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Abstract

This paper studies the impact of the Roulez Vert program, which subsidized new purchases of elec-

tric vehicles in the province of Quebec, Canada. I study the impact of the program on sales, firms’

pricing behavior, and charging station deployment, and estimate the marginal cost of avoiding carbon

emissions using subsidies. To evaluate the impact of subsidies, I rely on a structural model in which

demand follows a nested logit specification and supply is determined by multi-product firms competing

on prices. I augment the model to incorporate charging station deployment. Specifically, I allow for

county-level governments to choose where and how many stations to install in their region to provide

charging capacity to electric vehicle owners. I find that the program explains 45% of electric vehicle sales

and 26% of charging stations installed between 2012 and 2018. Taking into account gains to consumer

surplus, I estimate the marginal abatement cost to be $340 per ton of CO2, well above conventional

estimates of the social cost of carbon emissions. Part of the reason behind this high estimated cost is

that more than half of the subsidies went to infra-marginal consumers and would have purchased an

electric vehicle whether or not subsidies are available. Additionally, my results suggest that only 43%

of the additional hybrid and electric vehicles sales generated by the program are replacing fuel vehicle

sales which limits carbon emission savings. JEL Codes: L, L1, L91, Q50, Q58.

∗Department of Economics, McGill University, jean-francois.fournel@mcgill.ca. I am grateful to Laura Lasio for

her commitment and continuous support throughout this project. I would also like to thank John Galbraith, Hassan

Benchekroun, Mario Samano, Katalin Springel, Andrei Munteanu, participants at the CIREQ Seminars, and two

anonymous referees at the Young Economist Symposium (YES) for their generous feedback. Above all, I want to
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1 Introduction

Electric vehicles (EV) constitute one of the most promising innovations for lowering carbon emis-

sions from the transportation sector wherever clean energy production is available. Several barriers

exist that prevent the widespread adoption of this technology. The high initial purchasing cost

or the low availability of charging outlets may lead potential buyers to select internal combustion

engines over electric ones even if they place a high value on reducing their carbon footprint, factor

in future fuel cost savings, or the lower maintenance costs associated with driving an EV. In turn,

if demand for these vehicles is low, there is little incentive for charging station operators to expand

local networks or for car manufacturers to develop better and cheaper products, slowing down the

transition to electric.

This paper focuses on the introduction of the electric car in the province of Quebec, Canada, and

on the role of financial incentives in speeding up the adoption of this new technology. Specifically,

I investigate if Quebec’s Roulez Vert program, which subsidizes electric vehicle purchases by up

to $8,000, is a cost-effective way of achieving lower total carbon emissions from new car sales. I

explore the effect the program had on the deployment of charging stations, firms’ pricing decisions,

consumer surplus, profits, and welfare. Whether or not subsidizing EV is cost-effective depends

crucially on several factors: how fuel-efficient are the vehicles that are being replaced by EV, to

what extent car manufacturers can manipulate prices to capture part of the subsidy as profits, and

on the magnitude of the network effects, since the deployment of charging stations depends on EV

adoption and vice versa.

As a preliminary step, I correlate sales of EV to charging station deployment and vice versa to

confirm the presence and the magnitude of network effects in this market. I rely on an instrumental

variable approach to break the simultaneity and to control for shocks that could affect both sides

of the market. My results indicate that expanding the network by 10% leads to 5.5% additional

sales of EV and that increasing the total fleet of EV by 10% leads to 6.3% more charging station

installations. This provides evidence of a positive feedback effect that amplifies the impact of

policies that promote EV adoption. These findings have repercussions for estimating the cost-
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effectiveness of rebate programs as ignoring these network effects would result in biased estimates

of core parameters of the model (for example, elasticities), an underestimation of the environmental

gains, and an overestimation of the cost of reducing emissions. As a robustness check, I perform

the same analysis using fuel and hybrid vehicles sold instead of electric and find no evidence of a

link with stations deployment.

Building on these results, I propose a structural model to evaluate the efficiency of subsidies targeted

at buyers of an EV. My approach allows consumers, firms, and station providers to interact with

the policy under different counterfactual environments. I model demand for cars following the

nested logit specification as in Berry (1994). Specifically, the demand model allows for preferences

for electric vehicles to depend not only on car characteristics and pricing, but also on the number

of charging stations available locally (Springel, 2017; S. Li et al., 2017; Pavan et al., 2015), and

the driving range of each EV (J. Li, 2016). On the supply side, I assume prices to be the outcome

of a Bertrand-Nash equilibrium between multi-product firms (Berry, Levinsohn, and Pakes, 1995;

Petrin, 2002). I derive a new model for station entry in the spirit of Springel (2017) and Berry

and Reiss (2007) to match the specific setup in Quebec, where regional-level governments choose

both the quantity and the location of new stations to maximize social benefit in their region. My

specification of the entry model improves on currently available methods in that it allows for very

flexible patterns for the elasticity of supply of stations. To fix ideas, the model allows for the

elasticity of supply to vary freely with the state of the each market, producing more realistic and

varied supply curves across regions.1

I rely on a structural approach for several reasons. First, a direct estimation of the effect of the

policy on prices or quantities cannot separately identify demand and supply responses from each

other or from network effects. Varying the policy environment entails a re-optimization from all

agents, which includes a reallocation of charging station resources. It is unlikely that estimates from

a reduced form analysis be still valid once we move to a new equilibrium unless one is ready to

make strong assumptions about the causal effect of the policy concerning the outcomes of interest.

