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Abstract
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revenue or efficiency. I first introduce new metrics to quantify how much differential
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pare organizational hierarchies. Finally, I show that flatter, more differentiated, and
more “top-heavy” hierarchies induce less differential treatment, under various condi-
tions on the agents’ signal distributions. I discuss the implications of the results for
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1 Introduction

How does the structure of an organization, for instance a firm or a school district, determine
the extent to which we observe differential treatment of the agents within that organization?
I consider a setting where the organization observes signals of agents’ payoff-relevant types,
along with some non-payoff relevant characteristics, and must then assign the agents across
different tiers within its organizational structure in order to maximize revenue or efficiency.
In education and labor market contexts, such as school choice or hiring and promotions within
firm hierarchies, the participants may be treated differently based on their characteristics,
e.g. their ethnicity, gender, or other socio-economic status (SES) covariates. That is, an
agent’s assignment within the organizational structure, as a function of their signal, may
vary across characteristics. For example, when students are admitted to selective and non-
selective schools within a school district based on their admission test scores, admission
criteria may vary across socio-economic status. Similarly, when employees are hired or
promoted at different tiers within a firm based on their past productivity, assignments may
vary across gender depending on the firm’s gender equity policies.

The extent of differential treatment in such settings indirectly depends on the organization’s
structure. That is, the different tiers of the hierarchy and the number of positions within
tiers can systematically affect how much differential treatment one observes in the optimal
assignment that is induced by the organization’s objectives. Understanding this interaction
between organizational structure and assignment policies is worthwhile from both a descrip-
tive and a normative perspective. In the former sense, one would want to better understand
in which settings there may be more or less inequality in outcomes across agents’ charac-
teristics. In the latter sense, this question can inform the design of organizations so as to
reduce disparities and promote fairness.

To study these questions I develop a model based on the general and non-parametric dif-
ferential treatment framework of Temnyalov (2021). In this setup a principal (e.g. a school
district superintendent or a decision-maker in a firm) wants to assign agents (students or
employees) to different positions within the organization’s hierarchy (e.g. seats in selective
and non-selective schools within the district or jobs within the firm’s various employment
tiers). The principal’s objective is to maximize surplus (e.g. the social surplus generated
within the school district or the profit of the firm). The surplus that an agent generates
in any position depends on their type (a student’s ability or an employee’s productivity),
while the principal only observes a noisy signal of this type (e.g. a student’s admission test
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score or the past output of the employee), as well as some socio-economic or demographic
characteristics (e.g. household income, ethnicity or gender). While the latter are not directly
surplus-relevant, the mapping between agents’ types and signals can vary across characteris-
tics. The principal’s optimal policy therefore takes this into account, as the principal forms
beliefs about the agents’ types based on both their signals and their characteristics.

Temnyalov (2021) characterizes the optimal assignment policy in a setup with multiple or-
ganizational tiers and different capacities across tiers, and with no parametric assumptions
on the surplus function or on the distributions of agents’ types and signals. The optimal
assignment is monotone with respect to a particular benefit index, which measures the ex-
pected incremental gains from assigning an individual to a higher tier, but it is generally
not monotonic with respect to signals or types. This policy features differential treatment
because the distributions of types conditional on signals vary across characteristics. Agents
may be treated differently not only with respect to their signals, but also in terms of the
induced mapping between their unobserved types and their assignments. Hence differential
treatment can refer to both statistical discrimination and also to a surplus-maximizing policy
that compensates for statistical differences in the distributions of agents’ signals.

To understand the interaction between organizational structure and differential treatment,
the first challenge is how to quantify the latter. In this paper I introduce three metrics
which measure the extent of differential treatment in an organization from the perspective
of an observer who sees the agents’ signals and characteristics and their assignments. The
first metric compares across characteristics the signals of the marginal agents assigned to
each tier. The second metric compares across characteristics the signals of the representative
agents assigned to each tier. Finally, the third metric compares across characteristics the
summary statistics of the signals of all agents assigned to each tier.

Next, I introduce a taxonomy of organizational structures, which classifies them in terms
of how flat or how hierarchical they are. As special cases, this taxonomy also captures
the notions of “top-heavy” and “bottom-heavy” hierarchies. It enables me to compare the
three measures of differential treatment across organizations, in terms of how differentiated
positions are across the tiers of the organization.

I show that flatter organizations will generally display less differential treatment according to
all three of my metrics, under a condition on the agents’ signal distributions called monotone
signal differences. This condition means that agents from one category have increasingly
higher signals relative to agents from another category, conditional on having the same
benefit index. This condition is plausible in many contexts: for example, it can be satisfied
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when one group of agents is over-represented at higher signals, compared to another group
of agents. The result means that for any organizational tier at which signal differences are
positive, re-allocating positions upwards reduces the extent of differential treatment. For
any tier at which signal differences are negative, re-allocating positions downwards reduces
the extent of differential treatment. That is, there exists some intermediate reference tier,
such that flattening the organization relative to that tier induces less differential treatment.
In the context of a firm’s tiered employment structure, for example, this result suggests that
de-layering the firm’s hierarchy can reduce the gender gap.

I also show that if the agents’ categories or characteristics can be ordered, based on first-
order stochastic dominance of the conditional type distributions, then more “top-heavy”
organizational hierarchies induce less differential treatment. Specifically, the ordering over
characteristics requires that one group of agents has better type distributions (in the sense of
FOSD) than another group, conditional on them having the same signals. Such an assump-
tion can realistically apply to, for example, household income in a school admission setting.
That is, students with higher household income may have better access to test preparation,
and as a result, conditional on achieving the same admission test score, a higher-income
student may have a worse type distribution, compared to a lower-income student. In such
a setting, re-allocating positions upwards, i.e. making the hierarchy more top-heavy, always
reduces all three of my metrics of differential treatment. In the context of school admissions,
this result suggests that expanding the capacities of selective schools can systematically
reduce the inequality of access across socio-economic status.

