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Abstract

This paper compares the size distributions of cities when they are measured using

gridded population and nighttime lights data. To do so, we exploit recent and accurate

satellite imagery to proxy urban economic activity. Similarly to related studies, our

results suggest that population is more equally distributed than lights at the country

level. However, and calling assumptions established for urban nighttime lights into

question, our �ndings do not support a Pareto function for their distribution. We

also obtain evidence of a nonlinear and heterogeneous link between population and

lights for a global sample of cities. Grounded on our empirical analysis, we develop a

simple theoretical framework that relates the di�erence between the distributions of

population and light emissions to the strength of agglomeration economies.
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1 Introduction

The distribution of city sizes is one of the more extensively studied topics by urban

economists due to its theoretical and policy-making implications. Following the seminal

contributions of Gabaix (1999) and Eeckhout (2004), the related literature has mostly

focused on testing whether the city size distribution �ts the rank-size rule, also known

as Zipf's law (Rosen and Resnick 1980). This empirical regularity quanti�es the concept

of urban hierarchy by stating that the size of the N-th city is 1/N times the size of the

largest one. As pointed out by Arshad, Hu, and Ashraf (2018), Zipf's law is not universal,

even if only the upper tail of the city size distribution is considered. The mixed evidence

regarding the rank-size rule becomes especially apparent when the urban structures of

di�erent countries are analyzed (Puente-Ajovín, Ramos, and Sanz-Gracia 2020; Soo 2005).

A shortcoming commonly found in these cross-country studies is that the de�nition of

what is considered as a city di�ers across national data sources1. Fortunately, and taking

advantage of satellite imagery and remote sensing techniques, several organizations and

scholars have established harmonized de�nitions of cities and settlements that can represent

all the urban areas worldwide in a homogeneous framework, making global analyses and

cross-country comparisons more reliable; see Duranton (2021) and the references therein.

In the context of the study of the city size distribution, an early attempt was conducted

by Decker, Kerkho�, and Moses (2007) who, using clusters of nighttime lights (NTL,

hereafter) as well as census data, tested the generality of Zipf's law across the entire range

of city sizes in terms of both total area and population. These authors found more evidence

against this empirical regularity for the size of urban agglomerations of light emissions

than for the population of politically-de�ned cities. Small et al. (2011) also contend that

NTL are a useful proxy � independent and complementary to population counts � for the

quanti�cation of the size, number, and spatial extent of human settlements worldwide.

However, they conclude that the global size distribution of spatially contiguous patches of

light emissions closely conforms to Zipf's law when they are measured in terms of area;

see Jiang, Yin, and Liu (2015) for a similar analysis and �ndings covering all natural cities

worldwide. Small et al. (2011) attribute these con�icting results to the di�erent versions

1Fazio and Modica (2015), Ioannides and Skouras (2013), and Puente-Ajovín et al. (2020) show that
this issue may lead to con�icting results even within a single country.

2



used of the `stable night light images' collected by the Defense Meteorological Satellite

Program (DMSP) Operational Linescan System.

Although there is a premise that areas with more light emissions generally have a higher

population, other factors such as the level of economic activity can a�ect the intensity of

NTL. Actually, since the pioneering contributions of Chen and Nordhaus (2011) and Hen-

derson, Storeygard, and Weil (2012) night lights have been proven as a reliable proxy of

economic activity. It is also well known that agglomeration plays a signi�cant role in ex-

plaining why economic activity tends to concentrate where the population is dense (Glaeser

2008). Furthermore, strong agglomeration economies can, under some circumstances, lead

to a situation where economic activity grows more than proportionally with population.

Among the possible reasons, and in an urban context, it is worth noting the productivity

gains experienced by �rms and their workers in large cities due to lower transport costs,

labor market pooling, and knowledge spillovers (Glaeser and Gottlieb 2009). Empirical

studies about the relevance of these agglomeration economies, that cannot be observed

directly, have mainly relied on regression analyses of income or productivity on city popu-

lation or density (Combes and Gobillon 2015; Grover, Lall, and Timmis 2023) which, inter

alia, have to deal with the issue of the simultaneous determination of population size and

productivity (Brakman, Garretsen, and Marrewijk 2019; Ciccone and Hall 1996).

In the presence of strong increasing returns to scale at the local level, economic activ-

ity will grow disproportionately compared to population. This will widen the di�erence

between their distributions in a given urban system, making economic activity to be more

unevenly distributed than population. These arguments lead Düben and Krause (2021) to

compare, at the country level, the distribution of urban population with the distribution

of night lights � which may represent that of economic activity � as an alternative way of

analyzing the magnitude of agglomeration economies. To do so, they calculate two alter-

native measures of city size by overlaying information of the geographical extent of urban

centers, identi�ed using a globally consistent scheme, with geospatial data of population

and light emissions. Moreover, these authors take advantage of the data set created by

Bluhm and Krause (2022) to correct the top-coding problem of DMSP night lights. Their

main conclusion is that while urban population can be characterized by Zipf's law in most
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countries2, this is not the case of light emissions, which are distributed less equally. Devi-

ations from Zipf's law are mainly explained by primary cities being excessively inhabited

and, especially, bright, what seems to be driven by the existence of agglomeration e�ects

of scale and market access.

Adopting a supranational approach, and considering consistently de�ned functional ur-

ban areas (FUAs) and urban centres, Puente-Ajovín, Sanso-Navarro, and Vera-Cabello

(2022) analyze the distributions of population and light emissions in the European Union

and the United States. The main di�erence with the related aforementioned studies is

that they exploit the more precise NTL data from the Visible Infrared Imaging Radiome-

ter Suite (VIIRS) of instruments onboard the Suomi NPP satellite. These authors also �nd

that urban population displays a more egalitarian distribution than light emissions, espe-

cially in the European Union. In addition, they obtain statistical evidence against both

Zipf's law and a Pareto distribution for aggregate NTL within urban extents. Ribeiro

et al. (2021) study the association between urban scaling � a power law relation between

urban indicators and city population size (Bettencourt et al. 2007) � and Zipf's law in

a global sample of FUAs using population and gross domestic product (GDP) data. At

the country level, they show that there exists a direct and nonlinear relationship between

the exponents that characterize these two fundamental paradigms for the science of cities

(Batty 2013), suggesting that urban scaling and the distribution of population a�ect each

other3. In particular, countries with a small number of large cities concentrate most com-

plex economic activities in relatively fewer metropolises, hence intensifying the increasing

returns to scale of urban GDP. Nonetheless, these authors acknowledge that other ele-

ments beyond the distribution of urban population � such as socio-economic development

and historical factors � may also a�ect of the urban scaling of economic activity.

2These results disagree with those obtained by Ch, Martin, and Vargas (2021) who, after pre-processing
DMSP luminosity data to correct some of its inherent problems, develop a procedure to identify the lit
pixels that constitute urban footprint. These pixels are further employed to, on the basis of predetermined
urban cores, construct a georeferenced data set with the location and extent of metropolitan areas of, at
least, 50,000 inhabitants. This information is combined with gridded population data to estimate city
sizes, �nding no general support for Zipf's law at the national level in a sample of 55 countries.

3On the one hand, population of small cities may be attracted by the wealth and culture of large cities,
as a result of agglomeration economies, a�ecting the distribution of city sizes in demographic terms. On
the other hand, an urban system characterized by a few very large cities that agglomerate diverse economic
sectors and businesses will display a higher value of the estimated urban scaling exponent.
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The main aim of the present paper is to carry out a cross-country study of the di�erence

between the distributions of urban population and light emissions making use of the cur-

rent and accurate VIIRS images. Apart from providing further evidence about the global

importance of urban agglomeration economies, and as a byproduct of our analysis, we are

able to check the suitability of the top-coding correction of DMSP data proposed by Bluhm

and Krause (2022), grounded on the assumption of a Pareto distribution for aggregate ur-

ban NTL. Given that urban agglomeration forces are not alike in developed and developing

countries (Grover, Lall, and Timmis 2023), the focus is put on the di�erences across income

groups rather than geographic regions. We assess the sensitivity of our results to the role

played by primary cities, to the consideration of alternative gridded population and NTL

data sets, and to the use of estimated gridded GDP to measure urban economic activity.

In addition, the possible presence of a nonlinear and heterogeneous relationship between

urban population and night lights has been explored using a global sample of cities. Taking

these results as a starting point, we develop a theoretical explanation for the relationship

between the strength of agglomeration economies and the di�erent distributions displayed

by urban population and light emissions.