1A fixed elasticity of supply imposes strict restrictions on the underlying supply curve. Under my specification,
more flexible supply curves can be estimated. In particular, the elasticity of supply could be increasing or decreasing,
and converge or not towards a fixed elasticity.
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Second, several outcomes relevant for this analysis, for example avoided carbon emissions, can be

expressed readily as structural parameters of the model. Finally, a structural approach is necessary

to disentangle demand, supply, and network responses to the policy environment and from each

other.

I use the structural model to study what would have happened if the Roulez Vert program was

never implemented. I estimate that reducing carbon emissions using the current rebate structure

to have an average cost of $95 and a marginal cost of $340 per metric ton of CO2, taking into

account changes to both total spending on the program and consumer surplus.2 Furthermore, I

find that the program explains 45% of the 41,025 electric and plug-in hybrids sales, 1.8% of the

49,800 hybrids sales, and 26.2% of the 1,920 charging stations installations between 2012 and 2018.

In assessing the successfulness of the program, it is critical to consider the composition and fuel

efficiency of the vehicles that are being replaced by EVs. Avoided emissions should be larger if more

SUVs are being replaced than compacts or subcompacts which are more fuel-efficient. My results

suggest that 19.2% of the additional electric, plug-in hybrid and hybrid registrations are replacing

relatively fuel-efficient vehicles, and 23.7% are replacing vehicles with poor fuel efficiency. Part of

this result follows from the fact that several large/luxury car buyers are willing to substitute towards

buying a Tesla when financial incentives are available. The remaining 57.1% can be explained by

substitution away from the outside option: consumers who had no car and bought one, purchased

a second car, or advanced their purchasing decision to take advantage of the rebate. This sizeable

market expansion contributes to reducing the impact of the policy as these additional EV do not

replace internal combustion engine sales and do not generate a reduction in the stock of carbon

emission. These findings contribute to explaining the large estimated marginal abatement cost.

On one hand, 47% of of battery electric, 60.8% of plug-in hybrid and 98.2% of hybrid buyers are

infra-marginal consumers and would have picked the same alternative without incentives. Of the

marginal consumers that are influenced by the program, 57.1% are substituting away from the

outside option, generating no emission reduction, and 19.2% are substituting away from relatively

fuel efficient vehicles, raising questions about how accurately the program targets high emission

2The marginal cost is computed as the cost of reducing emissions by one metric ton following a marginal increase
in the subsidy amount, evaluated at the current level of subsidy.
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vehicle purchases, affecting it’s ability to reduce emissions at a low cost.

The counterfactual analysis I conduct suggests that the policy had an asymmetric effect on firms’

profits creating winners and losers. However, overall industry profits increased by $149.6 million

due to the expansion in total sales between 2012 and 2018. Generally, firms that offered several

electric or plug-in hybrid alternatives benefitted while firms that focussed on internal combustion

engines experienced a decrease in profits. I estimate that firms did not significantly change their

pricing decision in response to the program such that 98.1% of the value of the subsidy benefitted

consumers. This result is in line with both Muehlegger and D. S. Rapson (2018) and Sallee (2011)

who provide evidence from the United States car market. In particular, Sallee (2011) finds that

local incentives benefitted consumers entirely in the case of the introduction of the Toyota Prius

in the United States. He explains this surprising result with the fact that manipulating prices at

precise times when the tax exemptions were either changed or phased out would be observed by

consumers and could be damaging to Toyota’s reputation, harming future sales of Prius.

I propose an alternative explanation to the observed passthrough. Similar to Springel (2017), my

finding suggests EV are complements to each other rather than substitutes when taking network

effects into account. In this context, the rebate program has a multiplicative effect on EV sales

and lead to a sizeable market expansion. Firms do not find it optimal to increase their profit per

unit by capturing the subsidy since they benefit more from the increased sales. Other works from

Beresteanu and S. Li (2011) on the United States hybrid car market and Fershtman, Gandal, and

Markovich (1999) on the Israeli car market find contrasting evidence of an incomplete passthrough.

Analyzing the welfare implications of the program indicates that the gains in consumer and producer

surpluses more than offset the cost of implementing this rebate scheme, leading to a net gain in

welfare of $123.5 million.

