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Abstract

The random forest is one of the most popular and widely employed tools for
supervised machine learning. It can be used for both classification and regression
tasks; in this paper, the focus will be on regression only. In its standard form,
the crux of the random forest is to use an equal-weighted ensemble of tree-based
predictors. Instead, we suggest a more general weighting scheme that borrows certain
ideas from the related problem of financial portfolio selection and, in particular,
allows for negative weights. Based on a benchmark collection of real-life data sets, we
demonstrate the improved predictive performance of our method not only relative to
the standard random forest but also relative to two previous proposals for (non-equal)
weighting the tree-based predictors. It is noteworthy that our methodology is of a
high-level nature and can also be applied to other forecast-combination problems,
when forecast methods are of arbitrary nature and not necessarily tree-based.
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1 Introduction

The random forest (Breiman, 2001) is one of the most popular tree-based methods for

supervised machine learning, given its ease of use, simplicity, and prediction quality across a

wide variety of applications. Grinsztajn et al. (2022) demonstrate that tree-based methods,

particularly the random forest and ensembles enhanced by boosting, continue to excel as

top-performing methods on medium-sized tabular data sets. Depending on the nature of

the response variable, the random forest can be used for either classification or regression.

If the response variable is categorical, the random forest is used for classification; if the

variable is numerical, the random forest is used for regression. In this paper, the focus will

be on regression only.

In the standard implementation of the random forest, one first grows an ensemble of

(de-correlated) trees and then uses the simple average of the trees (also called the equal-

weighted ensemble). This means the individual forecasts of the trees are simply averaged

to arrive at a final, combined forecast. For a textbook treatment on the random forest

the reader is referred to Hastie et al. (2017, Chapter 15), for example.

The goal of this paper is to deviate from equal weighting in a data-dependent fashion

that outperforms, on balance, the standard random forest. One can consider this task to be

a special case of the well-studied, general problem of forecast combinations. In this general

problem, one has a fixed number of forecasting (or prediction) methods available and then

assigns individual weights, which sum up to one, to them to obtain a combined forecast

(or prediction). There exists an extensive literature on forecast combinations; for example,

see Elliott and Timmermann (2016, Chapter 14), Wang et al. (2022), and the references

therein.

We will propose a high-level methodology for the generic forecast-combination problem

and then study in detail its use and its performance for the specific application to combining

tree-based forecasts in the context of the random forest. It will be seen that the high-

level problem formulation is related to the well-studied problem of portfolio selection from
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finance. This insight allows us to borrow certain ideas from that strand of literature. For

reasons that will become apparent below, we call the high-level solution hedging forecast

combinations and the solution applied to combining tree-based forecasts the hedged random

forest.

The remainder of the paper is organized as follows. Section 2 presents the general,

high-level methodology which can be applied to a generic forecast-combination problem.

Section 3 specializes to tree-based forecasting methods in the context of the random

forest, giving specific guidance to implementation details. Section 4 provides an empirical

application to real data, comparing the predictive performance of our method to the

standard random forest as well as to two previous proposals for (non-equal) weighting

the individual trees. An appendix contains various robustness checks.

2 Methodology

2.1 General Description

In this section we will detail our high-level methodology which can be applied to a generic

forecast-combination problem. In the subsequent section we will then specialize to the

problem of combining tree-based forecasts as an alternative the standard random forest,

which simply gives equal weight to all trees.

The goal is to forecast (or predict)1 a random variable y ∈ R based on a set of variables

(or attributes) x ∈ Rd. Denote a generic forecast by f̂ . Then its mean-squared error (MSE)

is given by

MSE(f̂) ..= E
(
y − f̂(x)

)2
.

