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Abstract
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prices. Our structural estimates show that removing ownership network effects signifi-
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machine learning prediction of the auction format.
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1 Introduction
There is a long literature that argues ownership connections between firms facilitate coor-

dination among product market participants. For example, common owners may induce

coordination that helps firms reach a collusive arrangement by working as liaisons between

them. They may also induce unilateral firm altruism by affecting the objective function of

each firm. When a firm’s shareholders also own stakes in its rivals, the firm—while upholding

its fiduciary duty to shareholders—would aim to maximize the joint surplus of the firm and

its rivals.1 Both mechanisms suggest ownership networks weaken the competitive intensity

of an industry. However, econometrically identifying the effect is challenging. Reduced-form

approaches linking common ownership to prices are susceptible to interpretation issues de-

pending on the underlying price-setting model, and the approaches that estimate mark-ups

based on accounting or production functions are subject to data limitations on capital and

are sensitive to the estimates of function parameters.

We overcome this challenge by using coordinated bidding behavior as the measure of

anticompetitiveness. We then employ a combination of reduced-form analyses and structural

estimation of an auction model to study the effects of ownership connections on prices and

cost efficiency in multiple product markets. We use data on public procurement auctions

in Singapore to define product markets and information on registered shareholders for all

participating firms to construct ownership networks comprising common owners and common

owners’ owners of firms. Motivated by theoretical results based on first-price auctions, we

restrict our sample to the set of auctions in which the lowest bidders win, accounting for

approximately half of all procurement auctions.

Public procurement auctions serve as a useful setting to study the effects of ownership

networks on product market competition for four reasons. First, a market is well-defined as

an auction where bidders are competitors. Second, we observe a large number of auctions

tendered by the same procurer around the same time with ample intra-product-type variation

1See Bresnahan and Salop (1986) and Reynolds and Snapp (1986), for example.
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of ownership concentration. Specifically, different sets of firms participate in different tenders,

providing rich variation in ownership concentration across auctions. Third, our sample covers

various industries and includes both goods and services, complementing the recent empirical

evidence that studies specific industries such as airlines or ready-to-eat cereals (Azar et al.,

2018; Backus et al., 2020). Finally, we can also acquire the welfare implications of ownership

networks using structural econometric methods in auctions.

The primary measure of anticompetitiveness in our analyses is coordinated bidding be-

havior. This approach directly addresses concerns raised by Hemphill and Kahan (2020), who

argue that mechanisms relating common ownership to coordination between firms have not

been empirically shown. Whereas collusion is rarely detected, our sample shows a prevalence

of coordinated bidding behavior, allowing us to use it for our empirical analyses.

We first document prevalent identical bidding among firms in our sample—firms par-

ticipating in the same auction often submit exactly the same bid. In theory, competitive

bids have to differ across firms if they have any cost differences. Even if mimicking a rival’s

bid happens to be an optimal bidding strategy in a competitive setting, we should rarely

observe this strategy empirically, as perfectly predicting a rival’s bids based only on pub-

lic information seems technically infeasible in our setting with sealed bids. Instead, firms

that submit identical bids are more likely to share information about their bids (Ghosh and

Morita, 2017). Therefore, we interpret identical bidding as an indicator of the potential

presence of coordination, which is consistent with a view shared among practitioners and

academics.2 In particular, identical bidding facilitates the egalitarian allocation of contracts

to coordinating firms, making their agreement sustainable (McAfee and McMillan, 1992).

We find that (1) competing firms with common owners or common owners’ owners are

more likely to submit identical bids, and (2) the number of identical bids submitted to the

2For example, the OECD Competition Committee recommends governments “avoid splitting contracts be-
tween suppliers with identical bids and investigate the reasons for the identical bids and, if necessary,
consider re-issuing the invitation to tender or award the contract to one supplier only”(OECD, 2009).
Moreover, Section 2.3 discusses theoretical foundations behind identical bidding as an effective coordina-
tion mechanism in detail.
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auction is positively correlated with the normalized contract amount paid by the government.

The latter finding is consistent with the anticompetitive aspect of identical bidding and the

former suggests the anticompetitive effects of ownership connections. The relations between

common owners and common owners’ owners with identical bidding persist in auction-level

analyses even when accounting for bid rounding and confounding common stakeholder rela-

tionships like common corporate secretaries and directors. In pair-level analyses, we find that

firms sharing common owners are around 7 to 13 percentage points more likely to submit

identical bids in auctions they participate in together, and those sharing common owners’

owners are also more likely to submit identical bids in auctions they participate in together.

To quantify how much welfare is lost relative to a scenario where ownership networks do

not affect firms’ identical bidding behavior, we use a structural estimation to recover the link

between the firm’s cost and bid. We overcome two empirical challenges: unobserved auction

heterogeneity and asymmetric bidders. In particular, our econometric framework allows us

to pool our samples with auction heterogeneity that is unobservable for econometricians.3

The framework is appropriate for our setting because our data do not include project sizes—a

source of heterogeneity in public procurement auctions. In addition, it accommodates asym-

metric bidders and allows us to consider two different types of bidders—so an identical bid

can be distributed differently from a competitive bid. Our simulation results suggest remov-

ing ownership network effects on identical bidding reduces spending by the government by

4.2 to 6.0% and the winner’s cost by 3.7 to 4.9% of the winning bid.

However, one caveat is that our sample could contain multi-attribute auctions in which

the lowest bidders win by chance, despite our focus on first-price auctions. To address this

concern, we compute the propensity score of each sample auction being a first-price auction

through a machine learning binary classifier.4 Our main reduced-form results persist when

we weigh observations by the propensity score for being a first-price auction. Moreover,

3See Li et al. (2000) and Krasnokutskaya (2011) for the framework.
4In Section A.2.3 of the appendix, we provide conditions under which our machine learning model predicts
auction format with reasonable accuracy. Our machine learning model shows performance metrics consistent
with the conditions under which it reasonably predicts auction format.
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our baseline simulation results persist when we use only auctions that our machine learning

model predicts as first-price auctions. Overall, our results are robust to sample weighting

based on our machine learning prediction of the auction format.

For policymakers concerned about competition, our findings suggest regulators should

pay attention to ownership connections of various degrees as both common ownership and

higher-order connections like common owners’ owners affect product market competition. We

believe these findings are relevant for other countries because (1) Singapore’s procurement

practices mirror those in other developed countries like the United States and Germany, and

(2) like in Singapore, other wealthy economies’ corporate ownership structures feature similar

ownership characteristics (La Porta et al., 1999). In particular, the ownership structures in

Singapore appear similar to those in Europe but less similar to those in the United States

(Kirchmaier and Grant, 2005).

We mainly contribute to the research on the effect of common ownership on product

market competition. For example, Azar et al. (2018) provide reduced-form empirical evidence

for the anticompetitive effect of common ownership on airline prices. In addition, Gilje

et al. (2020) argue that index inclusion or the mergers of financial institutions can reduce

managerial incentives to internalize externalities across portfolio firms. However, Lewellen

and Lowry (2020) question the validity of the extant empirical identification and argue

other factors, such as differential responses of firms to the financial crisis, confound their

analyses. Our use of a structural approach is also related to Park and Seo (2019), who adopt

a structural estimate to evaluate the welfare impact of common ownership in airlines, and

Backus et al. (2020), who adopt a similar approach to study the effects of common ownership

in the ready-to-eat cereal industry. Our work is distinct from both in that we use public

procurement auctions that contain various products and services instead of a single industry.

We next contribute to the research which has documented the role of inter-firm connec-

tions in corporate governance. Engelberg et al. (2012) find that firms that borrow from

banks socially connected to them have lower interest rates, but it does not appear related
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to sweetheart deals, especially because subsequent firm performance improves following a

connected deal. Ishii and Xuan (2014) find that mergers with prior target-acquirer social

connections lead to more negative abnormal returns to the acquirer upon the merger an-

nouncement. Agarwal et al. (2019) show corporate directors of real estate companies visit

golf courses together more regularly after land sale announcements and that correlates with

lower winning bids and lower revenues to the government.5

Lastly, our paper highlights the relative benefit of using identical bidding in the empirical

analyses of anticompetitive activities in auctions. The prior literature on the data-driven

method of collusion detection in auctions shows the presence of bidding behavior inconsistent

with the competitive bidding benchmark using the set of bids across auctions. Harrington

(2005) reviews methods for detecting cartels and distinguishing collusion from competition.6

The extant approach is overall convenient for detecting bidding behavior that is inconsistent

with a competitive bidding benchmark in the set of auctions, but it is not useful for explaining

variation in the presence and absence of anticompetitive bidding behavior across auctions.

Because we can tell the presence and absence of identical bidding at the auction level,

we can dissociate auction characteristics that are potentially correlated with a predictor of

coordination in our empirical analyses.

5Moreover, Matvos and Ostrovsky (2008) and Harford et al. (2011) investigate the effects of ownership
networks on shareholder voting and merger decisions, documenting peer effects. Although some research
ascribes some of the peer effects to common ownership (He et al., 2019), other research has ascribed them
to proxy advisory influence (Iliev and Lowry, 2015; Heath et al., 2021). Even when ascribed to common
ownership, He and Huang (2017) argue that the voting behavior fosters product market competition. As
an alternative mechanism, Antón et al. (2020) theoretically show that common ownership may increase
product prices through reduced managerial incentives and provide empirical evidence supporting the model’s
predictions. However, Walker (2019) argues existing research linking common ownership to executive pay
design is flawed due to measurement and methodological issues.

6For example, Porter and Zona (1993) compare the estimates of the parameters that drive a bidder’s pricing
strategy across various subsets of bids. In the absence of phony bids, there should be no variation in the
estimates because seriously submitted bids are likely to be affected by bidder characteristics, such as the
distance from the procurement site, in a consistent way. Testing this hypothesis, they identify the presence
of bids that are not consistent with competitive ones. Chassang et al. (2019) examine the price elasticity
of the empirical probability of winning an auction—it must be bounded above by -1 at any bid in any
competitive equilibrium; otherwise, firms would find it profitable to increase their bids.
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2 Public Procurement Auctions in Singapore
Since 2015, almost every government agency in Singapore procures goods and services

through a one-stop, centralized online portal hosted by the Ministry of Finance called the

Government Electronic Business (GeBIZ). Different procurers operate independently on the

GeBIZ portal.

Any company (public or private and foreign or domestic) may register as a government

supplier subject to due-diligence requirements based on the line of business, a small regis-

tration fee, and a minimum net tangible asset value.7 In each auction, eligible companies

submit blind bids. After the solicitation period, bids are finalized, and the GeBIZ platform

reveals the winner and the bids submitted by each bidder. The winning bidder provides

the good or service to the government at the price it bids. Although almost all government

procurements are awarded, a handful is closed with no winners if no qualified bidders par-

ticipate. This scenario may occur if no bidders are present, if the procurer determines that

the number of bidders is insufficient, or if the procurer perceives that none of the bidders in

the auction have the capacity to serve the contract fully.

All public procurements are subject to the Government Procurement Act (GPA). In ad-

herence to the Agreement on Government Procurement from the World Trade Organization,

the GPA outlines the requirements for public procurements in Singapore that aim to foster

fair, competitive, transparent, and non-discriminatory conditions for government purchases

of goods, services, and construction works. In addition to the GPA, the Competition Act

provides further guidelines and regulations for procurement. Although the GPA does not

explicitly place any minimum number of bidders on an auction, Section 34 of the Compe-

tition Act prohibits anticompetitive agreements, decisions, and practices. The commission

provides a website outlining the basic anticompetitive practices, including price fixing, bid

rigging, market sharing, and production control.

These regulations are enforced by the Competition and Consumer Commission of Sin-

7See https://www.gebiz.gov.sg/docs/Appln_Guidelines_for_Gov_Supp_Reg.pdf as of June 2022.
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gapore (CCCS). The CCCS can commence investigations on its own initiative or if it is

provided with reasonable grounds of suspected anticompetitive conduct from other par-

ties through claims by procurers, whistleblowing, or leniency applications. Historically, the

CCCS has issued infringing decisions, imposed financial penalties, and jailed convicted in-

dividuals (Chan, 2016). The CCCS’s official website states price fixing, bid rigging, market

sharing, and production control as examples of anticompetitive behavior enforceable under

Section 34 of the Competition Act. Further, a CCCS-produced infographic explaining for

procurers lists similarities in bids as the top sign to watch out for bid rigging.

2.1 Award Criteria

While price is a key consideration in evaluation, government agencies may check if bids

have complied with all the requirements in the tender specifications, as well as evaluate

other factors such as quality of the goods and services, timeliness in delivery, reliability, and

after-sales support.8 Roughly half of all procurements are not awarded to the lowest quote.

Government agencies do not disclose to the public the evaluation criterion of each tender, but

eligible bidders of the tender know the criterion through the tender document in advance.9

Since our data do not come with an explicit indicator of auction format, we can at best

observe whether the lowest bidder wins a contract. The lowest bidder winning a contract is

necessary but not sufficient for a first-price auction. To predict the format of each auction,

we introduce an empirical methodology based on machine learning theory (Ghosh et al.,

2017) which uses a random forest classifier—a tree-based decision algorithm for which we

can account for a noisy measure (whether the lowest bidder wins an auction) of the outcome

of interest (auction format). Although the measure used for prediction is noisy, our random

8See https://www.gebiz.gov.sg/docs/Supplier_Guide_Summarised.pdf as of June 2022.
9In a Feburary 2022 email reply to our inquiry pertaining to the details of awarding criteria, GeBIZ shares
two statements. First, government agencies may consider price only or a combination of price and quality
criteria in their evaluation of tenders or quotations. Second, the evaluation criteria are indicated in the
individual tender or quotation documents, and may differ from tender to tender (or quotation to quotation)
due to the specific requirements. However, the tender or quotation documents are only accessible to GeBIZ
Trading Partners as they are intended for the sole purpose of allowing suppliers to prepare for their bids.
They are not observable by the public and are not part of our dataset.
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forest model shows performance metrics suggesting that it predicts auction format. The

variable importance plot shows the most important auction characteristic for the prediction

of auction format is the number of concurrent auctions. Details on the justification and

implementation of the random forest model are discussed in Section A.2.2 and A.2.3 of the

appendix. Figure A.2 in Section A.2.2 of the appendix reports the variable importance plot.

2.2 Bid Differences in Auctions

Identical bidding is prevalent in our sample. To show this fact, we plot the distribution of

the difference between two randomly sampled bids from the same auction. For each auction

in our sample, we randomly sample two bids. To make bids comparable across auctions, we

normalize each bid by the standard deviation of all bids in the auction. Then, we compute

the difference between the normalized bids.

[Figure 1 Around Here]

The histogram of randomly sampled differences between two bids in each auction shown in

Figure 1 documents a probability mass at zero. The density at zero is discontinuously larger

than the density immediately before and after zero, though the bid difference is smoothly

distributed everywhere else. If suppliers independently drew costs from smooth distribu-

tions, their cost differences would be smoothly distributed. If cost differences were smoothly

distributed, their bid differences would also be smoothly distributed, given that the standard

competitive equilibrium bidding strategy suggests their bids are continuous in their costs. In

this respect, our finding is inconsistent with a competitive bidding outcome with smoothly

distributed costs. The bottom panels of Figure 1 also present the corresponding distribution

for the subset of auctions for goods and services, showing similar consistent patterns across

both types of auctions. We also find this fact is not driven by scaling, auctions with few

bidders, or a particular auction type.10

10Section A.2.4 of the appendix shows the robustness of this result. See Figure A.3 documenting a similar
probability mass at zero.
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2.3 Bid Rigging as a Coordination Mechanism

To understand the rationale behind submitting identical bids, we briefly discuss the theoret-

ical basis for identical bidding as a coordination scheme in a first-price auction. Considering

a procurer normally awards a contract to one of the suppliers that submit the lowest bids

with equal likelihood, identical bidding is a straightforward way of achieving a fair allocation

of contract awards for a cartel. Because a cartel’s breakdown is often triggered by an internal

conflict over how to share the profits (Levenstein and Suslow, 2006), fairly dividing a cartel’s

spoils through identical bidding is effective for facilitating coordination. Identical bidding —

a form of bid rigging — has lower coordination costs compared to bid rotations. Under an

identical bidding scheme, only a cartel price must be set. With rotating bids, the allocation

of cartel profits must also be agreed upon (Comanor and Schankerman, 1976).

Another possible scheme is efficient collusion, where the most productive bidder always

wins the project to maximize cartel surplus. This scheme usually requires some side payment

mechanism for compensating other firms that agree to lose the auction. Without sophisti-

cated side payments, non-common shareholders of losing firms or any stakeholder whose

surplus is correlated with losing firms’ profits would have an incentive to cheat on a collu-

sive agreement as their surplus correlates with the revenue of losing firms.11 Can a cartel

facilitate side payments in Singapore?

We believe facilitating side payments is difficult in Singapore due to the risk of prosecution

by the government for two reasons.12 First, the Goods and Services Tax (GST) system in

Singapore deters side payments that are not reported to the government. Second, even

though side payments might be possible through non-recorded cash payments, mandatory

audits, severe penalties, and incentives for whistleblowing deter this practice.

11Lambert (2021) argues firm managers’ incentives tend to align with those of the bulk of their shareholders
in favor of their own-profit maximization. This is because most corporate managers are compensated in
part in their company’s stock.

12The 2018 Transparency International Corruption Perceptions Index ranks Singapore as one of the three
least corrupt countries in the world, and the World Economic Forum Global Competitiveness Report ranks
Singapore as the most competitive nation in the world, overtaking the United States. Also, see Section
A.2.1 of the appendix, where we extensively discuss the difficulty of side payments.
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McAfee and McMillan (1992) prove in a static setup that a cartel can do no better than

having its members submit identical bids in first-price auctions when side payments are

prohibited. Without side payments, only the winning firm can receive the cartel surplus.

Hence, cartel members are incentivized to misreport their costs to become the auction’s

winner, deterring the cartel from identifying the most productive firm. This means identical

bidding can be an optimal mechanism for a cartel in the absence of side payments. The caveat

is that McAfee and McMillan (1992) focus on all-inclusive cartels. The best mechanism for

partial cartels in the absence of side payments remains an open question, though the same

logic appears applicable for partial cartels. Incentive compatibility requires cartel bids to be

identical to give an equal chance of winning the auction even in the presence of non-cartel

bidders.