This paper contributes to the literature on several fronts. First, I contribute to the growing lit-

erature that explores the effect of rebates on green car adoption. In their study of the French

Bonus/Malus program, d’Haultfoeuille, Givord, and Boutin (2014) find that taxing fuel-inefficient

vehicles and subsidizing fuel-efficient ones led to a decrease in average emissions, but an increase in

5



total emissions. DeShazo, Sheldon, and Carson (2017) assess the relative performance of alternative

rebate schemes to the California plug-in hybrid rebate program. Their findings suggest this policy

led to 7% more sales of EVs and cost roughly 36,000$ (30,000 USD) for each additional sale. My

paper is not the first to study the Quebec car market. Barla, Couture, and Samano (2016) study

the short-run impact of a gasoline price increase on fleet composition and fuel efficiency and com-

pare it to the effect of a feebate program that subsidized vehicles with high fuel economy. Closer

to this project is the work of Springel (2017). She proposes a structural model of demand for cars

and supply of charging stations to study the non-neutrality of subsidizing each side of the market,

taking network effects into account. In her study of the Norway electric car market, she finds that

every dollar spent towards subsidizing stations led to 2.16 times more sales than subsidizing car

purchases directly. She demonstrates that charging station subsidies exhibit decreasing returns,

such that subsidizing cars becomes more cost-effective once the network is large enough. Pavan

et al. (2015) find a similar result in their study of the Italian car market: subsidizing the installa-

tion of new alternative fuel pumps generates more sales per dollar spent than subsidizing new car

purchases.

I contribute to estimating the cost of reducing emissions from passenger cars through government

policy. In a study of the United States EV market, Xing, Leard, and S. Li (2021) estimate that

reducing emissions using subsidies costs between $581 and $662 (484–552 USD) per metric ton of

CO2. Their analysis differs from my current work in two regards: their structural model does not

allow for a dependency between charging station deployment and sales of EV or for substitution

away from the outside option. I find both factors to be important in evaluating the cost-effectiveness

of subsidies. While network effects work towards making subsidies more effective, having a large

share of buyers coming from the outside option can have a multiplicative effect on the cost of

reducing emissions as these buyers would not have generated emissions in the first place. Other

estimates range from $131–158 (109–132 USD) per ton of CO2 (Huse and Lucinda, 2014 on the

Swedish green car rebate), $212 (177 USD) per ton (Beresteanu and S. Li, 2011 on tax incentives

for hybrids in the U.S.), and as high as $540 (450 USD) per ton (Knittel, 2009 on a hypothetical

‘cash for clunker’ program).
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This paper fits in the wider literature that studies the effect of regulating the car market on environ-

mental outcomes. Several works have focussed on other policy tools such as gas taxes (Grigolon,

Reynaert, and Verboven, 2018; Allcott and Wozny, 2014), emission standards (Durrmeyer and

Samano, 2016; Klier, Linn, et al., 2013; Reynaert, 2014), attribute-based regulation and taxation

(Knittel, 2011; Ito and Sallee, 2018; Chaves, 2019), or comparing financial and non-monetary in-

centives (Jenn, Katalin Springel, and Gopal, 2018). Advances on estimating the environmental

impacts of these policies include Durrmeyer et al. (2018) which studies the distributional impacts

of the French rebate program, Holland et al. (2016) on air pollution patterns that occur upstream

in the production process, Archsmith, Kendall, and D. Rapson (2015) and Muehlegger and D. S.

Rapson (2020) on air pollution abatement.

Lastly, I contribute to the literature on estimating network effects and their role in the adoption of

breakthrough innovations. Advances in this field touch a wide range of new products: green cars

(Springel, 2017; Pavan et al., 2015; J. Li, 2016; S. Li et al., 2017), compact discs (Gandal, Kende,

and Rob, 2000), video games (Corts and Lederman, 2009; Clements and Ohashi, 2005), software

(Gandal, 1995), microcomputer chips (Gandal, Greenstein, and Salant, 1999), and personal digital

assistants (Nair, Chintagunta, and Dubé, 2004). Similar to the works cited above, I find network

effects to be important in explaining the adoption rate of this new technology.

The choice of Quebec as a relevant jurisdiction for studying these questions is justified for several

reasons. First, the offered rebates are substantial, $8,000 for new battery electric vehicles and

$4,000 for plug-in hybrids, and broadly known to be available since their introduction in March

2012, meaning that their effect on sales should be considerable. Second, applying for the rebate is

made through the retailer and is applied directly to the transaction price.3 Thus, everyone eligible

for a rebate receives it, eliminating the possibility that self-selection or non-awareness of the program

could corrupt my results. Finally and most importantly, Quebec’s electricity production comes from

over 99% renewable sources,4 and the substantial electricity surpluses recorded every year would

3The only exception is Tesla, which does not operate any point of sale in the province. Tesla buyers instead need
to mail in the paperwork to receive the subsidy.

