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1 Introduction

Industrial organization economists and policymakers are often interested in counterfactual questions
that require structural models. Will a merger induce entry? Does entry affect quality decisions?
Does competition affect technology adoption? However, any minimally realistic model that tries to
answer one of these questions suffers from incompleteness in the sense of | Tamer| (2003). In a nutshell,
due to equilibrium multiplicity, models do not generate a well-defined distribution over outcomes,
rendering standard approaches to estimation, like maximum likelihood or GMM, infeasible.

In this paper I use an Iterated Strategic Dominance (ISD) argument to build bounds on the
(distribution of) outcomes of games, and use them to pin down an identified set of the parameters
of interest. These bounds (hereinafter, ISD bounds) are extremely general in that they are robust to
multiple equilibria in pure and mixed strategies, can easily accommodate discrete, continuous, and
discrete-continuous strategies of any dimensionality, and can account for arbitrary informational
structures (i.e., complete information and incomplete information).

To understand how ISD bounds work, consider a complete information game where each player,
f, independently chooses an action ys. Also, suppose the game is indexed by an unobserved (to
the econometrician) vector &, e.g., a player-specific payoff shifter. If for some £ outcome y = (y7);
uniquely survives ISD, then y is the unique Nash equilibrium of the £-game, and therefore it must be
observed. Hence, aggregating over &: Pr(y uniquely survives ISD) < Pr(y is observed). Similarly,
if for some £ outcome y is observed, then y is one of possibly many Nash equilibria, and therefore
it must survive ISD. Again, aggregating over &: Pr(y is observed) < Pr(y survives ISD).

To maximize the bite of ISD bounds I introduce Strategically Monotonic Supermodular Games
(SMSGs), i.e., games where player’s payoff are supermodular on their own actions, and best
responses exhibit strategic complementarity/substitutabilityﬂ As T argue in the paper, SMSGs
are a natural match for ISD bounds as in these games ISD is informative, i.e., it eliminates large
swaths of the strategy set, and it is easy to compute through best response iterations.

To show that ISD has bite on SMSGs, I generalize a classic result from the literature of
supermodular games proposed by Milgrom and Roberts| (1990)), and generalized to games of incomplete
information by [Van Zandt and Vives (2007). In particular, while the standard results assume
strategic complementarity, this paper allows for strategic monotonicity, i.e., for any pair of players,
actions may exhibit either strategic complementarity or substitutability. In consequence, ISD
bounds apply to many important strategic environments that are not covered by the standard theory
of supermodular games, such as Cournot games, entry games, and capacity investment games, all
of which exhibit strategic substitutabilityﬂ

ISD bounds generate a family of identified set which differ on their level of aggregation. In
particular, going back to the notation from above, I propose an identified set based on bounds on

the distribution of y, an identified set based on bounds on the distribution of subsets of y, and an

'For any two firms, f and f’, f’s payoffs exhibit increasing differences or decreasing differences on (yy, ypr).
2I should note that the comparative statics results from [Milgrom and Roberts| (1990)) do not generalize to the case
of strategic monotonicity. These results, however, are irrelevant to the problem at hand.



Figure 1: Identified Set Example
Model: Pr(y survives ISD|0)

Model: Pr(y uniquely survives ISD|0)
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Note: Pr(y survives ISD|0) and Pr(y uniquely survives ISD|0) are, respectively, the probability outcome
y survives ISD, and the probability that outcome y uniquely survives ISD, according to the model, and given
0. These represent upper and lower bounds on the frequency with which the model predicts y given 6. If
Pr(y uniquely survives ISD|0) > Py(y), then y is observed less often than the lower bound predicted by the
model given 6, so this cannot be the real 6. Similarly, if Po(y) > Pr(y uniquely survives ISDIf) then y is
observed more often than the upper bound predicted by the model given 6, so this cannot be the real 6.

identified set based on bounds on y itself. As a general rule, the identified sets built upon more
aggregated ISD bounds (e.g., bounds on the level of y) are larger than identified sets built upon
less aggregated ISD bounds (e.g., bounds on the distribution of y). This disadvantage, however, is
compensated by the fact that more aggregated bounds impose lower computing demands.

The intuition behind the identified sets lies in the idea that there is a data generating process
(DGP), Py(y), which corresponds to the “real world” probability of observing outcome y. Any model
parameter, 6§, such that the model predicts Pr(y uniquely survives ISD|f) > Py(y) cannot be part
of the DGP, as this would imply that the model predicts y with higher probability than the one with
which it is observed in the real world. Similarly, any 6 that generates Pr(y survives ISD|0) < Py(y)
implies that y is observed more frequently than the model can generate it. As a result, such 6
cannot be part of the DGP. Figure[I] depicts this intuition.

To assess the performance of ISD bounds I perform several Montecarlo experiments on a standard
entry game. First, I focus on the complete information case and compare ISD bounds to the
bounds in by (Ciliberto and Tamer| (2009) (CT), and the ones proposed by [Fan and Yang| (2022)
(FY), respectively. As expected CT bounds, which are built on the notion of Nash Equilibria,
provide the tightest bounds, followed by outcome-ISD bounds, firm-ISD bounds, and FY bounds,
which are based on the idea of level-1 rationality. Later, I perform Montecarlo experiments on a
game of incomplete information and explore the performance of ISD bounds for this type of game.
Interestingly, the ISD bounds are informative about the relative weight of unobserved heterogeneity
and incomplete information.

The flexibility in informational structures is a major point of difference between this paper and
previous papers in the literature. Previous research has proposed identified sets which are robust to
any informational assumption, but not informative about it, e.g. |Magnolfi and Roncoroni (2020).
In other words, in these papers all informational structures generate the same identified set. In

the present paper, in contrast, different informational structures imply different ISD bounds and



therefore different identified sets. As a result, by applying ISD bounds researchers are able to
learn about the underlying information or explore the identification power of different informational
assumptions.

The focus on SMSGs has the additional benefit that these games provide a natural solution to
the problem of performing counterfactual experiments in the presence of multiple equilibriaﬂ In
SMSGs, the set of strategies that survives ISD, and therefore, the set of equilibria, is pinned down
by a largest and a smallest strategy. When conducting counterfactual experiments, then, rather
than focusing on point predictions, researchers can report a range of predictions, i.e., the range of
strategies that survives ISD in the counterfactual gameﬁ Going back to the notation above, ISD
pins down extreme outcomes in SMSGs, y” < y, such that a strategy profile y survives ISD if
and only if y < y < y. As a result, y* and y bind the possible outcomes generated by the
game. Furthermore, these extreme strategies also bound any monotonic function W (y), i.e., if W ()
is increasing, then for any equilibrium y, W (y*) < W(y) < W (y™).

Finally, to study the identification power of ISD bounds I provide an empirical application
to the airline industry, in the spirit of CT. Namely, I estimate an entry game in which carriers
simultaneously decide whether to enter a market (airport pair) or not. As opposed to CT, my
empirical model admits complete and incomplete information specifications, which allows me to
explore the identifying power of these information assumptions.

The rest of the paper is organized as follows. Section [I.1] reviews the relevant literature and
places the current paper within it. Section [2] presents the basic model, introduces SMSGs, and
shows that ISD has bite in SMSGs. Section [3] derives ISD bounds and a family of ISD identified
sets. Section [4] analyses the performance of ISD bounds through Montecarlo exercises, comparing
it to other bounds proposed in the literature. Section [5| presents the airline data and model to
be estimated, while section [6] presents the estimation results. Finally, section [7] provides some

concluding remarks.

1.1 Literature Review

This paper is related to two strands that have mostly run on independent lanes. The literature on
estimation of discrete games of complete information, and the literature focusing on estimation of

discrete games of incomplete information.

1.1.1 Complete Information Games

The issue of model incompleteness as described by Tamer| (2003)), has been a common thread
throughout the literature studying estimation /identification of discrete games of complete information.
The early examples in this literature, such as/Bresnahan and Reiss| (1991)), [Berry| (1992)), and [Mazzeo
(2002)), bypassed the problem of equilibrium multiplicity by making strong homogeneity assumptions

3This issue has is recognized as a major open problem in the literature. See|Aradillas-Lopez| (2020).
YReguant| (2016 suggests a similar approach.



on firms’ payoffs that guaranteed that all equilibria could be mapped into a single outcome (e.g.,
number of firms), for which the model makes a unique prediction.

Later papers dealt with this issue using two broad approaches. The first approach consists of
completing the model with an equilibrium selection mechanism and either assuming that it is known
(e.g., Jial (2008), |Li et al. (2018)) or estimating it from the data (e.g., Bajari et al. (2010)). This
strategy is attractive because it brings us back to the world where standard estimation techniques
work and point identification holds. The problem, however, is that economic theory provides little
guidance when it comes to equilibrium selection, making any assumption related to the equilibrium
selection mechanism hard to justify.

The second approach, the one that this paper takes, gives up on point identification and rather
focuses on identifying a set for the parameters of interest. This approach was pioneered by [Tamer
(2003) and |Ciliberto and Tamer| (2009) (CT), who build the identified set by putting bounds on
the probability of observing an outcome. In particular, the probability of observing an outcome
y must be higher than the probability that said outcome is the unique Nash equilibria, and lower
than the probability that it is @ Nash equilibria. In this strand, Fan and Yang (2020) (FY) propose
building the identified set using one round ISD, and |Aradillas-Lopez and Tamer| (2008) study the
identification power of rationalizability as a solution concept.

Aradillas-Lopez and Tamer| (2008)) is perhaps the closest paper to the present one. This paper
studies identification of k-level rationality in 2 x 2 games of complete and incomplete information,
while imposing no assumptions on player’s beliefs (beyond common priors and what is implied by
k-level rationality). The present paper can be seen as a generalization of these ideas to more much
flexible settings.

More generally, the present paper contributes to this literature by proposing ISD based bounds
that apply to games of complete and incomplete information, with discrete and /or continuous actions
of any dimensionality. In this dimension, ISD bounds are more general than CT and FY bounds,
which are customized for discrete games. Additionally, as opposed to CT bounds, ISD bounds
have do not require one to solve the complete model to compute them. This makes inference easier,
specially for games with very many players or large strategy sets, allowing one to estimate a broader
class of games. Finally, as compared to the FY bounds, the ISD bounds are built on a stronger
concept so they provide a (weakly) tighter identification set and should be preferred whenever ISD
has bite.

The present paper is also similar to|Aradillas-Lopez (2011)) and |Aradillas-Lopez and Rosen| (2022])
in using shape restrictions on payoffs, and restrictions on the action set to pin down an identified
set of the parameters of interest. In particular, by restricting their attention to ordered actions,
and making appropriate concavity and increasingness assumptions, they are able to pin down an
identified set based on Nash equilibrium conditions. The present paper, in contrast, makes much
weaker assumptions on the game’s structure, i.e., supermodularity in own actions and strategic
monotonicity, which allow for non-ordered strategies of any dimensionality. This, however, comes

at the cost of pinning down a wider identified set.



As mentioned above, I argue that ISD bounds are particularly useful in estimating SMSGs.
Many of the static games estimated in the literature are instance of SMSGs, and therefore can
be estimated using the method I advance here. For example, the models in |Bresnahan and Reiss
(1990), who estimate entry game for isolated retail and professional markets, and Berry (1992),
Tamer| (2003), |Ciliberto and Tamer| (2009) all of whom estimate entry games for the airline industry,
are all instances of SMSGs with strategic substitutes. More recently, Wollmann| (2018) estimates a
two-stage model for the truck industry in which players can choose which truck varieties to offer and
compete in prices. Although this model cannot be shown to be supermodular, as the payoffs depend
on the reduced form variable profits in the pricing stage, economic intuition strongly suggest that
strategic substitution should hold (i.e., the profit gain from introducing a variety is decreasing on
the varieties of my competitors). Furthermore, supermodularity can be verified numerically from
the pricing stage estimates.