In addition, the egalitarian allocation of contracts is of particular importance in the

presence of a leniency system. Under the leniency system of Singapore, if certain conditions

are met, the first coalition member that self-reports its collusive activity to the CCCS will

be entitled to immunity from financial penalties or a reduction of up to 100% of the financial

penalties. Thus, the leniency system strengthens the incentive of an unsatisfied member

to deviate from collusive activity. On the other hand, identical bidding achieves the fair

allocation of contracts among members, discouraging an unsatisfied member from betraying

the other members.

3 Data & Methodology

3.1 Data and Sample Construction

Our data set comes from merging shareholder registries with GeBIZ procurement auctions.

It covers September 21, 2016 to April 2, 2018, starting slightly over a year from the GeBIZ

system’s initial rollout in 2015. The data contain more than S$16.5 billion (US$12 billion)

of expenditures.

We acquire the shareholder registry for all bidders from DC Frontiers Pte Ltd (Hand-
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shakes), one of four authorized information resellers licensed by the Accounting and Cor-

porate Regulatory Authority as of April 2018. The data include the names of registered

shareholders and officer information for every company registered in Singapore. Registra-

tion is required for all shareholders of private companies and for shareholders of public

companies with at least 1% ownership or current shareholders that paid in capital at the

company inception.13 Where possible, we also supplement the registered ownership data

with ownership of publicly-traded companies in Singapore as of March 31, 2018, based on

individual and institutional investor filings (e.g., 13-F in the United States), which include

both mandatory and voluntarily disclosed positions from Refinitiv.

We focus on first-price auctions as our analyses are based on a theory for first-price

auctions. Since our data do not come with an explicit indicator of auction format, we restrict

the sample to approximate the set of first-price auctions by only considering auctions in which

the lowest bidders win and with at least two bidders.

3.2 Defining Ownership Networks

To identify ownership networks, we first consider the symmetric non-weighted adjacency

matrix 𝐴, an 𝑛×𝑛 matrix where element 𝐴(𝑖, 𝑗) is whether entity 𝑖 is a registered shareholder

of entity 𝑗 , and 𝑛 is the number of unique entities comprising both individuals and businesses.

For simplicity, and because our data spans less than two years, we treat all connections as

static and do not consider new or expiring relationships.

We define the degree of connection between two firms 𝑖 and 𝑗 as the shortest path from

node 𝑖 to node 𝑗 . Then, the indicator for 𝑖 and 𝑗 to have a 𝑘 𝑡ℎ-degree connection, 𝑆𝑘 (𝑖, 𝑗),

is defined as

𝑆𝑘 (𝑖, 𝑗) = 1(inf{𝑥 ≥ 1|𝐴𝑥 (𝑖, 𝑗) > 0} = 𝑘),

13Importantly, companies without updated shareholder registries are unable to file annual returns,
which carries a fine. See https://www.acra.gov.sg/legislation/legislative-reform/companies-act-
reform/companies-amendment-act-2014/key-amendments-to-the-companies-act/electronic-register-of-
members and https://www.acra.gov.sg/announcements/file-your-annual-lodgments-on-time. In addition
to shareholders, the data include information on directors and other company officials through time,
permitting us to study the impact of different types of connections. We use these non-shareholder
connections for robustness tests.
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where 𝐴𝑥 (𝑖, 𝑗) is the element (𝑖, 𝑗) of 𝐴𝑥, which captures the number of ways 𝑖 reaches 𝑗

with a walk of 𝑥 steps.14 We investigate 𝑘 ∈ {2, 4}, corresponding to common owners and

common owners’ owners.15,16

3.3 Reduced-Form Methodology

We conduct two empirical analyses documenting the association between ownership net-

works and identical bidding. First, we estimate the effects of ownership connections among

firms participating in the same auction on identical bidding, controlling for auction-specific

characteristics and an auction-level measure of bid rounding. Second, we study the relation

between the number of ineffective bids (defined as the number of exactly identical bids) and

the awarded contract amount.

For each auction 𝑙 with a set of bidders 𝐵(𝑙), arbitrarily indexed from 𝑖 = 1, ..., 𝑁𝑙 , we

count the number of ineffective bids 𝑁 𝐼
𝑙
, defined as the number of duplicative bids in the

auction. In our setting, each bidder 𝑏 ∈ 𝐵(𝑙) can only submit one bid, so 𝑁 𝐼
𝑙
= 𝑁𝑙 − 𝑁𝐸𝑙 ,

where 𝑁𝐸
𝑙

stands for the number of effective bids, defined as the number of distinct bids in

auction 𝑙. Under one interpretation, the number of ineffective bids 𝑁 𝐼
𝑙

reflects the extent

14Section A.1 of the appendix shows some examples of the matrix representation of the ownership networks.
Figure A.1 in Section A.1 of the appendix visualizes the connection of each degree. For two arbitrary firms
𝑖 and 𝑗 , a first-degree connection means 𝑖 is a shareholder of 𝑗 , a second-degree connection means 𝑖 and 𝑗

have common shareholders, a third-degree connection means 𝑖 is owned by another firm whose shareholder
is also a shareholder of 𝑗 , and a fourth-degree connection means 𝑖 and 𝑗 have common shareholders’
shareholders.

15Theoretically, our network-based measure also permits chain connections. For example, a two-degree chain
captures a relationship between a firm and the subsidiary of its subsidiary. However, we refer to second-
degree connections as common ownership and fourth-degree connections as common owner’s ownership
because the presence of multi-degree chains is exceedingly rare among the participants of an auction.
Similarly, we also do not consider first-degree connections due to the lack of data.

16The common ownership profit weight might be an alternative meassure of firm altruism, but we consider
that it is uninformative about the occurrence of identical bidding. The weight represents the value to
the focal firm of a dollar of profit generated for another firm competing with the focal firm, which is the
main constituent of the “modified HHI” used in the empirical literature of product market competition.
Importantly, conventional computations of profit weights assume proportional control based on the premise
of “one share, one vote,” and thus they are relevant only when shareholders can exert their influence in
accordance with their stakes without being overruled by a manager. In contrast, identical bidding is an
optimal coordination mechanism in the presence of agency problem between a manager and a common
owner, because it implements fair allocation between connected firms, which is more sustainable for a
manager who aims to secure his own firm’s surplus rather than a common owner who benefits most from
efficient collusion. Thus, when identical bidding is observed, managerial agency problem seems to exist,
and hence a common owner is less likely to exert its influence in accordance with its stakes.
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of identical bidding in an auction. Under another interpretation, this variable measures the

number of firms that do not affect the competitive intensity of bidding.

We count the number of ownership connections of degree 𝑘 among auction participants

by aggregating the indicators 𝑆𝑘 (𝑖, 𝑗) from every possible pair of bidders in an auction to

form an auction-level connectedness. Specifically, we define the number of connections for

auction 𝑙 as

𝑁𝐶𝑘𝑙 =
∑︁

(𝑖, 𝑗)∈𝐵(𝑙)
𝑆𝑘 (𝑖, 𝑗),

for 𝑘 ∈ {2, 4} corresponding to common owners and common owners’ owners, respectively.

We next measure the tendency of bid rounding 𝑅𝑙 across all bids at the auction level, which

we will use as a control:

𝑅𝑙 =
1

𝑁𝑙

𝑁𝑙∑︁
𝑖=1

1(𝑏𝑖 ≡ 0 mod 10𝑞𝑙 ),

where 𝑁𝑙 is the number of bidders in auction 𝑙, 𝑖 indexes each bidder with bid 𝑏𝑖, and 𝑞𝑙

is the most frequent order of magnitude among all the bids in auction 𝑙 minus one. This

specification of the roundedness assumes the rounding of bids tends to occur at one units

below the order of magnitude of the bid. For example, an unrounded bid of S$14,282 tends

to be rounded to S$14,000 rather than S$10,000, S$14,300, or S$14,280. In accordance with

this premise, if auction 𝑙 has two bids of S$17,000 and S$16,800, 𝑞𝑙 = 3 and 𝑅𝑙 = 0.5 because

S$17,000 is divisible by 103 whereas S$16,800 is not.17

Then, we consider a regression specification of the form:

𝑁 𝐼𝑙 =
∑︁

𝑘∈{2,4}
𝛽𝑘1{𝑁𝐶𝑘𝑙 > 0} + 𝑓 (𝑍𝑙 , 𝑅𝑙) + 𝜖𝑙 , (1)

where 1{𝑁𝐶𝑘
𝑙
> 0} is an indicator at the auction level capturing whether any pair of bidders

17Figure A.6 in Section A.5 of the appendix shows the histogram of trailing units. We find that a mass is
present at 0, suggesting firms tend to round their bids at least to the nearest 10’s unit. In untabulated
analyses, we consider additional definitions of rounding, including modifying 𝑞𝑙 to the most frequent order
of magnitude among all the bids in auction 𝑙, one, counting the number of 0’s in a bid, counting the number
of 5’s, and find they do not affect our results.
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have a connection with degree 𝑘 for 𝑘 = 2 and 4, labeled as Common Owners and Common

Owners’ Owners, respectively. 𝑁 𝐼
𝑙

is the number of ineffective bids in auction 𝑙 and 𝑓 (𝑍𝑙 , 𝑅𝑙)

is specified as the a third-degree polynomial of bid rounding 𝑅𝑙 and procurer-by-auction type

fixed effects. We cluster standard errors by procurer. 𝛽𝑘 is the coefficient of interest and

captures the effect of having any connected bidders of degree 𝑘 on the number of ineffective

bids.

The empirical specification in equation (1) uses an indicator because the count measure

itself may be problematic. The count measure treats a pair of firms with 40 overlapping

owners, each with 1%, as having more connections than one owner owning 40% in each firm.

Therefore, the count measure introduces a non-linear bias in the relation between the count

measure and ineffective bidding because the single owner with the larger stake probably has

a larger capacity to make his portfolio companies coordinate. Consequently, we present the

main results using an indicator variable, capturing the relation between the extensive margin

of having connected bidders in the auction and identical bidding.

To assess the impact of identical bidding on the award amount, we investigate the link

between the number of ineffective bids and the award amount paid by the procurer. Then,

we estimate

𝐴𝑚𝑜𝑢𝑛𝑡𝑙 = 𝛾𝑁 𝐼𝑙 + 𝑓 (𝑍𝑙 , 𝑅𝑙) + 𝜖𝑙 , (2)

where 𝐴𝑚𝑜𝑢𝑛𝑡𝑙 is the realized contract amount in auction 𝑙 scaled by the median of the bids

and captures the planned expenditure of the government and revenue for the bidding firm.

The control variables mirror those in equation (1) above. As with equation (1), we cluster

standard errors by procurer. The coefficient 𝛾 captures the relation between the number of

ineffective bids and the awarded contract amount.
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3.4 Summary Statistics

Table 1 reports the summary statistics of our sample. We observe 9,087 auctions with

bids from 10,000 unique bidder names. The number of bidders per auction is around 5 on

average. The average number of ineffective bids in an auction is 0.29, with around 16% of

auctions having at least one ineffective bid. The average number of second- and fourth-degree

ownership connections per auction is 3.3 percentage points and 20 basis points, respectively.

The mean awarded contract amount in our data set is slightly over S$359,000, and the median

is S$15,200. A large right skew exists in the data because auctions range from purchasing

a single computer to a multi-billion dollar project, such as building new subway systems or

public housing units.

In our pair-level data, we observe 99,661 pairs participating in the same auction at least

once in our sample. On average, a pair of firms participates in the same auction 1.8 times

and submit identical bids for 2.1% of the auctions in which they jointly participate. On

average, 9.9 basis points of pairs have common owners, and 0.8 basis points of them have

common owner’s owners.

[Table 1 Around Here]

4 Reduced-Form Results

4.1 Ownership Connections and Ineffective Bids

Table 2 reports the auction-level regression result of equation (1). Panel A shows our esti-

mates controlling for a third-degree polynomial of the log number of bidders, while Panel B

does not control for the number of bidders. We separate these results into a different panel

due to the potentially endogenous nature of the number of bidders. Columns (1) and (3)

of Panel A show the presence of common owners increases the number of ineffective bids

by 0.443, over 1.5 times the unconditional mean of 0.285. Columns (2) and (3) show when

bidders share at least one common owners’ owner, the number of ineffective bids increases

by 0.3, around the size of the unconditional mean. Columns (4) to (6) show results for a
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propensity-score weighted regression where we weight observations by the propensity score of

an auction being price-only computed from our random forest model.18 Specifically, we use

the fraction of trees voting for positive for the propensity score. Weighting by the propen-

sity score allows us to focus on the relationship where the probability of the auction being

awarded to the lowest bid is the highest, corresponding with the mechanism proposed in

Section 2.3. The results are similar to baseline results for both common owners and common

owners’ owners. Panel B shows results for corresponding regressions that do not control

for the cubic polynomials for the log number of bidders in the auction, showing even larger

estimates.

[Table 2 Around Here]

Differences in the easiness of detecting ownership connections may explain the non-trivial

effect of common owners’ owners on ineffective bidding. On the one hand, all else equal,

higher-degree connections correspond with a lower coordination incentive than lower-degree

connections. On the other hand, the probability of a regulator detecting ownership connec-

tions is likely much lower for higher-degree than for lower-degree connections. For procurers

to detect bidders with common owners’ owners, they must access the Singapore Enterprise

Data Hub (an inter-government agency centralized data portal) to check the shareholder

registry individually for all participating firms, and then check the shareholder registry of

all those shareholders.

4.2 Pair-Level Analysis

As a robustness check, we also conduct a pair-level analysis of identical bidding behavior for

firms that have participated in the same auction at least once since the previous auction-

level analysis does not differentiate whether identical bidding occurs among unconnected or

connected firms. The pair-level analysis directly tests whether connected firms are more

likely to submit identical bids. We regress the probability of submitting identical bids 𝐼𝑝

18We impute missing propensity scores with zero, so that the number of observations are unaffected but our
results only use the subset of data with valid estimated propensity scores.
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for pair 𝑝 of any (𝑖, 𝑗) firms on the dummy variable that indicates the presence of common

owners 𝐶2
𝑝 and common owners’ owners 𝐶4

𝑝:

𝐼𝑝 = 𝛽2𝐶2
𝑝 + 𝛽4𝐶4

𝑝 + 𝑓𝑖 + 𝑓 𝑗 + 𝜖𝑝, (3)

where 𝑓𝑖 and 𝑓 𝑗 are firm fixed effects for 𝑖 and 𝑗 , respectively. We also report the result

where we do not control for firm fixed effects and only include constants.

[Table 3 Around Here]

Table 3 shows that the effects of common ownership and common owner’s ownership

on identical bidding are positive at the pair-level. In particular, we find that firms sharing

common owners are around 7 to 13 percentage points more likely to submit identical bids

in auctions they participate in together, and those sharing common owners’ owners are also

more likely to submit identical bids in auctions they participate in together. This result

is consistent with the result of our auction-level analysis reported in Table 2, because the

estimated effects of common owners and common owners’ owners are all positive, regardless

of specifications. In particular, the estimated effects are robust to the control of firm fixed

effects. Overall, we find that pairs of firms having common owners or common owners’

owners are more likely to submit identical bids than unconnected pairs.

Robustness & Alternative Possibilities We next address three additional concerns

and show that our previous results are not due to (1) spurious correlation, (2) the use of

indicator variables for measuring ownership connections, or (3) confounding factors. First,

our estimates for the effects of ownership connections have relatively small p-values, according

to the attained distributions of the corresponding coefficients in a falsification exercise where

we randomly assign ownership connections among the participants. Second, our results

persist when using the number of connected firms participating in the auction rather than

indicator variables for their presence. Third, we obtain quantitatively similar estimates for

the effects of ownership connections even when additionally controlling for other common
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stakeholder relationships apart from shareholder relationships. These results are all reported

in Figure A.5, Table A.4, and Table A.5 in Appendix A.4.

But apart from these concerns, our baseline results also appear explainable by two alter-

native hypotheses centered around the idea that identical bidding may be due to identical

cost structures rather than ownership networks. First, identical costs may occur on large in-

frastructure projects through identical cost estimates or subcontracts. Auctions with larger

contract amounts or severe participation constraints that permit only qualified bidders may

be those for which respondents may outsource the calculation of cost estimates. If qualified

firms acquire the cost estimates from the same engineer or hire the same subcontractor, they

may anchor their bids on the same costs, which then generate identical bids. However, this

does not appear to be the case since columns (1) and (2) in Table 4, which report the results

of robustness tests for equation (1), show that the positive relationship between the number

of ineffective bids and ownership networks persists even when considering only smaller auc-

tions whose winning bids are less than S$50,000 (US$36,000) and S$100,000 (US$72,500).

Moreover, columns (3) through (5) show that excluding construction auctions, auctions con-

ducted by government agencies related to infrastructure or development, or both do not

affect the results qualitatively.

[Table 4 Around Here]

Second, connected firms may have distinct but similar cost levels. If firms simply round

their bids, connected firms are likely to submit identical bids even if their costs are distinct.

In fact, we find bid rounding is prevalent in general, so some of the estimated effects of

ownership connections on the number of ineffective bids could simply reflect cost similarity

and rounding. We address this concern by reestimating equation (1) but define the dependent

variable as the presence of non-rounded ineffective bids. In this set of analyses, the coefficients

on ownership networks capture the effects of ownership networks on ineffective bids that are

not rounded. Table A.6 in Appendix A.5 shows that our main results persist even when

limiting our focus on identical non-rounded bids. Therefore, we believe our baseline estimates
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of the relationship between ownership connections and ineffective bids are not solely driven

by cost similarity and bid rounding.

4.3 Ineffective Bids and Bid Amounts

We document a positive correlation between identical bidding and ownership networks. Be-

cause identical bidding is a plausible coordination mechanism for first-price auctions per

McAfee and McMillan (1992), we expect the anticompetitive effects of ownership connec-

tions to manifest as higher winning bids in first-price auctions. To test this hypothesis,

we estimate equation (2) using a baseline as well as a propensity-score weighted regression

(Alkurdi and Sizemore, 2019), where the propensity score is calculated from our random

forest model predicting auction format.

