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Abstract
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ated products oligopoly model when both demand and cost data are available. The method

deals with the endogeneity of prices to demand shocks and the endogeneity of outputs to cost

shocks without any instruments by using cost data. In contrast to the indirect approach by

Byrne et al. (2022) who recover the pseudo-cost function, and then, derive the cost function

from it, we propose a method that directly estimates the cost function without the need for

the semiparametric pseudo-cost function. We also propose a method to consistently estimate

the coe�cient of the observed product characteristic in the market share function when valid

instruments are not available. We illustrate our methodology with Cobb-Douglas technol-

ogy and logit demand structure, assuming a multiplicative cost shock. We also conduct

Monte Carlo experiments and show that our method works well even when the conventional

instruments are invalid.
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1 Introduction

In this paper, we develop a new methodology for estimating cost functions in a di�erentiated

products oligopoly model when both prices and outputs are endogenous. Our approach requires

cost data in addition to the commonly used demand-side data on products' prices, market shares,

and observed characteristics. The literature on cost estimation has addressed the endogeneity

issues by using either instruments or assuming demand and cost shocks to be orthogonal (See

Amsler et al. (2017) and Kutlu et al. (2019) for more details). Another strand of the literature,

such as Kumbhakar (2001) has used the pro�t function, which is a function of output price and

input price. If the output and input markets are perfectly competitive, then, those prices can be

considered to be exogenous to the �rm, and thus, the pro�t function can be estimated without

any instruments. However, the pro�t function based approach would also be subject to the

endogeneity issue in the case of a di�erentiated products model since �rms also choose prices.

We follow Byrne et al. (2022) and do not use any instruments or other orthogonality condi-

tions, such as orthogonality of demand and cost shocks for dealing with the endogeneity issues.

Byrne et al. (2022) use their two-step nonlinear sieve estimator to recover a semiparametric

pseudo-cost function, which is a function of output, input prices, observed characteristics and

marginal revenue. They then propose to recover the cost function from the pseudo-cost function

by numerically integrating the marginal revenue function. It turns out that this approach is

subject to a large bias. Instead, we start with the idea developed by Gandhi et al. (2020) for

estimating production functions. They assume that the productivity shock enters in the pro-

duction function in a multiplicatively separable manner, so that one can eliminate it by using

the ratio of the production function and its derivative. We make a similar assumption but for

cost functions. That is, we assume a Hicks neutral cost shock, which is the inverse of the Hicks

neutral productivity shock. Then, the cost shock can be eliminated as long as we estimate pa-

rameters of the cost function by taking the ratio of marginal cost to total cost, where we replace

the unobservable marginal cost with marginal revenue which is a function of observables and

parameters. We then generalize this technique to the non-multiplicative cost shock case. We

thus show that there is a direct approach that sidesteps the pseudo-cost function estimation

to estimate the cost and demand function parameters jointly. We conduct several Monte-Carlo

experiments to demonstrate the validity of our method, assuming either logit demand or BLP

demand and either Cobb-Douglas or translog technology.

One issue that Byrne et al. (2022) do not address is the estimation of the coe�cients on
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the observed product characteristics in demand estimation. Using a simple setup, we show

how we can verify the validity of instruments and then, if needed, construct valid instruments

from the invalid ones to consistently estimate these coe�cients. To do so, we observe that

in demand estimation, the same instruments are used for the price variable and the observed

product characteristics. Therefore, we can use instruments to estimate the price coe�cient and

compare it with the estimate obtained from the instrument-free approach of Byrne et al. (2022).

We can then check if the instruments are valid. If they turn out to be invalid, we can construct

valid instruments using parametric functions of the invalid instruments, where the parameters

are chosen such that the price coe�cient estimated by the constructed instruments is close to

the instrument-free estimated one. We use these constructed instruments for estimating the

coe�cients on the observed product characteristics. We show the validity of our approach both

theoretically as well as numerically via Monte-Carlo experiments.

This paper is organized as follows. In Section 2, we review the IV-based estimation of

the di�erentiated products model of demand and of the cost function. Then, we discuss the

�rst order condition of the pro�t maximization of �rms that we use for the instrument-free

joint identi�cation and estimation of the demand and cost functions. In Section 3, we examine

identi�cation when demand and cost data are available and present our formal identi�cation

results, including the example of Cobb-Douglas technology and logit demand. In Section 2.2, we

discuss estimation issues. Section 4 contains a Monte-Carlo study that illustrates the e�ectiveness

of our estimator. In Section 5 we conclude.

2 IV estimation of Demand and Cost Functions

The key component of our methodology is the �rst order condition (F.O.C.) of the �rm's pro�t

maximzation, which requires its marginal revenue to equal its marginal cost. Unlike the other

approaches in the literature, in our estimation, marginal revenue plays an important role. That

is, we follow the control function approach of Byrne et al. (2022) and use marginal revenue to

control for the cost shock. Therefore, we �rst review the standard di�erentiated products demand

model, and derive its marginal revenue function.

In this section, we describe the standard di�erentiated products model that we adopt includ-

ing some of the assumptions and provide an overview of IV estimation of the demand and supply

side. For more details, see Berry (1994), Berry et al. (1995), Nevo (2001) and others. Most

features of the model we discuss here are carried over to the next section where we explain our
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cost data-based joint identi�cation strategy.

2.1 Di�erentiated products discrete choice demand models

In the standard model, consumer i in market m gets the following utility from consuming one

unit of product j:

uijm = xjmβ − pjmα+ ξjm + εijm,

where xjm is a 1×K vector of observed product characteristics, pjm is price, ξjm is the unobserved

product quality (or demand shock) that is known to both consumers and �rms but unknown to

researchers, and εijm is an idiosyncratic taste shock. The demand parameter vector is denoted

by θ =
[
α,β′

]′
, where β is a K × 1 vector.

We assume M > 1 isolated markets.1 Market m has Jm + 1 > 2 products where aggregate

demand for product j across individuals is,

qjm = sjmQm,

where q denotes output, Q denotes market size and s denotes market share. If εijm is assumed

to have a logit distribution as in Berry (1994), then, the aggregate market share for product j

in market m is given by,

sjm(θ) ≡ sj (pm,Xm, ξm;θ) =
exp (xjmβ − pjmα+ ξjm)∑Jm
k=0 exp (xkmβ − pkmα+ ξkm)

=
exp (δjm)∑Jm
k=0 exp (δkm)

, (1)

where pm = [p0m, p1m, ..., pJmm]′ is a (Jm + 1)× 1 vector,

Xm =


x0m

x1m

...

xJmm


is a (Jm + 1)×K matrix, ξm = [ξ0m, ξ1m, ..., ξJmm]′ is a (Jm + 1)× 1 vector, and

δjm ≡ xjmβ − pjmα+ ξjm (2)

is the �mean utility� of product j in market m. Using this de�nition, we can express the market

1With panel data, the m index corresponds to a market-period.
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share in Equation (1) as sj (δ(θ)) ≡ sj (pm,Xm, ξm;θ) where δ(θ) = [δ0m(θ), δ1m(θ), . . . , δJmm(θ)]′.

Good j = 0 is labeled the �outside good� or �no-purchase option� that corresponds to not

buying any of the j = 1, . . . , Jm goods. This good's product characteristics, price, and demand

shock are normalized to zero (i.e., x0m = 0, p0m = 0, and ξ0m = 0 for all m), which implies

δ0m(θ) = 0. (3)

This normalization, together with the logit assumption for the distribution of εijm, identi�es the

level and scale of utility.

In BLP, or equivalently, the random coe�cient logit model, one allows the price coe�cient and

coe�cients on the observed characteristics to be di�erent for di�erent consumers. Speci�cally, α

has a distribution function Fα (.;θα), where θα is the parameter vector of the distribution, and

similarly, β has a distribution function Fβ (.;θβ) with parameter vector θβ. The probability with

which a consumer with coe�cients α and β purchases product j is identical to that provided by

the market share formula in Equation (1). The aggregate market share of product j is obtained

by integrating over the distributions of α and β:

sj (pm,Xm, ξm;θ) =

�
α

�
β

exp (xjmβ − pjmα+ ξjm)∑Jm
k=0 exp (xkmβ − pkmα+ ξkm)

dFβ (β;θβ) dFα (α;θα) , (4)

where θ =
[
θ′α,θ

′
β

]′
. Letting µα to be the mean of α and µβ the mean of β, the mean utility is

de�ned to be

δjm ≡ xjmµβ − pjmµα + ξjm, (5)

with δ0m = 0 for the outside good.2

2.1.1 Recovering demand shocks

For each market m = 1, . . .M , researchers are assumed to have data on prices pm, market shares

sm = [s0m, s1m, ..., sJmm]′ and observed product characteristics Xm for all �rms in the market.

Given θd and this data, one can solve for the vector δm through market share inversion. That

is, if we denote sj (δm (θd) ;θd) to be the market share of �rm j predicted by the model, market

share inversion involves obtaining δm by solving the following set of Jm equations,

sj (δm (θd) ;θd)− sjm = 0, for j = 0, . . . , Jm, (6)

2Note that in BLP, the distribution of the random parameters is the same across markets. That is, there is
consumer-level heterogeneity within markets but not across markets.
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and therefore,

δm (θd) = s−1 (sm;θd) . (7)

The vector of mean utilities that solves these equations perfectly aligns the model's predicted

market shares to those observed in the data.

In the logit model, Berry (1994) shows we can easily recover mean utilities for product j

using its market share and the share of the outside good as δjm (θd) = log (sjm) − log (s0m),

j = 1, . . . , Jm. In the random coe�cient model, there is no such closed-form formula for mar-

ket share inversion. Instead, BLP propose a contraction mapping algorithm that recovers the

unique δjm (θd) that solves Equation (7) under some regularity conditions. In both cases, δ0m is

normalized to 0.

With the mean utilities and parameters in hand, one can recover the structural demand

shocks straightforwardly from Equation (2) for the logit demand and Equation (5) for the BLP

demand.

2.1.2 IV estimation of demand

A simple regression of Equation (2) or (5) with δjm (θd) being the dependent variable and xjm

and pjm being the regressors would yield a biased estimate of the price coe�cient. This is because

�rms likely set higher prices for products with higher unobserved product quality, which creates

a correlation between pjm and ξjm, violating the OLS orthogonality condition E[ξjmpjm] = 0.

Researchers use a variety of demand instruments to overcome this issue. In particular, researchers

construct a GMM estimator for θ by assuming the following population moment conditions are

satis�ed at the true value of the demand parameters θd0:

E[ξjm (θd0) zjm] = 0,

where zjm is a T × 1 vector of instruments that is correlated with xjm. Also, instruments are

required to satisfy the exclusion restriction that at least one variable in zjm is not contained in

xjm.

2.2 Cost Function Estimation

For each product j in market m, in addition to the data related to demand explained above,

researchers observe output qjm (hence, market size Qm = qjm/sjm as well), L×1 vector of input

price wjm and cost Cjm. The observed cost Cjm is assumed to be a function of output, input
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prices wjm, observed product characteristics xjm and a cost shock υjm. That is,

Cjm = C (qjm,wjm,xjm, υjm;θc) ,

where θc is the parameter vector. C () is assumed to be strictly increasing and continuously dif-

ferentiable in output and the cost shock.As with demand estimation, one can recover unobserved

cost shocks through inversion:

Cjm = C (qjm,wjm,xjm, υjm;θc)⇒ υjm = υ (qjm,wjm,xjm, Cjm;θc) . (8)

Like demand estimation, there are important endogeneity concerns with standard approaches

to estimating cost functions. Speci�cally, output qjm is endogenously determined by pro�t-

maximizing �rms as in Equation (9), and is potentially negatively correlated with the cost shock

υjm. That is, all else equal, less e�cient �rms tend to produce less. In dealing with this issue,

researchers have traditionally focused on selected industries where endogeneity can be ignored,

or used instruments for output.

