
ISD as a Basis for Set Identification in Strategically Monotonic
Supermodular Games∗

Francisco Garrido†

Ahj
PRELIMINARY AND INCOMPLETE

DO NOT CIRCULATE OR CITE

Ahj

February 6, 2023

Abstract

Using an Iterated Strict Dominance (ISD) argument, I build bounds on the (distribution
of) outcomes of games and show that they pin down an identified set of the parameters of
interest. These ISD bounds are robust to multiple equilibria in pure and mixed strategies, and
apply to games of complete or incomplete information, with discrete, continuous, or discrete-
continuous actions of any dimensionality. Furthermore, ISD bounds can account for unobserved
heterogeneity and arbitrary informational structures (e.g., complete or incomplete information).
To maximize the “bite” of the ISD bounds, I introduce Strategically Monotonic Supermodular
Games, i.e., games of strategic complements/substitutes where players’ payoffs are supermodular
in their actions. I show that ISD rules out large swaths of the strategy set for this type of game
via an easy-to-compute sequence of best-response iterations. Finally, in an application to the
airline industry, I show that the identified set is economically informative about the parameters
of interest.

Keywords: Partial identification, probability bounds, supermodularity, strategic substitutes, strategic
complements.

JEL codes: L13, D43, C72.
∗For useful comments and suggestions, I am indebted to Felipe Brugués, Adrian Rubli, Cristian Sánchez, José

Tudón, Nathan Miller, Frank Verboven, as well as seminar participants at UT Austin, and the Latin American Meeting
of the Econometric Society (Lima, 2022). I gratefully acknowledge financial support from Asociación Mexicana de
Cultura, A.C.

†Department of Business Administration, ITAM, Río Hondo 1, Ciudad de México 01080, México. Email:
fagarrido@gmail.com. Phone: + 52 55 5628 4000

1



1 Introduction

Industrial organization economists and policymakers are often interested in counterfactual questions
that require structural models. Will a merger induce entry? Does entry affect quality decisions?
Does competition affect technology adoption? However, any minimally realistic model that tries to
answer one of these questions suffers from incompleteness in the sense of Tamer (2003). In a nutshell,
due to equilibrium multiplicity, models do not generate a well-defined distribution over outcomes,
rendering standard approaches to estimation, like maximum likelihood or GMM, infeasible.

In this paper I use an Iterated Strategic Dominance (ISD) argument to build bounds on the
(distribution of) outcomes of games, and use them to pin down an identified set of the parameters
of interest. These bounds (hereinafter, ISD bounds) are extremely general in that they are robust to
multiple equilibria in pure and mixed strategies, can easily accommodate discrete, continuous, and
discrete-continuous strategies of any dimensionality, and can account for arbitrary informational
structures (i.e., complete information and incomplete information).

To understand how ISD bounds work, consider a complete information game where each player,
f , independently chooses an action yf . Also, suppose the game is indexed by an unobserved (to
the econometrician) vector ξ, e.g., a player-specific payoff shifter. If for some ξ outcome y = (yf )f

uniquely survives ISD, then y is the unique Nash equilibrium of the ξ-game, and therefore it must be
observed. Hence, aggregating over ξ: Pr(y uniquely survives ISD) ≤ Pr(y is observed). Similarly,
if for some ξ outcome y is observed, then y is one of possibly many Nash equilibria, and therefore
it must survive ISD. Again, aggregating over ξ: Pr(y is observed) ≤ Pr(y survives ISD).

To maximize the bite of ISD bounds I introduce Strategically Monotonic Supermodular Games
(SMSGs), i.e., games where player’s payoff are supermodular on their own actions, and best
responses exhibit strategic complementarity/substitutability.1 As I argue in the paper, SMSGs
are a natural match for ISD bounds as in these games ISD is informative, i.e., it eliminates large
swaths of the strategy set, and it is easy to compute through best response iterations.

To show that ISD has bite on SMSGs, I generalize a classic result from the literature of
supermodular games proposed by Milgrom and Roberts (1990), and generalized to games of incomplete
information by Van Zandt and Vives (2007). In particular, while the standard results assume
strategic complementarity, this paper allows for strategic monotonicity, i.e., for any pair of players,
actions may exhibit either strategic complementarity or substitutability. In consequence, ISD
bounds apply to many important strategic environments that are not covered by the standard theory
of supermodular games, such as Cournot games, entry games, and capacity investment games, all
of which exhibit strategic substitutability.2

ISD bounds generate a family of identified set which differ on their level of aggregation. In
particular, going back to the notation from above, I propose an identified set based on bounds on
the distribution of y, an identified set based on bounds on the distribution of subsets of y, and an

1For any two firms, f and f ′, f ’s payoffs exhibit increasing differences or decreasing differences on (yf , yf ′).
2I should note that the comparative statics results from Milgrom and Roberts (1990) do not generalize to the case

of strategic monotonicity. These results, however, are irrelevant to the problem at hand.
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Figure 1: Identified Set Example
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Model: Pr(y uniquely survives ISD|θ)
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Model: Pr(y survives ISD|θ)
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ΘISD: Identified Set

Note: Pr(y survives ISD|θ) and Pr(y uniquely survives ISD|θ) are, respectively, the probability outcome
y survives ISD, and the probability that outcome y uniquely survives ISD, according to the model, and given
θ. These represent upper and lower bounds on the frequency with which the model predicts y given θ. If
Pr(y uniquely survives ISD|θ) > P0(y), then y is observed less often than the lower bound predicted by the
model given θ, so this cannot be the real θ. Similarly, if P0(y) > Pr(y uniquely survives ISD|θ) then y is
observed more often than the upper bound predicted by the model given θ, so this cannot be the real θ.

identified set based on bounds on y itself. As a general rule, the identified sets built upon more
aggregated ISD bounds (e.g., bounds on the level of y) are larger than identified sets built upon
less aggregated ISD bounds (e.g., bounds on the distribution of y). This disadvantage, however, is
compensated by the fact that more aggregated bounds impose lower computing demands.

The intuition behind the identified sets lies in the idea that there is a data generating process
(DGP), P0(y), which corresponds to the “real world” probability of observing outcome y. Any model
parameter, θ, such that the model predicts Pr(y uniquely survives ISD|θ) > P0(y) cannot be part
of the DGP, as this would imply that the model predicts y with higher probability than the one with
which it is observed in the real world. Similarly, any θ that generates Pr(y survives ISD|θ) < P0(y)

implies that y is observed more frequently than the model can generate it. As a result, such θ

cannot be part of the DGP. Figure 1, depicts this intuition.
To assess the performance of ISD bounds I perform several Montecarlo experiments on a standard

entry game. First, I focus on the complete information case and compare ISD bounds to the
bounds in by Ciliberto and Tamer (2009) (CT), and the ones proposed by Fan and Yang (2022)
(FY), respectively. As expected CT bounds, which are built on the notion of Nash Equilibria,
provide the tightest bounds, followed by outcome-ISD bounds, firm-ISD bounds, and FY bounds,
which are based on the idea of level-1 rationality. Later, I perform Montecarlo experiments on a
game of incomplete information and explore the performance of ISD bounds for this type of game.
Interestingly, the ISD bounds are informative about the relative weight of unobserved heterogeneity
and incomplete information.

The flexibility in informational structures is a major point of difference between this paper and
previous papers in the literature. Previous research has proposed identified sets which are robust to
any informational assumption, but not informative about it, e.g. Magnolfi and Roncoroni (2020).
In other words, in these papers all informational structures generate the same identified set. In
the present paper, in contrast, different informational structures imply different ISD bounds and
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therefore different identified sets. As a result, by applying ISD bounds researchers are able to
learn about the underlying information or explore the identification power of different informational
assumptions.

The focus on SMSGs has the additional benefit that these games provide a natural solution to
the problem of performing counterfactual experiments in the presence of multiple equilibria.3 In
SMSGs, the set of strategies that survives ISD, and therefore, the set of equilibria, is pinned down
by a largest and a smallest strategy. When conducting counterfactual experiments, then, rather
than focusing on point predictions, researchers can report a range of predictions, i.e., the range of
strategies that survives ISD in the counterfactual game.4 Going back to the notation above, ISD
pins down extreme outcomes in SMSGs, yL ≤ yH , such that a strategy profile y survives ISD if
and only if yL ≤ y ≤ yH . As a result, yL and yH bind the possible outcomes generated by the
game. Furthermore, these extreme strategies also bound any monotonic function W (y), i.e., if W ()

is increasing, then for any equilibrium y, W (yL) ≤W (y) ≤W (yH).
Finally, to study the identification power of ISD bounds I provide an empirical application

to the airline industry, in the spirit of CT. Namely, I estimate an entry game in which carriers
simultaneously decide whether to enter a market (airport pair) or not. As opposed to CT, my
empirical model admits complete and incomplete information specifications, which allows me to
explore the identifying power of these information assumptions.

The rest of the paper is organized as follows. Section 1.1 reviews the relevant literature and
places the current paper within it. Section 2 presents the basic model, introduces SMSGs, and
shows that ISD has bite in SMSGs. Section 3 derives ISD bounds and a family of ISD identified
sets. Section 4 analyses the performance of ISD bounds through Montecarlo exercises, comparing
it to other bounds proposed in the literature. Section 5 presents the airline data and model to
be estimated, while section 6 presents the estimation results. Finally, section 7 provides some
concluding remarks.

1.1 Literature Review

This paper is related to two strands that have mostly run on independent lanes. The literature on
estimation of discrete games of complete information, and the literature focusing on estimation of
discrete games of incomplete information.

1.1.1 Complete Information Games

The issue of model incompleteness as described by Tamer (2003), has been a common thread
throughout the literature studying estimation/identification of discrete games of complete information.
The early examples in this literature, such as Bresnahan and Reiss (1991), Berry (1992), and Mazzeo
(2002), bypassed the problem of equilibrium multiplicity by making strong homogeneity assumptions

3This issue has is recognized as a major open problem in the literature. See Aradillas-López (2020).
4Reguant (2016) suggests a similar approach.
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on firms’ payoffs that guaranteed that all equilibria could be mapped into a single outcome (e.g.,
number of firms), for which the model makes a unique prediction.

Later papers dealt with this issue using two broad approaches. The first approach consists of
completing the model with an equilibrium selection mechanism and either assuming that it is known
(e.g., Jia (2008), Li et al. (2018)) or estimating it from the data (e.g., Bajari et al. (2010)). This
strategy is attractive because it brings us back to the world where standard estimation techniques
work and point identification holds. The problem, however, is that economic theory provides little
guidance when it comes to equilibrium selection, making any assumption related to the equilibrium
selection mechanism hard to justify.

The second approach, the one that this paper takes, gives up on point identification and rather
focuses on identifying a set for the parameters of interest. This approach was pioneered by Tamer
(2003) and Ciliberto and Tamer (2009) (CT), who build the identified set by putting bounds on
the probability of observing an outcome. In particular, the probability of observing an outcome
y must be higher than the probability that said outcome is the unique Nash equilibria, and lower
than the probability that it is a Nash equilibria. In this strand, Fan and Yang (2020) (FY) propose
building the identified set using one round ISD, and Aradillas-Lopez and Tamer (2008) study the
identification power of rationalizability as a solution concept.

Aradillas-Lopez and Tamer (2008) is perhaps the closest paper to the present one. This paper
studies identification of k-level rationality in 2× 2 games of complete and incomplete information,
while imposing no assumptions on player’s beliefs (beyond common priors and what is implied by
k-level rationality). The present paper can be seen as a generalization of these ideas to more much
flexible settings.

More generally, the present paper contributes to this literature by proposing ISD based bounds
that apply to games of complete and incomplete information, with discrete and/or continuous actions
of any dimensionality. In this dimension, ISD bounds are more general than CT and FY bounds,
which are customized for discrete games. Additionally, as opposed to CT bounds, ISD bounds
have do not require one to solve the complete model to compute them. This makes inference easier,
specially for games with very many players or large strategy sets, allowing one to estimate a broader
class of games. Finally, as compared to the FY bounds, the ISD bounds are built on a stronger
concept so they provide a (weakly) tighter identification set and should be preferred whenever ISD
has bite.

The present paper is also similar to Aradillas-Lopez (2011) and Aradillas-López and Rosen (2022)
in using shape restrictions on payoffs, and restrictions on the action set to pin down an identified
set of the parameters of interest. In particular, by restricting their attention to ordered actions,
and making appropriate concavity and increasingness assumptions, they are able to pin down an
identified set based on Nash equilibrium conditions. The present paper, in contrast, makes much
weaker assumptions on the game’s structure, i.e., supermodularity in own actions and strategic
monotonicity, which allow for non-ordered strategies of any dimensionality. This, however, comes
at the cost of pinning down a wider identified set.
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As mentioned above, I argue that ISD bounds are particularly useful in estimating SMSGs.
Many of the static games estimated in the literature are instance of SMSGs, and therefore can
be estimated using the method I advance here. For example, the models in Bresnahan and Reiss
(1990), who estimate entry game for isolated retail and professional markets, and Berry (1992),
Tamer (2003), Ciliberto and Tamer (2009) all of whom estimate entry games for the airline industry,
are all instances of SMSGs with strategic substitutes. More recently, Wollmann (2018) estimates a
two-stage model for the truck industry in which players can choose which truck varieties to offer and
compete in prices. Although this model cannot be shown to be supermodular, as the payoffs depend
on the reduced form variable profits in the pricing stage, economic intuition strongly suggest that
strategic substitution should hold (i.e., the profit gain from introducing a variety is decreasing on
the varieties of my competitors). Furthermore, supermodularity can be verified numerically from
the pricing stage estimates.