A number of empirical papers explicitly exploit the theory of supermodular game to solve
(and estimate) models with large strategy sets that would be computationally infeasible otherwise.
Most prominently, Jia| (2008]) estimates an entry model for Wal-Mart and Kmart with spill over
effects across markets. To solve this model, she shows that the duopolistic game can be written
as a supermodular game, and proceeds with estimation assuming a known equilibrium selection
mechanism. This trick, however, applies only to two-player games, so her methodology does not
generalize to games with three or more players. Other empirical papers that exploit supermodularity
are [Uetake and Watanabe| (2020) who study entry and merger decisions in a supermodular matching
model, and|Ackerberg and Gowrisankaran| (2006) who study study technology adoption with network
externalizes. Both in the banking industry.

In all these papers the underlying model can be thought of as an SMSG, and therefore can be
estimated using the approach I outline here. Furthermore, the approach I outline makes it feasible to
relax some strong assumptions these papers made on equilibrium selection or information structures.

The idea of exploiting supermodularity to estimate empirical models is not new to this paper.
Molinari and Rosen| (2008) and Uetake and Watanabe (2013) both proposed using the theory of
supermodular games for set identification. The current paper, however, represents a major step
forward with respect to these two papers in at least two dimensions. First, I show that an ISD
argument in general, not just applied to supermodular games, generates a family of bounds which
differ in their identification power. Second, and most importantly, while these papers constrain
their focus to games of strategic complementarity, I am able to consider the much broader class of
games of strategic monotonicity, expanding the applicability of this method to a much broader class
of games. This generalization is particularly important since strategic substitutability is likely more

common than complementarity in empirical research.

1.1.2 Incomplete Information Games

As opposed to the complete information case, the literature on estimation of discrete games of

incomplete information has, until recently, largely ignored the problem of model incompleteness



in estimation. The reason for this asymmetry is that in games of incomplete information, from
the perspective of each player and the econometrician, actions are probabilistic. As a result, by
estimating the conditional choice probabilities, for any player f, the econometrician learns the
distribution over f’s competitors actions that f is facing, and can use this to estimate f’s payoffs as
a single agent problem using the methods developed by Hotz and Miller (1993)) and |Aguirregabiria
and Mira (2002) for single agent dynamic settings.

This approach, which is widely used in the literature (e.g. |Seim| (2006)), Draganska et al.
(2009), Atal et al. (2022)), rests on the assumption that all the data available comes from the
same equilibrium, and that there is no unobserved heterogeneity. However, |[de Paula and Tang
(2012), for static games, and Otsu et al. (2016) and |Otsu and Pesendorfer| (2022), for dynamic
environments, propose tests for this assumptions and find that, in commonly used datasets, the
assumption fails.

The problem of model incompleteness in games of incomplete information is an area of active
research. Two prominent efforts to deal with this issue are |Aguirregabiria and Mira, (2019)), who
study the problem of (point) identification in games with incomplete information and unobserved
heterogeneity while estimating an equilibrium selection mechanism, and |Otsu and Pesendorfer
(2022) who treat equilibrium multiplicity as a market specific correlated latent variable. As in
this paper, they provide results for set identification. As compared to these papers, the current
paper deals with the problem of equilibrium multiplicity in a more tractable way, by imposing
bounds on (the distribution of) outcomes, and making fewer assumptions on the distribution of
private shocks.

On the informational structure point, the ISD bounds proposed in this paper require no assumptions
on the informational structure of the game, being able to accommodate games of complete information,
games of correlated private information, or games where one (or more) party is better informed
than others. For example, one party may have full information, while others may only observe
their private shocks. In this sense, this paper joins |Magnolfi and Roncoroni| (2020), in relaxing the

informational assumptions required for identification.

1.1.3 Revealed preferences

A third popular route to estimation in discrete games was proposed by [Pakes et al. (2015). Their
approach is based on the idea that, if the data are generated by a Nash Equilibrium, then unilateral
deviations from the observed actions should be unprofitable for the deviating firm. This reasoning
generates profit inequalities that lend themselves for set identification, as any parameter vector that
violates these inequalities cannot have generated the data.

Although the profit inequality approach has gained traction in the empirical literature due to its
relative simplicity and tractability (e.g., Ellickson et al.| (2013) and [Wollmann| (2018))), it suffers from
a number of drawbacks that can make it a less than ideal candidate. First, it assumes that observed
outcomes are produced by equilibrium behavior, which may be amount to a strong assumption in

games with large and complex strategy sets. Second, it leaves the informational structure of the



game largely unspecified, which makes it difficult to justify these when performing counterfactual
experiments. Relative to this approach, ISD bounds do not suffer from either of this problems which

but may be harder to implement.

2 The Model, SMSGs, and ISD

In this section I provide the building blocks of a Bayesian game and introduce a Strategically
Monotonic Supermodular Games (SMSGs). Then I show that ISD has bite in SMSGs.

2.1 Model Set-Up

Consider a finite set of players (firms), F, indexed by f, who simultaneously choose a vector, yy,
from a compact action set Yy C RAmr) - after receiving a private signal /shock, ey € £¢ C RAim(Ey),
Letting e_y = (€4/) p¢, ex-post profits are:

Tr(Yr, y—f,€p € f32,6,8)

where, as is standard, y_; = (y) p2f is a vector containing f’s competitors’ actions, and where the
vector of private shocks, € = (e5) s follows a distribution G(e|x,6,&), which is common knowledge.
Each tuple (x,0,¢) indexes a different realization of the game, which I refer to as the (z, 0, £)-
game. Here, z € X C RY™(X) represents a vector of observables, # € © C RIm™s(©) jg the
vector of parameters of interest, and £ € 2 C RY™(3) is a vector of common knowledge variables,
unobservable to the econometrician. For brevity, in what follows I omit dependence of profits,
equilibrium strategies, and other variables on (z, 6, ) unless doing so is likely to result in confusion.
Given an (z,0,§)-game, a strategy for player f is any function oy € X mapping f’s private
information, €f, to an action y;, where X represents the set of strategies of f E| A strategy profile
is a collection of strategies, one for each player: o = (0¢)r € 3 = xyXy. Given any strategy for f’s

competitors, o_y = (o) pr2¢, f’s interim payoff is:

Uy (yr.o—so€f) :/g m(yp,o-pe-p)sefy e p)dGlesley) (1)
-f
where G(e_¢|er) is the conditional distribution of e_fﬁ
I follow [Van Zandt and Vives| (2007) and use interim (rather than ex ante) payoffs to define an
equilibrium. In particular, a Bayes Nash Equilibrium (BNE) for the (z,0,{)-game corresponds to

SFor simplicity, throughout the paper I stick to pure strategies. It is straightforward to extend results to the mixed
strategy case.

SA standard assumption in theoretical work, to guarantee that IT; is well defined, is for 7y to be bounded.
Although empirical models routinely violate this assumption by imposing, say, extreme value distributed error terms,
the primitives of the game are sufficiently well behaved to guarantee the II; is always well defined. For the purpose
of this paper, I will simply assume that II; exists for any o_;.



a strategy profile (of,0_¢) such that:
Hf(O’f(6f),O',f,6f) > Hf(O’}(Gf),O',f,Gf),VEf S (‘:f,VO'Sc S Ef,Vf e F (2)
Furthermore, the set of BNEs is:
B = {0 € X: o satisfies (2)} (3)

It is well known that even in simple settings the model above is incomplete in the sense of
Tamer| (2003)), i.e., there exist (x,,&) for which the (z,0,£)-game has a non-singleton equilibrium
set B, therefore the model does not yield a well defined prediction. I complete the model with an
equilibrium selection mechanism, PE i.e., a function that selects a strategy profile from the set of
BNE, and use o” € B to represent the strategy selected by the equilibrium selection mechanism p.

Before introducing the SMSGs, a quick comment regarding the informational structure of the
model is in order. The model allows for an arbitrary informational structure through the private
shocks/signals, €, and their distribution, G. The complete information case, for example, can
be represented by a degenerate distribution G. In this case, the randomness of the outcomes is
driven by the randomness (from the perspective of the econometrician) of the common knowledge
unobservable, &.

Other informational structures can be represented by letting e; = (vf, 7¢) where vy is the payoff
relevant shock and 7 is a, payoff irrelevant, signal about other player’s private information, as in
Magnolfi and Roncoroni| (2020). For example, the independent private information case corresponds
tovy L v_y and 74 = & for all f. The priwileged information case, where one player is perfectly
informed and the rest only observe their private shocks, can be represented by vy L v_y and 77 = @
for all f except the privileged party whose signal is 7y = v_;. Similarly, the case with independent
partially observed information corresponds to the case where vy L v_y and 74 = v_; + ¢_y, where
G_y is noise. In this dimension, the present paper can easily accommodate many more informational

structures than previous research has allowed forﬁ

2.2 Strategically Monotonic Supermodular Games and ISD

Here I introduce a class of games which I call Strategically Monotonic Supermodular Games (SMSGs)
and show that for this type of games ISD is informative, in that it rules out large swaths of the
strategy set, and practical, in that it is easy to compute. As a result, an estimation approach based
on ISD is particularly promising for SMSGs.

The main result of this section, Theorem , says that in SMSGs there exist strategies, o** and
o H i,L

, such that any strategy o that survives i rounds of ISD, for i = 0, ..., 00, lies between o“* and

"The Equilibrium Selection Mechanism may depend on (z,0,¢) as well as other additional unobservables, i.e., sun
spots. I omit this dependence here for simplicity, and because it plays no role in the estimation procedure I put
forward.

8Other papers that allows for flexible information structures are Magnolfi and Roncoroni| (2020), |Aradillas-Lopez
(2010)), and |Aradillas-Lopez and Tamer| (2008)).



o™H in the sense that 0"’ () < o(e) < o> (¢) for all €, where “<” represents the standard vector
inequality. This result is the main building block for the ISD bounds from in Section [3] To move

in this direction, let us begin by investing in some definitions.

Definition 1 (Increasing Differences and Decreasing Difference). Let h(z1, z2) be a function mapping
from Z1 x Z3 to R, where Z; C R&“™Z) for j=1,2.

[{.a. Increasing Differences (ID): h has increasing differences in (z1,z2) if, for any distinct

21 > z1, and distinct zb > zo:
h(z1, 25) — h(z1,25) > h(z), 22) — h(21, 22)

[1.b. Decreasing Differences (DD): h has decreasing differences in (z1, z2) if, for any distinct

21 > 21, and distinct 2 > zo:
h(2y, 25) — h(z1,25) < h(2], 22) — h(z1, 22)

Definition 2 (Complements and Substitutes). Pick an arbitrary (z,0,§)-game, and let y_gs ¢ =
(Ye)ef.57- Define (omitting dependence on (x,0,§) for brevity):

[2a. Complements: f' is f’s complement if w¢(ys,yp,y—gs,py,€) has ID in (yg,ys) for all
(Y—gr,p11-€)- The set of f’s complements is denoted by C(f).

[2.b. Substitutes: f'is f’s substitute if Ty (yr,ys, y_g,511,€) has DD in (yg,ys) for all (y_gz. 3, €).
The set of f’s substitutes is denoted by S(f).