The IV approach to cost function estimation typically uses excluded demand shifters as

instruments. Denoting this vector of cost instruments by z̃jm, one can estimate θc assuming

that the following population moments are satis�ed at the true value of the cost parameters θc0:

E [υjm (qjm,wjm,xjm, Cjm;θc0) z̃jm] = 0. See Wang (2003)

Typical instruments that can be used for price in demand function estimation and output in

cost function estimation are the product characteristics of rival �rms in the same market:X−jm.

However, if �rms endogenously choose their observed characteristics in response to own and other

�rms' cost shocks, then X−jm could be correlated with the cost shock υjm and thus, won't be

valid instruments. One way to deal with this problem is to assume that observed characteristics

are uncorrelated with the cost shock in the short run.This assumption is similar to the ones often

used in panel data estimation: the innovation of the cost shock is uncorrelated with the current

observed product characteristics. Petrin and Seo (2016) utilize similar assumptions for estimation

of the market share function. They show that innovations in observed product characteristics

can be used as instruments for the cost shock.
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2.3 Firms' Maximization Problem

Assuming that there is one �rm for each product, �rm j's pro�t function is as follows:

πjm = pjmqjm − C (qjm,wjm,xjm, υjm;θc) .

Let MRjm, be the marginal revenue of �rm j in market m. BLP assume that �rms act as

di�erentiated products Bertrand price competitors. Therefore, the optimal price and quantity of

product j in marketm are determined by the F.O.C. that equates marginal revenue and marginal

cost:

MRjm =
∂pjmqjm
∂qjm

= pjm + sjm

[
∂sj (pm,Xm, ξm;θd)

∂pjm

]−1
︸ ︷︷ ︸

MRjm

= MCjm =
∂C (qjm,wjm,xjm, υjm;θc)

∂qjm︸ ︷︷ ︸
MCjm

.

(9)

Note that given the market share inversion in Equation (6), and the speci�cation of mean

utility δm, ξm is a function of (pm, sm,Xm) and θd. Therefore, marginal revenue of �rm j in

market m, MRjm in Equation (9) can be written as a function of observables and parameters

as follows:

MRjm ≡MRj (pm, sm,Xm;θd) , (10)

Equations (9) and (10) imply that demand parameters can potentially be identi�ed if there is data

on marginal cost3 or even without such data, if the cost function is known or can be estimated

and its derivative with respect to output can be taken. Berry et al. (1995) assume that marginal

cost is log-linear in output and input prices i.e., MCjm = exp (wjmγw + qjmγq + υjm) (see their

Equation 3.6). They then use instruments to deal with the endogeneity of output with cost

shocks and of prices to demand shocks. As long as the parametric speci�cation of the supply

side is accurate and there are enough instruments for identi�cation, the demand side and the

F.O.C. based orthogonality conditions are su�cient for identifying demand parameters.

In this research, we follow the insight of Byrne et al. (2022) that jointly estimating both

demand and cost sides of the model can remove the need for any instruments to deal with the

endogeneity issue in estimating price coe�cients of the demand function and output coe�cient

of the cost function.4

3Genesove and Mullin (1998) use data on marginal cost to estimate the conduct parameters of the homogeneous
goods oligopoly model.

4As we explained above, estimating demand and cost sides separately raises endogeneity concerns. Further,
we cannot use the MR equation to estimate the parameters because it is not observed in the data. Same is true of
MC, even if we were to use inversion to use cost to control for the cost shock. However, jointly estimating has the
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3 Identi�cation of demand and cost functions using cost data and

without instruments

In this section, we present our methodology for dealing with the endogeneity issues in identi�ca-

tion mentioned above. We propose using cost data in addition to demand data to identify price

parameters and the parameters of the cost function. We do so by using the control function

approach of Byrne et al. (2022). Given output, input prices and observed product characteris-

tics, they use marginal revenue to control for the cost shock in the cost function. To do so, they

transform the cost function into a pseudo-cost function, which is a function of output, input

price, observed product characteristics and marginal revenue. The parameters of the marginal

revenue function are chosen to have the best �t of the pseudo-cost function to the cost data.

While their approach achieves consistent estimation of the price coe�cients of the demand

function without instruments, there is a large bias in the estimate of their nonparametric cost

function when we try to recover it from the pseudo-cost function. This is due to the pseudo-cost

function being highly nonlinear in output, input prices, observed characteristics and marginal

revenue. Further, their approach requires numerical integration of marginal revenue which results

in bias.

In this paper, we develop an alternative approach where the parameters of the cost function

are estimated directly, that is, without using the semi-parametric pseudo-cost function. We are

able to do so by using the �rst order condition of the �rm to derive its cost shock which is

the source of the endogeneity issue. This in turn is due to the assumption of a parametric cost

function in the �rst instance. Further, we �rst simplify the model and assume that the cost shock

component enters multiplicatively in the cost function. Such a restriction is frequently imposed in

the production function analysis (see Gandhi et al. (2020)). The cost shock is simply the inverse

of their productivity shock. It turns out that in this case, we can estimate the demand and cost

parameters in a straightforward manner because the pseudo-cost function becomes parametric.

advantage that we can exploit the �rst order condition, thereby using the variation of prices and market shares on
the demand side, as well as the variation of outputs and cost on the supply side to identify all of the parameters
of interest. Furthermore, exploiting the properties of particular production functions and demand functions, we
�nd that we do not need any instruments to do so. Note that we rely on the exclusion restriction that outputs
do not enter marginal revenue directly and market shares do not enter the cost function directly.
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3.1 The Cobb-Douglas Production/Cost Function and Logit Demand

Suppose that output is a function of labor and capital inputs, denoted by L and K, given by

q = [Bexp (xη + υ)]−(αc+βc) LαcKβc .

Here, x is an observed characteristic and υ is the unobserved cost shock (inverse of the produc-

tivity shock). In this subsection, we focus on the identi�cation of αc and βc and the component

that includes the cost shock, xη + υ.

We can derive the true cost function from the following cost minimization problem:

C∗ (q, w, r, x, υ) = max
K,L

rK + wL

s.t. q ≤ (Bexp (xη + υ))−(αc+βc)LαcKβc ,

where w is the wage and r is the rental rate of capital. Then, the cost and the marginal cost

functions are as follows:

C∗ (q, w, r, x, υ) =

[
(αc + βc)

(
w

αc

)αc/(αc+βc)( r

βc

)βc/(αc+βc)]
Bexp (xη + υ) q

1
αc+βc . (11)

MC∗ (q, w, r, x, υ) =

(
w

αc

)αc/(αc+βc)( r

βc

)βc/(αc+βc)
Bexp (xη + υ) q

1
αc+βc

−1
. (12)

Our methodology is centered around the fact that dividing C∗ in Equation (11) by MC∗ in

Equation (12) eliminates the cost shock υ. To be precise,

C∗ (q, w, r, x, υ)

MC∗ (q, w, r, x, υ)
= (αc + βc) q,

which implies that

C∗ (qjm, wjm, rjm,xjm, υ) = (αc + βc) qjmMC∗ (qjm, wjm, rm, xjm, υ) .

Next we use the �rst order condition of the �rm's pro�t maximization problem, namely, that

marginal revenue equals marginal cost, to rewrite C∗ as

C∗ (qjm, wjm, rjm,xjm, υ) = (αc + βc) qjmMRj (pm, sm,Xm;θd) , (13)
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We then set the observed cost, Cjm to be the true cost C∗ plus an i.i.d. measurement error ucjm,

that is,

Cjm = C∗jm + ucjm = (αc + βc) qjmMRj (pm, sm,Xm;θd) + ucjm. (14)

This is the equation we use to estimate the cost and the demand parameters.5 Notice that

because the cost shock is eliminated from the RHS, the only unobservable in the RHS is the

measurement error, and by assumption, it is independent to all the other variables in the RHS.

Therefore, we do not face any endogeneity issues in estimating the parameter (αc + βc). Thus,

our estimation methodology does not require any instruments. Note that we are essentially

estimating the pseudo-cost function since cost is expressed as a function of marginal revenue

instead of the cost shock, just as in Byrne et al. (2022). However, we can recover the cost shock

from the �rst order condition as follows:

MC∗ (qjm, wjm, rm, xjm, υ) ≡ M̃C (qjm, wjm, rm) exp (xη + υ) = MRj (pm, sm,Xm;θd)

exp (xη + υ) =
MRj (pm, sm,Xm;θd)

M̃C (qjm, wjm, rm)
.

Taking logs, we derive

xη + υ = ln(MRj (pm, sm,Xm;θd))− ln(M̃C (qjm, wjm, rm)).

We can also estimate the cost function directly (rather than dividing cost by marginal cost and

then substituting from the F.O.C.) by substituting for exp (xη + υ) into the true cost function,

given by Equation (11). This yields:

C∗ (q, w, r, x, υ) =

[
(αc + βc)

(
w

αc

)αc/(αc+βc)( r

βc

)βc/(αc+βc)]
B
MRj (pm, sm,Xm;θd)

M̃C (qjm, wjm, rm)
q

1
αc+βc

= (αc + βc) qMRj (pm, sm,Xm;θd) .

The last equality follows from substituting for M̃C.

In the multiplicative case, the two ways di�er only in the sequencing of steps used but as

we will see more clearly later, the advantage of the direct approach is that the cost shock does

5We assume that we have data on outputs, input prices, total cost (including an i.i.d. measurement error),
product prices, market shares and observed characteristics. In our model (further details are in the general section
below), market shares and outputs are linked via market size (Q) as follows: sjm = Qm

qjm
. Thus, we only need two

out of these three variables in the data.
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not need to enter the cost function multiplicatively. As long as marginal cost is assumed to be

an increasing function of the cost shock, we can use the �rst order condition to derive the cost

shock as a function of marginal revenue and then substitute in the cost function directly.

If we further assume that the market share function is logit, i.e. is speci�ed as in Equation

(1), then, we can derive the marginal revenue function:

MRj (pm, sm,Xm;θd) = pjm −
1

(1− sjm)α
. (15)

Then, the estimating equation becomes:

Cjm = qjmpjm (αc + βc)−
(

qjm
1− sjm

)
αc + βc
α

+ ucjm (16)

This is a linear regression equation with observed cost being the dependent variable and revenue

qjmpjm and
qjm

1−sjm being the independent variables. Since the error term of the Equation (16) is

the measurement error ucjm, which we assume to be independent to all the the other variables

in the RHS (pjm, qjm and sjm), the coe�cients αc + βc and 1/α are estimated without any bias

via simple OLS. Hence, α is estimated consistently.