The rest of the paper is structured as follows. Section 2 presents the urban units that

conform our sample, and details the main sources of information from which the data

exploited in our empirical analysis have been extracted. Section 3 studies the national

distributions of urban population and aggregate night lights at the country level, applying

parametric regressions and nonparametric tests. Section 4 evaluates the possible presence

of a nonlinear and heterogeneous link between urban population and light emissions in

a global sample of cities using kernel regression methods. Section 5 develops a simple

theoretical framework to discuss of our main �ndings and, �nally, Section 6 concludes.

Appendices A and B contain further relevant information and results.

2 Georeferenced data: Urban centers, gridded population,

and nighttime lights

The �rst key issue to conduct a cross-country study of the distribution of urban size

is the adoption of a homogeneous de�nition for cities. Similarly to Düben and Krause
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(2021), and for the sake of comparability, we have identi�ed cities using the data contained

in the Global Human Settlement Layer (GHSL), provided by the Joint Research Center of

the European Commission; see Florczyk et al. (2019a) and Florczyk et al. (2019b). This

database combines the information on built-up areas from Landsat images with the fourth

version of the Gridded Population of the World4 (GPW) to divide the globe into pixels

(grid cells) of one square kilometer and classify them as belonging to a rural area or to an

urban center and/or an urban cluster. Actually, GHSL urban centers correspond to the

spatial extent of the cities considered in the present study, referred to the year 2015.

The GHSL consistently de�nes urban centers across geographical locations as areas with

contiguous grid cells, where each of them has, at least, 1,500 inhabitants or 50 per cent

built-up surface. In doing so, this database identi�es contiguous settlements experiencing

common agglomeration economies and congestion costs. Although GHSL urban centers

only include areas with more than 50,000 inhabitants, this value corresponds to the thresh-

old suggested by the World Bank (2008) to classify human settlements as urban in both

developed and developing countries. The geospatial data with the shape and location of

urban centers reveal that some of them belong to more than one country5. In these cases,

we have assigned an urban area to a single country when it includes more than 75 per cent

of the area. Applying this criterion, as well as only considering countries with more than

10 observations, our sample covers 12,852 urban centers of 100 countries.

Another relevant issue when dealing with urban size is its measurement. Just as the

great majority of studies about the distribution of city sizes, we calculate them using

population data. However, and also following Düben and Krause (2021), we exploit NTL

satellite imagery to proxy urban economic activity. City size will be the sum of persons,

on the one hand, and aggregate light emissions, on the other, in the pixels within the

spatial extent of GHSL urban centers, according to the shape�le made available by this

database. Regarding urban size measured in demographic terms, the GHSL also provides

population estimates at the pixel level (GHS-POP). This information has been constructed

4Produced by Center for International Earth Science Information Network (CIESIN), within the
Columbia University Earth Institute.

5The reason is that GHSL boundaries do not conform to the administrative de�nitions of cities, re-
gions, or countries. Actually, some of the cities (urban centers) included in our sample contain several
administrative cities.
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by disaggregating GPW administrative area level population data from national censuses

and registers6 to grid cells according to their proportion of built-up area.

Although other gridded population data sets might be used (see Subsection 3.4.3), it

is more reliable to build on GHS-POP for several reasons. First of all, these population

data are produced by the same institution that establishes the de�nition of the urban

units that has been adopted. In addition, the reliability of GPW estimates varies across

countries, depending on the timeliness, accuracy, and spatial resolution of the census data

used as an input, and on the suitability of the linear interpolation applied (Archila Bustos et

al. 2020). The LandScan database refers to ambient population that, in contrast to resident

population, not only represents where people live, but also where they work and travel.

Leyk et al. (2019) suggest to use gridded population data constructed using information

on human settlements or urban extents, such as GHS-POP, to study the distribution of

urban population. Lastly, Chen et al. (2020) claim that this database is more opportune

to analyze highly-urbanized areas.

To carry out their empirical analysis, Düben and Krause (2021) rely on the data set

created by Bluhm and Krause (2022) to correct the top-coding problem of DMSP images.

However, these NTL data are also a�ected by blurring, geolocation errors, lack of calibra-

tion, and coarse resolution; see Gibson (2021) and Gibson et al. (2021). Since April 2012,

there are available more precise NTL images captured by the VIIRS onboard the Suomi

NPP satellite. Its Day/Night Band was designed to measure the radiance of lights on earth

in a wide variety of lighting conditions, and covers a dynamic range of about seven orders

of magnitude (DMSP covers less than two), avoiding saturation problems and top-coding.

VIIRS images are comparable over time and space, do not have blurring or geolocation

errors, and display, at least, 45 times greater spatial resolution than DMSP data (Elvidge

et al. 2017). For all these reasons, VIIRS images are superior at attributing lights to the

place where they are emitted and, therefore, are a better proxy for urban economic activity

than DMSP data; see Gibson, Olivia, and Boe-Gibson (2020) for a comparison of these

two alternative NTL satellite imagery.

In the manner of Puente-Ajovín, Sanso-Navarro, and Vera-Cabello (2022), and as sug-

gested by Gibson (2021) and Gibson et al. (2021), we use these VIIRS night lights to

6Adjusted to match estimates from the United Nations World Population Prospects.
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proxy urban economic activity. More speci�cally, we have extracted the `vcm-orm-ntl'

annual composites7 for 2015 from the website of the Earth Observation Group of the Na-

tional Oceanic and Atmospheric Administration (US Department of Commerce)8. These

data have been cleaned to exclude background noise, solar and lunar contamination, cloud

cover degradation, and features unrelated to electric lighting (Elvidge et al. 2017). At the

pixel level, reported radiance values are expressed in nano Watts per square centimeter per

steradian, with a resolution of 15 arc seconds (approximately 450 meters at the equator).

The same as gridded population, NTL data have been aggregated for all pixels included

within the extents of urban centers to calculate their size. Although the pixels of VIIRS

data are smaller than GHSL ones, this is not problematic because the aggregation of light

emissions has been carried out considering the larger GHSL pixels.

[Insert Table 1 about here]

Table 1 reports descriptive statistics for the two measures of city size described above.

This is done for the whole sample as well as by country income group, according to the

World Bank classi�cation9 for 2015. It categorizes countries as `Low income' if their Gross

National Income (GNI) per capita was lower or equal than 1,025 U.S. Dollars (22 out of

100 countries in our sample); `Lower-middle income' if it was between 1,026 and 4,035 USD

(29); `Upper-middle income' between 4,036 and 12,475 USD (27); and `High income' if GNI

per capita was higher than 12,475 USD (22). Average and median city size increase with the

level of income, both in terms of population and aggregate light emissions. Nonetheless,

this increase is more than proportional in the case of NTL as compared to population.

Except in high income countries, there are cities for which no lights are attributed. It can

also be observed that the largest cities in terms of aggregate NTL are located in countries

that belong to the high income group.

7VIIRS Cloud mask�Outlier removed�Nighttime lights.
8https://www.ngdc.noaa.gov/eog/.
9See Table A1 in Appendix A for further details.
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3 The distribution of urban population and aggregate night-

time lights at the country level

3.1 Rank-size parametric regression

The rank-size rule implies that the city size distribution can be approximated by a

Pareto function with power law exponent equal to one. For this reason, cross-sectional em-

pirical analyses of the Zipf's law are generally based on a log-log linear regression between

the rank of a city and its size. In order to reduce the bias of the OLS estimator in small

samples, Gabaix and Ibragimov (2011) propose the following regression model:

log (Ranki − 0.5) = α − β ⋅ log(Sizei) + εi, i = 1, . . . , n; (1)

where i is a city indicator, and n denotes the sample size. Zipf's law is equivalent to β = 1.

In the present context, a coe�cient lower (greater) than one re�ects that population and/or

light emissions are more unequally (equally) distributed across the national urban system

than predicted by the rank-size rule.

[Insert Figure 1 about here]

Figure 1 shows kernel densities for the estimated slope parameter in expression (1)

at the country level10, measuring city size in demographic terms (GHSPOP, orange) and

when urban economic activity is proxied using NTL (VIIRS, blue). Estimated power law

exponents are centered around values slightly higher than one when city size is calculated

using gridded population. However, Pareto coe�cients tend to be lower than one when

urban size is expressed in terms of aggregate light emissions. Therefore, and corroborating

the �ndings of Düben and Krause (2021) and Puente-Ajovín, Sanso-Navarro, and Vera-

Cabello (2022), urban NTL are more unevenly distributed than population at the country

level.