Here and below the moments are, of course, obtained under the joint distribution governing

1In this paper, the terms “forecast” and “prediction” are used interchangeably. Arguably, some people
associate a time-series setting with the term “forecast” but we do not.
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the random vector v ..= (y, x′)′ ∈ R1+d and assumed to exist. Letting

Bias(f̂) ..= E
(
y − f̂(x)

)
and Var(f̂) ..= Var

(
y − f̂(x)

)
= E

(
(y − f̂(x)

)2 − Bias2(f̂) .

there exists the well-known decomposition

MSE(f̂) = Bias2(f̂) + Var(f̂) . (2.1)

The oracle minimizing the MSE is given by the conditional expectation f̂or(x) ..= E(y|x);

for example, see Hayashi (2000, Section 2.9). However, the oracle being an oracle, it is not

available in practice.

We assume that a set (or universe) of p forecast methods is available, denoted by

{Mj}pj=1. The number of methods, p, is assumed to be exogenous and fixed. Although

we do not make this explicit in the notation, methods may be data-dependent in the sense

that certain parameters may be fitted based on observed data; for example, the methods

may correspond to linear regression models where each models postulates the identity (and

the number) of regressors but not the values of the corresponding coefficients.

There exists an extensive literature on forecast combinations; for example, see Elliott

and Timmermann (2016, Chapter 14), Wang et al. (2022), and the references therein.

The consensus seems to be that equal weighting, given by

f̂EW(x) ..=
1

p

p∑
j=1

Mj(x) ,

is hard to beat by more general linear combinations of the kind

f̂w(x) ..=

p∑
j=1

wjMj(x) with w ..= (w1, . . . , wp)
′ and

p∑
j=1

wj = 1 . (2.2)

Nevertheless, our aim is to find a method for selecting a set of weights w that does improve

the (out-of-sample) MSE of equal weighting, on balance.
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Denote by ej ..= y − Mj(x) the forecast error made by model Mj and collect these

errors into the vector e ..= (e1, . . . , ep)
′ with expectation (vector) and covariance matrix

µ ..= E(e) and Σ ..= Var(e) .

The MSE of the forecast (2.2) is then given by

MSE(f̂w) = (w′µ)2 + w′Σw .

Therefore, the optimal (in terms of the MSE) forecast in the class (2.2) is the solution to

the following optimization problem:

min
w

(w′µ)2 + w′Σw (2.3)

s.t. w′
1 = 1 , (2.4)

where 1 denotes a conformable vector of ones. Problem (2.3)–(2.4) is a convex optimization

problem and can be solved easily and quickly with readily available software, even for large

dimensions p.

The problem in practice is that the inputs µ and Σ are unknown. A feasible solution

is to replace them with sample-based estimates µ̂ and Σ̂, which is an application of the

general “plug-in method”.

Being agnostic, for the time being, about the nature of the estimators µ̂ and Σ̂, we then

solve the feasible optimization problem

min
w

(w′µ̂)2 + w′Σ̂w (2.5)

s.t. w′
1 = 1 and (2.6)

||w||1 ≤ κ , (2.7)

where ||w||1 ..=
∑p

j=1 |wj| denotes the L1 norm of w and κ ∈ [1,∞] is a constant chosen by
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the user. Assuming succinctly that the estimator Σ̂ is symmetric and positive semi-definite,

the optimization problem (2.5)–(2.7) is still of convex nature and can be solved easily and

quickly, even for large dimensions p. We shall denote the solution to this optimization

problem by ŵ.

The addition of the constraint (2.7) is motivated by the related problem of portfolio

selection in finance, in which context the constraint is called a “gross-exposure constraint”.

Adding this type of constraint to the infeasible problem (2.3)–(2.4) clearly would result in

a (weakly) worse solution for any value κ ∈ [1,∞). But in the feasible problem, which

must use estimated instead of true inputs, the constraint typically helps. The intuition

here is that replacing µ and Σ with respective estimates µ̂ and Σ̂ can lead to unstable and

underdiversified solutions that look good in sample (or in the training set) but perform

badly out of sample, especially when the number of models, p, is not (exceedingly) small

relative to the sample size relevant to the estimation of µ and Σ; for example, see Jobson

and Korkie (1980), Michaud (1989), Jagannathan and Ma (2003), In applications where

the number of forecast methods, p, is not very small relative to the sample size of training

data, n, the addition of the gross-exposure constraint is particularly helpful when Σ̂ is

given by the sample covariance matrix, an estimator that is unbiased but contains too

much estimation error (unless p ≪ n).

