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Abstract

We propose a bootstrap method for correcting the small-sample bias of variance compo-

nents that accommodates general heteroskedasticity and serial correlation of the errors. Our

approach is suited to correct variance decompositions and the bias of multiple quadratic

forms of the same linear model without increasing the computational cost. We show with

Monte Carlo simulations that our bootstrap procedure is effective in correcting the bias and

find that is faster than other methods in the literature. Using administrative data for France,

we correct variance decompositions per labor markets defined as commuting zone and oc-

cupation combinations. We find that the correlation between worker and firm effects is

increasing in commuting zone population and the slope is stable to the corrections.
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1 Introduction

The model of log wages introduced by Abowd, Kramarz, and Margolis (1999), AKM from now

on, has been very influential in the way labor economists think about wage determinants. The

most basic version of the AKM model is:

log wit = θi + ψJ(i,t) + εit (1)

where θi is worker i’s fixed effect, J(i, t) is a function that maps where worker i is employed in

period t, ψJ(i,t) is the firm J(i, t) fixed effect, and εit is a residual.

Suppose the model is well specified and the standard exclusion restriction holds. Researches

have been interested in understanding how wage inequality is explained by firm-specific wage

premiums. Even if the fixed effects are unbiased, quadratic objects in the estimated parame-

ters such as the elements of a variance decomposition are biased (Andrews, Gill, Schank, and

Upward, 2008). In the AKM context, Abowd, Kramarz, Lengermann, and Pérez-Duarte (2004)

dubbed the bias of these quadratic objects as limited mobility bias as having few movers identify-

ing the firm wage premiums leads to noisier estimates and to the bias of variance components.

Using data for different countries, Bonhomme, Holzheu, Lamadon, Manresa, Mogstad, and

Setzler (2023) show it has been shown that the limited mobility bias is systematically large, and

it can change the economic interpretation of the results.

Andrews et al. (2008) derive formulas for correcting the bias when the errors are homoscedas-

tic. Gaure (2014) provides formulas for more general variance structures. Unfortunately, the

direct implementation of these corrections in high dimensional models is infeasible. The reason

is that the corrections entail computing the inverse of an impractically large matrix, which has

prevented the direct application of the correction formulas.1

In this paper, we propose a bootstrap method to correct for limited mobility bias that is

computationally feasible. Compared to other methods in the literature that correct for this bias

(Gaure, 2014; Kline, Saggio, and Sølvsten, 2020), the main advantage of our bootstrap method is

1Some examples of papers doing a variance decomposition of log wages into worker and firm fixed effects
without correcting for limited mobility bias are: Sorkin (2018), Card, Cardoso, Heining, and Kline (2018), Alvarez,
Benguria, Engbom, and Moser (2018) (who focus on changes over time and assume the bias is constant), Song,
Price, Guvenen, Bloom, and Von Wachter (2019), Leknes, Rattsø, and Stokke (2022), Arellano-Bover and San (2023),
and Helm, Kügler, and Schönberg (2023), among others.
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that it allows the computation of many corrections without increasing the computational cost.

Besides being scalable in the number of corrections, our method is easy to implement, fast, and

it accommodates different estimates of the covariance matrix of the errors, including the leave-

one-out and leave-cluster-out estimates used by Kline, Saggio, and Sølvsten (2020), KSS from

now on.

To illustrate the advantages of our method, consider a researcher who is interested in un-

derstanding how much the different components of an AKM model explain the variance of log

wages for different subgroups of the population. This can be done, for example, by estimating

separate variance decompositions for workers by race and gender (Gerard, Lagos, Severnini,

and Card, 2021), or by city (Dauth, Findeisen, Moretti, and Suedekum, 2022). The computa-

tional cost of correcting for the variance components with alternative methods scales linearly

with the number of subgroups. The increasing cost has prevented researchers from analyz-

ing variance components at increasingly finer partitions of the data.2 Our method overcomes

this limitation. The computational cost of doing an arbitrary number of corrections with our

method is practically the same cost of doing one correction.

We apply our method to French administrative data where we study the sorting patterns of

workers to firms in different labor markets. In this case, we define a labor market as the inter-

section of an occupation and a commuting zone. We then study a long hypothesized question

in urban and labor economics: if larger labor markets have better sorting. Given this definition,

we have over 8000 labor markets. Our bootstrap method allows us to do the corrections for

each labor market while using the entire sample to estimate the model parameters. Previous

studies instead make separate estimations and corrections for the different subgroups, so they

lose the information of workers who move across subgroups.3

We find that sorting is stronger in larger locations as the correlation between worker and

firm fixed effects is increasing in commuting zone population. We find that this positive slope

is not driven by the downward bias of the correlation due to the limited mobility bias. Instead,

we find that the positive slope is stable to the bias correction as it mainly increases all the

2One could think of conditioning for different occupations, industries, commuting zones, education groups
etc. in the AKM model.

3For example, Dauth et al. (2022) estimate an AKM model for each city in Germany and do a correction for
each city. By doing this they lose all the information of workers who move across cities, as Leknes et al. (2022)
note.
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correlations at the same time.

The paper is organized as follows. Section 2, derives the bias. Section 3 presents the boot-

strap correction. Section 4 discusses the practical considerations when using unbiased estimates

of the errors covariance matrix. Section 5 compares our method with the one developed by KSS.

Section 6 presents the application with the French data. Finally, Section 7 concludes.

2 The bias

Suppose we have some data (y, X) where y is an n × 1 vector and X is a matrix of covariates of

dimension n × k. Consider the linear regression model:

y = Xβ + ε,

where E (ε |X) = 0. We are interested in estimating the quadratic form φ = βTAβ for some

known matrix A of dimensions k × k, where E (A |X) = A.

Let β̂ be the OLS estimate of β. We can now define an estimate of φ.

Definition 1 (Plug-in Estimate). The plug-in estimate of the quadratic estimate is:

φ̂PI = β̂TAβ̂.

Taking the conditional expectation over the plug-in estimate, we get:

E
(

β̂TAβ̂
∣∣∣X
)
= E

(
β̂T
∣∣∣X
)

AE
(

β̂
∣∣∣X
)
+ tr

(
AV

(
β̂
∣∣∣X
))

= φ + tr
(

ST
XASXV (ε |X)

)
,

where SX =
(
XTX

)−1 XT.

Definition 2 (Bias). The bias of the quadratic form β̂TAβ̂ is:

δ ≡ tr
(

ST
XASXV (ε |X)

)
. (2)

Computing δ is infeasible as we do not know V (ε |X). Therefore, let V̂ be an estimate of the

4



covariance matrix V (ε |X). We can now define a bias correction and a bias corrected estimate

of the quadratic form.

Definition 3 (Direct bias correction). Using the covariance estimator V̂, the direct bias correction of

β̂TAβ̂ is equal to:

δ̂D ≡ tr
(

ST
XASXV̂

)
. (3)

Definition 4 (Bias corrected estimate). Given the direct bias correction δ̂D, then the bias corrected

estimate of the quadratic form is

φ̂ = φ̂PI − δ̂D.

Given the linearity of the trace and expectation operators, we get the next proposition.

Proposition 1 (Unbiasedness of δ̂D). The direct bias correction δ̂D is an unbiased estimate of the bias

if and only if E
(

V̂
∣∣∣X
)
= V (ε |X).

All proofs are in the Appendix. Given the previous proposition, the next result follows

immediately.

Corollary 1 (Unbiasedness of φ̂). The direct bias correction φ̂ is an unbiased estimate of φ if and only

if E
(

V̂
∣∣∣X
)
= V (ε |X).

For the case without conditioning on X, KSS show conditions for the consistency of the bias

corrected estimate φ̂ with diagonal covariance matrix estimates.4

3 Bootstrap correction

The computation of the direct bias correction δ̂D is unfeasible in typical applications with mil-

lions of fixed effect, which prevents us from finding the inverse of XTX. To overcome this

limitation, we propose to estimate δ̂D using a bootstrap where, by replicating the bias structure

of the plug-in estimates, we can do it in a computationally feasible way.

4See Assumption 1 and Lemma 3 in their paper.
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To motivate the use of our bootstrap, first note that bias δ is flat: it does not depend on the

values of the true parameters β. Thus, we can replicate the bias without paying attention to the

value β.

Let v∗ be a random vector where E (v∗ |X) = 0 and V (v∗ |X) = V̂. Let β̂∗ be the OLS

estimate of regressing v∗ on X. Then, the following proposition is the first step to motivate the

bootstrap correction.

Proposition 2 (Equivalence to δ̂D). The conditional expectation on the quadratic form using β̂∗ is

equal to the direct bias correction:

E
(

β̂∗T
Aβ̂∗

∣∣∣X
)
= tr

(
ST

XASXV̂
)
= δ̂D.