A number of empirical papers explicitly exploit the theory of supermodular game to solve
(and estimate) models with large strategy sets that would be computationally infeasible otherwise.
Most prominently, Jia (2008) estimates an entry model for Wal-Mart and Kmart with spill over
effects across markets. To solve this model, she shows that the duopolistic game can be written
as a supermodular game, and proceeds with estimation assuming a known equilibrium selection
mechanism. This trick, however, applies only to two-player games, so her methodology does not
generalize to games with three or more players. Other empirical papers that exploit supermodularity
are Uetake and Watanabe (2020) who study entry and merger decisions in a supermodular matching
model, and Ackerberg and Gowrisankaran (2006) who study study technology adoption with network
externalizes. Both in the banking industry.

In all these papers the underlying model can be thought of as an SMSG, and therefore can be
estimated using the approach I outline here. Furthermore, the approach I outline makes it feasible to
relax some strong assumptions these papers made on equilibrium selection or information structures.

The idea of exploiting supermodularity to estimate empirical models is not new to this paper.
Molinari and Rosen (2008) and Uetake and Watanabe (2013) both proposed using the theory of
supermodular games for set identification. The current paper, however, represents a major step
forward with respect to these two papers in at least two dimensions. First, I show that an ISD
argument in general, not just applied to supermodular games, generates a family of bounds which
differ in their identification power. Second, and most importantly, while these papers constrain
their focus to games of strategic complementarity, I am able to consider the much broader class of
games of strategic monotonicity, expanding the applicability of this method to a much broader class
of games. This generalization is particularly important since strategic substitutability is likely more
common than complementarity in empirical research.

1.1.2 Incomplete Information Games

As opposed to the complete information case, the literature on estimation of discrete games of
incomplete information has, until recently, largely ignored the problem of model incompleteness

6



in estimation. The reason for this asymmetry is that in games of incomplete information, from
the perspective of each player and the econometrician, actions are probabilistic. As a result, by
estimating the conditional choice probabilities, for any player f , the econometrician learns the
distribution over f ’s competitors actions that f is facing, and can use this to estimate f ’s payoffs as
a single agent problem using the methods developed by Hotz and Miller (1993) and Aguirregabiria
and Mira (2002) for single agent dynamic settings.

This approach, which is widely used in the literature (e.g. Seim (2006), Draganska et al.
(2009), Atal et al. (2022)), rests on the assumption that all the data available comes from the
same equilibrium, and that there is no unobserved heterogeneity. However, de Paula and Tang
(2012), for static games, and Otsu et al. (2016) and Otsu and Pesendorfer (2022), for dynamic
environments, propose tests for this assumptions and find that, in commonly used datasets, the
assumption fails.

The problem of model incompleteness in games of incomplete information is an area of active
research. Two prominent efforts to deal with this issue are Aguirregabiria and Mira (2019), who
study the problem of (point) identification in games with incomplete information and unobserved
heterogeneity while estimating an equilibrium selection mechanism, and Otsu and Pesendorfer
(2022) who treat equilibrium multiplicity as a market specific correlated latent variable. As in
this paper, they provide results for set identification. As compared to these papers, the current
paper deals with the problem of equilibrium multiplicity in a more tractable way, by imposing
bounds on (the distribution of) outcomes, and making fewer assumptions on the distribution of
private shocks.

On the informational structure point, the ISD bounds proposed in this paper require no assumptions
on the informational structure of the game, being able to accommodate games of complete information,
games of correlated private information, or games where one (or more) party is better informed
than others. For example, one party may have full information, while others may only observe
their private shocks. In this sense, this paper joins Magnolfi and Roncoroni (2020), in relaxing the
informational assumptions required for identification.

1.1.3 Revealed preferences

A third popular route to estimation in discrete games was proposed by Pakes et al. (2015). Their
approach is based on the idea that, if the data are generated by a Nash Equilibrium, then unilateral
deviations from the observed actions should be unprofitable for the deviating firm. This reasoning
generates profit inequalities that lend themselves for set identification, as any parameter vector that
violates these inequalities cannot have generated the data.

Although the profit inequality approach has gained traction in the empirical literature due to its
relative simplicity and tractability (e.g., Ellickson et al. (2013) and Wollmann (2018)), it suffers from
a number of drawbacks that can make it a less than ideal candidate. First, it assumes that observed
outcomes are produced by equilibrium behavior, which may be amount to a strong assumption in
games with large and complex strategy sets. Second, it leaves the informational structure of the
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game largely unspecified, which makes it difficult to justify these when performing counterfactual
experiments. Relative to this approach, ISD bounds do not suffer from either of this problems which
but may be harder to implement.

2 The Model, SMSGs, and ISD

In this section I provide the building blocks of a Bayesian game and introduce a Strategically
Monotonic Supermodular Games (SMSGs). Then I show that ISD has bite in SMSGs.

2.1 Model Set-Up

Consider a finite set of players (firms), F , indexed by f , who simultaneously choose a vector, yf ,
from a compact action set Yf ⊆ Rdim(Yf ), after receiving a private signal/shock, εf ∈ Ef ⊆ Rdim(Ef ).
Letting ε−f = (εf ′)f ′ 6=f , ex-post profits are:

πf (yf , y−f , εf , ε−f ;x, θ, ξ)

where, as is standard, y−f = (yf ′)f ′ 6=f is a vector containing f ’s competitors’ actions, and where the
vector of private shocks, ε = (εf )f follows a distribution G(ε|x, θ, ξ), which is common knowledge.

Each tuple (x, θ, ξ) indexes a different realization of the game, which I refer to as the (x, θ, ξ)-
game. Here, x ∈ X ⊆ Rdims(X ) represents a vector of observables, θ ∈ Θ ⊆ Rdims(Θ) is the
vector of parameters of interest, and ξ ∈ Ξ ⊆ Rdims(Ξ) is a vector of common knowledge variables,
unobservable to the econometrician. For brevity, in what follows I omit dependence of profits,
equilibrium strategies, and other variables on (x, θ, ξ) unless doing so is likely to result in confusion.

Given an (x, θ, ξ)-game, a strategy for player f is any function σf ∈ Σf mapping f ’s private
information, εf , to an action yf , where Σf represents the set of strategies of f .5 A strategy profile
is a collection of strategies, one for each player: σ = (σf )f ∈ Σ ≡ ×fΣf . Given any strategy for f ’s
competitors, σ−f = (σf ′)f ′ 6=f , f ’s interim payoff is:

Πf (yf , σ−f , εf ) =

∫
E−f

πf (yf , σ−f (ε−f ), εf , ε−f )dG(ε−f |εf ) (1)

where G(ε−f |εf ) is the conditional distribution of ε−f .6

I follow Van Zandt and Vives (2007) and use interim (rather than ex ante) payoffs to define an
equilibrium. In particular, a Bayes Nash Equilibrium (BNE) for the (x, θ, ξ)-game corresponds to

5For simplicity, throughout the paper I stick to pure strategies. It is straightforward to extend results to the mixed
strategy case.

6A standard assumption in theoretical work, to guarantee that Πf is well defined, is for πf to be bounded.
Although empirical models routinely violate this assumption by imposing, say, extreme value distributed error terms,
the primitives of the game are sufficiently well behaved to guarantee the Πf is always well defined. For the purpose
of this paper, I will simply assume that Πf exists for any σ−f .
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a strategy profile (σf , σ−f ) such that:

Πf (σf (εf ), σ−f , εf ) ≥ Πf (σ′f (εf ), σ−f , εf ),∀εf ∈ Ef ,∀σ′f ∈ Σf , ∀f ∈ F (2)

Furthermore, the set of BNEs is:

B = {σ ∈ Σ : σ satisfies (2)} (3)

It is well known that even in simple settings the model above is incomplete in the sense of
Tamer (2003), i.e., there exist (x, θ, ξ) for which the (x, θ, ξ)-game has a non-singleton equilibrium
set B, therefore the model does not yield a well defined prediction. I complete the model with an
equilibrium selection mechanism, ρ,7 i.e., a function that selects a strategy profile from the set of
BNE, and use σρ ∈ B to represent the strategy selected by the equilibrium selection mechanism ρ.

Before introducing the SMSGs, a quick comment regarding the informational structure of the
model is in order. The model allows for an arbitrary informational structure through the private
shocks/signals, ε, and their distribution, G. The complete information case, for example, can
be represented by a degenerate distribution G. In this case, the randomness of the outcomes is
driven by the randomness (from the perspective of the econometrician) of the common knowledge
unobservable, ξ.

Other informational structures can be represented by letting εf = (νf , τf ) where νf is the payoff
relevant shock and τf is a, payoff irrelevant, signal about other player’s private information, as in
Magnolfi and Roncoroni (2020). For example, the independent private information case corresponds
to νf ⊥ ν−f and τf = ∅ for all f . The privileged information case, where one player is perfectly
informed and the rest only observe their private shocks, can be represented by νf ⊥ ν−f and τf = ∅
for all f except the privileged party whose signal is τf = ν−f . Similarly, the case with independent
partially observed information corresponds to the case where νf ⊥ ν−f and τf = ν−f + ς−f , where
ς−f is noise. In this dimension, the present paper can easily accommodate many more informational
structures than previous research has allowed for.8

2.2 Strategically Monotonic Supermodular Games and ISD

Here I introduce a class of games which I call Strategically Monotonic Supermodular Games (SMSGs)
and show that for this type of games ISD is informative, in that it rules out large swaths of the
strategy set, and practical, in that it is easy to compute. As a result, an estimation approach based
on ISD is particularly promising for SMSGs.

The main result of this section, Theorem 1, says that in SMSGs there exist strategies, σi,L and
σi,H , such that any strategy σ that survives i rounds of ISD, for i = 0, . . . ,∞, lies between σi,L and

7The Equilibrium Selection Mechanism may depend on (x, θ, ξ) as well as other additional unobservables, i.e., sun
spots. I omit this dependence here for simplicity, and because it plays no role in the estimation procedure I put
forward.

8Other papers that allows for flexible information structures are Magnolfi and Roncoroni (2020), Aradillas-Lopez
(2010), and Aradillas-Lopez and Tamer (2008).
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σi,H in the sense that σi,L(ε) ≤ σ(ε) ≤ σi,H(ε) for all ε, where “≤” represents the standard vector
inequality. This result is the main building block for the ISD bounds from in Section 3. To move
in this direction, let us begin by investing in some definitions.

Definition 1 (Increasing Differences and Decreasing Difference). Let h(z1, z2) be a function mapping
from Z1 ×Z2 to R, where Zj ⊆ Rdim(Zj) for j = 1, 2.

1.a. Increasing Differences (ID): h has increasing differences in (z1, z2) if, for any distinct
z′1 ≥ z1, and distinct z′2 ≥ z2:

h(z′1, z
′
2)− h(z1, z

′
2) > h(z′1, z2)− h(z1, z2)

1.b. Decreasing Differences (DD): h has decreasing differences in (z1, z2) if, for any distinct
z′1 ≥ z1, and distinct z′2 ≥ z2:

h(z′1, z
′
2)− h(z1, z

′
2) < h(z′1, z2)− h(z1, z2)

Definition 2 (Complements and Substitutes). Pick an arbitrary (x, θ, ξ)-game, and let y−{f,f ′} =

(yt)t6=f,f ′ . Define (omitting dependence on (x, θ, ξ) for brevity):

2.a. Complements: f ′ is f ’s complement if πf (yf , yf ′ , y−{f,f ′}, ε) has ID in (yf , yf ′) for all
(y−{f,f ′}, ε). The set of f ’s complements is denoted by C(f).

2.b. Substitutes: f ′ is f ’s substitute if πf (yf , yf ′ , y−{f,f ′}, ε) has DD in (yf , yf ′) for all (y−{f,f ′}, ε).
The set of f ’s substitutes is denoted by S(f).

In Definition 1, ID and DD are notions of complementarity and substitutability, respectively.
Intuitively, ID implies that the marginal return of yf is increasing in yf ′ , hence the optimal yf is
increasing in yf ′ . Many games exhibit ID, such as games with complementary investments. Similarly,
DD implies that the marginal return of yf is decreasing in yf ′ , so the optimal yf is decreasing in yf ′ .
In IO settings, DD is more common than ID. Games of entry, capacity investment, and Cournot
competition, for example, typically exhibit DD.