In the extreme case κ = 1, the weights are forced to be non-negative, that is, wj ≥ 0,

which is called a “no-short-sales constraint” in finance. Imposing this constraint is standard

in the forecast-combination literature but it might well lead to sup-optimal performance

because of not giving enough flexibility to the solution of the problem (2.5)–(2.7). At

the other end of the spectrum, the choice κ = ∞ corresponds to effectively removing the

constraint (2.7), which may also lead to sub-optimal performance for the reasons mentioned

above. Staying away from either extreme, there is ample evidence in the finance literature

that choosing κ ∈ [1.5, 2.5] typically results in improved forecasting performance, and that

the exact choice in this interval is not overly critical; for example, see DeMiguel et al.

(2009).
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Because the constraint (2.7) protects the user against extreme “positions”, that is,

against weights ŵj that are unduly large in absolute value, we call our approach “hedging

forecast combinations”.2

2.2 Theory

The solution to the convex optimization problem (2.5)–(2.7) is continuous in the inputs µ̂

and Σ̂. Therefore, with the choice κ ..= ∞, its solution ŵ would lead to an asymptotically

optimal forecast combination f̂ŵ based on consistent estimators µ̂ and Σ̂. Stating this fact

as formal result is possible, but this is a routine matter and also has been recognized before.

Furthermore, in practical application, the relevant property is the finite-sample performance

of the forecast f̂ŵ and, so far, the evidence based on simulation studies and empirical

applications to real-life data sets indicates that such forecast combinations, on balance, do

not outperform f̂EW, that is, equal weighting; again, see Elliott and Timmermann (2016,

Chapter 14), Wang et al. (2022), and the references therein.

Our preceding high-level description is agnostic about the estimation of the mean

(vector) µ and the covariance matrix Σ of the corresponding vector of forecast errors e ∈ Rp.

In practice, we assume the existence of a training data set {vi}ni=1 with vi ..= (yi, x
′
i)
′. One

first constructs a set of (artificial) forecast errors which are then used as inputs for the

estimation of µ and Σ. How one goes about this ‘best’ in detail depends on both the

nature of the data and the nature of the individual forecasting methods, so at this stage

we need to be necessarily somewhat vague.

When {vi}ni=1 is an independent and identically distributed (i.i.d.) sample where the

distribution of vi is equal to the distribution of v. In this case there exists a well-established

literature on how to generate pseudo-out-of-sample forecast errors, with the most popular

technique being cross-validation; for example, see Efron and Hastie (2022, Chapter 12) and

Hastie et al. (2017, Chapter 7). Another option is to use in-sample errors, or residuals;

2For example, according to Merriam-Webster (online version) the verb “to hedge against” means “to
protect oneself from (something)”.
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this option has a bad reputation because in-sample errors tend to have a smaller variance

than (actual) out-of-sample errors because of the well-known phenomenon of “overfitting”.

However, for our purposes this need not be a serious problem; see Remark 2.1 below.

Whether one computes pseudo-out-of-sample or in-sample errors, they form the basis on

which one estimates µ and Σ. To this end, one can use sample counterparts (that is, sample

mean and sample covariance matrix), shrinkage methods, penalized estimation schemes,

etc; Having said this, we shall restrict attention to shrinkage methods as an alternative

to sample counterparts. For shrinkage estimation of a mean vector, see Hansen (2016),

Bodnar et al. (2019), and the references therein; for shrinkage estimation of a covariance

matrix, see Ledoit and Wolf (2022a) and the references therein.