Finally, these results imply that organizational design can be a useful policy tool to reduce
the extent of economic inequality. Organizations in many contexts have tried to reduce
disparities across agents directly, by adopting different assignment policies. For example, a
school district might adopt quotas and reserves for students of different socio-economic cat-
egories or an affirmative action policy for minority students, in order to address the under-
representation of some groups of students and reduce inequality in outcomes. Similarly, a
firm might adopt gender-based hiring and promotion policies in order to reduce disparities
between men’s and women’s positions in the organization. In such contexts, understand-
ing what organizational structures yield more or less differential treatment can enable the
organization to design its hierarchy in a way that inherently reduces the inequality that is
observed across socio-economic or demographic characteristics, above and beyond the impact
of any preferential treatment or affirmative action policies.
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2 Related literature

The main focus of this paper is to study how organizational structure affects differential
treatment. While previous work has studied different forms of differential treatment, such
as controlled school choice and statistical discrimination, these literatures generally assume
a fixed and stylized organizational structure. This is the first paper to study how differential
treatment varies across different organizational structures, from an economic perspective. I
explore this in a general and non-parametric theoretical framework, which allows for a wide
range of type and signal distributions, as well as different organizational hierarchies.

In the market design literature, papers on controlled school choice and other forms of differen-
tial treatment (Abdulkadiroğlu and Sŏnmez, 2003; Abdulkadiroğlu, 2005; Hafalir, Yenmez,
and Yildirim, 2013; Ehlers, Hafalir, Yenmez, and Yildirim, 2014) assume that the set of
schools and positions that students are matched to is an exogenous input into the matching
process. That is, the set of schools and their associated capacities or seats, which consti-
tute the organizational structure of a school district, are fixed. A natural next step is to
ask how the extent of differential treatment that is observed in a controlled school choice
setting would vary if the structure of the school district changed. Here, I consider this type
of question in an assignment game. In my model differential treatment arises endogenously,
rather than through fixed quotas or reserves. One can think of such quotas and reserves as
a particular implementation of some optimal assignment policy, but in my framework I can
more directly study the extent of differential treatment as a function of the set of schools
and positions. My main question here is how the optimal assignment of agents to positions
varies across different organizational structures, and in particular how the structure affects
the extent of differential treatment induced by the assignment policy.

Dur and Van der Linden (2021) are the first to study capacity design as a policy lever in
school choice, as opposed to an external input. The focus of this work however is different:
it studies how to re-allocate seats across schools based on students’ preferences, in a way
that is efficient and respects students’ priorities, whereas I consider how the structure of
capacities affects differential treatment.

A smaller subset of the school choice literature takes a similar approach to school district
priorities as I do here in terms of school district structure. Rather than considering pri-
orities as arbitrary inputs into the matching process, Ergin (2002) and Ehlers and Erdil
(2010), among others, ask what conditions on the priorities yield some desirable properties
such as efficiency and strategy-proofness; Dur, Kominers, Pathak, and Sönmez (2018) study

5



the design of the precedence order in which reserves are processed; and Celebi and Flynn
(2020) study the optimal design of coarse priorities that are derived from some finer input.
Here, I consider the school district’s structure in a similar way: I evaluate different possible
structures according to the extent of differential treatment they induce, and propose that
the structure itself can be viewed as a design instrument to reduce inequality.

This paper also relates to the literature on statistical differentiation, which is a form of dif-
ferential treatment. Starting with the seminal works of Phelps (1972) and Arrow (1973),
two strands of papers have explored how discrimination can arise in contexts such as edu-
cation or labor markets, based on exogenous or endogenous differences between groups of
agents. These include, among many others, Aigner and Cain (1977); Lundberg and Startz
(1983); Coate and Loury (1993); Mailath, Samuelson, and Shaked (2000); Moro and Norman
(2004)1 This literature generally considers a very stylized organizational structure, where for
example a firm either hires or does not hire a worker, as the main focus is on explaining
discrimination, rather than the effect of the firm’s hierarchy on discrimination. A small sub-
set of papers consider statistical discrimination in hierarchical settings: for example, Fryer
(2007) considers a two-tier firm and studies statistical discrimination in both hiring and
promotions; Bjerk (2008) considers a model with 3 tiers of jobs and also studies discrimina-
tion in promotions. While these papers model a firm hierarchy that consists of more than
a single tier of workers, they do not study how discrimination varies across different hierar-
chies, e.g. across hierarchies with different job tiers and different numbers of positions within
tiers. In contrast, here I introduce a taxonomy of organizational structures and compare the
extent of differential treatment across structures. This also suggests a role for deliberate
organizational design as a policy instrument to reduce discrimination.

Finally, this paper relates to several prominent findings in the management and economics
literatures on organizational structure and design. Previous empirical work has documented
a pattern of de-layering of firm hierarchies over time (Rajan and Wulf, 2006; Bloom and
Van Reenen, 2007; Colombo and Delmastro, 2008; Wulf, 2012, among others). A small
theoretical literature has sought to explain these developments: e.g., Rajan and Zingales
(2001) develop a model where the organizational hierarchy bifurcates into top and bottom
tiers, at the expense of a middle management tier. This is the first paper to consider the effect
of such organizational re-structuring on differential treatment, in an informational economics
framework where the principal may discriminate among agents based on non-payoff relevant
characteristics.

1Fang and Moro (2011) provide a comprehensive survey.
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3 Model

A principal (e.g. a decision-maker in a firm or a school district superintendent) wants to
assign agents (e.g. employees or students) to positions within an organizational structure.
There is a set of agentsN , with size |N | = n. The organization’s structure consists of multiple
tiers (e.g. job levels or different types of vertically differentiated schools, such as selective and
non-selective schools), denoted by P = (p1, ..., pm), with corresponding capacities (k1, ..., km),
which represent the number of positions within each tier. Without loss of generality I assume
that ∑

j kj ≥ n, as one can think of p1 as a null tier with unlimited capacity, which represents
not being assigned to any tier of the organization.

