 42.97 19.15

Multiple-5 30.58 100.00 13.72 80.81 19.09
Non Multiple-5 69.42 0.00 12.38 26.30 19.17

Winning bids 12.79 32.81 100.00 60.59 81.12
Non-winning bids 87.21 30.26 0.00 40.39 10.06

First bid in auction 12.79 22.00 4.82 36.42 2.00

Jump bids 42.97 57.51 18.03 100.00 26.67
Non-jump bids 57.03 10.29 8.84 0.00 13.48
Large jump bids (increase ≥ 5) 18.68 72.60 14.96 100.00 18.84

Early Stage (outside final 5 seconds) 80.85 30.61 2.99 38.97 0.00
Final Stage (final 5 seconds) 19.15 30.49 54.19 59.86 100.00

stand out, as well as the M5− and M5+ bids. M5 bid values all have positive residuals, confirming

the clustering of bids at multiples of five. M5− bid values generally have negative residuals, and M5+

bid values tend to have positive residuals.

To quantify the clustering of multiple of 5 bids, we run a similar regression with multiple of 5 and

10 dummies. Specifically, we run the following regression specification:

Qj = θF 7(bj) + β1M
5
j + β2M

10
j + ϵj (1)

The dependent variable Qj is the (log) total number of bids at each bid value. The first term

on the right hand side is the seventh-order polynomial in bid value. The Mm
j terms are indicator

variables for bid values divisible by m = 5 and m = 10, respectively. These terms are additive: bid

values that are divisible by 10 are by definition also divisible by 5.

Table 3 shows the regression results for winning bids and all bids separately. Since the unit of

observation is the bid value and we focus on bids of 200 euro and below, we have 200 observations

for these regressions. Consistent with the pattern revealed in Figure 3, the coefficient for M5 is

significantly and strongly positive for both Winning Bids and All Bids. Multiples of ten stand out

slightly in addition to multiples of five, but not significantly for winning bids. The Mult10 coefficient
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Figure 3: Residual log number of bids for each bid value.

Notes: M5: Multiple of 5 bids, M5+: Bids one euro above a multiple of 5, M5-: Bids
one euro below a multiple of 5.

also becomes insignificant for all bids when we exclude bids of 100, 150, 200, which stand out in

particular in Figure 3.

3.1 Bid Paths

The prominence of multiples of five also shows up in the ‘bid paths’, i.e. how the standing bid develops

throughout an auction. Table 4 shows for a given ‘Current Bid’ the percentage of bids that are equal

Table 3: Regression results

(1) (2)
VARIABLES Log Winning Bids Log All Bids

Mult5 1.353*** 1.269***
(0.124) (0.124)

Mult10 0.271 0.425**
(0.166) (0.166)

Observations 200 200
R-squared 0.950 0.948
Seventh order polynomial in price YES YES

Notes: Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1
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to ‘Next Bid’. For clarity, we limit attention to current bids and next bids in the range e1-15.10 If

we examine the jump bids, the multiples of five (5, 10, and 15) clearly stand out compared to the

numbers around them. For example, for a current bid of 1, 12.21% of next bids is equal to 5, while

only 1.73% and 0.81% of next bids are 4 or 6, respectively. Multiples of 5 also stand out diagonally:

for example, when we focus on bids that advance the Current Bid by three, 3.37% of Next Bids are

+3 if the Current Bid is 6, 16.54% if the Current Bid is 7, and 4.46% if the Current Bid is 8 (the

red-colored number in Table 4). In short, bidders often forward the bid towards a (the next) multiple

of five.

Table 4: Percentage of bids that is equal to Next Bid for given Current Bid

Next Bid
Current Bid 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0/first bid 63.58 6.53 1.76 0.81 9.41 0.50 0.53 0.65 0.43 4.82 0.50 0.50 0.20 0.19 2.27
1 61.95 7.22 1.73 12.21 0.81 0.69 0.85 0.52 4.52 0.57 0.50 0.21 0.19 2.05
2 62.75 6.51 15.35 1.31 0.93 1.09 0.57 4.41 0.49 0.50 0.18 0.16 1.57
3 57.94 24.99 2.64 1.70 1.49 0.73 4.51 0.54 0.46 0.18 0.14 1.42
4 73.05 8.92 3.29 2.89 0.99 5.43 0.67 0.51 0.18 0.15 1.35

5 62.78 10.25 5.23 1.79 10.15 1.07 0.83 0.29 0.21 2.44
6 60.20 13.88 3.37 13.25 1.53 1.19 0.33 0.26 2.39
7 63.21 9.12 16.54 2.48 1.81 0.53 0.36 2.66
8 55.42 28.42 4.46 3.35 0.98 0.57 3.46
9 69.85 11.40 7.05 1.91 1.04 5.09

10 58.17 15.69 3.14 1.69 11.79
11 60.07 9.20 3.55 17.09
12 54.03 9.71 23.27
13 47.87 34.96
14 71.17

Notes: Table denotes for a given Current Bid the percentage of bids that is equal to a certain Next Bid.

4 Hypotheses

In this section, we discuss what might motivate round number multiple-5 (jump) bidding in either the

early stage or final seconds of an auction. To streamline thinking, we first present a stylized version of

the auction that is the focus of this study. Next, we introduce a model of individual decision making

that helps us to trace out the power of various motives for round number bidding in explaining the

pattern of round number (jump) bidding that we observe in our data. We also discuss the strategic

response to round number jump bidding by bidders not susceptible to round number biases.

In the auctions that we consider, bids need to be integer numbers {1, 2, . . .}. Due to the hard closing

10Similar tables in appendix C for current bids in the range e45-55 and e95-105 show patterns very similar to the one
in Table 4.
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rule, and similar to Ockenfels and Roth (2006), we distinguish two stages in the bidding process. In

the first stage (“Early Stage”), bidders can bid sequentially and have time to respond to each other.

The highest bid at the end of this stage becomes the standing bid at which the second stage (“Final

Stage”) starts. In this stage, bidders have only time to place one more bid and do not have time to

respond to new bids submitted by other bidders. This final stage resembles a sealed-bid first price

auction. The highest bid at the end of the auction wins, and the highest bidder pays her bid. In case

two highest bidders bid the same amount in this stage, chance will determine who wins.