Note that other data settings are also possible, for instance when {v1, . . . , vn, v} is a

stationary time series. Also in this case the recommendation is to base the estimation of

µ and Σ on pseudo-out-of-sample or in-sample forecast errors. How to generate those is

less well established compared to the i.i.d. case but proposals do exist; for example, see

Bergmeir and Beńıtez (2012) and Bergmeir et al. (2018). If one prefers shrinkage estimation

over sample counterparts, ideally, one should use methods designed for time-series data;

for example, see Sancetta (2008) and Engle et al. (2019) for shrinkage estimation of the

covariance matrix. Having said this, the case of stationary time series is, arguably, more

difficult in practice. Compared to an i.i.d. sample it would take a larger sample size,

generally, to have a similar chance of outperforming f̂EW, that is, equal weighting; but

especially macroeconomic time series only have relatively small sample sizes. Furthermore,

many real-life time series (even after detrending and deseasonalizing) may still not be

stationary because of structural breaks, for example.

Remark 2.1 (Scale invariance). The solution ŵ to the optimization problem (2.5)–(2.7)

remains unchanged if µ̂ and Σ̂ are replaced by cµ̂ and c2Σ̂, respectively, for any constant

c ∈ (0,∞). Therefore, it is not important that the estimators µ̂ and Σ̂ get the ‘levels’

of the true quantities µ and Σ right. In particular, the use of in-sample (or training-set)

errors in the construction of µ̂ and Σ̂ can still lead to favorable performance of the forecast
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combination f̂ŵ even if such errors may have smaller variance than out-of-sample errors

because of in-sample (or training-set) overfitting. Instead of approximating the actual

entries of µ and Σ, the corresponding estimators µ̂ and Σ̂ only need to approximate the

entries relative to each other in order for f̂ŵ to outperform f̂EW. That may still not be

a trivial task, but it is certainly an easier task.

3 Hedging the Random Forest

Given the high-level description in the previous section, we only have to detail (i) how we

compute forecast errors from training data and (ii) how we estimate µ and Σ in the context

of tree-based forecasting methods Mj.

We assume the existence of a training data set {vi}ni=1 with vi ..= (yi, x
′
i)
′ and only

consider the case when the {vi} are i.i.d. We train a random forest consisting of p trees

on this data set using the “ranger library” implemented in the programming language R,

where the various hyperparameter are set to the defaults recommended by Wright and

Ziegler (2017) for regression problems. After training the random forest, we extract the

forecasts of each tree Mj on the entire training set and thus obtain an in-sample error

(or residual) matrix of size n×p. We denote this matrix by R to indicate that it is not made

up of ‘true’ forecast errors but of in-sample forecast errors (or residuals). It is important

to point out that we do not, for a given tree, extract forecasts on the corresponding out-

of-bag observations only (that is, on the subset of the training set not used in pruning the

particular tree) because in this way we would not obtain a full n×p matrix of residuals but

instead a matrix that would contain a large number of missing values.3 But as explained

below, we need a full matrix R for the estimation of Σ, if not for the estimation of µ

necessarily.

The various inputs to the feasible optimization problem (2.5)–(2.7) are chosen as

follows. First, for the estimation of µ, we use the (column-wise) sample mean of R;

3On average, there would be about 1− 1/e ≈ 63.2% of missing values
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we also experimented with some shrinkage estimators instead but the results remained

virtually unchanged. Second, for the estimation of Σ, we apply nonlinear shrinkage to R;

in particular, we use the quadratic inverse shrinkage (QIS) estimator of Ledoit and Wolf

(2022b). Note here that nonlinear shrinkage requires a full matrix R as an input; a matrix

with missing values would not be feasible. Third, for the gross-exposure constraint κ

in (2.7), we use κ ..= 2. Appendix A runs robustness checks that consider (i) the sample

covariance matrix rather than nonlinear shrinkage as the estimator Σ̂ and (ii) alternative

values of the gross-exposure constraint κ.

Thus all inputs to the optimization problem (2.5)–(2.7) are now in place. The solution ŵ

assigns weight ŵj to tree Mj rather than weight 1/p as for the standard random forest

(RF). We call this weighted random forest the “hedged random forest” (HRF).

Remark 3.1 (Absence of cross-validation). At this point, some readers may wonder why

we do not use cross-validation to build up a n × p matrix of pseudo-out-of-sample errors.