Each agent i ∈ N has an unknown type ti ∈ T , drawn from a distribution F , where the type
space T is an ordered set with discrete or continuous values. The principal observes each
agent’s characteristics, or the categories the agent belongs to, denoted xi ∈ X, where the
characteristics space X can be single- or multi-dimensional, can take discrete or continuous
values, and need not be ordered. The principal also observes a signal of the agent’s type,
si ∈ S, drawn from a distribution Fti,xi

, where the signal space S is an ordered convex set.
Here the agent’s type can represent the academic ability of a student or the productivity of an
employee, and the signal can represent the student’s admission test score or the employee’s
past output. Both the type and the signal therefore are naturally ordered. On the other
hand, the agent’s characteristics can represent both socio-economic status covariates (e.g. a
student’s household income) and demographic covariates (e.g. a student’s ethnicity or an
employee’s gender), so they need not be ordered.

An individual agent generates some ex post surplus that depends on their type and their
position, denoted by v : T ×P → R. This surplus can refer to either social surplus or profit,
depending on the setting. In the education context, it represents the social surplus generated
by admitting a student to a particular school; in the firm context, it represents the profit
that the employee generates when employed at a particular tier of the firm’s hierarchy. I
assume that v is increasing in both arguments and supermodular, i.e. v(t′′, p′′) + v(t′, p′) >
v(t′′, p′) + v(t′, p′′) for all t′′ > t′ and p′′ > p′. The latter means that the agent’s type and
their position are complements. This is a natural assumption in the education and labor
market contexts, and is also the usual assumption made in the literature. It ensures that
the first-best assignment, if types are observable, features positive assortative matching, i.e.
higher-type agents are optimally assigned to higher tiers.

The principal’s policy is an assignment that maps the agents’ observable signals and charac-
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teristics to organizational tiers, denoted by P : (X × S)n → ∆(P n). I denote by P(p|xi, si)
the distribution of agent i’s assignment and by p(xi, si) the agent’s realized assignment. Fur-
thermore, the signal distributions {Ft,x} and the assignment policy P jointly induce some
indirect assignment mapping A : T ×X → ∆(P ), where A(ti, xi) denotes the distribution of
agent i’s position as a function of their type and characteristics.2

The principal’s objective is to design a policy that maximizes the expected total surplus
from the assignment, subject to ex post feasibility:

max
P

∑
i

E[v(ti, p(xi, si))] =
∑
i

∑
j

∫
T
v(ti, pj)dF (ti|xi, si) · P(pj|xi, si) (1)

s.t. |{i : p(xi, si) = pj}| ≤ kj ∀j

In the education context, for example, this objective function means that the school district
wants to maximize the aggregate returns to education. In the labor market context, it means
that the firm seeks to maximize total profit.

3.1 Assumptions

To build onto the results in Temnyalov (2021), I make some assumption on the type and
signal distributions within and across characteristics. First, I assume the expected surplus

Vp,x(s) := E[v(t, p)|x, s]

is continuous in s. This is a mild technical assumption, because it is only imposed conditional
on x. That is, the agent’s expected surplus in position p varies smoothly as a function of
their signal s, holding x constant.3

Second, I assume that the family of signal distributions {Ft,x} satisfies the strict monotone
likelihood ratio property (MLRP) in t, for fixed x. I.e. for s′′ > s′, the ratio of the densities
ft,x(s′′)
ft,x(s′) is increasing in t, conditional on x, whenever it is well-defined. This assumption
is standard in the information economics literature and is natural in the education and
labor market contexts. It ensures that an agent with a higher signal has a higher type

2To simplify the notation I omit the dependence of P(·), p(·) and A(·) on {(xj , sj)}j∈N\i, except when
necessary for clarity.

3Because Ft,x can vary across x, two arbitrarily similar signals s and s′ for agents with different char-
acteristics x and x′ can imply discontinuously different expected surpluses; however, here the continuity
assumption is only imposed for agents with the same characteristics, so it is much less demanding.
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distribution, in the sense of first-order stochastic dominance (FOSD). Specifically, following
Milgrom (1981), this assumption implies that F (t|x, s′′) �FOSD F (t|x, s′) when s′′ > s′.4

Third, I assume characteristics are comparable, as in Temnyalov (2021). Specifically:

Definition 1. Categories x and x′ are comparable if for any s ∈ S one of the following cases
holds:

(i) ∃s′ ∈ S s.t. Vp,x(s)− Vp′,x(s) = Vp,x′(s′)− Vp′,x′(s′)∀p, p′;
(ii) ∀s′ ∈ S, Vp,x(s)− Vp′,x(s) ≥ Vp,x′(s′)− Vp′,x′(s′)∀p and p′ < p;
(iii) ∀s′ ∈ S, Vp,x(s)− Vp′,x(s) ≤ Vp,x′(s′)− Vp′,x′(s′)∀p and p′ < p.

While the previous assumptions hold within characteristics, comparability is an assumption
on how signals relate across characteristics. It requires that signals can be compared for
agents with different characteristics in terms of the expected surplus that they correspond
to, and these comparisons are uniform across different tiers of the organization. Here, agents
are compared with respect to their expected incremental gains from being assigned to a tier
p rather than another tier p′, i.e. Vp,x(s)− Vp′,x(s) = E[v(t, p)|x, s]− E[v(t, p′)|x, s].