Bidders in the final stage face a decision-problem that can be formulated in a very generic way as

follows:

max
bi

Si(bi) = max
bi

P (bi)(vi − bi) (2)

s.t. bi ≤ M, bi > bs, bi ∈ {bs + 1, bs + 2, . . .},

with M the bidder’s budget, bs the standing bid at the start of the final stage, and {bs+1, bs+2, . . .}

the bidder’s choice set. Bidders choose their bid bi with the objective to maximize their expected

surplus Si(bi). For a given private valuation for the item vi and without any round number biases,

the expected surplus of placing a final stage bid bi is given by P (bi)(vi − bi), where P (bi) reflects the

probability to win the auction with bid bi.

Early Stage bids determine the standing bid bs with which the Final Stage starts and win the

auction in case there are no Final Stage bids. The strategic considerations in the Early Stage differ

from those in the Final Stage because if another bidder outbids a bid bi in the Early Stage, bidder

i can respond by submitting a higher bid in either the Early or Final Stage. Bidders are likely to

take this option value of bidding again into account. This is why incremental bidding instead of jump

bidding is often considered to be the dominant strategy in sequential auctions.

We examine the impact of different round-number biases on bidding strategies and bidding behavior

by making explicit how each bias or motive alters the decision problem in (2). In particular we consider

the explanatory power of each motive to explain the highly frequent round number (jump) bids that

we empirically observe, both in the Early and Final Stage. To which extent does a motive generate

an upward or downward shift in round-number winning bids compared to other winning bids? We

explore the following explanations:
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1. Left digit bias/inattention to non-round numbers

2. Round valuations

3. Round budgets

4. Round reference prices

5. Round signalling

6. Limited attention/effort and satisficing

7. Uncertainty or a selection from an imprecision interval

8. Preference to pay round amounts

The implications of each explanation for observed round number bidding are summarized in Table 5.

The final column indicates whether bidders who win an auction with a multiple-5 bid are predicted

to strike a relatively good (-) or bad (+) deal when compared to bidders who win the same item with

a bid that is not a multiple of five.

1. Left digit bias/inattention to non-round numbers Left-digit bias is the phenomenon that

a price of e19,99 seems much lower than a price of e20 because individuals tend to focus only on the

left digit and to disregard the rest of the number. Left-digit bias has been shown to play a role on

the market for used cars (Lacetera et al., 2012; Busse et al., 2013), on the stock market (Sonnemans,

2006), and on the market for apartments (Repetto and Soĺıs, 2020). In auction settings, left-digit bias

can feed into the decision in two ways: i) it can alter the (perceived) probability P (bi) to win the

auction, and ii) it can alter the perceived pay-off vi − bi in case of winning the auction. We work out

both cases in turn, where we first focus on Final Stage bids and turn to Early Stage bids next.

If left-digit bias affects the (perceived) probability to win, bidders perceive the chances of winning

with a bid of 30 as much higher than the chances of winning with a bid of 29. Following Chetty et

al. (2009), and Lacetera et al. (2012) in particular, we deconstruct a bid as the sum of its assorted

base-10 digits. If bidders have left-digit bias, they give more attention to the leftmost digit than to

the other digits. Suppose bids have two digits, and that the value of the leftmost digit is given by d2

12



and the value of the second digit by d1. Then the perceived value of a bid bi ≡ d2d1, b̃i, is given by:

b̃i(bi) = 10d2 + (1− ϕ)d1,

where ϕ ∈ [0, 1] is the inattention parameter.11 A bid of 29 is then perceived as b̃i(29) = 20+(1−ϕ)9,

and a bid of 30 as b̃i(30) = 30.

In this form, left-digit basis however cannot explain the prominence of numbers ending with a 5

that we observe in our data. Yet if bidders not necessarily pay differential attention to different digits,

but instead think in round numbers or multiples of 5, they may perceive numbers to be considerably

higher when they pass the next multiple of 5 but may be inattentive to the numbers that are in

between. In that case, the perceived value of a bid bi is given by:

b̂i(bi) = 5

⌊
bi
5

⌋
+ (1− ϕ)

(
bi − 5

⌊
bi
5

⌋)
(3)

with again ϕ ∈ [0, 1] the inattention parameter. For ϕ > 0, b̂i(bi) ≤ bi with b̂i(bi) = bi if and only if

bi = 5
⌊
bi
5

⌋
. For example, a bid of 29 is processed as b̂i(29) = 5 · 5 + (1− ϕ)(29− 25) = 25 + (1− ϕ)4,

and a bid of 30 as b̂i(30) = 30. The subjective expected surplus from bidding in (2) becomes Si(bi) =

P (b̂i(bi))(vi− bi). The replacement of bi by b̂i(bi) has the effect of creating discontinuous jumps in the

perceived probability to win the auction at every multiple of 5.

As an example, consider a private-value auction with two risk neutral agents with i.i.d. valuation

draws from a common uniform distribution with domain [0, v̄]. Standard theory (see e.g. Klemperer,

2004, Appendix 1.A) shows that without left-digit bias, there is a symmetric equilibrium where a

type v bidder bids b(v) = 1
2v, P (bi) = 2bi/v̄ with bi ∈ [0, 12 v̄]

12 and expected surplus S(b(v)) =

2b(v)
v̄ (v − b(v)) = v2/2v̄. When the objective bid bi in probability distribution P () is replaced by

the perceived bid b̂i(bi) from equation (3), the resulting probability distribution P (b̂i(bi)) =
2b̂i
v̄ will

jump upward discontinuously at bids that are multiples of 5. The expected surplus of bidding non

multiple-5 values is lower than in the benchmark case, creating incentives to bid round numbers. The

question is whether bidders who bid a non multiple-5 b(v) in the benchmark case will jump towards

11Lacetera et al. (2012) work out the more general case that allows for more digits and also discusses the case where
potentially a second digit gets more attention than a third digit etcetera. Adding more digits does not change the
intuition. Moreover, 97% of all bids in our data are below 100 such that the two digit case captures most bids.

12P (bi) = P (bi > bj) = P (vi/2 > vj/2) = P (vj < vi) = vi/v̄ = 2bi/v̄, where the final step follows from inserting
bi = vi/2.
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the next multiple (increasing their chances of winning but decreasing the margin) or lower their bid

to the previous multiple. It is easy to show that bidders will jump to the multiple-5 closest to b(v).

For example, a bidder who would bid 27 (28) without left digit bias, would bid 25 (30) with such a

bias.13

If many bidders are inattentive to non-round numbers, Final Stage bids will cluster at round

numbers, and also any Early Stage bids that bidders submit. This means that the ‘true’ P (bi) will

also show discontinuous jumps at round numbers. For example, the presence of bidders who bid 25

instead of 23 because of inattention lowers the chance of winning with a bid of 24. This in turn gives

bidders who do not suffer from inattention a strategic incentive to bid round numbers in order to be

first. In the Final Stage, unbiased bidders may be induced to bid one above the round number (M5+)

to reduce the chance to have one’s bid tied with that of another bidder.