However, this equation does not identify αc or βc separately. To do so, as in the existing

literature, we can use Shephard's Lemma if we have the cost data for each input. To see this,

we �rst derive the log cost function as follows:

lnC∗ = ln (αc + βc)−
αc

αc + βc
lnαc −

βc
αc + βc

lnβc

+
αc

αc + βc
lnw +

βc
αc + βc

lnr +
1

αc + βc
lnq + xη + υ (17)

Shephard' Lemma states that:

∂lnC∗ (qjm, wjm, rjm, xjm;θc0)

∂lnwjm
=

αc
αc + βc

=
wjmLjm
C∗jm

. (18)

Denoting the labor input cost by CLjm, and manipulating this equation, and using Equation

(13), we obtain

CLjm = wjmLjm + uLjm = αcqjmMRj (pm, sm,Xm;θd) + uLjm

= αcqjm

[
pjm −

1

(1− sjm)α

]
+ uLjm (19)
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where uLjm is an i.i.d. measurement error in input cost. Thus, we identify αc, and βc =

αc + βc − αc. Since the error term of Equation (19) is the measurement error, assumed to be

independent to pjm, qjm and sjm, we can estimate αc, and thus, βc consistently.

In our estimation method explained above, we do not need to use any instruments because

neither the unobserved product characteristics ξjm, which correspond to the demand shock, nor

the cost shock υjm enter in Equations (16) and (19). This is due to the properties of the demand

and cost function speci�cations we have used. First, in logit demand, marginal revenue is a

function of price and market share, but not of the unobserved product characteristics (see Berry

(1994) for more details). Second, we have assumed that the cost shock enters multiplicatively in

the cost function. After estimating αc and βc, using Equation (17) we can recover the component

xjmη + υjm.

Note that the above Cobb-Douglas cost function speci�cation has some additional bene�ts.

First, we can see from Equation (16) that the RHS is a function only of the demand side

variables, i.e. it is not a function of the input prices. Thus, as long as we can reasonably

assume the cost data is generated by the Cobb-Douglas production function, we can estimate

the demand parameters and the returns to scale, αc + βc, without any data on inputs and

input prices. Furthermore, Equation (19) implies that as long as we have data on total labor

cost, we can separately identify αc and βc without using any variation in input prices, in this

case, wage rate wjm and rental rate of capital rjm. ? and Gandhi et al. (2020) also estimate

the Cobb Douglas production function without relying on the input price data. Instead of the

demand side data, they exploit the panel assumption of lagged inputs being uncorrelated with

the productivity shock innovation. That is, they use lagged inputs as instruments. In contrast,

we use the information from the demand data, such as product prices and market shares as the

source of identi�cation, and thus we do not need any instruments for dealing with the endogenous

price in the demand function and the endogenous output in the cost function.

3.2 Identi�cation of the coe�cients of the observed characteristics - the Logit

case

Byrne et al. (2022) propose an instrument-free identi�cation strategy for the coe�cient of the

endogenous price by using cost data. For observed product characteristics, which may be corre-

lated with the error term, they assume that valid instruments are available. This is somewhat

problematic, as they observe, because then the rival �rms' observed characteristics (as BLP sug-

gest) could very well be used as instruments for price as well and their cost data based approach
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may not be needed except as a check. In this paper, we address this issue in the context of

logit demand. Our approach is to use the consistent estimate of the price coe�cient provided by

the methodology of Byrne et al. (2022) (and applied in this paper to speci�c demand and cost

functions) to develop an IV-based identi�cation method for the coe�cients of the observed prod-

uct characteristics. The novelty of our approach is that we are able to verify if the instruments

are valid and if not, to construct valid instruments from the invalid ones. To do so, we borrow

the idea of the Hausman speci�cation test in which researchers compare the OLS estimate and

the IV estimate. Under the assumption that the instruments are valid, if the two estimates are

close, then researchers can conclude that the OLS parameter estimate does not su�er from the

endogeneity bias, and use its standard error for hypothesis testing.

Our approach is to compare the price coe�cient estimated using the IV-free, cost data based

approach of Byrne et al. (2022) with the one estimated by the conventional IV approach, where

for instruments, we use the commonly used variables such as input prices and their polynomials.

If the two estimates are close, then the instruments are valid for price, and we can use them

as instruments for the observed product characteristics as well. If the estimates are not close,

then we construct valid instruments using a linear combination of some of the variables and use

their polynomials as candidate instruments. To ensure validity, we optimize over all such linear

combinations and choose the one whose polynomials, when used as instruments, yields a price

coe�cient estimate that is close to the IV-free estimate.

Our analysis is related to some recent work on consistent estimation of demand parameters

when �rms in oligopolistic markets choose observed and unobserved product characteristics in

addition to price. In such a setting, the commonly used instruments such as current input prices

and observed product characteristics of rival �rms are no longer valid instruments (See Petrin

and Seo (2016) - they use lags of these variables as instruments). However, product charac-

teristics tend not to change as frequently as price in many industries, likely due to substantial

costs of doing so. Thus, in order to properly take into account the endogeneity of the product

characteristics, we need to use a dynamic oligopoly model, which is outside the scope of this

study.

We explain our methodology using a simple model. We specify the unobserved product

characteristics as:

ξjm = µ0ξ + %ξjm + %ξ3jm (20)

%ξjm ≡ %ξ1m + %ξ2jm (21)
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where %ξ1m is i.i.d. mean zero distributed with standard deviation σξ1, and similarly, %ξ2jm is

i.i.d. mean zero distributed with standard deviation σξ2 and %ξ3jm is i.i.d. mean zero distributed

with standard deviation σξ3. Thus, we decompose the unobserved product characteristics into a

market-speci�c component and two product speci�c components.

We next assume that the potential instruments are input prices, (wjm, rjm), speci�ed as

follows:

wjm = µw + %w1jm + %w2jm + δwξ%ξjm, .rjm = µr + %r1jm + %r2jm + δrξ%ξjm (22)

where %w1jm, %w2jm %r1jm, %r2jm are all i.i.d. mean zero distributed with standard deviations

σw1, σw2 and σr1, σr2, respectively. Finally, we specify the observed product characteristic

(assumed to be one dimensional, for simplicity) as follows:

xjm = µx + δxw%w1jm + δxr%r1jm + δxξ%ξjm + %xojm, (23)

where %xojm is i.i.d. mean zero distributed with standard deviations σxo and xo denotes the ob-

served characteristics of other �rms. Note that these speci�cations allow for possible correlation

between observed and unobserved characteristics of the same �rm; observed characteristics across

�rms due to the market speci�c component of ξ and input prices and observed and unobserved

characteristics.

Now, for the sake of simplicity, let

µw = µr = µx = 0. (24)

Recall Equation (2), where δjm (θd) = log (sjm)− log (s0m), j = 1, . . . , Jm. That is,

log (sjm)− log (s0m) = xjmβ − pjmα+ ξjm (25)

Since α0 is identi�ed from the cost data, we consider it to be given. If δxξ 6= 0, then the OLS
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estimation of β given α0 is biased because

Cov (xjm, log (sjm)− log (s0m) + pjmα0)

= Cov (xjm, xjmβ0 + ξjm) = V ar (xjm)β0 + Cov (xjm, ξjm)

= V ar (xjm)β0 + δxξσ
2
ξ

Cov (xjm, xjmβ0 + ξjm)

V ar (xjm)
= β0 +

δxξσ
2
ξ

V ar (xjm)
6= β0.

3.2.1 Verifying validity of instruments

We now consider the problem of estimating the parameters (α, β) consistently. First, note that:

Cov (wjm, xjm) = δxwσ
2
w1 + δwξδxξσ

2
ξ , Cov (wjm, ξjm) = δwξσ

2
ξ (26)

Cov (rjm, xjm) = δxrσ
2
r1 + δrξδxξσ

2
ξ , Cov (rjm, ξjm) = δrξσ

2
ξ (27)

Input prices as instruments for xjm are valid if they satisfy the following two conditions: 1)

they are correlated with xjm, and 2) they are uncorrelated with ξjm. The �rst condition can be

checked with the data. Here we assume it holds for both instruments, i.e. Cov (wjm, xjm) 6= 0

and Cov (rjm, xjm) 6= 0. The second condition corresponds to δwξ = 0 and δrξ = 0 in our

speci�cation. In applications where the 2nd condition is hard to verify, researchers assume it to

be satis�ed. In particular, we focus on the case where δxξ 6= 0, δwξ 6= 0 as well as δrξ 6= 0 so that

the OLS estimate of β is biased and input prices are invalid instruments.

The �rst step in our method to estimate β consistently is to compare the instrument-free

estimate of α with the IV based method. We construct the following variable as an instrument

for price:

zpjm = wjm −
Cov (wjm, xjm)

Cov (rjm, xjm)
rjm. (28)

By construction, Cov (zpjm, xjm) = 0, thus, we can remove the term with xjm from the IV

estimation equation. Thus, the instrument zpjm identi�es the true price coe�cient α0 if and

only if

Cov (zpjm, pjm) 6= 0 (29)

Cov (zpjm, ln (sjm)− ln (s0m))

Cov (zpjm, pjm)
=

Cov (zpjm,−pjmα0 + xjmβ0 + ξjm)

Cov (zpjm, pjm)

= −α0 +
Cov (zpjm, ξjm)

Cov (zpjm, pjm)
= −α0, (30)
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Note Equation (29) corresponds to Condition 1) of the IV validity, and Equation (30), given

Equation (29) is equivalent to Cov (zpjm, ξjm) = 0, which corresponds to Condition 2) of the

IV validity. Next we show that Equations (29) and (30) are equivalent to the following two

equations:
Cov (wjm, pjm)

Cov (wjm, xjm)
6= Cov (rjm, pjm)

Cov (rjm, xjm)
(31)

Cov (wjm, ξjm)

Cov (wjm, xjm)
=
Cov (rjm, ξjm)

Cov (rjm, xjm)
. (32)

First, from Equation (28), we can see that Equation (29) holds if and only if Equation (31) is satis-

�ed. Furthermore, given Cov (zpjm, pjm) 6= 0, Equation (30) holds if and only if Cov (zpjm, ξjm) =

0, which results in Equation (32). Note that the two conditions, (29) and (30), and thus, Equa-

tions (31) and (32) can be veri�ed, the �rst from the data and the second using our instrument-

free identi�cation of α0 using cost data.

Similarly, we construct the following candidate as the instrument for xjm:

zxjm = wjm −
Cov (wjm, pjm)

Cov (rjm, pjm)
rjm.

Identi�cation of β0 requires:

Cov (zxjm, ln (sjm)− ln (s0m))

Cov (zxjm, xjm)
=

Cov (zxjm,−pjmα0 + xjmβ0 + ξjm)

Cov (zxjm, xjm)

= β0 +
Cov (zxjm, ξjm)

Cov (zxjm, xjm)
= β0,

where we have used the fact that Cov (zxjm, pjm) = 0. This implies that Equations (31) and

Cov (wjm, ξjm)

Cov (wjm, pjm)
=
Cov (rjm, ξjm)

Cov (rjm, pjm)
(33)

must hold. Then, Equations (31), (32) and (33) imply instrument validity, i.e.

Cov (wjm, ξjm) = Cov (rjm, ξjm) = 0.

While we can verify Equation (31) from the data and Equation (32) using our instrument-free

consistent estimator α̂ of α0, we cannot verify (33).

We, therefore, consider
{
wljm, r

l
jm, l = 2, . . .