In Definition 2, a complement (substitute) of firm f is a firm, f ′, whose actions are strategic
complements (substitutes) to f ’s actions. Note that if f ′ is f ’s complement, this does not imply
that πf is in increasing in yf ′ ,9 nor does it imply that f is f ′’s complement (i.e., the complement
relation is not necessarily symmetric). Similarly, if f ′ is f ’s substitute, this does not imply that πf
is decreasing in yf ′ ,10 nor does it imply that f is f ′’s substitute (i.e., the substitute relation is not
necessarily symmetric).

9Say f and f ′ produce differentiated goods, engage in Bertrand competition, and have to decide whether to adopt
a cost-saving technology or not. If f ′ adopts the technology it makes f worse off (f is harmed by the lower cost
of f ′). Nevertheless, f ′ adopting the technology may increase f ’s incentive to adopt, so that adoption decisions are
strategic complements.

10For example, in a public good financing game, πf might be increasing in yf ′ (the more f ′ invests in the public
good the higher the benefit for f), and (yf , yf ′) may be strategic substitutes, i.e., the more f ’ invests in the public
good the lower the marginal return for f to do so.
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Before moving to the definition of SMSGs, let us define the concept of a lattice, which is central
to the theory of supermodular games which I exploit in this paper.

Definition 3 ((Complete) Lattice). A set Z together with a partial order, ≤, constitute a lattice if
for any z, z′ ∈ Z, sup{z, z′} ∈ Z and inf{z, z′} ∈ Z. Furthermore, the tuple (Z,≤) is a complete
lattice if for every Z ⊆ Z, inf{Z} ∈ Z and sup{Z} ∈ Z.

Definition 4 (SMSG). The (x, θ, ξ)-game is a Strategically Monotonic Supermodular Game if
(omitting dependence on (x, θ, ξ) for brevity):

4.a. Complete Lattice Action Set: The action set, Yf ⊆ Rdim(Yf ), together with the standard
vector inequality, “≥”, conform a complete lattice for all f ∈ F .11 Furthermore, Yf is compact
for all f ∈ F .

4.b. Order Upper Semi-Continuity The profit function, πf , is order upper semi-continuous in
yf . Formally, for any totally ordered set O ⊂ Yf :12

lim sup
yf∈O,yf↓inf(O)

πf (yf , y−f , εf , ε−f ) ≤ πf (inf(O), y−f , εf , ε−f )

lim sup
yf∈O,yf↑sup(O)

πf (yf , y−f , εf , ε−f ) ≤ πf (sup(O), y−f , εf , ε−f )

for all y−f ∈ Y−f , all f ∈ F , and all ε ∈ E.

4.c. Supermodularity: The profit function, πf , is supermodular in yf , i.e., for any yf , y′f ∈ Yf :

πf (sup{yf , y′f}, y−f , ε) + πf (inf{yf , y′f}, y−f , ε) ≥ πf (yf , y−f , ε) + πf (y′f , y−f , ε)

for all y−f ∈ Y−f , all f ∈ F , and all ε ∈ E.

4.d. Pairwise Strategic Monotonicity: For all f, f ′ ∈ F , either f ′ is f ’s complement, i.e.,
f ∈ C(f). or f ′ is f ’s substitute, f ′ ∈ S(f).

As I argue below, SMSG’s have properties that make them particularly good candidates for
estimation using ISD bounds. Point 4.a. of the definition is necessary to exploit the supermodular
games infrastructure advanced by Milgrom and Roberts (1990) for games of complete information,
and Van Zandt and Vives (2007) for games of incomplete information. Although most empirical
studies satisfy this assumption, it is easy to construct games in which it is violated. For example,
consider an entry game with location choice as in Seim (2006). Firms have to choose between not
entering a market, entering in location A, or entering in location B. Letting 1 (0) represent the
case where f does (does not) enter a given location, the strategy set is Yf = {(0, 0), (0, 1), (1, 0)},
and it is easy to see that sup{(0, 1), (1, 0)} = (1, 1) /∈ Yf . Point 4.b. is a technical condition

11Note that this definition allows Yf to include {−∞,+∞}. Naturally, for this to work payoffs need to be well
defined at infinity.

12A totally ordered (sub)set C ⊆ Yf is a subset of Yf such that for any yf , y′f ∈ C either yf ≥ y′f or yf ≤ y′f .
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necessary to guarantee that f ’s problem has a solution. Order upper semi-continuity is satisfied if
πf is continuous or if the strategy set is discrete.

In point 4.c. of the definition, supermodularity of πf represents a notion complementarity
between the elements of yf . If yf is uni-variate then this assumption is trivially satisfied. Otherwise,
supermodularity is likely satisfied in cases where there are positive spill over effects between the
different elements of yf . Jia (2008) provides a prominent example of an empirical game exhibiting
supermodularity. In her model, opening a Wal-Mart store in any location increases the profitability
of opening a store in neighboring locations due to economies of scope in inventory management.
Finally, point 4.d. says that there is Strategic Monotonicity meaning that each of f ’s competitors
is either f ’s substitute or f ’s complement. For f ′ ∈ C(f) this implies that f ’s optimal behavior is
increasing in yf ′ , whereas for f ′ ∈ S(f) this implies that f ’s optimal behavior is decreasing in yf ′ .
Either way, the pairwise strategic relation is monotonic.

Before moving to Theorem 2 it is worth formalizing the notion of strict dominance I use
throughout the paper.

Definition 5. Strategy σf strictly dominates strategy σ′f in the (x, θ, ξ)-game if:

Πf (σf (εf ), σ−f , εf ) ≥ Πf (σ′f (εf ), σ−f , εf ), ∀εf ∈ Ef ,∀σ−f ∈ Σ−f

with strict inequality for at least one εf , where Πf is the interim payoff defined in (1).

Defining strict dominance in terms of interim payoffs, rather than ex-ante payoffs, has the
advantage that it allows us to distinguish between strategies that are ex-ante equally attractive.
To see this, consider two strategies, σf and σ′f , equal everywhere except for a zero-measure subset
of Ef , in which σf is preferred to σ′f . Ex-ante, these two strategies would be evaluated as equally
good, however an interim evaluation will say σf is preferred to σ′f because there are values of εf for
which, σf fares strictly better, even if this contingencies have zero probability.

Theorem 1. Let the (x, θ, ξ)-game be an SMSG, and let Σi
ISD denote the set of strategies that

survive i ISD rounds. Furthermore, let σ ≤ σ′ if and only if σ(ε) ≤ σ′(ε) for all ε. The following
holds (omitting dependence on (x, θ, ξ) for brevity):

1.a For all i = 0, 1, 2, . . ., there exists σi,L, σi,H ∈ Σ such that σi,L ≤ σi,H , and such that the set
of strategies that survive i rounds of ISD is:

Σi
ISD = {σ ∈ Σ : σi,L ≤ σ ≤ σi,H}

1.b Both σi,L and σi,H result from a sequence of best response iterations.

1.c As i→∞, (σi,L, σi,L)→ (σL, σH), with σL ≤ σH .

Proof. See Appendix A.
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Theorem 1 is a generalization of Theorem 5 in Milgrom and Roberts (1990), which assumes
increasing differences (i.e., strategic complementarity). The present generalization from strategic
complementarity to strategic monotonicity is crucial to the practical relevance of the approach to
estimation I propose in this paper, as it implies that ISD bounds can be applied to a much broader
class of games than the classical theory of Supermodular Games considers. Namely, ISD bounds can
be applied to games of strategic substitutability which are likely the norm in industrial organization.

To get an intuition of how the proof operates, consider an entry game between competing firms,
so that profits exhibit decreasing differences in entry decisions, and let yf = 1 denote entry, and
yf = 0 denote no-entry. The worst case scenario for firm f occurs when all other players choose an
“always enter” strategy, i.e., σf ′(εf ′) = 1 for all εf ′ and f ′ 6= f . Let σ1,L

f be f ’s best response to this
strategy profile. Decreasing differences implies that even if f ’s competitors choose less aggressive
strategies, σ1,L

f will still be preferred to σf < σ1,L
f . Hence, σ1,L

f strictly dominates σf < σ1,L
f . Since

this holds for every f , all σ < σ1,L are strictly dominated.
Similarly, the best case scenario for firm f occurs when every competitor chooses a “never enter”

strategy, i.e., σf ′(εf ′) = 0 for all εf ′ and f ′ 6= f . An analogue argument shows that the best response
to this strategy, σ1,H

f , strictly dominates all σf > σ1,H
f . Furthermore, because this is true for every

f , then all σ > σ1,H are strictly dominated by σ1,H .
Finally, the sequence of sets that survive i rounds of ISD, i.e., Σi

ISD results from letting σ1,L

and σ1,H become the new best and worst case scenarios, and iterating over best responses as
described above. In appendix A.2 I show how to build and apply this sequence for the case of pure
complements, i.e., C(f) = F \ {f} for all f ; the case of pure substitutes, i.e., S(f) = F \ {f} for all
f ; and the general case.

2.3 Two Entry-Game Examples

Here I show the implications of Theorem 1 to two archetypal entry games. The independent private
information case, and the complete information case.

2.3.1 Independent Private Information Entry Game

Two firms simultaneously choose whether to enter a market (yf = 1) or not (yf = 0). Firm f ’s
profit is:

πf (yf , y−f , εf ;xf , θ, ξf ) = yf
(
xfβ − δyf ′ + ξf + εf

)
where εf is an independently distributed, privately observed shock, i.e., εf⊥εf ′ for all f 6= f ′. It is
easy to see that f ’s optimal strategy will take the form of a threshold strategy, where the threshold
corresponds to the lowest value of εf such that the profit of entry is positive, conditional on σ−f .

One can show that this is an SMSG. To see this, note that Yf = {0, 1} is a complete lattice,
πf order upper semi-continuous and supermodular in yf (trivially so, since yf is discrete and uni-
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Figure 2: Two Player Game Best Responses in Probability Space

σ2, BR2

σ1, BR1

σL2 = σH2

σL1 = σH1

BR1(σ2)

BR2(σ1)

ΣISD

σL2

σL1

σH2

σH1

ΣISD

σ2, BR2

σ1, BR1

BR1(σ2)

BR2(σ1)

Note: Slightly abusing notation, I use σf to represents f ’s entry probability. BRf (σ−f ) represents the optimal entry
probability of firm f given the entry probability of firm f ′. The left panel exhibits an (x, θ, ξ)-game with a single
equilibrium, while the right panel exhibits an (x, θ, ξ)-game with multiple equilibria.

variate), and πf has DD in (yf , yf ′). This is:

πf (1, y−f , εf , ε−f )− πf (0, y−f , εf , ε−f ) = xfβ − δyf ′ + ξf + εf

is decreasing in yf ′ .
Figure 2 depicts the implications of Theorem 1.c for this game. Slightly abusing notation, it

uses σf to represent the entry probability of firm f , and it depicts the best response function, BRf ,
as the optimal entry probability of firm f given an entry probability for its competitor. The left
panel shows the case with a unique equilibrium. In this case σH = σL, so the set of strategies that
survives ISD, ΣISD, is singleton. The right panel shows the case with multiple equilibria. Here,
σL < σH , so the set of strategies that survives ISD is non singleton, and is represented by green
box.

2.3.2 Complete Information Entry Game

Consider the same example as above, only now εf = 0 for all f , i.e., players are completely informed.
Clearly the resulting game is still an SMSG.

The best response function of firm f can take three “values” depending on the realization of
ξf . One where entry is dominant, i.e., BRf (σ−f ) = 1 if xfβ − δ + ξf > 0. One where no entry
is dominant, i.e., BRf (σ−f ) = 0 if xfβ + ξf < 0. And one where entry is only profitable as a
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monopolist:

BRf (σ−f ) =

{
1 if y−f = 0

0 if y−f = 1

if xfβ − δ + ξf < 0 < xfβ + ξf .
Each realization of (ξ1, ξ2) triggers one of nine possible game types, one for each combination

of best responses for each firm. Figure 3 depicts each of these combinations. For example, if
xfβ − δ + ξf > 0 for f = 1, 2, i.e., region 9 , then entry is a dominant strategy for both firms and
σL = σH = (1, 1). If x1β + ξ1 < 0 and x2β − δ + ξ2 < 0 < x2β + ξ2, i.e., region 2 , no-entry is
dominant for firm 1, and conditional on y1 = 0 entry is dominant for firm 2, hence σL = σH = (0, 1).

It is easy to see that for any of these games ΣISD is singleton, i.e., σH = σL, except when
ξ ∈ 5 . In that case no firm has a dominant strategy and everything survives ISD, i.e., σL = (0, 0)

and σH = (1, 1).

3 ISD Bounds and Identified Set

In this section I show that SMSGs produce tractable ISD bounds, and use these to derive an
identified set for the parameters of interest.

3.1 ISD Bounds

The main assumption behind ISD bounds in SMSGs, Assumption 1 below, simply says is that for all
possible values of (x, θ, ξ) the (x, θ, ξ)-game is an SMSG. This assumption implies that the results
of Theorem 1 hold for all (x, θ, ξ), and that the best response iterations described in Appendix A.2
apply to all (x, θ, ξ)-games. Importantly, this assumption does not say that the set of complements
and substitutes of each firm has to be the same for all (x, θ, ξ). This is an important source of
flexibility if the researcher does not want to impose the nature of strategic interactions between
players, and rather wants this to be revealed by the data (as in Ciliberto and Jäkel (2021)).