A second channel through which left digit bias, or an inattention to non-round bids, can influence

the expected surplus is via the (perceived) net revenue vi−bi in case a bid turns out to be the winning

bid. In this case, bidders experience the incremental cost of bidding 30 instead of 29 to be considerably

higher than 1. That is, the net revenue of winning with bid bi is perceived as:

vi − b̂i(bi)

with b̂i(bi) as defined in (3). However, this is not a plausible explanation for the prominence of

multiple-5 bids because inattention now generates a reluctance instead of an eagerness to bid the next

round number. This logic holds for both Early Stage and Final Stage bidding. In addition, this also

does not give non-biased bidders a strategic incentive bidders to jump to round numbers pre-emptively

in the auction’s Early Stage. If others’ perceived revenue drops down at round numbers, these bidders

may drop out once they are forced to bid the next round number. This creates a strategic incentive

to force other bidders to do so by bidding one below the next round number (for example 29). This

would force the next bidder to bid at least 30.

13A unilateral deviation from the equilibrium bid b(v) = v/2 by d gives an expected surplus of S(b(v)+d) = S(b(v)−d) =
2(v/2 + d)(v/2 − d)/v̄. This number is decreasing in d. Together with the noting that b̂i(bi) = bi for bids bi that are
a multiple of 5, this leads to the conclusion that the bidder maximizes expected surplus by choosing the multiple 5 bid
closest to b(v).

14



2. Round valuations Round valuations are another way that round numbers could influence the

bidding process. People’s valuations may be clustered at round numbers/multiples of 5 instead of

being draws from a more continuous distribution function. A round number valuation however does

not automatically translate into a round number bid. For example, if the standing bid is 23, a bidder

with valuation v = 25 has nothing to gain from bidding 25 and should never jump bid towards her

valuation. Hence, round valuations are not a plausible explanation for the round bidding in the Early

Stage that we observe in the data. In our setting where only integer bids are admissible, a clustering

of valuations around round numbers will induce biased bidders to bid just below a multiple of 5 in

the Final Stage of the auction. This gives unbiased bidders an incentive to submit a round bid in

the Final Stage because this helps them to outbid the round valuation competitors, increasing their

chances of winning. Of course as a second order effect some unbiased bidders may anticipate this and

bid just above the multiple-5 in order to outbid other unbiased bidders.

Whether round valuations lead to higher or lower bids is not a priori clear as this critically depends

on the difference between the value distribution with and without clustering at round numbers.

3. Round budgets The bidding process can also be influenced by the fact that people have

round mental budgets in mind when bidding. In the work on mental accounting by Thaler (1985),

individuals group expenditures into categories (such as entertainment and groceries) and consider

potential expenditures within their category, with category specific budget constraints. Evidence

in line with such a mental accounting/budgeting approach has, for example, been found in online

grocery shopping (Milkman and Beshears, 2009), gasoline spending (Hastings and Shapiro, 2013), and

restaurant spending (Abeler and Marklein, 2017). Argyle et al. (2020) show that consumers’ monthly

payment amounts on auto loans tend to bunch at round numbers, which is consistent with a heuristic

budgeting approach.

In the general statement of the decision problem, equation (2), a round budget would show up in

the constraint M and create an upper-limit on what a bidder can bid. If this constraint is binding,

many bidders end up bidding round numbers in the Final Stage. These bidders bid lower amounts

than they would do without the constraint. This hurts their chances of winning but makes them likely

to win with relatively low bids when they win. When it is common knowledge that some bidders have

a round budget this creates for both bidders with and without a round budget a strategic incentive
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to jump to round numbers in the Early and Final Stage. For example, if many bidders have a budget

capped at M = 45, the first bidder to bid 45 considerably increases her chance of winning the auction.

So, round budgets also affect bidders without round budgets because they impact the P (bi) term. In

the Final Stage, this can also create discontinuous upward jumps in the P (bi) function at one above

the round numbers: if many bidders bid round numbers, either because of the constraint or because

of strategic reasons, the probability of winning the auction may jump up if one bids just above these

round numbers.

4. Round reference prices Bidders may not only derive utility from the difference between their

valuation and their bid, but also from the value of the deal, or a comparison between the price they

need to pay and some reference price. Reference prices (Thaler, 1985) can be round because round

numbers often serve as important reference points or goals for individuals, for example when running

a marathon (Allen et al., 2017) or when trading stocks (Bhattacharya et al., 2012). When placing a

bid, bidders may have some target amount, or some ’reasonable’ price for the item in mind. Bidding

more than the reference price feels like a ’bad deal’, which creates a reluctance to bid more than the

reference price.

There is an active and growing auction literature looking at the impact of reference points and

loss aversion on auctions and bidder behaviour (e.g. Dholakia and Simonson, 2005; Rosenkranz and

Schmitz, 2007; Lange and Ratan, 2010; Banerji and Gupta, 2014; Ahmad, 2015; Backus et al., 2017;

Rosato and Tymula, 2019; Balzer and Rosato, 2021; von Wangenheim, 2021). This literature has not

yet considered the link between reference points and jump bidding. This literature has looked into

reserve prices, previous auction outcomes, and endogenous (price) expectations as reference points,

but not yet at round numbers.

In the extreme case, where bidders are completely unwilling to bid more than the reference price,

the reference price essentially functions as an extra budget constraint, and the impact on the bidding

process is similar as above. The impact is rather similar when the reference price creates a reluctance

to bid more but does not impose a hard upper limit on every bidder’s budget. For example, if bidders

are reluctant to bid more than 25, bidding 25 becomes relatively attractive compared to other amounts.

In that case, bids are clustered at round numbers in both auction stages. In addition, it creates an

incentive to be the first bidder to bid 25. If sufficiently many people have the same reference price, the
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probability function of winning, P (bi), will again show discontinuous upward jumps at round numbers,

which create incentives to jump bid towards these numbers. This explanation gives bidders without a

reference point a strategic incentive to bid one above the round number in the Final Stage.

5. Round signalling Bidding round numbers may signal something different about a bidder’s val-

uation than bidding non-round numbers. Backus et al. (2019) find evidence for a cheap-talk signalling

equilibrium on eBay, where sellers signal a weak bargaining situation by setting a round (multiple of

$100) list price. Within an auction context there is no seller-buyer dynamic but instead competition

between bidders. Bidding a round number may indicate that a bidder can afford not bidding very

precise, which signals that the bidder has a much higher valuation than her bid. A signalling explana-

tion can explain the observed round number bids in the Early Stage but not in the Final Stage where

the auction resembles a sealed-bid first price auction.

