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1. Introduction

Firm productivity significantly influences executive decision-making regard-

ing operations and investments. Anticipation of high productivity often leads

to increased procurement of manufacturing inputs, expansion of workforce

and facilities, and enhanced allocation of resources to research and devel-

opment initiatives. Conversely, projections of lower productivity typically

result in more conservative strategies aimed at cost reduction and profitabil-

ity maintenance.

It is well-established that productivity levels vary considerably among

firms, even within narrowly defined industries. Moreover, firms face dy-

namic uncertainty when forecasting future productivity. Productivity shocks

occur unpredictably over time, causing initial forecasts to often diverge from

actual productivity levels. These discrepancies between anticipated and real-

ized productivity lead to significant divergences in input decisions, resulting

in ex post misallocation despite ex ante optimal choices.

This study examines the interplay between productivity uncertainty, firm

heterogeneity, and the misallocation of production inputs. I investigate the

sensitivity of input allocation to cross-firm productivity differentials, which

can lead to misallocation through distortions correlated with productivity

levels1. Furthermore, I analyze the effects of productivity shocks occurring at

various stages of firms’ input decision processes. These shocks generate tem-

poral fluctuations in firm-level productivity, creating discrepancies between

ex ante and ex post optimal input allocations.

Consistent with established methods, this analysis uses the dispersion
1Examples of such distortions include financial frictions and firing costs (Bento and

Restuccia 2021).
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of marginal revenue product (MRP) across firms to quantify ex post misal-

location (Restuccia and Rogerson (2008), Hsieh and Klenow (2009)). Under

certain assumptions, significant dispersion indicates frictions preventing

resources from moving to more efficient uses within an industry2. Asker,

Collard-Wexler, and De Loecker (2014) demonstrate that for capital, a dy-

namic input with adjustment costs, MRP dispersion arises from productivity

uncertainty, heterogeneity, and adjustment frictions3. My work expands

on this and on David, Hopenhayn, and Venkateswaran (2016) by consider-

ing imperfect information affecting all inputs and firms at various stages.

Additionally, I distinguish between cross-firm productivity variation and

period-to-period changes in firm-level productivity, as suggested by David

and Venkateswaran (2019) and Bento and Restuccia (2021).

This paper develops a theoretical model building on the work of Gandhi,

Navarro, and Rivers (2020) (hereafter GNR) to analyze input misallocation

and productivity dynamics within a production function framework. I esti-

mate the model using a comprehensive firm-level panel dataset spanning

2000–2017 across European economies, incorporating time-varying revenue

total factor productivity (TFPR) processes to capture structural shifts in-

duced by the Global Financial Crisis. In my specification, capital and la-
2Misallocative factors include idiosyncratic regulations and institutions (Bartelsman,

Haltiwanger, and Scarpetta (2009), Bartelsman, Haltiwanger, and Scarpetta (2013)), em-
ployment protection measures (Restuccia and Rogerson (2017)), credit supply shocks and
financial frictions (Gopinath et al. (2017), Ben Zeev (2023)), suboptimal firm selection (Yang
(2021)), factor adjustment costs, and productivity information frictions (Asker, Collard-
Wexler, and De Loecker (2014), David and Venkateswaran (2019)). Other factors are measure-
ment error (Gollin andUdry (2021), Bils, Klenow, and Ruane (2021)), production and demand
heterogeneity (Restuccia and Rogerson (2013), Bento and Restuccia (2017), Blackwood et al.
(2021), Haltiwanger, Kulick, and Syverson (2018)).

3Asker, Collard-Wexler, and De Loecker (2014) argue that MRP dispersion and optimal
allocations can coexist, challenging the static view of suboptimality and misallocation due
to capital MRP dispersion. This suggests considering adjustment costs as a fundamental
economic primitive rather than purely a misallocative factor.
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bor are treated as predetermined inputs, while materials are modeled as

static inputs. The framework accounts for various market distortions, with

productivity uncertainty serving as the sole explicitly modeled friction4. A

key innovation of the model is its treatment of heterogeneous firms facing

productivity shocks both before and after the allocation of materials. To

my knowledge, this study presents the first disaggregation of productivity

shocks by timing, analyzing their distinct effects on input misallocation

across all production factors. I then benchmark the results against those

derived using the factor share (FS) method, a widely employed technique

in the productivity and misallocation literature (De Loecker and Syverson

2021).

First, I examine the relationship between MRP dispersion and TFPR

variability, revealing a positive association for all inputs. This relationship is

stronger for labor and materials than for capital. Regression analysis shows

that the FSmethod generally underestimates the elasticity ofMRP dispersion

with respect to TFPR variance for labor and overestimates it for materials.

In contrast, the FS method exhibits only a minor bias in estimating this

elasticity for the capital input.

Second, I decompose TFPR into observed and shock components, assess-

ing their respective associations with MRP dispersion. The baseline-GNR

results show that productivity shocks primarily drive MRP dispersion for all

inputs, while the FS approach overemphasizes the role of past productivity

heterogeneity. These findings highlight the importance of accounting for

rich productivity dynamics to understand productivity dispersion and its

impact on input misallocation across all production inputs.
4This approach implicitly accounts for well-documented post-2000 European labor mar-

ket rigidities, without explicitly modeling these frictions.
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Additionally, I compare production function estimates derived from the

GNR framework and the FS approach.My analysis reveals significant discrep-

ancies between the two methodologies. The FS approach tends to overesti-

mate the dispersion and average revenue elasticity of capital and materials

while underestimating these statistics for labor. Furthermore, it consistently

yields higher estimates for both the aggregate mean and variance of TFPR

over time compared to the GNR approach. Interestingly, while the FSmethod

produces aggregate capital MRP dispersion estimates that closely align with

those of the GNR approach, it substantially underestimates the aggregate

MRP dispersion for labor and materials—by approximately 20% and 30%,

respectively—throughout the sample period.

Overall, my results demonstrate that productivity heterogeneity and un-

certainty are linked to misallocation across countries for all inputs of the

production function. There is no conceptual reason to consider capital as a

special input uniquely subject to these forces. The allocation efficiency of all

production inputs may depend on firm-specific production characteristics

and period-to-period changes in productivity, and therefore, their revenue

product dispersion should be associated with TFPR dispersion.

Furthermore, the baseline estimates show that productivity shocks drive

the bulk of the dispersion andhave the strongest associationwith inputmisal-

location, implying that productivity uncertainty impacts misallocation more

than productivity heterogeneity. This finding contrasts with conclusions

drawn using the FS approach. While some uncertainty is unavoidable, poli-

cies and strategies5 can help mitigate the uncertainties firms face. Failing to
5Examples include: stable trade and monetary policies; reducing variation in costs of

doing business from regulations, healthcare, and taxes (Kang, Lee, and Ratti (2014), Gulen
and Ion (2016)); ensuring efficient financial markets (Weill (2007)); and corporate strategies
like lobbying and corporate social responsibility programs (Peng, Colak, and Shen (2023)).

4



account for their impact on input misallocation could lead to misattributing

these effects to other distortions and proposing misguided policy prescrip-

tions.