10Papua New Guinea has been omitted as an outlier. The estimated slope parameter in the rank-size
regression for this country is 2.91 when city size is measured in population terms.
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3.2 Nonparametric testing

The main purpose of the empirical model in expression (1) is to test the null hypothesis

that the Pareto coe�cient is equal to one; i.e., that Zipf's law holds. As a more �exible

alternative, Gan, Li, and Song (2006) propose to investigate the distribution of city sizes

through the implementation of the Kolmogorov-Smirnov (KS) test statistic. The idea is

that this nonparametric method can be used to compare the city size distribution with a

function of reference, determining the degree of (dis)similarity. With this aim, we have

considered two benchmarks: (i) a Pareto function imposing that the power law exponent is

equal to one (exact Zipf's law), and (ii) a Pareto function with the estimated β coe�cient

in expression (1) as the power law exponent.

The empirical distribution function of the n independent and identically distributed

ordered size observations can be calculated as:

Fn(s) =
1

n

n

∑
i=1

1
(−∞,s](Sizei); (2)

where 1
(−∞,s](Sizei) is an indicator function that takes a value equal to one if Sizei ≤ s,

zero otherwise.

The Pareto distribution function is given by:

FP (s, β) = 1 − (
Sizei
s

)

β

. (3)

The calculation of the KS test statistic is based on the maximum di�erence between

the empirical distribution of the data and the benchmark function:

KS = sup∣Fn(s) − FP (s, β)∣. (4)

The null hypothesis is that the observed data have been obtained from the probability

distribution of reference. The resulting test statistic is compared to the critical values of

the KS distribution to assess the validity of the reference function, such that the smaller

the value of the test statistic the better the reference distribution function describes city

sizes.
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[Insert Figures 2 and 3 about here]

We have �rst implemented the KS test against the null hypothesis that, at the country

level, city sizes are distributed as a Pareto function with power law exponent equal to one.

The cumulative distribution function of the p-values that have been obtained for the two

alternative measures of city size are plotted in Figure 2. In line with the kernel densities of

estimated Pareto coe�cients shown in Figure 1, the null hypothesis that city sizes adjust

to Zipf's law can be more easily rejected when they are calculated using light emissions.

As noted before, the KS test has also been calculated using the OLS estimate for the slope

parameter in (1) as the power law exponent. The corresponding cumulative distribution

functions displayed in Figure 3 show that, although there is a slightly higher evidence

of a Pareto distribution for aggregate urban NTL, the null hypothesis can be rejected

in 75 countries at the 1% signi�cance level. Thus, we do not �nd supportive evidence

using VIIRS images for the Pareto assumption established by Bluhm and Krause (2022)

to correct for top-coding in DMSP data. This problem mainly a�ects larger cities which,

according to the �gures reported in Table 1, tend to be located in richer countries. For

this reason, and given that agglomeration e�ects are not alike in developed and developing

nations, we also investigate the distribution of city sizes grouping countries by their level

of income per capita.

3.3 Country income groups

Kernel density estimates of national Pareto coe�cients by country income group are

plotted in Figure 4. The greatest resemblance between the distributions of urban popu-

lation and NTL is found in high income countries. Aggregate urban light emissions are,

however, more unevenly distributed than population. The similarity between the distribu-

tions of population and night lights is directly related to national income. In particular,

estimated Pareto coe�cients for population (lights) tend to increase (decrease) when GNI

per capita decreases. These results corroborate the existing evidence that urban agglom-

eration e�ects are more important in developing countries; see Grover, Lall, and Timmis

(2023). The explanations given by these authors for this fact are the existence of duality

in labor and land markets, the poor quality of physical and transport infrastructures, and

the favoritism of governments towards the largest cities.
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[Insert Figure 4 about here]

The upper panel of Table 2 reports, for three signi�cance levels, the percentage of re-

jections by the KS test of the null hypothesis that the city size distribution is a Pareto

function with power law exponent equal to one. Corroborating the results in Figures 2

and 3, there is more evidence against the full�lment of Zipf's law in the urban distribution

of aggregate NTL than in the distribution of population when all countries in our sample

are considered. Broadly speaking, nations with higher income per capita tend to display

lower rejection rates than less developed countries (LDCs). The lower panel of Table 2

shows similar results when the KS test statistic is performed considering that the distribu-

tion of reference is a Pareto function with the estimated slope parameter in the rank-size

regression as the power law exponent. In this case, and as expected, the evidence of a

Pareto distribution for both urban population and light emissions is slightly higher than

that for the exact Zipf's law. Nonetheless, the rejection rates for aggregate VIIRS night

lights at the city level � higher than 50 per cent � do not support the Pareto assumption

established by Bluhm and Krause (2022) to correct the top-coding problem of DMSP data.

[Insert Table 2 about here]

3.4 Robustness checks

3.4.1 The role of primary cities

The estimated Pareto coe�cient from a rank-size regression at the country level can be

interpreted as an indication of the degree of hierarchy in its urban system, such that a low

coe�cient re�ects a high weight of large cities. In this line, Düben and Krause (2021) show

that national primary shares11 are inversely related to the magnitude of Pareto coe�cients

for city sizes calculated both in demographic terms and by aggregating light emissions.

Nonetheless, primary cities may be outlying observations according to a power law, hence

a�ecting the �t and estimated coe�cients from rank-size regressions (Brakman, Garretsen,

and Marrewijk 2019). To check whether this is the case in the present context, we re-

estimate expression (1) after removing the largest city in terms of population12 from each

11Urban primacy is a well-known feature of urbanization in LDCs (Duranton 2008), mainly driven by
political and institutional factors (Ades and Glaeser 1995; Davis and Henderson 2003).

12This de�nition of primary city is the same to that used in related papers, see Düben and Krause (2021)
and Bluhm and Krause (2022). Removing the largest city in terms of aggregate NTL in the corresponding
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national sample. Resulting kernel densities of estimated Pareto coe�cients by country

income group are displayed in Figure 5. It can be observed that the main conclusions

drawn in the previous subsections do not change when primary cities are excluded from

national samples. That is, urban aggregate light emissions are less equally distributed than

population, and the similarity between the distributions of NTL and population increases

with national income.

[Insert Figure 5 about here]

The distributions of estimated parameters shown in Figure 4 tend to move to the right �

re�ecting higher values and, consequently, lower urban concentration � when primary cities

are not included in national samples. The magnitude of the distributional shift is greater

when city size is measured in terms of population. Hence, excluding the largest city makes

aggregate urban light emissions and, especially, population to be more evenly distributed.

Given that the estimated Pareto coe�cient can be considered as an indirect indicator of city

primacy (Ch, Martin, and Vargas 2021), this can be interpreted as evidence that fewer large

cities dominate the urban landscape in demographic than in economic terms. Moreover,

and for a given country, the size of the largest city seems to be more in line with the power

law distribution of the other urban units when they are measured using aggregate light

emissions than population. It can also be observed that changes a�ect all income groups in

a similar manner, what can be related to the fact that developing countries have become

as likely as developed countries to contain large agglomerations, mainly when they are

measured in demographic terms (Jedwab, Loungani, and Yezer 2021).

In short, this robustness check excluding primary cities from national samples allows us

to claim that the di�erent distributions of light emissions and population are not driven by

an excessive concentration in the largest urban centers. Actually, not considering primary

cities lead to even greater di�erences between the estimated Pareto coe�cients for the two

alternative measures of urban size, especially in countries with lower income levels. This

novel result obtained using more accurate satellite imagery, not a�ected by top-coding,

than related studies can be an indication that agglomeration economies are not restricted

to the largest cities, even in developing countries.

rank-size regression at the country level does not signi�cantly change the results (available from the authors
upon request).
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3.4.2 Alternative nighttime lights data

For the sake of comparison, we have also proxied local economic activity with the

`stable night light images' collected by the DMSP, despite their limitations. Given that

the production of DMSP images ended in 2013, we have used the information for that year.

In addition, the top-coding correction of DMSP data proposed by Bluhm and Krause (2022)

� referred to as DMSP_BK13 in tables and �gures � has been used to provide a broad

perspective of all NTL data sources available, and to check the robustness of the results

about the distribution of city sizes measured by aggregating urban light emissions to their

choice.

[Insert Figures 6 and 7 about here]

Figure 6 shows that the density functions for the estimated slope parameters from ex-

pression (1) at the country level using DMSP and VIIRS images are alike. However, the

distribution of Pareto coe�cients resulting from DMSP corrected data is more leptokurtic.