The reason lies in the special nature of the random forest, since the individual forecast

methods, namely the trees, depend on the underlying training set. If we used ten-fold

cross-validation, say, we would obtain ten different tree ensembles, none of which would

coincide with the ensemble used at the end for forecasting, namely the ensemble based on

the entire training set. This problem would not arise with other forecast methods, such as

linear regression models, say; of course, estimated parameters in a given regression model

would change as a function of the underlying training set, but not the ‘characteristics’ of

that model, such as the identity (and the number) of the regressors.

A leading motivation for the use of cross-validation is that the resulting pseudo-out-

of-sample errors have similar variance as out-of-sample errors whereas in-sample errors

may have smaller variance. However, as outlined in Remark 2.1, this need not be a serious

concern in our case; the proof will be in the pudding in the form of the empirical application

below.
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4 Empirical Application

4.1 Data

We use the 17 numerical regression benchmark data sets proposed by Grinsztajn et al.

(2022) to evaluate the performance the hedged random forest (HRF) in comparison with

the standard equal-weighted random forest (RF). Each data set is accessible on the

official openML website www.openml.org, which also offers comprehensive metadata and

descriptions. To ensure the relevance and quality of these data sets, Grinsztajn et al. (2022)

employ the following criteria.

• Heterogeneous columns: Columns correspond to attributes of different nature.

For example, this criterion excludes images or signal data sets where each column

corresponds to the same signal on different sensors, for example.

• Not high dimensional: Only data sets with a d/n ratio below 1/10 are included,

where d denotes the numbers of attributes.

• Well-documented data sets: Only data sets with sufficient metadata are included.

• I.I.D. data: Stream-like data sets and time-series date sets are excluded.

• Real-world data: Artificial data sets are excluded.

• Not too small: Data sets with fewer than four attributes or fewer than 3,000

observations are excluded.

• Not too easy: For a data set to be included, linear regression must perform

‘sufficiently worse’ than certain machine-learning methods; for the details see

Grinsztajn et al. (2022).

• Not deterministic: Data sets where the response variable is a deterministic function

of the attributes are excluded. This mostly means removing data sets on games such

as poker and chess.

• No missing data: All observations containing missing values are excluded from the

data sets. No imputations are performed.

11
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Name # Observations # Attributes
ailerons 13,750 734
Bike Sharing Demand 17,379 12
brazilian houses 10,692 10
cpu act 8,192 22
diamonds 53,940 10
elevators 16,599 12
house 16H 22,784 17
house sales 21,613 18
houses 20,640 9
isolet 7,797 614
medical charges 163,065 4
MiamiHousing2016 13,932 14
nyc-taxi-green-dec-2016 581,835 19
pol 15,000 49
sulfur 10,081 7
superconduct 21,263 80
wine quality 6,497 12

Table 1: Data sets used.

For large data sets, we follow Grinsztajn et al. (2022) by selecting 10,000 observations at

random. To avoid interference with the data, we refrain from any attribute-preprocessing.

Table 1 lists the data sets used in this analysis together with the corresponding numbers

of observations and numbers of attributes.

4.2 Results

Any data set is partitioned into a training set and a test set by selecting n observations

at random, which constitute the training set, and then using the remainder of the

observations as the test set. For each method, RF and HRF, fitted on the training set

we obtain a MSE on the test set, denoted by MSERF and MSEHRF, respectively. In order

to guard against spurious results due to the random partitioning of the data, we then

repeat this process (independently) B times. As the final performance measure, we report

the following root-mean-squared-error (RMSE) ratio:
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RMSEHRF/RF
..=

√
1
B

∑B
b=1MSEHRF,b√

1
B

∑B
b=1 MSERF,b

. (4.1)

This means that, for each method, we average the MSE values over the B repetitions

and then take the root to arrive at individual RMSE values. Finally, we take the ratio of

the two individual RMSE values. Ratios greater than one speak in favor of RF whereas

ratios smaller than one speak in favor of HRF. Our results below are all based on B = 100

repetitions; larger values of B leave the results virtually unchanged.