Specifically, the first case above means that an agent with characteristics x and signal s
has the same expected incremental surplus from being assigned to p rather than p′ as an
agent with characteristics x′ who has some (possibly different) signal s′. In this sense the
two agents with (x, s) and (x′, s′) are equivalent, because they have the same expected
incremental surplus, regardless of which two tiers p, p′ one uses to carry out the comparison.
The second case means that an agent with characteristics x and signal s has larger expected
incremental surplus than an agent with characteristics x′ and any possible signal s′. This
again holds regardless of which tiers p, p′ one uses to carry out the comparison. Analogously,
the third case means that an agent with (x, s) has smaller expected incremental surplus than
an agent with (x′, s′), across all p, p′ that one can carry out the comparison with. Taken all
together, the three cases mean that (x, s) can be compared to any (x′, s′) in a way that is
uniform across any two tiers p and p′.5

Comparability is satisfied in many commonly studied settings. For example, Temnyalov
(2021) shows that it holds when the organizational tiers are binary, i.e. P = {p1, p2} (for

4This assumption is also only imposed within characteristics, i.e. conditional on a fixed x, which makes
it much less demanding than if it were imposed across characteristics. Because Ft,x can vary across x, this
allows for some F (t|x′, s′) to first-order stochastically dominate F (t|x′′, s′′) even if s′ < s′′, when x′ 6= x′′.

5Further details and interpretations of comparability are provided in Temnyalov (2021), including two
examples described in Figure 1 and in Example 1 in that paper.
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instance, when a school district chooses to assign students to selective and non-selective
schools); or when the surplus function v(t, p) is multiplicatively separable, as in many mech-
anism and market design models; or when the signal distributions {Ft,x} are pairwise equiv-
alent in a specific sense (Temnyalov, 2021, Definition 3).

3.2 Preliminaries

Before considering how differences across characteristics are reflected in the optimal assign-
ment policy, I first formally define and distinguish differential treatment with respect to
signals and types.

Definition 2. Consider two assignment distributions P(p|(xi = x, si = s), {(xj, sj)}j∈N\i) and
P(p|(xi = x′, si = s), {(xj, sj)}j∈N\i), which differ only based on agent i’s characteristics.

Categories x and x′ are treated differently with respect to signals if for some s ∈ S and
{(xj, sj)}j∈N\i, P(p|(xi = x, si = s), {(xj, sj)}j∈N\i) 6= P(p|(xi = x′, si = s), {(xj, sj)}j∈N\i).

Categories x and x′ are treated differently with respect to types if for some t ∈ T and
{(xj, sj)}j∈N\i, A(ti = t, xi = x|{(xj, sj)}j∈N\i) 6= A(ti = t, xi = x′|{(xj, sj)}j∈N\i).

The optimal policy which maximizes the organization’s value is given by the following result,
adapted from Temnyalov (2021).6

Proposition 1. Under the assumptions above, the optimal policy P ∗ assigns agents to tiers as-
sortatively with respect to a benefit index defined by r(x, s) := E[v(t, pm)|x, s]−E[v(t, pm−1)|x, s].

This optimal assignment policy features differential treatment for two distinct reasons. On
one hand, signals may be biased for some categories of agents. For example, a signal s for
an agent with characteristics x may correspond to the same benefit index as a signal s′ for
an agent with different characteristics x′. When s > s′ the signal is biased upwards for
category x, while when s < s′ the signal is biased downwards for category x. In such cases
the optimal policy features differential treatment with respect to the agents’ signals. The
benefit index corrects for the signal differences across categories, because the comparison of
expected incremental gains for agents with different characteristics can directly account for

6The optimal assignment rule is deterministic, except for special cases that require tie-breaking among
surplus-equivalent agents. To simplicity the exposition here I will assume that there are no such ties, as
these do not affect the analysis.
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biases. In particular, if signals are biased downwards for a category x relative to x′, then
category x is treated more favorably by the optimal policy, because the benefit index is larger
for x, conditional on the same signal s for category x′.

On the other hand, differential treatment may also arise because signals are differentially
informative. For example, suppose category x has noisier signals than category x′, in the
sense that F (t|x, s) is a mean-preserving spread of F (t|x′, s) for all s. Under some condi-
tions on the surplus function v(t, p), the benefit indices are not equal across categories, i.e.
r(x, s) 6= r(x′, s), even though E[t|x, s] = E[t|x′, s].7 For example, if r(x, s) < r(x′, s), then
category x′ is treated more favorably by the optimal policy, because its signals are more
informative about the agents’ types. Hence differential treatment is again observed with
respect to signals, since r(x, s) 6= r(x′, s). But in addition to this, the policy may also fea-
ture differential treatment with respect to the agents’ unobserved types. In particular, with
differentially informative signals the indirect assignment mapping A is generally not constant
in x, i.e. A(t, x) 6= A(t, x′), even though signals are unbiased, and hence the optimal policy
leads to aggregate inequality among the different categories of agents.8

The two sources of differential treatment described above, relating to bias and to differential
informativeness, can co-exist in some contexts, and may even induce differential treatments
with respect to signals and with respect to types which go in opposite directions. The
following example illustrates this situation in a school admission application.

Example 1. Suppose a school district needs to assign two students to two seats in a selective
and a non-selective school; i.e. P = (p1, p2), where p1 represents the non-selective school
and p2 the selective school, each with 1 position, k1 = k2 = 1. The students i ∈ {1, 2} have
normally distributed abilities, ti ∼ N(0, 1), and have different characteristics, x1 and x2

respectively. A student of category j ∈ {1, 2} has an admission test score si = ti+εji . Suppose
ε1
i ∼ N(−δ, σ2

1) and ε2
i ∼ N(0, σ2

2). That is, category x1’s signal is biased downwards by some
δ > 0, relative to category x2, and the signals are differentially informative if σ2

1 6= σ2
2.

First, suppose σ2
1 = σ2

2. In this case the benefit indices are straight-forward horizontal trans-
lations across categories, i.e. r(x1, s) = r(x2, s+ δ) ∀s, since F (t|x1, s) = F (t|x2, s+ δ) ∀s.
The optimal policy treats the two agents differently with respect to their signals, because it
fully off-sets the signal bias and category x1 is favored by an amount that reflects δ.