[Table 5 Around Here]

Odd-numbered columns of Table 5 report the auction-level regression results of equation

(2). Column (1) of Panel A shows the effect of the intensive margin of identical bidding; one

more identical bid in an auction is associated with an increase in the government expenditure

of 4.3% of the median bid. Taking into account the prior result that auctions with common

owners are associated with an increase in the number of identical bids by 0.443, the overall

estimated effect of common ownership on government expenditure is around 1.9% of the

median bid. Even-numbered columns of Table 5 report similar analyses but weigh auctions

by the propensity score of an auction being price-only. The estimates do not change much

quantitatively. We also report the results for each of the goods and services & construction

separately and show similar estimates across both procurement types.

Panel B shows the results for corresponding regressions without controlling for the cubic

polynomials for the log number of bidders in the auction. Again, we separate these results

into a different panel due to the potentially endogenous nature of the number of bidders. The

estimates for the effect of identical bidding are all positive. Moreover, they are statistically

significant at the 5% level. Because the number of bidders is negatively associated with

the winning bid, excluding the number of bidders from the regression introduces a negative
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omitted variable bias if the number of ineffective bids is positively associated with the number

of bidders. This omitted variable bias can explain the smaller estimates of Panel B relative

to the corresponding estimates of Panel A.

5 Ownership Networks and Auction Efficiency
The reduced-form analysis provides suggestive evidence of the role of ownership networks

in bid rigging but provides little implication on auction efficiency. Therefore, we use a

structural framework to recover the missing link between a firm’s cost and bid and identify

the distribution of a firm’s cost. By simulating the auction outcomes of a counterfactual

world with no relationship between ownership connections and bidding behavior, we can

assess the effect of ownership networks on the cost of the winning contractor, which is the

measure of auction efficiency.

5.1 Counterfactual Simulation

We use the framework by Krasnokutskaya (2011), which permits unobserved heterogeneity

across auctions and asymmetric bid distributions. For the appropriate choice of structural

framework, we considered two issues. First, our data set consists of auctions with various

project sizes. Second, the distribution of competitive bids submitted by non-colluding firms

(type-1) and that of identical bids submitted by coalitions (type-2), i.e., a group of firms co-

ordinating with each other, are likely to be asymmetric.19 Then, we impose the assumptions

below:

Assumptions:

1. A procurer allocates the project to the lowest bidder and randomly allocates the project
if there are multiple lowest bidders.

19To show this, we regress effective bids on the indicator for identically submitted bids while controlling
for auction fixed effects. Then, we compute the gap between identically submitted and other bids while
removing auction-specific effects. Table A.3 in Section A.2.5 of the appendix reports the regression result.
We find identically submitted bids are significantly lower than others on average. Our result is consistent
with the existing research. For example, Pesendorfer (2000) finds the empirical distribution of cartel bids
is first-order stochastically dominated by the empirical distribution of non-cartel bids when studying the
asymmetries between cartel and non-cartel bids for school milk contracts in Florida and Texas during the
1980s.
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2. When planning a bid, an auction participant knows the set of rival firms and, in par-
ticular, the coalition of firms that submit identical bids.

3. An auction participant independently draws the cost, conditional on auction-specific
covariates.

4. Non-colluding firms and coalition members are ex ante asymmetric. The coalition plans
a bid based on the cost randomly selected from members’ costs as if a randomly selected
member competitively bids against rivals.

Before presenting the simulation procedure, we briefly discuss each assumption. The

former part of Assumption 1 reflects that our sample is the approximate set of first-price

auctions. The latter part of Assumption 1 specifies the allocation rule when identically

submitted bids are the lowest. We assume a project is randomly allocated to one of the firms

that submit the lowest bids, because randomization rationalizes submitting identical bids as

the optimal coordination mechanism in the absence of side payments (McAfee and McMillan,

1992) and distributing side payments is difficult under the law enforcement in Singapore.20

Assumptions 2 and 3 allow us to recover cost distributions under the framework that allows

auction heterogeneity and asymmetric bid distributions. Assumption 4 allows us to predict

bidding outcomes and winners’ costs in our simulation.21 For the sake of brevity, we provide

derivations needed for our structural analysis in Appendix B.1.

In our simulation, we consider model auctions where there are three non-colluding firms

and one coalition formed by two coordinating firms that submit identical bids since the

median number of effective bids for auctions in which at most two firms submit identical bids

is four. For the remaining section, we denote the number of type-𝑖 effective bids submitted

20There is still a possibility that a procurer selects the winner among the lowest bidders based on some
other unobserved attributes under first-price auctions. In this case, we assume that firms find it difficult
to predict the attributes the procurer considers and form uniform prior about which firm wins.

21One may be concerned with the possibility that non-colluding firms and coalition members are ex ante
symmetric, even if their bidding strategies are asymmetric. In particular, the coalition may plan a bid
based on the minimum of members’ costs as if the most efficient member competitively bids against rivals
in accordance with Li and Zhang (2015) and Dalkir et al. (2000). However, in this case, the most efficient
member is better off while the least efficient member is worse off, as each member maximizes its expected
profits when a coalition bids based on its cost. Because the least efficient member is worst off, a cartel
is less likely to be sustained. Considering this matter, we assume that non-colluding firms and coalition
members are ex ante asymmetric.
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to auction 𝑗 by 𝑁𝐸
𝑗,𝑖

, analogously to 𝑁 𝐼
𝑗
, i.e., the number of ineffective bids submittd to the

auction.

In our simulation, we draw a cost from the estimated distribution of a type-1 firm’s cost

for three times and from that of a type-2 firm’s cost twice. For the control case, we derive

bids from the estimated equilibrium-bid function, where 𝑁𝐸
𝑗,1 = 3, 𝑁𝐸

𝑗,2 = 1, and 𝑁 𝐼
𝑗
= 1.

Our structural analysis uses the reduced-form evidence to link ownership connections

and identical bidding behavior. Specifically, for the treatment case, we draw the effect of the

presence of 𝑘 𝑡ℎ-degree connections among the participating firms on the number of ineffective

bids based on the estimate of equation (1). To account for the standard error in the estimate

of this effect, we assume the effect follows the distribution, 𝛽𝑘 ∼ 𝑁

[
𝛽𝑘 , 𝑆𝐸 (𝛽𝑘 )2

]
, where 𝛽𝑘

is the estimate of 𝛽𝑘 and 𝑆𝐸 (𝛽𝑘 ) is the standard error of the estimate of 𝛽𝑘 in equation (1).22

We do not allow 𝛽𝑘 to be either negative or above one, because we do not consider either

multiple coalitions or new entrants in the counterfactual case. Therefore, we eventually use

min
{
max

{
𝛽𝑘 , 0

}
, 1

}
, denoted by Δ 𝑗 . We note this adjustment is very rare, because 𝛽𝑘 is

between zero and one and 𝑆𝐸 (𝛽𝑘 ) is sufficiently small.23 Then, Δ 𝑗 is the decrement in the

number of ineffective bids in the auction due to the removal of the link between 𝑘 𝑡ℎ-degree

connections and identical bidding. In our simulation, however, the change in the number

of ineffective bids has to be an integer, even if Δ 𝑗 is not. To resolve this problem, we also

draw a random number 𝑦 from 𝑈 (0, 1) as a lottery. Based on the lottery outcome, the

reduction in the number of ineffective bids becomes one or zero. Specifically, if 𝑦 ≤ Δ 𝑗

(𝑦 > Δ 𝑗), the reduction in the number of ineffective bids, 𝛿 𝑗 , is one (zero).24 When the

reduced number of ineffective bids is one, a coalition is broken, which increases the number

22The standard errors of our estimates for equation (1) are clustered at procurer level. There are over 70
procurers, so the t-distribution with this many degrees of freedom is virtually identical to the normal
distribution.

23In our structural analysis, we use the first two columns of Table 2 for the estimated effects of the presence
of second-degree and fourth-degree connections among the participating firms on the number of ineffective
bids.

24For example, suppose 𝛽𝑘 = 0.6 and 𝑦 = 0.3. Because Δ 𝑗 = 𝛽
𝑘 and 𝑦 ≤ Δ 𝑗 , 𝛿 𝑗 = 1. It is trivial to prove the

expected reduction in the number of ineffective bids becomes Δ 𝑗 .
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of originally coordinating but now non-colluding firms by two.25 On the other hand, when

there is no effect on the number of ineffective bids, there would be no change in bidding

outcomes between the control and counterfactual cases.

In summary, for the treatment case, we derive bids from the estimated equilibrium-bid

function, where 𝑁𝐸
𝑗,1 = 3, 𝑁𝐸

𝑗,2 = 1+ 𝛿 𝑗 , and 𝑁 𝐼
𝑗
= 1− 𝛿 𝑗 . We use randomly selected one of two

coordinating firms’ costs as the input when evaluating a type-2 (coordinated) bid if 𝑁 𝐼
𝑗
= 1.

We then compute the winner’s cost for each case. If 𝑁 𝐼
𝑗
= 0, the winning bid cannot be

identical to any ineffective bid. Then, the lowest bidder’s cost is the winner’s cost. If 𝑁 𝐼
𝑗
= 1,

the lowest bidder’s cost is the winner’s cost when the lowest bid is type 1 (competitive), but

the winner’s cost is randomly drawn from coordinating firms’ costs when the lowest bid is

type 2 (coordinated).

We simulate 200 times. For each trial, we compute the gap in the winner’s bid and

cost for the control and treatment cases. To make the gap scaleless, we normalize it by the

winning bid for the control case. Then, we take the mean as follows:

𝑑𝐵∗ = mean
(
{(𝐵∗

𝑗 ,𝑐𝑜𝑢𝑛𝑡𝑒𝑟 𝑓 𝑎𝑐𝑡𝑢𝑎𝑙 − 𝐵
∗
𝑗 ,𝑐𝑜𝑛𝑡𝑟𝑜𝑙)/𝐵

∗
𝑗 ,𝑐𝑜𝑛𝑡𝑟𝑜𝑙}

200
𝑗=1

)
,

𝑑𝐶∗ = mean
(
{(𝐶∗

𝑗 ,𝑐𝑜𝑢𝑛𝑡𝑒𝑟 𝑓 𝑎𝑐𝑡𝑢𝑎𝑙 − 𝐶
∗
𝑗 ,𝑐𝑜𝑛𝑡𝑟𝑜𝑙)/𝐵

∗
𝑗 ,𝑐𝑜𝑛𝑡𝑟𝑜𝑙}

200
𝑗=1

)
, (4)

where 𝐵∗
𝑗 ,𝑠

is the winning bid and 𝐶∗
𝑗 ,𝑠

is the winner’s cost for auction 𝑗 and case 𝑠.26

25We note originally coordinating firms have different technologies than originally non-colluding firms, al-
though they share the same technologies in the previous simulation.

26In practice, we compute the following:

𝑑𝑏∗ = mean
(
{(𝑏∗𝑗 ,𝑐𝑜𝑢𝑛𝑡𝑒𝑟 𝑓 𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑏

∗
𝑗 ,𝑐𝑜𝑛𝑡𝑟𝑜𝑙)/𝑏

∗
𝑗 ,𝑐𝑜𝑛𝑡𝑟𝑜𝑙}

200
𝑗=1

)
,

𝑑𝑐∗ = mean
(
{(𝑐∗𝑗 ,𝑐𝑜𝑢𝑛𝑡𝑒𝑟 𝑓 𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑐

∗
𝑗 ,𝑐𝑜𝑛𝑡𝑟𝑜𝑙)/𝑏

∗
𝑗 ,𝑐𝑜𝑛𝑡𝑟𝑜𝑙}

200
𝑗=1

)
,

where 𝑏∗
𝑗 ,𝑠

is the winning bid and 𝑐∗
𝑗 ,𝑠

is the winner’s cost for auction 𝑗 and case 𝑠, under the assumption
that auction-specifc cost shock 𝑦 𝑗 is equal to one. Although we need to draw an auction-specific cost shock
to fully replicate the data-generation process, this process is not required to compute the “normalized” gap
in the winning bid and the winner’s cost. To see why, notice

𝑑𝐵∗ = mean
(
{(𝑦 𝑗𝑏∗𝑗 ,𝑐𝑜𝑢𝑛𝑡𝑒𝑟 𝑓 𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑦 𝑗𝑏

∗
𝑗 ,𝑐𝑜𝑛𝑡𝑟𝑜𝑙)/𝑦 𝑗𝑏

∗
𝑗 ,𝑐𝑜𝑛𝑡𝑟𝑜𝑙}

200
𝑗=1

)
= 𝑑𝑏∗,

𝑑𝐶∗ = mean
(
{(𝑦 𝑗𝑐∗𝑗 ,𝑐𝑜𝑢𝑛𝑡𝑒𝑟 𝑓 𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑦 𝑗𝑐

∗
𝑗 ,𝑐𝑜𝑛𝑡𝑟𝑜𝑙)/𝑦 𝑗𝑏

∗
𝑗 ,𝑐𝑜𝑛𝑡𝑟𝑜𝑙}

200
𝑗=1

)
= 𝑑𝑐∗.
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Finally, to evaluate how the welfare gain is split between the government and firms, we also

decompose −𝑑𝐶∗ into the following components:

−𝑑𝐶∗︷           ︸︸           ︷
Welfare Gain =

−𝑑𝐵∗︷                      ︸︸                      ︷
Government Savings+

−𝑑𝐶∗+𝑑𝐵∗︷         ︸︸         ︷
Firm Gains . (5)

We report 𝑑𝐵∗, 𝑑𝐶∗, government savings, and firm gains.

We conduct this procedure twice, once for common owners (𝑘 = 2) and another time

for common owners’ owners (𝑘 = 4). Figure 2a presents the simulation results of removing

the effects of common owners on identical bidding. We find the point estimate of 𝑑𝐵∗ is -

0.0601. The 95% confidence interval of estimated 𝑑𝐵∗ is below -0.03. This result implies that

removing the effects of second-degree connections on identical bidding reduces the winning

bid and, hence, increases government savings by 6.0% (most likely by at least 3%). We next

find the point estimate of 𝑑𝐶∗ is -0.0491. The 95% confidence interval of estimated 𝑑𝐶∗ is

below -0.02. This result implies removing common ownership effects reduces the winner’s

cost by 4.9% of the winning bid (most likely by at least 2%). Lastly, we find the point

estimate of firm gains is slightly negative (-0.0110), which is not statistically significant.

This result implies removing the effect of common owners reduces firms’ surplus by 1.1% of

the winning bid, if any.

[Figure 2 Around Here]

Figure 2b shows the simulation results of removing the link between common owners’

owners and identical bidding. The estimated effects follow a similar pattern as before. We

find the point estimate of 𝑑𝐵∗ is -0.0420 and its 95% confidence interval is below -0.02.

This result implies removing the effect of common owners’ owners reduces the winning bid

and, hence, increases government savings by 4.2% (most likely by at least 2%). Our point

estimate of 𝑑𝐶∗ is -0.0369 and its 95% confidence interval is below -0.01. This result implies

removing the effects of common owners’ owner connections on identical bidding reduces the
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winner’s cost by 3.7% of the winning bid (most likely by at least 1%). We finally find the

point estimate of firm gains is slightly negative (-0.0051), although it is not statistically

significant. This result implies removing the effects of common owners’ owner connections

on identical bidding decreases firms’ surplus by 0.5% of the winning bid, if any.

Overall, we confirm that eliminating the link between ownership networks and identi-

cal bidding improves contractors’ cost efficiency. When multiple firms submit the lowest

bid, randomizing contract allocation independently of firm efficiency can raise the winner’s

cost. Our result highlights this inefficient nature of identical bidding induced by owner-

ship networks. Moreover, breaking a coalition raises competitive pressure by increasing the

number of effective bids, which reduces the winning bid. This result is consistent with our

reduced-form evidence.

Besides the analysis above, we conduct a robustness check by using only auctions that

our machine learning model predicts as first-price auctions among the sample used for our

baseline simulation. Section A.3 of the appendix reports the results of this robustness test

(Figure A.4). We find the results are similar to our baseline results.

6 Conclusion
We show identical bidding exists in Singaporean public procurement auctions and is posi-

tively associated with ownership networks. This result is consistent with firms with shared

owners rigging bids to raise a contract’s price. Our structural analysis models a firm’s strate-

gic bidding behavior and simulates a counterfactual world in which ownership networks are

not correlated with identical bidding. We find that removing either common owner or com-

mon owners’ owner effects on identical bidding can improve the winning contractor’s cost

efficiency, highlighting how ownership networks hinder competition. More broadly, our find-

ings suggest the need for examining inter-firm networks to predict potential misconduct.

Whereas the existing literature tends to focus on firm characteristics alone,27 this paper

27The prior literature focuses on firms’ internal structure such as CEOs’ connections with top executives and
directors (Khanna et al., 2015), board structure (Agrawal and Chadha, 2005), and executive compensation
(Efendi et al., 2007) as the driving factors for corporate scandals.
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highlights the importance of how firms are connected to each other in networks.
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Tables and Figures

Figure 1: Distribution of Bid Differences

The figures below show the distribution of differences from a randomly selected pair of bids from auctions
with more than three bids. We normalize each bid by the standard deviation of all bids in the auction.
The top panel shows the bid differences across all valid auctions, whereas the second panel splits it into
mutually exclusive categories of Goods versus Services. For each histogram, we also show a zoomed-in
version restricting the range to be from -0.2 to 0.2.

29



Table 1: Summary Statistics

The table below shows the summary statistics for our main sample. Panel A shows the characteristics and counts of auctions and shows the summary statistics for auction-level
observations. Panel B shows summary statistics of all the bids. Panel C considers pairwise ownership connections and shows summary statistics for pair-level observations,
where common owners and common owners’ owners are scaled to be percentage points (0.01 represents 1 basis point). “N” refers to the number of observations and “SD” stands
for standard deviation. Common owners and common owners’ owners correspond to the second- and fourth-degree current shareholder connections, respectively, and are all
defined as an indicator taking the value of one if there is at least one such owner connection in the auction or in the pair. Num. Common Owners is 𝑁𝐶2 and Num. Common
Owners’ Owners is 𝑁𝐶4.