In Definition [I|, ID and DD are notions of complementarity and substitutability, respectively.
Intuitively, ID implies that the marginal return of y; is increasing in y, hence the optimal ys is
increasing in . Many games exhibit ID, such as games with complementary investments. Similarly,
DD implies that the marginal return of y7 is decreasing in y/, so the optimal y; is decreasing in y .
In IO settings, DD is more common than ID. Games of entry, capacity investment, and Cournot
competition, for example, typically exhibit DD.

In Definition [2} a complement (substitute) of firm f is a firm, f’, whose actions are strategic
complements (substitutes) to f’s actions. Note that if f’ is f’s complement, this does not imply
that 7 is in increasing in yf/ﬂ nor does it imply that f is f”’s complement (i.e., the complement
relation is not necessarily symmetric). Similarly, if f"is f’s substitute, this does not imply that ¢
is decreasing in yf’m nor does it imply that f is f’’s substitute (i.e., the substitute relation is not

necessarily symmetric).

9Say f and f’ produce differentiated goods, engage in Bertrand competition, and have to decide whether to adopt
a cost-saving technology or not. If f’ adopts the technology it makes f worse off (f is harmed by the lower cost
of f). Nevertheless, f' adopting the technology may increase f’s incentive to adopt, so that adoption decisions are
strategic complements.

OFor example, in a public good financing game, 7 might be increasing in y; (the more f’ invests in the public
good the higher the benefit for f), and (yf,y) may be strategic substitutes, i.e., the more f’ invests in the public
good the lower the marginal return for f to do so.

10



Before moving to the definition of SMSGs, let us define the concept of a lattice, which is central

to the theory of supermodular games which I exploit in this paper.

Definition 3 ((Complete) Lattice). A set Z together with a partial order, <, constitute a lattice if
for any z,2' € Z, sup{z,2'} € Z and inf{z,2'} € Z. Furthermore, the tuple (Z,<) is a complete
lattice if for every Z C Z, inf{Z} € Z and sup{Z} € Z.

Definition 4 (SMSG). The (x,60,&)-game is a Strategically Monotonic Supermodular Game if
(omitting dependence on (x,6,&) for brevity):

[4a. Complete Lattice Action Set: The action set, Yy C RA™Yr) - together with the standard

vector inequality, “>7, conform a complete lattice for all f € FH Furthermore, Yy is compact
forall f € F.

[4.b. Order Upper Semi-Continuity The profit function, ¢, is order upper semi-continuous in
yg. Formally, for any totally ordered set O C ny

lim sup Wf(yfa Y—fs€fs 67]") < T (ll’lf(O), Y—fs€fs E,f)
yr€0,yrlinf(0)

limsup — 7wp(ys, y—g,€p,6-f) < mp(sup(O),y—y, €5, €5)
yr€0,ystsup(O)
forally_y€Y_s, all f € F, and all e € £.

[4 c. Supermodularity: The profit function, ©s, is supermodular in y¢, i.e., for any yf,y} € Vy:

mr(sup{ys, vy b,y €) +mp(inflyr, vi by €) > 7wy, y—y.€) + 7Yy, y—y.€)
forally_y € Y_y, all f € F, and all e € £.

[4 d. Pairwise Strategic Monotonicity: For all f,f' € F, either f' is f’s complement, i.e.,
feC(f). or fis f’s substitute, f' € S(f).

As I argue below, SMSG’s have properties that make them particularly good candidates for
estimation using ISD bounds. Point of the definition is necessary to exploit the supermodular
games infrastructure advanced by Milgrom and Roberts| (1990) for games of complete information,
and [Van Zandt and Vives (2007) for games of incomplete information. Although most empirical
studies satisfy this assumption, it is easy to construct games in which it is violated. For example,
consider an entry game with location choice as in [Seim! (2006)). Firms have to choose between not
entering a market, entering in location A, or entering in location B. Letting 1 (0) represent the
case where f does (does not) enter a given location, the strategy set is Yy = {(0,0), (0,1), (1,0)},
and it is easy to see that sup{(0,1),(1,0)} = (1,1) ¢ Y¢. Point @b, is a technical condition

"Note that this definition allows Yy to include {—o0,4o00}. Naturally, for this to work payoffs need to be well
defined at infinity.
'2A totally ordered (sub)set C' C Yy is a subset of Yy such that for any yyr,y} € C either yy > v} or yy < y}.
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necessary to guarantee that f’s problem has a solution. Order upper semi-continuity is satisfied if
7y is continuous or if the strategy set is discrete.

In point of the definition, supermodularity of 7y represents a notion complementarity
between the elements of y¢. If y; is uni-variate then this assumption is trivially satisfied. Otherwise,
supermodularity is likely satisfied in cases where there are positive spill over effects between the
different elements of y;. [Jia (2008) provides a prominent example of an empirical game exhibiting
supermodularity. In her model, opening a Wal-Mart store in any location increases the profitability
of opening a store in neighboring locations due to economies of scope in inventory management.
Finally, point says that there is Strategic Monotonicity meaning that each of f’s competitors
is either f’s substitute or f’s complement. For f’ € C(f) this implies that f’s optimal behavior is
increasing in ys, whereas for f' € S(f) this implies that f’s optimal behavior is decreasing in yg.
Either way, the pairwise strategic relation is monotonic.

Before moving to Theorem [2] it is worth formalizing the notion of strict dominance I use

throughout the paper.

Definition 5. Strategy o strictly dominates strategy a} in the (x,0,&)-game if:

Wp(op(er),o-prep) 2 Mp(oy(es),o-p,€),Vey € Ep,Vo_p € Ty
with strict inequality for at least one ey, where Iy is the interim payoff defined in .

Defining strict dominance in terms of interim payoffs, rather than ex-ante payoffs, has the
advantage that it allows us to distinguish between strategies that are ex-ante equally attractive.
To see this, consider two strategies, oy and a}, equal everywhere except for a zero-measure subset
of &, in which oy is preferred to a}. Ex-ante, these two strategies would be evaluated as equally
good, however an interim evaluation will say o is preferred to a} because there are values of €, for

which, o fares strictly better, even if this contingencies have zero probability.

Theorem 1. Let the (x,6,&)-game be an SMSG, and let EéSD denote the set of strategies that
survive © ISD rounds. Furthermore, let o < o' if and only if o(€) < o'(€) for all . The following
holds (omitting dependence on (z,0,§) for brevity):

Qla For alli=0,1,2,..., there exists "%, 0" € ¥ such that o* < o™ and such that the set

of strategies that survive © rounds of 1SD is:
Yigp={oeX:o <o <o}

[ b Both o¥L and o result from a sequence of best response iterations.
d.c Asi— oo, (obF, 0%F) — (o, o), with o¥ < ¥

Proof. See Appendix [A] O
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Theorem (1| is a generalization of Theorem 5 in Milgrom and Roberts (1990), which assumes
increasing differences (i.e., strategic complementarity). The present generalization from strategic
complementarity to strategic monotonicity is crucial to the practical relevance of the approach to
estimation I propose in this paper, as it implies that ISD bounds can be applied to a much broader
class of games than the classical theory of Supermodular Games considers. Namely, ISD bounds can
be applied to games of strategic substitutability which are likely the norm in industrial organization.

To get an intuition of how the proof operates, consider an entry game between competing firms,
so that profits exhibit decreasing differences in entry decisions, and let y; = 1 denote entry, and
yy = 0 denote no-entry. The worst case scenario for firm f occurs when all other players choose an
“always enter” strategy, i.e., o (ep) =1 for all €y and f' # f. Let O'}’L be f’s best response to this
strategy profile. Decreasing differences implies that even if f’s competitors choose less aggressive
strategies, O'}’L will still be preferred to oy < J}’L. Hence, O'}’L strictly dominates oy < O'ch’L. Since
this holds for every f, all o < o™ are strictly dominated.

Similarly, the best case scenario for firm f occurs when every competitor chooses a ‘“never enter”
strategy, i.e., op(ep) = 0 for all ey and f’ # f. An analogue argument shows that the best response

to this strategy, a}’H, strictly dominates all oy > O'ch’H. Furthermore, because this is true for every

f, then all ¢ > o"¥ are strictly dominated by o'#.

Finally, the sequence of sets that survive ¢ rounds of ISD, i.e., EZ‘ISD results from letting o'
and o become the new best and worst case scenarios, and iterating over best responses as
described above. In appendix [A.2]I show how to build and apply this sequence for the case of pure
complements, i.e., C(f) = F\ {f} for all f; the case of pure substitutes, i.e., S(f) = F\ {f} for all

f; and the general case.

2.3 Two Entry-Game Examples

Here I show the implications of Theorem [I] to two archetypal entry games. The independent private
information case, and the complete information case.

2.3.1 Independent Private Information Entry Game

Two firms simultaneously choose whether to enter a market (yf = 1) or not (yr = 0). Firm f’s

profit is:

Ty, y—poep;xp,0,€5) = yr (258 — Syp + &5 + €f)

where €y is an independently distributed, privately observed shock, i.e., ey Lep for all f # f'. It is

easy to see that f’s optimal strategy will take the form of a threshold strategy, where the threshold

corresponds to the lowest value of €; such that the profit of entry is positive, conditional on o_;.
One can show that this is an SMSG. To see this, note that Yy = {0,1} is a complete lattice,

m¢ order upper semi-continuous and supermodular in y; (trivially so, since yy is discrete and uni-
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Figure 2: Two Player Game Best Responses in Probability Space

02, BRy BRy(03) o2, BRy \
\

BRy(or) 72 [ : \\ BRs(01)
o1, BR : : o1, BR
af af’

Note: Slightly abusing notation, I use oy to represents f’s entry probability. BRy(o_y) represents the optimal entry
probability of firm f given the entry probability of firm f’. The left panel exhibits an (z,0,&)-game with a single
equilibrium, while the right panel exhibits an (z, 0, {)-game with multiple equilibria.

variate), and ¢ has DD in (yy,y ). This is:

Tr(Ly—poepre—p) = mp(0,y—g,€p 6-p) =apB — oyp + 5 + €5

is decreasing in yy.

Figure [2] depicts the implications of Theorem for this game. Slightly abusing notation, it
uses oy to represent the entry probability of firm f, and it depicts the best response function, BRy,
as the optimal entry probability of firm f given an entry probability for its competitor. The left

H — 5L 50 the set of strategies that

panel shows the case with a unique equilibrium. In this case o
survives ISD, Yjgp, is singleton. The right panel shows the case with multiple equilibria. Here,
ol < o, so the set of strategies that survives ISD is non singleton, and is represented by green

box.

2.3.2 Complete Information Entry Game

Consider the same example as above, only now ey = 0 for all f, i.e., players are completely informed.
Clearly the resulting game is still an SMSG.

The best response function of firm f can take three “values” depending on the realization of
£r. One where entry is dominant, i.e., BRf(o_y) = 1 if 58 —d + & > 0. One where no entry
is dominant, i.e., BRf(o_f) = 0 if ¢ + & < 0. And one where entry is only profitable as a
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monopolist:

1 if y_y=0

BRy(o_y) =
(o) {0 oy o1

ifxpB—0+& <0<xpB+ &

Each realization of (&1,&2) triggers one of nine possible game types, one for each combination
of best responses for each firm. Figure [3| depicts each of these combinations. For example, if
zpB—06+& >0for f=1,2 ie., region (9), then entry is a dominant strategy for both firms and
ol = = (1,1). If 218+ & <0and 228 — 5+ & < 0 < 2283 + &9, ie., region ), no-entry is
dominant for firm 1, and conditional on y; = 0 entry is dominant for firm 2, hence o* = o/ = (0, 1).