Assumption 1 (SMSG Assumption). The (x, θ, ξ)-game is an SMSG for every (x, θ, ξ) ∈ X×Θ×Ξ.

Most games considered in empirical research satisfy this assumption. Nevertheless, there cases
where the assumption fails such as in Fan and Yang (2022) who study a product choice game among
breweries in California, or Seim (2006) who studies entry and location choices among video rental
stores. In these applications Assumption 1 fails on two accounts: profits are not supermodular, and
ID/DD is not guaranteed.

Theorem 2, below, derives ISD bounds in SMSGs. Importantly, the theorem provides bounds on
the distribution of any subset of the outcome vector y, which allows me to define different identified
sets depending on what ỹ ⊆ y one is considering. This is an important source of flexibility for
empirical research, as different ISD bounds have different computational burdens and identifying
power. I discuss this in more detail on Section 3.3.
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Figure 3: Game Matrices with Best Responses for Values of ξ

ξ1

ξ2

−(x1β − δ)−x1β

−x2β

−(x2β − δ)

1 σL = σH = (0, 0)

0

1

0 1

2 σL = σH = (0, 1)

0

1

0 1

3 σL = σH = (0, 1)

0

1

0 1

4 σL = σH = (1, 0)

0

1

0 1

5
σL = (0, 0)

σH = (1, 1)

0

1

0 1

6 σL = σH = (0, 1)

0

1

0 1

7 σL = σH = (1, 0)

0

1

0 1

8 σL = σH = (1, 0)

0

1

0 1

9 σL = σH = (1, 1)

0

1

0 1

Note: In each region 1 ,. . . , 9 , (ξ1, ξ2) generates a different class of games, in the sense that within each region all
values of ξ generate the same best responses for both players, and when going from one region to another at least
one firm changes its best response. The red dots represent the best response of firm 1. The blue dots represent the
best response of firm 2.
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Theorem 2 (ISD Bounds in SMSGs). Say Assumption 1 holds, and let H(·|x, θ) be the distribution
of ξ. Furthermore, let ỹ be a subset of y (e.g., the action of firm f). The following holds:

P ISD(ỹ|x, θ) ≤ P ρ(ỹ|x, θ) ≤ P ISD(ỹ|x, θ) (4)

where:

P ISD(ỹ|x, θ) ≡
∫

Ξ

∫
E
1
{
σ̃L(ε;x, θ, ξ) = ỹ = σ̃H(ε;x, θ, ξ)

}
dG(ε|x, θ, ξ)dH(ξ|x, θ)

P ρ(ỹ|x, θ) ≡
∫

Ξ

∫
E
1
{
σ̃ρ(ε;x, θ, ξ) = ỹ

}
dG(ε|x, θ, ξ)dH(ξ|x, θ)

P ISD(ỹ|x, θ) ≡
∫

Ξ

∫
E
1
{
σ̃L(ε;x, θ, ξ) ≤ ỹ ≤ σ̃H(ε;x, θ, ξ)

}
dG(ε|x, θ, ξ)dH(ξ|x, θ)

and where σ̃L and σ̃H are subsets of σL and σH corresponding to ỹ.

Proof. Consider an arbitrary (x, θ, ξ)-game and fix an arbitrary equilibrium selection mechanism ρ.
By definition, every equilibrium strategy must survive ISD, hence by Theorem 1.c σL ≤ σρ ≤ σH ,
which implies σL(ε) ≤ σρ(ε) ≤ σH(ε) for all ε. Now fix an arbitrary subset of y, ỹ, and let σ̃L,
σ̃H and σ̃ρ represent the corresponding elements of σL, σH and σρ. Clearly, the following holds:
σ̃L(ε) ≤ σ̃ρ(ε) ≤ σ̃H(ε)

Say σ̃L(ε) = ỹ = σ̃H(ε) for some ε, then σ̃ρ(ε) = ỹ. This reasoning implies the following
inequality (making explicit the dependence on (x, θ, ξ)):

1
{
σ̃L(ε;x, θ, ξ) = ỹ = σ̃H(ε, x, θ, ξ)

}
≤ 1

{
σ̃ρ(ε;x, θ, ξ) = ỹ

}
Integrating over ε and ξ yields the inequality on the left-hand side of (4).

Similarly, if σ̃ρ(ε) = ỹ for some ε, then σ̃L(ε) ≤ ỹ ≤ σ̃H(ε). This reasoning leads to the following
inequality (making explicit the dependence on (x, θ, ξ)):

1
{
ỹ = σ̃ρ(ε;x, θ, ξ)

}
≤ 1

{
σ̃L(ε;x, θ, ξ) ≤ ỹ ≤ σ̃H(ε, x, θ, ξ)

}
Integrating over ε and ξ yields the inequality on the right-hand side of (4).

Theorem 2 shows that, regardless of the equilibrium selection mechanism, the probability that
the model generates a sub-outcome ỹ ⊆ y is bounded from below by the probability that ISD
mandates ỹ (i.e., all strategies that survive ISD prescribe ỹ), and from above by the probability
that ISD allows ỹ (i.e., some strategy that survives ISD prescribe ỹ). In what follows, I refer to
P ISD and P ISD as the ISD bounds, and use them to construct an identified set for the parameters
of interest.

Before going there, however, let us discuss two noteworthy points. First, analogous ISD bounds
may be built using i-level rationality, rather than “full-blown” rationality. This is, similar bounds
hold for i ISD rounds, as in Aradillas-Lopez and Tamer (2008), Aradillas-Lopez (2010) and Molinari
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and Rosen (2008). In fact, it is easy to see that the more ISD rounds one uses, the tighter the bounds.
Second, and relatedly, ISD bounds apply to any “strategy selection rule” that is consistent with i
rounds of ISD. In other words, when building the identified sets, we need not assume that the data
is generated by a BNE, but simply by a strategy profile that lies in the i’th level ISD set. This
observation is important, as researchers may wish to explore the identifying power of different levels
of rationality, or simply may not wish to assume that the data comes from a BNE. I formalize this
below.

Remark 1. Say assumption 1 holds. The i-level rationality bounds are:

P iISD(y|x, θ) =

∫
Ξ

∫
E
1
{
σi,L(ε;x, θ, ξ) = y = σi,H(ε;x, θ, ξ)

}
dG(ε|x, θ, ξ)dH(ξ|x, θ)

P
i
ISD(y|x, θ) =

∫
Ξ

∫
E
1
{
σi,L(ε;x, θ, ξ) ≤ y ≤ σi,H(ε;x, θ, ξ)

}
dG(ε|x, θ, ξ)dH(ξ|x, θ)

By definition σi,L ≤ σi+1,L ≤ σi+1,H ≤ σi,H , hence:

P iISD(y|x, θ) ≤ P i+1
ISD(y|x, θ) ≤ P ρ(y|x, θ) ≤ P i+1

ISD(y|x, θ) ≤ P iISD(y|x, θ)

for all i = 0, 1, 2, . . ..
Finally, let ρi be an “i-level rationality strategy selection rule,” i.e., a function that selects a

strategy from the set of strategies that survives i rounds of ISD. The following holds:

P iISD(y|x, θ) ≤ P ρi(y|x, θ) ≤ P iISD(y|x, θ)

for all i = 0, 1, 2, . . ..
All results below hold for i-level rationality and any i-level rationality strategy selection rule, ρi.

3.2 Two Entry-Game Example Continued

Before building the identified set, let us explore how Theorem 2 produces ISD bounds for the case of
independent private information introduced in 2.3.1 and the case of complete information introduced
in 2.3.2.

3.2.1 Independent Private Information Entry Game Revisited

Consider the independent private information game introduced in 2.3.1, and recall that by Theorem
2 the set of strategies that survive ISD is pinned down by the extreme strategies σL and σH .
Furthermore, recall that any optimal strategy takes the form of a “threshold strategy,” i.e., for each
firm there is a threshold ε∗f such that σf (ε) = 1{εf ≥ ε∗f}.

Say we are interested in deriving the ISD bounds of yf = 1. Figure 4 zooms into the strategies
of firm f that survive ISD. The values εHf < εLf represent the entry thresholds of σHf , and σLf ,
respectively. All strategies whose thresholds lie between εHf and εLf survive ISD, so for any ρ,
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εHf ≤ ερf ≤ εLf . It is easy to see that yf = 1 is mandated by ISD, i.e. σL1 (εf ) = 1 = σL1 (εf ) when
ε1 > εL1 . Similarly, yf = 1 is allowed by ISD, i.e., σLf (εf ) ≤ 1 ≤ σHf (εf ), when εf > εHf .

Finally, assuming that ξf = ξ for f = 1, 2, is a market-specific binary variable that takes the
values ξ0 and −ξ0 with equal probability, the ISD bounds are:

P ISD(yf = 1|x, θ) =
1

2
Pr(εf > εLf (x, θ, ξ0)) +

1

2
Pr(εf > εLf (x, θ,−ξ0))

P ISD(yf = 1|x, θ) =
1

2
Pr(εf > εHf (x, θ, ξ0)) +

1

2
Pr(εf > εHf (x, θ,−ξ0))

Now say we are interested in deriving ISD bounds for y = (1, 1). Figure 5 depicts the outcomes
allowed by ISD for all combinations of ε1 and ε2. The lower bound is given by the values of ε such
that σL(ε) = σH(ε) = (1, 1), which occurs when both firms receive large enough profit shocks, i.e.,
εf > εLf . This corresponds to the purple area in the top-right corner. Similarly, the upper bound is
given by those values of ε for which σL(ε) ≤ (1, 1) ≤ σH(ε). This occurs when both firms receive
shocks εf > εHf , which corresponds to the area inside the brown rectangle.

Assuming as before that ξf is a market-specific binary variable, and using independence pf ε1
and ε2, the ISD bounds are (making dependence on (x, θ, ξ) explicit):

P ISD(y = (1, 1)|x, θ) =
1

2

∏
f=1,2

Pr(εf > εLf (x, θ, ξ0)) +
1

2

∏
f=1,2

Pr(εf > εLf (x, θ,−ξ0))

P ISD(y = (1, 1)|x, θ) =
1

2

∏
f=1,2

Pr(εf > εHf (x, θ, ξ0)) +
1

2

∏
f=1,2

Pr(εf > εHf (x, θ,−ξ0))

It is noteworthy that the ISD bounds on outcomes y are tighter than the ISD bounds on firm
actions yf . Naturally, this implies that ISD bounds on y are more informative about the parameters
of interest than ISD bounds on yf ’s.

3.2.2 Perfect Information Example

Consider the complete information entry game introduced in 2.3.2. As depicted in Figure 3, every
realization of (ξ1, ξ2) triggers a different SMSG, hence for each (ξ1, ξ2) the set of strategies that
survive ISD is pinned down by different extreme strategies σH and σL. For example, if ξf >

−(βxf − δ) for f = 1, 2 then entry is dominant for both firms and σL = σH = (1, 1). Similarly, if
−βxf < ξf < −(βxf − δ) then ISD has no bite and σL = (0, 0) and σH = (1, 1).

Say we are interested in the ISD bounds for y1 = 1. The lower ISD bound is given by those
(ξ1, ξ2) for which σL1 = 1 = σH1 , which occurs in regions 4 , 7 , 8 , and 9 . Similarly, the upper
bound is given by those (ξ1, ξ2) for which σL1 ≤ 1 ≤ σH1 , which occurs in regions 4 , 5 , 7 , 8 , and
9 , Hence:

P ISD(y1 = 1)|x, θ) = Pr
(
ξ ∈ 4 ∪ 7 ∪ 8 ∪ 9 |x, θ

)
P ISD(y1 = 1)|x, θ) = Pr

(
ξ ∈ 4 ∪ 5 ∪ 7 ∪ 8 ∪ 9 |x, θ

)
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Figure 4: Player Specific Extreme Strategies and Equilibrium Strategy Selected by ρ
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Note: Lowest σLf , highest σ
H
f and selected σρf , strategies for an entry game of incomplete information. εLf , ε

H
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are the corresponding fixed cost entry thresholds.

Figure 5: Set of Actions allowed by ISD for values of ε. Two-Player Case.
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σL1 = σH1 = 0 σL1 = 0;σH1 = 1 σL1 = σH1 = 1
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σL2 = σH2 = 0
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Note: Set of actions allowed by ISD in the (ε1, ε2) space. For each value of ε1 (resp. ε2), the horizontal (rest. vertical)
axis shows the actions that ISD allows for firm 1, (resp. 2) . Every rectangle, shows the outcomes allowed by the
corresponding (ε1, ε2). For example, for outcome y = (1, 1) is the only outcome by ISD if and only if ε ∈ . Similarly,
outcome (1, 1) is allowed by ISD for all ε ∈ ,
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Now, say we are interested in computing the ISD bounds of outcome y = (1, 1). The lower ISD
bound is given by the values of ξ that make σL = (1, 1) = σH , i.e., region 9 . Similarly the ISD
upper bound is given by the values of ξ that make σL ≤ (1, 1) ≤ σH , i.e., regions 5 and 9 . Hence:

P ISD(y = (1, 1)|x, θ) = Pr
(
ξ ∈ 9 |x, θ

)
P ISD(y = (1, 1)|x, θ) = Pr

(
ξ ∈ 5 ∪ 9 |x, θ

)
As before, ISD bounds on outcomes y are tighter than the ISD bounds on firm actions yf , so we

should expect bounds on y to be more informative about the parameters of interest than bounds
on yf ’s.