}
as additional instruments for price, as is fre-

quently done in the literature. Then, because of our assumption of mean zero independence of
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all the % terms, we obtain

E
[
%kwwjm%

kx
x1jm%

kξ
ξjm

]
= 0

if at least one of (kw, kx, kξ) is one. Then,

Cov
(
wljm, ξjm

)
= E

[
(%w1jm + %wojm + δwξ%ξjm)l %ξjm

]

=
∑

k1+k2+k3=l

 l

k1, k2, k3

 δk3wξE
[
%k1w1m

]
E
[
%k2wojm

]
E
[
%k3+1
ξjm

]

Cov
(
wljm, xjm

)
= E

[
(%w1jm + %wojm + δwξ%ξjm)l

]
(δxw%w1jm + δxr%r1jm + δxξ%ξjm + %xojm)

=
∑

k1+k2+k3=l

 l

k1, k2, k3

 δxwδ
k3
wξδxξE

[
%k1+1
w1jm

]
E
[
%k2wojm

]
E
[
%k3+1
ξjm

]
As before, we can construct another instrument for price as follows:

z
(l)
pjm ≡ w

l
jm −

Cov
(
wljm, xjm

)
Cov (rjm, xjm)

rjm.

Then,

Cov
(
z
(l)
pjm, ln (sjm)− ln (s0m)

)
Cov

(
z
(l)
pjm, pjm

) =
Cov

(
z
(l)
pjm,−pjmα0 + xjmβ0 + ξjm

)
Cov

(
z
(l)
pjm, pjm

) = −α0+
Cov

(
z
(l)
pjm, ξjm

)
Cov

(
z
(l)
pjm, pjm

)
Proposition 1 α0 = αIV ⇒ δwξ = δrξ = 0.

Proof. The IV z
(l)
pjm is valid if and only if:

Cov
(
z
(l)
pjm, ξjm

)
Cov

(
z
(l)
pjm, pjm

) = 0, l = 1, 2..

Now, as before, Cov
(
z
(l)
pjm, ξjm

)
= 0, l = 1, . . . if and only if

Cov
(
wljm, ξjm

)
Cov

(
wljm, xjm

) =
Cov (rjm, ξjm)

Cov (rjm, xjm)
≡ B, l = 1, . . . (34)
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Thus, the following holds

Cov
(
wljm, ξjm

)
= BCov

(
wljm, xjm

)
, l = 1, . . . .

which implies,

Cov
(
wljm, ξjm −Bxjm

)
= 0, l = 1, . . .

Given our assumption in Equation (24), we obtain

Cov
(
wljm, ξjm −Bxjm

)
= E

[
wljm (ξjm −Bxjm)

]
− E

(
wljm

)
E (ξjm −Bxjm) = 0, l = 1, . . .

Hence,

E
[
wljm (ξjm −Bxjm)

]
= 0 l = 1, . . . (35)

which implies, given our assumption that the conditional moment is a continuous function of

wjm, that the conditional moment condition below is satis�ed:

E [ξjm −Bxjm|wjm] = 0. (36)

To show that Equation (35) implies Equation (36) more formally, we consider the following

conditional moment condition:

E [ξjm −Bxjm|wjm ≥ w] =
E [(ξjm −Bxjm) I (wjm ≥ w)]

E [I (wjm ≥ w)]
= E

[
(ξjm −Bxjm)

I (wjm ≥ w)

E [I (wjm ≥ w)]

]
.

Then, from the Dominated convergence theorem, suppose fn is a uniformly bounded sequence

of di�erentiable function such that

fn (w)→ I (wjm ≥ w)

E [I (wjm ≥ w)]

almost everywhere. Then,

lim
n→∞

E [(ξjm −Bxjm) fn (w)] = E

[
(ξjm −Bxjm)

I (wjm ≥ w)

E
[
I
(
wj′m′ ≥ w

)]]

and, from the Weierstrass Theorem, each continuous function fn can be expressed as the in�nite
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sum of polynomials
{
wljm

}∞
l=1

. Therefore,

E [ξjm −Bxjm|wjm ≥ w] = lim
n→∞

E [fn (wjm) (ξjm −Bxjm)]

= lim
n→∞

∞∑
l=1

ψn,lE
[
wljm (ξjm −Bxjm)

]
= 0.

By taking the derivative of the above equation with respect to w, we obtain Equation (36).

Next we show that Equation (36) implies that B = 0. Suppose otherwise. First, consider

the case of δxw > 0 and B > 0. Note that both wjm and xjm contain the random term %w1jm,

but ξjm does not. Then, a random incease in %wjm, increases wjm and Bxjm as well, but does

not a�ect ξjm. Therefore, a random increase in %w1jm increases wjm and decreases ξjm −Bxjm,

implying that wjm and Bxjm are stochastically related via %w1jm. The same logic applies when

B < 0. Therefore, Equation (36) implies that B = 0, and thus, we have, from Equation (34),

Cov (rjm, ξjm)

Cov (rjm, xjm)
=
Cov (wjm, ξjm)

Cov (wjm, xjm)
= 0⇒ δrξ = 0 = δwξ.

Thus, we can use wjm, rjm as valid instruments for identifying β0 as well.

The analysis of δxw < 0 is similar. Finally, consider δxw = 0. Then, if wjm satis�es Condition

2) of instrument validity, i.e. δwξ = 0, we have

Cov (wjm, xjm) = 0

which violates Condition 1) of instrument validity. Thus, the Proposition is proved.

So far we have shown that our instrument-free estimate of the price coe�cient can be used to

verify validity of potential instruments for observed characteristics, for example, input prices. If

these instruments satisfy the two conditions for validity, we are able to obtain consistent estimates

of the parameter β in addition to the price coe�cient. Next, we consider the possibility that

these instruments turn out to be invalid. As demand models become increasingly complex, the

problem of �nding valid instruments becomes accordingly more severe. In the next subsection,

we propose a new method to create valid instruments using the invalid ones. The logic used is

quite similar to what we used for veri�cation of the existing instruments.
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3.2.2 Constructing valid instruments

First, we de�ne the following two candidates for instruments, using input prices (w and r) and

observed characteristic (x) and parameters Dw and Dr:

zwjm = xjm −Dwwjm, zrjm = xjm −Drrjm.

Next, let

Dw0 ≡
δξx
δwξ

, Dr0 ≡
δξx
δrξ

and let zw0jm, zr0jm be de�ned as follows:

zw0jm ≡ xjm −Dw0wjm, zr0jm ≡ xjm −Dr0rjm.

Then,

zw0jm = µx −Dw0µw + (δxw −Dw0) %w1jm −Dw0%wojm + δxr%rjm + %xojm

zr0jm = µx −Dr0µr + (δxr −Dr0) %r1jm −Dr0%rojm + δxw%wjm + %xojm,

Note that zw0jm and zr0jm do not contain unobserved product characteristics ξjm, which is the

source of endogeneity. Hence,

Cov (zw0jm, ξjm) = Cov (zr0jm, ξjm) = 0.

However, we cannot use these variables as instruments because Dw0 and Dr0 are unknown.

Thus, we start with:

zwjm = µx −Dwµw + (δxw −Dw) %w1jm −Dw%wojm + δxr%rjm + %xojm + (Dw0 −Dw) δwξ%ξjm

zrjm = µx −Drµr + (δxr −Dr) %r1jm −Dr%rojm + δxw%wjm + %xojm + (Dr0 −Dr) δrξ%ξjm.

Then, we obtain

Cov (zwjm, xjmβ0 + ξjm) = Cov (zwjm, xjm)β0 + (Dw0 −Dw) δwξσ
2
ξ ,

Cov (zwjm, xjm) = V ar (xjm)−DwCov (wjm, xjm) .
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Hence,

βw ≡
Cov (zwjm, xjmβ0 + ξjm)

Cov (zwjm, xjm)
= β0 +

(Dw0 −Dw) δwξσ
2
ξ

V ar (xjm)−DwCov (wjm, xjm)
.

Similarly,

βr ≡
Cov (zrjm, xjmβ0 + ξjm)

Cov (zrjm, xjm)
= β0 +

(Dr0 −Dr) δrξσ
2
ξ

V ar (xjm)−DrCov (rjm, xjm)
.

As in the previous subsection, the instruments that identi�es α0 are the ones with Dw and

Dr that satify
Cov (zwjm, pjm)

Cov (zwjm, xjm)
6= Cov (zrjm, pjm)

Cov (zrjm, xjm)
(37)

Cov (zwjm, ξjm)

Cov (zwjm, xjm)
=
Cov (zrjm, ξjm)

Cov (zrjm, xjm)
. (38)

These two equations imply:

Cov (zwjm, ξjm)

Cov (zwjm, xjm)
=

(Dw0 −Dw) δwξσ
2
ξ

V ar (xjm)−DwCov (wjm, xjm)

=
(Dr0 −Dr) δrξσ

2
ξ

V ar (xjm)−DrCov (rjm, xjm)
=
Cov (zrjm, ξjm)

Cov (zrjm, xjm)
.

Using the same logic as in the previous subsection, we can see that if

Cov (zwjm, ξjm)

Cov (zwjm, xjm)
=
Cov (zrjm, ξjm)

Cov (zrjm, xjm)
6= 0,

then Equations (37) and (38) imply

Cov (zwjm, ξjm)

Cov (zwjm, pjm)
6= Cov (zrjm, ξjm)

Cov (zrjm, pjm)
, (39)

violating the condition that is equivalent to Equation (33), which is the condition for instru-

ment validity for xjm. That is, identi�cation of the true parameter estimate α0 does not imply

identi�cation of β0 when instruments are invalid.
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As before, we next use zlwjm as instrument as well. To do so, we de�ne

Cov
(
zlwjm, ξjm

)
= E

[
((δxw −Dw) %w1jm −Dw%wojm + δxr%rjm + %xojm + (Dw0 −Dw) δwξ%ξ)

l %ξjm

]
=

∑
k1+k2+k3+k4+k5=l

 l

k1, k2, k3, k4, k5

 (δwx −Dw)k1 (−Dw)k2 δk3xr [(Dw0 −Dw) δwξ]
k5+1

×E
[
%k1w1jm

]
E
[
%k2wojm

]
E
[
%k3xrjm

]
E
[
%k4xojm

]
E
[
%k5+1
ξjm

]
. (40)

Then, for identifying the true price coe�cient α0, we obtain equations that are equivalent

to the conditions (32), if, we use the newly de�ned zlwjm and zrjm instead of zwjm and zrjm as

instruments. Thus, the following holds.

Cov
(
zlwjm, ξjm

)
Cov

(
zlwjm, xjm

) =
Cov (zrjm, ξjm)

Cov (zrjm, xjm)
≡ B, l = 1, . . .

In order for the above equality to hold for any l = 1, . . . ,

Cov
(
zlwjm, ξjm

)
= BCov

(
zlwjm, xjm

)
.

Therefore,

Cov
(
zlwjm, ξjm −Bxjm

)
= 0, l = 1, . . .

which, given appropriate assumptions, implies

E [ξjm −Bxjm|zwjm] = 0. (41)

Next, we prove that B = 0. Recall zwjm = xjm − Dwwjm. Then, given all other random

components in zwjm, higher %xojm implies higher zwjm, which changes Bxjm, but not ξjm.

Therefore, if B 6= 0, Equation (41) does not hold. It then follows that

Cov
(
zlwjm, ξjm

)
= Cov (zrjm, ξjm) = 0.

From Equation (40), we can see that the above equality holds if

Dw = Dw0.
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Therefore, identifying the true price coe�cient α0 allows researchers to construct the valid

instrument zrjm and using it to identify the true coe�cient β0.

3.2.3 IV Estimation of observed characteristic coe�cient without orthogonality

conditions

Next, we present the estimation algorithm that is based on the identi�cation results in this

subsection. Let α̂ be the price coe�cient estimated by using the cost data, using Equation (16).