A signalling explanation for Early Stage round bids requires that the (perceived) probability to win

the auction with a given bid depends on the standing bid, or previous bids placed by other bidders.

If bidding round numbers is a successful signalling tool, competing bidders will upwardly revise their

estimates of their competitors valuation and of the bids that their competitors will place, thus lowering

their estimated probability to win with a given bid. This alone will however not prevent these bidders

from placing Early or Final Stage bids up to their valuation. In order for signalling to be successful, we

need to introduce an additional element that is typically present in jump bidding models of signalling,

such as bidding costs (Daniel and Hirshleifer, 2018) or a transaction cost of entering the auction

(Easley and Tenorio, 2004). With bidding costs c, the expected surplus is zero when not placing a

bid, and

Si(bi) = P (bi)(vi − bi)− c

when placing a bid.

In this situation, a bidder will only bid if P (bi)(vi − bi) − c ≥ 0. If round numbers successfully

signal a high valuation, other bidders adjust their estimates of P (bi) downward, and more of them will

decide to drop out of the market. This gives high valuation bidders an incentive to jump towards round

numbers. It also creates incentives for mimicking behaviour, so the jump towards a round number
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should be large enough such that low valuation bidders are not willing to mimic. Yet signallers

cannot conclude from the absence of any further bids in the Early Stage that their signalling has been

successful. Due to the sealed-bid nature of the Final Stage, competitors may just wait for the Final

Stage to place a bid. So, the scope for successful signalling may be limited in this setting.14

One can empirically test this explanation by investigating whether these early multiple-5 bids

successfully signal different things than non-round bids. If so, round Early Stage bids should be more

likely to win than Early Stage non-round bids, or Early Stage round bidders should be more likely to

win the auction than Early Stage non-round bidders. If signalling is successful, this should allow the

signallers to strike a relatively good deal. The empirical observation that around 80% of winning bids

are placed in the final 5 seconds casts doubts on the success of Early Stage signalling.

6. Limited attention/effort or satisficing Bidding round numbers may also result from bidders

paying limited attention to the exact bid they are placing. People who put in less effort may be

more likely to pick round numbers (Herrmann and Thomas, 2005), or round numbers could be picked

if bidders engage in satisficing behaviour and want to pick a number that is ’good enough’ instead

of calculating the optimal bid (Gideon et al., 2017). Round numbers are salient or cognitively easy

to access. This channel could impact both (potentially irrelevant) Early Stage bids and Final Stage

consequential bids.

Especially early in the auction, bids may be far removed from ‘reasonable prices’, and the chance

that a given bid is going to win is quite low. If exerting effort to determine an optimal bid is costly, it

may be optimal not to think too much about these bids. In this situation, the exact bid is likely to be

inconsequential and bidders can pick the salient round number without too much risk. However, this

does not explain why multiple-5 bids remain prominent in the Final Stage and in the set of winning

bids. If bidders are generally inattentive, also to potentially consequential bids, round numbers may

suggest themselves as reasonable bids. Instead of meticulously determining the optimal bid, bidders

just pick a round number because they may deem a round number to be ’good enough’.

In terms of the decision process in (2), these bidders limit their choice set to multiples of 5. These

bidders pick the multiple-5 bid which is best, or choose not to bid if the multiple-5 needed to become

14See Daniel and Hirshleifer (2018) for a more formal treatment of a signalling model with bidding costs that could
lead to jump bids (without multiples of 5). It goes beyond the scope of this paper to develop such a model with round
numbers.

18



the standing bidder is too high. Clearly, this is a possible explanation for the observed multiple-5

(jump-)bids observed in both stages of an auction. Compared to bidders bidding more ’precisely’,

these bidders may bid higher or lower. They risk bidding too low (resulting in not winning the

auction), or too high (resulting in winning with an unnecessary high bid). This implies that within

the set of winning bids, the multiple-5 wining bids should stand out as relatively high.

Additionally, this channel creates strategic incentives for others to pre-emptively bid multiples of 5

in the Early Stage. By bidding a round number, bidders can force bidders with this multiple-5 choice

set to jump towards the next multiple of 5. Hence, similar as before, this creates a discontinuous jump

in the P (bi) term at multiples of 5. In the Final Stage, it creates discontinuous jumps in the P (bi)

function at multiples of 5, and potentially also just above these multiples.

7. Uncertainty/selection from imprecision interval Individuals may be uncertain about their

valuation, or about the optimal bid to place. Instead of having a point valuation, subjects may only

have a vague idea or an ’imprecision interval’ (Butler and Loomes, 2007) of their valuation. Similarly,

instead of being able to precisely calculate the optimal bid, bidders may only have a vague idea or

some rough bounds on this. The salience of a round number can cause individuals to choose that

round number from an imprecision interval (Pope et al., 2015).

The repeated nature of most auctions on the auction web site we study may reinforce the uncer-

tainty to bidders. Both Zeithammer (2006) and Backus and Lewis (2016) provide models that involve

such a sequential nature of auctions for the same or similar items. In these models, bidders shade

down their bids below their valuation to account for this option value. To determine the optimal

amount of bid shading in a current auction, a bidder needs to consider the potential entrance of new

bidders, the amount of current bidders, time costs of attending at least one more auction, etcetera.

Individuals may be uncertain about the optimal amount of bid shading. When people are uncertain,

they often round. Ruud et al. (2014) for example show that an increase in subjects’ uncertainty about

a target variable translates into higher variance of the subjects’ beliefs, which in turn results in more

rounding. Manski and Molinari (2010) state that rounding may reflect uncertainty in probabilistic

expectations.

In case of uncertain bids, the analysis is similar to the Limited attention/effort case and round

bids could come from these uncertain bidders, or could be preemptive strategic responses by other
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Table 5: Summary of implications of the various round number biases for the bidding behavior of bidders
biased and unbiased by round number influences.

Auction stage: Early Final Over/underbidding
Bidder type: Biased Unbiased Biased Unbiased by M5 winning bidders

1. Left digit bias M5 M5 M5 M5+ +
2. Round valuations - - M5- M5 (M5+) ?
3. Round budgets M5 M5 M5 M5+ -
4. Round reference prices M5 M5 M5 M5+ -
5. Round signalling M5 - - - -
6. Limited attention/effort M5 M5 M5 M5+ +
7. Uncertainty/imprecision interval M5 M5 M5 M5+ +
8. Preference to pay round amounts M5 M5 M5 M5+ +

Notes: The entries denote the following predictions of the bias for the bidding behavior: M5: multiple-5 bids. M5+ (M5−):
bids just above (below) a multiple of 5. The final column indicates whether bidders who win an auction with a multiple-5 bid are
predicted to strike a relatively good (−) or bad (+) deal in the sense that they under- or overbid when compared with winning
bids for the same item that are not multiples of 5.

bidders. In case of uncertain valuations, bidders may bid according to their perceived valuation v̂. In

that case, the analysis is similar to the Round valuation case.