3.3 Identified Set

In this subsection I derive ISD identified set. To this end, consider the following assumption on the
data generating process.

Assumption 2 (Data Generating Process (DGP)). There is a real parameter vector and a real
equilibrium selection mechanism, θ0 and ρ0, respectively. Furthermore, given a private shock vector
ε, the observed outcome of the (x, θ0, ξ)-game is:

σ0(ε;x, ξ) = σρ0(ε;x, θ0, ξ)

where σρ0(ε;x, θ0, ξ) equilibrium strategy chosen by ρ0 in the (x, θ0, ξ)-game, evaluated at ε.

Assumption 2 says that the model is correctly specified, and that the realization of each game
comes from a BNE selected by an arbitrary equilibrium selection mechanism ρ0. It is worth noting
that Assumption 2 is not central to any result below. In particular, as noted in Remark 1, it could
be the case that the data does not come from a BNE at all, but that some σ ∈ ΣISD is selected by
a “strategy selection mechanism,” i.e., a function ρ̃ that chooses an element of ΣISD. All identified
sets I describe below hold under this weaker assumption too.

3.3.1 Probability Identified Set: Discrete Case

Consider a partition of y, i.e., (ỹj)j = y. For example, each ỹj may represent the action taken
by a firm, i.e., for each j, ỹj = yf for some f . Let P0(ỹj |x) = P ρ0(ỹj |x, θ0) be the probability of
observing ỹj according to the DGP. By Theorem 2, expression (4) holds for θ0 and ρ0. Hence, any
θ that violates:

P ISD(ỹj |x, θ) ≤ P0(ỹj |x) ≤ P ISD(ỹj |x, θ) (5)

for some (x, ỹj , j) cannot be the real θ. With this intuition, I define the identified set as follows.
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Definition 6 (ISD Identified Set). Let (ỹj)j=1,...,J be a partition of y, where J is number of sets in
the partition. The identified set, ΘISD, is the collection of all θ ∈ Θ such that θ satisfies (5), i.e.:

ΘISD = {θ ∈ Θ : θ satisfies (5),∀x ∈ X ,∀ỹj ∈ Ỹj ,∀j ∈ J}

where Yj is the set of values that ỹj can take.

The identified set in Definition 6 is really a collection of identified sets that depend on which
partition of y is being considered. Two partitions of interest are the trivial partition, i.e., J = 1

and ỹ1 = y, and the-firm level partition, i.e., J = |F| and for each j, ỹj = yf for some f , although
many more are possible.

The identification power of the ISD bounds will depend on what partition is being used.
Intuitively, coarser partitions place more restrictions on the joint distribution of y, and therefore will
lead to tighter ISD bounds (as argued in Section 3.2) and more informative identified sets. Hence,
firm-level bounds (i.e., bounds in yf ) are less informative about θ than outcome-level bounds (i.e.,
bounds on y). The Montecarlo experiments in Section 4 support this argument.

This disadvantage, however, comes with a trade off in terms of computational burden. Typically,
P ISD and P ISD do not have closed form solutions and need to be computed numerically, and the
computational burden of doing so will depend on how coarse is the partition of (ỹj)j , with coarser
partitions being more burdensome. Hence computing bounds on y (the coarsest possible partition)
will be costlier than computing bounds on yf ’s.

3.3.2 ISD Identified Set: Continuous Case

The identified set from Definition 6 is uninformative when y is continuous. If this is the case, then
the collection of (ε, ξ)’s such that σ(ε;x, θ, ξ) = y has zero measure, hence:

P ISD(y|x, θ) = 0,∀x, θ

P ρ(y|x, θ) = 0,∀x, θ

and the bounds proposed in the previous subsection will be trivially satisfied for all θ.
To bypass this issue I propose bounds on the cumulative distribution of y. To see how this

works, consider an arbitrary outcome y and note that Theorem 1 implies that σL ≤ σρ ≤ σH for
any ρ. Hence, the following inequalities hold:

1{σρ(ε;x, θ, ξ) ≤ y} ≤ 1{σL(ε;x, θ, ξ) ≤ y}
1{σρ(ε;x, θ, ξ) ≥ y} ≤ 1{σH(ε;x, θ, ξ) ≥ y}

In words, any action profile y that is greater than the predicted outcome σρ(ε; ·) must also be greater
than the lower bound σL(ε; ·). Similarly, any action profile that is smaller than σρ(ε; ·) must also
be smaller than the upper bound σH(ε; ·). Integrating over ε and ξ, and slightly abusing notation,
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this implies the following probability-based inequalities:

P (σρ ≤ y|x, θ) ≤ PISD(σL ≤ y|x, θ)

P (σρ ≥ y|x, θ) ≤ PISD(σH ≥ y|x, θ)

where the probabilities follow from integrating over the distributions H(ξ|x, θ) and G(ε|x, θ, ξ).13

Finally, let

P (σ0 ≤ y|x) ≡ P (σρ0 ≤ y|x, θ0)

P (σ0 ≥ y|x) ≡ P (σρ0 ≥ y|x, θ0)

be the real probabilities, i.e., the probabilities derived from the real parameter vector and equilibrium
selection mechanism (θ0, ρ0). Identification rests on the idea that any parameter vector θ that
violates:

P (σ0 ≤ y|x) ≤ PISD(σL ≤ y|x, θ)
P (σ0 ≥ y|x) ≤ PISD(σH ≥ y|x, θ)

(6)

for some (x, y) cannot have generated the data, i.e., θ 6= θ0. The identified set, then, is defined as
follows.

Definition 7 (ISD Identified Set - Continuous Case). The identified set, ΘISD, is the collection of
all θ ∈ Θ such that θ satisfies (6), i.e.:

ΘISD = {θ ∈ Θ : θ satisfies (6),∀x ∈ X , ∀y ∈ Y, } (7)

A number of comments regarding this identified set are in order. First, as in Theorem 2 and
Definition 6, the ISD bounds and the identified set for continuous variables can be defined for subsets
of y rather than y itself. Second, these bounds apply for the discrete case as well as the continuous
case. And third, in the case where yf has discrete elements and continuous elements (say for an
entry game followed by a pricing stage), one can use a combination of the bounds of Definition 7
and the ones defined in Section 3.3.1

13This is:

P (σρ ≤ y|x, θ, ρ) =

∫
ξ

∫
ε

1{σρ(ε;x, θ, ξ) ≤ y}dG(ε|x, θ, ξ)dH(ξ|x, θ)

P (σρ ≥ y|x, θ, ρ) =

∫
ξ

∫
ε

1{σρ(ε;x, θ, ξ) ≥ y}dG(ε|x, θ, ξ)dH(ξ|x, θ)

PISD(σL ≤ y|x, θ) =

∫
ξ

∫
ε

1{σH(ε;x, θ, ξ) ≤ y}dG(ε|x, θ, ξ)dH(ξ|x, θ)

PISD(σH ≥ y|x, θ) =

∫
ξ

∫
ε

1{y ≤ σH(ε;x, θ, ξ)}dG(ε|x, θ, ξ)dH(ξ|x, θ)
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3.3.3 ISD Identified Set: Outcome Level

Finally, rather than putting bounds on the distribution of outcomes, one can put bounds on
outcomes themselves. To see this, note that Theorem 1.a implies that for any ρ:

σL(ε;x, θ, ξ) ≤ σρ(ε;x, θ, ξ) ≤ σH(ε;x, θ, ξ)

Taking expectation over ε and ξ:

yL(x, θ)︸ ︷︷ ︸
≡E[σL(ε;x,θ,ξ)|x,θ]

≤ yρ(x, θ)︸ ︷︷ ︸
≡E[σρ(ε;x,θ,ξ)|x,θ]

≤ yH(x, θ)︸ ︷︷ ︸
≡E[σH(ε;x,θ,ξ)|x,θ]

Finally, letting y0(x) = yρ0(x, θ0), we can define the identified set as follows.

Definition 8 (ISD Identified Set for Outcome Bounds). The identified set based on outcome level
bounds is:

ΘISD = {θ ∈ Θ : yL(x, θ) ≤ y0(x) ≤ yH(x, θ),∀x ∈ X}

It is easy to see that outcome level bounds apply for discrete or continuous y. Since computing
these bounds requires integrating over y, the identified set that results from outcome level bounds
is weakly larger than the ones based on probability bounds. Nevertheless, this disadvantage comes
with the benefit that simulating these bounds is less computationally burdensome than any of the
aforementioned alternatives.

4 Montecarlo Exercises

Here I provide some Montecarlo exercises to study the performance of ISD bounds. First, in Section
4.1, I focus on a entry game of complete information and compare ISD bounds to previous bounds
proposed in the literature. Second, in Section 4.3, I provide Montecarlo experiments for the case of
incomplete information with unobserved heterogeneity.

4.1 Complete Information Two-Firm Entry Game

Tamer (2003) and Ciliberto and Tamer (2009) (CT), pioneered the probability bounds approach to
set identification for discrete games of complete information. This approach has also been studied
by Aradillas-Lopez and Tamer (2008) and Fan and Yang (2022) (FY). In this subsection I study
how ISD bounds compare to this earlier literature. To this end, I consider a complete information
two-firm entry game, in the spirit of CT, and provide comparisons between CT bounds, FY bounds,
and ISD bounds.14

14The bounds in Aradillas-Lopez and Tamer (2008) are based on rationalizable strategies, which coincides with
ISD in two player games. As a result, their bounds and ISD bounds coincide for in this example.
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Table 1: CT vs. ISD Bounds

Bound Type Lower Bound Upper Bound

CT (0, 1) Pr
(
ξ ∈ 2 ∪ 3 ∪ 6

)
Pr
(
ξ ∈ 2 ∪ 3 ∪ 5 ∪ 6

)
ISD (0, 1) Pr

(
ξ ∈ 2 ∪ 3 ∪ 6

)
Pr
(
ξ ∈ 2 ∪ 3 ∪ 5 ∪ 6

)
CT (0, 0) Pr

(
ξ ∈ 1

)
Pr
(
ξ ∈ 1

)
ISD (0, 0) Pr

(
ξ ∈ 1

)
Pr
(
ξ ∈ 1 ∪ 5

)
Consider the two-player complete information entry game described in Sections 2.3 and 3.2.

Firm’s get profits:

πf (yf , yf ′ ;xf , θ, ξf ) = yf (βxf − δyf ′ + ξf )

with θ = (β, δ), where δ ≥ 0 and where ξ ∼ H(ξ).
Table 1 shows how CT bounds compare to ISD bounds for this game. CT bounds are built

on the idea that if y is the unique equilibrium then σρ = y, and if σρ = y then y must be in an
equilibrium. In our notation:

1{{y} = B(x, θ, ξ)} ≤ 1{y = σρ(x, θ, ξ)} ≤ 1{y ∈ B(x, θ, ξ)}
PCT (y|x, θ) ≤ P ρ(y|x, θ) ≤ PCT (y|x, θ))

where the second line comes from integrating over ξ, and where PCT (y|x, θ) and PCT (y|x, θ)) are
the integrals of the LHS and the RHS respectively, and they represent the lower and the upper CT
probability bounds.

Consider outcome y = (0, 1). The CT lower bound for y = (0, 1) is the probability that (0, 1) is
a unique equilibrium which, from Figure 3, occurs when ξ ∈ 2 ∪ 3 ∪ 6 , whereas the upper bound
corresponds to the probability that (0, 1) is an equilibrium which occurs when ξ ∈ 2 ∪ 3 ∪ 5 ∪ 6 .
Coincidentally, region 2 ∪ 3 ∪ 6 is also where σL = (0, 1) = σH , and region 2 ∪ 3 ∪ 5 ∪ 6 is
where σL ≤ (0, 1) ≤ σH , so CT and ISD bounds coincide.

CT bounds are built on a stronger concept than ISD bounds (all Nash equilibria survive ISD,
but not everything that survives ISD is a Nash equilibrium), hence CT bounds are (weakly) tighter
than their ISD counterparts. This is the case for outcome (0, 0). Ignoring mixed strategies, there
is no value of ξ for which (0, 0) is one of many equilibrium outcomes, so the CT upper and lower
bounds coincide and correspond to the probability that ξ ∈ 1 . For ISD bounds, in contrast,
σL = (0, 0) = σH in region 1 and σL ≤ (0, 0) ≤ σH in regions 1 and 5 , so the ISD upper bound
for outcome (0, 0) is larger than the CT bound.