It is easy to see that for any of these games Yrgp is singleton, i.e., o = oF except when
¢ € (®). In that case no firm has a dominant strategy and everything survives ISD, i.e., ol = (0,0)

and o = (1,1).

3 ISD Bounds and Identified Set

In this section I show that SMSGs produce tractable ISD bounds, and use these to derive an

identified set for the parameters of interest.

3.1 ISD Bounds

The main assumption behind ISD bounds in SMSGs, Assumption [I] below, simply says is that for all
possible values of (z,6,¢) the (x,0,&)-game is an SMSG. This assumption implies that the results
of Theorem [1| hold for all (z,6,¢), and that the best response iterations described in Appendix
apply to all (z, 6, &)-games. Importantly, this assumption does not say that the set of complements
and substitutes of each firm has to be the same for all (z,6,£). This is an important source of
flexibility if the researcher does not want to impose the nature of strategic interactions between
players, and rather wants this to be revealed by the data (as in |Ciliberto and Jékel (2021)).

Assumption 1 (SMSG Assumption). The (z,6,&)-game is an SMSG for every (z,0,£) € X xO x =.

Most games considered in empirical research satisfy this assumption. Nevertheless, there cases
where the assumption fails such as in|Fan and Yang| (2022) who study a product choice game among
breweries in California, or [Seim| (2006) who studies entry and location choices among video rental
stores. In these applications Assumption [1] fails on two accounts: profits are not supermodular, and
ID/DD is not guaranteed.

Theorem [2, below, derives ISD bounds in SMSGs. Importantly, the theorem provides bounds on
the distribution of any subset of the outcome vector y, which allows me to define different identified
sets depending on what ¢ C y one is considering. This is an important source of flexibility for
empirical research, as different ISD bounds have different computational burdens and identifying

power. I discuss this in more detail on Section [3.3
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Figure 3: Game Matrices with Best Responses for Values of &

&
0 1 0 1 0 1
Ole |ee@ 0 o0 0 °
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0@ [ N 0 ( N 0 [
R e pa RN | [ —— oo >£1
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1 [ J ll®ee@® INC N )
@ ol =oH = (0,0) @ ol =¢H =(1,0) @ ol =oH =(1,0)
—1’15 —(l’lﬁ — 5)

Note: In each region (D),...,(9), (&1,&2) generates a different class of games, in the sense that within each region all
values of £ generate the same best responses for both players, and when going from one region to another at least
one firm changes its best response. The red dots represent the best response of firm 1. The blue dots represent the

best response of firm 2.
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Theorem 2 (ISD Bounds in SMSGs). Say Assumption[1] holds, and let H(-|z,0) be the distribution
of £&. Furthermore, let § be a subset of y (e.g., the action of firm f). The following holds:

Prsp(il,6) < P*(3z,0) < Prsp(lr, ) 0
where:
Pispliied) = [ [ 1{o 0.6 =5 = 57(60.0.0) }dG(ele.0,.6)dH (€lz.0)
Pied) = [ [ 1{o60.0.0) = }dGile.0,.)d €]z 0
Prso(ls.0) = | /g 1o (62,0,€) <5< 5" (62,0,€) }dG(ela, 0,)dH (€], 0)

and where 61 and 67 are subsets of o and o™ corresponding to .

Proof. Consider an arbitrary (z, 0, £)-game and fix an arbitrary equilibrium selection mechanism p.
By definition, every equilibrium strategy must survive ISD, hence by Theorem ol <orf <oH,
which implies o%(¢) < o”(¢) < o (¢) for all e. Now fix an arbitrary subset of y, ¢, and let &7,
&H and &° represent the corresponding elements of o, ¢! and o”. Clearly, the following holds:
Fh(e) < 30(e) < 57 (¢)

Say 6%(e) = § = &'(¢) for some ¢, then 6°(¢) = §. This reasoning implies the following

inequality (making explicit the dependence on (z,,¢)):
15 (52,0, = =5 (2,0, } < 1{67(c;2,0,6) = 7}

Integrating over € and & yields the inequality on the left-hand side of .
Similarly, if 5°(¢) = 7 for some ¢, then 67 (e) < § < 6 (¢). This reasoning leads to the following

inequality (making explicit the dependence on (z,6,¢)):

1{y=5"(:2,0,8) } < 1{5"(2,0.8) <j < 6" (e.2.6,9)}
Integrating over € and £ yields the inequality on the right-hand side of . O

Theorem [2| shows that, regardless of the equilibrium selection mechanism, the probability that
the model generates a sub-outcome § C y is bounded from below by the probability that ISD
mandates y (i.e., all strategies that survive ISD prescribe ), and from above by the probability
that ISD allows § (i.e., some strategy that survives ISD prescribe ). In what follows, I refer to
Prsp and P 1sp as the ISD bounds, and use them to construct an identified set for the parameters
of interest.

Before going there, however, let us discuss two noteworthy points. First, analogous ISD bounds
may be built using i-level rationality, rather than “full-blown” rationality. This is, similar bounds
hold for 7 ISD rounds, as in |Aradillas-Lopez and Tamer| (2008), Aradillas-Lopez (2010) and |Molinari
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and Rosen| (2008)). In fact, it is easy to see that the more ISD rounds one uses, the tighter the bounds.
Second, and relatedly, ISD bounds apply to any “strategy selection rule” that is consistent with 4
rounds of ISD. In other words, when building the identified sets, we need not assume that the data
is generated by a BNE, but simply by a strategy profile that lies in the ¢’th level ISD set. This
observation is important, as researchers may wish to explore the identifying power of different levels
of rationality, or simply may not wish to assume that the data comes from a BNE. I formalize this

below.

Remark 1. Say assumption[d] holds. The i-level rationality bounds are:
Pisolled) = [ [ 1t{o" a0, =y = o (cs0.6.€) JaG(elo.0.)dT (€] )
Proplule0) = [ [1{sH600.6) < < 050,00 bl 0, (ele,0)
By definition obt < oLl < gt LH < 60H - pence:
Pisp(ylz.0) < Pih(yle.0) < PP(yle,0) < Prap(yle.0) < Pigp(yle,0)

foralli=0,1,2,....
Finally, let p* be an “i-level rationality strategy selection rule,” i.e., a function that selects a

strategy from the set of strategies that survives i rounds of ISD. The following holds:
Pisp(ylz, 0) < PP (ylz,0) < Prgplyle,0)

foralli=0,1,2,....

All results below hold for i-level rationality and any i-level rationality strategy selection rule, p'.

3.2 Two Entry-Game Example Continued

Before building the identified set, let us explore how Theorem [2| produces ISD bounds for the case of
independent private information introduced in[2:3.1and the case of complete information introduced
in [2.3.2)

3.2.1 Independent Private Information Entry Game Revisited

Consider the independent private information game introduced in and recall that by Theorem
the set of strategies that survive ISD is pinned down by the extreme strategies o and of.
Furthermore, recall that any optimal strategy takes the form of a “threshold strategy,” i.e., for each
firm there is a threshold €} such that o¢(e) = 1{e; > €}}.

Say we are interested in deriving the ISD bounds of y; = 1. Figure @ zooms into the strategies

L

of firm f that survive ISD. The values ef < € represent the entry thresholds of U}{ , and U]%,

respectively. All strategies whose thresholds lie between e? and eJLc survive ISD, so for any p,
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e? < 6? < e]]%. It is easy to see that y; = 1 is mandated by ISD, i.e. of(e;) =1 = of(es) when
€1 > el Similarly, y; = 1 is allowed by ISD, i.e., af(cf,f) <1< af(ef), when €; > GJIZI.

Finally, assuming that £y = & for f = 1,2, is a market-specific binary variable that takes the
values &y and —&y with equal probability, the ISD bounds are:

1 1
BISD(yf = 1|CC,0) = §PT(6]C > 6%(.’1779760)) + §PT(€f > 6%(‘%‘707 _50))

_ 1 1
Prsp(yr = 1|z, 0) = iPr(eJc > e?(x,@,fg)) + §Pr(ef > e?(m,@, —&))

Now say we are interested in deriving ISD bounds for y = (1, 1). Figure |5 depicts the outcomes
allowed by ISD for all combinations of €; and e3. The lower bound is given by the values of € such
that o”(e) = o (¢) = (1,1), which occurs when both firms receive large enough profit shocks, i.e.,
€r > ef; . This corresponds to the purple area in the top-right corner. Similarly, the upper bound is
given by those values of € for which o%(¢) < (1,1) < 0¥ (¢). This occurs when both firms receive
shocks ey > e;[ , which corresponds to the area inside the brown rectangle.

Assuming as before that s is a market-specific binary variable, and using independence pf €;

and ez, the ISD bounds are (making dependence on (z, 0, ) explicit):

1 1
BISD(y = (17 1)‘:1:79) = 5 H PT(Ef > 6}[”/(:1;79750)) + 5 H PT’(Ef > 6%(1‘797 _§0))
f=1.2 f=1,2

_ 1 1
PISD(y = (]-a ]_)|.’E,9) = 5 H P’I"(Ef > 65”{(1‘79750)) + 5 H PT‘(Gf > EfH(QZ,Q, _50))
f=12 f=12

It is noteworthy that the ISD bounds on outcomes y are tighter than the ISD bounds on firm
actions yy. Naturally, this implies that ISD bounds on y are more informative about the parameters

of interest than ISD bounds on y;’s.

3.2.2 Perfect Information Example

Consider the complete information entry game introduced in [2.3:2] As depicted in Figure [3] every
realization of (&1,&2) triggers a different SMSG, hence for each (£1,&2) the set of strategies that
survive ISD is pinned down by different extreme strategies o and o¥. For example, if & >
—(Bxy — 6) for f = 1,2 then entry is dominant for both firms and of = o/ = (1,1). Similarly, if
—Bxzp < & < —(Bxs — &) then ISD has no bite and o = (0,0) and o7 = (1, 1).

Say we are interested in the ISD bounds for y; = 1. The lower ISD bound is given by those
(¢1,&) for which of = 1 = o1, which occurs in regions @), @), ®, and (9. Similarly, the upper
bound is given by those (£1,&2) for which alL <1< afl, which occurs in regions @), B, (7), (8, and
(@), Hence:

Prsp(yi =1)|z,0) = Pr(ec@U@U®U@lz,0)
Pisp(y1 = 1)|z,0) = Pr(e@u@UOuU®uU®|z,0)
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Figure 4: Player Specific Extreme Strategies and Equilibrium Strategy Selected by p
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Note: Lowest UJI?, highest 0;{ and selected (rfff, strategies for an entry game of incomplete information. eJLc, E;I and (’;

are the corresponding fixed cost entry thresholds.

Figure 5: Set of Actions allowed by ISD for values of €. Two-Player Case.

b=l =1| oL =c® =(0,1)
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Note: Set of actions allowed by ISD in the (e1, €2) space. For each value of €1 (resp. €2), the horizontal (rest. vertical)
axis shows the actions that ISD allows for firm 1, (resp. 2) . Every rectangle, shows the outcomes allowed by the
corresponding (e1, €2). For example, for outcome y = (1,1) is the only outcome by ISD if and only if € € M. Similarly,
outcome (1,1) is allowed by ISD for all € € 0,
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Now, say we are interested in computing the ISD bounds of outcome y = (1,1). The lower ISD
bound is given by the values of ¢ that make 0% = (1,1) = ¢!, i.e., region (9). Similarly the ISD
upper bound is given by the values of ¢ that make o < (1,1) < ¥, i.e., regions &) and (9). Hence:

EIS’D(y = (1,1)’1‘,9) = PT(f € @‘l’,@)
Prsply=(1,1)]z,0) = Pr(¢e®U@®|z,0)

As before, ISD bounds on outcomes y are tighter than the ISD bounds on firm actions y, so we
should expect bounds on y to be more informative about the parameters of interest than bounds

on ys’s.