Finally, this paper highlights a cautionary tale regarding the use of the FS

approach for estimating the production function. The FS approach is valued

for its simplicity and flexibility, as it does not depend on a specific production

function but rather on behavioral assumptions about firms, allowing for easy

accommodation of extensions such as multiproduct production. However,

this method relies on strict assumptions about the timing of productivity re-

alization and input allocation, making models with richer dynamics perhaps

better suited for analyzing productivity evolution and its effects.

The remainder of this paper is structured as follows. Section 2 presents

the baseline theoretical framework. Section 3 describes the data used and

provides relevant descriptive statistics. Section 4 outlines the empirical

framework for both the baseline-GNR and FS approaches. Section 5 presents

the main results, beginning with stylized facts about the production technol-

ogy estimates. It then examines the sensitivity of inputs’ MRP dispersion to

TFPR variation and concludes with an analysis using TFPR decompositions.

Finally, Section 6 discusses the limitations of the study and offers suggestions

for future research.

2. Theoretical Framework

The theoretical frameworkbuilds uponGNR, augmenting itwith time-varying

productivity processes. This model introduces imperfect information about

productivity as the primary friction, explicitly capturing the evolution of

firms’ uncertainty regarding their efficiency levels. It also considers hetero-
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geneity in firms’ past productivity. At the start of each production period,

firms possess a specific productivity level and subsequently encounter mul-

tiple productivity shocks, occurring both before and after input allocation.

The model adopts an agnostic stance on the allocation of capital and

labor, assuming only that firms predetermine these inputs relative to mate-

rials. This flexibility allows the framework to capture dynamics consistent

with various distortions affecting capital and labor inputs in both static and

intertemporal contexts6. While the framework primarily focuses on pro-

ductivity uncertainty as the explicit source of friction, it remains applicable

across diverse economic scenarios.

Let Yj t denote the revenue and Kj t, Lj t, andMj t represent the capital,

labor, and material input allocations of firm j at time t. Lowercase variables

indicate natural logarithms. The log revenue function is non-parametrically

specified as follows:

(1) y j t = f (kj t, l j t,mj t) + νj t

Here, νj t represents TFPR, which comprises a persistent component and an

unexpected component (Olley and Pakes 1996):

(2) νj t = ωj t + εj t

The termωj t denotes a persistent productivity factor that firm j perfectly

observes at the beginning of period t but remains unknown at time t – 1.
6Distortions may include resale losses due to transaction costs, the market for lemons

phenomenon (Akerlof 1970), physical costs of resale and refitting for capital, and hiring,
firing, and training expenses for workers (Bloom 2009). Additionally, the model may incor-
porate working capital and borrowing constraints, government regulations, transportation
costs, subsidies, and taxes (Hsieh and Klenow 2009).
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Conversely, εj t represents a residual, short-term idiosyncratic revenue fluc-

tuation that is observed only at the end of the period7.

Let Ij t denote the information set that firm j holds at time t before the

realization of εj t. Additionally, let Ĩj t represent the information set that firm

j holds at the end of period t. The following assumptions characterize the

persistent productivity process, the realization of productivity shocks, the

inputs allocation, and the pricing behavior:

ASSUMPTION 1 (Persistent Productivity Process). ωj t follows a time-varying

stochastic Markov process with a mean zero forecast error that realizes in period t.

Specifically,

(3)

ωj t = mt(ωj t–1) + ηj t,

ωj t–1 ∈ Ĩj t–1, ηj t ∉ Ĩj t–1, ηj t ⊥ ωj t–1 ∀j , t,

E(ηj t | Ĩj t–1) = E(ηj t) = 0,

where mt(·) is a continuous, strictly monotonic function, and ηj t is the forecast

error that realizes in period t.

Notice that the forecast error ηj t is not necessarily identically distributed

each period since the only restriction pertains to its first moment. Let its

cross-sectional variance be time-variant, denoted as σt.

ASSUMPTION 2 (Productivity Shocks Realization Timing). The forecast error

ηj t realizes at the beginning of period t, making the persistent productivity compo-

nent,ωj t, known at the start of period t. In contrast, the unexpected component,

7An alternative, observationally equivalent interpretation of εj t is ex-post measurement
error in output. However, in this paper, I adhere to the interpretation of εj t as a productivity
forecast error, following GNR. Additionally, in line with the convention in the production
function estimation literature (Blum et al. 2024), I assume no measurement errors in the
input variables. Recent studies examining measurement errors in capital input include
Collard-Wexler and De Loecker (2016) and il Kim, Petrin, and Song (2016).
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εj t, is an idiosyncratic, mean-independent, short-term output fluctuation that

realizes towards the end of period t. Specifically,

(4)

ωj t ∈ Ij t, εj t ∉ Ij t, εj t ∈ Ĩj t, ωj t ⊥ εj t ∀j , t,

E(εj t | Ij t) = E(εj t) = 0,

E(eεj t | Ij t) = E(e
εj t ) = E,

where E is a scalar constant.

Again, note that the short-term fluctuation εj t is not necessarily iden-

tically distributed across periods. Let its cross-sectional variance be time-

variant, denoted as τt.

ASSUMPTION 3 (Input Allocations). Firm j allocates the capital and labor in-

puts, Kj t and Lj t, just before the start of period t. Consequently, these inputs are

predetermined. In contrast, the firm allocates intermediate materials, Mj t, after

observing ωj t but before the realization of εj t, by solving a static value-added

maximization problem. Thus, intermediate materials are considered a flexible

production input.

ASSUMPTION 4 (Pricing Behavior). Firms act as price takers in both output and

input markets, facing nominal input prices denoted as PLjt for wages, P
K
jt for the

rental rate of capital, and PMjt for the unit cost of materials. The evolution of output

and input prices follows a time-varying Markov process, which I do not further

specify8. Firms pay input prices simultaneously with each input allocation.

In otherwords, Assumption 4 allows for heterogeneity in input and output

prices, which may be influenced by TFPR and its components, as well as
8A similar assumption for input prices is present in Doraszelski and Jaumandreu (2018).
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by aggregate price levels, while maintaining the assumption of firms’ price-

taking behavior. Without loss of generality, I characterize input prices as

exogenous functions of the firm’s information sets as follows:

PXjt = P
X
t

(
Ĩj t–1

)
∀X ∈ {L,K}(5)

PMjt = P
M
t

(
Ij t

)
(6)

The timeline of events and decisions for firm j unfolds as follows.

a. At the end of period t – 1, firm j knows the TFPR for that period, denoted

as νj t–1, and the observed revenue Yj t–1. This information comprises the

firm’s information set, Ĩj t–1.

b. Using this information, the firmmakes strategic choices for the upcoming

period t. Specifically, it determines the quantities of labor Lj t and capital

Kj t to employ, given the nominal wage rate PLjt and the rental rate of

capital PKjt. These decisions rely on the information set Ĩj t–1.

c. As period t commences, the firm experiences a realization of the produc-

tivity shock ηj t. With this new information, the firm updates its expec-

tation of the period’s TFPR (i.e., the firm knows ωj t) and forms a new

information set, Ij t.

d. Next, the firm decides on the materials allocation Mj t for the period,

taking into account the unit price of materials PMjt . This decision aims

to maximize value-added, solving the following optimization problem

conditional on the information set Ij t:

(7) max
Mj t

[
E(F(kj t, l j t,mj t)e

νj t | Ij t) – P
M
jtMj t

]
e. Just before the end of period t, the firm observes the realized shock εj t.
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Consequently, it determines the period’s TFPR νj t and observed revenue

Yj t. This updated knowledge forms the new information set Ĩj t.