The previous proposition already suggests what to do: bootstrap v∗ a number of times and

get an estimate of E
(

β̂∗T
Aβ̂∗

∣∣∣X
)

using a sample average.

We need to make sure that the covariance matrix of the bootstrapped errors is equal to V̂. In

practice, this means, first, to simulate a random vector r with independent entries with mean

zero and unit variance, and find a matrix B such that:

V (Br |X) = BV (r)BT = BBT = V̂.

A popular choice to simulate vector r is to use the Rademacher distribution: each observation

can be 1 or -1, each with probability 1/2. With B in hand, the next step is to get the vector Br a

number of times, and for each time compute the quadratic form β̂∗T
Aβ̂∗. Finally, we only need

to take the sample average over the sequence of estimated quadratic forms to get an estimate

of the direct bias correction δ̂D.

Choosing B is easy when V̂ is positive semi-definite. For example, when V̂ is diagonal with

non-negative entries. Then, B is just a diagonal matrix with entries equal to the square root of

the entries of V̂. When V̂ is not diagonal but still positive semi-definite, a common choice to

find B is to use the Cholesky decomposition, popular in the VAR literature.

However, we do not want to restrict ourselves to positive semi-definite estimates of the

covariance matrix. Proposition 1 already imposes restrictions on the covariance estimator V̂ to

get a good estimate of the bias: V̂ should be an unbiased estimate of V (ε |X).
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Jochmans (2018), Kline et al. (2020), and Anatolyev (2021) propose unbiased covariance ma-

trix estimators that are robust to heteroskedasticity, but are not positive semi-definite. A ran-

dom vector with a non-positive semi-definite covariance matrix would contain complex num-

bers, which complicates the application of the bootstrap. However, we can bypass this compli-

cation by noting that we can decompose any real symmetric matrix as the difference of two real

positive semi-definite matrices. To see this, assume V̂ is symmetric but possibly not positive

semi-definite. Using the spectral decomposition of a real symmetric matrix, we get:

V̂ = QΛQT,

where the matrix Λ is a diagonal matrix containing the eigenvalues of V̂, with the ith diagonal

term equal to λi. We can further decompose Λ as

Λ = Λ+ − Λ−,

where the ith diagonal terms of Λ+ and Λ−, denoted λ+,i and λ−,i, are equal to:

λ+,i =

λi, if λi ≥ 0

0, otherwise,
λ−,i =

|λi|, if λi < 0

0, otherwise.

This means that V̂ is equal to:

V̂ = Q (Λ+ − Λ−)QT = QΛ+QT︸ ︷︷ ︸
V̂+

−QΛ−QT︸ ︷︷ ︸
V̂−

, (4)

where V̂+ and V̂− are positive semi-definite. The decomposition of V̂ means that we can rewrite

the direct bias correction as:

δ̂D = tr
(

ST
XASXV̂+

)
− tr

(
ST

XASXV̂−
)

.

Each of these trace terms can be represented as the expectations of some quadratic form. To see
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this, let us define the following two random vectors:

v∗
+ ≡ Q (Λ+)

1/2︸ ︷︷ ︸
B+

r, and v∗
− ≡ Q (Λ−)

1/2︸ ︷︷ ︸
B−

r,

which leads to the next proposition.

Proposition 3 (Decomposition of δD). Let β̂∗
+ and β̂∗

− be the OLS estimates of regressing v∗
+ and

v∗
− on X. Then,

δ̂D = E
(

β̂∗T
+Aβ̂∗

+

∣∣∣X
)
− E

(
β̂∗T

−Aβ̂∗
−

∣∣∣X
)

.

The last proposition motivates the following bootstrap estimator for any covariance matrix

estimate, positive semi-definite or not.

Definition 5 (Bootstrap Bias Correction). Let v∗
+(j) and v∗

−(j) as the jth simulations of vectors v∗
+

and v∗
−, where j = 1 . . . J. Also, let β̂∗

+(j) and β̂∗
−(j) be the OLS estimates of regressing v∗

+(j) and

v∗
−(j) on X. Then, the bootstrap bias correction is defined as:

δ∗ =
1
J

J

∑
j=1

β̂∗
+(j)

T
Aβ̂∗

+(j)− 1
J

J

∑
j=1

β̂∗
−(j)

T
Aβ̂∗

−(j).

The simple linear form of the bootstrap correction leads to the following result.

Proposition 4 (Unbiasedness and Consistency of δ∗). The bootstrap bias correction δ∗ is a consistent

and unbiased estimate of the direct bias correction δ̂D.

The last proposition means that we can estimate the direct bias correction to arbitrary preci-

sion, and implies the following result

Corollary 2. The bootstrap bias correction δ∗ is an unbiased estimate of the bias δ if and only if

E
(

V̂
∣∣∣X
)
= V (ε |X).

The main computational cost of our method is to estimate β̂∗
+ and β̂∗

−, not the number of

quadratic forms to correct. In other words, if we would like to estimate a bias corrections for

the set of quadratic forms {β̂TAm β̂} for m = 1 . . . M, we just need to calculate the bootstrap

analogous quadratic forms; a step with negligible computational cost.

8



To clarify this computational advantage and to summarize our bootstrap method, we present

below a ‘high-level’ algorithm to do corrections for an arbitrary number of quadratic forms,

provided we have a covariance matrix estimate V̂.

Algorithm 1 Bootstrap Bias Correction

1: Let V̂ be the covariance matrix estimate.
2: Using the spectral decomposition of V̂ get Q and Λ such that V̂ = QΛQT.
3: Decompose Λ = Λ+ − Λ−, with Λ+ having the positive eigenvalues and Λ− the absolute

value of the negative eigenvalues.
4: Get B+ = Q (Λ+)

1/2 and B− = Q (Λ−)
1/2.

5: for j = 1, . . . , J do
6: Simulate a vector r of length n of independent Rademacher entries.
7: v∗

+ = B+r, v∗
− = B−r.

8: Get β̂∗
+ and β̂∗

− by solving:

XTXβ̂∗
+ = XTv∗

+ and XTXβ̂∗
+ = XTv∗

+.

9: Compute δ∗m
(j) =

(
β̂∗T

+Am β̂∗
+

)
−
(

β̂∗T
−Am β̂∗

−

)
for all m = 1 . . . M.

10: end for
11: Compute δ∗m = 1

J ∑J
j=1 δ∗m

(j) for all m = 1 . . . M.

Step 8 of the algorithm shows the main computational cost of the algorithm: solving the

normal equations. As mentioned before, this could be done by just running a regression of v∗
+

and v∗
− on X. This is a huge advantage of our method as it relies in common algorithms that

estimate linear regressions with a large number of fixed effects. There are many of these algo-

rithms in different software programs, so the implementation cost of our method is relatively

low.5

Advantages of the bootstrap bias correction: We enumerate briefly the main advantages

of our bootstrap estimator; we explain with more detail afterwards. In short, our bootstrap

estimator is:

1. General: can use any real symmetric covariance matrix estimator.

5Some popular choices are the package fixest in R Bergé (2018), or reghdfe Correia (2017) in STATA. For our
applications and simulations where we run AKM models, we follow KSS and use the preconditioned conjugate
gradient method in Matlab with a preconditioner developed by Koutis, Miller, and Tolliver (2011) that is optimized
for two-way fixed effects regressions.
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2. Scalable: can compute corrections for different quadratic forms at the same time without

increasing the computational cost.

3. Flexible: can do the correction of any quadratic form; no need to create complicated ad-hoc

code for different corrections.

4. Easy to implement: only relies on the estimation of least square regressions.

The spectral decomposition argument above explains why the bootstrap correction is gen-

eral: we can use it with any real symmetric covariance matrix estimate.

The bootstrap method is scalable to any number of corrections. Like we mentioned above,

the main cost of our method is to solve for the normal equations for every iteration in the boot-

strap. At the end of the iteration we need to compute the quadratic forms. In practice, the cost

of computing an additional quadratic form is negligible compared to the cost of running the

regression: once we pay the fixed cost of running the regression, computing more quadratic

forms comes at almost not cost. In other words, there are increasing returns to the number of

corrections. This opens the door to many more applications of interest that were prohibitively

costly before. For example, in the AKM context, one could do corrections for different subsam-

ples of the data, and explore how the moments change across different periods, occupations,

genders, locations, etcetera.

The bootstrap correction is flexible: KSS’s method requires the computation of an appro-

priate Am matrix for each correction. Our method can compute the outcome of the quadratic

forms without explicitly declaring Am. For example, besides correcting for the covariance of

workers and firms fixed effects, one could correct for other moments that reflect labor market

sorting, like the correlation between the worker fixed effect and the average fixed effect of the

coworkers, as proposed by Lopes de Melo (2018).