3.3 Identified Set

In this subsection I derive ISD identified set. To this end, consider the following assumption on the

data generating process.

Assumption 2 (Data Generating Process (DGP)). There is a real parameter vector and a real
equilibrium selection mechanism, 0y and pg, respectively. Furthermore, given a private shock vector

€, the observed outcome of the (x,0,&)-game is:
J0(6; z, ‘5) = o (6; xz, 00) g)

where o (€;x,00,&) equilibrium strategy chosen by po in the (x,00,&)-game, evaluated at €.

Assumption [2] says that the model is correctly specified, and that the realization of each game
comes from a BNE selected by an arbitrary equilibrium selection mechanism pg. It is worth noting
that Assumption [2]is not central to any result below. In particular, as noted in Remark [}, it could
be the case that the data does not come from a BNE at all, but that some o € ¥;gp is selected by

9

a “strategy selection mechanism,” i.e., a function p that chooses an element of Y;gp. All identified

sets I describe below hold under this weaker assumption too.

3.3.1 Probability Identified Set: Discrete Case

Consider a partition of y, i.e., (g;); = y. For example, each §; may represent the action taken
by a firm, i.e., for each j, §; = yy for some f. Let Py(yj|x) = PP°(y;|x,6p) be the probability of
observing ¢; according to the DGP. By Theorem [2| expression holds for 6y and py. Hence, any
0 that violates:

Prsp(gjle, 0) < Po(gjle) < Prsp(y;lz,0) (5)

for some (z,y;,j) cannot be the real §. With this intuition, I define the identified set as follows.
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Definition 6 (ISD Identified Set). Let (9;)j=1,....; be a partition of y, where J is number of sets in
the partition. The identified set, ©rsp, is the collection of all @ € © such that 0 satisfies (D)), i.e.:

Orsp = {0 € © : 0 satisfies (F]),Vz € X,Vy; € ﬁj,w e J}

where ); is the set of values that ; can take.

The identified set in Definition [f] is really a collection of identified sets that depend on which
partition of y is being considered. Two partitions of interest are the trivial partition, i.e., J =1
and ¢, = y, and the-firm level partition, i.e., J = |F| and for each j, 3; = y; for some f, although
many more are possible.

The identification power of the ISD bounds will depend on what partition is being used.
Intuitively, coarser partitions place more restrictions on the joint distribution of y, and therefore will
lead to tighter ISD bounds (as argued in Section and more informative identified sets. Hence,
firm-level bounds (i.e., bounds in yy) are less informative about ¢ than outcome-level bounds (i.e.,
bounds on y). The Montecarlo experiments in Section [4| support this argument.

This disadvantage, however, comes with a trade off in terms of computational burden. Typically,
P;sp and Prsp do not have closed form solutions and need to be computed numerically, and the
computational burden of doing so will depend on how coarse is the partition of (g;);, with coarser
partitions being more burdensome. Hence computing bounds on y (the coarsest possible partition)

will be costlier than computing bounds on yy’s.

3.3.2 ISD Identified Set: Continuous Case

The identified set from Definition [6] is uninformative when y is continuous. If this is the case, then

the collection of (e,&)’s such that o(e;x,0,£) = y has zero measure, hence:

BISD(y‘:E>9) = O,VZE’,Q
PP(ylx,0) = 0,Vz,0

and the bounds proposed in the previous subsection will be trivially satisfied for all .
To bypass this issue I propose bounds on the cumulative distribution of y. To see how this
works, consider an arbitrary outcome y and note that Theorem |1 implies that o < ¢? < o for

any p. Hence, the following inequalities hold:

o (e;2,0,6) <y} < 1{ol(ex,0,) <y}
Hof(e2,0,8) >y}t < 1{o(e2,0,¢) >y}

In words, any action profile y that is greater than the predicted outcome o”(¢; -) must also be greater
than the lower bound o%(e;-). Similarly, any action profile that is smaller than o”(e;-) must also

be smaller than the upper bound o (¢; ). Integrating over € and ¢, and slightly abusing notation,
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this implies the following probability-based inequalities:

P(o? <yl|z,0) < P[SD(O'L < ylx, )

P(o? > ylz,0) < P]SD(O'H > yl|x,0)

where the probabilities follow from integrating over the distributions H (¢|z,6) and G(e|z, 9,{)@
Finally, let

P(og < ylx)
P(og > ylx)

P(o” < y|z, b))
P(o™ > y|z, b))

be the real probabilities, i.e., the probabilities derived from the real parameter vector and equilibrium
selection mechanism (6g, pp). Identification rests on the idea that any parameter vector 6 that

violates:

Prsp(ot < ylz,0)
Prsp(afl > y|z,0)

- (©)
<
for some (z,y) cannot have generated the data, i.e., § # 6. The identified set, then, is defined as

follows.

Definition 7 (ISD Identified Set - Continuous Case). The identified set, Osp, is the collection of
all 0 € © such that 0 satisfies @, i.e.:

Orsp = {0 € O : 0 satisfies (6]),Vz € X,Vy € V,} (7)

A number of comments regarding this identified set are in order. First, as in Theorem [2| and
Definition [6] the ISD bounds and the identified set for continuous variables can be defined for subsets
of y rather than y itself. Second, these bounds apply for the discrete case as well as the continuous
case. And third, in the case where y; has discrete elements and continuous elements (say for an
entry game followed by a pricing stage), one can use a combination of the bounds of Definition
and the ones defined in Section 3.3.]

3 This is:

P(o” < ylz,0, p)

/5 [ 107 (€2.0.6) < ydG(ela,0.9)dtt (€, 0)

P(o” > y]2,0, p) /5 / 1{o"(c;,6,€) > y}dC(elz, 0,€)dH €]z, 0)

Prsp(o” < ylz,0)

/E [ 10 (52,6,) < y}dG(ela.0,€)dH (€l 0)

Prsp(o? > yla,0) = /5 / 1{y < 0" (¢;2,0,)}dG(elx, 0, ) AH (€], 0)
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3.3.3 ISD Identified Set: Outcome Level

Finally, rather than putting bounds on the distribution of outcomes, one can put bounds on

outcomes themselves. To see this, note that Theorem implies that for any p:
L. Pl H.
o (6x,0,8) < oP(6,0,8) <o (ex,0,8)
Taking expectation over € and &:

yi(2,0) < yP(z,0) < yT(x,0)
—— —— N——
=E[oL(&w,0,8)|z,0] =E[or(e;x,0,€)|z,0] =FE[oH (¢;2,0,£)|z,0]

Finally, letting yo(z) = y”°(x, 6p), we can define the identified set as follows.

Definition 8 (ISD Identified Set for Outcome Bounds). The identified set based on outcome level

bounds 1is:
@ISD = {0 €06: yL(z:,ﬂ) < yO(:L') < yH(l‘,e),VIL‘ € X}

It is easy to see that outcome level bounds apply for discrete or continuous y. Since computing
these bounds requires integrating over y, the identified set that results from outcome level bounds
is weakly larger than the ones based on probability bounds. Nevertheless, this disadvantage comes
with the benefit that simulating these bounds is less computationally burdensome than any of the

aforementioned alternatives.

4 Montecarlo Exercises

Here I provide some Montecarlo exercises to study the performance of ISD bounds. First, in Section
I focus on a entry game of complete information and compare ISD bounds to previous bounds
proposed in the literature. Second, in Section I provide Montecarlo experiments for the case of

incomplete information with unobserved heterogeneity.

4.1 Complete Information Two-Firm Entry Game

Tamer| (2003) and |Ciliberto and Tamer| (2009) (CT), pioneered the probability bounds approach to
set identification for discrete games of complete information. This approach has also been studied
by |Aradillas-Lopez and Tamer| (2008) and |Fan and Yang (2022) (FY). In this subsection I study
how ISD bounds compare to this earlier literature. To this end, I consider a complete information
two-firm entry game, in the spirit of CT, and provide comparisons between CT bounds, FY bounds,

and ISD bounds[™

!4The bounds in |Aradillas-Lopez and Tamer| (2008)) are based on rationalizable strategies, which coincides with
ISD in two player games. As a result, their bounds and ISD bounds coincide for in this example.
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Table 1: CT vs. ISD Bounds

Bound Type Lower Bound Upper Bound
CT(0,1) | Pr¢c@UBU®) | Prcc@QUAUBU®D)
ISD (0,1) | Pr(¢e@QuU®U®) | Pr(¢c@@u®uBu®)
CT (0,0) Pr(¢e®) Pr(¢e@®)

ISD (0,0) Pr(¢e@) Pr(¢e@u®)

Consider the two-player complete information entry game described in Sections and [3:2
Firm’s get profits:

(s, ypswy,0,85) = yp(Bry — oyp +&y)

with 8 = (53,0), where 6 > 0 and where & ~ H(§).
Table [1| shows how CT bounds compare to ISD bounds for this game. CT bounds are built
on the idea that if y is the unique equilibrium then ¢” = y, and if 6” = y then y must be in an

equilibrium. In our notation:

1{{y} = B(x,0,£)}
Peor(yle,0)

ﬂ{y = ap(x,H,f)}
PP (ylz,0)

{y € B(x,0,¢)}

<
< Per(ylz,0))

<
<

where the second line comes from integrating over &, and where Pop(y|z,6) and Por(y|x,0)) are
the integrals of the LHS and the RHS respectively, and they represent the lower and the upper CT
probability bounds.

Consider outcome y = (0,1). The CT lower bound for y = (0, 1) is the probability that (0,1) is
a unique equilibrium which, from Figure [3, occurs when ¢ € @U@ U®), whereas the upper bound
corresponds to the probability that (0,1) is an equilibrium which occurs when £ € QU@ UG U®.
Coincidentally, region @ U@ U ®) is also where o = (0,1) = ¢, and region Q U@ UGB U® is
where o < (0,1) < o, so CT and ISD bounds coincide.

CT bounds are built on a stronger concept than ISD bounds (all Nash equilibria survive ISD,
but not everything that survives ISD is a Nash equilibrium), hence CT bounds are (weakly) tighter
than their ISD counterparts. This is the case for outcome (0,0). Ignoring mixed strategies, there
is no value of ¢ for which (0,0) is one of many equilibrium outcomes, so the CT upper and lower
bounds coincide and correspond to the probability that & € (I). For ISD bounds, in contrast,
ol =(0,0) = o in region @ and o < (0,0) < o in regions ) and (&), so the ISD upper bound
for outcome (0,0) is larger than the CT bound.

Table [2[ shows how the bounds proposed by FY compare to the firm-level ISD bounds (i.e.,
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Table 2: FY vs. ISD Bounds

Bound Type Lower Bound Upper Bound
FY y1 =0 Pr(¢ec@@u@u®) |Pricu@u®u@u®du®)
Fim ISD y1 =0 | Pr (£ e QuUuQu®u®) Pr(¢cQu@u®uB®u®)

bounds on yr). FY bounds are built on the idea that if y; is dominant then it must be part of
a Nash equilibrium and therefore O'? = ys. Similarly, if y; is played in a Nash equilibrium, i.e.,

J? = yy, then y; cannot be dominated. Somewhat abusing notation:

ﬂ'{yf € jf,[SD(xv 97 6)}
Pry (yslz,0)

1{{ys} = Vyrsp(@,0,8)} {ys = 0f(,0,8)}

< <
Pry(yrlz,0) < PP(yglz,0) <

where )Niﬁ 1sD represents the set of strategies that are not dominated As before, the second line
comes from integrating over &, and Pry (yf|z,0) and Ppy (ys|z,6)) are the lower and the upper FY
probability bounds.