Throughout this paper, I consistently refer to ηj t as the ex-ante productivity

shock and εj t as the ex-post productivity shock, relative to the material inputs

allocation.

2.1. How Productivity Shocks Cause Misallocation

In this subsection, I illustrate how period-to-period fluctuations in firm-

level productivity and cross-firm differences in historical productivity levels

contribute to the dispersion of input marginal revenue products across firms

within an industry, a standard measure of misallocation.

The MRP of input X is the derivative of revenue Y with respect to the

allocation of input X. By applying the chain rule in calculus, one can decom-

pose the MRP of any input X as a function of the final revenue Yj t, the input

allocation Xj t, and the revenue elasticity of that input
∂y j t
∂xj t

:

(8) MRPXjt =
∂Yj t
∂Xj t

=
∂Yj t
∂y j t

∂y j t
∂xj t

∂xj t
∂Xj t

=
Yj t
Xj t

elasXjt ∀X ∈ {K,L,M}

Taking the natural logarithm and totally differentiating9 with respect to

TFPR leads to:

(9)
dmrpXjt
dνj t

=
dy j t
dνj t

–
dxj t
dνj t

+
dlog elasXjt

dνj t
9Note that:

∂mrpXjt
∂y j t

= –
∂mrpXjt
∂xj t

=
∂mrpXjt

∂ log elasXjt
= 1
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Equation (9) indicates that three factors determine the elasticity of an

input’s MRP with respect to a hypothetical variation in the firm’s TFPR. The

first term represents the elasticity of revenue to TFPR. The second term

captures the elasticity of input allocation to TFPR. The third term accounts

for the effect of changes in TFPR on the input’s revenue elasticity.

Notice that by combining equations (2) and (3), TFPR can be further

decomposed into three distinct components based on the firm’s productivity

information:

(10) νj t = mt(ωj t–1) + ηj t + εj t

Then, using the chain and the inverse-function rules10, the total effect of a

change in TFPR on theMRP of an input can be expressed as the combination
10Indeed,

dmrpXjt
dνj t

=

(
dνj t
dmrpXjt

)–1
=

(
dmt(ωj t–1)
dmrpXjt

+
dηj t
dmrpXjt

+
dεj t

dmrpXjt

)–1

=


§mrpXjt

§ωj t–1

(
∂mt(ωj t–1)
∂ωj t–1

)–1–1

+

(
§mrpXjt
§ηj t

)–1
+

(
§mrpXjt
§εj t

)–1
–1

The symbol § refers to a partial total derivative. For more details, see Wainwright and Chi-
ang (2005), page 192. In this setup, §mrpX

§θ represents a total derivative keeping the other
exogenous variables fixed. For example,

§mrpXjt
§ωj t–1

=
dmrpXjt
dωj t–1

∣∣∣∣∣
dηj t=0,dεj t=0

However, since ωj t–1 ⊥ ηj t ⊥ εj t by Assumptions 1 and 2, I can simplify the notation by
replacing the partial total derivatives with simple total derivatives:

dmrpXjt
dνj t

=


dmrpXjt
dωj t–1

(
∂mt(ωj t–1)
∂ωj t–1

)–1–1

+

(
dmrpXjt
dηj t

)–1
+

(
dmrpXjt
dεj t

)–1
–1
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of the effects of the changes in each component of TFPR on that input’s MRP.

More formally:

(11)
dmrpXjt
dνj t

= c

dmrpXjt
dωj t–1

,
dmrpXjt
dηj t

,
dmrpXjt
dεj t


In turn, each productivity component effect can be decomposed as follows:

(12)
dmrpXjt
dθ

=
dy j t
dθ

–
dxj t
dθ

+
dlog elasXjt

dθ
∀θ ∈ {ωj t–1,ηj t, εj t}

Thus, the theoretical framework predicts that variations in historical

productivity, ex-ante productivity shocks, and ex-post productivity shocks

may influence (1) the firm’s final revenue, (2) input allocations, and (3) the

input’s revenue elasticity. The combination of these effects yields the impact

of changes in each productivity component on an input’s MRP. Ultimately,

combining the effects of each productivity component yields the total effect

of a TFPR variation on an input’s MRP.

The rationale is straightforward. Firms’ past productivity levels influence

the expected return on inputs, directly and through correlated distortions,

and can affect price levels, which significantly impact input allocation and

production decisions. While ex-post productivity shocks do not modify the

firm’s committed allocation of inputs and revenue elasticities11, they do

cause variations in final observed revenue. On the other hand, ex-ante pro-

ductivity shocks can result in changes in the allocation of materials because

firms incorporate new information about their productivity and adjust to

fluctuations in the materials price level, thereby affecting observed revenue
11This is due to the additivity assumption in Equations (1) and (10).
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and its elasticity to inputs.

The combined effect of these pathways determines the total impact of

TFPR variation on theMRP of a given input for firm j at time t. Consequently,

at the industry level, productivity dispersion—driven by period-to-period

fluctuations in firm-level productivity and cross-firm differences in historical

productivity levels—correlates with dispersion in the MRPs for any input.

The next section focuses on quantifying this association after introducing

the data used.

3. Data and Descriptive Statistics

I obtain annual firm-level harmonized balance sheet data for European

manufacturing firms classified under NACE Rev. 2 code C from the Micro

Data Infrastructure of the MICROPROD (MP) project12. Supported by the

European Union, MICROPROD consolidates European microdata to provide

insights for policymakers on growth and reform strategies and to evaluate

economic efficiency. This effort relies on detailed data from Bureau van

Dijk’s ORBIS database.

As of 2020, MP contained 500,000 unique manufacturing firms for Italy,

France, and Spain operating between 2000 and 2017. Additional German,

Polish, and Romanian manufacturing firms operating between 2004 and

2018 have since been included. Critically, MP’s careful examination of firm

operating status13, conservative approximation for missing values, and iden-

tification of a productivity sampleminimally subject to imputation enables

desirable representativeness by closely replicating Eurostat’s aggregate Struc-
12https://cordis.europa.eu/project/id/822390
13I.e., active or inactive.

13
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tural Business Statistics14. Altomonte and Coali (2020) extensively detail MP’s

data collection and cleansing. MP has seen some research use (Altomonte

et al. (2021), Abele, Bénassy-Quéré, and Fontagné (2021), Altomonte et al.

(2022)), while a host of studies have leveraged ORBIS data directly (e.g. Asker,

Collard-Wexler, and De Loecker (2014), Gopinath et al. (2017), Kalemli-Özcan

et al. (2024)).

To approximate a firm’s revenue (Y ), I utilize the variable Operating Rev-

enue (Turnover), and for the workforce (L), I rely on the Number of Employees.