Then, the estimation algorithm is based on the 2SLS estimator (αIV (Dw, Dr) , βIV (Dw, Dr))

where zwjm (Dw), zrjm (Dr) are the instruments for price and observed characteristics, given the

candidate parameters (Dw, Dr). That is, −αIV (Dw, Dr)

βIV (Dw, Dr)

 =
[
X′Z

(
Z′Z

)−1
Z′X

]−1
X′Z

(
Z′Z

)−1
Z′y

where

xjm = [pjm, xjm]

X =
[
x′11, . . .x

′
J11, . . .x

′
1M , . . . ,x

′
JMM

]′
zjm (Dw, Dr) =

[
zwjm (Dw) , zrjm (Dr) , zwjm (Dw)2

, zwjm (Dw)× zrjm (Dr) , zrjm (Dr)
2 , . . . , zrjm (Dr)

3
]

Z =
[
z′11, . . . z

′
J11, . . . z

′
1M , . . . , z

′
JMM

]′
y = (y11, . . . , yJ11, . . . , y1M , . . . , yJMM ) , yjm = ln (sjm)− ln (s0m) .

In the estimation algorithm, we choose (Dw, Dr) so that the di�erence between the 2SLS

estimator of the price coe�cient using the constructed instruments (zwjm (Dw) , zrjm (Dr)),

αIV (Dw, Dr) , and the price coe�cient α̂ estimated by using the cost data is minimized. That

is,

(D∗w, D
∗
r) = argmin{Dw,Dr} [αIV (Dw, Dr)− α̂]2 .

Then, the estimator of the coe�cient on the observed product characteristics is:

β̂ = βIV (D∗w, D
∗
r)

Next, we provide a more general discussion of our approach focusing on the price coe�cient.
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In Subsection 3.3, we present the assumptions.

3.3 Main Assumptions of the General Model

We �rst state all the main assumptions for our methodology. Most of these assumptions are

standard as discussed in the previous section or simply describe the environment our methodology

is applicable to. For each market in the population, we attach a unique positive real number m

as an identi�er. Then, we assume m ∈ M, where M is the set of all market identi�ers, and is

an uncountable subset of R+.

Assumption 1 Data Requirements: Researchers have data on outputs, product prices, market

shares, input prices, observed product characteristics, total costs and individual input costs of

�rms.

Note that market size can be derived from data on outputs and market shares because output

of a �rm in any market equals its market share times the market size. Thus, we need to assume

observability of only two of these three variables. In contrast to BLP, we require data on total

costs of �rms as well as individual input costs. But we do not need data on marginal cost.

Assumption 2 Isolated Markets: Outputs, market shares, prices and costs in market m are

functions of variables in market m .

Assumption 3 Logit or BLP demand structure: Market share sjm is speci�ed either as in

Equation (1) with α > 0 or Equation (4) with µα > 0.

Assumption 4 Equilibrium Concept: Bertrand-Nash equilibrium holds in each market. That

is, for any j = 1, . . . , Jm, �rm j in market m chooses its price pjm to equalize marginal revenue

and marginal cost, given market size Qm and prices of other �rms in the same market p−j,m.

The next assumption describes the support of variables that determine the equilibrium

outcomes in market m. Let the set of these variables be denoted by Vm. Then Vm ≡

(Qm,Wjm,Xm, ξm,υm), and let V ≡ {Vm}m∈M. Let V \ wlkm to be the set V without the

element wlm for any l = 1, 2, . . . , L. For other elements of V, the set V without the element is

similarly de�ned. The assumption imposes substantially weaker restrictions on the support of

the variables in V than is typical in the literature. In particular, it imposes minimal restrictions

on the joint distribution of these variables as stated below.
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Assumption 5 Support of V: The support of Qm conditional on V \Qm can be any nonempty

subset of R+ for all m. The support of wlm conditional on V \ wlm is R+ for all l,m; the

support of xkjm conditional on V \ xkjm is either R or R+ for all k, j, m; and the support of

ξjm conditional on V \ ξjm is R. Finally, the support of υjm conditional on V \ υjm is R+.

Assumption 5 ensures that the variables in V are not subject to any orthogonality conditions,

which typically restrict the moments of a subset of the unobserved variables (ξm,υm) conditional

on the other variables to be zero. In other words, we do not require them to be econometrically

exogenous, and thus, Assumption 5 removes the validity of any conventional instruments.

Note that we do not impose any assumptions on the support of market size other than that

it is nonempty and positive. For logit, we require the conditional support to be R+ since as we

show later, market size variation is needed for identifying the price parameters of logit but not

for BLP.

The next assumption is regarding the cost function. Let C∗jm denote true cost. Then,

Assumption 6

C∗jm ≡ C (qjm,wm,xjm, υjm) , (42)

which is a continuous function of q, w, x and υ, strictly increasing, and continuously di�eren-

tiable in q and v, and marginal cost is strictly increasing in υ; Further, for any q > 0, wl > 0,

l = 1, . . . , L and x ∈ X , where X is the support of x,

limυ↘0
∂Cv (q,w,x, υ)

∂q
= 0, limυ↗∞

∂Cv (q,w,x, υ)

∂q
=∞.

We also consider a special case, as in Gandhi et al. (2020), and assume that the cost function

can be multiplicatively separated into the component that has output, input price and observed

product characteristics and the remaining component that only includes observed product charac-

teristics and the cost shock. That is,

C∗ (q,w,x, υ;θc0) = C̃ (q,w,x;θc0) exp (ϕ (x, υ)) . (43)

where C̃ () is the deterministic component of cost and ϕ (x, υ) is an unspeci�ed smooth function

of observed characteristics x and unobserved characteristics υ. Furthermore, the observed cost

Cjm is given by the sum of the true cost C∗jm and the measurement error ucjm as follows:

Cjm = C∗jm + ucjm = C∗ (qjm,wjm,xjm, υjm;θc0) + ucjm,
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where we assume ucjm to be i.i.d. distributed and independent to all other observables in the

demand and cost functions and θc0 is the cost function parameter vector we identify. Similarly,

we assume that expenditure on input l whose price is wljm, is measured with error, i.e.

Cljm = C∗ljm + ukjm = wljmljm + ukjm, l = 1, . . . , L,

where we assume uljm to be i.i.d. distributed and independent to other variables in the demand

and cost functions.6

3.4 General identi�cation result

We �rst explain the simpler case of the multiplicative cost shock (see Assumption 6). Then,

using Equation (43), the marginal cost function can be expressed as follows,

MC∗ (qjm,wjm,xjm, υjm;θc) =
∂

∂q
C̃ (qjm,wjm,xjm;θc) exp (ϕ (xjm, υjm))

= M̃C (qjm,wjm,xjm;θc) exp (ϕ (xjm, υjm)) . (44)

Therefore, by taking the ratio of marginal cost and cost, we obtain

C∗ (qjm,wjm,xjm, υjm;θc)

MC∗ (qjm,wjm,xjm, υjm;θc)
=

C̃ (qjm,wjm,xjm;θc)

M̃C (qjm,wjm,xjm;θc)
. (45)

Note that the RHS does not contain the unobservable cost shock υjm. Furthermore, from the

F.O.C., we obtain

MRj (pm, sm,Xm;θd) = MC∗ (qjm,wjm,xjm, υjm;θc) . (46)

Using Equation (46) to substitute MR () for MC∗ () into Equation (45) we derive:

C∗ (qjm,wjm,xjm, υjm;θc)

MRj (pm, sm,Xm;θd)
=

C̃ (qjm,wjm,xjm;θc)

M̃C (qjm,wjm,xjm;θc)

6Total cost equals the sum of input costs and thus, the measurement error in total cost equals the sum of
measurement errors in individual input costs.
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and by multiplying MRj on both sides, we get

C∗jm = C∗ (qjm,wjm,xjm, υjm;θc) =
C̃ (qjm,wjm,xjm;θc)

M̃C (qjm,wjm,xjm;θc)
MRj (pm, sm,Xm;θd) .(47)

This is how we can express the cost function as a function that does not have the unobservable

cost shock υjm, which is the source of the endogeneity bias.

Then, from Assumption 6, the observed cost can be speci�ed as follows:

Cjm =
C̃ (qjm,wjm,xjm;θc0)

M̃C (qjm,wjm,xjm;θc0)
MRj (pm, sm,Xm;θd0) + ucjm. (48)

Note that since ucjm is the measurement error, and is assumed to be independent to all other

observable variables in the demand and cost functions, the variables on the RHS and the error

term ucjm are independent, and thus, we don't face the endogeneity issue. Thus, this equation

can be used to estimate both the demand parameters θd0 and some or all of the cost parameters

θc0 without any endogeneity issues once we have the functional forms for the cost function and

the demand function.

To see which of the cost parameters can be estimated using Equation (48), note that

∂lnC∗ (qjm,wjm,xjm, υjm;θc)

∂lnq
=
∂lnC̃ (qjm,wjm,xjm,θc)

∂lnq

=
M̃C (qjm,wjm,xjm;θc)

C̃ (qjm,wjm,xjm;θc)
qjm =

MR (pm,xm,Xm;θd)

C∗jm
qjm,

implying that we can identify the demand parameters θd and the output elasticity of cost from

the F.O.C. of pro�t maximization. In other words, the F.O.C. only identi�es those parameters

of the cost function that a�ect the output elasticity of cost, which we denote as the vector

θcq. In the example based on the Cobb-Douglas production function, θc = (αc + βc, αc), and

θcq = αc + βc.

Since we have data on the cost of each input, we can identify some of the remaining parameters

from Shephard's Lemma, which states that

∂C∗ (qjm,wjm,xjm, υjm;θc0)

∂wkjm
= Lkjm. (49)

Or equivalently,
∂lnC∗ (qjm,wjm,xjm;θc0)

∂lnwkjm
=
wkjmLkjm

C∗jm
,
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and thus, we can identify those parameters that determine the input price elasticity of cost.

Then, using Equation (43), the above equation can be modi�ed as follows:

∂lnC̃ (qjm,wjm,xjm;θc0)

∂lnwkjm
=
∂lnC∗ (qjm,wjm,xjm, υjm;θc0)

∂lnwkjm
=
wkjmLkjm

C∗jm
, k = 1, . . . ,K (50)

Then, Shephard's Lemma and Assumption 6 together imply

Ckjm = wkjmLkjm + ukjm = C∗jm
∂lnC̃ (qjm,wjm,xjm;θc0)

∂lnwkjm
+ ukjm, k = 1, . . . ,K − 1, (51)

which we use for estimation together with the true cost function C∗ (), which we recover from

Equation (48). As before, since the measurement error in input cost ukjm is assumed to be

independent to the variables in the marginal revenue and cost functions, the above equation is

not subject to any endogeneity issue. Note that in estimation, as we can see in Equation (51),

only K − 1 input share equations are used. This is because total cost Cjm equals the sum of

the K input costs. Similarly as before, let θcw be the vector of parameters that are not in θcq

but can be estimated by applying Shephard's Lemma. In the Cobb-Douglas production function

example, θcw = αc. The parameters of the cost function that remain unidenti�ed, denoted by

θc,(−q,−w), can be identi�ed from the remaining cost component because it can be expressed as a

function only of xjm and υjm, i.e., lnϕ
(
xjm, υjm;θc,(−q,−w)

)
. Since there are no terms involving

output, the presence of the cost shock does not lead to any endogeneity issue.