The method is easy to implement: the bootstrap mostly relies on running least square regres-

sions. Our method can take advantage from the continuous development of tools that increase

the estimation speed of high dimensional linear models. Even more, it is easy to adapt the

method to use Generalized Least Squares instead of OLS; for example, it is straightforward to

adapt the bootstrap to use Weighted Least Squares.
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Efficiency gains compared to alternative bootstraps: Using the bootstrap to correct for bi-

ases is ubiquitous in the literature. MacKinnon and Smith Jr (1998) (MS, henceforth) propose

a similar bootstrap to correct for flat biases like the one considered here.6 For simplicity, let

us abstract about the decomposition of the variance estimate as the difference of two positive

semi-definite matrices, but all arguments follow easily in that case. In other words, let us have

that V̂ = V̂+. MS propose building the bootstrapped dependent variable by using the original

estimate of β, y∗ = Xβ̂ + v∗, and use these new data (X, y∗) to estimate β̂∗
MS. Then, to com-

pute the quadratic objects β̂∗
MS(j)

T
Aβ̂∗

MS(j) for each bootstrap j and use them to calculate a bias

correction of the form:

δ∗MS =
1
p

p

∑
j=1

β̂∗
MS(j)

T
Aβ̂∗

MS(j)− β̂TAβ̂.

MS already note that one can estimate a flat bias correction by using any β̂ to generate y∗. In

our bootstrap method we use β̂ = 0. As shown by the proposition below, this choice has some

benefits in terms of the efficiency of the estimator.

Proposition 5 (Efficiency Gains). Let v∗ be a vector of independent random variables with E (v∗ |X, ε) =

0, E
(
(v∗)2

∣∣∣X, ε
)
< ∞, and E

(
(v∗)3

∣∣∣X, ε
)
= 0. Then, V

(
δ∗MS

∣∣X
)
≥ V (δ∗ |X).

Given that we use independent Rademacher entries r to form v∗ = Br, then the conditions

E (v∗ |X) = 0 and E
(
(v∗)3

∣∣∣X) = 0 are satisfied. The proposition tell us that choosing β̂ = 0

to form the bootstrapped dependent variable reduces the variance of the bias correction. Fur-

thermore, if the estimate for the variance is unbiased, this means that our bootstrap estimate is

more efficient than the more traditional one as proposed by MS.

3.1 Computation of B+ and B−: common examples

The bootstrap estimator owes its simple form to two properties: (i) the decomposition of the

covariance matrix as the difference of two positive semi-definite matrices, and (ii) that the bias

is a linear function of the covariance matrix. These two properties allow us to decompose the

original bias, which is equal to a trace, as the difference of two traces.

6As stated before, flat bias is one that does not depend on the levels of the original estimates. The bias from
the quadratic forms is flat because the trace term in (2) is independent of β.
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Below we present three different examples of unbiased estimates of V for different assump-

tions on the error term, and discuss their corresponding B+ and B− matrices.

Example 1 —Homoscedastic Errors: Consider the following covariance matrix estimate:

V̂ = σ̂I, σ̂ =
1

n − k

n

∑
i

ε̂2
i ,

where ε̂i = yi − ŷi is the OLS residual for the ith observation and I is the identity matrix. When

the errors are homoscedastic, this covariance estimate is an unbiased estimate of the covariance

matrix of the unobserved errors.

This covariance matrix estimate is a positive semi-definite matrix: it has only non-negative

eigenvalues, meaning Λ− = 0. Also, it is a diagonal matrix, so following the decomposition

above we then have that Q = I, and Λ+ = V̂ leading to B+ = (Λ+)
1/2 and B− = 0.

Example 2 —Leave-one-out covariance estimate: KSS use a diagonal covariance matrix esti-

mate which is unbiased when the errors are heteroskedastic. The diagonal entries are:

V̂ii =
yi ε̂i

1 − Pii
, (5)

where Pii is the leverage of observation i, defined as the ith diagonal of the projection matrix

P = X
(
XTX

)−1 XT.

V̂ is a diagonal matrix but not necessarily positive semi-definite. According to the spectral

decomposition we have that Q = I so V̂ = Λ+ − Λ−, where Λ+ contains the positive diagonal

entries of V̂ and Λ− the negative entries. We therefore have B+ = (Λ+)
1/2 and B− = (Λ−)

1/2.

Example 3 —Leave-cluster-out covariance estimate: This is a generalization of the leave-one-

out covariance matrix estimate. It was also proposed by KSS and studied in more detail by

Anatolyev (2021).

We introduce some notation to ease the exposition below. Assume we can divide the data

(y, X) into G mutually exclusive clusters, where the gth cluster has ng observations. This means

that n = ∑G
g=1 ng. Define as Xg a matrix of covariates for cluster g of dimension ng × k. Similarly,

define yg and εg as vectors of dimension ng.
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Define as Pgg the principal minor of the projection matrix P where we keep the observations

that correspond to cluster g. If the data is rearranged such that all observations within a cluster

are adjacent, then Pgg would be the gth diagonal block of P. Without loss of generality, we will

assume the data is ordered that way.

In a similar way, define Mgg = Ing − Pgg, where Ing is the identity matrix of dimension

ng × ng. We can now define the analogous of the leave-one-out residuals ε̂i/(1 − Pii) but for

clusters instead of an observation. Following Anatolyev (2021), the leave-cluster-out residual is

equal to:

ε̂LC
g = M−1

gg ε̂g.

Then, the leave-cluster-out symmetric estimate of variance for the gth diagonal block of V̂ is:

V̂gg =
1
2

(
yg

(
ε̂LC

g

)T
+ ε̂LC

g yT
g

)
. (6)

Clearly, the leave-cluster-out variance estimate is a generalization of the leave-one-out es-

timate of Example 2, which would correspond to all clusters having just a single observation.

Anatolyev (2021) shows that V̂gg is an unbiased estimate of the gth diagonal block of the co-

variance matrix V (ε |X).

As the matrix V̂ is block diagonal, we can do the spectral decomposition (4) for each diag-

onal block V̂gg that correspond to the different clusters g, making the computation easier. We

can therefore compute each block of B+ and B− separately per cluster g.

4 Practical details when using unbiased covariance estimates

The previous section established the general bootstrap correction method. In this section, we

discuss some practical details to implement the bootstrap method in three cases. Each of these

cases uses a different unbiased estimate of the covariance matrix, suitable for different situa-

tions: the standard covariance estimate for homoscedastic errors; the leave-one-out estimator

of Jochmans (2018) and KSS; and the leave-cluster-out estimate also introduced by KSS and

developed in more detail by Anatolyev (2021).
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Case 1 —Homoscedastic errors: This is the simplest case. The bias correction under this as-

sumption on the errors was first proposed by Andrews et al. (2008). Gaure (2014) implements

an iterative method to estimate the bias under the homoscedastic assumption, but it is not scal-

able like ours.

Having estimated the variance of the error terms σ̂ as explained in Example 1, we need to

perform several bootstraps where we need to simulate the vector r, get v∗ =
√

σ̂r, run regres-

sions of v∗ on X, and calculate the quadratic forms. Finally, the average across the estimated

quadratic forms is the estimate of the bias.

Case 2 —Heteroscedastic errors: The leave-one-out covariance matrix estimate is a diagonal

covariance matrix with entries described by equation (5) in Example 2 above. As some of these

entries are negative, we need to do a decomposition and separate the negative entries from the

non-negative ones to form the B+ and B− matrices.

Using the leave-one-out covariance matrix estimator requires estimating the leverage of each

observation and guaranteeing that the leverage of each observation is below 1 such that the

variance estimate of observation i V̂ii exists. We discuss their implementation below.

Case 3 —Clustered errors: The leave-cluster-out variance estimate shares the same two com-

plications with the leave-one-out variance estimate: we need that the leave-cluster-out covari-

ance estimate exists and we need to estimate the residual matrix M = I − P.

In the following we discuss the sample selection required for the existence of the leave-one-

out and leave-cluster-out estimates and iterative procedures to estimate leverages for each of

the covariance matrix estimates.

4.1 Existence of variance estimates: leave-one-out and leave-cluster-out

One important practical consideration in the leave-one-out and leave-cluster out covariance

estimation is that those exist. This requires to select a subsample of the connected set such that:

(i) the leverages Pii are below 1 for the leave-one-out estimator; and (ii) Mgg is non-singular

Anatolyev (2021) for the leave-cluster-out estimator.
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Leave-one-out connected set. In the AKM context, having leverages below 1 requires leaving

out: (i) workers that appear only once in the sample: that observation completely pins down

the worker fixed effect; and (ii) observations that upon removing them of the sample it would

leave some firms unconnected.7

Therefore, using the leave-one-out variance estimate in the AKM context requires a stronger

notion of connectivity than just using the connected set of firms: we need that each connected

firm is not only connected by the movement of one worker observation. KSS denote this set of

firms as the leave-one-out connected set.8

Leave-cluster-out connected set. To make sure that Mgg is non-singular for all the clusters,

we need to compute a leave-cluster-out sample similar to the case above. We will focus on the

clustering of errors at the match level. Firm and worker fixed effects will capture most of the

correlation across unobserved components but we will allow the errors to be correlated within

a worker-firm pair. This is the leave-match-out case considered by KSS which, again, requires a

stronger notion of connectivity than the connected set.