Given that the MP dataset does not separately provide information on prices

and quantities for intermediates and working capital, I deflate the Cost of

Materials to approximate intermediates (M), and the Total Fixed Assets to

approximate capital (K). The wage bill is derived from the variable Cost of

Employees. Industry-level deflators (NACE Rev. 2, two-digit level) for inter-

mediate inputs (to recover the quantity of materials) and gross output (to

recover the capital stock) are sourced from the EU-KLEMS database.

Table 1 presents summary statistics for the main variables used in the

analysis. The data reveals that the distributions of all variables are heavily

right-skewed, as evidenced by the first three quartiles (Q1, Median, and

Q3), indicating a large number of small firms and a few large firms. The

minimum and maximum values confirm that the dataset includes both very

small and very large firms. However, a comparison of medians and means

across countries suggests that the samples of German and Polish firms still

suffer from underrepresentation of smaller firms. This issue appears to be

less pronounced for the other countries.
14https://ec.europa.eu/eurostat/web/structural-business-

statistics
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TABLE 1. Descriptive Statistics for Main Variables

Variable Statistic Germany Spain France Italy Poland Romania

Operating Mean 82,820 5,305 14,335 7,209 18,848 3,246
Revenue, SD 682,296 98,994 263,397 90,308 96,147 35,602
Th. Euros Median 19,132 681 1,201 1,673 4,137 160

Q1 5,390 261 399 679 1,523 49
Q3 53,200 2,063 4,654 4,562 11,196 650
Min 1 1 1 1 1 1
Max 65,336,438 25,537,175 51,905,000 29,382,602 4,818,801 4,990,944

Cost Mean 51,540 3,459 7,336 3,945 12,132 1,936
of Materials, SD 1,201,597 85,857 181,084 68,914 72,588 27,217
Th. Euros Median 7,946 305 331 644 2,051 62

Q1 1,816 99 94 198 632 16
Q3 25,716 1,073 1,704 2,077 6,406 281
Min 1 1 1 1 1 1
Max 298,700,068 23,475,881 36,833,000 24,205,783 4,239,812 4,192,198

Cost Mean 13,269 745 2,222 1,052 1,664 389
of Employees, SD 113,176 5,391 19,108 12,333 5,484 2,700
Th. Euros Median 4,055 190 375 330 598 26

Q1 1,287 80 142 133 223 8
Q3 10,713 479 1,141 794 1,485 114
Min 0 0 0 0 0 0
Max 22,660,000 842,100 2,875,000 10,275,408 301,366 292,512

Fixed Mean 23,210 1,980 3,644 2,284 7,112 1,516
Assets, SD 177,734 29,474 98,443 36,201 42,499 13,156
Th. Euros Median 2,589 180 167 314 1,034 41

Q1 483 50 53 81 260 10
Q3 9,852 644 589 1,164 3,403 195
Min 1 1 1 1 1 1
Max 20,739,803 5,867,352 17,469,000 12,144,733 2,420,068 956,784

Number Mean 219 23 48 28 156 56
of Employees SD 641 120 306 154 367 264

Median 87 8 10 11 70 8
Q1 32 4 4 5 26 3
Q3 209 19 31 24 159 28
Min 1 1 1 1 1 1
Max 38,383 17,284 49,425 33,636 14,600 18,456

Observations 76,403 1,000,134 606,514 1,261,767 55,581 168,393

This table presents summary statistics for the key variables used in the analysis by country. The variables shown
are Operating Revenue, a proxy for output (Y ); Cost of Materials, a proxy for intermediates (M) after deflating; Cost
of Employees; Fixed Assets, a proxy for capital (K) after deflating; and Number of Employees, a proxy for labor (L).
The table displays the mean, standard deviation (SD), median, first and third quartiles (Q1 and Q3), minimum and
maximum for each variable and country. The final row presents the sample size for each country.
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4. Empirical Framework

4.1. Baseline - GNR

Building on the nonparametric approach of GNR, I adapt the model estima-

tion to accommodate time-varying productivity dynamics. Additional details

on this estimation procedure can be found in Supplemental Appendix A.1.

In stage one, I manipulate the first-order condition from the firm’s prob-

lem in Equation (7) to derive an estimable nonlinear equation. Applying least

squares yields two key outputs: materials revenue elasticities and firm-level

ex-post productivity shocks. By integrating the estimated materials elasticity

and subtracting it along with the estimated shocks from revenue, I uncover

the sum of two unobserved components: the portion of revenue unrelated

to materials and the persistent component of TFPR.

In stage two, I use polynomials to approximate theMarkov process for the

persistent component of TFPR and the remaining part of the revenue func-

tion. I estimate the polynomial parameters using the generalized method

of moments (GMM), exploiting the orthogonality between past persistent

productivity and the allocations of capital and labor inputs, and ex-ante

shocks. The validity of the non-parametrically bootstrapped standard errors

is discussed in Supplemental Appendix A.1.1.

Ultimately, the model’s estimates allow the recovery of input elasticities,

marginal revenue products, and productivity components at the firm-time

level.
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4.2. Factor Shares

Researchers widely use the FS method to determine MRPs and TFPR within

the productivity and misallocation literature (see De Loecker and Syverson

(2021) for a review). This technique generally assumes a production function

characterized by constant returns to scale, where firms allocate labor and

materials as flexible inputs after observing productivity. Under price-taking

and cost minimization behaviors, the revenue elasticity for materials and

labor equals

(13) elasXFSj t =
PXjtXj t
Yj t

∀X ∈ {L,M},

for labor and materials, and

(14) elasKFSj t = 1 – elasMFS
j t – elasLFSj t ,

for capital15, where PXjt and Xj t denote the price and quantity of input X for

firm j in period t, and Yj t signifies revenue.

Then, using a first-order Taylor Series expansion of the log revenue func-

tion, one can estimate TFPR as:

(15) νFSjt = y j t – elas
KFS
j t kj t – elas

LFS
j t l j t – elas

MFS
j t mj t,

15Certain studies, such as Asker, Collard-Wexler, and De Loecker (2014), contemplate
firms possessing market power, facing a demand schedule with constant elasticity ζ. In this
context, assuming a Cobb-Douglas production specification and profit maximization, the
revenue elasticity of capital is expressed as:

elasKFSj t =
ζ – 1
ζ

– elasMFS
j t – elasLFSj t .

Nevertheless, this scenario is excluded from the current analysis as it does not influence
elasticities dispersion.
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where νFSjt represents the factor shares-based TFPR.

Finally, one can decompose TFPR into two additive components:

(16) νFSjt = ν
FS
jt–1 +

(
νFSjt – ν

FS
jt–1

)
.

Similar to the baseline-GNR approach, one can assume that νFSjt–1 is known to

firm j when allocating any time t inputs. On the other hand, the component(
νFSjt – ν

FS
jt–1

)
may remain unobserved during capital allocation (see, for

example, Asker, Collard-Wexler, and De Loecker (2014)). I refer to this as the

shock component.