Our identi�cation strategy is based on the exclusion restriction that there are variables that

potentially enter in the marginal revenue function but not in the cost function. These variables

are market size Qm, which enters in the marginal revenue function through qjm = sjm/Qm,

prices of �rms in market m, pm, market shares s−jm and observed characteristics X−jm of rival

�rms in the same market. For example, in the logit demand model, marginal revenue is

MRj (pm, sm,Xm;θd) = pjm −
1

(1− sjm)α
= pjm −

1

(1− qjm/Qm)α
. (52)

Therefore, the exclusion restriction is that price pjm and market size Qm enter in the marginal

revenue function, but not in the cost function. However, note that in contrast to the conventional

identi�cation arguments, such exclusion restrictions do not lead to any orthogonality conditions

for instruments.

Note that in the case of the multiplicative cost shock, we can recover the cost shock component
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from the �rst order condition as follows:

MRj (pm, sm,Xm;θd) = MC∗ (qjm,wjm,xjm, υjm;θc) = M̃C (qjm,wjm,xjm;θc0) exp (ϕ (xjm, υjm))

and thus,

exp (ϕ (xjm, υjm)) =
MRj (pm, sm,Xm;θd)

M̃C (qjm,wjm,xjm;θc0)
(53)

or in log speci�cation,

ϕ (xjm, υjm) = ln (MRjm)− ln
(
M̃Cjm

)
That is, the cost shock component can be recovered from the di�erence between the log of

marginal revenue and the deterministic component of the marginal cost function, both of which

do not include any unobservable variables.7 This is in contrast to the conventional literature

that identi�es the cost shock as the di�erence between the observed cost and the deterministic

component of the cost.

So far, we have speci�ed measurement errors as additive to the total cost as well as the

components of the cost. We believe that it is more realistic to specify total cost as the sum of

various cost components. Therefore, if we specify the measurement errors as additive to cost,

then the measurement error of the total cost can be simply expressed as the sum of all the

measurement errors of the individual cost components.

Diewert and Fox (2008) also use the F.O.C. of pro�t maximization to estimate markup and

the cost function parameters. We extend their approach by including the cost shock into the cost

function, and thereby explicitly deal with the endogeneity issues, but at the same time, without

the use of instruments. We also jointly estimate the parameters of the cost function and the

demand function.

3.5 Estimation issues

We estimate Equations (48) and (51) jointly. The conventional methods are feasible generalized

least squares (FGLS) and maximum likelihood (ML) methods. We use FGLS in our Monte-Carlo

experiments. FGLS estimates the parameters by minimizing the following objective function

7This is similar to Byrne et al (2022) in that they used the MR=MC condition to identify the cost shock.
However, unlike here, they assume a nonparametric cost function and thus, cannot explicitly solve for the cost
shock. Further, they use the FOC to de�ne their pseudo-cost function, where marginal revenue can be used in
place of the cost shock.
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u′jmWujm,

where the e�cient weight would be W = Σ−1, and Σ ≡ V ar (ujm) is the variance-covariance

matrix. The variance-covariance matrix is estimated by using the residual of the �rst stage

parameter estimate which is estimated by initially setting the weighting matrix to W = I.

Note that since the RHS of Equation (48) does not contain either the cost shock or the

demand shock, our estimation procedure does not su�er from any endogeneity issues and thus,

we do not need to impose any orthogonality conditions using instruments.

We next show that from Equation (44) and the F.O.C. in Equation (46),

MRj

(
pm, sm,Xm; θ̂d

)
= M̃C

(
qjm,wjm,xjm; θ̂c

)
exp (ϕ̂ (xjm, υjm)) ,

which results in

ϕ̂ (xjm, υjm) = lnMRj

(
pm, sm,Xm; θ̂d

)
− lnM̃C

(
qjm,wjm,xjm; θ̂c

)
. (54)

In the conventional approach, the cost shock component is identi�ed as part of the residual of

the cost function estimates, i.e., it is the di�erence between the cost data and the cost predicted

by the cost function. In contrast, we identify the cost shock component as the di�erence between

log marginal revenue and log of the deterministic component of the marginal cost. The economic

logic behind the above result is as follows: the logit model predicts that �rms with larger market

shares have higher monopoly power. It then follows that a �rm with high price and small market

share does not have much monopoly power, and thus, its marginal cost should be close to its

price. Then, we can infer that it has high marginal cost, and thus, a high cost shock component.

Next, we discuss how to separate the observed and unobserved cost components, , i.e., xjm

and υjm in the estimated function ϕ̂ (xjm, υjm). We can either assume that potential instruments

for them, i.e. input prices wjm, and observed characteristics of rival �rms, are valid, or adopt

the procedure of instrument construction discussed in Subection 3.2.

After estimation, we can analyze properties of the cost shock in various ways. For example,

e�ciency of a �rm can be obtained by decomposing the cost shock as follows:

υjm = −ζjm + ηjm
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where ζjm and ηjm are assumed to be independent and ζjm is speci�ed to be half normally

distributed, and ηjm to be mean zero normal. We can make additional decompositions as below

as well

vjm = ωj + χm + ujm + ηjm

where ωj is the �rm speci�c and χm is the market speci�c �xed e�ect, if we de�ne the market as

time. For more details on the estimation of �rm speci�c �xed e�ects, see Greene (2005), Wang

and Ho (2010) and others.

3.6 Estimation using translog cost function.

We next apply our methodology to the translog cost function while still assuming logit demand.

The translog cost function is speci�ed as follows:

lnC∗jm = γ0 + γqlnqjm +
1

2
γqq (lnqjm)2 +

K∑
k=1

γklnwkjm

+
1

2

K∑
k=1

K∑
k′=1

γkk′ lnwkjmlnwk′jm +

K∑
k=1

γkqlnwqlnqjm + xjmγx + υjm. (55)

We impose the following restrictions on the cost function parameters so that the cost function

has homogeneity of degree one in input prices:

K∑
k=1

γk = 1,

K∑
k=1

γkk′ = 0,

K∑
k′=1

γkk′ = 0,

K∑
k=1

γkq = 0.

Then, taking the derivative of the log cost function with respect to log output, we obtain:

∂lnC∗ (qjm,wjm,xjm, υjm;θc)

∂lnqjm

=
qjmMC∗ (qjm,wjm,xjm, υjm;θc)

C∗jm
= γq + γqqlnqjm +

K∑
k=1

γkqlnwk. (56)

Substituting Equation (56) into Equation (48), we obtain

Cjm = C∗jm + ucjm =
qjm

γq + γqqlnqjm +
∑K

k=1 γkqlnwk
MRj (pm, sm,Xm;θd0) + ucjm. (57)

Thus, in the �rst step, we can estimate parameters γq, γqq, γkq without using any instruments,

and θd0 as explained above. Identi�cation of those parameters on the RHS allows us to identify
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the true cost C∗jm as well. The remaining parameters γk and γkk′ , k = 1, . . . ,K, k′ = 1, . . . ,K ′

can be identi�ed from Shephard's Lemma as follows:

wkjmLkjm
C∗jm

=
∂lnC∗ (qjm,wjm,xjm, υjm;θc)

∂lnwkjm
= γk +

K∑
k′=1

γkk′ lnwk′jm + γkqlnqjm.

Finally, the intercept term γ0 can be identi�ed from Equation (55), and

γ0 = lnC∗jm − γqlnqjm −
1

2
γqq (lnqjm)2 −

K∑
k=1

γklnwkjm

−1

2

K∑
k=1

K∑
k′=1

γkk′ lnwkjmlnwk′jm −
K∑
k=1

γkqlnwqlnqjm − E [xjmγx + υjm] . (58)

where C∗jm and the parameters on the RHS are identi�ed and we set E [υjm] to be zero.

This approach is related to Kumbhakar et al. (2012), who estimate markups using the output

elasticity of translog cost function. They start with the assumption that the markup is strictly

positive, that is:

pjm > MCjm ≡
∂Cjm
∂qjm

,

which implies
pjmqjm
Cjm

>
∂lnCjm
∂lnqjm

,

and thus,

pjmqjm
Cjm

=
∂lnCjm
∂lnqjm

+ ujm + υjm = γq + γqqlnqjm +

K∑
k=1

γkqlnwkjm + ujm + vjm, ujm ≥ 0.

In our study, we additionally focus on the endogeneity of output with respect to the shock

ujm + vjm. That is, if �rms tend to reduce output to increase markup, then the shock and the

output are negatively correlated, resulting in a downward bias of the estimate of γq and thus,

the residual ujm + vjm could misrepresent the true markup. In our approach, we deal with it by

using marginal revenue which we derive from the demand side.

While we can deal with the endogeneity issue of both demand and supply side without

using instruments, we impose some functional form assumptions on both the demand and cost

functions. These functions can be fairly �exible, except that there are variables in the market

share function but not in the cost function.
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4 Monte-Carlo experiments

This section presents results from a series of Monte-Carlo experiments that highlight the �nite

sample performance of our estimator.

4.1 BLP demand and Cobb-Douglas Technology

We �rst design the Monte-Carlo setup to focus on the issue of endogenous price in the demand

function and endogenous output in the cost function. To generate samples, we use the following

random coe�cients logit demand model:

sj (pm,Xm, ξm;θd) =

�
α

�
β

exp (xjmβ − pjmα+ ξjm)∑Jm
k=0 exp (xkmβ − pkmα+ ξkm)

dFβ (β;θβ) dFα (α;θα) , (59)

where xjm is the 1×K vector of observed product characteristics. We set the number of product

characteristics K to be 1. We assume that each market has four �rms, each producing one

product (e.g., Jm = J = 4). Hence consumers in each market have a choice of j = 1, . . . , 4

di�erentiated products or not purchasing any of them (j = 0).

On the supply-side, we assume �rms compete on prices a la di�erentiated products Bertrand

competition, use labor and capital inputs in production and have a Cobb-Douglas production

function. Given output, input prices w = [w, r]′ (w is the wage and r is the rental rate of capital),

total cost and marginal cost functions are speci�ed as in Equations (11) and (12), respectively.

Notice that the cost function is homogeneous of degree one in input prices.

To create our Monte-Carlo samples, we generate wage, rental rate, cost shock, market size

Qm, and observable product characteristics xjm as follows:

ln (wjm) ∼ i.i.d.TN (µw, σw) , e.g., ln (wjm) = µw + σw%wm, %wm ∼ i.i.d.TN (0, 1) .

ln (rjm) ∼ i.i.d.TN (µr, σr) , e.g., ln (rjm) = µr + σr%rm, %rm ∼ i.i.d.TN (0, 1) .

Qm ∼ i.i.d.U (QL, QH) .

xjm ∼ i.i.d.TN (µx, σx) , e.g., xjm = µx + σx%xjm, %xjm ∼ i.i.d.TN (0, 1) .

TN (0, 1) is the truncated standard normal distribution, where we truncate both upper and

lower 0.82 percentiles. U (QL, QH) is the uniform distribution with lower bound of QL and

upper bound of QH .
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We also specify the unobserved characteristics and the cost shock so as to allow for correlation

between ξjm and input prices, the cost shock, market size and the observed characteristics of the

products other than j in market m denoted by xojm ≡ (1/3)
∑

l 6=j %xlm. Speci�cally, we set:

ξjm = δ0ξ + δ1ξ%ξjm + δw%wm + δr%rm + δυ%υjm

+δQΦ−1
(
δ + (1.0− 2δ)

Qm −QL
QH −QL

)
+ δx%xjm + δxoxojm,

υjm = δ0υ − δ1υ%υjm − δw%wm − δr%rm − δξ%ξjm

−δQΦ−1
(
δ + (1.0− 2δ)

Qm −QL
QH −QL

)
− δx%xjm − δxoxojm,

where %ξjm and %υjm are the idiosyncratic components of the demand and supply shocks. We

assume that %ξ ∼ i.i.d.TN (0, 1) and %υ ∼ i.i.d.TN (0, 1).