For firm 1, y; = 0 is dominant if and only if & < =121, ie., ¢ € DUR U@, and it is not
dominated if & < —(B1x1 — 1), ie., £ € DURQUBUBDUGBU®. The corresponding ISD bounds
come from values of ¢ for which of = 0 = o] which occurs when ¢ € D U@ U@ U®), and the
values of £ for which U]% <0< U?, which occurs when £ € DURQ U@ UG U®G). As one would
expect, since ISD bounds are constructed going through multiple rounds ISD, they are (weakly)
tighter than FY bounds which only goes though one round.

4.2 Complete Information Montecarlo

Consider the entry game described in the previous subsection, except that there are |F| > 2 firms
who receive payoffs, and assume that £y ~ N(0,1) for all f

For |F| =2,3, Bo =1, 6o = 1/(|F| — 1), and { ~ N(0,1), I simulate MC = 100 samples of
M = 1000 independent markets. For each game, x; can take the values in {—2,0,2} with equal
probability, and for each realization of x = (xf) s, I compute CT bounds, outcome-level ISD bounds,
firm-level ISD bounds, and FY bounds.

For inference, I use the critical values for vector inequality hypotheses of [Chernozhukov et al.
(2019). Letting,(Ix(x))r be a collection of K non-negative functions, I compute unconditional

empirical moment inequalities. In particular, for each type of bound, B € {CT,FY,ISD outcome, ISD firm},

Note that if j}f’]SD is singleton, then it contains a dominant strategy.
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and each for observation (X,,,Y,,), | compute the empirical moment functionsm

EB(y|Yma X, 0) = PB(:y’)(ma 0) - ]l{y = Ym}
%B(MYm,Xm, 0) ﬂ{y = Ym} - BB(y|Xma 0)

Let M(xz) = ), 1{X,, = «} represent the number of markets where (y, x) was observed. Furthermore,

somewhat abusing notation, let p € {g, i}, sd = {sd,sd}, and t = {¢,¢} and define:

Zm ]I{Xm = x}d)B(y\Xm, Yo, 9)
M (x)

pe(0;y,x) =

1/2
SdB(Qvax) = (]\41(@ Zﬂ{Xm = SU} (¢B(y|Xm’Ym’0) - MB(G;y’ x))Q)

pe(0;y, x)

tp(t;y,x) = M(l‘)m

In a nutshell, CCK propose critical values for a null hypothesis of the form max{v} < 0, for a
normalized vector UE and find a critical value for the statistic max{v}.

Applied to our setting, the null hypothesis corresponds to:

max { max{tp(0;y,2),t5(0;y,2)}} <0
7y

T

and the corresponding critical value at significance of « is:

- 11— a/21X|V))
CCK(a)= V1=@ 11— a/2|X[|Y])/M

where @1 is the standard normal quantile function.
Let B and  be guesses for By and &g respectively. Keeping 5= 0o, and for each B € {ﬁoé, ,6’0%, ey ,6’()%, 50%};
I compute the CT bounds, ISD outcome bounds, ISD firm bounds, and FY bounds for each game
in each sample. For each sample, I compute the outcome of the test described above, and from this
I get the share of samples for which the null (B, do) € Orsp gets rejected. I conduct an analogue
exercise for & keeping 3 = By. The results can be found in Figures |§| and
As expected, CT bounds provide the smallest identified set, followed by ISD outcome bounds,
ISD firm bounds, and FY bounds. The identified set for bothe parameters is larger with 3 firms
rather than 2. This is to be expected, since the equilibrium multiplicity problem is exacerbated as

the number if firms increases. It is noteworthy that FY bounds are not able to reject (5o, 3) € Orsp

16The moment functions I present here are based on outcomes, for the firm-level ISD bounds and FY bounds similar
moment conditions apply.
17This is, each element of v has mean zero and a standard deviation of one.
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Figure 6: Monte Carlo Probability of beco 15D, for |F| = 2 under Perfect Information
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Figure 7: Monte Carlo Probability of § € ©1gp, for |F| = 3 under Perfect Information
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even for 6 = %(50. To see why this is the case note that:

Ppy(ys = 0lz,0) = &(=fxy)
Pry(ys =00z,0) = &(—(Bzy—0))

For y; = 0, the lower FY bound does not depend on ¢, and therefore it is uninformative about
its value. The upper bound of ys = 0, in contrast, is increasing in § hence the condition Py(y; =
0lz) < Ppy(ys = 0|z, 0) is never violated by a § that is “too large.” An analogue result holds for
yr =1

I should note that this draw back is specific to the application at hand. In the product choice
model studied by FY the competitive effects (i.e., the equivalent to ¢) come from a Bertrand
competition stage which is estimated separately, and the probability bounds are used to estimate
product/firm entry costs. In that setting, F'Y bounds provide informative upper and lower bounds

for all the parameters of interest.
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4.3 Incomplete Information Entry Game with Unobserved Heterogeneity

Consider a game as described above, only now each player receives a private profitability shock, €y,
which follows a standard normal distribution (i.e., private shocks are uncorrelated). Firm f’s payoff

is:

Trpy-prep s, 0,6) =y [ By — 0> yp+wl+es
'#f
where £; both and e; follow a ~ N(0,1). Parameter w > 0 controls the amount of unobserved
heterogeneity. In particular, when w = 0 the role of unobserved heterogeneity vanishes. The
parameters of interest is 6 = (3,9, w).

It is easy to see that given any o_y, f’s optimal strategy induces an entry probability:

prlo-p) =@ | = | Bry =36 Priop =1)+wé
P

Conditional on (z, 6, £), we can compute the extreme strategies o and o, which imply extreme
entry probabilities for firm f of pJLc(x, 0,§) = pf(aff]m, 0,¢), and pf(m, 0,§) = pf(0£f|x, 0,¢), with
p]Lc < pf . With this we can compute ISD bounds of outcome y as (omitting dependence p” and p
on (z,0,&) for brevity):

Prsp(ylz,0,¢) = [ [(h)¥ (1 —pf) ¥
i

Prsp(yle,0,€) = [[pf)¥ 1 - pp)t =
7

Finally, integrating over &:

Prsp(ylz,0) = / Prsp(ule. 6,6)6(€)de
Prsp(yle,0) = /_ Prsolyle,0,6)6(6)de

where ¢ represents the standard normal density.

For |F| = 2,3, and 6y = (B, do,wo) = (1, Ifl%l’ 1), I simulate MC = 100 samples of M = 1000
independent markets. For each market, z;’s take values in {—2,0,2} with equal probability, and
for each realization of = (x7); I compute ISD bounds. Inference follows exactly as before.

The results of this exercise can be found in Figure [§ for the two-firm case, and Figure [g] for
the three-firm case. In either case, simulations show that ISD bounds do a remarkably good job at
pinning down the parameters of interest. It is particularly interesting to see that the estimates are

able to reject the absence of unobserved heterogeneity, i.e., w = 0.
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Figure 8: Pr(é € Or5p), for |F| = 2 under Incomplete Information and Unobserved Heterogeneity
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set. The mid and right panels show analogue quantities for § and @, respectively.

Figure 9: Pr(é € O1sp), for |F| = 3 under Incomplete Information and Unobserved Heterogeneity
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Note: The left panel shows the results for 3, the middle panel shows the result for J, and the right panel shows the
results for w. In the left panel the y-axis shows Pr((/3, do, wo) € O1sp), for the firm-level and the outcome-level ISD

set. The mid and right panels show analogue quantities for ¢ and @, respectively.
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5 Airline Application: Data and Empirical Model

The rest of the paper uses ISD bounds to estimate an esntry game in the airline industry as in
Ciliberto and Tamer| (2009). In this section I summarize the data and present the model I will use

for estimation. Empirical results are reserved for Section [6]

5.1 Data

My main data source is the Origin and Destination Survey (DB1B) collected by the Bureau of
Transportation Statistics (BTS). The data consists of a sample of 10% of all trips taken within the
U.S. in a given quarter/year. For each trip it contains the price of the ticket as well as the origin
and destination airports, and all layover airports. The DB1B is a well known data source in the
airline literature, and has been used (e.g., Berry (1992), |Ciliberto and Tamer| (2009), Aguirregabiria,
and Ho| (2012)).

I use the DB1B data set for the first quarter of 2005, and supplement it with information on
airport locations (city) from the BTS, with county level income from the Bureau of Economic
Analysism as well as county level population data from the Census Bureau.

I keep the airports located at the 70 top MSAs in terms of population, which yields a total
of 72 airports. Table [3] presents the list of the top 20 airports ranked by the population of their
corresponding MSAs, while Table [] shows some airport level summary statistics.

A market corresponds to a non-directional airport pair regardless of the number of stops. With
72 airports, this would imply 2556(= 72---71/2) markets, however, I drop airport pairs that lie in
the same MSA (e.g. JFK and La Guardia), leaving a total of 2541 markets.

In terms of carriers, I keep America Airlines (AA), Delta (DL), United Airlines (UA), US Airways
(US), and Southwest (WN). Table [5| presents summary statistics, across airports, of the number of
non-stop destinations served by each carrier.

I follow |Ciliberto and Tamer| (2009)) in defining controls. In particular, for each of these market
I compute six market specific variables. Market size equal to the geometric mean between the
population at each endpoint. Per-capita income and income growth which correspond to the average
of these variables across the two end point MSAs. Distance and Distance center which correspond
to the linear distance between airports and the average of the distance of each end point airport and
the population weighted centroid of the U.S., which corresponds to Crawford County, Missouri. This
last variable is meant to account for the fact that, due to geography, airports near the coasts or the
borders have fewer closer airports than airports near the center of the country. Finally, to measure
substitutability between airports, I compute Close airport which corresponds to the average over
endpoints of the distance between the end point airport and the closest airport (including airports
in the same MSA).

For each firm-market I compute two variable. First, following the insight of [Berry| (1992, I

IBCAINC4: Personal Income and Employment by Major Component by County. See,
https://apps.bea.gov /regional /downloadzip.cfm
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Table 3: Top 20 Cities by MSA Population

Airports City State Population Per-capita Inc. Inc. Growth
JFK, LGA New York NY 18.6 45.6 2.4%
LAX, LGB, SNA  Los Angeles CA 12.6 42.0 4.2%
MDW, ORD Chicago IL 9.3 39.5 2.5%
PHL Philadelphia PA 5.8 47.2 3.6%
DAL Dallas TX 5.8 33.5 2.3%
HOU, IAH Houston TX 5.3 33.5 3.5%
FLL, MIA Miami FL 5.3 42.0 4.0%
DCA, TAD Washington DC 5.2 52.9 4.0%
ATL Atlanta GA 4.8 30.9 2.6%
BOS Boston MA 4.5 48.2 2.9%
DTW Detroit MI 4.4 35.7 1.2%
OAK, SFO San Francisco CA 4.2 61.3 2.4%
ONT Riverside CA 3.7 28.5 3.8%
PHX Phoenix AZ 3.7 29.9 4.8%
SEA Seattle WA 3.2 39.9 2.6%
MSP Minneapolis ~ MN 3.1 36.5 3.2%
SAN, CLD San Diego CA 3.0 41.5 4.2%
STL St. Louis MO 2.8 32.8 3.4%
BWI Baltimore MD 2.6 42.9 3.9%
PIE, TPA Tampa FL 2.6 32.4 3.6%

Note: Top 20 cities in terms of MSA population, and their airports. Population is measured in millions of people.
Per-capita Inc. corresponds to 2005 per-capita income in the MSA in thousands of dollars. Income growth measures
the annualized growth in per-capita income between 2000 and 2005.