4In 2018, hydroelectricity accounted for 95% of Quebec’s electricity generation, with wind energy coming second
at 4%. Other sources of electricity generation included natural gas for peak winter demand, diesel for power in remote
communities, and biomass (Source: Hydro-Quebec, Annual Report 2018 ).
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allow for a large-scale expansion of the fleet of EV without relying on non-renewable sources.5 This

is a fundamental consideration as air pollution upstream in the production process can mitigate,

negate, or even reverse any gains from replacing fuel vehicles with electric alternatives (Holland

et al., 2016). In this regard, my estimates of the marginal abatement cost of emissions can be seen

as a lower bound when comparing to jurisdictions where clean energy is not readily available.

The rest of the paper is organized as follows. Section 2 provides background information on the

Quebec electric vehicle market, the Roulez Vert program, and the data. Section 3 presents reduced

form evidence that network effects are an important consideration in this setup. I describe a

structural model of demand and supply for cars and the evolution of the charging stations network

in section 4. Estimation and counterfactual results are relayed to section 5 and 6 respectively.

Section 8 provides concluding remarks.

2 The Market for Electric Vehicles in Quebec

2.1 The Roulez Vert program

The transportation sector is the greatest contributor to greenhouse gas emissions in Quebec, ac-

counting for 43% of all emissions.6 As such, it has become a key target of environmental policy.

The Roulez Vert program was enacted at the beginning of 2012 as part of a broader initiative to

electrify all types of transportation in the province, including personal vehicles, public transports,

and the transportation of goods. The program targets specifically personal vehicle sales, setting

the ambitious goal of reaching 100,000 new EV registrations by the end of 2020. To achieve this,

the government offers direct financial incentives targeting buyers of new or used battery electric,

plug-in hybrid and hybrid vehicles, subsidizes the installation of home chargers (up to $600), and of

charging capacity in multi-unit housing or at work locations (up to 50% of installation costs). This

5Energy production and purchases from Hydro-Quebec, the state-owned power utility, has surpassed consumption
and exports by on average 15.89TWh per year between 2012 and 2018 (Source: Hydro-Quebec, Annual Report 2012-
2018 ). Ignoring the effect on winter peak load, back of the envelope calculations suggests that replacing every electric
vehicle sold in that period with battery electric vehicles would have increased the total demand for electricity by
10.93TWh per year by the end of 2018.

6Source: Quebec Ministry of Environment and Climate Change, Inventory of Greenhouse Gas Emissions in Quebec
1990-2017.
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research focuses on one aspect of this policy, subsidies targeted at new car sales, described in Table

1. Although subsidizing used cars could be an important feature of the program, the data does not

allow for tracking car ownership through time, such that transactions on the secondary market are

not observable. In any case, the secondary market for such a new product is expected to represent a

small fraction of transaction and spendings on the program. For example, 78% of EV in my sample

are less than three years old by the end of the sample period and buyers would typically keep a

new vehicle for longer than that as payments usually extend over four or five years. I also ignore

the effect of subsidies toward installing home charging capacity due to data limitations. I do not

observe home charger purchases nor do I observe which buyers applied and received a home charger

subsidy. Also, there is no requirement that buyers purchase and install a home charger in the same

year as they purchase an EV. Acquiring a home charger can cost between a few hundred to a few

thousand dollars depending on charging capacity, the type of outlet, and the amount of electrician

work required for the installation, but is not absolutely necessary to charge at home.

Table 1: Subsidy structure

Engine type less than $75,000 $75,000 to $125,000 more that $125,000

Battery electric $8,000 $3,000 $0
Plug-in hybrid $500, $4,000 or $8,000a $0 $0
Hybrid $500b $500b $500b

a Rebate on plug-in hybrids depend on battery capacity and power.
b Rebate on hybrids was $1,000 until 2013. Not all hybrids are eligible to the subsidy.

Aside from financial incentives to buyers, the government of Quebec participates in the development

of a public charging station infrastructure in partnership with county-level governments. In March

2012, it launched the Circuit Électrique, a province-wide network of public charging stations to be

operated by Hydro-Quebec, the state-owned grid operator. While the provincial government is re-

sponsible for installing fast-charging stations on highways (such that all regions are interconnected)

and providing the software infrastructure necessary for operating the network (website, smartphone

app, billing, interoperability with other networks), it relies on partnerships with county-level gov-

ernments and sometimes shopping malls, restaurant chains or other businesses for the development

of local networks within each region. Typically, the cost of installing a Level 2 charger (i.e. 240V)
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(a) Network in 2012 (b) Network in 2014

(c) Network in 2016 (d) Network in 2018

Figure 1: Evolution of charging station network over time

is around $7,000 and is paid entirely by the partner.7 Revenues from operating each local network

also belong entirely to partners. Since the provincial government does not have property rights

over potential charging station sites within each county, this means that partners control the final

installation decision and reap all benefits from operating local networks which is crucial to my

analysis. Figure 1 presents a map of the evolution of these local networks over time.