The GNR framework and the FS approach share several key assump-

tions, with the former nearly nesting the latter. Both methodologies posit

a production function with log-additive productivity components and as-

sume price-taking behavior by firms. Neither specifies the capital allocation

problem faced by firms. However, the FS approach imposes additional re-

strictions on the GNR framework. The FS approach assumes the absence

of ex-post productivity shocks, imposes constant returns to scale (which

GNR leaves unrestricted), and treats labor, like materials, as a flexible input

allocated under perfect information on period’s productivity. Conversely, the

GNR framework enriches the productivity process by imposing a Markov

structure, whereas the FS approach leaves this unrestricted.

5. Results and Discussion

5.1. Production Function Estimates: A Comparison

In the baseline-GNR framework, I allow the productivity Markov process

mt(.) to vary across five historical periods: Beginning of the millennium (2001–
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2003); Pre-crisis (2004–2007); Great Recession and European debt crisis (2008–

2010); Crisis aftermath (2011–2013); and Post-crisis (2014–2017). Due to data

availability constraints, productivity parameters for the 2001–2003 period are

only estimated for Spain, France, and Italy. I estimate theproduction function

separately for each country-industry pair16. To compute standard errors,

I employ a non-parametric clustered bootstrap procedure. This involves

drawing with replacement from the pool of firm identifiers 100 times.

The estimation results of the baseline-GNR model are presented in Sup-

plemental Appendix B.1, which also includes a comprehensive discussion.

The remainder of this subsection focuses on comparing the baseline-GNR

and FS approaches, particularly in terms of the distribution and patterns of

the estimates for the inputs’ revenue elasticities, MRPs, and TFPR.

In Table 2, I compare the moments from the pooled empirical distribu-

tions of revenue elasticities and returns to scale estimated using the baseline-

GNR approach and the FS method17. The FS approach tends to overestimate

both the dispersion and the average revenue elasticity of capital and ma-

terials while underestimating both the average and the dispersion of the

revenue elasticity of labor. Subsection C.1 of the Supplemental Appendix

further corroborates these patterns, where I compare the country-specific

empirical distributions of revenue elasticities obtained using the baseline-
16The industries, with their corresponding Nace Rev2 codes, are: Food, beverages and

tobacco (10, 11, 12); Textiles, apparel and leather (13, 14, 15); Wood, paper, and printing (16,
17, 18); Coke, chemicals, and pharmaceuticals (19, 20, 21); Rubber, plastics, metallic and
non-metallic mineral products, fabricated metal products (22, 23, 24, 25); Electronic, optical
products and electrical equipment (26, 27); Machinery, motor vehicles and other transport
equipment (28, 29, 30); Furniture and other manufacturing (31, 32, 33).

17The difference in sample size between the two approaches stems from missing data
and negative estimated elasticities. To compute the revenue elasticity for labor using the FS
approach, I use the variable Cost of Employees fromMP. However, 22,119 firms do not report
wages. Additionally, using FS, I estimate negative capital elasticities for 115,447 firms, which
are excluded from the analysis.
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GNR approach with those derived from the FS method.

TABLE 2. GNR vs Factor Shares: Elasticity Distributions Statistics

elasK elasL elasM Returns to Scale

Statistic GNR Factor Shares GNR Factor Shares GNR Factor Shares GNR Factor Shares

Mean 0.18 0.32 0.45 0.26 0.31 0.42 0.95 1.00
Median 0.16 0.30 0.47 0.23 0.30 0.42 0.97 1.00
SD 0.12 0.16 0.21 0.15 0.17 0.20 0.17 0.00
Skewness 0.98 0.74 -0.38 0.82 0.62 0.07 -0.30
Kurtosis 3.07 0.69 2.22 0.62 1.56 -0.56 10.20
N 3,168,792 3,031,226 3,168,792 3,031,226 3,168,792 3,031,226 3,168,792 3,168,792

This table presents summary statistics for the pooled empirical distributions of the revenue elasticity of capital
(elasK ), labor (elasL), materials (elasM), and returns to scale, estimated using the baseline approach (GNR) or using
factor shares. The table displays the mean, the median, the standard deviation (SD), skewness, and kurtosis. The
final row presents the sample size.

To calculate aggregate TFPR and (log) MRP dispersion statistics, I com-

pute a weighted average of the country-industry-year-specific variances for

these variables. The weights correspond to each industry’s annual share

of the country’s manufacturing revenue, renormalized to sum to unity by

year. Figure 1 illustrates the temporal evolution of aggregate TFPR disper-

sion along with the weighted average TFPR level, estimated using both the

baseline-GNR and FS approaches. Additionally, Figure 2 depicts the evolu-

tion of aggregate dispersion for capital, labor, and materials MRP over time,

comparing results from both methodologies.

Figure 1 reveals that both approaches demonstrate increasing trends

in the aggregate mean and dispersion of TFPR. However, the FS approach

exhibits a more erratic time pattern for the aggregate mean compared to the

baseline-GNR. Moreover, the FS method consistently overestimates both the

aggregate mean and variance of TFPR throughout the observed period.

Finally, regarding Figure 2, it appears that the FS approach yields patterns

and levels of aggregate capital MRP dispersion that are strikingly similar

to those of the baseline-GNR approach across years. In contrast, for mate-
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FIGURE 1. TFPR Dispersion and Mean Evolution

A. Baseline - GNR B. Factor Shares

The solid black line in Figure 1 displays the evolution of the (log) aggregate variance for TFPR,ν. The solid gray line
shows the (log) average value of TFPR in levels, reported on the secondary y-axis. I pool variances and means by
taking a weighted average of the country-industry-year-specific variances and means, using the industry’s annual
share of the country’s manufacturing revenue, renormalized to sum to unity by year, as weights.

FIGURE 2. Inputs MRP Dispersion Evolution

A. Baseline - GNR B. Factor Shares

Figure 2 displays the evolution of the pooled (log) aggregate variance for the inputs’ log marginal revenue products.
The inputs shown are materials (solid black line), capital (dashed black line), and labor (dotted black line). I pool
the log variances by taking a weighted average of the country-industry-year-specific variances, using the industry’s
annual share of the country’s manufacturing revenue, renormalized to sum to unity by year, as weights.

rials and labor, while the temporal dynamics are comparable between the

two approaches, the FS method systematically underestimates the level of
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aggregate MRP dispersion by 20% for labor and 30% for materials.

Intuitively, these results suggest that the FS approach attributes a portion

of the MRP variance for materials and labor to the variance of TFPR, in

contrast to the baseline-GNR. These patterns are further corroborated in

Supplemental Appendix C.2, where I present the aforementioned trends

at the country-year level for both the baseline-GNR and the FS approach,

accompanied by a detailed description.

In the next section, I empirically assess the association between MRP

dispersion and TFPR variability.

5.2. Evaluating the Association of Inputs MRP Dispersion to TFPR Vari-

ability

Figures 3, 4, and 5 provide initial visual evidence on the relationship between

MRP and TFPR, estimated using the baseline-GNR approach, for each input

using the full pooled dataset. Panel A in each figure presents a binscatter

plot of the log MRP for each input (y-axis) against TFPR (x-axis), with the

fitted linear regression line displayed as a solid black line. For capital and

labor, an increasing relationship is evident, with estimated slope coefficients

of 0.96 and 0.79, respectively. The relationship appears weaker for materials,

with a coefficient of 0.10.