Table 4: Airport Summary Statistics

Population Per-capita Inc. Inc. Growth Distance Center
Mean 3.4 36.3 3.3 1367
S.D. 3.8 7.8 1.0 729
Min. 0.7 20.5 0.2 112
P25 1.2 30.4 2.6 774
p50 2.0 34.3 3.4 1235
p75 4.3 41.6 4.0 1787
Max. 18.6 61.3 5.8 2717

Note: Airport summary statistics. Population is measured in millions of people. Per-capita income corresponds to
2005 per-capita income income in thousands of dollards. Incom growth measures annualized growth in per-capita
income between 2000 and 2005. Dist. Center measures the distance between the airports and the US population
centroid.

32



Table 5: Number of Connections per Carrier (Across Airports)

Carrier Min. P25 Mean Median P75 Max. S.D.
DL 0 12.8 24.8 24.0 38.25 64 15.2

UA 0 7.0 21.0 22.0 32.25 60 15.1
WN 0 0.0 176 21.5 34.0 44 15.5
AA 0 6.0 164 13.5 26.0 60 13.1
US 0 1.0 15.0 12.0 25.0 51 13.7

Note: Number of connections summary statistics for each carrier. A connection is a non-directional flight between
two airports, regardless of the number of stops.

compute Airport presence as the ratio between the number of markets served by a particular carrier
in a particular airport, and the total number of markets served from said airport. This variable
captures is meant to capture the benefits of the hub-and-spoke network that many airlines have.
These benefits range from cost reductions on the supply side due to the economies of scale and scope
that arise from concentrating activities in a particular airport, and demand side benefits that arise
from flying to/from well connected airports. Finally, to measure the opportunity cost of entering
a market I compute the difference between the non-stop distance between the end points and the
distance between them while stopping on the carriers’ closest hub. I divide this quantity by direct
distance and average it across the end points. This variable, which I refer to as Cost, is meant to
capture the opportunity cost of serving a market. Table [6] below shows summary statistics for each

of these variables.

Table 6: Carrier Level Summary Statistics

Carrier Active Airport Presence Cost
AA 0.67 (0.46) 0.30 (0.14) 2.0 (11.0)
DL 0.74 (0.43) 0.46 (0.16) 2.0 (12.2)
UA 0.67 (0.47) 0.39 (0.16) 1.4 (7.40)
Us 0.42 (0.49) 0.27 (0.16) 2.3 (13.7)
WN  0.37 (0.48) 0.33 (0.19) 1.8 (10.0)

Note: Carrier level summary statistics, standard deviations in parenthesis. Active is the share of markets where the
carrier is active.

5.2 Airline Entry Model

The model I estimate is a generalization of the entry game I presented above. There is a set of
carriers, F, that simultaneously decide whether to enter a market m, vy, = 1, or not, ys, = 0.
A market is a directionless airport pair, regardless of whether they are connected by a direct or a

one-stop flight. Carrier f in market m gets a profit of:

Tfm = Yfm Sgnﬁs‘i‘x/fmﬁf_Zégyg"i_wffm""ffm (8)
g#f
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where, s,,, is a vector of market specific characteristics common to all firms (e.g., Market size, Per-
capita income) and ¢y, is a vector of firm-market specific characteristics (e.g., Airport presence,
Cost). As before €5, ~ N(0,1) is a privately observed profit shock, and &z, ~ N(0,1) is a common
knowledge profit shock which is unobserved by the econometrician. Finally, vector of parameters of
interest is: 6 = (B, (Bf)vf, (5g)vf7g;f7gg,w), where 55 represents the competitive effect that carrier

g’s presence has on f’s profit.

5.3 Estimation

For estimation I follow closely the approach outlined in the Montecarlo exercises in Section[d] Data
consists of a entry decisions, Y;,, firm/market specific observables, X,,, and S, for a collection of
m = 1,..., M markets. For each market m I compute ISD bounds, i.e., P;gp(ym|Sm, Xm, ) and

Prsp(Ym|Sm, Xm, 0), as well as the following empirical moment functions:

%k(y‘ym’ Sm,Xm,H) - (1{ym - m} _BISD(y‘SmaXmae)) lk(SmaXm)
@k(myma Sms Xm, 9) = (?]SD(y|SM>XM7 9) - 1{y = Ym}) lk(SmaXm)

for some set of non-negative functions (), with £ = 1,..., K. Finally, for each outcome y and each

function k, I compute:

pe(03y) = M7 k(Y| Xn, Yin, 0)

1/2
or(0iy) = (M_lz(W(lem,Ym,@)—M(G;y))2>

t(#) = max {max {“k(Z% y) ’ 1 (05 9) }}

kyy ar(0;y) ar(0;y)

and compare it to the critical value provided in Section [4]

In reporting the results, I use the test proposed by (Chernozhukov et al| (2019) to characterize
the identified set, ©¢(«), where « represents the significance. For each parameter I compute the
minimum and maximum values of the parameter consistent with 6 lying in the confidence set. In
other words, letting O¢c(a) = {0 € O7 : t(f) < CCK(«a)}, and for a given parameter, say (55, I

report:
[argmin {6gf st. 0 € @c(oz)}, argmax {55 s.t. 0 ¢ @C(G)H

where, obviously, 55 is an element of 6.

6 Empirical Results [TBA]
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7 Closing Remarks

In this paper, I provided probability bounds on (the distribution of) outcomes of games, and show
that they pin down an identified set for the parameters of interests. The bounds are based on
an ISD argument (ISD bounds), and are robust to multiple equilibria both in pure and mixed
strategies. Furthermore, as opposed to previous bounds proposed in the literature, ISD bounds
can accommodate games of discrete or continuous strategies of any dimensionality, and allow
for any informational structure regarding the players’ private shocks (e.g., complete information,
independent private information, priviledged information), and they are informative about the
underlying informational structure. i.e., different informational structures will produce different
bounds.

To maximize the bite of ISD bounds I introduce the Strategically Monotonic Supermodular
Games, i.e., games where payoffs are supermodular on own actions, and exhibit either increasing
differences or decreasing differences between own and competitors’ actions. I argue that for these
games [SD is informative, in that it rules out large swaths of the strategy set, and useful, in that
the bounds are easy to compute.

In Montecarlo simulations, I show that ISD bounds are informative about the parameters of
interest. Furhtermore, I show that the bounds are able to inform about the relative degree of
private information vs. unobserved heterogeneity in the underlying DGP.

Finally, I provide an application to the airline industry. [TBA].
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A Proof of Theorem [1| and Best Response Iteration

A.1 Proof of Theorem [

Here I prove Theorem To this end, it is useful to show lemma below, which states that
conditions the define an SMSG (Definition [4), hold for the game written with interim

Lemma 1 (Interim SMSG). Let the (z,0,§)-game be an SMSG. Then (omitting dependence on
(z,0,€) for brevity):

[Q.a. Complete Lattice Strategy Set: The strategy set Xy, together with the partial order “>”
is a complete and compact lattice for all f € F, where oy > O‘} & op(ep) > J}(ef) for all
€ € 5f.

[1.b. Order Upper-Semi Continuity: The interim profit function, 1y, is order upper semi-
continuous. This is, for any totally ordered set C C YVy:

limsup I¢(ys,0-r,€r) <Hp(inf(C),0_f,€5)
yr€Cyplinf(C)

limsup Ig(ys, o-p,€p) <Ily(sup(C), 05, €5)
yr€C,ystsup(C)
forallo_y€X_g, all f € F.

[d.c. Supermodularity: The interim profit function Il; is supermodular in yy for all o_;.

[1.d. Strategic Monotonicity: For all e; € &, and all f, f' € F, if f' € C(f) then Il; has ID in
(yg, o), and if or f' € S(f), then Iy has DD in (ys,04).

Proof. Fix an arbitrary SMSG. I begin by showing that ¥ ¢, together with the partial order <, where
of <o} & op(ef) < ol(ey), for all efH conform a complete lattice.

Take two strategies oy and o'y. By definition, for all €7, of(es), 0 (€f) € Yy, hence sup{os(es), o (€f)} €
Yy and inf{af(e]c),a}(ejc)} € ), for all €, which implies sup{af,a}},inf{af,a}} € Xy.

This shows that X is a lattice. The argument for completeness is analogous. Consider a
collection of strategies X C By, and let Vy(es) = {ys € Yy : 04(es) = yy for some oy € X4}, Since
Vi(er) € Yy, and Yy is a complete lattice, then sup{YVs(es)},inf{Vs(es)} € Yy for all 5, which
implies sup{3>;},inf{>} € ¥;.

To see that 11 is order upper semi-continuous simply fix a strategy for f’s competitors o_y. By

order upper semiOcontinuity of 7, for any € and any totally ordered set C' C Vy:

lim sup Tf (yfa O'_f(E_f), €fs E—f) < T (Hlf(c)? U—f(e—f)’ €fs G_f)
yreCyylinf(C)

limsup — ws(yp,o-f(e—y) € e—5) < mp(sup(C),0-f(e—y), €5, 6—5)
yreC,yptsup(C)

197 slightly abuse notation by using “<” to denote the standard vector inequality and the partial order in 3.

39



Integrating over e_ .

limsup Hf(yf,a,f,ef) < Hf(inf(C),a,f,ef)
yr€Cyslinf(C)

limsup ~ Ts(ys,0-f,€f) < Hg(sup(C), 0y, €f)
yr€C,ystsup(C)

as desired.
To see that Il is supermodular consider any two actions y; and y}, and fix an arbitrary strategy

for f’s competitors o_¢. By supermodularity of 7, for any € = (ef, e_y):

Wf(Sup{yf, y}}v O'_f(E_f), €fs E—f) + ﬂf(inf{yfa y}}a O'_f(E_f), €fs E—f)
> my(ypo—ple—g)i€pe—p) +mp(yp o—fle—gp) €f € )

which, integrating over e_, yields:

Hf(sup{yfa y}}v 0—f, Gf) + Hf(ll’lf{yf, y}}’ O—f, Ef) 2 Hf(yf7 O—f 6f) + Hf(y}a O—f, 6f)

Finally, I show that if 7 has ID in (y¢,y—¢), then II; has ID in (ys,0_y) (the proof for the DD
case is analogous). Fix actions y} > yy and a pair strategy for f’s competitors, aLf >o_y. By ID

of my, for any ej:
mr(yp, ol ple—p) epieg) —mp(yfp, ol ple—p) €p 6 p) 2
Ty o—ple—p)epse—p) = mp(Yp, 0-ple—p) €p e )

Integrating over e_y,

Up(yf, 0l pep) = g(yp, 0ty ep) = Up(yy 0 p€5) = Mypyp, o g, €5)
as desired. OJ

Having shown Lemma [ we are in a position to show Theorem [I], which I restate below.