This �nding points out that the top-coding correction proposed by Bluhm and Krause

(2022) exerts a non-negligible in�uence on the estimated parameters from country rank-

size rule regressions. Kernel densities plotted in Figure 7 show that the greatest similarity

of estimated Pareto coe�cients for urban aggregate NTL is found in lower-middle income

countries. This result re�ects that this group is not greatly a�ected by the top-coding

problem of DMSP images. Even if this was also expected to be the case of low income

countries, the distributions of estimated slope parameters for VIIRS and DMSP-based

data are di�erent in this group. This implies that the higher accuracy of VIIRS images,

capturing the full brightness of the largest urban centers, allows the coe�cients that char-

acterize the city size distribution to better re�ect the higher degree of concentration of

urban economic activity in LDCs.

[Insert Table 3 about here]

Table 3 reports the percentage of rejections by the KS test of the null hypothesis that

the city size distribution is a Pareto function with power law exponent equal to one (Panel

13Available at https://lightinequality.com/.
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A), and that the distribution of reference is a Pareto function with the estimated slope pa-

rameter in the country rank-size regression as the power law exponent (Panel B). Obtained

results for both the original and corrected DMSP images are similar to those in Table 2

for VIIRS data. Nonetheless, and with the exception of upper-middle income countries,

there is a larger amount of evidence against Zipf's law and a Pareto distribution in urban

economic activity when it is proxied using VIIRS images than with DMSP-based data.

3.4.3 Alternative gridded population data

Apart from GHS-POP, there are other global gridded population data sets intended to

overcome the inconsistencies in the information provided by national censuses. In fact, it

is by decoupling these data from their original administrative boundaries how population

can be aggregated to other units such as urban centers. The di�erences across these

gridded population databases are determined by the nature of the input data and the

modeling approach adopted; see Leyk et al. (2019) and Archila Bustos et al. (2020) for

two systematic reviews14. This subsection deals with the sensitivity of our results about

the national distribution of urban population to the use of three alternative mainstream

spatialized population data sets: GPW, LandScan, and WorldPop.

GPW implements the simplest method to redistribute the data from the administrative

unit scale to the grid size (areal interpolation) by assuming that population is evenly dis-

tributed in space (areal weighting). Using remote sensing satellite imagery and geographic

information, GSH-POP generates built-up areas and, according to their proportion in each

grid and overlooking administrative boundaries, decomposes GPW data again using a dasy-

metric mapping method based on linear regression. In order to disaggregate subnational

census data, LandScan and WorldPop adopt highly-modeled frameworks that consist of

implementing dasymetric mapping with more sophisticated statistical techniques � dynam-

ically adaptable and random forest algorithms, respectively � and broad ancillary data sets

including land cover, roads, slope, and NTL, inter alia.

[Insert Figure 8 about here]

Figure 8 plots kernel densities for the estimated slope parameters from country rank-

size regressions using the four gridded population data sets to calculate the size of urban

14See also the POPGRID Data Collaborative (https://www.popgrid.org/).
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centers. This graph shows that the di�erences between the distributions of estimated

Pareto coe�cients are more evident than those found comparing NTL data sources. More

speci�cally, the use of the three alternative gridded population data sets to measure city

size in demographic terms results in a more uneven distribution of urban population at the

country level, similar to that of light emissions. This is especially the case of LandScan and

WoldPop, what can be related to their highly-modeled frameworks that exploit informa-

tion capturing economic activities, and by the correlations between the variables included

in their corresponding ancillary data sets. Actually, and among other information, it is

worth noting that WorldPop relies on DMSP images to generate its population density

predictions. In addition, it should be acknowledged that LandScan data refer to ambient

population, which not only represents where people live, but also where they travel and

work.

[Insert Figure 9 about here]

Figure 9 displays the distributions of areto coe�cients using the four gridded population

data sets and by country income group. It can be observed that the di�erences between

kernel densities are inversely related to national income per capita. Urban sizes calculated

using the GPW present higher levels of concentration and, with the exception of developed

countries, tend to display an average value around 0.5. As can be inferred from the

descriptive statistics reported in Table A2 in Appendix A, GPW, LandScan and, to a lesser

extent, Worldpop tend to underestimate the size of smaller urban centers as compared to

GHS-POP, while this is not the case larger ones. This leads to an apparently more unequal

distribution of population across urban centers and, as a result, lower estimated Pareto

coe�cients. Corroborating these �ndings, Table 3 shows that the rejection rates of the KS

test for the three alternative gridded population data sets considered in this robustness

check are much higher than those for GHS-POP data for both the null hypothesis of exact

Zipf's law and of a Pareto distribution function.

The similarity between the distributions of estimated slopes from rank-size regressions

using LandScan and WorldPop data and the distribution with information from GPW

(GHS-POP) decreases (increases) with national income per capita. This may be a re�ection

of the strong assumption established by GPW that population is equally distributed across
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administrative areas, on the one hand, and the lower data quality of national censuses

and ancillary variables in LDCs, on the other; see Appendix B for a more elaborated

explanation grounded on the uniform areal weighting approach implemented by GPW,

and on the di�erent administrative divisions considered across countries.

3.4.4 Economic activity measured using gridded GDP data

The patterns displayed by the estimated Pareto coe�cients using alternative gridded

population data sets point to a more uneven city size distribution, closer to that of urban

aggregate light emissions, than the one obtained with GHS-POP. This leads us to ask

whether the disparity found between national city size distributions using GHS-POP and

VIIRS is really due to the di�erent distributions of population and economic activity, or

is simply as a consequence of the di�erent nature of the two types of data. While gridded

population is estimated using distinct frameworks, NTL are not grounded on any economic

statistics. Therefore, and although there is an extant evidence that light emissions can

be regarded as a proxy for urban economic activities15, there might be some remaining

concerns about whether this is the case in the present context.

Trying to make it more convincing that the di�erence between the distributions of

city sizes calculated using GHS-POP and VIIRS data re�ects the dissimilarity between

the distributions of urban population and economic activity, we will check further how

reliable and valid is to use VIIRS images to represent economic activities. With this aim,

we exploit the gridded global data set for gross domestic product16 (GDP) estimated by

Kummu, Taka, and Guillaume (2018). The use of this data set is more convenient in

our context than existing alternatives (Chen et al. 2022; Wang and Sun 2022) due to its

spatial and temporal resolutions, underlying input data, and modelling approach adopted.

In particular, and among other information, these authors provide GDP estimates in 30

arc-seconds resolution for the year 2015, expressed in 2011 (International) United States

Dollars. Making use of both national and subnational information sources, they implement

15See Bluhm and Krause (2022), Phan (2023), and the references therein.
16As pointed out by Chen and Nordhaus (2019), economic statistics provided by governments and/or

international organizations present inconsistencies in terms of de�nitions, measurement, and time frame.
On the contrary, NTL avoid errors related to misreporting or methodological di�erences. Given that light
emissions are measured objectively, updated regularly, and cover most of the globe, they can be considered
as a more reliable source in predicting GDP values at di�erent geographical levels. Actually, Hu and Yao
(2022) exploit NTL to improve national accounts GDP growth measures.
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areal weighting techniques to redistribute input data into grid cells. While the national

GDP per capita17 data come from the Central Intelligence Agency (CIA World Factbook)

and the World Bank databases, the subnational information is based on Gennaioli et

al. (2013). It is worth noting that, although Kummu, Taka, and Guillaume (2018) does

not consider auxiliary variables, such as NTL, they use the GHSL population data to

calculate GDP values in absolute terms.

In the manner of related work on this topic (Bluhm and McCord 2022; Gibson 2021),

we study the predictive relationship between aggregate urban light emissions and gridded

GDP using the following regression:

log(GDPi) = φ + θ log(V IIRSi) + ξi, i = 1, . . . , n; (5)

Estimation results are reported in Table 4. Considering all the countries covered in

our sample18, we �nd that the variation in aggregate urban VIIRS light emissions predicts

more than half the variation in GDP, as re�ected by the coe�cient of determination (R2 =

0.52; 0.64 if country �xed e�ects are included in the regression). When countries are

grouped according to their level of development, this percentage increases in a 30% in high

income countries, being the estimated elasticity closer to unity19. Both the estimated slope

parameter and coe�cient of determination decrease with national income. These results

re similar to those obtained by Phan (2023), who shows that institutional quality and the

level of development are two of the most important factors in explaining the di�erence

between luminosity data and GDP across countries.