8. Preference to pay round amounts Finally, people may have a preference to pay round

numbers (Lynn et al., 2013). This can be incorporated in (2) by adding an extra cost to the surplus

function when winning with a non-round bid, or a bonus when winning with a round bid. If this cost

of winning with non-round bids is sufficiently high, bidders will submit no or fewer non-round bids.

This works out quite similar to the Limited attention/effort case and hence potentially explains round

bidding in both auction stages. Additionally, it creates discontinuous jumps in the P (bi)-function at

multiples of 5. This again may create strategic incentives for bidders without a preference to pay

round numbers to bid one above a multiple in the Final Stage.

5 Reduced form analysis

This section presents a reduced form analysis of the hypotheses derived above. First, we analyse to

what extent more M5+ bidding is present in the Final Stage than in the Early Stage, which would

be consistent with strategic responses to M5 bidders. Next, we analyse whether M5 winning bids on

average result in over- or underbidding. In terms of notation, we follow Table 5, and define multiple-5

bids as M5 bids, bids one euro below a multiple of five as M5− bids, and bids one euro above a

multiple of five as M5+ bids.
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Table 5 suggests that we should observe less M5 bidding in the Final Stage than in the Early Stage

due to strategic responses to biased bidders. The raw statistics in Table 2 above seem to suggest that

M5 bidding is similar in the Early Stage and Final Stage (30.61% versus 30.49% of bids in these stages

are M5). However, these statistics hide some patterns because many Early Stage bids are equal to

one euro. When we limit attention to all bids of 5 and higher, 40% of Early Stage versus 32% of Final

Stage bids are multiples of five. Also, 64% of Early Stage jump bids is a multiple of five versus 40%

of Final Stage jump bids. So, M5 bidding indeed seems less prevalent in the Final Stage.

5.1 M5+ bidding

In the Final Stage, M5+ (jump) bidding features more prominently than in the Early Stage, consistent

with a strategic response to M5 bidders. The raw statistics do not directly suggest this: out of all

Final Stage bids, 20% is a M5+ bid, compared to 17% of Early Stage bids. While a Pearson’s χ2

test rejects the null of equal percentages (p < 0.0001), this raw statistic understates the importance

of M5+ Final Stage bids, because it combines two offsetting phenomena. On the one hand, M5+

bids stand out among all Early Stage bids, because there are relatively many M5 bids and relatively

many incremental bids in the Early Stage. 60% of Final Stage bids are jump bids, compared to 39%

of Early Stage bids. A Pearson χ2 test confirms that these are significantly different from each other

(p < 0.0001). This means that this incremental channel for M5+ bidding is less strong in the Final

Stage. On the other hand, there are more jump bids towards M5+ bid values in the Final Stage: 6%

of Early Stage jump bids are M5+ bid values, compared to 15% of Final Stage bids. Again, a Pearson

χ2 confirms that these percentages are significantly different from each other (p < 0.0001).

To investigate whether this is consistent with a strategic response to M5 bidders, it is important

to evaluate whether the increased amount of M5+ jump bids in the Final Stage really stands out or

simply reflects that all non-multiple of 5 numbers are bid relatively more often. For example, 7% of

Early Stage jump bids are towards M5− values versus 12% of Final Stage jump bids, which is also

significantly different from each other following a Pearson χ2 test (p < 0.0001). Therefore, we compare

non-multiple-5 jump bids in the Early versus the Final Stage. There are more non-multiple-5 Final

Stage jump bids towards M5+ than in the Early Stage. Out of all non-multiple-5 Early Stage jump

bids, 15.9% is a M5+ bid, compared to 25.0% of Final Stage non-multiple-5 bids (p < 0.0001 following

a Pearson χ2 test). In the Final Stage there are less non-multiple-5 ’M5− 2’ and ’M5 + 2’ jump bids
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than in the Early Stage, and there are slightly more M5− bids (19% in the Early Stage versus 20%

in the Final Stage, which is significant following a Pearson χ2 test p < 0.0001). In the Early Stage,

there are significantly less M5+ jump bids than M5− jump bids, while there are significantly more

M5+ than M5− jump bids in the Final stage. This suggests that jumping towards M5+ bid values

is more common in the Final Stage, and that this effect is not only driven by the fact that there are

less M5 jump bids.15 This is consistent with a strategic response to M5 bidders in the Final Stage.

5.2 Over/under bidding

Next, we analyse to what extent bidders who win auctions with M5 bids tend to overbid or underbid.

As a first, we express every winning bid as a percentage of the average winning bid for an item, and

plot the average percentage of the average winning bid per bid value (the average of all winning bids

of x) in Figure 4. Multiples of five winning bids are a higher percentage of the average winning bid

than surrounding numbers. This is particularly true for winning bids of 50, 100, 150, and 200.

Figure 4: Multiple of 5 bidders tend to overbid

To analyse whether multiple-5 winning bids are on average higher or lower than other winning

bids, we estimate the following regression equation:16

15To be done: Run some kind of dif-in-dif on these percentages, what test to do here?
16TO BE DONE: consider to what extent this approach is similar to what Reimers and Waldfogel (2021) do. In the
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ln(bij) = α+ β1M
5
i + β2M

10
i + β3M

Int
i + βXi + ηj + ϵij (4)

The dependent variable ln(bij) denotes the log of the winning bid in auction i for item j. Mm
i are

dummy variables indicating whether a given bid is a multiple of m = 5 or m = 10. The M Int
i indicates

whether a bid is within a e1 range from a multiple of five. This range variable absorbs all effects

of bidding in the neighbourhood of multiples of 5, so that the estimated Mm
i coefficients only pick

up the local effect of over- or under-payment within this range. In some regression specifications, we

include indicator variables for each multiple range separately. The vector Xi contains a broad set of

controls about auction characteristics: a dummy for the day on which an auction ends, a dummy for

the hour an auction ends separately for weekdays and weekend days, auction length, and the number

of bids. In some regression specifications, we also add some bid characteristics to this set of control

variables. These include the time decile during which a bid was placed and whether a bid was placed

in the Final Stage or within the final 10 seconds. ηj is an item fixed effect.