7For FastDC chargers (i.e. 400V), the provincial government is responsible for 50% of all costs up to the cost of the
charger itself, while the partner is responsible for the remaining costs. A single charger cost over $35,000 excluding
installation and infrastructure costs. Revenues are shared based on investment ratios.
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2.2 Data

To estimate the impact of subsidies on sales of electric vehicles, prices, and the development of

a charging station infrastructure, I assemble a novel and rich dataset of all car registrations and

public charging stations available in Quebec between 2012 and 2018. The data is aggregated at

the regional county municipality level (RCM), Quebec’s equivalent of metropolitan statistical areas

(MSA) in the United States. Markets are defined as county-year combinations. I select this level

of aggregation for two reasons. First, counties capture relatively well commuting areas for car

owners: 68.3% of households’ have their work location within the county of residence (74.7% if

we exclude residents of Montreal and surrounding counties). Second, county-level governments

are responsible both for the decision to install and the location of new stations for most of the

public stations in my sample. The remaining stations are usually installed by workplaces, shopping

malls, restaurant chains, or other venues that wish to attract customers that own an EV. In those

cases, the installation and location decisions are taken at a more disaggregated level than counties.

Even though county authorities do not decide on the exact location of all stations within the

local network, I claim that they hold the final decision for how many stations are available. The

reasoning behind this assumption is simple: county-level governments could forgo installing some

stations if for example more private installations occur, meaning that they have the final say on

the size of their local network. In total, my dataset contains 3.35 million individual cars registered

in 89 counties over seven years. I observe a total of 34 car manufacturers producing 297 different

models.

The data on car registrations is summarized in Table 2. I use publicly available data from the Société

d’Assurance Automobile du Québec, Quebec’s vehicle registration agency, to reconstruct all new

vehicle registrations that occurred between 2012 and 2018. I supplement the car registration data

with car characteristics taken from The Car Guide, which publish on their website comprehensive

information on all makes and models available in the province. EV and traditional vehicles differ

along three main axes. First, EV are on average more expansive than fuel vehicles even when

taking into account government subsidies. Second, driving range is significantly shorter for EV.

Consumers care about driving range because it decreases their dependence to the network for some
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Table 2: Average characteristics, by engine type

VARIABLE Fuel Battery Plug-in Hybrid
electric hybrid

Characteristics
Retail price, in CAD 31,982 51,078 48,024 33,987
Rebate, in CAD 0 7,764 5,831 293
Power, in kW 152.4 132.6 123.0 99.4
Power-to-weight ratio, in W/kg 93.4 77.8 67.3 62.1
Length, in m 4.68 4.44 4.65 4.65
Width, in m 1.59 1.56 1.58 1.56
Height, in m 1.60 1.53 1.53 1.53
Weight, in 100kg 16.0 16.4 17.8 15.7
Autonomy, in km 727 272 752 1002
Fuel consumption, in L/100km 8.85 0 6.25 5.33
Electricity consumption, in kWh/100km 0 16.4 26.0 0
Cost of driving 100km 11.44 1.83 7.40 6.89
CO2 emissions, in g/km 204.6 0 71.4 123.3

Transmission
Manual 0.29 0 0 0
Automatic 0.71 0 0.84 1
Singlespeed 0 1 0.16 0

Fuel type
Regular 0.87 0 0.68 0.93
Premium 0.12 0 0.32 0.07
Diesel 0.01 0 0 0

Market segment
Subcompact 0.10 0.19 0 0
Compact 0.30 0.49 0.18 0.46
Midsize 0.04 0 0.07 0.21
Luxury 0.05 0.20 0.48 0.12
Sport 0.01 0 0 0
SUV 0.37 0.12 0.25 0.21
Minivan 0.04 0 0.02 0
Pick-up 0.09 0 0 0

Observations 3150880 17435 23597 49800

NOTE: All characteristics are weighted by sales. All dollars values are in 2018 CAD. 1 Kilowatt = 1.341 Horse-
power.
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Table 3: Driving range of battery electric vehicles, by model-year

Model Driving range, in km

2012 2013 2014 2015 2016 2017 2018

BMW i3 - - 160 160 160 200 200
Chevrolet Bolt EV - - - - - 383 383
Chevrolet Spark - - 131 131 131 - -
Ford Focus Electric 120 120 120 120 122 185 185
Hyundai IONIQ - - - - - 175 200
Kia Soul EV - - - 160 150 150 179
Mitsubishi iMiev 135 135 135 135 135 96 -
Nissan Leaf 160 160 160 160 133-172 133-172 133-172
Smart Fortwo - 145 145 138 138 160 160
Tesla Model 3 - - - - - - 499
Tesla Model S 260 250 370 345-460 370-435 466-572 417-539
Tesla Model X - - - - 354-410 381-475 383-475
Volkswagen e-Golf - - - - - 201 201

types of travels. Table 3 presents a breakdown of driving ranges by model-year. While there is

some improvement to autonomy over time, firms typically increase driving range by introducing

new models rather than improving on existing ones. Most models have a driving range between

120km and 200km which implies that charging on the go is usually required even for medium-

distance trips. Lastly, EV exhibit a lower carbon footprint and a lower operation cost (i.e. cost of

driving 100km).