Panel A: Auctions (N = 9,087)
5,397 service auction; 3,368 goods auction; 322 construction

Auction Type N Variables Mean SD
Services 2,086 Winning Bid 359,341 8,476,370
Administration & Training 1,920 Num. Bids 5.227 4.071
IT&Telecommunication 1,190 1{Ineffective Bids > 0} 0.157 0.364
Construction 729 Num. Ineffective Bids 0.285 0.897
Facilities Management 670 Common Owners 0.033 0.179
Event Organising, Food & Beverages 630 Common Owners’ Owners 0.002 0.042
Dental, Medical & Laboratory 571 Num. Common Owners 0.042 0.271
Transportation 507 Num. Common Owners’ Owners 0.002 0.046
Furniture, Office Equipment & Audio-Visual 420 Roundedness 0.203 0.295
Miscellaneous 252
Workshop Equipment and Services 112

Panel B: Bids (N = 47,495) Panel C: Connections (Pair-wise N = 99,661)
Mean 760,138 Variables Mean SD
Standard Deviation 12,195,444 Prob. Submitting Identical Bids 0.021 0.132
10𝑡ℎ Percentile 5,382 Num. Joint Participations 1.761 3.052
25𝑡ℎ Percentile 10,027 Common Owners (%) 0.099 3.150
Median 21,800 Common Owner’s Owners (%) 0.008 0.896
75𝑡ℎ Percentile 53,500
90𝑡ℎ Percentile 161,864
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Table 2: Ownership Networks and Identical Bidding

The table below shows the relation between the presence of shareholder connections between participating firms and the number of ineffective bids in an auction. Common
owners and common owners’ owners correspond to the second- and fourth-degree current shareholder connections, respectively, and are all defined as an indicator taking the
value of one if there is at least one such owner connection in the auction. Columns (1) to (3) present results for the baseline specification, whereas columns (4) to (6) present
results from an analogous random-forest propensity-score-weighted regression. All regressions include procurer-by-auction type fixed effects as well as cubic controls of the
average roundedness of bids in an auction. Panel A includes cubic controls of the log number of bidders and Panel B does not. The coefficients on the controls are suppressed
for space. Standard errors are clustered by procurer and shown in parentheses. * denotes p < 0.10, ** denotes p < 0.05, and *** denotes p < 0.01.

Panel A: Controlling for Number of Bidders
Dependent Variable: Num. Ineffective Bids
Specification: Baseline P.S. Weighted

(1) (2) (3) (4) (5) (6)
Common Owners 0.443*** 0.443*** 0.326** 0.327**

(0.069) (0.069) (0.126) (0.126)
Common Owners’ Owners 0.301*** 0.309*** 0.324*** 0.337***

(0.085) (0.082) (0.088) (0.087)
Observations 9,087 9,087 9,087 9,087 9,087 9,087
Cubic Num. Bidder Controls Yes Yes Yes Yes Yes Yes
𝑅2 0.308 0.302 0.308 0.274 0.269 0.275

Panel B: Without Number of Bidder Controls
Dependent Variable: Num. Ineffective Bids
Specification: Baseline P.S. Weighted

(1) (2) (3) (4) (5) (6)
Common Owners 0.749*** 0.749*** 0.465*** 0.466***

(0.129) (0.129) (0.159) (0.159)
Common Owners’ Owners 0.489*** 0.491*** 0.511*** 0.524***

(0.078) (0.078) (0.115) (0.116)
Observations 9,087 9,087 9,087 9,087 9,087 9,087
Cubic Num. Bidder Controls No No No No No No
𝑅2 0.183 0.164 0.184 0.186 0.175 0.187
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Table 3: Pair-Level Analysis

The table below shows the effects of ownership connections on the probability of submitting identical bids,
focusing on pairs of firms that participate in the same auction at least once or five times. Observations are
at the pair of participating firms level. Common owners and common owners’ owners are indicator variables
taking the value of one if there is such connection, respectively. Columns (3) and (4) include firm fixed
effects, where within R-squared is reported. Standard errors are in parentheses. * denotes p < 0.10, **
denotes p < 0.05, and *** denotes p < 0.01.

Dependent Variable: Prob. Submitting Identical Bids

(1) (2) (3) (4)

Common Owners 0.134*** 0.068*** 0.129*** 0.069***

(0.013) (0.026) (0.012) (0.022)

Common Owners’ Owners 0.255*** 0.172* 0.210*** 0.140*

(0.047) (0.094) (0.038) (0.078)

Firm Fixed Effects No No Yes Yes

Sample 𝑁 ≥ 1 𝑁 ≥ 5 𝑁 ≥ 1 𝑁 ≥ 5

Observations 99,661 4,924 99,661 4,924

𝑅2 0.001 0.002 0.001 0.003
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Table 4: Robustness Test of Ownership Networks and Identical Bidding

The table below shows the relation between the presence of shareholder connections between participating firms and the number
of ineffective bids in an auction. Common owners and common owners’ owners correspond to the second- and fourth-degree
current shareholder connections, respectively, and are all defined as an indicator taking the value of one if there is at least
one such owner connection in the auction. In both panels, columns (1) and (2) exclude auctions where the median bid is
more than S$50,000 and S$100,000, respectively, column (3) excludes construction-type auctions, column (4) excludes procurers
related to infrastructure and development including the Economic Development Board, Housing and Development Board (which
constructs all public housing in Singapore), Building and Construction Authority, Land Transport Authority, Maritime and
Port Authority of Singapore, Public Transport Council, and Sentosa Development Corporation, and column (5) excludes both
construction-type auctions as well as agencies related to infrastructure and development. All regressions include procurer-by-
auction type fixed effects as well as cubic controls of the log number of bidders and the average roundedness of bids in an
auction, whose coefficients are suppressed for space. Standard errors are clustered by procurer and shown in parentheses. *
denotes p < 0.10, ** denotes p < 0.05, and *** denotes p < 0.01.

Panel A: Intensive Margin (Dependent Variable: Num. Ineffective Bids)

(1) (2) (3) (4) (5)

Common Owners 0.482*** 0.474*** 0.415*** 0.483*** 0.451***

(0.104) (0.083) (0.069) (0.079) (0.087)

Common Owners’ Owners 0.271*** 0.297*** 0.301*** 0.294*** 0.284***

(0.086) (0.084) (0.086) (0.084) (0.088)

Sample Median Bid Median Bid Excl. Excl. Dev. Excl. Const. &

< 50,000 < 100,000 Const. Agencies Dev. Agencies

Observations 6,859 8,187 8,358 8,185 7,581

𝑅2 0.345 0.330 0.327 0.311 0.326

Panel B: Extensive Margin (Dependent Variable: 1{Ineffective Bids > 0})

(1) (2) (3) (4) (5)

Common Owners 0.091*** 0.095*** 0.083*** 0.100*** 0.095***

(0.021) (0.019) (0.017) (0.016) (0.018)

Common Owners’ Owners 0.182*** 0.192*** 0.195*** 0.196*** 0.192***

(0.057) (0.060) (0.061) (0.061) (0.062)

Sample Median Bid Median Bid Excl. Excl. Dev. Excl. Const. &

< 50,000 < 100,000 Const. Agencies Dev. Agencies

Observations 6,859 8,187 8,358 8,185 7,581

𝑅2 0.324 0.313 0.309 0.304 0.309
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Table 5: Number of Ineffective Bids and Contract Price

The table below shows the relation between the normalized winning bid and the number of ineffective bids. Columns (1) and (2) present the results
for all eligible auctions, columns (3) and (4) only use auctions for goods, and columns (5) and (6) only use auctions for services and construction.
Columns (1), (3), and (5) present results for the baseline specification, whereas columns (2), (4), and (6) present results from an analogous random-
forest propensity-score-weighted regression. All regressions include procurer-by-auction type fixed effects as well as cubic controls of the average
roundedness of bids in an auction. Panel A includes cubic controls of the log number of bidders and Panel B does not. The coefficients on the controls
are suppressed for space. Standard errors are clustered by procurer and shown in parentheses. * denotes p < 0.10, ** denotes p < 0.05, and ***
denotes p < 0.01.

Panel A: Controlling for the Number of Bidders
Dependent Variable: Winning Bid Normalized by Median Bid
Procurement Type All Goods Services & Construction
Specification: Baseline P.S. Weighted Baseline P.S. Weighted Baseline P.S. Weighted

(1) (2) (3) (4) (5) (6)
Num. Ineffective Bids 0.043*** 0.046*** 0.043*** 0.047*** 0.045*** 0.051***

(0.002) (0.004) (0.004) (0.006) (0.002) (0.005)
Observations 9,087 9,087 3,368 3,368 5,719 5,719
Cubic Num. Bidder Controls Yes Yes Yes Yes Yes Yes
𝑅2 0.291 0.272 0.294 0.306 0.352 0.328

Panel B: Not Controlling for the Number of Bidders
Dependent Variable: Winning Bid Normalized by Median Bid
Procurement Type All Goods Services & Construction
Specification: Baseline P.S. Weighted Baseline P.S. Weighted Baseline P.S. Weighted

(1) (2) (3) (4) (5) (6)
Num. Ineffective Bids 0.013*** 0.017*** 0.013** 0.019** 0.014*** 0.020***

(0.002) (0.005) (0.006) (0.008) (0.002) (0.006)
Observations 9,087 9,087 3,368 3,368 5,719 5,719
Cubic Num. Bidder Controls No No No No No No
𝑅2 0.212 0.203 0.238 0.256 0.265 0.249
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Figure 2: The Simulation Outcome of Excluding Ownership Network Effects

In every panel, black dots stand for point estimates and their associated intervals represent corresponding
95% confidence intervals based on bootstrap. We present the estimated effect of excluding the link between
the presence of second-degree or fourth-degree current-shareholder connections and identical bidding on the
winning bid in the top left panel, the effect on the winner’s cost in the top right panel, the corresponding
government savings in the bottom left panel, and the corresponding firm gains in the bottom right panel.
Sub-Figure 2a uses the reduced-form evidence in Table 2 Panel A column (1) and Sub-Figure 2b uses the
reduced-form evidence in Table 2 Panel A column (2).

(a) Excluding the Effects of Second-Degree Connections
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Online Appendix

A Additional Details and Robustness Tests

A.1 Matrix Representation of the Ownership Network

Figure A.1: Connections

We show example connections below for some arbitrary firms 𝑖 and 𝑗 . Shaded nodes indicate either an
individual or a firm. A first-degree connection requires one firm to own another. A second-degree connection,
meaning two firms have common owners, requires either a common individual or firm owner. A third-degree
connection requires at least one instance of a firm owning another. The bottom shaded node may be a firm,
and the top shaded node must be a firm. A fourth-degree connection, meaning two firms have common
owners’ owners, also requires at least one instance of a firm owning another. The bottom node may be an
individual or company, and the top two shaded nodes must be companies.

 

In addition to Figure A.1, which shows how our network measure corresponds to labeled

ownership relationships, we provide examples of how adjacency matrices, featuring both

firms and individuals, represent ownership networks. First, we start from a simple network.

Suppose there are two firms 1 and 2 without cross ownership, but there is a common owner

that is indexed as investor 3. Let the ownership matrix be 𝐴. Entry (𝑖, 𝑗) of 𝐴 represents the

presence (= 1) or absence (= 0) of link. There is a link between 𝑖 and 𝑗 if 𝑖 is a shareholder
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of 𝑗 or vice versa. As our focus is on whether firms have a connection, we consider an

undirected network and, therefore, symmetric entries of 𝐴 take the same value. Diagonal

entries of 𝐴 are 0 as a firm is not an owner of itself (or vice versa). For this example, entries

(1,3) and (3,1) of 𝐴 are 1. Moreover, entries (2,3) and (3,2) become 1 as well. Then, 𝐴 is

characterized by

𝐴 =


0 0 1

0 0 1

1 1 0


.

Also,

𝐴2 =


1 1 0

1 1 0

0 0 2


.

Entry (1,2) becomes positive for the first time under 𝐴2, and so inf{𝑥 ≥ 1|𝐴𝑥 (1, 2) > 0} = 2.

As a result, 𝑆2(1, 2) = 1, meaning that there is a second-degree connection between firms 1

and 2. In this way, common ownership is represented by a second-degree connection.

Next, we consider a more complex network. Suppose there are six entities 1 through 6.

No cross ownership between firms 1 through 3 exists. Firm 4 is a common owner of firms 1

and 2. Also, firm 5 is an owner of firm 3. Finally, investor 6 is a common owner of firms 4

and 5. Then, the ownership matrix 𝐴 is

𝐴 =



0 0 0 1 0 0

0 0 0 1 0 0

0 0 0 0 1 0

1 1 0 0 0 1

0 0 1 0 0 1

0 0 0 1 1 0



.

Entries (1,4), (2,4), and (3,5) are already positive under 𝐴, and so inf{𝑥 ≥ 1|𝐴𝑥 (𝑖, 𝑗) > 0} = 1
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for (𝑖, 𝑗) ∈ {(1, 4), (2, 4), (3, 5)}. Consequently, 𝑆1(𝑖, 𝑗) = 1 for (𝑖, 𝑗) ∈ {(1, 4), (2, 4), (3, 5)}.

Then, there is a first-degree connection between firms 1 and 4, firms 2 and 4, as well as

firms 3 and 5. In this way, cross ownership is represented by a first-degree connection. We

continue computing higher powers of 𝐴:

𝐴2 =



1 1 0 0 0 1

1 1 0 0 0 1

0 0 1 0 0 1

0 0 0 3 1 0

0 0 0 1 2 0

1 1 1 0 0 2



.

Because entries (1,2) and (4,5) become positive for the first time under 𝐴2, inf{𝑥 ≥ 1|𝐴𝑥 (𝑖, 𝑗) >

0} = 2 for (𝑖, 𝑗) ∈ {(1, 2), (4, 5)}. As a result, 𝑆2(𝑖, 𝑗) = 1 for (𝑖, 𝑗) ∈ {(1, 2), (4, 5)}. This

means that there is a second-degree connection between firms 1 and 2 as well as firms 4 and

5. Again, common ownership is captured by a second-degree connection. Next, we find

𝐴3 =



0 0 0 3 1 0

0 0 0 3 1 0

0 0 0 1 2 0

3 3 1 0 0 4

1 1 2 0 0 3

0 0 0 4 3 0



.

Because entries (1,5), (2,5), and (3,4) become positive for the first time under 𝐴3, inf{𝑥 ≥

1|𝐴𝑥 (𝑖, 𝑗) > 0} = 3 for (𝑖, 𝑗) ∈ {(1, 5), (2, 5), (3, 4)}. Therefore, 𝑆3(𝑖, 𝑗) = 1 for (𝑖, 𝑗) ∈

{(1, 5), (2, 5), (3, 4)}. This means that the pairs of firms 1 and 5, firms 2 and 5, and firms 3
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and 4 have third-degree connections. Last, we have

𝐴4 =



3 3 1 0 0 4

3 3 1 0 0 4

1 1 2 0 0 3

0 0 0 10 5 0

0 0 0 5 5 0

4 4 3 0 0 7



.

Because entries (1,3) and (2,3) become positive for the first time under 𝐴4, inf{𝑥 ≥ 1|𝐴𝑥 (𝑖, 𝑗) >

0} = 4 for (𝑖, 𝑗) ∈ {(1, 3), (2, 3)}. Then, 𝑆4(𝑖, 𝑗) = 1 for (𝑖, 𝑗) ∈ {(1, 3), (2, 3)}. This means

that the pairs of firms 1 and 3 as well as firms 2 and 3 have fourth-degree connections. In

this way, common owner’s ownership is represented by a fourth-degree connection.

In general, entry (𝑖, 𝑗) of 𝐴𝑥 captures the number of ways entity 𝑖 reaches entity 𝑗 with

a walk of 𝑥 steps through paths defined by our links. For example, 𝐴4(4, 5) = 5. Indeed,

there are 5 ways of reaching entity 5 from entity 4 with 4 steps: 4 → 6 → 4 → 6 → 5,

4 → 6 → 5 → 6 → 5, 4 → 2 → 4 → 6 → 5, 4 → 1 → 4 → 6 → 5, and 4 → 6 → 5 → 3 → 5.

A.2 Singapore Government Procurements

A.2.1 Difficulty of Side Payments in Singapore

We believe facilitating side payments is difficult in Singapore due to the risk of prosecution

by the government for two reasons. First, the Goods and Services Tax (GST) system in

Singapore deters side payments that are unrecorded by the government. Most sales of goods

and services sold within Singapore are subject to this tax. Businesses with taxable turnover

in terms of costs or revenues over S$1 million (approximately US$720,000) must register

for the GST. These businesses must charge GST on all their sales but may claim input tax

credits based on GST incurred on their own purchases and expenses. To help companies

check whether they are required to register for GST, the tax authority in Singapore provides
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an online calculator where firms can input their financial statement information to determine

whether they should register.Thus, a medium-sized enterprise making a side payment without

proper GST invoicing would not be able to use input tax credits to offset their existing tax

burden, and the receiving firm would violate the GST registration. Throughout the sample,

this tax is 7% and nonpayment carries large consequences, including a late payment penalty

of 5% and subsequently 2% interest per month up to a limit of 50% of the tax outstanding.

In addition, the Internal Revenue Authority of Singapore (IRAS) may also consider legal

actions, including directly appointing employers, tenants, or lawyers to pay the sum, issuing

travel restrictions, and other legal sanctions. For example, from January to September 2019,

the tax authority recovered S$175 million in GST from more than 2,000 investigations.