[Insert Table 4 about here]

Expression (5) has also been estimated with aggregate urban GHSL population on the

left-hand side; i.e., as the dependent variable. Table 4 shows that 16% of the variance in

overall urban population can be explained by light emissions. Thus, it can be claimed that

their predictive power is more than three times higher for GDP than for population (2.5

17Purchasing power parity (PPP).
18Urban centers with a null estimated aggregate level of GDP have been removed from the analysis

(Ribeiro et al. 2021).
19Given that GDP in developing countries is particularly error-prone and could be subject to manip-

ulation (Keola, Andersson, and Hall 2015), the consideration of high-income countries separately can be
understood as a benchmark for assessing the success of NTL as a proxy for economic activity (Gibson
2021).
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times if country �xed e�ects are considered). When countries are grouped by their level of

development, this higher predictive ability seems to be especially relevant for lower-middle

income countries, advantage that also appears to be important in low income countries

when country dummies are introduced in the regression.

[Insert Figures 10 and 11 about here]

Figure 10 plots kernel densities for the estimated slope parameters in national rank-size

regressions � expression (1) � measuring cities using aggregate urban NTL, population and

GDP. The same as light emissions, GDP is more unevenly distributed than population.

In fact, the KS test statistic rejects more easily the null hypothesis that the distribution

of Pareto coe�cients for GDP is equal to that of population (p-value=0.00), than to that

of lights (p-value=0.05). Figure 11 shows the same results, but grouping countries by

their income level. These graphs make much more evident the di�erences between the

national distributions of urban economic activity and population. In line with the results

reported in Table 4, the similarity between kernel densities of Pareto coe�cients for NTL

and GDP increases with the level of national income. This is corroborated by the KS

test statistic, that rejects an equal distribution of national urban light emissions and GDP

only in the sub-sample of lower-income countries (p-value=0.03). Furthermore, and even

if GHSL population data has been exploited by Kummu, Taka, and Guillaume (2018) to

calculate their gridded GDP in 30 arc-seconds resolution, the KS test statistic rejects an

equal distribution of Pareto coe�cients for population and GDP in all cases at the 5%

signi�cance level20.

To sum it up, the estimations carried out in this last robustness check suggest that, in

general, aggregate urban light emissions are more useful in predicting GDP than population

at the city level. Moreover, resulting Pareto coe�cients from country rank-size regressions

for urban gridded GDP are distributed more similarly to those obtained using VIIRS images

than to those for GHS-POP data. These �ndings reinforce the claim that the di�erences

observed in the national city size distributions using GHS-POP and VIIRS data re�ect

the disparities between the distributions of urban population and economic activity at the

country level.

20Results available from the authors upon request.
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4 The heterogeneous and nonlinear relationship between ur-

ban population and light emissions

This section takes a closer look at the relationship between urban population and light

emissions by assessing the possible presence of heterogeneity and nonlinearities. With

this aim, we implement nonparametric kernel regression methods that do not require a

priori assumptions on the underlying functional form, and that provide observation-speci�c

estimates.

A fully nonparametric speci�cation to estimate the elasticity of urban light emissions

to population is:

Lightsi =m(Populi) + εi, i = 1, . . . , n; (6)

where Lightsi denotes the logarithm of aggregate NTL in city i, Populi is the logarithm of

its number of inhabitants, εi is a zero-mean additive error, andm(⋅) is the smooth unknown

function for the conditional mean. This function can be estimated by locally averaging the

aggregate night lights of the urban centers with a similar size in demographic terms. This

method is known as the local-constant � or Nadaraya-Watson � kernel estimator:

�m(Popul) =
n

∑
i=1

wiLightsi. (7)

Weights are non-negative, their sum is equal to one, and they are given by:

wi =
K (

Populi−Popul
h )

n

∑
j=1

K (
Populj−Popul

h )

, (8)

with K(⋅) being a kernel function.

The amount of information used to calculate the local average is determined by the

bandwidth h. A data-driven method to select this smoothing parameter is least-squares

cross-validation (LSCV), which consists of choosing h so as to minimize

CV(h) =
1

n

n

∑
i=1

[Lightsi − �m−i(Populi)]
2M(Populi), 0 ≤M(⋅) ≤ 1; (9)
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where M(⋅) is a weighting function21, and

�m−i(Populi) =

n

∑
l≠i

LightslK (
Populi−Popull

h )

n

∑
l≠i

K (
Populi−Popull

h )

. (10)

The criterion in expression (9) is a trimmed version of the sum of squared residuals from

a leave-one-out estimator of the conditional mean function. LSCV bandwidth selection,

in conjunction with the local-constant kernel estimator detects irrelevant regressors, which

will be smoothed out as

K(
Populi − Popul

h
) → K(0) when h→∞. (11)

Instead of the local-constant approximation, a linear regression can be �tted for urban

centers with a similar number of inhabitants. When a weighting function is included with

this purpose, the estimation method is known as the local-linear kernel regression. The

aim is to estimate the following expression:

Lightsi = a + b
′
(Populi − Popul) + ei, i = 1, . . . , n; (12)

In particular, the estimation is based on solving the following optimization problem:

min
a,b

n

∑
i=1

[Lightsi − a − b
′
(Populi − Popul)]

2K(
Populi − Popul

h
) . (13)

It has been demonstrated that the solutions â = a(Popul) and b̂ = b(Popul) are consis-

tent estimators of the conditional mean function, and of its partial derivativem(1)(Popul) =

∂m(Popul)/∂Popul, respectively (Li and Racine 2007).

The local-linear kernel estimator nests OLS as a special case for su�ciently large values

of the bandwidth parameters. Moreover, the LSCV bandwidth selection rule in the local-

linear framework has the ability to assign a small value of h for regressors that have a

nonlinear relationship with the dependent variable. Given that the kernel applied in the

empirical analysis will be the Gaussian function, two times the sample standard deviation

21Following Racine and Li (2004), we have set M(⋅) = 1
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of continuous covariates will be considered as the upper bound for their bandwidth; unity

for the smoothing parameters of discrete regressors.

For the sake of comparison with the results obtained22 by Düben and Krause (2021),

Table 5 reports the estimated elasticities from �tting standard parametric OLS regressions

to the relationship between urban lights and population in (6). In this case, the estimations

are carried out using the whole sample of urban centers. Given the cross-sectional nature of

our data set, we only include country �xed e�ects to control for unobserved heterogeneity

as additional regressors. The estimated elasticities are of a higher magnitude than those

previously found in the literature. Just as the existing evidence, the response of light

emissions to population is lower in larger cities. However, and as a novelty, we conclude that

an increase in the population of primary cities is associated with a less than proportional

increase in their aggregate light emissions.

[Insert Tables 5 and 6 about here]

The upper panel of Table 6 reports the bandwidth parameters selected using the LSCV

method in a local-constant kernel regression framework. The magnitude of this smoothing

parameter is below its upper bound for population in all speci�cations, implying that this

variable is relevant to explain di�erences in urban light emissions worldwide. While this is

also the case of the indicator variables for the primary and the 10 largest cities, as well as

for country income groups, the bandwiths for their interactions with population are above

their corresponding upper bounds. The only exception is the interaction term included to

capture a di�erential response of urban NTL to population in low income countries. The

middle panel of Table 6 shows the selected smoothing parameters for a local-linear kernel

estimation. These �gures suggest that, in general, there is a nonlinear relationship between

night lights and population. This result is corroborated by the diagnostic test statistic

developed by Hsiao, Li, and Racine (2007), reported in the lower panel, that rejects both

a standard linear OLS model (HLR1) and a quadratic speci�cation for population (HLR2)

in favor of the estimated nonparametric regression.

Table 7 contains descriptive statistics of the distribution of the estimated partial e�ects

for population using a local-linear kernel regression, and the bandwidth parameter reported

22See Table 3, page 201. Estimated elasticities using DMSP data for our sample can be found in Table A3
in Appendix A.
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in the middle panel of Table 6 for the speci�cation that only includes country �xed e�ects

as additional regressors. These gradients show that the elasticity of urban light emissions

to population is heterogeneous. Although the response of NTL to population tends to

be lower in larger cities, the di�erence in the magnitude of estimated elasticies using the

whole sample of urban centers is less important than when they are classi�ed according to

country income groups. In particular, the �gures displayed in the lower panel of Table 7

show that the elasticity of urban lights to population sharply decreases with the level of

development.

[Insert Table 7 about here]

5 Discussion

The results reported in Table 7, obtained considering all urban centers that conform

our sample, can be theoretically related to the kernel densities of Pareto coe�cients by

income group displayed in Figure 4, estimated from rank-size regressions at the country

level. To do so, let us begin by noting that, abstracting from the error term, expression

(1) is equivalent to

Ranki − 0.5 = eαe
log(Size−βi )

. (14)

Taking into account the two measures of urban size that have been studied throughout

our empirical analysis, it can be stated that

Ranki − 0.5 = ALights−βLi , (15)

and

Ranki − 0.5 = BPopul−βPi ; (16)

with βL and βP being, respectively, the Pareto coe�cients that characterize the national

distributions of urban light emissions and population. A = eαL and B = eαP , with αL and

αP two constant terms.