To guarantee that Mgg is non-singular for all the matches we need to remove: (i) workers

who only have one match; and (ii) matches whose removal from the sample would leave some

firms unconnected.

We discuss more about how to efficiently find the problematic observations using graph

theory tools in Appendix D.

4.2 Variance estimation: leave-one-out

Obtaining the leverages Pii = Xi
(
XTX

)−1 XT
i suffer from the same computational cost as getting

the direct bias correction. However, the proposition below shows that we can do another itera-

tive procedure involving only linear regressions–akin to the bootstrap—to bypass the inversion

7Given the presence of both worker and firm fixed effects in the AKM model, only the difference between firm
fixed effects is identified. Therefore, the identification of the relative difference of firm fixed effects for two firms
requires having at least one worker moving between them. In practice, the largest connected set of firms is used
when estimating AKM models.

8The leave-one-out connected set is a subset of the connected as it requires that more than one worker obser-
vation is connecting two firms.
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of XTX and get an estimate of the leverages.

Proposition 6 (Leverage approximation). Let r be a random vector of dimension n with Rademacher

entries. Also, let r̂ be the fitted values after running a regression r on X with r̂i being the fitted value for

the ith observation. Then,

E
(

r̂2
i

∣∣∣X
)
= Pii, and E

(
(ri − r̂i)

2
∣∣∣X
)
= 1 − Pii.

This means that we can simulate a random vector of Rademacher entries, calculate the

square of the fitted values and of the residuals, and their sample averages give us an estimate

of the leverages Pii and 1 − Pii. We present the algorithm in the Appendix.

Let P̂ii be the estimate using the squared of the fitted values, and M̂ii be the estimate using

the squared residuals—corresponding to the right expression on Proposition 6. To ensure our

estimates are between 0 and 1, we follow Kline, Saggio, and Sølvsten (2021) and define the

following estimates:

Pii ≡
P̂ii

P̂ii + M̂ii
, and Mii ≡

M̂ii

P̂ii + M̂ii
.

As it is clear from above, these estimates satisfy the constraint Pii + Mii = 1, and as both P̂ii and

M̂ii are always non-negative, then both estimates are satisfied to be between 0 and 1.

With the leverages estimates in hand, we can compute the diagonal entries of the covariance

matrix as V̂ii = yi
(

Mii
)−1

ε̂i. In the Appendix we discuss how to correct for the bias introduced

by the non-linearity of
(

Mii
)−1.

4.3 Variance estimation: leave-cluster-out

When the number of covariates is large, we cannot explicitly compute Pgg or Mgg for the same

reason as for the leave-one-out estimator. We can instead estimate them using linear regressions

as suggested by the following proposition.

Proposition 7 (Approximation of Diagonal Blocks of P and M). Let r be a random vector of dimen-

sion n with Rademacher entries. Also, let r̂ be the fitted value after running a regression r on X. Denote
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as rg and r̂g as the observations of vector r and r̂, respectively, that correspond to cluster g. Then,

E
(

r̂gr̂T
g

∣∣∣X
)
= Pgg, and E

((
rg − r̂g

) (
rg − r̂g

)T
∣∣∣X
)
= Mgg.

Akin to Proposition 6, this tell us we can get estimates of Pgg and Mgg through an iterative

procedure by taking sample averages over the matrices formed by the outer product of the

fitted values and residuals of the gth cluster observations. We also describe the algorithm in the

Appendix.

The requirement for the existence of the leave-cluster-out variance estimate is that Mgg is

non-singular or equivalently that the largest eigenvalue of Pgg is strictly smaller than 1.

Proposition 8 (Singularity of M̂gg). If Mgg is singular then M̂gg is singular.

The sample selection in the leave-cluster-out leads to a non-singular Mgg. In the following

we describe an estimation procedure that guarantees that P̂gg is symmetric with the largest

eigenvalue strictly smaller than 1. The projection matrix P is idempotent, which means that

the eigenvalues of P are either 0 or 1. As P is a real and symmetric matrix, its eigenvalues

interlace the eigenvalues of its principal minor matrices.9 This means that the eigenvalues of

the block-diagonal matrix Pgg must be between 0 and 1, which implies the same for the matrix

Mgg.

We make sure that the estimates of Pgg and Mgg are symmetric with eigenvalues between 0

and 1 by using the following estimates:

PS
gg = L−1

gg P̂gg

(
L−1

gg

)T
, and MS

gg = L−1
gg M̂gg

(
L−1

gg

)T
,

where Lgg is the lower triangular Cholesky factor of P̂gg + M̂gg, i.e. LggLT
gg = P̂gg + M̂gg. Clearly

PS
gg + MS

gg = Ing , and as the proposition below shows, they have eigenvalues within zero and

one.

Proposition 9 (Eigenvalue properties of PS
gg and MS

gg). Assume M̂gg is non-singular. Then, the

eigenvalues of PS
gg lie within [0, 1) and the eigenvalues of MS

gg lie within (0, 1].

9This is known as the Eigenvalue Interlacing Theorem. A textbook treatment of the issue is found on p. 552 of
Meyer (2000).
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Using MS
gg we can compute the leave-cluster-out residuals ε̂LC

g , and estimate V̂gg as shown

in (6). We show in the Appendix how to get the leave-cluster-out residuals without the explicit

inversion of any matrix.

5 Comparison with KSS

Both KSS and the bootstrap method rely on an iterative procedure to estimate the bias. Both our

methods rely in solving linear systems several times. We both do the exactly same estimation of

the leverage. The difference between our methods is what type of linear systems we are solving

and what part of the trace term of the bias we are approximating.

Let sii(A) be the ith diagonal element of matrix ST
XASX. With a diagonal covariance matrix

estimate V̂, we can rewrite the direct bias correction (3) as

δ̂D = ∑
i

σ̂isii(A),

where σ̂i is the ith diagonal element of V̂. KSS estimate sii(A) by using

E

((
Xi

(
XTX

)−1
A f r

)2
∣∣∣∣∣X

)
= sii(A),

where A f AT
f = A, and r is again an iid random vector where each entry has mean zero and unit

variance. Then, they can simulate vectors r and solve the following linear system:

XTXz = A f r. (7)

With z in hand they just multiply it by Xi and square it. They do this a number of times and

take the sample average to get an estimate of sii(A).

The main computational burden of KSS’s method is solving the system of equations (7)

a number of times; analogous to solving the system of equations in our bootstrap. But this

system is different than the one from our bootstrap: it is a function of the specific quadratic

form, characterized by the matrix A.

In some situations, like doing a variance decomposition of an AKM model with worker and
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firm fixed effects, one can reuse the estimates corresponding to the correction of variance of

workers fixed effects and variance of firm fixed effects to compute the correction of the covari-

ance between worker and firm fixed effects. When doing one set of corrections, KSS needs to

solve for three systems: one for the leverages, one for the workers fixed effects, and one for the

firms fixed effects. If you want to do more corrections, for example for different subsamples,

you would need to increase the number of systems to solve. This means KSS has to solve at

least three systems. Our method has to solve at most three systems regardless of the number of

corrections: one for the leverages, and two for V+ and V−.

The bootstrap method approximates the entire trace term, while KSS approximate the diag-

onal terms sii(A). This is at the heart of the difference between our methods. This conceptual

difference allows to scale the bootstrap method to any number of corrections. However, it also

reveals an advantage of KSS over our method: it can be easily scaled to different dependent

variables y, as estimating sii(A) only depends on A and X. For example, Lachowska, Mas, Sag-

gio, and Woodbury (2023) estimate AKM models with hours and wages as dependent variables.

One can estimate sii(A) once and compute the direct bias correction for the wages and hours

by adjusting the variance estimates σ̂i.

In the end, the suitability of KSS or the bootstrap method depends on the application. If

there are more corrections than dependent variables then it is better to do the bootstrap. If the

opposite is true, then it is better to do KSS.

5.1 Speed and accuracy across methods

We compare our method versus KSS in terms of speed and accuracy. We simulate labor market

data according to the model specified in (1) and do a simple variance decomposition and their

corrections. This exercise is the most beneficial for KSS as both their method and the bootstrap

method have to solve only three systems of equations per iteration.10

We use the leave-one-out covariance matrix estimator for both methods.11 To increase com-

10Recall that if we were to do more corrections for different subsamples KSS has to solve at least three systems
of equations while the bootstrap method has to do at most three systems of equations. Naturally, in this case, the
bootstrap method would be faster.