Second, even though side payments might be possible through non-recorded cash pay-

ments, mandatory audits, severe penalties, or incentives for whistleblowing deter this prac-

tice. Indeed, side payments for larger firms are less plausible because audits are required

for firms meeting two of the three following conditions: more than S$10 million in revenues,

more than S$10 million in assets, or more than 50 employees. If not caught by the auditors,

the detection of unaccounted side payments by the IRAS is subject to large penalties for

tax evasion, carrying a penalty of up to 400% of the missing tax, fines of up to S$50,000,

and imprisonment up to several years for the guilty person. To deter tax evasion, the IRAS

makes public all detected violations, their case, and the penalty. In 2018, there were 15

detected and prosecuted cases of tax evasion, ranging from sole proprietors to medium cor-

porations. In addition, the whistleblower program awards 15% of all taxes recovered, capped

at S$100,000 (US$73,500) to informants who provide a lead to recovery. Thus, we believe the

combination of transparent business practices, high penalties of deviations, and incentives

to report misbehavior deter illicit side payments, and the assumption of no side payments is

reasonable.
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A.2.2 Government Awarding Criteria

The Singapore government’s guidelines for the awarding process of public procurement auc-

tion stipulate that price is one important criterion in the awarding rule, but other dimensions

such as quality, ability to service a contract, and whether a procurer concurrently has multiple

open auctions also play a role.28 The lowest bidders win around half of the public procure-

ment auctions in Singapore. We estimate several statistical models to predict whether the

lowest bidder wins an auction purely based on publicly available data and find predictability

between 60% to 80% across different models.

In our empirical exercise, we consider 9 auction features from point-in-time publicly avail-

able data. We include the third-order polynomial of the log number of bidders, the auction

type, the procurement method (open quotation or tenders), the log number of concurrent

auctions, the log number of concurrent auctions in the same auction type, and the log num-

ber of concurrent auctions in the same auction type that the same procurer has. Each of the

latter three is measured over the past 30 days based on an auction’s open date. To maximize

our sample, we do not drop auctions at the beginning of our sample and assume there were

no overlapping auctions before that.

Table A.1: Performance Metrics of Models Predicting the Lowest Bid Winning

Performance Metrics
Correct Correct Positive Correct Negative False Positive False Negative

Model (Sensitivity) (Specificity) (Type I) (Type II)
Logit 0.619 0.297 0.844 0.156 0.703

Probit 0.620 0.299 0.844 0.156 0.701
LASSO 0.620 0.298 0.845 0.155 0.702

Random Forest 0.765 0.578 0.896 0.104 0.422

We consider four models, using logistic and probit regressions as a benchmark, a LASSO

specification with 10 fold cross-validation for variable selections, and finally a random forest

28Section 2 discusses in detail the framework provided by the Singapore government for awarding public
procurement contracts.
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with 2 variables to try at each tree split, with 500 trees in the forest. Other hyperparameters

are the default from the ranger package in R, kept for simplicity. Nodes are split based on

Gini impurity, and the model uses bagging to prevent overfitting (Breiman, 2001).

Table A.1 reports the average performance of these models that are constructed to predict

an auction’s winner. The random forest model performs the best when using the whole

sample with a correct probability of around 80%, while the other models have a correct

probability of around 62%. The improved performance suggests that nonlinear interactions

of the observed variables are statistically important. The random forest model’s correct

positive probability is around 60% and that of correct negative is around 90%.

Thus, to understand contract rewarding criteria, the random forest provides a better

approximation to the actual decision process. We show the importance chart in Figure A.2,

based on the mean decrease in Gini impurity. The log number of concurrent auctions and

the log numbrer of bidders are the most important variables.

Crucially, Table A.1 also shows that the percentage of correct negative is always higher

than that of correct positive. If our empirical setting is such that the lowest bidder wins if

and only if (1) the auction is a first-price auction (FPA) or (2) the auction is a multi-attribute

auction but the lowest bidder wins by chance, then even a perfectly precise model in terms of

predicting auction format would predict auctions in which the lowest bidders do not win with

higher predictability, and those in which the lowest bidders win with lower predictability,

because it cannot predict the case of (2) above. Then, the probability of correct positive

is lower, that of false positive is small, that of correct negative is higher, and that of false

negative is modest. This is close to what we find. Therefore, our results above are consistent

with each statistical model predicting auction format.

Finally, to show the effects of different procurement types, Table A.2 shows the estimated

average marginal effects in linear models. The number of bidders is negatively correlated

with the indicator for the lowest bidder winning the auction. We also find that the lowest

bidders tend to win construction, facilities, transportation, furniture, and information &
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technology auctions. These auction types are more commodity products compared to other

types like health and services, which may have more heterogeneity in quality. We note that

despite construction having a lot of heterogeneity in quality, in Singapore, all construction

companies registering for GeBIZ require certification, so the heterogeneity is limited.

Figure A.2: Random Forest Variable Importance Plot

The figures below visualize the variables in the random forest based on a decreasing order of importance.
We show the variable importance plot based on Gini impurity. The variables denoted as either categorical or
numerical. “Auction (Type)” considers auctions with the same auction type and “Auction (Type, Procurer)”
considers auctions with the same auction type and procurer. “w/i” denotes “within”.

Procurement Method

Procurement Type

Auction Type

log Num. Auctions (Type,Procurer) w/i 30 days

log Num. Auctions (Type) w/i 30 days

log Num. Auctions w/i 30 days

0 500 1000

Relative Var. Importance

Categorical Numeric

based on Gini Impurity

Variable Importance
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Table A.2: Linear Models for the Lowest Bid Winning

The table below presents the estimates from a linear fixed-effects model, probit, and a logistic model to show what variables correlate most with
whether the lowest bid in an auction won the auction. For comparability, the average marginal effects are shown for the probit and logistic models.
We cluster standard errors by procurer. We suppress the estimates for the constants and denote control variables in the “Controls” row for space.
The sample are all auctions in our data. Standard errors are in parentheses after the point estimate.

Dependent variable: Lowest Bidder Wins

Model Linear Probit Logistic

(1) (2) (3) (4)

log(1+Number of Auctions Overlapping) -0.042 (0.014)*** -0.010 (0.022) -0.040 (0.005)*** -0.040 (0.005)***

log(1+Number of Auctions in Same Auction Type and Procurer Overlapping) 0.006 (0.009) 0.012 (0.006)** 0.005 (0.004) 0.005 (0.004)

log(1+Number of Auctions in Same Auction Type Overlapping) 0.055 (0.016)*** 0.025 (0.025) 0.054 (0.008)*** 0.053 (0.008)***

Auction Type = Construction 0.267 (0.042)*** 0.199 (0.049)*** 0.262 (0.021)*** 0.261 (0.021)

Auction Type = Health 0.224 (0.023)*** 0.131 (0.042)*** 0.221 (0.020)*** 0.220 (0.020)***

Auction Type = Event Organizing 0.091 (0.042)** 0.054 (0.045) 0.086 (0.017)*** 0.084 (0.016)***

Auction Type = Facilities 0.311 (0.025)*** 0.232 (0.039)*** 0.306 (0.020)*** 0.305 (0.020)***

Auction Type = Furniture 0.209 (0.024)*** 0.145 (0.044)*** 0.204 (0.023)*** 0.204 (0.023)***

Auction Type = Information & Technology 0.255 (0.019)*** 0.208 (0.034)*** 0.249 (0.015)*** 0.248 (0.015)***

Auction Type = Miscellaneous 0.147 (0.057)** 0.028 (0.071) 0.142 (0.027)*** 0.140 (0.027)***

Auction Type = Services 0.097 (0.022)*** 0.091 (0.023)*** 0.093 (0.009)*** 0.093 (0.009)***

Auction Type = Transportation 0.201 (0.023)*** 0.129 (0.044)*** 0.196 (0.021)*** 0.196 (0.021)***

Auction Type = Workshop 0.419 (0.075)*** 0.286 (0.093)*** 0.408 (0.041)*** 0.405 (0.040)***

Control: Procurement Method (Open Quotation or Tender) X X X X

Control: Procurement Type (Goods or Services) X X X X

Fixed Effects Procurer

Observations 22,098 22,098 22,098 22,098

𝑅2 0.049 0.084 0.037 0.037
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A.2.3 Identifying Award Criteria via Machine Learning

A random forest algorithm is different from a basic decision tree algorithm in that it is a set

of randomized tree algorithms. As in a usual tree algorithm, each tree starts from the root

node and moves down to the branches of the internal nodes by a splitting process, that is,

the process of partitioning the data set into subsets. The split is determined by a particular

criterion that aims to reduce a measure of inaccuracy or “impurity” in the grouping (split

criterion). The prediction is made at the terminal nodes, or leaves, that are polarized enough

that they can be labeled as either one of the outcome classes in line with a particular rule

(labeling rule). One unique feature of the algorithm is that each tree selects a random set of

features used for splitting (random split selection). Moreover, it is an ensemble prediction

(bagging). Specifically, each tree learns from the training data set sampled from the original

data set with replacement. The final prediction is obtained by the majority vote of the trees.

In particular, because we do not observe the auction format—whether a contract is

awarded based on price only or multiple attributes—but only observe whether the lowest

bidder wins an auction, we frame our random forest analysis as one under label noise. We

consider the observed indicator for whether the lowest bidder wins or not (𝑦𝑖 = ±1) as the

noisy label for the unobserved indicator of auction format (𝑦𝑖 = ±1). If auction 𝑖 is a first-

price auction (𝑦𝑖 = +1), the lowest bidder wins (𝑦𝑖 = +1) for sure, so there is no noise.

However, if it is a multi-attribute auction (𝑦𝑖 = −1), the lowest bidder still wins (𝑦𝑖 = +1)

with some probability [, where 0 < [ < 1. In other words, conditional on 𝑦𝑖 = −1, the true

outcome 𝑦𝑖 is not equal to the observed indicator 𝑦𝑖 with probability [. If this mismatch is

independent of auction features 𝑥𝑖, conditional on 𝑦𝑖 = −1, label noise in our setting becomes

class-conditional.

The recent literature on machine learning investigates whether the random forest classifier

learnt from noise-free sample matches that learnt from the sample with label noise.29 The

literature suggests that classifiers trained on noise-free and noisy data coincide when the noise

29See Ghosh et al. (2017) and Yang et al. (2019), for example.
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is class-conditional. In our setting, this is equivalent to considering whether our random

forest classifier actually predicts auction format 𝑦𝑖, instead of the lowest bidder winning

𝑦𝑖. Because random splitting and bagging are immune to label noise (Breiman, 2001), the

literature focuses on the noise-tolerance of split criterion and labeling rule used in each tree

of the forest.

Therefore, we theoretically characterize whether and when a random forest classifier

(one that is trained to predict whether the lowest bidder wins an auction based on ex ante

observed auction characteristics) would align with the correct classifier of whether an auction

is price-only. We show that the node splitting process that minimizes Gini impurity under

noise-free samples is same as that which minimizes it in the presence of label noise in our

setting. Moreover, we show that majority voting at a leaf node is also robust to label noise

in our setting if certain conditions are met. To state these claims formally, we list a couple

of assumptions.

Assumptions:
1. There is a unique split rule minimizing Gini impurity at each node.

2. [ < 0.5.

3. Let 𝑋 denote the feature space. Let 𝐹 denote a set of split rules. Let 𝑓0 denote the
split rule that perfectly predicts auction format 𝑦𝑖, where 𝑦𝑖 = 𝑓0(𝑥𝑖),∀𝑥𝑖 ∈ 𝑋. 𝑓0 ∈ 𝐹.

Assumption 1 is a regulatory condition used in the proof (Ghosh et al., 2017). Assumption

2 assures that the probability of the lowest bidder winning a multi-attribute auction is smaller

than one-half. As discussed later, we evaluate the applicability of this assumption based on

the performance metrics of the estimated model. Under Assumption 3, the auction format

is predictable by features at hand. Then, we derive the following propositions.

Propositions:
1. Noise-tolerance of split criterion: If Assumption 1 is met, in the large sample limit,

argmin 𝑓 ∈𝐹 𝐶 ( 𝑓 ) = argmin 𝑓 ∈𝐹 𝐶[ ( 𝑓 ), where 𝐶 ( 𝑓 ) is Gini impurity for a split rule 𝑓 ∈ 𝐹
on noise-free data and 𝐶[ ( 𝑓 ) is corresponding Gini impurity for 𝑓 under label noise.

2. Noise-tolerance of labeling rule: If Assumptions 1, 2, and 3 are met, in the large sample
limit, the class predicted by the leaf node under label noise is the same as the one under
noise-free case if the majority vote is used for labeling.
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3. Equivalence: If Assumptions 1, 2, and 3 are met, in the large sample limit, the predic-
tion made by the tree learnt under label noise is the same as the one predicted by the
tree with depth 1 characterized by split 𝑓0.

4. Observed performance in the large sample limit:

(a) Correct positive (sensitivity): 𝑃[ 𝑓0(𝑥𝑖) = +1|𝑦𝑖 = +1] < 1.

(b) Correct negative (specificity): 𝑃[ 𝑓0(𝑥𝑖) = −1|𝑦𝑖 = −1] = 1.

5. Predictability of auction format in the large sample limit: 𝑃[𝑦𝑖 = 𝑓0(𝑥𝑖)] = 1.

Proof for Proposition. We follow the procedure and most of the notations used by Ghosh
et al. (2017). Let the noise-free observations at a node 𝑣 be {(𝑥𝑖, 𝑦𝑖), 𝑖 = 1, ..., 𝑛}. Under
label noise, the observations at this node would become {(𝑥𝑖, 𝑦𝑖), 𝑖 = 1, ..., 𝑛}. Suppose in the
noise-free case a split rule 𝑓 sends 𝑛𝑙 of these 𝑛 observations to the left child 𝑣𝑙 and 𝑛𝑟 = 𝑛−𝑛𝑙
to the right child 𝑣𝑟 . Note that a split rule is a function of only the feature vector. Since
the split rule depends only on the feature vector and not the labels, the points that go to 𝑣𝑙
and 𝑣𝑟 would be the same for the noisy observations also. Thus, 𝑛𝑙 and 𝑎 = 𝑛𝑙/𝑛 would be
the same in both cases.

Let 𝑛+ and 𝑛− = 𝑛 − 𝑛+ be the number of observations of the two classes at node 𝑣 in
the noise-free case. Similarly, let 𝑛+

𝑙
and 𝑛−

𝑙
= 𝑛𝑙 − 𝑛+𝑙 be the number of observations of the

two classes at 𝑣𝑙 and define 𝑛+𝑟 , 𝑛−𝑟 , similarly. Let the corresponding quantities in the noisy
case be 𝑛+, 𝑛−, 𝑛+

𝑙
, 𝑛−
𝑙

etc. Define random variables, 𝑊𝑖, 𝑖 = 1, ..., 𝑛 by 𝑊𝑖 = 1 if 𝑦𝑖 ≠ 𝑦𝑖 and
𝑊𝑖 = 0, otherwise. Thus, 𝑊𝑖 are indicators of whether or not the label on the 𝑖𝑡ℎ example is
corrupted. In our setting, 𝑊𝑖 = 0, conditional on 𝑦𝑖 = +1, and 𝑊𝑖 are i.i.d. Bernoulli random
variables with expectation [, conditional on 𝑦𝑖 = −1.

Let 𝑝 = 𝑛+/𝑛, 𝑞 = 𝑛−/𝑛 = (1 − 𝑝) be the fractions of the two classes at 𝑣 under noise-free
case. Let 𝑝𝑙 , 𝑞𝑙 and 𝑝𝑟 , 𝑞𝑟 be these fractions for 𝑣𝑙 , 𝑣𝑟 . Let the corresponding quantities for
the noisy observations case be 𝑝, 𝑞, 𝑝𝑙 , 𝑞𝑙 etc. Let 𝑝[, 𝑞[ be the values of 𝑝, 𝑞 in the large
sample limit and similarly define 𝑝[

𝑙
, 𝑞

[

𝑙
, 𝑝

[
𝑟 , 𝑞

[
𝑟 .

The value of 𝑛+ is the number of 𝑖 such that 𝑦𝑖 = +1. Similarly, the value of 𝑛+
𝑙

would be
the number of 𝑖 such that 𝑥𝑖 is in 𝑣𝑙 and 𝑦𝑖 = +1. Hence we have

𝑝 =
𝑛+

𝑛
=
1

𝑛

©«
∑︁

𝑖:𝑦𝑖=+1
1
ª®¬ =

1

𝑛

( ∑︁
𝑖:𝑦𝑖=+1

1 +
∑︁

𝑖:𝑦𝑖=−1
𝑊𝑖

)
,

𝑝𝑙 =
𝑛+
𝑙

𝑛𝑙
=

1

𝑛𝑙

©«
∑︁

𝑖:𝑥𝑖∈𝑣𝑙 ,𝑦𝑖=+1
1
ª®¬ =

1

𝑛𝑙

( ∑︁
𝑖:𝑥𝑖∈𝑣𝑙 ,𝑦𝑖=+1

1 +
∑︁

𝑖:𝑥𝑖∈𝑣𝑙 ,𝑦𝑖=−1
𝑊𝑖

)
.

All the above expressions involve sums of independent random variables. Hence the values
of the above quantities in the large sample limit can be calculated, by laws of large numbers,
by essentially replacing each 𝑊𝑖 by its expected value. Thus, from the above, we get

𝑝[ = 𝑝 + 𝑞[ = 𝑝(1 − [) + [; 𝑝[
𝑙
= 𝑝𝑙 + 𝑞𝑙[ = 𝑝𝑙 (1 − [) + [.
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First, we prove Proposition 1. For a node 𝑣, the Gini impurity is 𝐺𝐺𝑖𝑛𝑖 (𝑣) = 2𝑝𝑞 under
noise-free case. Under label noise, Gini impurity becomes

𝐺
[

𝐺𝑖𝑛𝑖
(𝑣) = 2𝑝[𝑞[ = 2(𝑝(1 − [) + [) (1 − [)𝑞 = 𝐺𝐺𝑖𝑛𝑖 (𝑣) (1 − [)2 + 2[(1 − [)𝑞.

Similar expressions hold for 𝐺[

𝐺𝑖𝑛𝑖
(𝑣𝑙) and 𝐺[

𝐺𝑖𝑛𝑖
(𝑣𝑟). The large sample value of impurity gain

of 𝑓 under label noise can be written as

𝑔𝑎𝑖𝑛
[

𝐺𝑖𝑛𝑖
( 𝑓 ) = 𝐺

[

𝐺𝑖𝑛𝑖
(𝑣) −

[
𝑎𝐺

[

𝐺𝑖𝑛𝑖
(𝑣𝑙) + (1 − 𝑎)𝐺[

𝐺𝑖𝑛𝑖
(𝑣𝑟)

]
= 𝑔𝑎𝑖𝑛𝐺𝑖𝑛𝑖 ( 𝑓 ) (1 − [)2 + 2[(1 − [) [𝑞 − 𝑎𝑞𝑙 − (1 − 𝑎)𝑞𝑟]
= 𝑔𝑎𝑖𝑛𝐺𝑖𝑛𝑖 ( 𝑓 ) (1 − [)2.