There is a recent strand of the literature showing that most urban properties vary con-

tinuously with population size; see, among others, Bettencourt et al. (2007), Bettencourt
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(2013), and Lobo et al. (2013). This empirical observation has been described mathe-

matically using power law scaling relations. On the basis of this formal framework, the

relationship between urban light emissions and population can be written as

Lightsi = CPopul
γ
i , (17)

where C is a normalization constant, and γ denotes the scaling exponent which, in the

present context, corresponds to the elasticity of urban aggregate NTL to population at

country level.

As long as γ > 0, it can be claimed that Lightsi > Lightsj if Populi > Populj . Therefore,

the rank of a given city i will not depend on the variable used to calculate its size:

Ranki − 0.5 = ALights−βLi = BPopul−βPi . (18)

Dividing this expression for the primary city and for an arbitrary urban center of rank

r, and taking into account the scaling relation in (17), it is obtained that

(
Lights1
Lightsr

)

βL

= (
Popul1
Populr

)

γβL

= (
Popul1
Populr

)

βP

. (19)

This implies that there exists a linear relationship between the Pareto coe�cients char-

acterizing the distributions of urban population and light emissions that depends on the

scaling exponent:

βP = γβL. (20)

The results from rank-size regressions at the country level presented in Section 3 show

that the estimated Pareto coe�cients for the distributions of city sizes calculated using

gridded population tend to be higher than those obtained aggregating light emissions within

urban extents. According to expression (20), this is equivalent to saying that the elasticity

of NTL to population is greater than one, and is precisely what we �nd in Section 5

considering a global sample of urban centers.

A scaling exponent greater than one is interpreted as evidence of a super-linear urban

scaling regime, illustrated by the concept of agglomeration economies; see Duranton and
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Puga (2004). Therefore, we are providing both further empirical evidence and theoretical

support for the main hypothesis put forward by Düben and Krause (2021) that lights should

be distributed more unevenly than population under supra-linear scaling. It implies that

per capita economic output � as well as other socio-economic indicators such as wages or

new inventions � increases with city population size (Bettencourt et al. 2007). That is,

cities of di�erent sizes display di�erent features because, as complex systems, they are not

only concentrations of people, but also of social interactions (Jacobs 1969). This re�ects

the role played by the `second nature' factors that shape the distribution of economic

activity across space through the interactions between agents and the increasing returns to

scale created by dense interactions (Krugman 1991, 1993; Venables 2005). Thus, it is the

importance of population size as a determinant of the socio-economic activity that takes

place in urban centers what makes the distribution of aggregate NTL to be more uneven

than that of population.

The statistics that describe the distribution of the estimated gradients at the urban

center level reported in Table 7 show that the elasticities of light emissions to population

signi�cantly change across country income groups. These gradients tend to be slightly

higher than one for cities in high income countries, explaining that this group displays the

greatest similarity between the distributions of estimated Pareto coe�cients for urban pop-

ulation and aggregate NTL. It can also be observed that the magnitude of the elasticities is

inversely related to national income per capita what, in line with expression (20), explains

that the greatest di�erence between the distributions of estimated Pareto coe�cients for

population and light emissions is found in LDCs. Similarly to Henderson et al. (2018), but

with more recent and accurate satellite imagery, the use of NTL as a proxy for economic

activity leads us to conclude that urban agglomeration bene�ts are more important than

congestion costs in developing countries, as re�ected by their higher elasticities estimated

using nonparametric kernel regression methods.

As pointed out by Ribeiro et al. (2021), Zipf's law and urban scaling are two funda-

mental paradigms for the study of cities (Batty 2013) that, so far, have been investigated

independently. Using data for FUAs, these authors show that urban systems with a more

balanced distribution of population tend to have less pronounced increasing returns to scale

at the local level and, hence, to display a smaller degree of agglomeration of economic ac-
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tivities. That is, Ribeiro et al. (2021) establish a direct relationship between the Pareto

coe�cient characterizing the distribution of city sizes in demographic terms βP with the

scaling exponent γ. As a further contribution, we have shown that this latter exponent

determines the di�erence between the national distributions of urban population and light

emissions, characterized by βP and βL, respectively.

6 Concluding remarks

This paper has conducted a comparison of the distributions of urban population and

nighttime lights at the country level. The sample that has been analyzed covers 12,852

consistently-de�ned urban centers of 100 countries with di�erent levels of development.

In line with the results obtained by related studies, but using more recent and accurate

satellite imagery to proxy economic activity, we show that aggregate urban light emissions

are more unevenly distributed than population. Actually, the null hypothesis that city sizes

adjust to Zipf's law can be more easily rejected when they are measured using lights than

in demographic terms. Furthermore, there is a greater similarity between the distributions

of urban population and lights the higher the level of national income per capita. As a

byproduct of our analysis, we provide evidence that casts doubt on the Pareto assumption

established to correct the top-coding problem inherent to DMSP images.

We also �nd a nonlinear and heterogeneous relationship between urban population and

aggregate light emissions. In this regard, it is worth noting that the nonparametric es-

timation framework adopted has led us to obtain higher estimated elasticities of urban

lights to population than those previously established in the related literature. Further-

more, the heterogeneity displayed by these elasticities seems to be driven by the level of

national income per capita rather than by urban hierarchy. We have �nally developed a

theoretical framework that establishes the strength of agglomeration economies � re�ecting

super-linear scaling � as a determinant of the di�erence between the national distributions

of urban population and night lights.
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Tables and �gures

Table 1: Descriptive statistics of city sizes by country income group.

All countries High income Upper-middle Lower-middle Low income

Countries 100 22 29 27 22
Urban centers 12,852 1,298 3,795 6,213 1,546

Mean

GHSPOP 268,247 410,864 312,484.40 237,467.40 163,612.50
VIIRS 6,202.14 29,660.31 8,419.74 1,420.58 279.35

Median

GHSPOP 99,755.16 108,721.70 106,719.20 97,808.61 90,814.05
VIIRS 460.99 8,257.89 2,060.96 162.58 7.93

Minimum

GHSPOP 50,002.46 50,056.39 50,007.17 50,012.63 50,002.46
VIIRS 0 190.17 0 0 0

Maximum

GHSPOP 4.06E+07 3.30E+07 4.06E+07 3.63E+07 5.62E+06
VIIRS 1.20E+06 1.20E+06 1.01E+06 4.01E+05 32,146.45

Note: GHSPOP is measured in number of persons, and VIIRS refers to aggregate nano
Watts per square centimeter per steredian. Countries grouped according to the World
Bank classi�cation for the year 2015, see Table A1 in Appendix A for further details.
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Table 2: Kolmogorov-Smirnov test. Percentage of rejections at di�erent signi�cance levels.

Panel A. H0: Exact Zipf's law

GHSPOP VIIRS

1% 5% 10% 1% 5% 10%

All countries 17.00 30.00 37.00 85.00 88.00 92.00
High income 0.00 9.09 18.18 63.64 77.27 81.82
Upper-middle 11.11 22.22 25.93 81.48 81.48 88.89
Lower-middle 20.69 44.83 55.17 96.55 96.55 100.00
Low income 36.36 40.91 45.45 95.45 95.45 95.45

Panel B. H0: Pareto distribution

GHSPOP VIIRS

1% 5% 10% 1% 5% 10%

All countries 9.00 17.00 24.00 75.00 80.00 84.00
High income 0.00 0.00 4.54 50.00 63.64 68.18
Upper-middle 7.41 18.52 25.93 77.78 77.78 85.19
Lower-middle 13.79 24.14 34.48 86.21 89.66 89.66
Low income 13.64 22.73 27.27 81.82 86.36 90.91
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Table 5: VIIRS-GHSPOP elasticities. OLS estimation.

(1) (2) (3)

GHSPOP (in logs) 1.50*** 1.52*** 1.54***
(0.08) (0.09) (0.10)

Primacy 12.64***
(4.19)

GHSPOP*Primacy -0.85***
(0.27)

Top10 5.71***
(1.25)

GHSPOP*Top10 -0.41***
(0.09)

Intercept -17.09*** -17.29*** -17.53***
(0.93) (1.01) (1.11)

R2 0.63 0.63 0.63

Note: The dependendent variable is aggregate VIIRS
nighttime lights (in logs). The sample is made up of
12,852 observations. All estimations include country
�xed e�ects. Clustered standard errors are reported
in parentheses.*p < 0.10, **p < 0.05, ***p < 0.01.
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Table 6: VIIRS-GHSPOP elasticities. Least-squares cross-validation bandwidths and diag-
nostic test statistics for nonparametric kernel regressions.