11The leave-match-out would be harder to compare as KSS take match averages of workers who move across
firms, and assume that workers who stay in the same firm for the entire sample have no correlated errors within the
match. This is because the parameters of those workers are not leave-match-out estimable, but they might be leave-
one-out estimable. Averaging within each match would reduce the variance of the outcome variable by losing the
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Table 1: Monte Carlo simulations. Heteroscedastic errors.

Mean Squared Error (MSE×103)

Model Time σ̂2
θ σ̂2

ψ σ̂θ,ψ Average

Plug-in 20.366 6.059 5.280 10.569
Bootstrap 582.6 0.001 0.003 0.001 0.002
KSS 595.9 0.001 0.003 0.001 0.002

Notes: We simulate a labor market with a size of around 5 million observations. Plug-in is the plug-in estimator,
Bootstrap implements our bootstrap method, and KSS is the Kline et al. (2020) method. True moments are computed
at the leave-one-out connected set. In all the exercises the number of movers per firm is 3 and the average firm has
12 employees. Time is the computing time in seconds. σ̂2

θ , σ̂2
ψ and σ̂θ,ψ present respectively the mean squared errors

of the corrected estimates of the variance of the worker fixed effects, variance of the firm fixed effects and the covari-
ance between worker and firm effects. All the MSE are multiplied by 1000 due to high accuracy of the corrections.
Average is the average MSE (also scaled).

parability, we use the same data selection method that KSS use to ensure the restriction Pii < 1

is satisfied. Their method is more restrictive than necessary, but the resulting sample satisfies

the restriction. In Appendix D we explain with more detail about less restrictive data selection

procedures that satisfy the restriction. The resulting sample size is around 5 million observa-

tions per simulation, where the number of movers per firm is 3 and the average firm has 12

employees. Also, both methods use the preconditioned conjugate gradient method in Matlab

to solve for the linear equations. We impose the same tolerance value for convergence and do

300 iterations for both methods.

Table 1 presents the results. As expected, both methods reduce the Mean Squared Error

(MSE) compared to the plug-in estimates. Interestingly, the MSEs of both methods are identical

to six digits. Also, the bootstrap method is faster by a small amount. This show that even in the

case where both methods need to solve three systems of equations per iteration, our bootstrap

method is as fast as KSS.

6 Sorting across French labor markets

We briefly introduce the data and present the results.

within-match variance components and would scale the importance of the remaining variance components.
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6.1 Data

We follow Babet, Godechot, and Palladino (2022) to build a pseudo panel from French admin-

istrative data DADS Base Tous Salariés - BTS. Babet et al. (2022) provide a code that generates

a panel version of the cross sectional data from BTS by matching the yearly identifiers across

years.12

We focus on BTS from 2003 to 2019. We further restrict the sample to private sector workers

that are working full-time. We only consider the main job in a year, working full time that

appear at least twice in the sample and exclude observations where the number of hours was

imputed or have missing information.13 We define labor markets as commuting zone and 2-

digit occupation combinations. We trim the log hourly wages yearly from the top at 0.05%. Our

dependent variable is the log hourly wage residualized by age and age squared.

6.2 Results

Figure 1 presents the relationship between the correlation of worker and firm fixed effects with

the commuting zone population. Taking the plugin estimates on Panel (a), most of the com-

muting zone sorting estimates are negative and there seems to be a positive gradient between

sorting and commuting zone size. Similarly, Panel (b) shows the estimates after correcting for

limited mobility bias with the leave-one-out estimator of the variance of the error terms. We

find that many correlations turn to be positive and the sorting-population gradient is stable.

7 Conclusion

In this paper, we propose a computationally feasible bootstrap method to correct for the small-

sample bias found in all quadratic forms in the parameters of linear models with a very large

number of covariates. We show using Monte Carlo simulations that the method is effective

at reducing the bias. The application to French labor market data shows that the correction

increases the correlation between firm and worker fixed effects. Depending on the sample and

on the specification, our bias correction method changes the sign of that correlation and in all

12We refer the reader to Section 1 and Appendix C of their paper for additional details.
13We provide additional details on the sample construction in Appendix A.
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Figure 1: Application. Sorting Across French Labor Markets.

Notes: These figures present on the x axis commuting zone population. On the y axis, Panel (a) shows on the
estimated correlation between worker and firm fixed effects with the plug-in estimates and Panel (b) shows the
corrected correlation estimated with the leave-one-out covariance matrix estimator. We remove the commuting
zone with the highest population for readability of the figure.

cases it changes the relative importance of the different components in explaining the variance

of log wages.

The only requirements to implement our correction is to have a bootstrap procedure that

is consistent with the assumption on the variance-covariance matrix of the error term and to

estimate the model several times. The correction can thus be applied easily to any study run-

ning an AKM type regression or two-way fixed effects regressions. Our method is similar in

time to Kline et al. (2020) and as accurate in the simulations. The main advantage of our ap-

proach is that it allows to increase the number of moments to correct without increasing the

computational costs.
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APPENDIX

A Proofs

Proof of Proposition 1: By the linearity of the trace and expectation operators we have that

E
(

δ̂D

∣∣∣X
)
= E

(
tr
(

ST
XASXV̂

∣∣∣X
))

= tr
(

ST
XASXE

(
V̂
∣∣∣X
))

= tr
(

ST
XASXV (ε |X)

)
= δ.

Proof of Corollary 1:

E (φ̂ |X) = φ − E
(

δ̂D

∣∣∣X
)
+ δ = φ − δ + δ = φ.

Proof of Proposition 2: The OLS estimate of running a regression of v∗ on X is β̂∗ =
(
XTX

)−1 XTv∗.

As E (v∗ |X) = 0, then we have that E
(

β̂∗
∣∣∣X
)
= 0. Then, using the formula for the expectation

of quadratic forms we get:

E
(

β̂∗T
Aβ̂∗

∣∣∣X
)
= tr

(
AV

(
β̂∗
∣∣∣X
))

= tr
(

ST
XASXV (v∗ |X)

)
= tr

(
ST

XASXV̂
)
= δ̂D,

where the second equality we use V
(

β̂∗
∣∣∣X
)
= SXV (v∗ |X)ST

X and the cyclical property of the

trace. The third equality follows by the definition of v∗ where V (v∗ |X) = V̂.

Proof of Proposition 3: First, given the decomposition of V̂ = V̂+ − V̂− and the linearity of

the trace operator, we have that

δ̂D = tr
(

ST
XASXV̂

)
= tr

(
ST

XASXV̂+

)
− tr

(
ST

XASXV̂−
)

.

As E (v∗
+ |X) = 0 and E (v∗

− |X) = 0, then we have that E
(

β̂∗
+

∣∣∣X
)
= 0 and E

(
β̂∗

−

∣∣∣X
)
= 0.

Then, as with Proposition 2 we have:

E
(

β̂∗T
+Aβ̂∗

+

∣∣∣X
)
= tr

(
ST

XASXV̂+

)
, and E

(
β̂∗T

−Aβ̂∗
−

∣∣∣X
)
= tr

(
ST

XASXV̂−
)

.

Proof of Proposition 4: Under the bootstrap, i.e. conditional on X, the only source of random-

ness are v∗
+ and v∗

−. So we prove that the bootstrap correction is an unbiased and consistent

estimate of the directed bias correction under the bootstrap.
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Unbiased. Taking expectations over δ∗, we have

E (δ∗ |X) =
1
J

J

∑
j=1

E
(

β̂∗
+(j)

T
Aβ̂∗

+(j)
∣∣∣X
)
− 1

J

J

∑
j=1

E
(

β̂∗
−(j)

T
Aβ̂∗

−(j)
∣∣∣X)

=
1
J

J

∑
j=1

[
E
(

β̂∗
+(j)

T
Aβ̂∗

+(j)
∣∣∣X
)
− E

(
β̂∗

−(j)
T

Aβ̂∗
−(j)

∣∣∣X)]
=

1
J

J

∑
j=1

δ̂D = δ̂D.

Consistent. Using the two components of the difference of averages from the definition of δ∗,

we have that:

1
J

J

∑
j=1

β̂∗
+(j)

T
Aβ̂∗

+(j) a.s.−−→ E
(

β̂∗
+(j)

T
Aβ̂∗

+(j)
∣∣∣X
)

, and

1
J

J

∑
j=1

β̂∗
−(j)

T
Aβ̂∗

−(j) a.s.−−→ E
(

β̂∗
−(j)

T
Aβ̂∗

−(j)
∣∣∣X
)

,

as each quadratic form is iid with defined expectation. Then, δ∗
a.s.−−→ δ̂D.