For transforming the uniformly distributed market size shock to truncated normal distribu-

tion, we use small positive δ = 0.025 for truncation. We truncate the distribution of the shocks

to ensure that the true cost function is positive and bounded given the parameter values of the

cost function we set (which will be discussed later).

By construction, input prices and the observed product characteristics of own product or

products of other �rms cannot be used as instruments since they are designed to be correlated

with the cost shock. Furthermore, the cost shock is set to be correlated with the demand shock,

and thus, demand side variables such as prices and market shares cannot be used as instruments

either. We assume competitive markets for inputs and thus, they are exogenous to the �rm. In

other words, we do not consider monopsony or oligopolistic behavior of �rms in the input markets.

In sum, we exclude the possibility of any conventional instruments in either the demand or the

supply equation.

To solve for the equilibrium price, quantity, and market share for each oligopoly �rm, we use

the golden section search on price.8

We estimate the parameters using GLS, where, in this case, we �rst set W = I, and then,

given the residual estimated from the �rst step, derive W = Σ̂
−1
, where Σ̂ = V arcov (ûjm),

m = 1, . . . ,M , j = 1, . . . , Jm.

Table 1 summarizes the parameter setup of the Monte-Carlo experiments.

In Table 2, we present the Monte-Carlo results of the direct estimator that estimates the

8The algorithm for �nding equilibria in oligopoly markets is available upon request.
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cost function parameters under the assumption that the own observed characteristics are un-

correlated with the own unobserved product characteristics and the cost shock. We report the

average, standard deviation, and square root of the mean squared errors (RMSE) of the param-

eter estimates of the BLP market share function and the Cobb-Douglas cost function from 100

Monte-Carlo simulation/estimation replications. As we can see, the averages of the parameter es-

timates are close to the true values, even for the cases with sample size of only 200. Furthermore,

the standard errors and RMSEs of the estimates decrease with the sample size, demonstrating

the validity of our approach.

In Table 3, we present the results where we also allow the observed product characteristics to

be correlated with the unobserved product characteristics and the cost shock. In particular, we

set corr (xjm, ξjm) = 0.0833 > 0 and corr (xjm, υjm) = −0.0833 < 0. Then, we can see that the

parameter estimates µ̃β and η̂c, which are the coe�cients of the observed product characteristics

are both biased, indicating the bias due to the correlation mentioned above. Nonetheless, we can

see that all the other parameter estimates are close to the true values, and the standard errors

and the RMSEs decrease with sample size.

4.2 Logit Demand and Cobb-Douglas Technology

We then present results from a series of Monte-Carlo experiments that highlight the �nite sample

performance of our estimator that consistently estimates the coe�cient on the observed product

characteristics in the demand equation even if the instruments are invalid. To generate samples,

we use the following random coe�cients logit demand model:

sj (pm,Xm, ξm;θd) =
exp (xjmβ − pjmα+ ξjm)∑Jm
k=0 exp (xkmβ − pkmα+ ξkm)

, j = 1, . . . , 4 (60)

s0 (pm,Xm, ξm;θd) =
1∑Jm

k=0 exp (xkmβ − pkmα+ ξkm)
(61)

where pm,Xm, ξm are de�ned the same as before.

We create our Monte-Carlo samples, following Equations (20), (21), (22) and (23). We assume

that

%ξ1m ∼ σξ1 × i.i.d.TN (0, 1) , %ξ2jm ∼ σξ2 × i.i.d.TN (0, 1) , %ξojm ∼ σξo × i.i.d.TN (0, 1)
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%w1jm ∼ σw1 × i.i.d.TN (0, 1) , %wojm ∼ σwo × i.i.d.TN (0, 1)

%r1jm ∼ σr1 × i.i.d.TN (0, 1) , %rojm ∼ σro × i.i.d.TN (0, 1)

%xojm ∼ σxo × i.i.d.TN (0, 1) , %υ ∼ συ × i.i.d.TN (0, 1)

Qm ∼ i.i.d.U (QL, QH) .

where TN (0, 1) is the truncated standard normal distribution, used as before. For the supply

shock, we assume that %υ ∼ i.i.d.TN (0, 1).

Table 4 summarizes the parameter setup of the Monte-Carlo experiments. The setup assumes

that wage, rental rate and observed product characteristics are correlated with the unobserved

product characteristics. Furthermore, by including the market level �xed e�ects in the demand

shock, the observed characteristics of rival �rms are also correlated with the demand shock.

Hence, on the demand side all conventional instruments are invalid. In order to focus on the

endogeneity on the demand side, we assume that the wage and rental rate, and observed product

characteristics are uncorrelated with the cost shock.

In Table 5, we present the Monte-Carlo results of the direct estimator that estimates the

parameters of the demand and cost functions. We can see that on average, the parameter

estimates are close to the true ones even when sample size is as small as 200. The results

indicate that the IV procedure discussed in Subsection 3.2 successfully removes the bias in

the β coe�cients. With the exception of the coe�cient estimate β on the observed product

characteristics, the standard errors and the root mean square errors decrease with sample size.

The standard error of β estimates are higher than of the other parameter estimates, and decrease

slower, and increases in with sample size from 400 to 800. There are three sources of variation for

the high standard errors of the β estimate. First component is the variation of the IV estimation.

The second one is the variation from the estimation of the price coe�cient. The third one is the

variation coming from the construction of the instrument.

In Table 6, we present the simple OLS results for comparison. That is, we estimate the

following equation:

log (sjm)− log (s0m) = −pjmα+ xjmβ + ξjm,

where ξjm is the error term. Then, we estimate the log cost function in Equation (17), where

the cost shock υjm is the error term. That is, we follow the convention and assume away the

measurement error. We can see that the OLS estimated price coe�cient α̂ is biased downwards,
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and the coe�cient on the observed product characteristics, β̂, biased upwards. This is due to

the positive correlation between the price and the demand shock on one hand, and between the

observed product characteristics and the demand shock on the other in the Monte-Carlo setup.

Furthermore, the Cobb-Douglas production function coe�cients αc and βc are estimated with an

upward bias. This is due to the downward bias of the output coe�cient, which is the estimate of

1/ (αc + βc). The source of this bias is the negative correlation between the cost shock and the

output, chosen to maximize pro�ts. Since output is also a function of x, the bias in the output

coe�cient also leads to the bias of η̂, the coe�cient on the observed product characteristics xjm.

Overall, the bias of the coe�cients is due to the correlation between price, observed product

characteristics and the demand shock, and the correlation between output and the cost shock.

These are well known sources of bias that arise when we estimate the demand and cost functions

using OLS.

Finally, in Table 7, we present the results where we use the conventional instruments, which

are wage, rental rate and the average observed product characteristics of rival �rms. Note that

since all the instruments are speci�ed to be correlated with the demand shock ξjm, they are

invalid. We can con�rm this by observing that all the demand parameters are estimated to be

quite di�erent from the true values. On the other hand, the Cobb-Douglas production function

parameters αc and βc tend to move closer to the true values as sample size increases. This

con�rms the validity of the instruments for cost function estimation since they are not correlated

with the cost shocks. On the other hand, we see a large bias in the η estimate.

After comparing the various Monte-Carlo results, we conclude that our estimation methodol-

ogy based on the instrument-free identi�cation approach consistently estimates the price and out-

put coe�cients, and the IV methods we propose tend to remove bias of the coe�cient estimates

of the observed product characteristics in the demand function, even though the instruments are

invalid.

5 Conclusion

We have developed a new methodology for estimating the cost parameters of a di�erentiated

products oligopoly model. The method uses data on prices, market shares, and product char-

acteristics, and some data on �rms' costs. Using these data, our approach identi�es demand

parameters in the presence of price endogeneity as well as possible correlation between the ob-

served product characteristics and the demand shock (in the logit case), and the cost function in
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the presence of output endogeneity without any valid instruments. Moreover, our method can

accommodate measurement error.

References

Amsler, C., A. Prokhorov, and P. Schmidt (2017): �Endogenous environmental variables

in stochastic frontier models,� Journal of Econometrics, 199, 131�140.

Berry, S. T. (1994): �Estimating Discrete-Choice Models of Product Di�erentiation,� RAND

Journal of Economics, 25, 242�262.

Berry, S. T., J. Levinsohn, and A. Pakes (1995): �Automobile Prices in Market Equilib-

rium,� Econometrica, 63, 841�890.

Byrne, D. P., S. Imai, N. Jain, and V. Sarafides (2022): �Instrument-free Identi�cation

and Estimation of Di�erentiated Products Models without Instruments Using Cost Data,�

Journal of Econometrics, 228(2), 278�301.

Diewert, E. W. and K. J. Fox (2008): �On the Estimation of Returns to Scale, Technical

Progress and Monopolistic Markups,� Journal of Econometrics, 145, 174�193.

Gandhi, A., S. Navarro, and D. Rivers (2020): �On the Identi�cation of Gross Output

Production Functions,� Journal of Political Economy, 128, 2973�3016.

Genesove, D. and W. P. Mullin (1998): �Testing Static Oligopoly Models: Conduct and

Cost in the Sugar Industry, 1890-1914,� RAND Journal of Economics, 29, 355�377.

Greene, W. (2005): �Reconsidering heterogeneity in panel data estimators of the stochastic

frontier model,� Journal of Econometrics, 126, 269�303.

Kumbhakar, S. C. (2001): �Estimation of pro�t functions when pro�t is not maximum,�

American Journal of Agricultural Economics, 83, 1�19.

Kumbhakar, S. C., S. Baardsen, and G. Lien (2012): �A New Method for Estimating Mar-

ket Power with an Application to Norwegian Sawmilling,� Review of Industrial Organization,

40(2), 109�129.

Kutlu, L., K. C. Tran, and M. G. Tsionas (2019): �A time-varying true individual e�ects

model with endogenous regressors,� Journal of Econometrics, 211, 539�559.

39



Nevo, A. (2001): �Measuring Market Power in the Ready-to-Eat Cereal Industry,� Economet-

rica, 69, 307�342.

Petrin, A. and B. Seo (2016): �Identi�cation and Estimation of Discrete Choice Demand

Models when Observed and Unobserved Characteristics are Correlated,� University of Min-

nesota Working Paper.

Wang, C. J. (2003): �Productivity and Economies of Scale in the Production of Bank Service

Value Added,� FRB Boston Working Papers Series, 03-7.

Wang, H.-J. and C.-W. Ho (2010): �Estimating Fixed-E�ect Panel Stochastic Frontier Models

by Model Transformation,� Journal of Econometrics, 157, 286�296.