Next, suppose σ2
1 > σ2

2, so category x1’s signals are biased downwards and also noisier
7Specifically, if v has either strictly convex or strictly concave differences in t (Temnyalov, 2021, Definition

4), then r(x, s) > r(x′, s)∀s or r(x, s) < r(x′, s)∀s, respectively.
8This is illustrated in a specific parametric setting in Temnyalov (2021), Example 5.
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than those of category x2. If v(t, p2) − v(t, p1) is a strictly concave function of t, then
r(x1, s) < r(x2, s + δ) ∀s, since F (t|x1, s) is a mean-preserving spread of F (t|x2, s + δ) ∀s.
Note also that F (t|x2, s+δ) �FOSD F (t|x2, s) ∀s, so r(x2, s+δ) > r(x2, s) ∀s. Therefore it is
not immediately clear whether the optimal policy treats category x1 more favorably with respect
to signals than category x2. This depends on the comparison between r(x1, s) and r(x2, s) for
different values of s, which can go in either direction, depending on the magnitudes of δ, σ2

1

and σ2
2. There exists some threshold s̄2(s1 + δ), which is a function of s1 and δ, with the

properties that s̄2(s1 + δ) < s1 + δ and r(x1, s1) = r(x2, s̄2(s1 + δ)). Category x1 is favored
with respect to signals if s̄2(s1 + δ) > s1, and conversely category x2 is favored with respect
to signals when s̄2(s1 + δ) < s1. In particular, it is possible that category x2 is treated more
favorably with respect to signals, relative to category x1, even though the latter has signals
that are biased downwards.

Regardless of which category is favored with respect to signals, in this case one can unam-
biguously show that category x2 is treated more favorably with respect to types, and in the
aggregate. Consider the induced indirect assignment mappings A(t, x1) and A(t, x2). Condi-
tional on a type t, the probability that student 2 is admitted to p2 is P (s2 ≥ s̄2(s1 + δ)) =∫
P (s2−(s1+δ) ≥ s̄2(s1+δ)−(s1+δ))dF (s1). Notice that s2−(s1+δ) is normally distributed

and has mean 0, while s̄2(s1 + δ) − (s1 + δ) < 0. Therefore the integrand is larger than 1
2

everywhere and P (s2 ≥ s̄2(s1 +δ)) > 1
2 . Thus in aggregate the optimal assignment rule treats

the two categories of agents differently with respect to their types. Analogously, this observa-
tion also holds conditional on t1 = t2, i.e. a category x2 student with type t is strictly more
likely to be admitted than a category x1 student of the same type type t. Hence category x2 is
favored with respect to types, both in the aggregate and when comparing same-type students.

Finally, I define some additional notation which will be useful later. Consider an organiza-
tional structure (P ;K) = (p1, ..., pm; k1, ..., km), and the assignment induced by some policy
P . For any position pj, denote the set of agents who are assigned to pj under P by

Ij := {i : p(xi, si) = pj}.

The corresponding signals and characteristics of these agents are {(xi, si)}i∈Ij
. Denote the

set of benefit indices of these agents by

Rj := {r(xi, si) : i ∈ Ij}.

Lastly, define the inverse of r(x, s) as follows: s(x, r) := {s : r(x, s) = r}.
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4 Analysis

Given the characterization of the optimal policy above, I now examine how the organiza-
tion’s structure determines the extent of differential treatment. To study this, I first define
three metrics which quantify differential treatment and discuss their interpretations. I then
introduce a taxonomy of organizational structures, which allows me to compare organiza-
tions depending on their features or properties, such as the number of tiers in the hierarchy
and the distribution of positions across tiers.

4.1 Measures of differential treatment

My first metric of differential treatment starts with the following question: what signal would
an agent with characteristics x need to have, in order to be marginally assigned to tier pj
under the optimal assignment policy P ∗? To quantify the extent of differential treatment
between any two categories x and x′, at any tier pj, one can compare these hypothetical
minimal signals corresponding to x and x′. Whenever these signals associated with a tier
pj differ across x and x′, this represents differential treatment. One can then aggregate the
tier-specific differences across all the tiers of the organization, into an aggregate measure of
differential treatment between x and x′, by summing up the absolute values of differences in
treatments at each tier. This yields the following metric.

Definition 3. Consider categories x and x′. The first metric of differential treatment is

DT1(x, x′) :=
∑
j

|s(x,min{Rj})− s(x′,min{Rj})|

To elaborate on this, consider a setting where the agents have some specific signals and
characteristics, {(xi, si)}i∈N . Suppose that some agent i is the one who is marginally assigned
to some particular tier pj, under the organization’s optimal policy P ∗. That is, i has the
lowest benefit index r(xi, si) among the agents assigned to pj. The question is, how high of
a signal would an agent with characteristics x need to have, in order to displace agent i from
tier pj? Similarly, how high of a signal would an agent with characteristics x′ need to have,
in order to displace i? The difference between these, aggregated in absolute values across all
tiers, is precisely the definition of DT1(x, x′).

This metric has a natural interpretation in the school choice and firm promotion contexts,
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for example. In a firm where employees are promoted based on their past output, one could
ask how much output would a female employee need to have in order to be marginally
promoted to the next tier of the firm’s hierarchy. If the answer is different than that for
a male employee, then the difference provides a way to quantify the extent of differential
treatment.9 In a school district which assigns students to selective and non-selective schools
based on merit rankings and diversity policies, one could ask how high of a merit score a
low-SES student would need to have in order to be marginally admitted to a selective school,
and compare that to how high of a score a high-SES student would need.10

Next, my second metric of differential treatment starts with the question: what signal would
a representative agent in tier pj have, if they have characteristics x? To quantify the extent
of differential treatment between any two categories x and x′, at any tier pj, one can compare
these hypothetical signals of the representative agent across x and x′. As with the previous
metric, these differences across tiers can then be aggregated in absolute values across all
tiers, yielding the next metric.

Definition 4. Consider categories x and x′. The second metric of differential treatment is

DT2(x, x′) :=
∑
j

|s(x, R̄j)− s(x′, R̄j)|,

where R̄j is any summary statistic of Rj.