Table 4 summarize the evolution of battery-electric and plug-in hybrid sales between 2012 and 2018,

as well as the entry of new models over the same period. Three models were available near the end

of 2011, the Mitsubishi iMiev, the Nissan Leaf, and the Chevrolet Volt, totalizing 173 sales (not

show in the table). Sales have increased exponentially over the period reaching 3.4% of yearly sales

by 2018. At the same time, several new models were released in every marketing segment, including

SUVs (Kia Soul EV, Mitsubishi Outlander) and minivans (Chrysler Pacifica). Around 35 new EV

were introduced between 2012 and 2018 (three discontinued), totalizing 17,435 battery-electric and

23,597 plug-in hybrid registrations.

The data on charging station infrastructure is provided by Hydro-Quebec. It contains the exact

geographic location and address of each station, pricing, power, type of station, and entry date. This

data covers all public and semi-public stations accessible through the online platform. Information
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Table 4: Electric vehicle sales, by year

Model Sales

2012 2013 2014 2015 2016 2017 2018

Battery electric
BMW i3a - - 16 68 90 78 103
Chevrolet Bolt EV - - - - - 1,154 1,490
Chevrolet Spark - 2 18 42 37 6 -
Ford Focus Electric 24 46 21 27 61 184 445
Hyundai IONIQ - - - - - 284 770
Kia Soul EV - - 16 125 412 316 478
Mitsubishi iMiev 113 99 66 82 59 43 8
Nissan Leaf 111 205 623 755 950 548 2,559
Smart Fortwo - - - - - 10 111
Tesla Model 3 - - - - - - 1,560
Tesla Model S 21 126 172 589 441 328 233
Tesla Model X - - - - 203 274 211
Volkswagen e-Golf - - - - - 263 633

Plug-in hybrid
Chevrolet Volt 649 621 1,204 1,156 2,351 2,533 2,063
Chrysler Pacifica - - - - 1 215 344
Ford C-Max - 100 284 160 214 187 9
Ford Fusion 1 98 206 123 183 305 732
Hyundai IONIQ - - - - - 5 676
Mitsubishi Outlander - - - - - 2 2,279
Porsche Cayenne - - 36 312 343 338 312
Toyota Prius 6 79 55 15 6 683 1,731
Volvo XC-90 - - - 178 488 539 662
Others 0 17 57 45 117 246 350

Total 925 1,393 2,774 3,677 5,956 8,541 17,759
a. Sales of BMW i3 includes both the fully electric and the plug-in hybrid specifications.

on private stations is not available. I observe that 127 of the 1,920 charging stations are fast-

charging stations (FastDC) and that the remaining stations are standard Level 2 chargers. I use

the power output of each type of station and pricing per hour to recover the cost per kWh of

charging at either type of facility. I estimate the cost of recharging to be $0.14 per kWh at a Level

2 charger and $0.23 at a FastDC charger.8 Alternatively, charging at home costs $0.09 per kWh.

I combine these into a single price index that I use to compute the cost of driving an EV for an

average owner.9

8Level 2 chargers have a maximum power output of 7.2kW and a median per hour price of $1 while FastDC chargers
have a maximum power output of 50kW and a median per hour price of $11.50. The per kWh price estimates assume
that all vehicles can recharge at the maximal output for each type of station.

9I assume that 80% of charging occurs at home, 10% on Level 2 chargers and 10% on FastDC chargers during
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Table 5: Stations network

Year Number of Share of counties with

stations 0 stations 1-5 stations 6-10 stations >10 stations

2012 136 0.78 0.13 0.04 0.03
2013 238 0.61 0.26 0.06 0.07
2014 384 0.44 0.39 0.06 0.10
2015 665 0.24 0.46 0.10 0.19
2016 919 0.12 0.47 0.15 0.25
2017 1440 0.06 0.47 0.17 0.29
2018 1920 0.02 0.38 0.19 0.39

Table 5 presents the evolution of the network at the provincial level both in terms of the raw

number of stations and its density at the county level. Because driving range is limited on several

EV models throughout the period, charging station availability at the local level is crucial for

consumers considering purchasing an EV. While the network has grown over time, reaching 1,920

stations in 2018, it has done so unevenly, such that coverage remains low in several non-urban

counties.

I complete my dataset with gas prices and gas station density, obtained from Régie de l’Énergie,

and various demographics at the county-level, obtained from the Canadian Census Survey.

3 Evidence of Network Effects

Consider the following simple structural equation model that characterize the equilibrium outcome

in the car market:

q = α0 + α1p + α2n + α3x + α4y1 + uD (1)

p = β0 + β1q + β2x + β3w + uS (2)

n = γ0 + γ1q + γ2y2 + v (3)

long distance trips. The resulting cost of charging is $0.107 per kWh.