Our key coefficients of interest are β1 and β2. If bidders with winning multiples-5 bids do not

overpay or underpay, these coefficients should equal 0. A positive estimate of β1 would however

indicate that multiple-5 winning bidders tend to overpay. Table 6 shows the estimated coefficients

for different specifications of this regression equation. All specifications estimate the coefficient of the

multiple-5 dummy to be around +5%, indicating overbidding. Multiple-10 winning bids do not seem

to stand out strongly in addition to the multiple of 5, although this coefficient is significant in the

final column.17

Next, we evaluate overbidding at every multiple of five separately. We replace the Mm
i dummies

with separate dummies for every multiple of five in equation 4. Figure 5a shows the multiple-5

coefficients of this regression, using the same specification as in column (4) of Table 6. Almost all are

positive, indicating that overbidding at multiples of five is a general phenomenon not limited to a few

particular multiples of five. That said, bids of 50 and 100 definitely stand out. Winning bids of 100

tend to be more than 10% higher than can be explained by bid and auction characteristics and the

published version, I do not directly see something similar, in a working paper version I see they look at discontinuities
at star-rating where they include a continuous measure of the rating plus dummies for values at which the star rating
changes (for example at 3.8 the star rating changes from 3.5 stars to 4 stars).

17When we define MultRange as a bid withing a two euro range of a multiple of 5, the coefficients on Mult5 in the
regressions above are around 3− 4%
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Table 6: Regression of the (log of) winning bid value on multiple of 5, 10, and range dummies

(1) (2) (3) (4)
VARIABLES Log Bid Value Log Bid Value Log Bid Value Log Bid Value

Mult5 0.051*** 0.052*** 0.054*** 0.047***
(0.001) (0.001) (0.001) (0.001)

Mult10 0.001 0.001 0.002* 0.007***
(0.001) (0.001) (0.001) (0.002)

MultRange 0.106*** 0.104*** 0.103***
(0.001) (0.001) (0.001)

Constant 2.759*** 2.670*** 2.577*** 2.570***
(0.001) (0.007) (0.009) (0.009)

Observations 678,449 678,449 678,449 678,449
R-squared 0.892 0.897 0.897 0.898

ItemFE ✓ ✓ ✓ ✓
Auction Controls ✓ ✓ ✓
Bid Controls ✓ ✓
Separate Range dummies ✓

Notes: Robust standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1

fact that a bid is placed in the neighborhood of that multiple. In interpreting Figure 5a, one should

Figure 5: Coefficients on Multiples of 5.

(a) Dep. var: Log(Value Winning Bid) (b) Dep. var: Value Winning Bid

realize that for low bid values an overbidding-percentage of 10% is not very meaningful in absolute

sense. This makes it the more remarkable that for higher bid values the overbidding-percentage is not

lower. Figure 5b takes the winning bid instead of the log of the winning bid as dependent variable.

This figure shows that winning bidders with a bid of e100 on average seem to overpay by about e9.18

18As a robustness test, Appendix Figure B.1 presents the results of similar regressions where we define MultRange as
a bid within a two instead of one euro range of a multiple of five. The pictures look similar, except that the multiple-5
coefficients for bid values below e100 are slightly less pronounced, and those above e100 slightly are more pronounced.
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5.3 Experience

This subsection explores the role of bidder experience in the tendency to bid round numbers in the

Early and Final Stage, to place M5+ bids in the Final Stage, and to overbid. One caveat is that we

only observe bidders within our data collection window and not their full bid history. Hence, we may

wrongly label some bidders as inexperienced, who in fact have participated in many auctions before

our data collection window. Similarly, we do not observe if bidders first watch a couple of auctions

before placing a bid. Assuming that learning is greatest in the first few auctions in which a bidder

participates, our estimates are likely to be a lower bound on the impact of experience.

In our five month data collection window, we observe many bidders only one or a few times. From

the 552, 900 unique bidders, we observe 144, 936 bidders only once (26.21%), and 80% ten times or

less. So for many bidders we cannot say much meaningful about the role of (gaining) experience. On

the other hand, out of all bids placed, 54% comes from a bidder that has placed at least 10 bids before.

First, we investigate for winning bids whether M5 winners are different in terms of experience

compared to non-M5 winners. Therefore, we borrow an approach of Lacetera et al. (2012) and

consider the average experience of winning bidders conditional on their bid level. For each bidder,

we generate a variable equal to the number of auctions in which bidder has participated up to and

including the moment of placing the current bid. Next, we attach to each bid an experience percentile

ranking from 0 to 100, where 0 corresponds to a bid from a bidder who participates in her first auction,

and 100 to the last bid of the bidder who participated in most auctions in our data collection window.

Next, we generate the average experience percentile for winning bids of each bid value. These average

experience percentiles for winning bids are plotted in Figure 6. Especially below 100, M5 winning

bids stand out as coming from bidders with lower experience. In addition, M5− stand out as coming

from more experienced bidders. M5+ bids do not stand out strongly, if anything they come from

relatively experienced bidders.

Next, we investigate how bid patterns change while a bidder gets experience. We assume that

bidders gain experience by placing a bid in an auction, and that learning is strongest in the first

few auctions. Because bidders who only place one bid may be quite different from bidders whom we

observe a lot of times, we want to capture the experience effect using bidder fixed effects. Therefore,

we focus on bidders whom in total bid in at least 10 auctions, and investigate how their bidding

25



Figure 6: Average experience percentile of winning bids per bid value

pattern changes over these first 10 auctions.

First, we investigate Final Stage M5 and M5+ bidding. If bidders learn to bid more strategically,

they should be less likely to bid M5 with experience and more likely to bid M5+. We run a regression

of a M5 and M5+ dummy on variable indicating the Xth auction in which a bidder participates

with bidder fixed effects for the first 10 auctions, only considering bidders with a total of at least ten

bids. Table 7 presents the results. More experienced bidders are significantly less likely to bid M5

in the Final Stage, but the effect is not very large (around 2 percentage points ). Similarly, bidders

get slightly more likely to bid M5+ in the Final Stage, but coefficients are not stably significant here.

Overall, these findings suggests that bidders learn to bid more strategically, but not very strongly.

6 Structural model - UNDER CONSTRUCTION

The previous sections showed that many first stage jump bids are round number bids and a reduced

form analysis showed that round number bids seems positively correlated with overbidding and nega-

tively correlated with bidder experience. In this section we present and estimate a structural model.