As before, suppose the agents have some specific signals and characteristics, {(xi, si)}i∈N .
Consider the “typical” agent in any tier pj—typical in the sense that this agent has a benefit
index that is representative for all the agents assigned to tier pj. This may for instance be
the average benefit index or the median benefit index of agents assigned to pj. What signal
would this agent have if they have characteristics x or x′? The aggregated difference between
these yields the definition of DT2(x, x′).

9In this context, an employee’s past output may be systematically affected by parental leave to different
extents across genders: if women shoulder more of the burden of parenting, then their careers face more
significant disruptions. The mapping between female employees’ types (their productivity or ability) and
their signals (their past output) would therefore be different than those of male employees. The firm’s profit-
maximizing promotion or hiring policy would account for these differences through the employees’ benefit
indices.

10In this context, a student’s benefit index reflects both their admission test score and their other charac-
teristics. Admission policies that account for other characteristics, such as socio-economic status or demo-
graphic characteristics, are assumed to capture the differences in benefit indices across different categories
of students. That is, the school district can treat students with (x, s) and (x′, s) differently, because their
different characteristics affect the mapping between types (e.g. their returns to education) and signals (their
admission test score). Access to costly after-school tutoring, for instance, would mean that test scores are
biased in favor of high-SES students, so an optimal admission policy should account for this.
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In a school choice context, this metric asks what admission score the typical student who
is admitted to a selective school would have, if they were a low-SES student or a high-SES
student. Here, the representative student at a selective school may be defined as one who
has the average returns to a selective school education (relative to a non-selective school
education). The comparison then examines what signals these average returns to a selec-
tive school education correspond to for agents with different SES characteristics. In a firm
context, this metric compares the signals of representative employees of different genders at
each tier in the firm’s hierarchy, for example. I.e. what would the signal be for the typical
employee if they were male or female?

Finally, my third metric compares the representative signals of agents across categories at
each tier, as opposed to the signals of marginal or representative agents. Specifically, it asks:
what would be the typical signal of the agents in tier pj, if they had characteristics x or x′?
The differences in signals can be measured in terms of a summary statistic which aggregates
the signals corresponding to all agents at each tier, taking into account the effect of their
characteristics. The differences can then be aggregated across all tiers, yielding the following
metric.

Definition 5. Consider categories x and x′. The third metric of differential treatment is

DT3(x, x′) :=
∑
j

|S̄(x,Rj)− S̄(x′, Rj)|,

where S̄(x,Rj) is any summary statistic of {s(x, r) : r ∈ Rj}.

Unlike the previous two metrics, this one aggregates the signals that correspond to all agents
at each organizational tier, taking into account their characteristics, and then compares these
aggregated summary statistics across characteristics. That is, this metric considers what
signals the agents at tier pj would have if they had characteristics x or x′, i.e. {s(x, r) :
r ∈ Rj}, and then summarizes these into a statistic S̄(x,Rj), which might for instance be
the average of {s(x, r) : r ∈ Rj}. The differences in summary statistics for x and x′ is then
aggregated in absolute values across all tiers of the organization.

In the school choice context, this metric compares what signals the students assigned to
a selective school would have, as a function of their characteristics, in terms of average
admission test scores for example. This allows one to compare how the typical admission
scores would differ if the students admitted to selective schools had low-SES or high-SES
characteristics. In the firm context, the metric compares the typical (e.g. average) output
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(or sales, profit, citations, etc.) of all employees in a tier, if they were female or male, for
example.

4.2 Taxonomy of organizational structures

There are many ways in which one can compare organizational structures, in order to study
the interplay with differential treatment. In this section I define a taxonomy that is the
first step in this direction. Specifically, I focus on the impact of organizational flatness on
differential treatment. Organizational flattening is a widely documented phenomenon in
the economics and management literatures: it refers to the reduction of layers in a firm’s
hierarchy (Wulf, 2012). Rajan and Wulf (2006); Colombo and Delmastro (2008); Bloom and
Van Reenen (2007), among others, document a significant recent pattern in firm structure
whereby hierarchies tend to have fewer employee tiers, and study the implications for firm
performance.11 The idea of de-layering is also relevant in the context of education: in school
choice, one can compare different school district structures in terms of whether they feature
vertically differentiated tiers of schools. Flatter districts are ones with fewer or no vertically
differentiated tiers of schools, while more hierarchical districts are ones with more tiers, for
example based on selectivity.

In addition to considering the elimination of tiers in the organizational structure, my notion
of flatness also allows me to study the re-distribution of positions across tiers, for example
the reduction in size of some tiers. In the context of firm hierarchies the number of posi-
tions in each tier reflects how “top-heavy” or how “bottom-heavy” a firm is, for example.
Guadalupe, Li, and Wulf (2014) find that the number of managers who report directly to
the CEO in large US firms has doubled since the 1980s. Rajan and Zingales (2001) develop
a theoretical model where the middle tier may shrink and firm hierarchy may bifurcate into
top and bottom tiers, consistent with the observation that middle management has generally
shrunk in recent decades. In the school choice context, the numbers of positions across ver-

11This flattening is generally driven by factors that are not explicitly modeled in this paper, as my focus
is on the effect of organizational structures on differential treatment, rather than on the determinants of
organizational structure. For example, improvements in monitoring technology, broadly defined, might
make it easier for managers to supervise workers directly, rather than delegating this task to a supervisor.
Similarly, information technology and automation might altogether make some roles or tiers in the firm
obsolete. I consider organizational structure as a primitive of the model and study its implications for
differential treatment. My subsequent analysis implies that differential treatment may itself become one of
the forces that shape organizations: e.g. gender equity policies in hiring and promotions might affect how
positions are distributed across the firm hierarchy, when managers and leaders want to mitigate inequalities
across genders.
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tically differentiated tiers reflect the capacities of schools with different selectivity. Districts
where top-ranked schools have larger capacities are more top-heavy, analogously to the firm
hierarchy interpretation.