Panel B in each figure displays scatter plots of the log variance of logMRP

for each input (y-axis) against the log variance of TFPR (x-axis) at the country-

industry-time level, again with the fitted linear regression line shown. A

positive relationship emerges between industry-level dispersions of MRP

and TFPR for all production inputs. This cross-sectional correlation appears

stronger for labor and materials compared to capital, with slope coefficients
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of 0.56 and 0.19, respectively.

FIGURE 3. TFPR - MRP Correlation: Capital

A B

Panel A displays a binscatterplot of the log marginal revenue product (MRP) for capital (y-axis) against TFPR
(x-axis) for 3,168,792 firm-time observations. The color intensity indicates the number of observations per bin, with
thousands indicated by "K" (see legend). The solid line is a fitted regression with a slope coefficient of 0.96. Panel B
displays a scatterplot of the log variance of log MRP for capital (y-axis) against the log variance of TFPR (x-axis) for
768 country-industry-time observations. The solid line is a fitted regression with a slope coefficient of 0.19.

While these visualizations provide evidence of correlation in terms of

levels and dispersions, a simple pooled linear regression has two key lim-

itations. First, it fails to capture the potentially heterogeneous sensitivity

across countries, time periods, and industries, and to control for unobserv-

able country-, time-, and industry-specific characteristics. Second, it does

not account for the specific impacts of TFPR shocks or past productivity

heterogeneity on MRP variance.

To address the first limitation, I estimate the relationship between MRP

dispersion and TFPR variability for each country using the following linear

models:

(17) log(Varst(mrpXjt)) = c + β log(Varst(νj t)) + ej t
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FIGURE 4. TFPR - MRP Correlation: Labor

A B

Panel A displays a binscatterplot of the log marginal revenue product (MRP) for labor (y-axis) against TFPR (x-
axis) for 3,168,792 firm-time observations. The color intensity indicates the number of observations per bin, with
thousands indicated by "K" (see legend). The solid line is a fitted regression with a slope coefficient of 0.79. Panel B
displays a scatterplot of the log variance of log MRP for labor (y-axis) against the log variance of TFPR (x-axis) for
768 country-industry-time observations. The solid line is a fitted regression with a slope coefficient of 0.56.

(18) log(Varst(mrpXjt)) = ιs + ιt + β log(Varst(νj t)) + ej t

where Varst(mrpXjt) is the variance at the sector-time level of the (log) MRP

for input X and Varst(νj t) is the dispersion of TFPR at the same level of

aggregation18, while ej t is the residual of the linear regression model.

The model in Equation (17) is a simple linear regression, whereas the

model in Equation (18) includes industry and time fixed effects, ιs and ιt,

respectively. For each model, the observations are weighted by the average

industry revenue share of the country’s total manufacturing revenue. Given

that the variables are generated in a previous step, I compute standard errors

using non-parametric clustered bootstrap, resampling the firms’ identifiers.

The regression results by country are reported in Table 3.
18To avoid notational confusion, I omit the hat symbol (̂.) for both the dependent and

independent variables, even though they are estimated in a prior step.
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FIGURE 5. TFPR - MRP Correlation: Materials

A B

Panel A displays a binscatterplot of the log marginal revenue product (MRP) for materials (y-axis) against TFPR
(x-axis) for 3,168,792 firm-time observations. The color intensity indicates the number of observations per bin, with
thousands indicated by "K" (see legend). The solid line is a fitted regression with a slope coefficient of 0.10. Panel B
displays a scatterplot of the log variance of log MRP for materials (y-axis) against the log variance of TFPR (x-axis)
for 768 country-industry-time observations. The solid line is a fitted regression with a slope coefficient of 0.56.

The coefficient β in both models estimates the average elasticity of MRP

dispersion with respect to TFPR variance. The parameter estimates for the

simple model in Equation (17) (reported in Specification 1) are generally pos-

itive and highly statistically significant. However, the estimated β increases

on average in the augmentedmodel in Equation (18) for capital andmaterials,

and decreases for labor (reported in Specification 2), indicating bias in the

simpler model due to unobserved sector and time-specific effects. This is

expected since production technologies and shocks differ across sectors and

years, creating omitted variable bias. With industry and year fixed effects

accounting for these differences, Specification 2 is preferred.

Using the baseline-GNR approach, I estimate a statistically significant

average elasticity of MRP dispersion with respect to TFPR variance of 0.30 for

capital, 0.41 for labor, and 0.55 for materials. The results exhibit substantial

heterogeneity across countries. Repeating the analysis using estimates for
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TABLE 3. TFPR Regression Results

Capital Labor Materials

Baseline - GNR Factor Shares Baseline - GNR Factor Shares Baseline - GNR Factor Shares

Specification (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2)

Germany
β 0.185 0.145 0.119 0.133 0.675 0.497 -0.636 0.355 0.722 0.630 -0.082 0.958

(0.072) (0.049) (0.096) (0.066) (0.343) (0.034) (0.427) (0.204) (0.109) (0.165) (0.503) (0.185)
N 112 112 112 112 112 112 112 112 112 112 112 112
R2 0.279 0.768 0.062 0.658 0.336 0.965 0.103 0.950 0.510 0.705 0.002 0.728
RMSE 0.155 0.071 0.118 0.066 0.378 0.096 0.394 0.108 0.428 0.272 0.694 0.321

Spain
β 0.349 0.252 0.580 0.255 0.663 0.357 -0.509 0.150 0.373 0.448 1.132 1.459

(0.088) (0.055) (0.077) (0.096) (0.134) (0.053) (0.368) (0.110) (0.167) (0.181) (0.316) (0.413)
N 144 144 144 144 144 144 144 144 144 144 144 144
R2 0.315 0.973 0.555 0.953 0.494 0.989 0.162 0.981 0.181 0.917 0.532 0.914
RMSE 0.176 0.038 0.123 0.041 0.215 0.039 0.248 0.041 0.298 0.100 0.258 0.123

France
β 0.210 0.453 0.235 0.535 0.754 0.659 0.082 0.516 -0.218 0.085 1.405 0.250

(0.155) (0.091) (0.118) (0.126) (0.194) (0.089) (0.595) (0.113) (0.399) (0.277) (0.537) (0.415)
N 144 144 144 144 144 144 144 144 144 144 144 144
R2 0.231 0.921 0.124 0.847 0.601 0.983 0.002 0.962 0.058 0.909 0.424 0.919
RMSE 0.132 0.044 0.112 0.052 0.217 0.046 0.325 0.067 0.394 0.088 0.264 0.103

Italy
β 0.208 -0.017 0.300 0.322 0.635 0.173 -0.080 0.792 0.162 0.438 1.014 0.723

(0.100) (0.128) (0.179) (0.231) (0.206) (0.452) (0.389) (0.528) (0.323) (0.165) (0.084) (0.431)
N 144 144 144 144 144 144 144 144 144 144 144 144
R2 0.167 0.952 0.320 0.962 0.499 0.859 0.009 0.944 0.034 0.953 0.862 0.964
RMSE 0.173 0.037 0.131 0.034 0.199 0.106 0.271 0.067 0.317 0.080 0.148 0.076