40



6 Tables and Figures

Table 1: Monte Carlo Parameter Values

Parameter Description Value

(a) Demand-side parameters
µα Price coef. mean 2.0
σα Price coef. std. dev 0.5
µβ Product characteristic coef. mean 1.0
σβ Product characteristics coef. std. dev. 0.2
µX Product characteristic mean 3.0
σX Product characteristic std. dev. 1.0
δ0 Unobserved product quality mean 2.0
δξ Unobserved product quality std. dev. 0.5
QL Lower bound on market size 5.0
QH Upper bound on market size 10.0

(b) Supply-side parameters
η coef. on observed product characteristics 0.2
µw log wage mean 1.0
σw log wage std. dev. 0.2
µr log rental rate mean 1.0
σr Rental rate std. dev. 0.2
µv log cost shock mean -5.0
σv log cost shock std. dev. 0.1
J Number of �rms in each market 4
B Scaling factor for output in the cost function 1.0

(c) Cost measurement error
σν+ς Measurement std. dev. 0.4

(d) Correlation parameters with unobservables ξjm and vjm
δx ξjm and xjm correlation 0
δxo ξjm and X−jm correlation 0.0833
δw ξjm and wm correlation 0.0833
δr ξjm and rm correlation 0.0833
δv ξjm and vjm correlation −0.0833
δQ ξjm and Qm correlation 0.0833
ζQ vjm and Qm correlation 0.0833

(e) Cobb-Douglas Production Function Parameters
αc Labor coef. in Cobb-Douglas prod. fun. 0.5
βc Capital coef. in Cobb-Douglas prod. fun. 0.3
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Table 2: Parameter estimates based on Shephard's Lemma.
(xjm uncorrelated with ξjm and υjm.)

(a) Demand side parameters
µ̂α σ̂α

Markets Sample Size Mean Std. Dev. RMSE Mean Std. Dev. RMSE

50 200 2.033 0.2075 0.2091 0.4972 0.1232 0.1226
100 400 2.000 0.1395 0.1388 0.5037 0.0947 0.0943
200 800 1.993 0.1105 0.1102 0.4865 0.0575 0.0588
400 1600 2.001 0.0711 0.0715 0.4995 0.0453 0.0451

True Value 2.0 0.5

(a) Demand side parameters
µ̂β σ̂β

Markets Sample Size Mean Std. Dev. RMSE Mean Std. Dev. RMSE

50 200 1.013 0.1457 0.1455 0.4100 0.0845 0.0846
100 400 0.9944 0.0818 0.0816 0.4025 0.0514 0.0512
200 800 1.000 0.0732 0.728 0.4033 0.0384 0.0384
400 1600 1.004 0.0480 0.0479 0.4041 0.0283 0.0284

True Value 1.0 0.4

(b) Production function parameters

α̂c β̂c

Markets Sample Size Mean Std. Dev. RMSE Mean Std. Dev. RMSE

50 200 0.5051 0.0441 0.0442 0.3041 0.0280 0.0282
100 400 0.5058 0.0295 0.0299 0.3023 0.0178 0.0179
200 800 0.4992 0.0204 0.0203 0.2995 0.0145 0.0145
400 1600 0.4998 0.0141 0.0141 0.3001 0.0102 0.0101

True Value 0.5 0.3

η̂

Markets Sample Size Mean Std. Dev. RMSE Obj. fct

50 200 0.1990 0.0094 0.0094 1.993
100 400 0.2012 0.0067 0.0068 1.997
200 800 0.1996 0.0042 0.0042 1.998
400 1600 0.1995 0.0048 0.0040 1.999

True Value 0.2

Notes: Monte-carlo experiment results based on calibration described in panels (a)-(d) of Table 1. Fea-
sible GLS procedure is used.
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Table 3: Parameter estimates based on Shephard's Lemma
(Product characteristic xjm and unobserved product quality ξjm,

cost shock υjm are correlated)

(a) Demand side parameters
µ̂α σ̂α

Markets Sample Size Mean Std. Dev. RMSE Mean Std. Dev. RMSE

50 200 2.038 0.1939 0.1967 0.5007 0.1121 0.1115
100 400 1.999 0.1391 0.1384 0.5005 0.0734 0.0730
200 800 2.000 0.1095 0.1090 0.4964 0.0559 0.0558
400 1600 2.006 0.0698 0.0700 0.4981 0.0367 0.0365

True Value 2.0 0.5

(a) Demand side parameters
µ̂β σ̂β

Markets Sample Size Mean Std. Dev. RMSE Mean Std. Dev. RMSE

50 200 1.192 0.1121 0.2221 0.4185 0.0600 0.0625
100 400 1.173 0.0787 0.1900 0.4036 0.0437 0.0436
200 800 1.175 0.0651 0.1866 0.4013 0.0322 0.0320
400 1600 1.179 0.0421 0.1835 0.4052 0.0221 0.0226

True Value 1.0 0.4

(b) Production function parameters

α̂c β̂c

Markets Sample Size Mean Std. Dev. RMSE Mean Std. Dev. RMSE

50 200 0.5025 0.0347 0.0346 0.3023 0.0220 0.0220
100 400 0.5034 0.0230 0.0231 0.3007 0.0130 0.0129
200 800 0.5011 0.0189 0.0189 0.3006 0.0135 0.0134
400 1600 0.4992 0.0115 0.0115 0.2998 0.0081 0.0081

True Value 0.5 0.3

η̂
Markets Sample Size Mean Std. Dev. RMSE

50 200 0.1613 0.0141 0.0412 1.994
100 400 0.1642 0.0096 0.0370 1.997
200 800 0.1628 0.0073 0.0379 1.999
400 1600 0.1619 0.0045 0.0384 1.999

True Value 0.2

Notes: Monte-carlo experiment results based on calibration described in panels (a)-(d) of Table 1.
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Table 4: Monte Carlo Parameter Values

Parameter Description Value

(a) Demand-side parameters
α Price coef. mean 2.0
β Product characteristic coef. mean 1.0
µX Product characteristic mean 0.4
σXo Product characteristic std. dev. 0.3
δ0 Unobserved product quality mean 4.0

Unobserved product quality std. dev.
σξ1 0.2
σξ2 0.2
σxio 0.3
QL Lower bound on market size 5.0
QH Upper bound on market size 10.0

(b) Supply-side parameters
η coef. on observed product characteristics 0.2
µw wage mean 1.0

wage std. dev.
σw1 0.2
σw2 0.2
µw rental rate mean 1.0

rental rate std. dev.
σr1 0.2
σr2 0.2
µv log cost shock mean -5.0
σv log cost shock std. dev. 0.1
J Number of �rms in each market 4
B Scaling factor for output in the cost function 1.0

(c) Cost measurement error
σν+ς Measurement std. dev. 0.4

(d) Covariance parameters
δxw xjm and %w1jm 0.4
δxr xjm and %r1jm 0.4
δxξ xjm and %ξjm 0.4
δwξ wjm and %ξjm 0.4
δrξ rjm and %ξjm 0.4
δv ξjm and vjm correlation 0.0
δQ ξjm and Qm correlation 0.0
ζQ vjm and Qm correlation 0.0

(e) Cobb-Douglas Production Function Parameters
αc Labor coef. in Cobb-Douglas prod. fun. 0.5
βc Capital coef. in Cobb-Douglas prod. fun. 0.3
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Table 5: Parameter estimates using cost data
(Logit demand. Product characteristic xjm and unobserved product quality ξjm are correlated;

instruments (wjm, rjm, average of x−jm) are correlated with ξjm
xjm, instruments and cost shock υjm are uncorrelated)

(a) Demand side parameters

α̂ β̂

Markets Sample Size Mean Std. Dev. RMSE Mean Std. Dev. RMSE

50 200 2.0004 0.0447 0.0444 0.9413 0.1676 0.1768
100 400 1.9950 0.0364 0.0366 0.9735 0.1307 0.1328
200 800 1.9963 0.0194 0.0197 0.9632 0.1329 0.1372
400 1600 2.0023 0.0157 0.0158 0.9646 0.1044 0.1098

True Value 2.0 1.0

(b) Production function parameters

α̂c β̂c

Markets Sample Size Mean Std. Dev. RMSE Mean Std. Dev. RMSE

50 200 0.4991 0.0088 0.0088 0.3001 0.0089 0.0089
100 400 0.5010 0.0064 0.0064 0.3000 0.0061 0.0060
200 800 0.5008 0.0037 0.0038 0.3002 0.0043 0.0043
400 1600 0.4998 0.0029 0.0029 0.2996 0.0034 0.0034

True Value 0.5 0.3

η̂
Markets Sample Size Mean Std. Dev. RMSE

50 200 0.2059 0.1058 0.1055
100 400 0.1943 0.0713 0.0712
200 800 0.1969 0.0468 0.0467
400 1600 0.2032 0.0396 0.0395

True Value 0.2

Notes: Monte-carlo experiment results based on calibration described in panels (a)-(d) of Table 1.
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Table 6: OLS estimation under endogeneity
(Logit demand. Product characteristic xjm and unobserved product quality ξjm are correlated;

instruments (wjm, rjm, average of x−jm) are correlated with ξjm
xjm, instruments and cost shock υjm are uncorrelated)

(a) Demand side parameters

α̂ β̂

Markets Sample Size Mean Std. Dev. RMSE Mean Std. Dev. RMSE

50 200 1.8198 0.0474 0.1862 1.1290 0.0848 0.1541
100 400 1.8197 0.0384 0.1843 1.1350 0.0615 0.1483
200 800 1.8225 0.0244 0.1792 1.1441 0.0431 0.1503
400 1600 1.8240 0.0160 0.1767 1.1465 0.0290 0.1493

True Value 2.0 1.0

(b) Production function parameters

α̂c β̂c

Markets Sample Size Mean Std. Dev. RMSE Mean Std. Dev. RMSE

50 200 0.6768 0.0764 0.1925 0.6275 0.0771 0.3365
100 400 0.6792 0.0549 0.1874 0.6246 0.0531 0.3289
200 800 0.6815 0.0366 0.1851 0.6212 0.0368 0.3233
400 1600 0.6820 0.0255 0.1838 0.6203 0.0248 0.3212

True Value 0.5 0.3

η̂
Markets Sample Size Mean Std. Dev. RMSE

50 200 0.1155 0.0396 0.0932
100 400 0.1240 0.0298 0.0815
200 800 0.1225 0.0220 0.0805
400 1600 0.1259 0.0157 0.0758

True Value 0.2

Notes: Monte-carlo experiment results based on calibration described in panels (a)-(d) of Table 1.
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Table 7: IV estimation
(Logit demand. Product characteristic xjm and unobserved product quality ξjm are correlated;

instruments (wjm, rjm, average of x−jm) are correlated with ξjm
xjm, instruments and cost shock υjm are uncorrelated)

(a) Demand side parameters

α̂ β̂

Markets Sample Size Mean Std. Dev. RMSE Mean Std. Dev. RMSE

50 200 1.5505 0.9095 1.1047 1.1802 1.8331 1.8328
100 400 1.9407 0.9981 0.9948 1.9853 2.1384 2.3447
200 800 1.8045 1.0073 1.0211 1.7207 2.1221 2.2311
400 1600 2.2570 2.1861 2.1903 2.6725 4.2931 4.5873

True Value 2.0 1.0

(b) Production function parameters

α̂c β̂c

Markets Sample Size Mean Std. Dev. RMSE Mean Std. Dev. RMSE

50 200 0.6083 0.1926 0.2201 0.5253 0.2909 0.3668
100 400 0.6164 0.1590 0.1965 0.4804 0.1991 0.2679
200 800 0.5811 0.1509 0.1706 0.4261 0.1876 0.2253
400 1600 0.5355 0.0604 0.0698 0.3504 0.1140 0.1242

True Value 0.5 0.3

η̂
Markets Sample Size Mean Std. Dev. RMSE

50 200 -0.2863 0.5322 0.7190
100 400 -0.2269 0.4555 0.6307
200 800 -0.1422 0.3854 0.5140
400 1600 0.0598 0.3731 0.3968

True Value 0.2

Notes: Monte-carlo experiment results based on calibration described in Table 4. Instruments used are
wage, rental rate and the mean of observed product characteristics of rival �rms.
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