Upper Local-constant estimation

bound (1) (2) (3) (4)

GHSPOP (in logs) 1.74 0.24 0.23 0.24 0.24
Primacy 1.00 0.04
GHSPOP*Primacy 2.66 6.21E+06*
Top10 1.00 0.50
GHSPOP*Top10 7.06 2.16E+06*
Upper-middle 1.00 0.26
GHSPOP*Upper-middle 10.48 1.79E+06*
Lower-middle 1.00 0.03
GHSPOP*Lower-middle 11.76 1.57E+05*
Low income 1.00 0.43
GHSPOP*Low income 7.54 0.16

Upper Local-linear estimation

bound (1) (2) (3) (4)

GHSPOP (in logs) 1.74 1.16 1.29 1.48E+06** 1.21
Primacy 1.00 0.50
GHSPOP*Primacy 2.66 1.71E+06**
Top10 1.00 0.50
GHSPOP*Top10 7.06 0.80
Upper-middle 1.00 0.50
GHSPOP*Upper-middle 10.48 1.03E+06**
Lower-middle 1.00 0.50
GHSPOP*Lower-middle 11.76 1.31E+06**
Low income 1.00 0.40
GHSPOP*Low income 7.54 5.29E+05**

R2 0.65 0.65 0.43 0.65
HLR1 8.08 8.25 8.22 4.76

(0.00) (0.00) (0.00) (0.00)
HLR2 11.57 11.57 10.00 6.85

(0.00) (0.00) (0.00) (0.00)

Note: The dependendent variable is aggregate VIIRS nighttime lights (in logs). The sample
is made up of 12,852 observations. All estimations include country �xed e�ects. * denotes
that the variable is smoothed out of the regression, and ** indicates that the regressor
enters linearly. The Hsiao, Li, and Racine (2007) test statistic has been calculated for a
standard OLS model (HLR1) and a quadratic speci�cation (HLR2). P-values are reported
in parentheses.
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Table 7: VIIRS-GHSPOP elasticities. Local-linear kernel regression.

Mean Q1 Q2 Q3

All countries 1.76 1.25 1.40 1.52
(0.37) (0.06) (0.05) (0.03)

Primary cities 1.50 0.98 1.18 1.56
(0.03) (0.06) (0.07) (0.22)

10 largest cities 1.77 1.07 1.27 1.85
(0.40) (0.06) (0.08) (0.42)

High income 1.07 1.00 1.07 1.11
(0.44) (0.06) (0.06) (0.04)

Upper-middle 1.31 1.11 1.36 1.42
(0.15) (0.11) (0.10) (0.04)

Lower-middle 1.69 1.38 1.41 1.53
(0.24) (0.06) (0.04) (0.28)

Low income 3.73 3.33 3.43 4.59
(0.84) (0.33) (0.39) (0.46)

Note: Reported partial e�ects are the estimated
derivatives from a local-linear kernel regression
using GHSPOP urban population (in logs) and
country �xed e�ects as covariates, and the
bandwidths displayed in Table 6. Bootstrap
standard errors (399 replications) in parentheses.
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Figure 1: Kernel densities of estimated Pareto coe�cients from a rank-size OLS regression
at the country level.
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Figure 2: Cumulative distribution function of Kolmogorov-Smirnov test p-values using exact
Zipf's law as a reference.
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Figure 3: Cumulative distribution function of Kolmogorov-Smirnov test p-values using a
Pareto distribution as a reference.
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Figure 4: Kernel densities of estimated Pareto coe�cients from a rank-size OLS regression
at country level by income group, World Bank classi�cation 2015.
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Figure 5: Robustness check: Kernel densities of estimated Pareto coe�cients from rank-size
regressions at the country level including (solid) and excluding (dashed) primary cities.
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Figure 6: Robustness check: Kernel densities of estimated Pareto coe�cients from rank-size
regressions at the country level using alternative nighttime lights data.
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Figure 7: Robustness check: Kernel densities of estimated Pareto coe�cients from country
rank-size regressions by income group using alternative nighttime lights data.
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Figure 8: Robustness check: Kernel densities of estimated Pareto coe�cients from rank-size
regressions at the country level using alternative gridded population data.
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Figure 9: Robustness check: Kernel densities of estimated Pareto coe�cients from country
rank-size regressions by income group using alternative gridded population data.
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Figure 10: Robustness check: Kernel densities of estimated Pareto coe�cients from country
rank-size regressions. Comparison with gridded GDP data.

45



.5
1

1.
5

2
2.

5
.6 .8 1 1.2

 

High income

0
1

2
3

4

0 .5 1 1.5
 

Upper-middle income

0
.5

1
1.

5
2

2.
5

0 .5 1 1.5
 

Lower-middle income

0
1

2
3

4
5

0 .5 1 1.5 2
 

Low income

GHSPOP VIIRS GDP

Figure 11: Robustness check: Kernel densities of estimated Pareto coe�cients from country
rank-size regressions by income group. Comparison with gridded GDP data.
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Table A2: Robustness check: Descriptive statistics of city sizes by country income group.

All countries High income Upper-middle Lower-middle Low income

Countries 100 22 29 27 22
Urban centers 12,852 1,298 3,795 6,213 1,546

Mean

DMSP 3,458.43 14,123.17 4,482.78 1,371.28 375.15
DMSP_BK 8,522.06 44,610.24 10,346.06 13,909.08 400.51
GPW 142,001.90 335,741.70 209,846.50 85,462.46 40,019.59
WorldPop 191,171.60 390,319 271,547.70 133,642.30 57,865.73
LandScan 207,950.10 413,222.70 274,650.80 156.315.80 79,380.55
GDP 3.98E+09 1.73E+10 5.31E+09 1.34E+09 1.83E+08

Median

DMSP 689 4,665 1,713 258 15
DMSP_BK 694 8,099.96 1,901.52 258 15
GPW 12,329.90 77,282.58 39,938.60 6,477.77 806.80
WorldPop 43,980.82 98,391.75 80,787.69 25,587.56 6,411.31
LandScan 53,406 110,747 79,606 37,847 14,335.50
GDP 6.30E+08 4.08E+09 1.34E+09 3.73E+08 5.06E+07

Minimum

DMSP 0 194 0 0 0
DMSP_BK 0 194 0 0 0
GPW 0.58 18.543 5.029 1.084 0.58
WorldPop 3.155 817.94 53.325 3.155 3,24
LandScan 0 1,144 9 0 2.90
GDP 0 9.31E+06 0 0 0

Maximum

DMSP 509,507 509,507 505,237 269,129 29,844
DMSP_BK 2.37E+06 2.37E+06 1.55E+06 5.69E+05 35,082.50
GPW 3.71E+07 3.15E+07 3.71E+07 2.69E+07 5.27E+06
WorldPop 3.98E+07 3.34E+07 3.98E+07 3.26E+07 6.06E+06
LandScan 3.49E+07 3.24E+07 3.49E+07 2.83E+07 8.18E+06
GDP 1.43E+12 1.43E+12 7.70E+11 5.03E+11 2.78E+10

Note: DMSP light intensities are recorded at the pixel level as integerized digital numbers
(DN) ranging from 0 to 63 in the original (truncated) version, and from 0 to 2,000 in the
corrected data set created by Bluhm and Krause (2022). City sizes have been calculated
by aggregating the DN of the pixels within the spatial extent of urban centers. WorldPop,
GPW, and LandScan refer to the number of persons. GDP values are expressed in 2011
(International) United States Dollars (Kummu, Taka, and Guillaume 2018).
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Table A3: DMSP-GHSPOP elasticities. OLS estimation.