I define flatter organizations as ones where positions are relatively more concentrated above
and below some reference tier of the hierarchy (such as a firm hierarchy that bifurcates into a
top and a bottom tier, at the expense of middle management), whereas more hierarchical or-
ganizations are those where positions are relatively more concentrated towards the reference
tier. My notion of flatness allows me to study both the elimination of tiers (e.g. when a role
disappears and positions are subsumed into other tiers) and the re-allocation of positions
across tiers (e.g. the shrinking of a middle management tier). It also represents comparisons
where one organizational structure is more top-heavy or more bottom-heavy than another.
The question is then how such differences across organizational structures affect the extent of
differential treatment: for instance, in which organizations would one expect to see more or
less gender differences in promotions, and when would one expect to see more socio-economic
segregation within selective schools in a school district?

Definition 6. Consider two organizational structures, (P ;K) and (P ′;K ′), of equal size.
(P ;K) is flatter than (P ′;K ′) around the M th tier if for some M ∈ {1, ...,m},

∑
j≤m̃

kj ≥
∑
j≤m̃

k′j for all m̃ < M and
∑
j≥m̃

kj ≥
∑
j≥m̃

k′j for all m̃ > M,

and at least one of these inequalities holds strictly for some m̃. Conversely, (P ;K) is more
hierarchical than (P ′;K ′) around the M th tier if the opposite inequalities hold.

If the above hold for M = 1, i.e. the reference tier M is the lowest one, then (P ;K) is more
top-heavy, and similarly if M = m, then (P ;K) is more bottom-heavy.

This definition of flatness compares cumulative capacities relative to some reference tier
M . When this tier is intermediate, flatness means that positions are more concentrated
into “heavier” top and bottom tiers. For instance, an employment structure consisting of
a Director, a Manager and a Worker is more hierarchical than a structure with a Director
and two Workers.12 Similar comparisons can also be made when a tier is reduced, rather
than eliminated: e.g. an employment structure with a Director, three Managers and three

12Throughout the analysis I will disregard differences across organizational structures that are solely due
to null-sized tiers. Such differences arise only as a result of different possible labeling of tiers. For example,
although (P = (p1, p2, p3); K = (2, 0, 1)) and (P = (p1, p2, p3); K ′ = (2, 1, 0)) are technically distinct, I will
treat them as identical, since both de facto consist of 2 tiers with equal corresponding capacities in each.
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Workers is flatter than a structure with two Directors, a Manager and four Workers. The
definition also allows the reference tier be the lowest or the highest in the organization, in
which case a flatter organization is one where higher and lower tiers are heavier, respectively.

4.3 Organizational structure and differential treatment

The following results leverage the three metrics of differential treatment and the taxonomy
of organizational structures defined above, to consider the effect on differential treatment
under different conditions on the agents’ signals.

Proposition 2. Consider two organizational structures (P ;K) and (P ′;K ′). Suppose some
categories x and x′ have monotone signal differences, i.e. s(x, r)− s(x′, r) is monotone in r.

There exists some M s.t. if (P ;K) is flatter than (P ′;K ′) around the M th tier, then (P ;K)
displays less differential treatment than (P ′;K ′) according to all metrics, DT1, DT2 and DT3.

Proposition 2 means that flatter organizational hierarchies will generally display less differ-
ential treatment, when some groups of agents have monotone signal differences. From an
organizational design perspective, it implies that in such settings one can flatten the organi-
zational structure in a way that will reduce disparities among different groups of agents. In
the context of firm hierarchies, flatter hierarchies are ones where positions are more concen-
trated towards the top and bottom of the hierarchy, away from some intermediate reference
tier. This is consistent with the shrinking of the middle management tier that has been
documented over several decades in the management literature, for example. It is unlikely
that this kind of de-layering of organizations is driven by a push to reduce differential treat-
ment within organizations. Rather, the management literature points to numerous other
factors that are likely to have driven these changes. However, the result does mean that
flatter organizations will tend to induce less differential treatment, regardless of whether
that is itself the force behind their flattening. In this sense the promotion of fairness and
equity in organizations may may coincide with their de-layering and flattening, and these
developments might reinforce one another over time.

The monotonicity condition on signal differences in Proposition 2 is plausible in many con-
texts. Intuitively, this condition means that agents from category x have increasingly higher
signals relative to those of category x′, given the same benefit index r, i.e. conditional on
having the same expected gains in surplus from different tiers. This assumption can be
satisfied in settings where agents from category x are relatively over-represented at higher

18



levels of the signal s, e.g. if signals are biased predictors of types for some categories of
agents—so they either under-estimate or over-estimate agents’ types, when not accounting
for the categories—or in settings where some categories of agents have more dispersed condi-
tional signal distributions. This monotone signal differences condition also allows for signal
differences to be heterogeneous across benefit indices. For example, it is possible that at
lower benefit indices agents of category x′ have higher signals than those of category x, while
the opposite is true at higher benefit indices; in this case s(x, r) − s(x′, r) is negative for r
below some threshold and positive for r above that threshold. Example 2 describes a very
simple example where this is the case.

Example 2. Suppose there are 2 tiers, P = (p1, p2), with capacities K = (k1, k2). The
principal wants to assign n agents, n1 of them with characteristics x1 and n2 of them with
x2, with n1 + n2 = k1 + k2.

Agents’ types are distributed normally,

tji ∼ N(0, 1),

iid across agents i ∈ N and characteristics j = 1, 2. Their signals are

s1
i = ti + εi for category x1,

s2
i = α(ti + εi) for category x2,

where εi ∼ N(0, 1), iid for all i ∈ N , and α > 1. An agent of type t in position p generates
surplus according to some function v(t, p), and all of the assumptions in section 3.1 hold.
Note that categories are comparable according to Definition 1, as there exists a one-to-one
equivalence between signal distributions.