Theorem 1. Let the (x,0,&)-game be an SMSG, and let Sig,, denote the set of strategies that
survive © ISD rounds. Furthermore, let o < o' if and only if o(€) < o'(€) for all . The following
holds (omitting dependence on (z,0,§) for brevity):

Qla For alli=0,1,2,..., there exists "%, 6" € ¥ such that o < o™ and such that the set

of strategies that survive © rounds of 15D is:
Yigp={oeX:o <o <ot}

[.b Both obL and o™ result from a sequence of best response iterations.
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Q¢ Asi— oo, (o¥F,0bt) — (o, o), with o < o

Proof. 1 start by generalizing Lemma 1 of Milgrom and Roberts (1990]) to the case of Strategic
Monotonicity. Consider an SMSG and let %(s”, s) = {¢ € £ : s* < o < 57} for some pair of
strategy profiles s* < s in ¥. Let )\L (0_y) and )\H (0_y) be f’s lowest and highest best responses
to o_y in Ef(sf sf ) Furthermore, let )\f(ef, o_ f) and )‘f (ef;0_7) be these strategies evaluated
at €y. Finally let O'_f = (SC(f)’ S(f)) be the “best case scenario” for firm f, i.e., the case where f’s
complements are playing their highest possible strategy and f’s substitutes are playing their lowest
possible strategy. I argue that any oy € f]f(s]Lc, s}{), such that oy & /\?(Jﬁf) is strictly dominated
(in $(sk, 1)) by inf{os, M (o))},

Fix oy £ )\H O'_f). By definition there is at least one e; such that o¢(ef) £ )\JIZI(ef; Ul_af), so for

such ey, Uf(Ef) > inf{af(ef)j)\?(ef;aéf)}. Then, for any o_; = (o¢(s), 0s(y)) € >_p(st, s

— Hf(lnf{O'f(Ef )\f Ef,UBf} ) 05(£)) )
)
£00)

Hf(o'f(ef) (Uc f)»O'S(f Ef

< Hf(Jf(Ef),( ,Gf 1nf{af Ef )\f 6f,(T ¥

)
) - 1 )} (58
- 1y (oster), (52 sk ,ef) oy (i {ogten) M g0 ) (5
) -

< II (sup{af Ef )\f (ef,a ¥ } o f,Ef — Iy A €f,U ) U§f76f>

< 0

where the first inequality uses the fact II; has ID in (yf,0¢(q)), and the second inequality comes
from the fact that IIy has DD in (ys,05(s)). The third comes from supermodularity of ITy and from
substituting O'E;f = (sg(f), sg(f)), while the fourth inequality follows from fact that )\JLc(ef; O'éf) isa

maximizes II; given oB 7 and ey. It follows that:

Uy (os(ep),o g ep) < Mp(inf{os(ep), \f (e:857)}, 0 ,€)

forall o_f € f]_f(sff,sflf).

Letting on = (sé( f),sg( f)) be the “worst case scenario,” for f, an analogue argument shows
that oy # )\]LC(JKVf) is strictly dominated by sup{oy, )\JLC(UKVf)}.

From these two results, it follows that every strategy in % ;(s*, s%) \ (A (e™), \H (0B)) is
strictly dominated by a strategy in ¥ (A(a"), A (5B)), and can be safely discarded.

This concludes the generalization of Lemma 1 from Milgrom and Roberts (1990) to the case of

strategic monotonicity. With this result at hand, we are in a position to conduct ISD on the original

20By assumption || and [1} these are guaranteed to exist.

41



game. To this end, consider the following sequence.

Set up:
0 _
¥o= X
Vi(er) = Yy
HO .
op " = {sup{Vys} :ef € &}
b0 = {inf{Vy}: e € &)
: L Hyi
Xy = {op€Xpiof <op<o,}
o— XEZ]}
feF
i _ . gbt <y < o
Viler) = Hyr € Vyro (er) Syp <oy (ef)}
Best /Worst:
oBi = (i ohi )
-f c(f) 7S
UW’i _ (UL,z‘ UL,z‘)
—f C() S
Update:
of(ef) = supQ argmax j(ys, 077 €f)
yreVy ey)
ot = ] g 0% )
yfeyjcil(ff)
Hyi Ly
opt = {Ufl(ef):efegf}
Ly H,i .
opt = {of Z(‘ff)-'ffegf}

Consider the i’th game of the sequence described above and note that ¥/ = ¥(a™, o1%). By
the result above, any strategy in X\ X1, is strictly dominated and can be safely discarded. Hence,
by induction, each step in the sequence corresponds to an ISD step. This proves parts [[[a] and [I[B}

Part follows from the fact that o’ is increasing, and o+ is decreasing, in i. O

A.2 Applying ISD

Here I show how to apply ISD to an SMSG to find the extreme strategy profiles (o”,c"). In
particular, I outline the sequence of best response iterations that result in ISD steps for three cases
of interest: the pure ID case, where all players are complements, i.e., C(f) = F \ {f} for all f; the
pure DD case, where all players are substitutes, i.e., S(f) = F\ {f} for all f; and the general case.
The pure ID case encompasses coordination games, while the pure DD case encompasses games

with strategic substitution (like the entry game in the example).
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A.2.1 Pure ID Case

In this case, the best response iteration that converges to (o, o?) follows directly from Milgrom

and Roberts (1990) and [Van Zandt and Vives (2007)). The details of the sequence are outlined in
To get an intuition, consider the case where y; is uni-variate, and start from f’s “best case

scenario,’ ie., af}o(e,f) = sup{V_y} for all e_;. By ID, f’s best response to afj}o, ie., Uf’l, is
the largest strategy that f can optimally choose, and it strictly dominates all oy > 0]{{’1. Since this

holds for all £, all strategy profiles o > o'l are eliminated by o/'!. Iterating over this procedure
yields the largest strategy profile not eliminated by ISD, /. An analogous sequence, starting from
o0 yields ol.

ISD sequence for the ID case.
Set-up

azo(ef) = inf{Y;},Ves € &
af’o(ef) = sup{)y},Ves € &

Sy = {ope;0f <op<afll)
o= X E}
fer
. Lyi Hyi
Vies) = {yf €Vy: O'f’l(ﬁf) Syp<oy ’Z(Ef)}
ISD Step )
of'(es) = inf{ argmax  Ip(ys,0l7 ' ep)
yfey}_l(ﬁf)
of'(es) = supq argmax Ip(ys,0l; ' e)
yfey}il(ef)
0.?77; — U‘?’i(Ef) ZEf ng}
ot = Uf’l(Gf)iffegf}

A.2.2 Pure DD Games

The intuition for the pure DD case is similar. Consider the case of uni-variate y for all f, and start

from f’s “best case scenario,” i.e., O’E’]?(E_f) = inf{V_s} for all e_, and its “worst case scenario,”
ie., Uf}o(e,f) = sup{)_y} for all e_y. In the best case scenario, DD implies that af’l is the largest

H1

strategy that player f could plausibly choose, hence any oy > op s dominated by U]Ic{’l. Since

21Here I am using the terms “best case scenario” (“worst case scenario”) loosely to mean “the strategy choice by f’s
competitors that maximizes (minimizes) f’s strategy choice.” ID does not imply increasingness of 7y with respect to
y—s (nor does DD imply decreasingness of 7wy with respect to y_y), so these terms should not be taken to mean “the
o_y that maximizes (minimizes) f’s profits.”
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this is true for all f, we can discard all o > ¢!, Similarly, in the worst case scenario, a?’l is the
smallest best response that f could plausibly choose, hence any oy < aﬁ’l is strictly dominated by
af’l. Since this is true for all f we can safely discard all ¢ < o™!. Putting these two arguments
together, we build a new game with strategy set ¥! = {0 € X : 0! < o < ¢!}, Finally, applying

this argument iteratively, yields the extreme strategy profiles o and o*.

ISD sequence for the DD case.

af[’o(e) = inf{Y;},Ves € &
o} Q) = sup{Vr},Ver € &

L= {UfEZf‘U?iSUfSU?’i}
o= % Z;
feFr
. Ly Hi
Viler) = {yf €Yoy () Syp <oy Z(Ef)}
ISD Step (10)
offi(ey) = sup{ argmax  Tp(yof " ep)
yfey}_l(ef)
g;’i(ef) = inf argmax Hf(yf>0£{}i_lv€f)
yreVyHer)
0.]%71 _ U?’Z(Ef) D€ ng}
O.]{Li — g]Ic{’i(ef) LEf € gf}

A.2.3 General Case

The sequence specified in converges to (o, o) for the general case. The intuition is similar to
the previous cases, with the complication that the “best case scenario” and the “wort case scenario”
for firm f involve slightly more intricate strategies for its competitors.

As before, to get an intuition consider the case of uni-variate y, and let af}?(e_ f)=inf{Y_s}
and ai{}o(e_ ¢) =sup{Y_y} for all e_;. The “best case scenario” for firm f is that all its complements
(substitutes) play their highest (lowest) strategy, this is: 073}0 = (O'g(’?c), aé&(})). By ID/DD, f’s best
response to this strategy is the largest strategy that f could play, O'j{{’l, so that any o7 > Uf’l is
dominated by Ufj’l. Because this argument applies to all firms, any o > o1 is discarded.

Similarly, the “worst case scenario,” for firm f is for its complements (substitutes) to play their
lowest (highest) strategies. This is: o'V = (aé’(%,ag(’?)). By ID/DD firm f’s best response, Uf’l,
is the lowest strategy that it can plausibly play, so any oy < O'J%’l is dominated by a?’l. Since this

argument applies to all f, any o < o™ is discarded.
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Putting these step together, we can build a new game with strategies X! = {a ol <o < O'H’l}.

Iterating over this procedure we get (o, o'?).

ISD sequence for the general case.
Set-up

U}{I’O(Ef) = sup{Vy},Ver € &
ofes) = mf{Ys}, Ve € &

YViler) = Yy , ,
o = {oy € Xy 0?’1 <op < 0'?’1}
X = X E}
fer
i . Ly H,i
yf(ef) = {yredyr: Of (ef) Syy < Of (er)}
Best/Worst Case Scenario for f
T = ()
0171/{; _ (O_L,(if) O_ngf) (11)
-f Cf) 7S
ISD Step
i Bi—
o (ep) = supq argmax Tlp(yp,0Zf " ep)
yreVy (er)
af’i(ef) = inf argmax Hf(yf,azvj’f*l,ef)
yreY; (ef)
0]{{” = U?’Z(Ef) tef € Ef}
U]%’Z = af’z(ef) Lef € Ef}

45



	Introduction
	Literature Review
	Complete Information Games
	Incomplete Information Games
	Revealed preferences


	The Model, SMSGs, and ISD
	Model Set-Up
	Strategically Monotonic Supermodular Games and ISD
	Two Entry-Game Examples
	Independent Private Information Entry Game
	Complete Information Entry Game


	ISD Bounds and Identified Set
	ISD Bounds
	Two Entry-Game Example Continued
	Independent Private Information Entry Game Revisited
	Perfect Information Example

	Identified Set
	Probability Identified Set: Discrete Case
	ISD Identified Set: Continuous Case
	ISD Identified Set: Outcome Level


	Montecarlo Exercises
	Complete Information Two-Firm Entry Game
	Complete Information Montecarlo
	Incomplete Information Entry Game with Unobserved Heterogeneity

	Airline Application: Data and Empirical Model
	Data
	Airline Entry Model
	Estimation

	Empirical Results [TBA]
	Closing Remarks
	Proof of Theorem 1 and Best Response Iteration
	Proof of Theorem 1
	Applying ISD
	Pure ID Case
	Pure DD Games
	General Case