Thus, if 𝑔𝑎𝑖𝑛𝐺𝑖𝑛𝑖 ( 𝑓 1) > 𝑔𝑎𝑖𝑛𝐺𝑖𝑛𝑖 ( 𝑓 2), then 𝑔𝑎𝑖𝑛
[

𝐺𝑖𝑛𝑖
( 𝑓 1) > 𝑔𝑎𝑖𝑛

[

𝐺𝑖𝑛𝑖
( 𝑓 2). This means that a

maximizer of impurity gain (minimizer of Gini impurity) under the noise-free case will be
also a maximizer of gain under label noise in the large sample limit. Therefore, Proposition
1 holds under Assumption 1.

Second, we prove Proposition 2. Note 𝑔𝑎𝑖𝑛𝐺𝑖𝑛𝑖 ( 𝑓 ) ≤ 𝐺𝐺𝑖𝑛𝑖 (𝑣) as 𝐺𝐺𝑖𝑛𝑖 (𝑣𝑙) ≥ 0 and
𝐺𝐺𝑖𝑛𝑖 (𝑣𝑟) ≥ 0. Because 𝑔𝑎𝑖𝑛𝐺𝑖𝑛𝑖 ( 𝑓0) = 𝐺𝐺𝑖𝑛𝑖 (𝑣), 𝑓0 maximizes impurity gain at any node
under the noise-free case. Under Assumptions 1 and 3, Proposition 1 suggests 𝑓0 also maxi-
mizes gain at any node under label noise in the large sample limit. Set 𝑣 be the parent node
for the leaf node. When 𝑓0 is chosen, (𝑝𝑙 , 𝑝𝑟) = (1, 0) or (0, 1). Without loss of generality, set
(𝑝𝑙 , 𝑝𝑟) = (1, 0). In the large sample limit, (𝑝[

𝑙
, 𝑝

[
𝑟 ) = (1, [). Assumption 2 suggests [ < 0.5.

Therefore, the majority vote will assign a positive label to the left leaf node and a negative
label to the right leaf node as it will do so under the noise-free case.

Last, we prove Proposition 3. Under Assumptions 1 and 3, Propositions 1 suggests 𝑓0
maximizes impurity gain at any node both in the presence and absence of label noise in the
large sample limit. Therefore, in the large sample limit, at the root node, split 𝑓0 is selected
both in the presence and absence of label noise. In the absence of label noise, each child node
of the root node contains only positive or negative examples. Because the above analysis
suggests 𝑔𝑎𝑖𝑛𝐺𝑖𝑛𝑖 ( 𝑓0) is maximum impurity gain at each node under the noise-free case,
𝑔𝑎𝑖𝑛𝐺𝑖𝑛𝑖 ( 𝑓 ) ≤ 𝑔𝑎𝑖𝑛𝐺𝑖𝑛𝑖 ( 𝑓0) = 0 for any 𝑓 at each child node. Therefore, the tree will not grow
further and stops at depth 1 under the noise-free case. Without loss of generality, consider the
right child node contains only negative examples. In the presence of label noise, further split
of the right child node may improve Gini impurity as the node contains negative examples
mistakenly labelled as positive (the left child node only contains positive examples labelled
as positive, and there is no impurity gain by further split). However, the above analysis
suggests, at the right child node, 𝑔𝑎𝑖𝑛[

𝐺𝑖𝑛𝑖
( 𝑓 ) = 𝑔𝑎𝑖𝑛𝐺𝑖𝑛𝑖 ( 𝑓 ) (1− [)2 ≤ 𝑔𝑎𝑖𝑛𝐺𝑖𝑛𝑖 ( 𝑓0) (1− [)2 = 0

for any 𝑓 , meaning that further split does not improve Gini impurity in the large sample
limit. Therefore, in the large sample limit, the tree will not grow further and stops at depth
1 under label noise as well. If Assumptions 1 through 3 are met, Proposition 2 suggests, in
the large sample limit, the label of the leaf node predicted by the majority vote under label
noise is the same as the one under the noise-free case. Thus, in the large sample limit, the
prediction made by the tree with depth 1 characterized by split 𝑓0 is the same as the one by
the tree learnt under label noise.
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Propositions 1 through 3 suggest that if Assumptions 1 through 3 are met, each tree in a

random forest classifier based on Gini impurity is the same as the one that perfectly predicts

the auction format, at least in the large sample limit. Although some of these assumptions

are not directly testable, we can still check whether the result of our random forest analysis

appears consistent with Propositions 4. Table A.1 shows that the correct positive for a

random forest model lower than the correct negative rate (which is close to 1). This result

is consistent with Proposition 4.30 The result of our random forest analysis hence appears

consistent with the model implication under these assumptions. Given Proposition 5, it is

plausible that auctions predicted by our random forest classifier as the one in which the

lowest bidder wins are first-price auctions.

A.2.4 Results Using Alternative Scaling

We here show the bid difference histogram using different subsets of sample auctions and

scalings. First, the top panel in Figure A.3 shows similar histograms when looking across

auctions with different numbers of bids. Second, the bottom panels in Figure A.3 show

similar patterns without any scaling or with scaling bid differences by the difference between

the maximum and minimum bids (as opposed to the standard deviation).

A.2.5 Coordinated Versus Competitive Bids

We also consider the relation between identical bidding and bid levels. We regress all bids on

the indicator for identically submitted bids while controlling for auction fixed effects. Then,

we compute the gap between identically submitted and other bids while removing auction-

specific effects. Table A.3 reports the regression results. We find identically submitted bids

are around S$17,400—or 14%— lower than others. For both specifications, our estimates

30We can also examine whether the estimate of [ based on observed sensitivity (73%) and fraction of auctions
predicted as the one in which the lowest bidder wins (40%) is consistent with Assumption 2. Notice
𝑃[ 𝑓0 (𝑥𝑖) = +1|𝑦𝑖 = +1] = 𝑃[ 𝑓0 (𝑥𝑖) = +1]/(𝑃[ 𝑓0 (𝑥𝑖) = +1] + [𝑃[ 𝑓0 (𝑥𝑖) = −1]). Therefore, [ = 𝑃[ 𝑓0 (𝑥𝑖) =

+1] (1/𝑃[ 𝑓0 (𝑥𝑖) = +1|𝑦𝑖 = +1] −1)/𝑃[ 𝑓0 (𝑥𝑖) = −1] = 0.40(1/0.73−1)/0.6 = 0.247. The estimate of [ is 24.7%
and smaller than 50%. This result is consistent with Assumption 2.
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are statistically significant at the 5% level.

Table A.3: Coordinated Versus Competitive Bids
The table below shows the relation between identical bidding and bid levels. Observations are at the bid
level. The dependent variable in column (1) is the bid amount in dollars and for column (2) is the log bid
amount. Identical is an indicator variable taking the value of one if a bid is duplicated in an auction. All
dependent variables are winsorized at the 1% level. All regressions include auction fixed effects. Standard
errors are clustered by auction and shown in parentheses. * denotes p < 0.10, ** denotes p < 0.05, and ***
denotes p < 0.01. The coefficient and standard error in column (1) is rounded to the nearest integer to save
space.

Dependent Variable: Bid Amount Log Bid Amount
(1) (2)

Identical -17,415** -0.136***
(8,465) (0.016)

Observations 47,495 47,495
𝑅2 0.950 0.920
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Figure A.3: Distribution of Bid Differences with Different Number of Bidders and Normalizations

The top figure below shows the histogram based on auctions with different numbers of bidders. The two bottom figures below show the histogram based on auctions having
more than three bidders with different scalings. We compute the difference between two sampled bids and make it either unscaled or scaled by the range of bids, where the
range of bids is the maximum of all bids in the auction minus the minimum of all bids in the auction.
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A.3 Robustness for Structural Analysis

For robustness check, we use the subsamples that are predicted by our random forest model

as first-price auctions and allocate contracts to lowest bidders for our structural analysis.

Except for this change, we follow the same procedure used in our benchmark analysis. Figure

A.4 reports the results based on the alternative subsamples. We attain similar results as

benchmark ones.
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Figure A.4: The Simulation Outcome of Excluding Ownership Network Effects (Robustness)

In every panel, black dots stand for point estimates and their associated intervals represent corresponding
95% confidence intervals based on bootstrap. We present the estimated effect of excluding the link between
the presence of second-degree or fourth-degree current-shareholder connections and identical bidding on the
winning bid in the top left panel, the effect on the winner’s cost in the top right panel, the corresponding
government savings in the bottom left panel, and the corresponding firm gains in the bottom right panel.
Sub-Figure A.4a uses the reduced-form evidence in Table 2 Panel A column (1) and Sub-Figure A.4b uses
the reduced-form evidence in Table 2 Panel A column (2).
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A.4 Falsification Test and Confounding Variables

We (1) conduct a falsification test by randomizing ownership connections within procure-

ment type (goods, services, or construction), (2) show empirical results using the number

of ownership connections rather than the indicators for the presence of at least one pair of

connected firms, and finally, (3) consider additional variables addressing whether common

owners or other relations appear to generate our observed results.

Figure A.5 shows that the estimated effect reported in the paper, denoted by the dotted

vertical line, is statistically significant at all standard levels compared to the histogram of

estimates from the falsification exercise for common owners, and it has a boot-strapped two-

sided p-value of 0.12 for common owners’ owners. Taken together, this suggests that our

main estimated effects do not appear simply due to spurious correlation.
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Figure A.5: Falsification

The figure below shows the histogram based on 5,000 simulated effects for Common Owners and
Common Owner’s Owners corresponding to 𝛽 (2) and 𝛽 (4) , respectively. Each simulation draws connections
for every auction from the same procurement type with replacement.
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Next, Table A.4 reports the empirical results using the number of ownership connections

rather than the indicators for the presence of at least one pair of connected firms and shows

the results are similar to those in Table 2. We continue to find statistically significant

relationships between the number of pairs of firms in an auction with common owners and

the number of ineffective bids, and also between the number of pairs of firms in an auction

with common owners’ owners and the number of ineffective bids. This suggests that our

main estimated effects are robust to the alternative measure of ownership connections.
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Table A.4: Number of Ownership Connections and Identical Bidding

The table below shows the relation between the number of shareholder connections between participating firms and the number
of ineffective bids in an auction. Num. Common Owners and Num. Common Owners’ Owners correspond to the second-
and fourth-degree current shareholder connections, respectively, and are all defined as the number of such pairwise owner
connections in the auction. Column (1) uses all eligible auctions, columns (2) and (3) exclude auctions where the median
bid is more than S$50,000 and S$100,000, respectively, column (4) excludes construction-type auctions, column (5) excludes
procurers related to infrastructure and development including the Economic Development Board, Housing and Development
Board (which constructs all public housing in Singapore), Building and Construction Authority, Land Transport Authority,
Maritime and Port Authority of Singapore, Public Transport Council, and Sentosa Development Corporation, and column (6)
excludes both construction-type auctions as well as agencies related to infrastructure and development. All regressions include
procurer-by-auction type fixed effects as well as cubic controls of the log number of bidders and the average roundedness of bids
in an auction, whose coefficients are suppressed for space. Standard errors are clustered by procurer and shown in parentheses.
* denotes p < 0.10, ** denotes p < 0.05, and *** denotes p < 0.01.

Dependent Variable: Num. Ineffective Bids

(1) (2) (3) (4) (5) (6)

Num. Common Owners 0.407*** 0.463*** 0.431*** 0.383*** 0.417*** 0.393***

(0.046) (0.066) (0.046) (0.042) (0.042) (0.044)

Num. Common Owners’ Owners 0.325*** 0.273*** 0.307*** 0.327*** 0.307*** 0.306***

(0.081) (0.062) (0.073) (0.080) (0.078) (0.077)

Sample Full Median Bid Median Bid Excl. Excl. Dev. Excl. Const. &

< 50,000 < 100,000 Const. Agencies Dev. Agencies

Observations 9,087 6,859 8,187 8,358 8,185 7,581

𝑅2 0.315 0.353 0.337 0.333 0.317 0.331

Last, Table A.5 reports the estimated relationship between the number of ineffective

bids and the presence of common owners as well as other common stakeholder relationships.

Other common stakeholder relationships correlate negatively with the number of ineffective

bids, while other common stakeholders’ stakeholders do not show any statistically significant

relationship with identical bidding. However, the main estimated effects of common owners

and common owners’ owners appear similar to those in Table 2. This suggests that our main

estimated effects are not driven by confounding common stakeholder relationships.
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Table A.5: Non-Shareholder Connections and Identical Bidding

The table below shows the relation between the number of stakeholder connections of different types between participating
firms and the number of ineffective bids in an auction. Common owners and common owners’ owners correspond to the second-
and fourth--degree current shareholder connections, respectively, and are all defined as an indicator taking the value of one if
there is at least one such owner connection in the auction. Other common stakeholders include common corporate directors,
auditors, and secretaries and are also defined as an indicator taking the value of one if there is at least one such relationship. All
regressions include procurer-by-auction type fixed effects as well as cubic controls of the log number of bidders and the average
roundedness of bids in an auction, whose coefficients are suppressed for space. Standard errors are clustered by procurer and
are shown in parentheses. * denotes p < 0.10, ** denotes p < 0.05, and *** denotes p < 0.01.

Dependent Variable: Num. Ineffective Bids

(1) (2) (3)

Common Owners 0.444*** 0.444***

(0.069) (0.069)

Other Common Stakeholders -0.208*** -0.211***

(0.053) (0.053)

Common Owners’ Owners 0.301*** 0.317***

(0.085) (0.081)

Other Common Stakeholders’ Stakeholders -0.030 -0.020

(0.175) (0.127)

Observations 9,087 9,087 9,087

𝑅2 0.309 0.302 0.309

A.5 Rounding

We present summary statistics on the rounding of bids to different digits in Figure A.6. We

find clustering at 0’s and 5’s. This summary provides the frequency of rounding. We find

that while 69% of bids above S$10 appear rounded to the nearest S$10, almost 60% of the

bids above S$100 are not rounded to the nearest S$100, suggesting that a large number of

bids actually appear to have fairly detailed bids.
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Figure A.6: Round Numbers in Bids

The figure below shows the histogram of trailing numbers in bids, shown for all bids. A 10-digits unit value
of “NA” means the bid did not end in an integer. In addition, the table shows the number of bids greater
than a particular digit and the probability that a bid appears rounded to that digit. For example, for digit
= 10,000, the table shows the number of bids above S$10,000 and counts the probability that a bid greater
than S$10,000 ends with “0,000.”
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X (digits) Pr (Bid Rounded to Nearest X | Bid > X) Num. Bid > X
10 0.696 47,222

100 0.417 47,098
1,000 0.161 46,347

10,000 0.043 35,791
100,000 0.039 6,265

1,000,000 0.020 2,044

We also examine the possibility that the observed link between ownership connections

and identical bidding can be explained by bid rounding. If connected firms have distinct but

similar costs and round bids to the same extent, identical bidding can occur mechanically. To

investigate this possibility, Table A.6 presents the estimates for equation (1) while redefining

ineffective bids as those explicitly not being rounded. If bid rounding drove our main results,

selecting outcome variables based on ineffective bids without rounding would generate null

results. However, we continue to observe results qualitatively similar to those in Table 2.
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Table A.6: Presence of Ineffective Bids, Rounding, and Ownership Networks

The table below shows the relation between the presence of shareholder connections between participating
firms and the presence of ineffective bids in an auction. Common owners and common owners’ owners
correspond to the second- and fourth-degree current shareholder connections, respectively, and are all defined
as an indicator taking the value of one if there is at least one such owner connection in the auction. In column
(1), the dependent variable is the presence of ineffective bids that are not rounded to the nearest S$100 and
the sample comprises auctions whose median bids are greater than S$100. In column (2), the dependent
variable is the presence of ineffective bids that are not rounded to the nearest S$1,000 and the sample
comprises auctions whose median bids are greater than S$1,000. In column (3), the dependent variable
is the presence of ineffective bids that are not rounded to the nearest S$10,000 and the sample comprises
auctions whose median bids are greater than S$10,000. All regressions include procurer-by-auction type
fixed effects as well as cubic controls of the log number of bidders and the average roundedness of bids in an
auction, whose coefficients are suppressed for space. Standard errors are clustered by procurer and shown in
parentheses.

Dependent Variable: 1{Ineffective Bids > 0}
Ineffective Type = Not Rounded to Not Rounded to Not Rounded to

S$100 S$1,000 S$10,000
(1) (2) (3)

Common Owners 0.076*** 0.076*** 0.064***
(0.015) (0.015) (0.024)

Common Owners’ Owners 0.199*** 0.199*** 0.396***
(0.059) (0.060) (0.092)

Sample Med. Bid > 100 Med. Bid > 1,000 Med. Bid > 10,000
Observations 9,003 8,898 6,961
𝑅2 0.305 0.306 0.289
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B Details of Structural Framework

B.1 Structural Analysis

First, we non-parametrically identify model primitives using subsample auctions in which

two firms submit identical bids and the other two submit competitive bids.31 Details of

selecting subsample auctions are described in Appendix B.2.