Proof of Proposition 5: We have that for bootstrap j,

β̂∗
MS(j)

T
Aβ̂∗

MS(j) = β̂TAβ̂ + v∗(j)TST
XASXv∗(j) + 2v∗(j)TST

XAβ̂.

We have that

V (δ∗MS| X, ε) =
1
J

V
(

β̂∗
MS(j)

T
Aβ̂∗

MS(j)
∣∣∣ X, ε

)
.

Let the matrix ST
XASX ≡ Z, with elements (i, j) equal to zi,j. Also, let the vector ST

XAβ̂ ≡ w

with element k equal to wk. We will ignore the index j for clarity. Then,

cov
(

v∗TZv∗, 2v∗Tw
∣∣∣X, ε

)
= E

((
n

∑
i=1

n

∑
j=1

zi,jv∗i v∗j

)(
n

∑
k=1

wkv∗k

) ∣∣∣∣∣ X, ε

)
,

where we use the fact that E
(
v∗i
∣∣ X, ε

)
= 0. Then,

E

((
n

∑
i=1

n

∑
j=1

zi,jv∗i v∗j

)(
n

∑
k=1

wkv∗k

) ∣∣∣∣∣ X, ε

)
=

(
n

∑
i=1

n

∑
j=1

n

∑
k=1

zi,jwkE
(

v∗i v∗j v∗k
∣∣∣ X, ε

))
= 0,
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where we use that the bootstrap errors are independent across observations and the fact that

E
(
(v∗i )

3
∣∣ X, ε

)
= 0.

This means that:

V (δ∗MS| X, ε) =
1
J

V
(

v∗TST
XASXv∗

∣∣∣X, ε
)
+

4
J

V
(

v∗TST
XAβ̂

∣∣∣X, ε
)

.

The expression above can be rewritten as:

V (δ∗MS| X, ε) = V (δ∗| X, ε) +
4
J

V
(

v∗TST
XAβ̂

∣∣∣X, ε
)
≥ V (δ∗| X) .

Proof of Proposition 6: First note that the fitted value for observation i after running a regres-

sion of r on X is r̂i = Xi
(
XTX

)−1 XTr, where Xi correspond to the ith row of X. Then,

E
(

r̂2
i

∣∣∣X
)
= Xi

(
XTX

)−1
XTE

(
rrT
)

X
(

XTX
)−1

XT
i = Xi

(
XTX

)−1
XT

i = Pii,

where we used the fact that E
(
rrT) = I.

Now, let 1i be a vector of length n of zeros everywhere except for the ith observation. Then,

we do something similar for the squared residuals:

E
(
(ri − r̂i)

2
∣∣∣X
)
= E

(
r2

i

)
− 2E (r̂iri |X) + E

(
r̂2

i

∣∣∣X
)

= 1 − 2Xi

(
XTX

)−1
XTE (rri) + Pii

= 1 − 2Xi

(
XTX

)−1
XT1i + Pii

= 1 − 2Xi

(
XTX

)−1
XT

i + Pii

= 1 − 2Pii + Pii = 1 − Pii.

Proof of Proposition 7: The fitted value vector for observations belonging to cluster g after

running a regression of r on X is r̂g = Xg
(
XTX

)−1 XTr, where Xg correspond to the rows of the

observations belonging to cluster g. Then,

E
(

r̂gr̂T
g

∣∣∣X
)
= Xg

(
XTX

)−1
XTE

(
rrT
)

X
(

XTX
)−1

XT
g = Xg

(
XTX

)−1
XT

g = Pgg.
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Let Og be a row selection matrix of dimensions ng × n that when multiplied to a matrix it

selects the rows corresponding to the observations of cluster g. Then,

E
((

rg − r̂g
) (

rg − r̂g
)T
∣∣∣X
)
= E

(
rgrT

g

)
− E

(
rgr̂T

g

∣∣∣X
)
− E

(
r̂grT

g

∣∣∣X
)
+ E

(
r̂gr̂T

g

∣∣∣X
)

= Ing − E
(

rgrT
)

X
(

XTX
)−1

XT
g − Xg

(
XTX

)−1
XTE

(
rrT

g

)
+ Pgg

= Ing − OgX
(

XTX
)−1

XT
g − Xg

(
XTX

)−1
XTOT

g + Pgg

= Ing − Xg

(
XTX

)−1
XT

g − Xg

(
XTX

)−1
XT

g + Pgg

= Ing − 2Xg

(
XTX

)−1
XT

g + Pgg = Ing − Pgg = Mgg.

Let us introduce the definitions of P̂gg and M̂gg and an auxiliary Lemma that will prove

helpful for proving Proposition 2. The definitions for P̂ii and M̂ii follow from collapsing the

clusters to have only one observation, i.e. ng = 1 for all g.

Definition 6 (Estimates block-diagonals of P and M). Let r(j) be a random vector that corresponds
to the jth realization and r̂(j) the fitted value of running a regression of r(j) on X. In a similar way, define
rg(j) and r̂g(j) as the vectors containing the observations of r(j) and r̂(j) that correspond to cluster g.
Then, The estimates P̂gg and M̂gg are defined as:

P̂gg =
1
J

J

∑
j=1

r̂g(j)r̂g(j)T, and M̂gg =
1
J

J

∑
j=1

(
rg(j)− r̂g(j)

) (
rg(j)− r̂g(j)

)T .

Lemma 1. Let A be a positive definite matrix and matrix B be positive semi-definite. Then AB has only
non-negative eigenvalues. If B is positive definite, then AB has only positive eigenvalues.

Proof. Let v be an eigenvector of AB with associated eigenvalue λ, i.e. ABv = λv. As A is
positive definite we have that:

(Bv)T A (Bv) = λvTBTv ≥ 0.

The expression above can be equal to zero if λ = 0. B is positive semi-definite so vTBTv ≥ 0,
which means λ ≥ 0.

For the case where B is positive definite, we have that for any non-zero vector vTBTv > 0,
which means that Bv > 0. Similarly as A is positive definite we have that:

(Bv)T A (Bv) = λvTBTv > 0, =⇒ λ > 0.
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It is easy to see that the estimates above satisfy the constraint Pgg +Mgg = Ing . The proposi-

tion below shows that Pgg and Mgg the estimates also satisfy the constraints on the eigenvalues.

Lemma 2 (Eigenvalue properties of Pgg and Mgg). Define the following matrices:

Pgg =
(

P̂gg + M̂gg

)−1
P̂gg, and Mgg =

(
P̂gg + M̂gg

)−1
M̂gg.

Assume M̂gg is non-singular. Then, the eigenvalues of Pgg lie within [0, 1) and the eigenvalues of Mgg
lie within (0, 1].

Proof. First, both P̂gg and M̂gg are positive semi-definite as they are averages of matrices formed
by outer products of vectors. By assumption, we have that M̂gg is non-singular. Together with
the positive semi-definite property, this implies that M̂gg has strictly positive eigenvalues. As it
is symmetric, then M̂gg is positive definite. Then, P̂gg + M̂gg is positive definite as well, which
means its inverse exist and is also positive definite. Now, using Lemma 1 we can show that

Pgg =
(

P̂gg + M̂gg

)−1
P̂gg has non-negative eigenvalues and Mgg =

(
P̂gg + M̂gg

)−1
M̂gg has

only positive eigenvalues. Let λ be an eigenvalue of Pgg. Then, we have that as Mgg = Ing −Pgg,
then 1− λ is an eigenvalue of Mgg. We can conclude then that all eigenvalues of Pgg are in [0, 1)
and the eigenvalues of Mgg are in (0, 1].

Proof of Proposition 9: First, we will show that PS
gg and MS

gg are similar matrices to Pgg and

Mgg, defined in Lemma 2. As M̂gg is non-singular then P̂gg + M̂gg is positive definite and there

exists a unique Cholesky decomposition where P̂gg + M̂gg = LggLT
gg and Lgg is non-singular.

Then, Pgg =
(

LggLT
gg

)−1
P̂ =

(
LT

gg

)−1
L−1

gg P̂. Pre-multiply Pgg by LT
gg and post-multiply it by(

LT
gg

)−1
and we get

LT
ggPgg

(
LT

gg

)−1
= LT

gg

(
LT

gg

)−1
L−1

gg P̂gg

(
LT

gg

)−1
= L−1

gg P̂gg

(
L−1

gg

)T
= PS

gg.

Then, Pgg and PS
gg are similar matrices, which means they have the same eigenvalues. By

Lemma 2 we have then that the eigenvalues of PS
gg lie within [0, 1). Similar argument to show

that the eigenvalues of MS
gg lie within (0, 1].
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Proof of Proposition 8: Let m̂gg(j) ≡
(
rg(j)− r̂g(j)

) (
rg(j)− r̂g(j)

)T. Then, denote M̂gg(J) as

the average over J realizations of m̂gg(j):

M̂gg(J) =
1
J

J

∑
j=1

m̂gg(j).