The model allows for an estimation of the share of biased round number bidders present in the popu-

lation and the loss in expected surplus they experience compared to non-biased bidders with the same
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Table 7: Regression of M5 and M5+ dummy on Xth auction in which a bidder participated for Final
Stage bids

(1) (2)
VARIABLES M5 bidding M5+ bidding

2.XthAuctionBidder -0.004 0.000
(0.005) (0.005)

3.XthAuctionBidder -0.014*** 0.012**
(0.005) (0.005)

4.XthAuctionBidder -0.010** 0.006
(0.005) (0.005)

5.XthAuctionBidder -0.010** 0.005
(0.005) (0.005)

6.XthAuctionBidder -0.017*** 0.008*
(0.005) (0.005)

7.XthAuctionBidder -0.023*** 0.012***
(0.005) (0.005)

8.XthAuctionBidder -0.015*** 0.010**
(0.005) (0.005)

9.XthAuctionBidder -0.018*** 0.005
(0.005) (0.005)

10.XthAuctionBidder -0.021*** 0.017***
(0.005) (0.005)

Constant 0.309*** 0.198***
(0.004) (0.003)

Observations 221,930 221,930
R-squared 0.411 0.346
Bidder FE YES YES

Notes: Robust standard errors in parentheses, ***
p<0.01, ** p<0.05, * p<0.1
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valuation.

6.1 Modeling assumptions

We consider j =∈ {1, . . . J} auctions of an item m and model the final stage where the auction is a

sealed bid first-price auction. Bidder valuations v are drawn from a χ2-distribution with mean νm.

The number of bidders is allowed to vary per auction were we assume that the number of bidders nj in

the final stage of auction j is a draw from a χ2-distribution with mean µ.19 We assume that bidders,

knowing the time of day and observing the early stage outcomes, know the number of opponents they

face in the final stage of a given auction.

In addition, we assume that a fraction λ ∈ [0, 1] of the population is a round number bidder,

for lack of a better term we refer to them as “behavioral bidders.” The choice set of these bidders

is {5, 10, . . .}. Note that besides this share λ population that bids multiples of five for behaviorial

reasons, there may in addition be bidders who bid multiples of five for strategic reasons. We allow for

that by distinguishing between level 0, level 1, and level 2 (L0, L1 and L2) bidders – a fraction λ of

each type being behavioral bidders. Level 0 bidders bid the equilibrium bid to a first price auction

with N bidders, assuming that none of the other bidders is a behavioral bidder. Yet some Level 0

bidders may be behavioral bidders themselves who round their bid to the nearest multiple of 5. Level

1 bidders place a best response to all other bidders being Level 0, and Level 2 bidders place a best

response to all other bidders being Level 1. Hence we end with six types of bidders ϕ(l, h): level 0, 1,

and 2 bidders (l = 0, 1, 2), where bidders of each type can be behavioral (h = 1) or not (h = 0).

6.2 Simulation set up

The population size is set at G = 100, 000. For each population member i, we determine the member’s

� valuation vi ∼ χ2(νm) for the object;

� bidder type ϕi = ϕ(li, hi), with hi = 1 with probability λ and li = k (k = 0, 1, 2) with probability

lk.

Aim of the simulation is to find the set of parameters θ ≡ (λ, l1, l2, νm, µ) that minimizes the sum of

19We ensure that we do not have auctions with a single bidder by imposing that nj ≥ 2 ∀j.
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the squared differences between the observed and simulated frequency of winning bids per bid value.20

These optimal values θ̄ are bound by means of a grid search.

We construct a number of J = 1, 000, 000 auctions. First, we draw the number of bidders nj in

auction j from χ2(µ). Then, we populate auction j with nj bidders that are randomly selected from

the population. This implies that each population member on average participates in Jµ/G = 10µ

auctions – the expected total number of bidders divided by the population size. Bidder i in auction j

submits a bid that is a function of her own valuation, her type and the number of other bidders in the

auction, i.e. bi = b(vi, ϕi, nj). Hence, each bidder i will adjust her bid to the number of other bidders

she faces.

Bids in an auction with n bidders are determined as follows. Non-behavioral Level 0 bidders bid

the equilibrium bid associated with a first-price sealed bid auction (without round-number bidders).

Using revenue equivalence, this equilibrium bid is equal to the expected second highest valuation

conditional on the bidder herself having the highest valuation:21

b(vi, ϕ(0, 0), n) = vi −
∫ vi

v

(
F (x)

F (v)

)n−1

dx. (5)

This bid is calculated for every bidder and for every possible n. Behavioral Level 0 bidders round this

bid to the nearest multiple of 5, conditional on that multiple not exceeding their valuation,

b(vi, ϕ(0, 1), n) = min

{
5

⌊
b(vi, ϕ(0, 0), n)

5
+

1

2

⌋
, 5

⌊vi
5

⌋}
. (6)

The expected surplus when bidding x in an auction with n bidders and a valuation of v equals

S(x, v|n) = P (x = winning bid|N = n)(x− v).

The probability that x is the winning bid depends on the n − 1 other bids and equals 1 if x exceeds

all other bids. In case of a split, we assume that P (x = winning bid) equals 1 over the number of

bidders with the highest bid. We do not have a closed form expression for this probability because

of the introduction of behavioral bidders who round their bids to multiples of five. Hence we use a

numerical approximation for P (x = winning bid). For a given value of n, we randomly select J times

20Note that l0 follows from l0 ≡ 1− l1 − l2.
21This is a standard result in auction theory, see e.g. the derivation and discussion in XXX.
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n−1 population members who bid according to (5) and (6). For each j = 1, 2, . . . , J , we determine the

highest bid b̂j = max{bj,1, . . . bj,n−1} and the number of bidders n̂j that have submitted this highest

bid (i.e. the number of bidders k, with bj,k = b̂j). Then, a bid of x is a winning bid in auction j with

probability 1 whenever x > b̂j , with probability 1/(1+ n̂j) when x = b̂j , and 0 otherwise. We compute

P̂ (x = winning bid|N = n), by taking the average of these probabilities across the J auctions.

Level 1 bidders bid a best response to all other bidders being Level 0. For a sealed bid first price

auction with n bidders, we define ‘best’ as the bid that maximizes bidder i’s (i = 1, . . . G) simulated

expected surplus, so:

b(vi, ϕ(1, 0), n) = argmax
x

P̂ (x = winning bid|N = n)(x− vi) (7)

for non-behavioral Level 1 bidders. As before, behavioral Level 1 bidders round this bid to the nearest

multiple of 5, conditional on that multiple not exceeding their valuation:

b(vi, ϕ(1, 1), n) = min

{
5

⌊
b(vi, ϕ(1, 0), n)

5
+

1

2

⌋
, 5

⌊vi
5

⌋}
. (8)

We use a similar procedure to determine the bids submitted by Level 2 bidders. Level 2 bidders

assume that all other bidders are Level 1 bidders.