We use Krasnokutskaya (2011), where the cost to the type-𝑖 bid is characterized as the

product of a common component 𝑌 that is known to all firms and an individual component

𝑐𝑖 that is privately observable, i.e., 𝑌 × 𝑐𝑖. Under this condition, the equilibrium-bid function

takes a special functional form. In particular, for type 𝑖, the equilibrium-bid function is

𝐵𝑖 = 𝑌 × 𝜎𝑖 (𝑐𝑖), (6)

where 𝜎𝑖 (.) denotes the equilibrium-bid function for type 𝑖 where 𝑌 is 1. Let 𝑏𝑖 be the

corresponding equilibrium bid where 𝑌 is 1, that is, 𝑏𝑖 = 𝜎𝑖 (𝑐𝑖). Meanwhile, Paarsch and

Hong (2006) suggest:

𝑏𝑖 = 𝑐𝑖 +
(1 − 𝐺𝑖0(𝑏

𝑖)) (1 − 𝐺−𝑖
0 (𝑏𝑖))

𝑁𝐸−𝑖𝑔
−𝑖
0 (𝑏𝑖) (1 − 𝐺𝑖0(𝑏𝑖)) + (𝑁𝐸

𝑖
− 1)𝑔𝑖0(𝑏𝑖) (1 − 𝐺

−𝑖
0 (𝑏𝑖))

, (7)

where 𝑁𝐸
𝑖

(𝑁𝐸−𝑖) is the number of effective bids for type 𝑖 (the rival type of 𝑖), 𝐺𝑖0 (𝐺−𝑖
0 ) is

the CDF for the equilibrium-bid distribution of type 𝑖 (the rival type of 𝑖) where 𝑌 is 1, and

𝑔𝑖0 (𝑔−𝑖0 ) is the corresponding PDF for 𝐺𝑖0 (𝐺−𝑖
0 ).

Unfortunately, the presence of unobserved heterogeneity 𝑌 means 𝐺𝑖0 is unobservable and

only the joint distribution of 𝐵1 and 𝐵2 is observable. So, we start with removing 𝑌 from

𝐵1 and 𝐵2 to identify 𝑔10 and 𝑔20. Denoting the joint-characteristic function of ln(𝐵1) and

31Fixing the number of bidders for each type is needed for structural estimation. Observed bid distributions
vary by the size of a coalition and the number of competitive bids.
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ln(𝐵2) by 𝐶 (., .), 𝐶 (., .) is

𝐶 (𝜏1, 𝜏2) = 𝐸
{
exp

[
𝒊𝜏1 ln(𝐵1) + 𝒊𝜏2 ln(𝐵2)

]}
, (8)

where 𝒊 denotes the imaginary number
√
−1. Then, the deconvolution method allows us to

derive the characteristic function of ln(𝑌 ), ln(𝑏1), and ln(𝑏2) by

𝐶ln(𝑌 ) (𝜏) = exp

[∫ 𝜏

0
𝐶1(0, 𝑢2)/𝐶 (0, 𝑢2)𝑑𝑢2 − 𝒊𝜏𝐸{ln(𝑏1)}

]
,

𝐶ln(𝑏1) (𝜏) = 𝐶 (𝜏, 0)/𝐶ln(𝑌 ) (𝜏),

𝐶ln(𝑏2) (𝜏) = 𝐶 (0, 𝜏)/𝐶ln(𝑌 ) (𝜏), (9)

where 𝐶1(·, ·) is the partial derivative of 𝐶 (·, ·) with respect to the first argument. Without

loss of generality, we normalize 𝐸{ln(𝑏1)} to zero. Then, the PDF of ln(𝑌 ), ln(𝑏1), and

ln(𝑏2) is recovered by

𝑓ln(𝑌 ) (𝑥) =
1

2𝜋

∫ ∞

−∞
exp(−𝒊𝜏𝑥)𝐶ln(𝑌 ) (𝜏)𝑑𝜏,

𝑓ln(𝑏𝑖) (𝑥) =
1

2𝜋

∫ ∞

−∞
exp(−𝒊𝜏𝑥)𝐶ln(𝑏𝑖) (𝜏)𝑑𝜏. (10)

Through a change of variable formula, we obtain:

𝑓𝑌 (𝑦) =
1

𝑦
𝑓ln(𝑌 ) (ln(𝑦)),

𝑔𝑖0(𝑏
𝑖) =

1

𝑏𝑖
𝑓ln(𝑏𝑖) (ln(𝑏𝑖)). (11)

Hence, 𝑓𝑌 , 𝑔10, and 𝑔20 are identified from the joint distribution of 𝐵1 and 𝐵2. 𝐹𝑌 , 𝐺1
0, and 𝐺2

0

are constructed from 𝑓𝑌 , 𝑔10, and 𝑔20. Given 𝑔10, 𝑔
2
0, 𝐺

1
0, 𝐺

2
0, 𝑁

𝐸
1 , and 𝑁𝐸2 , equation (7) allows

us to identify the PDFs and CDFs of the distributions for 𝑐1 and 𝑐2: 𝑓 10 , 𝑓 20 , 𝐹1
0 , and 𝐹2

0 .

We follow the method of non-parametric estimation developed by Hickman and Hubbard

(2015) that employs boundary-correction techniques. Estimated distributions of 𝑔𝑖0, 𝑓
𝑖
0, 𝐺

𝑖
0,
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and 𝐹𝑖0 are denoted by 𝑔𝑖0, 𝑓
𝑖
0, 𝐺

𝑖
0, and 𝐹𝑖0. Appendix B.3 provides additional details on the

estimation procedure, and Figures B.2 and B.3 present the results of estimations.

Second, following Hubbard and Paarsch (2014), we compute the inverse equilibrium-bid

function as the solution of the system of ordinary differential equations for auction 𝑗 :


𝑑𝜎−1

1 (𝑏)
𝑑𝑏

𝑑𝜎−1
2 (𝑏)
𝑑𝑏

 =


1−𝐹1

0 (𝜎
−1
1 (𝑏))(

𝑁𝐸
𝑗,1+𝑁

𝐸
𝑗,2−1

)
𝑓 10 (𝜎

−1
1 (𝑏))

𝑁𝐸
𝑗,2 (𝜎

−1
2 (𝑏)−𝜎−1

1 (𝑏))+𝑏−𝜎−1
2 (𝑏)

(𝑏−𝜎−1
2 (𝑏)) (𝑏−𝜎−1

1 (𝑏))

1−𝐹2
0 (𝜎

−1
2 (𝑏))(

𝑁𝐸
𝑗,2+𝑁

𝐸
𝑗,1−1

)
𝑓 20 (𝜎−1

2 (𝑏))

𝑁𝐸
𝑗,1 (𝜎

−1
1 (𝑏)−𝜎−1

2 (𝑏))+𝑏−𝜎−1
1 (𝑏)

(𝑏−𝜎−1
1 (𝑏)) (𝑏−𝜎−1

2 (𝑏))

 , (12)

with the initial and boundary value conditions: 𝜎−1
1 (𝑐) = 𝜎−1

2 (𝑐) = 𝑐 and 𝜎−1
1 (𝑏) = 𝜎−1

2 (𝑏) =

𝑐, where 𝑐 (𝑐) denotes the estimate for the common lower (upper) bound of the pseudo-cost

distribution,32 𝑏 is the common lower bound for the equilibrium bid, and 𝑁𝐸
𝑗,𝑖

denotes the

number of effective bids for type 𝑖. We solve the system using the numerical methods de-

veloped by Bajari (2001), first using the shooting algorithm (the “first” method of Bajari

(2001)) to acquire the initial proposal for the subsequent routine and then using the pro-

jection algorithm based on polynomial approximation (the “third” method of Bajari (2001))

with the initial proposal we acquired in the previous step. We solve the system for every

pair of 𝑁𝐸
𝑗,1 and 𝑁𝐸

𝑗,2, where 3 ≤ 𝑁𝐸
𝑗,1 ≤ 5 and 0 ≤ 𝑁𝐸

𝑗,2 ≤ 2. Appendix B.4 provides more

detail on the estimation procedure.33

B.2 Subsample Selection

To utilize Krasnokutskaya (2011), we use subsamples in our sample auctions for our structural

estimation. Among our sample auctions in which at most two firms submit identical bids,

we focus on auctions in which submitted values are moderate by excluding auctions where

the winning bid is below S$10,000 or above S$30,000. In addition, we restrict our focus on

"Open Quotation" tenders to homogenize participation constraints across auctions in our

subsamples. Then, we restrict to 𝑁𝐸1 = 2 and 𝑁𝐸2 = 1, leaving us 65 subsample auctions.

32As in Bajari (2001) and Hubbard and Paarsch (2014), we assume that the support of the pseudo-cost
distribution is identical across types.

33As an example, Figure B.4 shows the inverse equilibrium-bid functions when 𝑁𝐸
𝑗,1 = 4 and 𝑁𝐸

𝑗,2 = 1.
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The median winning bid for our subsample auctions is S$16,000, which almost matches the

median winning bid for our sample auctions. After this procedure, we exclude outliers from

the sample as in Asker (2010). Figure B.1 shows outliers in the sample. After excluding

outliers, our subsamples comprise 62 auctions.

B.3 Estimation Procedure

Our estimation procedure consists of the following steps:

1. 𝐵𝑖
𝑚𝑖 ,𝑙

denotes the 𝑚𝑖-th bid in auction 𝑙 for type 𝑖 that we observe from our bid

data. The log transformation of bid data is performed to obtain 𝐿𝐵𝑖
𝑚𝑖 ,𝑙

= ln(𝐵𝑖
𝑚𝑖 ,𝑙

), where

𝑚1 ∈ {1, ..., 𝑁𝐸1 } and 𝑚2 ∈ {1, ..., 𝑁𝐸2 }, for each auction 𝑙 we use to recover the pseudo cost

distributions. We rank 𝐵𝑖
𝑚𝑖 ,𝑙

such that 𝐵𝑖
𝑥,𝑙
< 𝐵𝑖

𝑥 ′,𝑙 , where 𝑥 < 𝑥′.

2. The joint-characteristic function of an arbitrary pair (𝐿𝐵1
𝑚1,𝑙

, 𝐿𝐵2
𝑚2,𝑙

) is estimated by

𝐶 (𝜏1, 𝜏2) =
1

𝑁𝐸1 𝑁
𝐸
2

∑︁
1≤𝑚1≤𝑁𝐸

1 ,1≤𝑚2≤𝑁𝐸
2

1

𝐿

𝐿∑︁
𝑙=1

exp(𝒊𝜏1𝐿𝐵1𝑚1,𝑙
+ 𝒊𝜏2𝐿𝐵

2
𝑚2,𝑙

),

where 𝐿 is the number of auctions we use for estimation. Then, we acquire the estimates of

characteristic functions as

𝐶ln(𝑌 ) (𝜏) = exp

[∫ 𝜏

0
𝐶1(0, 𝑢2)/𝐶 (0, 𝑢2)𝑑𝑢2

]
,

𝐶ln(𝑏1) (𝜏) = 𝐶 (𝜏, 0)/𝐶ln(𝑌 ) (𝜏),

𝐶ln(𝑏2) (𝜏) = 𝐶 (0, 𝜏)/𝐶ln(𝑌 ) (𝜏).

3. The inversion formula is used to estimate densities 𝑓ln(𝑌 ) , 𝑓ln(𝑏𝑖) , 𝑖 = 1, 2, as

𝑓ln(𝑌 ) (𝑢𝑦) =
1

2𝜋

∫ 𝑇ln(𝑌 )

−𝑇ln(𝑌 )

𝑑𝑇ln(𝑌 ) (𝜏) exp(−𝒊𝜏𝑢𝑦)𝐶ln(𝑌 ) (𝜏)𝑑𝜏,

𝑓ln(𝑏1) (𝑢1) =
1

2𝜋

∫ 𝑇ln(𝑏1)

−𝑇ln(𝑏1)
𝑑𝑇ln(𝑏1) (𝜏) exp(−𝒊𝜏𝑢1)𝐶ln(𝑏1) (𝜏)𝑑𝜏,

𝑓ln(𝑏2) (𝑢2) =
1

2𝜋

∫ 𝑇ln(𝑏2)

−𝑇ln(𝑏2)
𝑑𝑇ln(𝑏2) (𝜏) exp(−𝒊𝜏𝑢2)𝐶ln(𝑏2) (𝜏)𝑑𝜏,
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where 𝑢𝑦 ∈ [𝐿𝑌, 𝐿𝑌 ], 𝑢𝑖 ∈ [𝐿𝑏, 𝐿𝑏], 𝑖 = 1, 2, and 𝑇ln(𝑌 ), 𝑇ln(𝑏1), 𝑇ln(𝑏2) are smoothing pa-

rameters. Following Krasnokutskaya (2011), we introduce a damping factor 𝑑𝑇 (𝜏) defined

as 𝑑𝑇 (𝜏) = max{1 − |𝜏 |/𝑇, 0} in the inversion formula. Through a change in the variable

formula, we obtain

𝑓𝑌 (𝑦) =
1

𝑦
𝑓ln(𝑌 ) (ln(𝑦)),

𝑔𝑖0(𝑏
𝑖) =

1

𝑏𝑖
𝑓ln(𝑏𝑖) (ln(𝑏𝑖)).

Then, 𝐺𝑖0 is constructed from 𝑔𝑖0. We estimate the inverse equilibrium-bid function as

b̂𝑖 (𝑏𝑖) = 𝑏𝑖 −
(1 − 𝐺𝑖0(𝑏

𝑖)) (1 − 𝐺−𝑖
0 (𝑏𝑖))

𝑁𝐸−𝑖𝑔
−𝑖
0 (𝑏𝑖) (1 − 𝐺𝑖0(𝑏𝑖)) + (𝑁𝐸

𝑖
− 1)𝑔𝑖0(𝑏𝑖) (1 − 𝐺

−𝑖
0 (𝑏𝑖))

.

To implement the above estimation, we need to determine the smoothing parameters and

the common support of bid distributions. As in Krasnokutskaya (2011) and Asker (2010),

we choose the smoothing parameters and the common support of bid distributions based on

the moment-matching method. Because the mean of ln(𝑏1) is zero by normalization, the
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estimates for the means and variances of ln(𝑌 ), ln(𝑏1), and ln(𝑏2) are

ˆ̀(ln(𝑌 )) =
1

𝑁𝐸1 𝐿

𝑁𝐸
1∑︁

𝑚1=1

𝐿∑︁
𝑙=1

𝐿𝐵1𝑚1,𝑙
,

𝑣(ln(𝑌 )) =
1

2(𝑁𝐸1 𝐿 − 1)

𝑁𝐸
1∑︁

𝑚1=1

𝐿∑︁
𝑙=1

𝐿𝐵1𝑚1,𝑙
−

∑𝑁𝐸
1

𝑚1=1

∑𝐿
𝑙=1 𝐿𝐵

1
𝑚1,𝑙

𝑁𝐸1 𝐿


2

+

1

2(𝑁𝐸2 𝐿 − 1)

𝑁𝐸
2∑︁

𝑚2=1

𝐿∑︁
𝑙=1

𝐿𝐵2𝑚2,𝑙
−

∑𝑁𝐸
2

𝑚2=1

∑𝐿
𝑙=1 𝐿𝐵

2
𝑚2,𝑙

𝑁𝐸2 𝐿


2

−

1

2(𝑁𝐸1 𝑁
𝐸
2 𝐿 − 1)

×

∑︁
1≤𝑚1≤𝑁𝐸

1 ,1≤𝑚2≤𝑁𝐸
2

𝐿∑︁
𝑙=1


(
𝐿𝐵1

𝑚1,𝑙
− 𝐿𝐵2

𝑚2,𝑙

)
−∑

1≤𝑚1≤𝑁𝐸
1

,1≤𝑚2≤𝑁𝐸
2

∑𝐿
𝑙=1

(
𝐿𝐵1

𝑚1 ,𝑙
−𝐿𝐵2

𝑚2 ,𝑙

)
𝑁𝐸
1 𝑁

𝐸
2 𝐿


2

,

𝑣(ln(𝑏1)) =
1

𝑁𝐸1 𝐿 − 1

𝑁𝐸
1∑︁

𝑚1=1

𝐿∑︁
𝑙=1

𝐿𝐵1𝑚1,𝑙
− 1

𝑁𝐸1 𝐿

𝑁𝐸
1∑︁

𝑚1=1

𝐿∑︁
𝑙=1

𝐿𝐵1𝑚1,𝑙


2

− 𝑣(ln(𝑌 )),

ˆ̀(ln(𝑏2)) =
1

𝑁𝐸2 𝐿

𝑁𝐸
2∑︁

𝑚2=1

𝐿∑︁
𝑙=1

𝐿𝐵2𝑚2,𝑙
− ˆ̀(ln(𝑌 )),

𝑣(ln(𝑏2)) =
1

𝑁𝐸2 𝐿 − 1

𝑁𝐸
2∑︁

𝑚2=1

𝐿∑︁
𝑙=1

𝐿𝐵2𝑚2,𝑙
− 1

𝑁𝐸2 𝐿

𝑁𝐸
2∑︁

𝑚2=1

𝐿∑︁
𝑙=1

𝐿𝐵2𝑚2,𝑙


2

− 𝑣(ln(𝑌 )).

Our choices for the smoothing parameters and the common support of bid distributions are

set to replicate these moments.

We also require the estimates of the inverse equilibrium-bid functions to be increasing in

bids for both types. Furthermore, we consider the estimated inverse equilibrium-bid functions

to be inadmissible if estimated pseudo costs are negative. Given these considerations, our
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choices for
{
𝐿𝑏, 𝐿𝑏, 𝑇ln(𝑏1) , 𝑇ln(𝑏2)

}
,
{
𝐿𝑏, ˆ̄𝐿𝑏, 𝑇ln(𝑏1) , 𝑇ln(𝑏2)

}
, satisfy

{
𝐿𝑏, ˆ̄𝐿𝑏, 𝑇ln(𝑏1) , 𝑇ln(𝑏2)

}
∈ arg min{

𝐿𝑏,𝐿𝑏,𝑇ln(𝑏1) ,𝑇ln(𝑏2)

} 𝑀𝑇
1𝑀1

s.t.
2∑︁
𝑖=1

𝐾∑︁
𝑛=0

[
1
{
𝑔𝑖0(𝑡𝑛) < 0

}
+ 1

{
b̂𝑖 (𝑡𝑛) < 0

}
+ 1

{
𝑑b̂𝑖 (𝑡𝑛) < 0

}]
≤ 0,

where we define the grid exp(𝐿𝑏) = 𝑡0 < 𝑡1 < ... < 𝑡𝐾−1 < 𝑡𝐾 = exp(𝐿𝑏) (𝐾 = 100 for our

reported results) and the moment gap 𝑀1 as

𝑀1 =



∫ 𝐿𝑏

𝐿𝑏
𝑢1 𝑓ln(𝑏1) (𝑢1)𝑑𝑢1 − 0∫ 𝐿𝑏

𝐿𝑏

[
𝑢1 −

∫ 𝐿𝑏

𝐿𝑏
𝑢1 𝑓ln(𝑏1) (𝑢1)𝑑𝑢1

]2
𝑓ln(𝑏1) (𝑢1)𝑑𝑢1 − 𝑣(ln(𝑏1))∫ 𝐿𝑏

𝐿𝑏
𝑢2 𝑓ln(𝑏2) (𝑢2)𝑑𝑢2 − ˆ̀(ln(𝑏2))∫ 𝐿𝑏

𝐿𝑏

[
𝑢2 −

∫ 𝐿𝑏

𝐿𝑏
𝑢2 𝑓ln(𝑏2) (𝑢2)𝑑𝑢2

]2
𝑓ln(𝑏2) (𝑢2)𝑑𝑢2 − 𝑣(ln(𝑏2))


.