15



where (q,p,n) are (the log of) the equilibrium vectors of the quantities, prices and number of

stations (i.e. endogenous), x is a matrix of car characteristics, w are cost shifters that affect

supply only, (y1,y2) are demographics that affect demand for cars and supply of charging stations

respectively and (uD,uS ,v) ∼ N(0,Σ) are residuals. The parameters of interest are α2 and γ1

which together measure the importance of network effects in this market. I impose two standard

assumption on the equilibrium described above: first, that demand is a decreasing function of prices

(α1 < 0), and second, that supply is an increasing function of quantities (β1 > 0).

Since I am not interested in the supply equation, I replace (2) in equation (1) which yields the

following reduced form:

q =
α0 + α1β0

1− α1β1
+

α2

1− α1β1
n +

α3 + α1β2

1− α1β1
x +

α1β3

1− α1β1
w +

α4

1− α1β1
y1 +

uD + α1u
S

1− α1β1
. (4)

A few clarifications are necessary at this point. By assumption, the term α1β1 is negative, hence

the denominators in equation (4) have to be positive. This means that we can recover the sign of α2

but not its magnitude. The same will not be true for the coefficients in front of car characteristics.

Consider for example horsepower, and assume that consumers value horsepower positively but that

it is costly for firms to produce powerful cars (i.e. α3 > 0, β2 > 0). Since α1 is negative, the term

α3 + α1β2 can take any sign, depending on the magnitudes of α1, α3 and β2. With this in mind,

rewrite the system of equations as:

q = λ0 + λ1n + λ2x + λ3w + λ4y1 + u (5)

n = γ0 + γ1q + γ2y2 + v (6)

with (u,v) ∼ N(0,Ω). To estimate λ1 and γ1, I rely on instrumental variable techniques to break

the simultaneity between charging station deployment and sales and to control for potential shock

that could affect both sides of the market at the same time. I use charging stations in distant

regions to instrument for the local charging station network. The intuition is that charging station

installations are correlated across all regions through common installation and maintenance costs,
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but that they correlate through cross-regional usage only for neighbouring regions.10 To instrument

for quantities, I use gas station density (i.e. number of gas stations per 5,000 inhabitants), gas prices

and the interaction between the two. I claim that these satisfy the exclusion restriction. Gas prices

and gas station density measure the level of competition in the fuel market and are likely to affect

charging station deployment through substitution between fuel and electric vehicles. However, it

is unlikely that they affect charging station decisions directly: once sales are realized, charging

stations do not compete directly with refuelling stations as these serve two different segments of

the market.

One concern is that shocks that affect fuel prices may also affect energy prices, which would render

this instrumental variable strategy invalid. I claim that this is unlikely in this setup: energy pro-

duction and distribution in Quebec are controlled entirely by Hydro-Québec, and prices are further

regulated by the Régie de l’Énergie, an independent government agency charged with monitoring

energy prices.11 Another threat to this instrumental variable strategy is that gas prices, and espe-

cially gas station density may reflect the market potential for charging and thus could be correlated

to station installations directly. I suggest that this is not an issue in this particular setup since rev-

enues from charging are usually not an important consideration in local governments’ installation

decision.

Results from estimating equation (5) are presented in Table 6. I estimate a set of results with horse-

power, power consumption, length as car characteristics and weight as a cost shifter. I also include

the share of graduates as a proxy for the taste for green technologies since more educated people

are more likely to be aware of the environmental consequences of driving an internal combustion

vehicle. The parameter on the log of stations (i.e. λ1) has a direct elasticity interpretation: an

increase in the size of networks of 10% leads to an increase in EV sales of 5.2–5.6%. In the second

set of results, I add the rebate as an extra cost shifter. In this case, firms set the final price paid

10This is the same instrument I use in the demand estimation. The instrument is constructed using a linear
combination of all stations that are located more than 300km away from each county’s centroid. Details are provided
in Section 4.4.

11Electricity prices are typically determined on April 1st and remain stable for a full year. I observe in practice
very little variation over the sample period once we account for inflation. Gas prices on the other hand are very
volatile and can vary on a daily basis to adjust for potential shocks to the fuel market.
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Table 6: Reduced form evidence: Electric vehicles

(1) (2) (3) (4)
VARIABLES OLS OLS IV IV

Log of stations 0.013 0.011 0.522** 0.562**
(0.028) (0.028) (0.265) (0.269)

Rebate 0.058*** 0.057***
(0.007) (0.008)

Power-to-weight 0.007*** 0.003** 0.007*** 0.003**
(0.001) (0.001) (0.001) (0.001)

Length 0.417** 0.368** 0.457*** 0.412**
(0.164) (0.158) (0.169) (0.164)

Power consumption 0.006* 0.012*** 0.008** 0.013***
(0.004) (0.003) (0.004) (0.004)