Table 2 shows how the bounds proposed by FY compare to the firm-level ISD bounds (i.e.,
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Table 2: FY vs. ISD Bounds

Bound Type Lower Bound Upper Bound

FY y1 = 0 Pr
(
ξ ∈ 1 ∪ 2 ∪ 3

)
Pr
(
ξ ∈ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6

)
Firm ISD y1 = 0 Pr

(
ξ ∈ 1 ∪ 2 ∪ 3 ∪ 6

)
Pr
(
ξ ∈ 1 ∪ 2 ∪ 3 ∪ 5 ∪ 6

)
bounds on yf ). FY bounds are built on the idea that if yf is dominant then it must be part of
a Nash equilibrium and therefore σρf = yf . Similarly, if yf is played in a Nash equilibrium, i.e.,
σρf = yf , then yf cannot be dominated. Somewhat abusing notation:

1{{yf} = Ỹf,ISD(x, θ, ξ)} ≤ 1{yf = σρf (x, θ, ξ)} ≤ 1{yf ∈ Ỹf,ISD(x, θ, ξ)}
PFY (yf |x, θ) ≤ P ρ(yf |x, θ) ≤ PFY (yf |x, θ)

where Ỹf,ISD represents the set of strategies that are not dominated.15 As before, the second line
comes from integrating over ξ, and PFY (yf |x, θ) and PFY (yf |x, θ)) are the lower and the upper FY
probability bounds.

For firm 1, y1 = 0 is dominant if and only if ξ1 < −β1x1, i.e., ξ ∈ 1 ∪ 2 ∪ 3 , and it is not
dominated if ξ1 < −(β1x1− δ1), i.e., ξ ∈ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 . The corresponding ISD bounds
come from values of ξ for which σL1 = 0 = σH1 , which occurs when ξ ∈ 1 ∪ 2 ∪ 3 ∪ 6 , and the
values of ξ for which σLf ≤ 0 ≤ σHf , which occurs when ξ ∈ 1 ∪ 2 ∪ 3 ∪ 5 ∪ 6 . As one would
expect, since ISD bounds are constructed going through multiple rounds ISD, they are (weakly)
tighter than FY bounds which only goes though one round.

4.2 Complete Information Montecarlo

Consider the entry game described in the previous subsection, except that there are |F| ≥ 2 firms
who receive payoffs, and assume that ξf ∼ N(0, 1) for all f

For |F| = 2, 3, β0 = 1, δ0 = 1/(|F| − 1), and ξf ∼ N(0, 1), I simulate MC = 100 samples of
M = 1000 independent markets. For each game, xf can take the values in {−2, 0, 2} with equal
probability, and for each realization of x = (xf )f , I compute CT bounds, outcome-level ISD bounds,
firm-level ISD bounds, and FY bounds.

For inference, I use the critical values for vector inequality hypotheses of Chernozhukov et al.
(2019). Letting,(lk(x))k be a collection of K non-negative functions, I compute unconditional
empirical moment inequalities. In particular, for each type of bound, B ∈ {CT,FY,ISD outcome, ISD firm},

15Note that if Ỹf,ISD is singleton, then it contains a dominant strategy.
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and each for observation (Xm, Ym), I compute the empirical moment functions:16

ψB(y|Ym, Xm, θ) ≡ PB(y|Xm, θ)− 1{y = Ym}
ψ
B

(y|Ym, Xm, θ) ≡ 1{y = Ym} − PB(y|Xm, θ)

LetM(x) =
∑

m 1{Xm = x} represent the number of markets where (y, x) was observed. Furthermore,
somewhat abusing notation, let µ ∈ {µ, µ}, sd = {sd, sd}, and t = {t, t} and define:

µB(θ; y, x) =

∑
m 1{Xm = x}ψB(y|Xm, Ym, θ)

M(x)

sdB(θ; y, x) =

(
1

M(x)

∑
m

1{Xm = x} (ψB(y|Xm, Ym, θ)− µB(θ; y, x))2

)1/2

tB(θ; y, x) = M(x)
µB(θ; y, x)

sdB(θ; y, x)

In a nutshell, CCK propose critical values for a null hypothesis of the form max{v} ≤ 0, for a
normalized vector v,17 and find a critical value for the statistic max{v}.

Applied to our setting, the null hypothesis corresponds to:

max
x,y

{
max{tB(θ; y, x), tB(θ; y, x)}

}
≤ 0

and the corresponding critical value at significance of α is:

CCK(α) =
Φ−1(1− α/2|X ||Y|)√

1− Φ−1(1− α/2|X ||Y|)/M

where Φ−1 is the standard normal quantile function.
Let β̂ and δ̂ be guesses for β0 and δ0 respectively. Keeping δ̂ = δ0, and for each β̂ ∈ {β0

1
5 , β0

2
5 , . . . , β0

8
5 , β0

9
5},

I compute the CT bounds, ISD outcome bounds, ISD firm bounds, and FY bounds for each game
in each sample. For each sample, I compute the outcome of the test described above, and from this
I get the share of samples for which the null (β̂, δ0) ∈ ΘISD gets rejected. I conduct an analogue
exercise for δ̂ keeping β̂ = β0. The results can be found in Figures 6 and 7.

As expected, CT bounds provide the smallest identified set, followed by ISD outcome bounds,
ISD firm bounds, and FY bounds. The identified set for bothe parameters is larger with 3 firms
rather than 2. This is to be expected, since the equilibrium multiplicity problem is exacerbated as
the number if firms increases. It is noteworthy that FY bounds are not able to reject (β0, δ̂) ∈ ΘISD

16The moment functions I present here are based on outcomes, for the firm-level ISD bounds and FY bounds similar
moment conditions apply.

17This is, each element of v has mean zero and a standard deviation of one.
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Figure 6: Monte Carlo Probability of θ̂ ∈ ΘISD, for |F| = 2 under Perfect Information

Note: Left panel shows the results for β. The right panel shows the results for δ. y-axis is Pr(θ̂ ∈ ΘISD), for
θ̂ ∈ {β̂, δ̂}, for each type of Identified Set. x-axis is β̂/β0 (left) and δ̂/δ0 (right).

Figure 7: Monte Carlo Probability of θ̂ ∈ ΘISD, for |F| = 3 under Perfect Information

Note: Left panel shows the results for β. The right panel shows the results for δ. y-axis is Pr(θ̂ ∈ ΘISD), for
θ̂ ∈ {β̂, δ̂}, for each type of Identified Set. x-axis is β̂/β0 (left) and δ̂/δ0 (right).

even for δ̂ = 9
5δ0. To see why this is the case note that:

PFY (yf = 0|x, θ) = Φ(−βxf )

PFY (yf = 0|x, θ) = Φ(−(βxf − δ))

For yf = 0, the lower FY bound does not depend on δ, and therefore it is uninformative about
its value. The upper bound of yf = 0, in contrast, is increasing in δ hence the condition P0(yf =

0|x) ≤ PFY (yf = 0|x, θ) is never violated by a δ that is “too large.” An analogue result holds for
yf = 1.

I should note that this draw back is specific to the application at hand. In the product choice
model studied by FY the competitive effects (i.e., the equivalent to δ) come from a Bertrand
competition stage which is estimated separately, and the probability bounds are used to estimate
product/firm entry costs. In that setting, FY bounds provide informative upper and lower bounds
for all the parameters of interest.
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4.3 Incomplete Information Entry Game with Unobserved Heterogeneity

Consider a game as described above, only now each player receives a private profitability shock, εf ,
which follows a standard normal distribution (i.e., private shocks are uncorrelated). Firm f ’s payoff
is:

πf (yf , y−f , εf ;xf , θ, ξ) = yf

βxf − δ∑
f ′ 6=f

yf ′ + ωξ + εf


where ξf both and εf follow a ∼ N(0, 1). Parameter ω ≥ 0 controls the amount of unobserved
heterogeneity. In particular, when ω = 0 the role of unobserved heterogeneity vanishes. The
parameters of interest is θ = (β, δ, ω).

It is easy to see that given any σ−f , f ’s optimal strategy induces an entry probability:

pf (σ−f ) = Φ

−
βxf − δ∑

f ′ 6=f
Pr(σf ′ = 1) + ωξ


Conditional on (x, θ, ξ), we can compute the extreme strategies σL and σH , which imply extreme

entry probabilities for firm f of pLf (x, θ, ξ) = pf (σH−f |x, θ, ξ), and pHf (x, θ, ξ) = pf (σL−f |x, θ, ξ), with
pLf < pHf . With this we can compute ISD bounds of outcome y as (omitting dependence pL and pH

on (x, θ, ξ) for brevity):

P ISD(y|x, θ, ξ) =
∏
f

(pLf )yf (1− pHf )1−yf

P ISD(y|x, θ, ξ) =
∏
f

(pHf )yf (1− pLf )1−yf

Finally, integrating over ξ:

P ISD(y|x, θ) =

∫ ∞
−∞

P ISD(y|x, θ, ξ)φ(ξ)dξ

P ISD(y|x, θ) =

∫ ∞
−∞

P ISD(y|x, θ, ξ)φ(ξ)dξ

where φ represents the standard normal density.
For |F| = 2, 3, and θ0 = (β0, δ0, ω0) = (1, 1

|F|−1 , 1), I simulate MC = 100 samples of M = 1000

independent markets. For each market, xf ’s take values in {−2, 0, 2} with equal probability, and
for each realization of x = (xf )f I compute ISD bounds. Inference follows exactly as before.

The results of this exercise can be found in Figure 8 for the two-firm case, and Figure 9 for
the three-firm case. In either case, simulations show that ISD bounds do a remarkably good job at
pinning down the parameters of interest. It is particularly interesting to see that the estimates are
able to reject the absence of unobserved heterogeneity, i.e., ω = 0.
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Figure 8: Pr(θ̂ ∈ ΘISD), for |F| = 2 under Incomplete Information and Unobserved Heterogeneity

Note: The left panel shows the results for β, the middle panel shows the result for δ, and the right panel shows the
results for ω. In the left panel the y-axis shows Pr((β̂, δ0, ω0) ∈ ΘISD), for the firm-level and the outcome-level ISD
set. The mid and right panels show analogue quantities for δ̂ and ω̂, respectively.

Figure 9: Pr(θ̂ ∈ ΘISD), for |F| = 3 under Incomplete Information and Unobserved Heterogeneity

Note: The left panel shows the results for β, the middle panel shows the result for δ, and the right panel shows the
results for ω. In the left panel the y-axis shows Pr((β̂, δ0, ω0) ∈ ΘISD), for the firm-level and the outcome-level ISD
set. The mid and right panels show analogue quantities for δ̂ and ω̂, respectively.
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5 Airline Application: Data and Empirical Model

The rest of the paper uses ISD bounds to estimate an esntry game in the airline industry as in
Ciliberto and Tamer (2009). In this section I summarize the data and present the model I will use
for estimation. Empirical results are reserved for Section 6.

5.1 Data

My main data source is the Origin and Destination Survey (DB1B) collected by the Bureau of
Transportation Statistics (BTS). The data consists of a sample of 10% of all trips taken within the
U.S. in a given quarter/year. For each trip it contains the price of the ticket as well as the origin
and destination airports, and all layover airports. The DB1B is a well known data source in the
airline literature, and has been used (e.g., Berry (1992), Ciliberto and Tamer (2009), Aguirregabiria
and Ho (2012)).

I use the DB1B data set for the first quarter of 2005, and supplement it with information on
airport locations (city) from the BTS, with county level income from the Bureau of Economic
Analysis,18 as well as county level population data from the Census Bureau.

I keep the airports located at the 70 top MSAs in terms of population, which yields a total
of 72 airports. Table 3 presents the list of the top 20 airports ranked by the population of their
corresponding MSAs, while Table 4 shows some airport level summary statistics.

A market corresponds to a non-directional airport pair regardless of the number of stops. With
72 airports, this would imply 2556(= 72 · · · 71/2) markets, however, I drop airport pairs that lie in
the same MSA (e.g. JFK and La Guardia), leaving a total of 2541 markets.

In terms of carriers, I keep America Airlines (AA), Delta (DL), United Airlines (UA), US Airways
(US), and Southwest (WN). Table 5 presents summary statistics, across airports, of the number of
non-stop destinations served by each carrier.

I follow Ciliberto and Tamer (2009) in defining controls. In particular, for each of these market
I compute six market specific variables. Market size equal to the geometric mean between the
population at each endpoint. Per-capita income and income growth which correspond to the average
of these variables across the two end point MSAs. Distance and Distance center which correspond
to the linear distance between airports and the average of the distance of each end point airport and
the population weighted centroid of the U.S., which corresponds to Crawford County, Missouri. This
last variable is meant to account for the fact that, due to geography, airports near the coasts or the
borders have fewer closer airports than airports near the center of the country. Finally, to measure
substitutability between airports, I compute Close airport which corresponds to the average over
endpoints of the distance between the end point airport and the closest airport (including airports
in the same MSA).