In this way, for any training-set size n, we obtain 17 RMSE ratios (4.1), one for each

data set listed in Table 1. We convert the 17 ratios into a boxplot and then line up the

boxplots for n ∈ {200, 400, 600, 800, 1000, 2000, 3000, 4000, 5000} in Figure 1. The results

can be summarized as follows:

• On balance, HRF clearly outperforms RF.

• The gains are most pronounced for small training-set sizes n but ‘live on’ up to the

largest size considered, n = 5000.

• Out of the 17 data sets, there are five on which HRF performs worse than RF, but

the loss is never more than 8% and always below 5% for n ≥ 600.

• On the other hand, there are two data sets for which HRF reduces the RMSE

compared to RF by more than 10% for n ≤ 1000; for one of these data sets, HRF

actually reduces the RMSE by more than 10% for all n.

• Summing up, based on the 17 data sets considered, there is little to lose but potentially

much to gain by upgrading from RF to HRF.

HRF outperforms RF particularly convincingly for smaller n, and thus for larger d relative

to n. The intuition for this finding is that both RF and HRF are consistent forecast

methods for sequences of data with d independent of n (when data are i.i.d.) and hence

the difference between the two forecasts tends to decrease as n increases.
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n = 200 n = 400 n = 600 n = 800 n = 1000 n = 2000 n = 3000 n = 4000 n = 5000
0.7

0.8

0.9

1.0

1.1

Figure 1: Boxplots of RMSE ratios (4.1). For each training-set size n, the boxplot is based
on the 17 ratios corresponding to the data sets listed in Table 1.

4.3 Negative Weights and Shrinkage

All previous proposals for weighting the random forest that we are aware of, not only in

the context of regression but also in the context of classification, impose the “no-short-sales

constraint” κ = 1, that is, wj ≥ 0. As shown in the robustness checks of Appendix A,

allowing for negative weights typically improves performance, and for certain data sets by

a pronounced margin, when Σ is estimated with nonlinear shrinkage. On the other hand,

this is not really the case when the sample covariance matrix is used instead. To illustrate

this finding, we consider the following two RMSE ratios:
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RMSEsample
κ=2/κ=1

..=

√
1
B

∑B
b=1 MSEHRF,b,κ = 2,sample√

1
B

∑B
b=1 MSEHRF,b,κ = 1,sample

(4.2)

and

RMSEshrinkage
κ=2/κ=1

..=

√
1
B

∑B
b=1MSEHRF,b,κ = 2,shrinkage√

1
B

∑B
b=1MSEHRF,b,κ = 1,shrinkage

. (4.3)

These ratios measure the effect of allowing for negative weights (κ = 2) relative to

imposing non-negative weights (κ = 1): ratio (4.2) does so when Σ is estimated with the

sample covariance matrix whereas ratio (4.3) does so when Σ is estimated with nonlinear

shrinkage. Figure 2 shows that allowing for negative weights, on balance, leads to worse

performance when Σ is estimated with the sample covariance matrix in contrast to using

nonlinear shrinkage where it leads to better performance.

This finding might explain to some extent why the forecast-combination literature,

so far, has generally shied away from negative weights, since it is still the norm in this

literature to use the sample covariance matrix, a practice that should be abandoned.

In real-life finance applications, a “no-short-sales constraint” can be motivated by

legislation (for example, mutual funds are not allowed to short stocks) or by practical

considerations (for example, shorting certain assets may not be possible or may be

prohibitively expensive). On the other hand, “short-selling” individual forecast methods

Mj by assigning them a negative weight does not violate any laws and does not incur any

monetary costs. We, therefore, hope that our paper will serve as motivation to the scientific

community to allow for negative weights not only in the random forest but also in other

forecast-combination settings. Just remember to abandon the sample covariance matrix in

favor of shrinkage estimation.
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n = 200 n = 400 n = 600 n = 800 n = 1000 n = 2000 n = 3000 n = 4000 n = 5000

0.950

0.975

1.000

1.025

1.050

Figure 2: Boxplots of RMSE ratios (4.2) in green and RMSE ratios (4.3) in blue. For each
training-set size n, the boxplots are based on the 17 ratios corresponding to the data sets
listed in Table 1.