We have that M̂gg(J) a.s.−−→ Mgg. By the continuous mapping theorem we have that

det
(

M̂gg(J)
)

a.s.−−→ det
(
Mgg

)
,

where det
(
Mgg

)
= 0 by assumption that Mgg is singular.

As m̂gg(j) is an outer product it is positive semi-definite and singular. This means that

det
(

M̂gg(1)
)
= 0. Also, the Minkowski determinant theorem (see Marcus and Gordon, 1971)

implies that the determinant of the sum of two positive semi-definite matrices is greater or

equal to the sum of the determinants of each matrix. All of this implies that det
(

M̂gg(J)
)
≥ 0.

We proceed by contradiction. Suppose there exists a J∗ > 1 such that with positive proba-

bility

det
(

M̂gg(J∗)
)
> 0.

Now fix J∗ and let J = KJ∗. Then, we can rewrite M̂gg(J) as:

M̂gg(J) =
1
J

K

∑
k=1

J∗ × M̂(k)
gg (J∗),

where M̂(k)
gg (J∗) denotes the kth realization of M̂gg(J∗). Then,

det
(

M̂gg(J)
)
= det

(
K

∑
k=1

J∗

J
× M̂(k)

gg (J∗)

)
≥

K

∑
k=1

J∗

J
× det

(
M̂(k)

gg (J∗)
)
=

1
K

K

∑
k=1

det
(

M̂(k)
gg (J∗)

)
.

Denote the last expression in the right as D(K). As K → ∞, then D(K) a.s.−−→ E
(

det
(

M̂gg(J∗)
))

.

As the determinant of M̂gg(J∗) is always non-negative, and with positive probability it can be

strictly positive, then E
(

det
(

M̂gg(J∗)
))

> 0. But as K → ∞, then J → ∞ which means that

det
(

M̂gg(J)
)

a.s.−−→ 0. This leads to a contradiction.
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B Additional details on leverage estimation

The estimates P̂ii and M̂ii are:

P̂ii =
1

JM

JM

∑
j=1

(r̂i(j))2 and M̂ii =
1

JM

JM

∑
j=1

(ri(j)− r̂i(j))2 ,

where ri(j) is the jth realization of the ith entry of Rademacher random vector; r̂i(j) is the ith

fitted value of running the regression of the jth realization of the random vector on X.

As covered in Case 2 of Section 4, the leave-one-out residual for observation i is equal to

ε̂i/Mii. As we use the estimate Mii rather than the actual value Mii, we introduce some non-

linearity bias. We correct it up to a second order.

To do this, note that the expected value of the second-order approximation of 1/Mii is

E

(
1

Mii

)
≈ 1

Mii
+

Pii

M3
ii

E
(

M̂ii − Mii

)2
− 1

M2
ii

(
E
(
(P̂ii − Pii)(M̂ii − Mii)

))
.

The feasible bias corrected estimate of 1/Mii would be

1
Mii

(
1 − Pii

M2
ii

v̂ar(M̂ii) +
1

Mii
ĉov

(
P̂ii, M̂ii

))
,

where v̂ar and ĉov are sample variance and covariance estimates.14

Direct computation. Alternatively, an exact computation of the leverage is possible by using

the definition of fitted values ŷ = Py and a regression-intensive procedure. We have that the

leverage of observation i is equal to

Pii =
∂ŷi

∂yi
,

where yi and ŷi are the ith elements of ŷ and y.

The following remark shows how to compute these leverages without computing the pro-

jection matrix P using only linear regressions.

14The sample variance of M̂ii is 1
JM

([
1

JM−1 ∑JM
j=1 (ri(j)− r̂i(j))4

]
− JM

JM−1 M̂2
ii

)
. The sample covariance is

1
JM

([
1

JM−1 ∑JM
j=1 (ri(j)− r̂i(j))2 r̂i(j)2

]
− M̂ii P̂ii

)
.
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Proposition 10. Let ỹ(i) be a vector of length n where every entry is equal to zero, except the ith entry
that is equal to one. The leverage of observation i is equal to the fitted value ŷi of a linear regression of
ỹ(i) on X.

Proof. Let Pi be the ith row of the projection matrix P. Then, for any vector y we have that the
ith fitted value ŷi is equal to ŷi = Piy = ∑j Pijyj. Let y = ỹ(i). Then ŷi = Pii.

When the data set is large, the direct computation of the leverages is not feasible. We leave

the exact computation for the problematic cases identified by the following diagnostic.

Diagnostic and adjustment. Although using Mii as the estimate of Mii rules out nonsensical

estimates outside the [0, 1] interval, the estimates for 1/Mii, could still violate some theoretical

bounds. We detect problematic estimations of 1/Mii by checking that they are consistent with

the theoretical bounds for the leverages Pii ∈ [1/n, 1]. These bounds are derived from the

following proposition, which might be well known for some readers.

Proposition 11. Let X be a full rank matrix of dimensions n × k, where a vector of ones can be obtained
through column operations. Let P = X

(
XTX

)−1 XT, with ith diagonal element Pii. Then 1/n ≤ hii ≤ 1
for all i.

Proof. As P is idempotent then Pii = P2
ii + ∑j ̸=i P2

ij. Then Pii ≤ P2
ii =⇒ Pii ≤ 1. Now, let X̃

be the full rank matrix of dimensions n × k that contains a vector of ones after doing column
operations on X. Then define P̃ = X̃

(
X̃TX̃

)−1 X̃′ with diagonal elements P̃ii. It is well known
that 1/n ≤ P̃ii (see for example Lemma 2.2 in Mohammadi (2016)). As X and X̃ have the same
column space, then P = P̃. Thus, 1/n ≤ Pii.

The corollary of the proposition above is that 1/Mii ≥ n/(n − 1). Thus, we check if our

estimates of 1/Mii satisfy this bound. We directly compute leverages corresponding to the

estimates of 1/Mii that fall outside those bounds by using the result of Proposition 10.

The following algorithm takes as inputs the covariates X and gives output a combination

of actual and estimates for 1/Mii that will be used for the computation of the leave-one-out

residuals.

Steps 1 to 8 of the algorithm estimate P̂ii and M̂ii. Steps 9 and 10 compute the necessary

objects to compute the bias correction coming from the non-linearity of 1/Mii. Steps 12 to 19

perform the diagnostic and, if necessary, the computation of the actual leverage Pii.

32



Algorithm 2 Estimate leverages, diagnosis and compute those out of bounds

1: z(0)P = 0, z(0)M = 0, z(0)2 = 0, and z(0)PM = 0 are vectors of length n.
2: for j = 1, . . . , JM do
3: Simulate a vector r of length n of mutually independent Rademacher entries.
4: Compute fitted values r̂ from a regression of r on X.
5: Compute z(j)

P = z(j−1)
P + (r̂)2 and z(j)

M = z(j−1)
M + (r − r̂)2.

6: Compute z(j)
2 = z(j−1)

2 + (r − r̂)4 and z(j)
PM = z(j−1)

PM + (r − r̂)2 (r̂)2

7: end for
8: Compute P̂ii = z(JM)

P,i /JM and M̂ii = z(JM)
M,i /JM for all i ∈ {1, . . . , n}.

9: Compute v̂ar(M̂ii) =
1

JM

(
z
(JM)
2,i

JM−1 −
JM

JM−1 M̂2
ii

)
for all i ∈ {1, . . . , n}.

10: Compute ĉov(P̂ii, M̂ii) =
1

JM

(
z
(JM)
PM,i

JM−1 −
JM

JM−1 P̂ii M̂ii

)
for all i ∈ {1, . . . , n}.

11: Compute Mii =
M̂ii

P̂ii+M̂ii
for all i ∈ {1, . . . , n}.

12: for i = 1, . . . , n do

13: if 1
Mii

(
1 − Pii

M2
ii

v̂ar(M̂ii) +
1

Mii
ĉov

(
P̂ii, M̂ii

))
≤ n

n−1 then

14: Generate ỹ(i) ∈ Rn, where ỹ(i)i′ ̸=i = 0, ỹ(i)i′=i = 1.
15: Compute the fitted values ̂̃y(i) of a regression of ỹ(i) on X.
16: Get leverage Pii = ̂̃y(i)i′=i.
17: Get 1/Mii = 1/(1 − Pii).
18: end if
19: end for
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C Additional details on computation of leave-cluster-out vari-
ance estimate

The goal after estimating MS
gg is to get the leave-cluster-out residuals. Here we show how to

avoid doing unnecessary matrix inversions after doing the Cholesky decomposition.