For each firm-market I compute two variable. First, following the insight of Berry (1992), I
18CAINC4: Personal Income and Employment by Major Component by County. See,

https://apps.bea.gov/regional/downloadzip.cfm

31



Table 3: Top 20 Cities by MSA Population

Airports City State Population Per-capita Inc. Inc. Growth
JFK, LGA New York NY 18.6 45.6 2.4%
LAX, LGB, SNA Los Angeles CA 12.6 42.0 4.2%
MDW, ORD Chicago IL 9.3 39.5 2.5%
PHL Philadelphia PA 5.8 47.2 3.6%
DAL Dallas TX 5.8 33.5 2.3%
HOU, IAH Houston TX 5.3 33.5 3.5%
FLL, MIA Miami FL 5.3 42.0 4.0%
DCA, IAD Washington DC 5.2 52.9 4.0%
ATL Atlanta GA 4.8 30.9 2.6%
BOS Boston MA 4.5 48.2 2.9%
DTW Detroit MI 4.4 35.7 1.2%
OAK, SFO San Francisco CA 4.2 61.3 2.4%
ONT Riverside CA 3.7 28.5 3.8%
PHX Phoenix AZ 3.7 29.9 4.8%
SEA Seattle WA 3.2 39.9 2.6%
MSP Minneapolis MN 3.1 36.5 3.2%
SAN, CLD San Diego CA 3.0 41.5 4.2%
STL St. Louis MO 2.8 32.8 3.4%
BWI Baltimore MD 2.6 42.9 3.9%
PIE, TPA Tampa FL 2.6 32.4 3.6%

Note: Top 20 cities in terms of MSA population, and their airports. Population is measured in millions of people.
Per-capita Inc. corresponds to 2005 per-capita income in the MSA in thousands of dollars. Income growth measures
the annualized growth in per-capita income between 2000 and 2005.

Table 4: Airport Summary Statistics

Population Per-capita Inc. Inc. Growth Distance Center
Mean 3.4 36.3 3.3 1367
S.D. 3.8 7.8 1.0 729
Min. 0.7 20.5 0.2 112
p25 1.2 30.4 2.6 774
p50 2.0 34.3 3.4 1235
p75 4.3 41.6 4.0 1787
Max. 18.6 61.3 5.8 2717

Note: Airport summary statistics. Population is measured in millions of people. Per-capita income corresponds to
2005 per-capita income income in thousands of dollards. Incom growth measures annualized growth in per-capita
income between 2000 and 2005. Dist. Center measures the distance between the airports and the US population
centroid.
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Table 5: Number of Connections per Carrier (Across Airports)

Carrier Min. P25 Mean Median P75 Max. S.D.
DL 0 12.8 24.8 24.0 38.25 64 15.2
UA 0 7.0 21.0 22.0 32.25 60 15.1
WN 0 0.0 17.6 21.5 34.0 44 15.5
AA 0 6.0 16.4 13.5 26.0 60 13.1
US 0 1.0 15.0 12.0 25.0 51 13.7

Note: Number of connections summary statistics for each carrier. A connection is a non-directional flight between
two airports, regardless of the number of stops.

compute Airport presence as the ratio between the number of markets served by a particular carrier
in a particular airport, and the total number of markets served from said airport. This variable
captures is meant to capture the benefits of the hub-and-spoke network that many airlines have.
These benefits range from cost reductions on the supply side due to the economies of scale and scope
that arise from concentrating activities in a particular airport, and demand side benefits that arise
from flying to/from well connected airports. Finally, to measure the opportunity cost of entering
a market I compute the difference between the non-stop distance between the end points and the
distance between them while stopping on the carriers’ closest hub. I divide this quantity by direct
distance and average it across the end points. This variable, which I refer to as Cost, is meant to
capture the opportunity cost of serving a market. Table 6 below shows summary statistics for each
of these variables.

Table 6: Carrier Level Summary Statistics

Carrier Active Airport Presence Cost
AA 0.67 (0.46) 0.30 (0.14) 2.0 (11.0)
DL 0.74 (0.43) 0.46 (0.16) 2.0 (12.2)
UA 0.67 (0.47) 0.39 (0.16) 1.4 (7.40)
US 0.42 (0.49) 0.27 (0.16) 2.3 (13.7)
WN 0.37 (0.48) 0.33 (0.19) 1.8 (10.0)

Note: Carrier level summary statistics, standard deviations in parenthesis. Active is the share of markets where the
carrier is active.

5.2 Airline Entry Model

The model I estimate is a generalization of the entry game I presented above. There is a set of
carriers, F , that simultaneously decide whether to enter a market m, yfm = 1, or not, yfm = 0.
A market is a directionless airport pair, regardless of whether they are connected by a direct or a
one-stop flight. Carrier f in market m gets a profit of:

πfm = yfm

s′mβs + x′fmβf −
∑
g 6=f

δfg yg + ωξfm + εfm

 (8)
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where, sm is a vector of market specific characteristics common to all firms (e.g., Market size, Per-
capita income) and xfm is a vector of firm-market specific characteristics (e.g., Airport presence,
Cost). As before εfm ∼ N(0, 1) is a privately observed profit shock, and ξfm ∼ N(0, 1) is a common
knowledge profit shock which is unobserved by the econometrician. Finally, vector of parameters of
interest is: θ = (βs, (βf )∀f , (δ

f
g )∀f,g:f 6=g, ω), where δfg represents the competitive effect that carrier

g’s presence has on f ’s profit.

5.3 Estimation

For estimation I follow closely the approach outlined in the Montecarlo exercises in Section 4. Data
consists of a entry decisions, Ym, firm/market specific observables, Xm and Sm for a collection of
m = 1, . . . ,M markets. For each market m I compute ISD bounds, i.e., P ISD(ym|Sm, Xm, θ) and
P ISD(ym|Sm, Xm, θ), as well as the following empirical moment functions:

ψ
k
(y|Ym, Sm, Xm, θ) = (1{ym = Ym} − P ISD(y|Sm, Xm, θ)) lk(Sm, Xm)

ψk(y|Ym, Sm, Xm, θ) =
(
P ISD(y|SM , XM , θ)− 1{y = Ym}

)
lk(Sm, Xm)

for some set of non-negative functions lk(), with k = 1, . . . ,K. Finally, for each outcome y and each
function k, I compute:

µk(θ; y) = M−1
∑
m

ψk(y|Xm, Ym, θ)

σk(θ; y) =

(
M−1

∑
m

(ψk(y|Xm, Ym, θ)− µ(θ; y))2

)1/2

t(θ) = max
k,y

{
max

{
µk(θ; y)

σk(θ; y)
,
µ
k
(θ; y)

σk(θ; y)

}}
and compare it to the critical value provided in Section 4.

In reporting the results, I use the test proposed by Chernozhukov et al. (2019) to characterize
the identified set, ΘC(α), where α represents the significance. For each parameter I compute the
minimum and maximum values of the parameter consistent with θ̂ lying in the confidence set. In
other words, letting ΘC(α) = {θ ∈ ΘI : t(θ) ≤ CCK(α)}, and for a given parameter, say δfg , I
report: [

argmin
{
δfg s.t. θ ∈ ΘC(α)

}
, argmax

{
δfg s.t. θ ∈ ΘC(α)

}]
where, obviously, δfg is an element of θ.

6 Empirical Results [TBA]
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7 Closing Remarks

In this paper, I provided probability bounds on (the distribution of) outcomes of games, and show
that they pin down an identified set for the parameters of interests. The bounds are based on
an ISD argument (ISD bounds), and are robust to multiple equilibria both in pure and mixed
strategies. Furthermore, as opposed to previous bounds proposed in the literature, ISD bounds
can accommodate games of discrete or continuous strategies of any dimensionality, and allow
for any informational structure regarding the players’ private shocks (e.g., complete information,
independent private information, priviledged information), and they are informative about the
underlying informational structure. i.e., different informational structures will produce different
bounds.

To maximize the bite of ISD bounds I introduce the Strategically Monotonic Supermodular
Games, i.e., games where payoffs are supermodular on own actions, and exhibit either increasing
differences or decreasing differences between own and competitors’ actions. I argue that for these
games ISD is informative, in that it rules out large swaths of the strategy set, and useful, in that
the bounds are easy to compute.

In Montecarlo simulations, I show that ISD bounds are informative about the parameters of
interest. Furhtermore, I show that the bounds are able to inform about the relative degree of
private information vs. unobserved heterogeneity in the underlying DGP.

Finally, I provide an application to the airline industry. [TBA].
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A Proof of Theorem 1 and Best Response Iteration

A.1 Proof of Theorem 1

Here I prove Theorem 2. To this end, it is useful to show lemma 1, below, which states that
conditions the define an SMSG (Definition 4), hold for the game written with interim

Lemma 1 (Interim SMSG). Let the (x, θ, ξ)-game be an SMSG. Then (omitting dependence on
(x, θ, ξ) for brevity):

1.a. Complete Lattice Strategy Set: The strategy set Σf , together with the partial order “≥”
is a complete and compact lattice for all f ∈ F , where σf ≥ σ′f ⇔ σf (εf ) ≥ σ′f (εf ) for all
εf ∈ Ef .

1.b. Order Upper-Semi Continuity: The interim profit function, Πf , is order upper semi-
continuous. This is, for any totally ordered set C ⊂ Yf :

lim sup
yf∈C,yf↓inf(C)

Πf (yf , σ−f , εf ) ≤ Πf (inf(C), σ−f , εf )

lim sup
yf∈C,yf↑sup(C)

Πf (yf , σ−f , εf ) ≤ Πf (sup(C), σ−f , εf )

for all σ−f ∈ Σ−f , all f ∈ F .

1.c. Supermodularity: The interim profit function Πf is supermodular in yf for all σ−f .

1.d. Strategic Monotonicity: For all εf ∈ Ef , and all f, f ′ ∈ F , if f ′ ∈ C(f) then Πf has ID in
(yf , σf ′), and if or f ′ ∈ S(f), then Πf has DD in (yf , σf ′).

Proof. Fix an arbitrary SMSG. I begin by showing that Σf , together with the partial order ≤, where
σf ≤ σ′f ⇔ σf (εf ) ≤ σ′f (εf ), for all εf ,19 conform a complete lattice.

Take two strategies σf and σ′f . By definition, for all εf , σf (εf ), σ′f (εf ) ∈ Yf , hence sup{σf (εf ), σ′f (εf )} ∈
Yf and inf{σf (εf ), σ′f (εf )} ∈ Y, for all ε, which implies sup{σf , σ′f}, inf{σf , σ′f} ∈ Σf .

This shows that Σf is a lattice. The argument for completeness is analogous. Consider a
collection of strategies Σ̃f ⊆ Σf , and let Ỹf (εf ) = {yf ∈ Yf : σf (εf ) = yf for some σf ∈ Σ̃f}. Since
Ỹf (εf ) ⊆ Yf , and Yf is a complete lattice, then sup{Ỹf (εf )}, inf{Ỹf (εf )} ∈ Yf for all εf , which
implies sup{Σ̃f}, inf{Σ̃f} ∈ Σf .

To see that Πf is order upper semi-continuous simply fix a strategy for f ’s competitors σ−f . By
order upper semi0continuity of πf , for any ε and any totally ordered set C ⊂ Yf :

lim sup
yf∈C,yf↓inf(C)

πf (yf , σ−f (ε−f ), εf , ε−f ) ≤ πf (inf(C), σ−f (ε−f ), εf , ε−f )

lim sup
yf∈C,yf↑sup(C)

πf (yf , σ−f (ε−f ), εf , ε−f ) ≤ πf (sup(C), σ−f (ε−f ), εf , ε−f )

19I slightly abuse notation by using “≤” to denote the standard vector inequality and the partial order in Σ.
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Integrating over ε−f .

lim sup
yf∈C,yf↓inf(C)

Πf (yf , σ−f , εf ) ≤ Πf (inf(C), σ−f , εf )

lim sup
yf∈C,yf↑sup(C)

Πf (yf , σ−f , εf ) ≤ Πf (sup(C), σ−f , εf )

as desired.
To see that Πf is supermodular consider any two actions yf and y′f , and fix an arbitrary strategy

for f ’s competitors σ−f . By supermodularity of πf , for any ε = (εf , ε−f ):

πf (sup{yf , y′f}, σ−f (ε−f ), εf , ε−f ) + πf (inf{yf , y′f}, σ−f (ε−f ), εf , ε−f )

≥ πf (yf , σ−f (ε−f ), εf , ε−f ) + πf (y′f , σ−f (ε−f ), εf , ε−f )

which, integrating over ε−f , yields:

Πf (sup{yf , y′f}, σ−f , εf ) + Πf (inf{yf , y′f}, σ−f , εf ) ≥ Πf (yf , σ−f , εf ) + Πf (y′f , σ−f , εf )

Finally, I show that if πf has ID in (yf , y−f ), then Πf has ID in (yf , σ−f ) (the proof for the DD
case is analogous). Fix actions y′f ≥ yf and a pair strategy for f ’s competitors, σ′−f ≥ σ−f . By ID
of πf , for any εf :

πf (y′f , σ
′
−f (ε−f ), εf , ε−f )− πf (y′f , σ

′
−f (ε−f ), εf , ε−f ) ≥

πf (y′f , σ−f (ε−f ), εf , ε−f )− πf (y′f , σ−f (ε−f ), εf , ε−f )

Integrating over ε−f ,

Πf (y′f , σ
′
−f , εf )−Πf (yf , σ

′
−f , εf ) = Πf (y′f , σ−f , εf )−Πf (yf , σ−f , εf )

as desired.