4.4 Related Literature

There have been previous proposals in the literature for weighting the random forest.

In the context of regression, we are only aware of Chen et al. (2023). It would have

been interesting to compare our hedged random forest with their proposal but the authors

(so far) have not made corresponding code available and our efforts to implement their

proposal did not succeed.4 At least, it can be pointed out that their proposal involves the

choice of tuning parameters which also requires a validation set, in addition to a training

set. resulting in a loss of information (meaning a smaller training set) in practice; see their

4We also contacted the authors by email about code but did not receive any response.
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Section 4.

On the other hand, we can compare with two weighted-random-forest proposals

originally intended for classification but easily adaptable for regression, namely the weighted

random forest (WRF) by Winham et al. (2013) and the Césaro random forest (CRF) by

Pham and Olafsson (2020). As will be seen below, the weights ŵj in both proposals are

always non-negative; actually, they are always strictly positive.

For the weighted random forest of Winham et al. (2013) one first computes, for

j = 1, . . . p, the tree-accuracy measure

tPEj
..=

1

|OBBj|
∑

i∈OOBj

∣∣yi −Mj(xi)
∣∣ , (4.4)

where OOBj ⊂ {1, . . . , n} denotes the out-of-bag set corresponding to tree Mj, that is,

the subset of the training set not used in the pruning of the tree. Next, one computes

relative weights according to one of the three following formulas:

ŵj,rel
..= 1− tPEj (4.5)

ŵj,rel
..= exp

(
1

tPEj

)
(4.6)

ŵj,rel
..=

(
1

tPEj

)λ

for some λ > 0 (4.7)

Finally, the weights {ŵj} are forced to sum up to one by setting

ŵj
..=

ŵj,rel∑p
l=1 ŵl,rel

.

Following the advice of Winham et al. (2013), we tried as the leading candidates

version (4.6) and version (4.7) with λ ..= 5, of which the former performed somewhat

better and is thus used below. We can construct as an analog to (4.1) the ratio
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RMSEHRF/WRF
..=

√
1
B

∑B
b=1 MSEHRF,b√

1
B

∑B
b=1 MSEWRF,b

. (4.8)

For the Césaro random forest of Pham and Olafsson (2020), one uses the tree-accuracy

measures tPEj defined in (4.4) to construct the weights, but in a different scheme: One

sorts the measures {tPE1, . . . , tPEp} from smallest to largest and defines rj as the order

of tPEj in the sorted sequence. Hence, if tPE(1) ≤ tPE(2) ≤ · · · ≤ tPE(p), it holds that

tPEj = tPE(rj). Then the relative Césaro weights are defined as

ŵj,rel
..=

p∑
l=rj

1

l
. (4.9)

Finally, the weights {ŵj} are forced to sum up to one again by setting

ŵj
..=

ŵj,rel∑p
l=1 ŵl,rel

.

We can construct as an analog to (4.1) the ratio

RMSEHRF/CRF
..=

√
1
B

∑B
b=1MSEHRF,b√

1
B

∑B
b=1 MSECRF,b

. (4.10)

As an analog to Figure 1 we now obtain Figure 3 which demonstrates that HRF clearly

outperforms WRF, on balance. The comparison of HRF with CRF is a bit more subtle:

Although the two methods exhibit comparable performance in terms of the median RMSE

ratio, HRF consistently outperforms CRF in terms of the mean RMSE ratio for all training-

set sizes n. Hence, taking everything into account, HRF also outperforms CRF, on balance.
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Figure 3: Boxplots of RMSE ratios (4.8) in light blue and MSE ratios (4.10) in dark blue.
For each training-set size n, the boxplots are based on the 17 ratios corresponding to the
data sets listed in Table 1.