Having determined the equilibrium bids of all six bidder types in an auction with n bidders, we

simulate for each value of n J = 1, 000, 000 auctions and determine for each of these auctions the

winning bid and for each population member the expected surplus of bidding x. This gives for each

population member i the expected surplus of bidding x conditional on n:

S(x, vi|n) = P̂ (x = winning bid|N = n)(x− vi).

Finally, we aggregate out n and compute the bidder i’s overall expected surplus

S(x, vi) =
∑
n

P̂ (N = n)P̂ (x = winning bid|N = n)(x− vi),

where the estimated probabilities P̂ (N = n) are obtained by drawing J = 1, 000, 000 times from a
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Table 8: Strucural estimates for a range of items

Item: Concert Hotel High tea

Empirical data
# auctions 10815 7188 7952

# bids 110999 64621 61338
avg. winning bid 48.28 27.15 15.00

percentage bids M5 38.18 30.41 23.21
percentage winning bids M5 41.66 39.08 31.05

Structural estimates
µ̂ 3.5 3.5 1.5
ν̂ 47 26 17

λ̂ 0.3 0.25 0.15

l̂1 0.15 0.3 0.05

l̂2 0.05 0.05 0.05

Expected surplus (e)
Overall 3.010 2.240 2.696

Non-behavioral bidders 3.080 2.280 2.728
Behavioral bidders 2.849 2.100 2.509

p.p. difference -7.522 -7.895 -8.056
Notes: TEXT.

χ2(µ) distribution.22

A grid search looks for the value θ̂ that minimizes (the square root of) the sum of squared differences

between the simulated f̂(x|θ) and empirical frequencies sx of winning with a bid of x. That is,

θ̂ = argmin
θ

√√√√xmax∑
x=1

(
f̂(x|θ)− sx

)2
(9)

The estimates θ̂ that minimize the objective function are found by means of a grid search.23

6.3 Structural estimates

Table 8 shows the structural estimates for the top-3 of most auctioned items on the site.

7 Conclusion

TBA

22As noted before, we set a lower bound of 2 for n which means that each realization lower than 2 is set equal to 2.
23For µ, values between µmin and µmax with steps of 0.5 are evaluated; for ν, values between νmin and νmax with

steps of 1; for λ, values between 0 and 1 with steps of 0.05; l1 and l2, values between 0 and 1 with steps of 0.05.
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NOTE: generally speaking appendices are not up-to-date with most recent restricted dataset-statistics

A Data Construction

B Overbidding larger range

A.2



Figure B.1: Coefficients on Multiples of 5.

(a) Dep. var: Log(Value Winning Bid)

(b) Dep. var: Value Winning Bid
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C Current vs. Next Bid

In Table C.1 and Table C.2, the percentage of bids equal to ’Next Bid’ for a given ’Current Bid’ is shown for current

bids between 45-55 and between 95-105 respectively. These tables show the same pattern of the multiples of 5 clearly

standing out as has been shown in Table 4 in the main text.

Next Bid
Current Bid 46 47 48 49 50 51 52 53 54 55

45 46.58 9.66 5.60 3.47 21.52 2.69 1.36 0.68 0.24 3.49
46 0.00 40.14 12.24 4.96 27.76 3.88 1.83 0.84 0.41 3.59
47 0.00 42.96 9.22 28.91 5.14 2.66 1.19 0.48 4.57
48 0.00 34.64 39.58 7.84 4.38 1.93 0.87 5.14
49 0.00 61.92 11.12 6.03 2.56 0.83 8.43
50 0.00 45.69 10.16 2.47 1.04 18.29
51 0.00 44.09 6.87 2.00 23.45
52 0.00 44.25 5.32 27.93
53 0.00 36.18 36.00
54 0.00 62.42
55 0.00

Table C.1: Next bid for given current bid (45-55)

Next Bid
Current Bid 96 97 98 99 100 101 102 103 104 105

95 35.11 3.42 2.63 5.25 32.32 2.87 0.80 0.64 0.40 2.87
96 0.00 38.91 7.46 6.45 29.23 4.23 0.81 0.60 0.20 2.82
97 0.00 42.39 6.16 30.43 3.99 1.09 0.72 0.72 3.26
98 0.00 34.91 34.91 4.00 2.91 0.73 0.36 3.64
99 0.00 62.40 7.94 1.94 0.81 0.49 3.24
100 0.00 40.31 3.94 0.69 0.39 11.53
101 0.00 39.47 3.16 0.98 15.99
102 0.00 45.00 2.98 17.28
103 0.00 37.99 24.02
104 0.00 60.86
105 0.00

Table C.2: Next bid for given current bid (95-105)
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D Two specific items

The histograms showed so far grouped together data from all auctions for all items we observe. In this appendix, we

zoom in on the auctions for two specific items to show that the patterns documented in the previous sections are not

somehow an artefact of pooling all data together.

We focus here on the two items for which we observe the most auctions. One item is a coupon for a wellnessday/sauna

day for 2 persons for which we observe 9795 auctions and 31, 440 bids in our subsample. The other item is concert tickets

for a Dutch group of artist for which we observe 6425 auctions and 59, 990 bids in our subsample. The sauna tickets

typically sell for relatively low prices, and the concert tickets sell for much higher prices. For both items the auctions

mostly have a short duration (less than 15 minutes), and are of a repeated nature, where the next auction starts once

the current one ends.24

Figure D.2 shows the histogram of all bids placed for the sauna tickets on the left and the histogram of all winning

bids on the right. Most of the bids and winning bids for this item are below 10 euro. We observe a couple of outliers

who bid more than 10. The most observed winning bid is 5, and in the histogram of all bids placed, there is a small

spike at 5 compared to 4, and a small spike at 10.

Figure D.3 shows these histograms for the concert tickets. The concert ticket sells for higher prices than the concert

tickets, and both the histogram with all bids and the histogram with winning bids show a consistent pattern of spikes

at multiples of 5. Multiples of 5 are very prominent in the auctions for this item.

Figure D.2: Histogram all bids (left) and winning bids (right) of auctions for sauna tickets

24This item is not the best one to drive the point home, but choosing items for which we observe most auctions does
seem to be a sensible/objective selection criterium here.
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Figure D.3: Histogram all bids (left) and winning bids (right) of auctions for concert tickets
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