DMSP DMSP_BK

(1) (2) (3) (5) (5) (6)

GHSPOP (in logs) 1.62*** 1.66*** 1.71*** 1.75*** 1.79*** 1.82***
(0.15) (0.16) (0.20) (0.13) (0.15) (0.18)

Primacy 17.46*** 17.34***
(5.53) (5.36)

GHSPOP*Primacy -1.21*** -1.19***
(0.36) (0.35)

Top10 10.85*** 9.82***
(2.24) (2.08)

GHSPOP*Top10 -0.80*** -0.72***
(0.18) (0.16)

Intercept -19.22*** -19.68*** -20.36*** -20.78*** -21.19*** 1.82***
(1.70) (1.88) (2.32) (1.50) (1.67) (0.18)

R2 0.54 0.54 0.54 0.56 0.56 0.56

Note: The dependendent variable is aggregate DMSP nighttime lights (in logs). The sample
is made up of 12,852 observations. All estimations include country �xed e�ects. Clustered
standard errors are reported in parentheses.*p < 0.10, **p < 0.05, ***p < 0.01.
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Figure A1: Robustness check: Cumulative distribution function of Kolmogorov-Smirnov test
p-values using exact Zipf's law as a reference and alternative nighttime lights data.
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Figure A2: Robustness check: Cumulative distribution function of Kolmogorov-Smirnov test
p-values using a Pareto distribution as a reference and alternative nighttime lights data.
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Figure A3: Robustness check: Cumulative distribution function of Kolmogorov-Smirnov test
p-values using exact Zipf's law as a reference and alternative gridded population data.
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Figure A4: Robustness check: Cumulative distribution function of Kolmogorov-Smirnov test
p-values using a Pareto distribution as a reference and alternative gridded population data.
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Appendix B

The distributions of estimated Pareto coe�cients using the GPW data set represented in

Figures 8 and 9 can be related to the uniform areal weighting approach that this database

implements to allocate population into grid cells. This method implies that if an adminis-

trative unit has a total population of P and contains M pixels, each of them is assigned a

value of P /M . This leads to an unrealistic population distribution that does not consider

neither the existence of heterogeneous levels of urbanization over space, nor the presence

of natural barriers such as mountains or rivers. By assuming an even population distribu-

tion, GPW does not accurately represent the true spatial diversity of population density,

bringing about a distorted understanding of where people reside.

Another issue of GPW data is that it relies on di�erent administrative levels across

countries, making national estimated Pareto coe�cients to be not completely comparable.

That is to say, when analyzing the cross-country concentration of population, discrepan-

cies may arise not only from its actual distribution, but also from the di�erent national

administrative divisions considered. Furthermore, even when two countries adopt the same

administrative level, its de�nition can be distinct in each of them23. In those countries

where the population is more evenly distributed over space and a more disaggregated ge-

ographical level is considered, a larger percentage of the population will reside outside

the boundaries of GHSL urban areas. Consequently, their population will be signi�cantly

under-represented in certain regions, rendering the calculation of the Pareto coe�cient

unreliable.

In order to illustrate this under-representation, let us think about an administrative

unit with a total population of 90 and a dimension of a 3x3 grid, where the population

lives in the center. While the GPW considers the whole area of the administrative unit

to distribute the population at the pixel level, GHSL only takes into account the area

where people reside. For this reason, and as exempli�ed in Figure B1, population is under-

represented when calculated using GPW pixels and GHSL areas.

23As an example, Brazil, Canada, and France adopt Level 2. It corresponds to municipalities in Brazil,
census divisions in Canada, and departments in France.
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may be significantly underrepresented in certain regions, rendering the calculation of the 
Pareto coefficient unreliable. 
 
To see the effect of this underrepresentation, suppose that the population of the areas using 
the GPW raster can be defined as a function over the population of the GHSL database in this 
sense. 
 
Imagine a case in which an administrative division of a particular area with a population of 90 
people has a dimension of a 3x3 grid, where the actual population only lives in the center. The 
areal-weighing distribution of the GPW4 will distribute the population in this form: 
 

GPW 

10 10 10 

10 10 10 

10 10 10 

 
 
 
By definition, the total population obtained in the GPW4 database using the areas defined by 
the GHSL database will be a percentage of the total population: 

 

𝑃𝐺𝑃𝑊4 =
𝑆𝑢𝑟𝑓𝑎𝑐𝑒𝐺𝐻𝑆𝐿

𝑆𝑢𝑟𝑓𝑎𝑐𝑒𝐺𝑃𝑊4
𝑃𝐺𝐻𝑆𝐿 

 

We can also assume that, 
𝑆𝑢𝑟𝑓𝑎𝑐𝑒𝐺𝐻𝑆𝐿

𝑆𝑢𝑟𝑓𝑎𝑐𝑒𝐺𝑃𝑊4
 is a variable that goes from 0 to 1. Also, as the 

population of a particular GHSL area increase, it is also easy to assume that the area will be 
also bigger (the increase in population will probably also increase the density). In this sense: 
 

𝑆𝑢𝑟𝑓𝑎𝑐𝑒𝐺𝐻𝑆𝐿

𝑆𝑢𝑟𝑓𝑎𝑐𝑒𝐺𝑃𝑊4
= 𝐶𝑃𝐺𝐻𝑆𝐿

𝑑 , 𝑤𝑖𝑡ℎ 𝑑 > 0   𝑎𝑛𝑑   0 <  𝐶 < 1 

 
With this: 

𝑃𝐺𝑃𝑊4 = 𝐶𝑃𝐺𝐻𝑆𝐿
𝐷 → ln(𝑃𝐺𝑃𝑊4) = 𝑐 + 𝐷 ln(𝑃𝐺𝐻𝑆𝐿) ,   𝐷 = 𝑑 + 1 > 1 

 
If using the GHSL population the pareto coefficient is 𝛽𝐺𝐻𝑆𝐿, the pareto coefficient obtained 
using the population of the GPW4 database will be: 
 

ln(𝑟𝑎𝑛𝑘𝑖 − 0.5) = 𝛼 − 𝛽𝐺𝐻𝑆𝐿 ln(𝑃𝐺𝐻𝑆𝐿) = 𝛼 −
𝛽𝐺𝐻𝑆𝐿(ln(𝑃𝐺𝑃𝑊4) − 𝑐)

𝐷

= (𝛼 − 𝑐) −
𝛽𝐺𝐻𝑆𝐿

𝐷
ln(𝑃𝐺𝑃𝑊4) = 𝛼𝐺𝑃𝑊4 − 𝛽𝐺𝑃𝑊4 ln(𝑃𝐺𝑃𝑊4) 

Where 𝛽𝐺𝑃𝑊4 =
𝛽𝐺𝐻𝑆𝐿

𝐷
< 𝛽𝐺𝐻𝑆𝐿. 

GHSPOP 

   

 90  

   

Figure B1: Example: Distribution of population in GPW and GHS-POP data sets.

Therefore, it can be stated that the city sizes calculated combining the information

provided by GPW and the urban centers de�ned by GHSL (PopulGPW ) will be a share of

actual population (PopulGHSPOP ), determined by the ratio between the area of the urban

center and that of the administrative unit, expected to range between zero and one:

PopulGPW =
AreaGHSL
AreaGPW

PopulGHSPOP . (B.1)

In other words, the population included in the areas of the GPW raster can be de�ned

as a function of that in the GHS-POP data set. It can also be assumed that there is a

direct link between the extent of an administrative unit and the number of persons that

reside in its urban center. Therefore, a higher population will tend to increase its density

(d ≥ 0):

AreaGHSL
AreaGPW

= C [PopulGHSPOP ]
d . (B.2)

Combining previous expressions, de�ning c = log(C) and D = d + 1, and taking natural

logarithms, it can be written that:

log(PopulGPW ) = c +D log(PopulGHSPOP ). (B.3)

Taking into account expression (1), and disregarding the error term, the relationship

between the Pareto coe�cient estimated using the gridded population provided by the

GHSL (βGHSPOP ) and that obtained from GPW data (βGPW ) can be derived as follows:
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log(Rank − 0.5) = αGHSPOP − βGHSPOP log(PopulGHSPOP ) =

= αGHSPOP − βGHSPOP [
log(PopulGPW ) − c

D
] =

= (αGHSPOP + βGHSPOP
c

D
) −

βGHSPOP
D

log(PopulGPW ) =

= αGPW − βGPW log(PopulGPW );

(B.4)

The disparity between βGPW and βGHSPOP is determined by the value of D. This pa-

rameter will be equal to one if the percentage of the area of the GPW that is represented in

the GHSL is independent of population size, meaning d = 0. This will make the coe�cients

statistically equivalent, even with di�erent urban shapes and sizes. However, the positive

correlation between the population size and the ratio of the areas considered by both GPW

and GHSL data sets introduces a downward bias in the resulting Pareto coe�cient from

GPW. As shown in Figure 9, the importance of the di�erence between the estimated co-

e�cients varies among income groups. Thinking about the case of richer countries, they

generally exhibit higher urbanization rates and possess taller buildings (Jedwab, Loungani,

and Yezer 2021; Lall et al. 2021). Thus, an increase in the population of an urban unit

does not necessarily imply a larger area, but rather a higher density. As a consequence,

the direct relationship between urban population and area becomes is weak, leading to a

reduced value of D, hence making βGPW and βGHSPOP more alike.
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