Poland
β 0.456 0.370 0.563 0.420 0.294 0.419 0.035 0.319 0.615 0.471 1.197 1.124

(0.052) (0.029) (0.092) (0.066) (0.077) (0.038) (0.061) (0.144) (0.089) (0.137) (0.125) (0.315)
N 112 112 112 112 112 112 112 112 112 112 112 112
R2 0.636 0.930 0.674 0.943 0.328 0.901 0.005 0.777 0.426 0.723 0.716 0.812
RMSE 0.160 0.088 0.239 0.087 0.199 0.088 0.227 0.113 0.421 0.284 0.365 0.297

Romania
β 0.264 0.381 0.265 0.120 0.083 0.266 -0.045 -0.021 1.626 1.105 1.606 1.348

(0.152) (0.057) (0.090) (0.093) (0.216) (0.058) (0.064) (0.084) (0.257) (0.185) (0.202) (0.252)
N 112 112 112 112 112 112 112 112 112 112 112 112
R2 0.168 0.912 0.290 0.898 0.029 0.864 0.018 0.783 0.638 0.970 0.817 0.966
RMSE 0.210 0.068 0.204 0.072 0.188 0.058 0.183 0.073 0.409 0.128 0.363 0.166

Pooled
β 0.224 0.298 0.282 0.283 0.567 0.409 0.133 0.286 0.497 0.550 0.916 1.083

(0.065) (0.038) (0.065) (0.054) (0.081) (0.033) (0.132) (0.097) (0.095) (0.078) (0.131) (0.143)
N 768 768 768 768 768 768 768 768 768 768 768 768
R2 0.201 0.950 0.242 0.943 0.434 0.967 0.017 0.965 0.263 0.908 0.422 0.922
RMSE 0.234 0.061 0.210 0.061 0.305 0.078 0.384 0.082 0.441 0.175 0.493 0.197

Constant YES NO YES NO YES NO YES NO YES NO YES NO
Industry/Year FE NO YES NO YES NO YES NO YES NO YES NO YES

The table presents regression results of the variance of (log) MRP for each input on TFPR dispersion by country.
Baseline - GNR and Factor Shares refer to the methodologies used to estimate TFPR and MRPs. Specification 1 refers
to the simple linear model in Equation (17) and Specification 2 refers to the model with industry and year fixed
effects in Equation (18). In both models, the observations are weighted by the industry’s average revenue share of
total manufacturing revenue. Reported are the estimates for the slope coefficient (β), the number of industry-year
observations (N), unadjusted R2, and root mean squared error (RMSE). Standard errors, computed using clustered
non-parametric bootstrap over 500 repetitions, are in parentheses. For the pooled regression, I use country-sector
and country-year fixed effects, and the weights are normalized to sum to unity by year.
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TFPR and MRP recovered via the FS approach, I find that this method under-

estimates the elasticity for capital (0.28) and labor (0.29) while overestimating

it for materials (1.08). The bias is more pronounced for materials and labor,

while it is minor for capital.

The interpretation of the FS approach estimates for materials and la-

bor warrants caution. Unlike the baseline methodology, the FS approach

assumes that firms allocate materials and labor with perfect information

about productivity shocks. Consequently, for these inputs, this approach

excludes unexpected ex post shocks to contemporaneous productivity that

could lead to misallocation. Therefore, the strong positive correlation ob-

served is attributed entirely to known productivity heterogeneity. Nonethe-

less, reporting these estimates is instructive for highlighting the limitations

researchers encounter when studying the link between productivity disper-

sion and misallocation using the FS approach.

My findings in this section confirm and extend the results from Asker,

Collard-Wexler, and De Loecker (2014), who demonstrated that industries

with greater time-series volatility of productivity exhibit greater cross-sectional

dispersion of themarginal revenue product of capital19. Theywere the first to

identify productivity volatility as a key driver of capital MRP dispersion. This

paper builds on their work by expanding the investigation to encompass all

production inputs, including materials, and demonstrates that productivity

dispersion accounts for MRP dispersion across all inputs.

The theoretical framework in Section 2.1 enables an additional contribu-

tion: decomposing estimated TFPR into its observed and shock components.
19My estimated slope coefficients using FS are lower than those reported by Asker, Collard-

Wexler, and De Loecker (2014) in their Table 3. This divergence stems from several method-
ological factors: 1) industry definitions vary, and 2) the authors regress MRP dispersion on
TFPR volatility, whereas I focus on TFPR variance.
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Given the timing assumptions on input allocation, each input’s MRP dis-

persion may exhibit heterogeneous sensitivity to the variability of these

different components. Investigating this heterogeneous relationship is the

focus of the final results section.

5.3. Evaluating the Association of Input MRP Dispersion to TFPR Com-

ponents Variability

In the baseline-GNR model, the three TFPR components—past productiv-

ity, ex ante shocks, and ex post shocks—are theoretically assumed to be

orthogonal. However, Figure 6A reveals that the observed sums of total TFPR

variance shares deviate from one, indicating non-zero covariances between

the TFPR components at the industry level. This implies that these com-

ponents are correlated in the data, contrary to the theoretical assumption.

Similarly, Figure 6B shows traces of correlation between observed and shock

TFPR components for the factor share approach. Supplemental Appendix D,

Figures A7 and A8 present the corresponding plots for each country.

Notably, in the baseline-GNR approach, the majority of industry TFPR

variation is driven by ex post productivity shocks (ε), while ex ante shocks

(η) contribute the least. Past persistent productivity (ω–1) falls in between,

accounting for a moderate share on average. Overall, for the baseline-GNR

approach, shocks dispersion dominates productivity heterogeneity. This

pattern is reversed in the FS approach: Figure 6B demonstrates that hetero-

geneity in past productivity is much larger than the variability in the shock

component by a factor of four.

The FS approach appears to overestimate the weight of past productiv-

ity and underestimate the weight of productivity shock dispersion in total
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FIGURE 6. Component Shares of TFPR Variance

A. Baseline - GNR B. Factor Shares

This figure illustrates the annual weighted average share of country-industry-year TFPR variance attributable to
each TFPR component. The decompositions are derived from equation (10) for Figure 6 and from equation (16) for
Figure 6B. The weights are based on each industry’s share of total annual manufacturing revenue in its respective
country, normalized to sum to one each year.

productivity heterogeneity. This discrepancy is further corroborated in Sup-

plemental Appendix D, where Tables A9 and A10 present the weighted aver-

age share of country-industry-year inputs’ MRP dispersion for each TFPR

component variance, for the baseline-GNR and FS approaches, respectively.

To examine the heterogeneous sensitivity of input MRPs dispersion to

TFPR components variances across countries, I estimate the following linear

models separately for each country:

(19)
log(Varst(mrpXjt)) =c + βω–1 log(Varst(ωj t–1)) + βη log(Varst(ηj t))

+ βε log(Varst(εj t)) + ∑
z∈{(ω–1,η),(ω–1,ε),(η,ε)}

βz log(1 + ρz,st) + ej t

(20)
log(Varst(mrpXjt)) = ιs + ιt + βω–1 log(Varst(ωj t–1)) + βη log(Varst(ηj t))

+ βε log(Varst(εj t)) + ∑
z∈{(ω–1,η),(ω–1,ε),(η,ε)}

βz log(1 + ρz,st) + ej t

Again, hereωj t–1 denotes the past persistent productivity component,
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ηj t represents the ex-ante shock, and εj t represents the ex-post shock. To

avoid omitted variable biases arising from functional dependence between

variables, I include as regressors the log transformations of the Pearson

correlation coefficients at the industry-time level: ρ(ω–1,η),st, ρ(ω–1,ε),st, and

ρ(η,ε),st. The residual of the model is denoted by ej t.