The objective function captures the gap between predicted and observed moments. The first

term in the constraint represents the penalty against negative values of estimated densities for

𝑏1 and 𝑏2. The second term is the penalty against negative values of estimated pseudo costs,

whereas the third term represents the penalty against decreasing inverse equilibrium-bid

functions. Given the estimate
[
𝐿𝑏, ˆ̄𝐿𝑏

]
, the consistent estimator for the support of [𝐿𝑌, 𝐿𝑌 ]

becomes
[
min1≤𝑙≤𝐿{𝐿𝐵11,𝑙} − 𝐿𝑏,max1≤𝑙≤𝐿{𝐿𝐵12,𝑙} −

ˆ̄𝐿𝑏
]
. Let this interval be

[
𝐿𝑌, ˆ̄𝐿𝑌

]
.

Then, our choice for 𝑇ln(𝑌 ), ˆ𝑇ln(𝑌 ), satisfies

𝑇ln(𝑌 ) ∈ arg min
𝑇ln(𝑌 )

𝑀𝑇
2𝑀2 ,

s.t.
𝐾∑︁
𝑛=0

1
{
𝑓𝑌 (𝑡𝑛) < 0

}
+ 1

{
𝑇ln(𝑌 ) ≥ 50

}
≤ 0,

where we define the grid exp(𝐿𝑌 ) = 𝑡0 < 𝑡1 < ... < 𝑡𝐾−1 < 𝑡𝐾 = exp( ˆ̄𝐿𝑌 ) (𝐾 = 100 for our
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reported results) and the moment gap 𝑀2 as

𝑀2 =


∫ ˆ̄𝐿𝑌

𝐿𝑌
𝑢𝑦 𝑓ln(𝑌 ) (𝑢𝑦)𝑑𝑢𝑦 − ˆ̀(ln(𝑌 ))∫ ˆ̄𝐿𝑌

𝐿𝑌

[
𝑢𝑦 −

∫ ˆ̄𝐿𝑌

𝐿𝑌
𝑢𝑦 𝑓ln(𝑌 ) (𝑢𝑦)𝑑𝑢𝑦

]2
𝑓ln(𝑌 ) (𝑢𝑦)𝑑𝑢𝑦 − 𝑣(ln(𝑌 ))

 .
As in the previous optimization problem, the objective function captures the gap between

predicted and observed moments. The first term in the constraint represents the penalty

against negative value of the estimated density for ln(𝑌 ). The second term in the constraint

represents the penalty against large smoothing parameters that may result with the estimated

PDF possessing a wavy tail.

For the first optimization problem, we use [−0.4, 0.4] for the initial value of
[
𝐿𝑏, 𝐿𝑏

]
and arbitrary one of {3, 5, 7, 9, 11} for the initial value of 𝑇ln(𝑏𝑖). Regarding the second

optimization problem, we use arbitrary one of {5, 10, 15, 20} for the initial value of 𝑇ln(𝑌 ). For

each optimization, we first try every possible set of initial values and obtain local optima. We

then choose the one that minimizes the objective function without violating the constraint.

From this analysis, we find
[
𝐿𝑌, ˆ̄𝐿𝑌

]
= [9.71, 10.61],

[
𝐿𝑏, ˆ̄𝐿𝑏

]
= [−0.45, 0.40], 𝑇ln(𝑌 ) =

18.83, 𝑇ln(𝑏1) = 11.00, and 𝑇ln(𝑏2) = 11.00. Figure B.2 shows the distributions of auction-

specific and individual components of bid distributions based on this deconvolution process.

4. Using the estimated inverse equilibrium-bid function b̂𝑖 (𝑏𝑖), we estimate pseudo costs.

Then, 𝑓 𝑖0,𝑟𝑎𝑤 is the boundary-corrected KDE for the pseudo costs. 𝐹𝑖0,𝑟𝑎𝑤 is constructed

from 𝑓 𝑖0,𝑟𝑎𝑤. The support of 𝐹𝑖0,𝑟𝑎𝑤 is
[
b̂𝑖

(
exp

(
𝐿𝑏

))
, b̂𝑖

(
exp

(
ˆ̄𝐿𝑏

))]
. However, considering

the pseudo cost distributions have the common support, we replace the support of each

distribution by

[𝑐, 𝑐] =

[
max
1≤𝑖≤2

{
b̂𝑖

(
exp

(
𝐿𝑏

))}
, min
1≤𝑖≤2

{
b̂𝑖

(
exp

(
ˆ̄𝐿𝑏

))}]
.

Then, we adjust densities by 𝑓 𝑖0(𝑐
𝑖) = 𝑓 𝑖0,𝑟𝑎𝑤 (𝑐

𝑖)/
(
𝐹𝑖0,𝑟𝑎𝑤 (𝑐) − 𝐹

𝑖
0,𝑟𝑎𝑤 (𝑐)

)
. 𝐹𝑖0 is adjusted in

accordance with 𝑓 𝑖0. Figure B.3 shows the estimated pseudo cost distributions of type-1 and

67



type-2 bids on [𝑐, 𝑐] before this adjustment.

B.4 Numerical Method for Asymmetric Auctions

We combine the “first” and “third” methods of Bajari (2001) to solve equation (12). First,

we use the shooting algorithm to obtain the initial proposals for the subsequent estimations.

Let {𝑠1(𝑏; 𝑏), 𝑠2(𝑏; 𝑏)} be the solution of the system where 𝜎−1
1 (𝑏) = 𝜎−1

2 (𝑏) = 𝑐. Then, the

shooting algorithm consists of the following steps:

1. Fix 𝑏𝑙𝑜𝑤 = 𝑐 and 𝑏ℎ𝑖𝑔ℎ = 𝑐.

2. Set 𝑏𝑔𝑢𝑒𝑠𝑠 = 1
2 (𝑏𝑙𝑜𝑤 + 𝑏ℎ𝑖𝑔ℎ).

3. Determine whether the system {𝑠1(𝑏; 𝑏𝑔𝑢𝑒𝑠𝑠), 𝑠2(𝑏; 𝑏𝑔𝑢𝑒𝑠𝑠)} diverges, that is, whether it

is in 𝑆2, where 𝑆 = {𝑠 : 𝑠 is 𝐶1, 𝑠 : [𝑐, 𝑐] → [𝑐, 𝑐] and 𝑠(𝑏) < 𝑏 for all 𝑏 < 𝑐}.

4. If {𝑠1(𝑏; 𝑏𝑔𝑢𝑒𝑠𝑠), 𝑠2(𝑏; 𝑏𝑔𝑢𝑒𝑠𝑠)} is in 𝑆2, set 𝑏ℎ𝑖𝑔ℎ = 𝑏𝑔𝑢𝑒𝑠𝑠.

5. If {𝑠1(𝑏; 𝑏𝑔𝑢𝑒𝑠𝑠), 𝑠2(𝑏; 𝑏𝑔𝑢𝑒𝑠𝑠)} is not in 𝑆2, set 𝑏𝑙𝑜𝑤 = 𝑏𝑔𝑢𝑒𝑠𝑠.

6. If 𝑏ℎ𝑖𝑔ℎ − 𝑏𝑙𝑜𝑤 < 𝜖 , stop. Otherwise, go to step 2.

7. After the stop, set 𝑏𝑚𝑖𝑛 = 𝑏ℎ𝑖𝑔ℎ and 𝑏0 = 1
2 (𝑏𝑙𝑜𝑤 + 𝑏ℎ𝑖𝑔ℎ) .

Although Bajari (2001) proves {𝑠1(𝑏; 𝑏𝑚𝑖𝑛), 𝑠2(𝑏; 𝑏𝑚𝑖𝑛)} converges to the solution of the sys-

tem as 𝜖 → 0, this shooting mechanism is inherently unstable. The instability cannot

be eliminated by changing the numerical methodology of the solver (Fibich and Gavish,

2011) and becomes severe when the number of effective bids in the auction is large. In-

deed, {𝑠1(𝑏; 𝑏𝑚𝑖𝑛), 𝑠2(𝑏; 𝑏𝑚𝑖𝑛)} deviates from 𝑐 as 𝑏 → 𝑐 when the number of effective bids

is large, as presented in the left panel of Figure B.4. We fix this problem by using the

projection algorithm based on polynomial approximation. Specifically, we approximate the

inverse equilibrium-bid function by the polynomial of degree 4. The approximated inverse

68



equilibrium-bid function is

�̂�−1
𝑖 (𝑏;𝛼, 𝑏) =

4∑︁
𝑘=1

𝛼𝑖,𝑘 (𝑏 − 𝑏)𝑘 + 𝑐,

where 𝛼 = {𝛼𝑖,𝑘 }1≤𝑖≤2,1≤𝑘≤4. Then, the projection algorithm consists of the following steps.

1. Acquire the coefficients on 𝑏 − 𝑏0 for a polynomial of degree 4 that is a best fit

for 𝑠𝑖 (𝑏; 𝑏𝑚𝑖𝑛) − 𝑐 for each 𝑖. In this approximation, we use the closed interval on which
𝑑𝑠𝑖 (𝑏;𝑏𝑚𝑖𝑛)

𝑑𝑏
≥ 0 and 𝑠𝑖 (𝑏; 𝑏𝑚𝑖𝑛) ≤ 𝑏 for all 𝑏 on the interval. The interval starts at 𝑏𝑠𝑡𝑎𝑟𝑡 , where

𝑏𝑠𝑡𝑎𝑟𝑡 = 𝑏0 or 𝑠𝑖 (𝑏𝑠𝑡𝑎𝑟𝑡 − 𝜖 ; 𝑏𝑚𝑖𝑛) > 𝑏𝑠𝑡𝑎𝑟𝑡 − 𝜖 or 𝑑𝑠𝑖 (𝑏𝑠𝑡𝑎𝑟𝑡−𝜖 ;𝑏𝑚𝑖𝑛)
𝑑𝑏

< 0 for any 0 < 𝜖 < 𝜖 (𝜖 is

a certain threshold), and ends at 𝑏𝑒𝑛𝑑, where 𝑏𝑒𝑛𝑑 = 𝑐 or 𝑠𝑖 (𝑏𝑒𝑛𝑑 + 𝜖 ; 𝑏𝑚𝑖𝑛) > 𝑏𝑒𝑛𝑑 + 𝜖 or
𝑑𝑠𝑖 (𝑏𝑒𝑛𝑑+𝜖 ;𝑏𝑚𝑖𝑛)

𝑑𝑏
< 0 for any 0 < 𝜖 < 𝜖 (𝜖 is a certain threshold). If multiple such intervals exist,

we use the one that starts from the smallest 𝑏𝑠𝑡𝑎𝑟𝑡 . From this approximation, we obtain the

initial proposal {𝛼0, 𝑏0}.

2. We define the grid 𝑏 = 𝑡0 < 𝑡1 < ... < 𝑡𝐾−1 < 𝑡𝐾 = 𝑐 (𝐾 = 50 for our reported results).

Using {𝛼0, 𝑏0} as the initial proposal, we solve the estimates of {𝛼, 𝑏}, {�̂�, 𝑏}, satisfying

{�̂�, 𝑏} ∈ arg min
{𝛼,𝑏}

𝐾∑︁
𝑛=0

𝐷𝑇𝑛𝐷𝑛 + 𝑃
2∑︁
𝑖=1

(�̂�−1
𝑖 (𝑐;𝛼, 𝑏) − 𝑐)2,

where we define the gap between the right hand and left hand sides for the empirical coun-

terpart of equation (12) as

𝐷𝑛 =


𝑑�̂�−1

1 (𝑡𝑛;𝛼,𝑏)
𝑑𝑏

𝑑�̂�−1
2 (𝑡𝑛;𝛼,𝑏)
𝑑𝑏

 −


1−𝐹1
0 (�̂�

−1
1 (𝑡𝑛;𝛼,𝑏))

(𝑁𝐸
1 +𝑁𝐸

2 −1) 𝑓 10 (�̂�−1
1 (𝑡𝑛;𝛼,𝑏))

𝑁𝐸
2 (�̂�−1

2 (𝑡𝑛;𝛼,𝑏)−�̂�−1
1 (𝑡𝑛;𝛼,𝑏))+𝑡𝑛−�̂�−1

2 (𝑡𝑛;𝛼,𝑏)
(𝑡𝑛−�̂�−1

2 (𝑡𝑛;𝛼,𝑏)) (𝑏−�̂�−1
1 (𝑡𝑛;𝛼,𝑏))

1−𝐹2
0 (�̂�

−1
2 (𝑡𝑛;𝛼,𝑏))

(𝑁𝐸
2 +𝑁𝐸

1 −1) 𝑓 20 (�̂�−1
2 (𝑡𝑛;𝛼,𝑏))

𝑁𝐸
1 (�̂�−1

1 (𝑡𝑛;𝛼,𝑏)−�̂�−1
2 (𝑡𝑛;𝛼,𝑏))+𝑡𝑛−�̂�−1

1 (𝑡𝑛;𝛼,𝑏)
(𝑡𝑛−�̂�−1

1 (𝑡𝑛;𝛼,𝑏)) (𝑡𝑛−�̂�−1
2 (𝑡𝑛;𝛼,𝑏))

 .
We choose a sufficiently large 𝑃 such that the estimated inverse equilibrium-bid function

for each type converges enough to 𝑐 as 𝑏 → 𝑐 (𝑃 = 5, 000 for our reported results).

{�̂�−1
1 (𝑏; �̂�, 𝑏), �̂�−1

2 (𝑏; �̂�, 𝑏)} is the final estimate for the inverse equilibrium-bid function. We

estimate the inverse equilibrium-bid functions for every pair of 𝑁𝐸1 and 𝑁𝐸2 , where 3 ≤ 𝑁𝐸1 ≤ 5
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and 0 ≤ 𝑁𝐸2 ≤ 2.

The right panel of Figure B.4 shows that the final estimates of the inverse equilibrium-

bid functions converge enough to 𝑐, even when the number of effective bids in the auction

is relatively large. This finding suggests the instability problem of the shooting algorithm is

fixed by the projection algorithm based on polynomial approximation.

B.5 Confidence Intervals

We bootstrap confidence intervals by randomly drawing auctions from the original subsample

with replacement with the size equal to the number of auctions in the original subsample.

Then, we estimate 𝑓𝑌 , 𝑔
𝑖
0, 𝑓

𝑖
0, �̂�

−1
𝑖

(𝑏; �̂�, 𝑏),∀𝑖, using each resample. We repeat this process

500 times.

To reduce the computational burden, we use the same smoothing parameters and bid

bounds (𝐿𝑏, ˆ̄𝐿𝑏, 𝑇ln(𝑏1) , 𝑇ln(𝑏2) , 𝐿𝑌,
ˆ̄𝐿𝑌,𝑇ln(𝑌 )) for the estimates of 𝑓𝑌 , 𝑔𝑖0, 𝑓

𝑖
0,∀𝑖 and also skip

to the second step using the initial value used for the original subsample {𝛼0, 𝑏0} for the

estimates of �̂�−1
𝑖

(𝑏; �̂�, 𝑏),∀𝑖. If there remain resamples from which the minimized value of

the objective function minus the penalty term on the deviation from the terminal condition

exceeds 100, we use the initial value {𝛼0, 𝑏 𝑗+1} for these resamples, where 𝑏 𝑗+1 = 𝑏 𝑗 + 0.05.

We repeat this process three times.

Given 𝑓𝑌 , 𝑔
𝑖
0, 𝑓

𝑖
0, �̂�

−1
𝑖

(𝑏; �̂�, 𝑏),∀𝑖, we compute test statistics for each resample. Obtaining

the distributions of test statistics, we are able to construct their confidence intervals.
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Figure B.1: Outliers in the Subsample

The left (right) plot is the scatter plot of log type-1 bids that are the lowest (highest) among the two bids
and log type-2 bids. The outliers are represented by red circles.
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Figure B.2: Auction and Individual Components of Bid Distributions

The top panel plots 𝑓𝑌 . The bottom left panel plots 𝑔10, whereas the bottom right panel plots 𝑔20. The solid
lines depict the point estimates of the PDFs. The dotted lines show 5% and 95% point-wise quantiles of the
estimated distributions.

1.5 2 2.5 3 3.5 4 4.5
Auction component #104

0

0.5

1

1.5

P
ro

ba
bi

lit
y 

de
ns

ity

#10-4

0.6 0.8 1 1.2 1.4
Individual component (type 1)

0

0.5

1

1.5

2

P
ro

ba
bi

lit
y 

de
ns

ity

0.6 0.8 1 1.2 1.4
Individual component (type 2)

0

0.5

1

1.5

2

71



Figure B.3: Estimated Cost Distributions

The left panel plots 𝑓 10,𝑟𝑎𝑤 , whereas the right panel plots 𝑓 20,𝑟𝑎𝑤 . The solid lines depict the point estimates
of the PDFs. The dotted lines show 5% and 95% point-wise quantiles of the estimated distributions.
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Figure B.4: Inverse Equilibrium-Bid Functions

The left panel plots the initial proposals for the inverse equilibrium-bid functions, whereas the right panel
plots the final estimates for them (𝑁𝐸

1 = 4 and 𝑁𝐸
2 = 1).
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