4.5 Time-Series Data

We have previously demonstrated that the hedged random forest, on balance, provides

superior forecasting performance compared to the standard random forest (based on equal-

weighted trees). The evidence we presented has been for cross-sectional (or i.i.d.) data

sets.

We also ran some limited, preliminary experiments for time-series data sets but did

not find consistent outperformance of the hedged random forest over the standard random

forest. There could be several reasons for this finding. On the one hand, with time-

series data, estimating µ and Σ presents new challenges due to inherent dependence in
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the data. In addition, many time-series data sets are not stationary but suffer from trends,

seasonalities, time-varying parameters, or structural breaks; in such cases, the estimates

of µ and Σ based on observations in a past window (including today) could simply be

noticeably off-target for what is actually coming in the future, and thus not weighting the

trees would be more robust.

This topic is an important and practical direction for future research.
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A Robustness Checks

The goal of this appendix is to provide robustness checks with respect to the nature of the

estimator Σ̂ and the choice of the gross-exposure constraint κ.

As an alternative estimator Σ̂ to nonlinear shrinkage, we will consider the canonical

choice, the sample covariance matrix. As far as κ is concerned, we will consider the choices

κ ∈ {1, 1.5, 2, 2.5,∞}., the canonical choice being κ ..= 1.

Figure 4 displays the results for all choices of κ when Σ̂ is given by nonlinear shrinkage

whereas Figure 5 displays analogous results when nonlinear shrinkage is replaced by the

sample covariance matrix instead.

n = 200 n = 400 n = 600 n = 800 n = 1000 n = 2000 n = 3000 n = 4000 n = 5000
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1.8

Figure 4: Boxplots of RMSE ratios (4.1). For each training-set size n, there are five
boxplots corresponding to κ ∈ {1, 1.5, 2, 2.5,∞} where each boxplot is based on the
17 ratios corresponding to the data sets listed in Table 1. The estimator Σ̂ is given by
nonlinear shrinkage.
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Figure 5: Boxplots of RMSE ratios (4.1). For each training-set size n, there are five
boxplots corresponding to κ ∈ {1, 1.5, 2, 2.5,∞} where each boxplot is based on the
17 ratios corresponding to the data sets listed in Table 1. The estimator Σ̂ is given by
the sample covariance matrix.

When Σ̂ is given by nonlinear shrinkage, the choice κ ∈ {1.5, 2, 2.5} matters very little,

and all three choices perform better than the canonical choice κ ..= 1. Not imposing

a gross-exposure constraint (that is, the choice κ ..= ∞) performs worst overall, though

it still outperforms RF, on balance.

When Σ̂ is given by the sample covariance matrix instead, the choice of κ matters more.

In particular, not imposing a gross-exposure constraint (that is, the choice κ ..= ∞) can lead

to grave underperformance of the HRF when the training-set size, n, is close to the number

of trees, p. On balance, the canonical choice κ ..= 0 seems to perform best.

Finally, we look at the combined benefit of our version of HRF compared to the canonical
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choice in the literature: (i) use nonlinear shrinkage for Σ̂ instead of the sample covariance

matrix and (ii) use κ ..= 2 instead of κ ..= 1. Calling the two versions HRFour and HRFcan

(for “our” and “canonical”), we can construct as an analog to (4.1) the ratio

RMSEHRFour/HRFcan
..=

√
1
B

∑B
b=1MSEHRFour,b√

1
B

∑B
b=1MSEHRFcan,b

. (A.1)

As an analog to Figure 1 we then obtain Figure 6,

n = 200 n = 400 n = 600 n = 800 n = 1000 n = 2000 n = 3000 n = 4000 n = 5000
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Figure 6: Boxplots of RMSE ratios (A.1). For each training-set size n, the boxplot is based
on the 17 ratios corresponding to the data sets listed in Table 1.

One can see that in terms of the median RMSE ratio, our version outperforms the

canonical version for n ≤ 2000, after which the competition becomes a tie, whereas in terms

of the mean RMSE ratio, our version outperforms the canonical version for all n.
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