Having shown Lemma 1, we are in a position to show Theorem 1, which I restate below.

Theorem 1. Let the (x, θ, ξ)-game be an SMSG, and let Σi
ISD denote the set of strategies that

survive i ISD rounds. Furthermore, let σ ≤ σ′ if and only if σ(ε) ≤ σ′(ε) for all ε. The following
holds (omitting dependence on (x, θ, ξ) for brevity):

1.a For all i = 0, 1, 2, . . ., there exists σi,L, σi,H ∈ Σ such that σi,L ≤ σi,H , and such that the set
of strategies that survive i rounds of ISD is:

Σi
ISD = {σ ∈ Σ : σi,L ≤ σ ≤ σi,H}

1.b Both σi,L and σi,H result from a sequence of best response iterations.
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1.c As i→∞, (σi,L, σi,L)→ (σL, σH), with σL ≤ σH .

Proof. I start by generalizing Lemma 1 of Milgrom and Roberts (1990) to the case of Strategic
Monotonicity. Consider an SMSG and let Σ̃(sL, sH) = {σ ∈ Σ : sL ≤ σ ≤ sH} for some pair of
strategy profiles sL ≤ sH in Σ. Let λLf (σ−f ) and λHf (σ−f ) be f ’s lowest and highest best responses
to σ−f in Σ̃f (sLf , s

H
f ).20 Furthermore, let λLf (εf ;σ−f ) and λHf (εf ;σ−f ) be these strategies evaluated

at εf . Finally let σB−f = (sHC(f), s
L
S(f)) be the “best case scenario” for firm f , i.e., the case where f ’s

complements are playing their highest possible strategy and f ’s substitutes are playing their lowest
possible strategy. I argue that any σf ∈ Σ̃f (sLf , s

H
f ), such that σf � λHf (σB−f ) is strictly dominated

(in Σ̃(sLf , s
H
f )) by inf{σf , λHf (σB−f )}.

Fix σf � λHf (σB−f ). By definition there is at least one εf such that σf (εf ) � λHf (εf ;σB−f ), so for
such εf , σf (εf ) ≥ inf{σf (εf ), λHf (εf ;σB−f )}. Then, for any σ−f = (σC(f), σS(f)) ∈ Σ̃−f (sL, sH):

Πf

(
σf (εf ),

(
σC(f), σS(f)

)
, εf

)
− Πf

(
inf
{
σf (εf ), λHf (εf ;σB−f )

}
,
(
σC(f), σS(f)

)
, εf

)
< Πf

(
σf (εf ),

(
sHC(f), σS(f)

)
, εf

)
− Πf

(
inf
{
σf (εf ), λHf (εf ;σB−f )

}
,
(
sHC(f), σS(f)

)
, εf

)
< Πf

(
σf (εf ),

(
sHC(f), s

L
S(f)

)
, εf

)
− Πf

(
inf
{
σf (εf ), λHf (εf ;σB−f )

}
,
(
sHC(f), s

L
S(f)

)
, εf

)
≤ Πf

(
sup

{
σf (εf ), λHf (εf ;σB−f )

}
, σB−f , εf

)
− Πf

(
λHf (εf ;σB−f ), σB−f , εf

)
≤ 0

where the first inequality uses the fact Πf has ID in (yf , σC(d)), and the second inequality comes
from the fact that Πf has DD in (yf , σS(f)). The third comes from supermodularity of Πf and from
substituting σB−f = (sHC(f), s

L
S(f)), while the fourth inequality follows from fact that λLf (εf ;σB−f ) is a

maximizes Πf given σB−f and εf . It follows that:

Πf (σf (εf ), σ−f , εf ) < Πf (inf{σf (εf ), λHf (εf ; sB−f )}, σ−f , εf )

for all σ−f ∈ Σ̃−f (sL−f , s
H
−f ).

Letting σW−f = (sLC(f), s
H
S(f)) be the “worst case scenario,” for f , an analogue argument shows

that σf � λLf (σW−f ) is strictly dominated by sup{σf , λLf (σW−f )}.
From these two results, it follows that every strategy in Σ̃f (sL, sH) \ Σ̃f (λL(σW ), λH(σB)) is

strictly dominated by a strategy in Σf (λL(σW ), λH(σB)), and can be safely discarded.
This concludes the generalization of Lemma 1 from Milgrom and Roberts (1990) to the case of

strategic monotonicity. With this result at hand, we are in a position to conduct ISD on the original
20By assumption 1 and 1, these are guaranteed to exist.
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game. To this end, consider the following sequence.

Set up:

Σ0
f = Σ

Y0
f (εf ) = Yf
σH,0f = {sup{Yf} : εf ∈ Ef}

σL,0f = {inf{Yf} : εf ∈ Ef}

Σi
f = {σf ∈ Σf : σL,if ≤ σf ≤ σ

H,i
f }

Σi = ×
f∈F

Σi
f

Y if (εf ) = {yf ∈ Yf : σL,if (εf ) ≤ yf ≤ σH,if (εf )}

Best/Worst:

σB,i−f =
(
σH,iC(f), σ

L,i
S(f)

)
σW,i−f =

(
σL,iC(f), σ

L,i
S(f)

)
Update:

σH,if (εf ) = sup

 argmax
yf∈Yi−1

f (εf )

Πf (yf , σ
B,i−1
−f , εf )


σL,if (εf ) = inf

 argmax
yf∈Yi−1

f (εf )

Πf (yf , σ
W,i−1
−f , εf )


σH,if =

{
σL,if (εf ) : εf ∈ Ef

}
σL,if =

{
σH,if (εf ) : εf ∈ Ef

}
Consider the i’th game of the sequence described above and note that Σi = Σ̃(σL,i, σH,i). By

the result above, any strategy in Σi\Σi+1, is strictly dominated and can be safely discarded. Hence,
by induction, each step in the sequence corresponds to an ISD step. This proves parts 1.a and 1.b.

Part 1.c follows from the fact that σL,i is increasing, and σH,i is decreasing, in i.

A.2 Applying ISD

Here I show how to apply ISD to an SMSG to find the extreme strategy profiles (σL, σH). In
particular, I outline the sequence of best response iterations that result in ISD steps for three cases
of interest: the pure ID case, where all players are complements, i.e., C(f) = F \ {f} for all f ; the
pure DD case, where all players are substitutes, i.e., S(f) = F \ {f} for all f ; and the general case.
The pure ID case encompasses coordination games, while the pure DD case encompasses games
with strategic substitution (like the entry game in the example).
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A.2.1 Pure ID Case

In this case, the best response iteration that converges to (σL, σH) follows directly from Milgrom
and Roberts (1990) and Van Zandt and Vives (2007). The details of the sequence are outlined in
(9).

To get an intuition, consider the case where yf is uni-variate, and start from f ’s “best case
scenario,”21 i.e., σH,0−f (ε−f ) = sup{Y−f} for all ε−f . By ID, f ’s best response to σH,0−f , i.e., σ

H,1
f , is

the largest strategy that f can optimally choose, and it strictly dominates all σf > σH,1f . Since this
holds for all f , all strategy profiles σ > σH,1 are eliminated by σH,1. Iterating over this procedure
yields the largest strategy profile not eliminated by ISD, σH . An analogous sequence, starting from
σL,0, yields σL.

ISD sequence for the ID case.

Set-up
σL,0f (εf ) = inf{Yf},∀εf ∈ Ef
σH,0f (εf ) = sup{Yf}, ∀εf ∈ Ef

Σi
f = {σf ∈ Σf : σL,if ≤ σf ≤ σ

H,i
f }

Σi = ×
f∈F

Σi
f

Y if (εf ) =
{
yf ∈ Yf : σL,if (εf ) ≤ yf ≤ σH,if (εf )

}
ISD Step

σL,if (εf ) = inf

 argmax
yf∈Yi−1

f (εf )

Πf (yf , σ
L,i−1
−f , εf )


σH,if (εf ) = sup

 argmax
yf∈Yi−1

f (εf )

Πf (yf , σ
H,i−1
−f , εf )


σL,if =

{
σL,if (εf ) : εf ∈ Ef

}
σH,if =

{
σH,if (εf ) : εf ∈ Ef

}

(9)

A.2.2 Pure DD Games

The intuition for the pure DD case is similar. Consider the case of uni-variate yf for all f , and start
from f ’s “best case scenario,” i.e., σL,0−f (ε−f ) = inf{Y−f} for all ε−f , and its “worst case scenario,”
i.e., σH,0−f (ε−f ) = sup{Y−f} for all ε−f . In the best case scenario, DD implies that σH,1f is the largest
strategy that player f could plausibly choose, hence any σf > σH,1f is dominated by σH,1f . Since

21Here I am using the terms “best case scenario” (“worst case scenario”) loosely to mean “the strategy choice by f ’s
competitors that maximizes (minimizes) f ’s strategy choice.” ID does not imply increasingness of πf with respect to
y−f (nor does DD imply decreasingness of πf with respect to y−f ), so these terms should not be taken to mean “the
σ−f that maximizes (minimizes) f ’s profits.”
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this is true for all f , we can discard all σ > σH,1. Similarly, in the worst case scenario, σL,1f is the
smallest best response that f could plausibly choose, hence any σf < σL,1f is strictly dominated by
σL,1f . Since this is true for all f we can safely discard all σ < σL,1. Putting these two arguments
together, we build a new game with strategy set Σ1 = {σ ∈ Σ : σL,1 ≤ σ ≤ σH,1}. Finally, applying
this argument iteratively, yields the extreme strategy profiles σL and σH .

ISD sequence for the DD case.

Set-up
σL,0f (ε) = inf{Yf}, ∀εf ∈ Ef
σH,0f (ε) = sup{Yf},∀εf ∈ Ef

Σi
f = {σf ∈ Σf : σL,if ≤ σf ≤ σ

H,i
f }

Σi = ×
f∈F

Σi
f

Y if (εf ) =
{
yf ∈ Yf : σL,if (εf ) ≤ yf ≤ σH,if (εf )

}
ISD Step

σH,if (εf ) = sup

 argmax
yf∈Yi−1

f (εf )

Πf (yf , σ
L,i−1
−f , εf )


σL,if (εf ) = inf

 argmax
yf∈Yi−1

f (εf )

Πf (yf , σ
H,i−1
−f , εf )


σL,if =

{
σL,if (εf ) : εf ∈ Ef

}
σH,if =

{
σH,if (εf ) : εf ∈ Ef

}

(10)

A.2.3 General Case

The sequence specified in (11) converges to (σL, σH) for the general case. The intuition is similar to
the previous cases, with the complication that the “best case scenario” and the “wort case scenario”
for firm f involve slightly more intricate strategies for its competitors.

As before, to get an intuition consider the case of uni-variate yf , and let σL,0−f (ε−f ) = inf{Y−f}
and σH,0−f (ε−f ) = sup{Y−f} for all ε−f . The “best case scenario” for firm f is that all its complements
(substitutes) play their highest (lowest) strategy, this is: σB,0−f = (σH,0C(f), σ

L,0
S(f)). By ID/DD, f ’s best

response to this strategy is the largest strategy that f could play, σH,1f , so that any σf > σH,1f is
dominated by σH,1f . Because this argument applies to all firms, any σ > σH,1 is discarded.

Similarly, the “worst case scenario,” for firm f is for its complements (substitutes) to play their
lowest (highest) strategies. This is: σW,0 = (σL,0C(f), σ

H,0
S(f)). By ID/DD firm f ’s best response, σL,1f ,

is the lowest strategy that it can plausibly play, so any σf < σL,1f is dominated by σL,1f . Since this
argument applies to all f , any σ ≤ σL,1 is discarded.
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Putting these step together, we can build a new game with strategies Σ1 =
{
σ : σL,1 ≤ σ ≤ σH,1

}
.

Iterating over this procedure we get (σL, σH).

ISD sequence for the general case.

Set-up
σH,0f (εf ) = sup{Yf},∀εf ∈ Ef
σL,0f (εf ) = inf{Yf}, ∀εf ∈ Ef
Y0
f (εf ) = Yf

Σi
f = {σf ∈ Σf : σL,if ≤ σf ≤ σ

H,i
f }

Σi = ×
f∈F

Σi
f

Y if (εf ) = {yf ∈ Yf : σL,if (εf ) ≤ yf ≤ σH,if (εf )}

Best/Worst Case Scenario for f
σB,i−f =

(
σH,iC(f), σ

L,i
S(f)

)
σW,i−f =

(
σL,iC(f), σ

L,i
S(f)

)
ISD Step

σH,if (εf ) = sup

 argmax
yf∈Yi−1

f (εf )

Πf (yf , σ
B,i−1
−f , εf )


σL,if (εf ) = inf

 argmax
yf∈Yi−1

f (εf )

Πf (yf , σ
W,i−1
−f , εf )


σH,if =

{
σL,if (εf ) : εf ∈ Ef

}
σL,if =

{
σH,if (εf ) : εf ∈ Ef

}

(11)
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