The leave-cluster-out residuals for cluster g are:

ε̂LC
g =

(
MS

gg

)−1
ε̂g = LT

gg

(
M̂gg

)−1
Lggε̂g ⇐⇒ M̂gg

(
LT

gg

)−1
ε̂LC

g = Lggε̂g.

We can then find z ≡
(

LT
gg

)−1
ε̂LC

g that solve M̂ggz = Lggε̂g. This is much more efficient than

inverting M̂gg directly. Finally, we get ε̂LC
g = LT

ggz.

The following algorithm presents the steps to estimate the different diagonal blocks V̂gg as

well as the matrices to compute the bootstrap residuals for each cluster, which we denote Bgg+

and Bgg− .

Algorithm 3 Estimate M̂S
gg. Compute V̂gg, Bgg+, and Bgg−

1: For all g = 1 . . . G, ε̂g and yg are the observations of ε̂ and y corresponding to cluster g.

2: For all g = 1 . . . G, z(0)P,g = 0, z(0)M,g = 0 are matrices of dimensions ng × ng.
3: for j = 1, . . . , JM do
4: Simulate a vector r of length n of mutually independent Rademacher entries.
5: Compute fitted values r̂ from a regression of r on X.
6: For all g = 1 . . . G, compute z(j)

P,g = z(j−1)
P,g + r̂gr̂T

g .

7: For all g = 1 . . . G, compute z(j)
M,g = z(j−1)

M,g +
(
rg − r̂g

) (
rg − r̂g

)T.
8: end for
9: for g = 1, . . . , G do

10: Compute P̂gg = z(JM)
P,g /JM and M̂gg = z(JM)

M,g /JM.

11: Get Lgg via Cholesky decomposition such that LggLT
gg = P̂gg + M̂gg.

12: Get z such that M̂ggz = Lggε̂g.
13: ε̂LC

g = LT
ggz.

14: Compute V̂gg = 1
2

(
yg

(
ε̂LC

g

)T
+ ε̂LC

g yT
g

)
.

15: Get Bgg+, and Bgg− using Steps 2 to 4 of Algorithm 1.
16: end for
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D Sample selection for leave-one-out and leave-match-out cases

To use the leave-one-out variance estimate requires that Pii < 1, or equivalently Mii > 0. To

use the leave-match-out variance estimate, which in the AKM case corresponds to allowing

unrestricted correlation of errors within a worker-firm match, requires that Mgg is not singular.

We explain here how to use standard tools from graph theory to select the sample such that the

above restrictions are satisfied for each case.

To clarify the arguments below, let us first represent the worker-firm data as a bipartite

graph. Figure 2a represents an example with six workers and five firms. The vertices to the

left represent workers, and the vertices to the right, firms. The links between vertices, denoted

edges, represent matches between workers and firms. Importantly, each of these edges can have

different weights corresponding to the number of observations that we have for each worker-

firm match. For example, the edge connecting worker 3 with firm 3 has a weight of 3, meaning

we have 3 observations (or periods) where we observe worker 3 employed in firm 3.

Connected set. The first thing to do is to restrict our analysis to a connected component of the

sample. This is a well known requirement (Abowd, Creecy, and Kramarz 2002; Card, Heining,

and Kline 2013; Jochmans and Weidner 2019) to ensure the rank condition is satisfied and that

we can compare all of our fixed effects estimates. In practice, we keep the largest connected set.

The examples depicted in Figure 2a are already connected graphs.

Leave-one-out sample. The leave-one-out requirement is stronger. It requires that we can

identify all of the parameters after removing any one observation. If an observation has a

leverage of one it means that the identification of a parameter in the model depends entirely on

that observation. In terms of the worker-firm network this means that: first, deleting an edge

corresponding to that observation would disconnect the network; and second, the weight of

that edge is equal to one.

An edge whose deletion would disconnect the network is known as a bridge or a cut-edge.

In Figure 2a, the dashed lines representing the edges connecting worker 3 with firms 2 and 3 are

bridges: removing one of them would disconnect the network. However, only the observation

corresponding to the edge connecting worker 3 and firm 2 would have a leverage of 1. If we
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Figure 2: Bipartite graphs of workers and firms
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Notes: Workers are represented by square vertices to the left of each graph and firms are represented by circle
vertices in the right of each graph. If appropriate, weights are represented by numbers above edges.

were to remove one observation corresponding to the match between worker 3 and firm 3, we

would still be able to identify the parameters.

Removing the bridge with weight of 1 connecting worker 3 with firm 2 would disconnect

the graph. We could then work with the largest connected subgraph, in this case the graph

formed by workers 3 to 6 and firms 3 to 5. We can then check again if the remaining network

has no bridges with unit weights. For this particular subgraph is easy to see that is the case.

Then, this subsample would be suitable for the leave-one-out variance estimate.

Leave-match-out. Similarly, to use the leave-cluster-out variance estimate we need to restrict

the sample such that the deletion of all observations corresponding to the cluster, or in this

case, the match, would still allow us to identify all the parameters in the model. Naturally,

all workers that were only employed by one firm are not leave-match-out estimable: all the

information for the worker fixed effect is contained in the observations corresponding to that

worker’s unique match.
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To ensure the sample allows to use the leave-match-out estimator we should restrict the

sample such that the bipartite graph has no bridges. As each edge of the graph corresponds

to a realized match, removing one edge corresponds to removing one match. Thus, we should

remove the matches that correspond to edges that are bridges. The weight of the edge does

not matter in this case as it only represents the number of observations of a given match. In

the example of Figure 2a, we would remove the observations corresponding to both bridges

connecting worker 3 with firms 2 and 3. The resulting sample would have data on workers 4

to 6 and firms 3 to 5. This sample is more restricted than the leave-one-out sample, which is an

expected result as the leave-match-out sample restriction is stronger.

Leave-worker-out. KSS propose an algorithm that makes the sample suitable to use the leave-

match-out estimator, and therefore also suitable for the leave-one-out estimator. KSS remove

from the sample all those workers that are cut vertices or articulation points. This means workers

whose deletion would disconnect the graph. We name this procedure as leave-worker-out.

Worker 3 in Figure 2a constitutes an articulation point. Their removal would disconnect the

graph and lead to the same leave-match-out subsample that we would obtain with the bridge

deleting procedure explained above. However, using leave-worker-out is a stronger require-

ment than the leave-match-out procedure. Consider Figure 2b. The graph has no bridges,

therefore it is leave-match-out estimable. However, worker 2 constitutes an articulation point.

If we were to follow the leave-worker-out procedure of KSS we would remove all observations

corresponding to worker 2. We would probably work with the data corresponding to workers

3 and 4, and firms 3 and 4 as well. This is a much smaller subsample compared to the original

sample.

When we compare the performance of our method with respect to KSS we use the leave-

worker-out procedure to use the same samples and to make the methods as comparable as

possible.
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ONLINE APPENDIX

A Sample construction

The data source BTS is a repeated cross section with the universe of jobs per year. The data

records with a yearly worker identifier all the jobs of a worker in a given year and in the previ-

ous year. That is, one cannot directly create a panel of workers as the worker identifiers change

every year. The data has information on age, a firm and establishment identifiers, main job,

occupation, gender and the municipality of the establishment. Babet et al. (2022) overcome the

yearly changing identifiers by leveraging that each identifier has t and t − 1 information. They

proposed a way to match on additional information across years and generously made the code

public. We directly use their code to generate the yearly sample with pseudo identifiers that are

generated to create a panel version.

We make additional sample restrictions. We focus on main jobs of workers working full time

at the private sector with positive hourly wages, with occupation, location and age information.

We yearly trim the 0.05% of the hourly wages from above. The source variables we use are:

• SIREN: is the firm identifier.

• NIC: combined with SIREN gives the establishment identifier.

• SBRUT: gross yearly earnings in the job. We keep observations with positive earning

information.

• NBHEUR: total yearly hours in the job. Hourly wages in the job are defined as SBRUT/NBHEUR.

We keep observations with positive hourly wages.

• PPS: indicator of main job or poste principal by keeping observations with PPS equal to 1.

• IRNBHEUR: we drop observations with imputed hours by keeping only IRNBHEUR equal

to D.

• PCS and CS: PCS is a 4-digit occupation classification that is well maintained starting in

2009. In 2008 and before, the 2-digit classification CS was well maintained. We therefore

take CS before 2009 and take the first 2 digits of PCS from 2009 onward.
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• COMT: is the municipality identifier. We match the municipality codes to the commuting

zone classification in 2020 ZEMP2020.

• AGE: age of the worker in year t. We keep observations with age information.

• DOMEMP: is a variable that can be used to restrict to workers in the private sector. In

2008 and before, private workers are those with DOMEMP equal to 1, 6 or 9. From 2009

on one needs to keep the codes 6, 7, 8 and 9.

• CPFD: is a variable used to keep full time employees when CPFD equals C.
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