The model in Equation (20) further incorporates industry and year fixed

effects, ιs and ιt, respectively. Observations are weighted by average an-

nual industry revenue shares. Given the first-stage generated variables, I

compute standard errors using individual-level clustered bootstrap. The

country-specific results are presented in Table 4.

The coefficientsβω–1,βη, andβε estimate the average elasticities of an in-

put MRP dispersion to the variances of pre-existing productivity heterogene-

ity, ex-ante productivity shocks, and ex-post productivity shocks, respectively.

For all inputs, these coefficients change after controlling for industry-year

fixed effects, suggesting that Specification 1 suffers from bias due to unob-

served sector- and year-specific effects. Therefore, I take Specification 2,

which includes industry and year fixed effects, as the baseline.

For all inputs’ MRP dispersions, the ex-post shock (ε) demonstrates the

highest sensitivity, with overall elasticities of 0.14 for capital, 0.21 for labor,

and 0.69 for materials. In contrast, pre-existing productivity (ω–1) and ex-

ante shock (η) dispersions exhibit milder effects. The overall elasticity to

pre-existing productivity dispersion is estimated at 0.05 for capital, 0.06

for labor, and 0.02 for materials. Similarly, the overall elasticity to ex-ante

shock dispersion is estimated at 0.06 for capital, and 0.03 for both labor and

materials. There is significant cross-country heterogeneity in the estimates,

ranging from negative or small, insignificant effects to large and highly

significant effects.
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The FS approach enables a similar decomposition of TFPR into observed

and shock components. I estimate the following linear models separately

for each country:

(21)
log(Varst(mrpXjt)) =c + βν–1 log(Varst(ν

FS
jt–1)) + βν–ν–1 log(Varst(ν

FS
jt – ν

FS
jt–1))

+ β(ν–1,ν–ν–1) log(1 + ρ(ν–1,ν–ν–1),st) + ej t

(22)
log(Varst(mrpXjt)) =ιs + ιt + βν–1 log(Varst(ν

FS
jt–1)) + βν–ν–1 log(Varst(ν

FS
jt – ν

FS
jt–1))

+ β(ν–1,ν–ν–1) log(1 + ρ(ν–1,ν–ν–1),st) + ej t

Here, νFSjt–1 represents the past productivity component of TFPR, and

(νFSjt – ν
FS
jt–1) represents the shock component. To avoid omitted variable

biases, I control for covariances between variables by including as regressors

the log transformations of the Pearson correlation coefficients at the industry-

time level: ρ(ν–1,ν–ν–1),st. The residual of the model is denoted by ej t.

The model in Equation (22) incorporates industry and year fixed effects,

ιs and ιt. Observations are weighted by average annual industry revenue

shares. I compute standard errors using individual-level clustered bootstrap,

given the first-stage generated variables. The country-specific results are

presented in Table 5.

The results for capital suggest that a regression using FS estimates over-

estimates the elasticity of the input’s MRP dispersion to pre-existing produc-

tivity heterogeneity (ν–1), with an overall sensitivity of 0.15, compared to the

baseline-GNR estimates. Conversely, it underestimates the sensitivity to the

shock dispersion (ν – ν–1), with an overall sensitivity of 0.08. There is also

significant cross-country heterogeneity20.
20My estimates of βν–ν–1 for capital for France, Spain, and Romania, though positive, are

much smaller than those reported in Table 3 of Asker, Collard-Wexler, and De Loecker (2014).
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Again, caution is necessary when interpreting the regression coefficients

for labor and materials. A structural assumption of the FS approach is that

these inputs are allocated with perfect information of contemporaneous

productivity, which is inconsistent with our decomposition of TFPR into

observed and shock components for these inputs. However, if one overlooks

this point, it appears that the FS approach tends to overestimate the sensi-

tivity of inputs’ MRP dispersion to observed productivity heterogeneity and

underestimate the sensitivity to TFPR shocks.

Measurement error may explain the discrepancy between the two ap-

proaches. As shown, the FS approach overestimates the share of TFPR vari-

ance attributed to productivity heterogeneity observed by the firm and un-

derestimates the share attributed to productivity shocks, compared to the

baseline-GNR approach. These differences likely affect the relative weight

of the two components in relation to MRP dispersion, thereby biasing the

regression coefficient and the quantification of elasticities.

6. Summary and Concluding Remarks

To my knowledge, this is the first paper to analyze the link between different

sources of productivity shocks and input misallocation, measured by MRP

dispersion, across all production inputs. This study confirms the established

relationship between productivity heterogeneity, uncertainty, and capital

misallocation found in the literature. Additionally, it demonstrates that the

strength of this relationship varies based on the decomposition between

However, our specifications differ. Instead of regressing standard deviations on standard
deviations, I regress the log of the variances. Moreover, I control for the variance of past
TFPR and the correlation between past TFPR and productivity shocks. Finally, I also include
industry fixed effects.
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productivity observed by the firm and productivity shocks, as well as the

timing of these shocks. Furthermore, I show that the relationship general-

izes heterogeneously to all inputs. Comparing the baseline results to those

obtained using the FS approach highlights the limitations of the latter in

studying the effects of productivity evolution.

This study reveals a positive association between MRP dispersion and

TFPR variability for all inputs and demonstrates that productivity shocks

primarily drive MRP dispersion, meaning that productivity idiosyncrasies

are significantly linked to inputmisallocation amongfirms. This underscores

the importance of considering detailed productivity dynamics to understand

input misallocation. While some productivity uncertainty is unavoidable,

policies that promote stability and efficiency can helpmitigatemisallocation.

Moreover, my results suggest that accurately accounting for productivity

heterogeneity and uncertainty is crucial to precisely quantify the effects of

other distortions on input misallocation.

The framework in this paper has some limitations that present opportu-

nities for future research. I showed that cross-firm variation in productivity

levels is relatively small and has a lower effect on MRP dispersion compared

to productivity shocks, which result from information frictions. However,

heterogeneous observed productivity can still indirectly drive misallocation

through correlated distortions like firing costs and financial frictions. More

data are needed to disentangle MRP dispersion due to pure firm heterogene-

ity from that due to correlated frictions.

I believe that balancing this partial equilibrium approach with model-

ing specific policies or misallocation drivers, such as taxes, subsidies, and

financial and allocative frictions, is a crucial next step. By examining these

mechanisms, we can better understand the relative roles of distortions in
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generating MRP dispersion for all inputs. This will lead to improved mea-

surement of input misallocation and a clearer assessment of the impact

of mitigating policies. Ultimately, this can informmore effective policy re-

sponses.
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