In this parametric example one can directly study the properties of r(x, s) and s(x, r). Note
that r(x1, s) = r(x2, αs) for all s, and s(x1, r) = 1

α
s(x2, r) for all r. Therefore the agents’

signal differences are
s(x2, r)− s(x1, r) = (α− 1)s(x1, r).

here signal differences are increasing, since s(x, r) is strictly increasing in r and α > 1. That
is, as the benefit index increases, category x2 agents’ signals are increasingly biased upwards.

Moreover, for all r > r(x1, 0), s(x2, r) − s(x1, r) > 0, and for all r < r(x1, 0), s(x2, r) −
s(x1, r) < 0. That is, at higher levels of the benefit index, category x2 has more favorable
signals, while at lower levels of the benefit index category x1 has more favorable signals.
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Following Proposition 1, one can order the agents by their benefit indices, {r(xi, si)}i∈N , and
then optimally assign them to positions assortatively with respect to their indices. Denote by
i the agent with the ith highest index, ri := r(xi, si), so that the marginal agent assigned to
p2 has index rk2.

Since this example satisfies monotone signal differences, Proposition 2 means that there
exists some reference tier M ∈ {1, 2}, such that one can re-allocate capacities upwards or
downwards, in a way that strictly reduces all three measures of differential treatment.

In particular, if rk2+1 > r(x1, 0), then the signal differences s(x2, rk2)− s(x1, rk2) are positive
on the margin, and the reference tier is M = 2. Therefore DT1, DT2 and DT3 can all be
reduced by moving k∆ positions from p1 to p2, for any k∆ s.t. rk2+k∆ > r(x1, 0). That
is, making the organizational structure more “top-heavy” reduces the amount of differential
treatment.

Analogously, if rk2−1 < r(x1, 0), then the signal differences are negative on the margin, and
the reference tier is M = 1. Hence DT1, DT2 and DT3 can all be reduced by moving k∆
positions from p2 to p1, for any k∆ s.t. rk2−k∆ < r(x1, 0). That is, making the organizational
structure more “bottom-heavy” reduces the amount of differential treatment.13

Since Example 2 has only 2 tiers, organizational restructuring can reduce differential treat-
ment by re-allocating capacities either upwards or downwards, but not both. More generally,
with more than 2 tiers, Proposition 2 means that both of these types of structural changes
can co-exist and reduce differential treatment, when the reference tier M is some interme-
diate tier. Intuitively, for any tier such that signal differences are positive on the margin,
re-allocating positions upwards reduces differential treatment, and for any tier such that
signal differences are negative on the margin, re-allocating positions downwards reduces
differential treatment.

The next proposition adds some additional structure on the agents’ characteristics and yields
a more specific result in terms of the exact type of organizational differences that reduce
differential treatment.

Proposition 3. Suppose categories can be ordered, s.t. for x > x′, F (t|x, s) �FOSD F (t|x′, s)
∀ s, and they have monotone signal differences, i.e. s(x, r)− s(x′, r) is monotone in r.

13For the remaining special case where rk2 > r(x1, 0) and rk2+1 < r(x1, 0), it is still the case that one can
re-allocate capacities relative to some reference tier M = 1, 2, in order to reduce DT1, DT2 and DT3, but
there are more cases that need to be considered to determine the direction of capacity re-allocation.
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If (P ;K) is more top-heavy than (P ′;K ′), then (P ;K) displays less differential treatment
than (P ′;K ′) according to all metrics, DT1, DT2 and DT3.

The assumption of monotone signal differences by itself means that there will be some tier
M such that organizational structures that are flatter around M will yield less differential
treatment. The additional assumption of an ordering over categories, which is based on
first-order stochastic dominance of the type distributions, implies that the pivotal reference
tier must be the lowest one, M = 1. Hence top-heavier organizations will generally display
less differential treatment.

An ordering over the different categories of agents means that higher category agents have
better type distributions, in the sense of FOSD. Such an order may be inherent in some
settings, where the agents’ characteristics include some factors that directly influence their
signals, or it may simply be an empirical regularity that is established when analyzing the
relationship between types and signals. For example, in school admissions it may be the case
that students with higher household income have better access to test preparation, which
allows them to achieve higher admission test scores, conditional on having the same ability as
a lower-income student. In this case the household income characteristic provides a natural
way to order groups of students, with lower-income students having higher type distributions,
conditional on achieving the same admission test score. In such a scenario, a “top-heavier”
school district, which has relatively larger school capacities among its most selective schools,
would lead to less differential treatment across students with different household incomes.

5 Discussion

This is the first paper to provide an economic theory of how differential treatment varies
across organizational structures. I show that under plausible conditions on the agents’ signal
distributions, flatter, more differentiated, and more top-heavy organizations tend to display
less differential treatment. Hence organizations can directly affect the extent of economic
inequality among agents with different characteristics, by re-allocating positions across tiers
to change their organizational hierarchy, in addition to using preferential treatment policies
which indirectly attempt to reduce inequality.

In school districts, for instance, expanding the set of seats available at top or selective schools,
thus making the district more top-heavy, can systematically reduce socio-economic inequality
in access. This provides an additional policy instrument, which does not directly affect the
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school district’s assignment policy, as is the case with affirmative action policies and reserve
and quota systems. Similarly, flattening or de-layering a firm’s hierarchy can systematically
reduce the gender gap in employment, without explicitly affecting the firm’s hiring and
promotions policies; i.e. without requiring gender-based policies. This is not to suggest that
policies targeting organizational structure should be an alternative to interventions that
change the organization’s assignment policy. These two different types of tools can operate
simultaneously to reduce inequality. In fact, they may be complementary in a sense: if an
organization adopts a structure which reduces the extent of differential treatment, then it
may require a less dramatic intervention in its assignment policy in order to implement some
particular allocation of positions. E.g., a school district with a better-designed structure
may need a “smaller” system of reserves and quotas in order to achieve the same level of
socio-economic representation within schools.

References
Atila Abdulkadiroğlu. College admissions with affirmative action. International Journal of
Game Theory, 33(4):535–549, 2005.
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