Weight -0.047*** -0.025 -0.054*** -0.033*
(0.016) (0.016) (0.017) (0.017)

Log of income -1.348 -1.369 -1.687* -1.735*
(0.908) (0.899) (0.982) (0.980)

Share of graduates 9.094** 8.301** 7.297* 6.371
(3.767) (3.669) (3.990) (3.936)

Observations 4,469 4,469 4,469 4,469

Brand FE YES YES YES YES
Market segment FE YES YES YES YES
County FE YES YES YES YES
Year FE YES YES YES YES

NOTE: Includes both battery electric and plug-in hybrid vehicles. Rebate is the value of
the subsidy, in 1,000 CAD, Power-to-weight is the power-to-weight ratio, in W/kg; Length
is in m; Power consumption is in kW/100km; and Weight is in 100kg. Robust standard
errors are in parenthesis. Significance level: * = 0.1, ** = 0.05, *** = 0.01.

by consumers and internalize any effect of the rebate through a reduction in costs. This allows for

two things: to estimate how the rebate correlates with sales of EV and to test hypotheses about

passthrough. If for example the estimated coefficient on the rebate is zero, firms set the same final

price whether or not a rebate is offered for a given vehicle, implying a passthrough of zero. This

hypothesis is strongly rejected. Since I cannot recover separately β3, it is not possible to test the

hypothesis that passthrough is complete (i.e. β3 = 1), however we can interpret the coefficient on

rebate as a semi-elasticity: an increase in the rebate of $1,000 leads to a 5.7% increase in sales of

EV. I also recover a positive correlation between charging stations and sales of EV. To rule out the

fact that this result is driven by a population effect, I run the same regression using sales of fuel

vehicles or hybrids as the dependent variable. Results are reported in Table 7. I do not find any

significant relationship between fuel or hybrid vehicle sales and charging station deployment.
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Table 7: Reduced form evidence: Fuel and hybrid engines

Fuel Hybrid

VARIABLES OLS IV OLS IV

Log of stations -0.011 -0.038 0.000 0.229
(0.007) (0.095) (0.022) (0.246)

Power-to-weight 0.005*** 0.005*** -0.012*** -0.012***
(0.000) (0.000) (0.002) (0.002)

Length 0.411*** 0.411*** 0.992*** 0.991***
(0.022) (0.022) (0.106) (0.107)

Fuel consumption -0.163*** -0.163*** 0.027 0.027
(0.004) (0.004) (0.017) (0.017)

Weight -0.093*** -0.093*** -0.132*** -0.132***
(0.003) (0.003) (0.017) (0.017)

Log of income 0.822*** 0.765** 0.218 0.447
(0.264) (0.333) (0.754) (0.792)

Share of graduates 0.404 0.606 3.493 2.479
(0.883) (1.128) (2.879) (3.108)

Observations 94,307 94,307 5,719 5,719

Brand FE YES YES YES YES
Market segment FE YES YES YES YES
County FE YES YES YES YES
Year FE YES YES YES YES

NOTE: Power-to-weight is the power-to-weight ratio, in W/kg; Length is in m; Fuel consumption
is in L/100km, and Weight is in 100kg. Robust standard errors are in parenthesis. Significance
level: * = 0.1, ** = 0.05, *** = 0.01.

Finally, I estimate equation (6) and present the results in Table 8. I include a full set of county

and year fixed effects and again the share of graduates as a measure of ‘greenness’. I estimate

three specifications, using in turn the cumulative sales of fuel vehicles, the cumulative sales of EVs

and the cumulative sales of hybrids. Again we see that a correlation exists only between charging

stations and the total fleet of EVs. The coefficient has a direct elasticity interpretation: an increase

in size of the fleet of EV by 10% leads to an increase in the size of the network of 6.6%. Combining

the results from both equations provides evidence that network effects are important in this market

and exist only between electric vehicles and charging stations, and not between fuel or hybrid

vehicles and charging stations.
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Table 8: Reduced form evidence: Station entry

Fuel Electric Hybrid

VARIABLES OLS IV OLS IV OLS IV

Log of cummulative sales -1.898** 0.181 0.240*** 0.658* -0.063 0.843
(0.825) (6.150) (0.091) (0.369) (0.187) (1.380)

Share of graduates 11.071** 11.598** 10.094** 7.552 11.545** 11.646**
(4.581) (4.837) (4.489) (5.063) (4.580) (4.660)

Observations 616 616 616 616 616 616

County FE YES YES YES YES YES YES
Year FE YES YES YES YES YES YES

NOTE: Electric includes both battery electric and plug-in hybrid vehicles. Robust standard errors are in parenthesis. Significance
level: * = 0.1, ** = 0.05, *** = 0.01.

4 The Model

To analyse the effect of subsidizing the purchase of a new electric vehicles on prices, sales and

charging station deployment, I rely on a structural model with three main components: the demand

for cars, the supply for cars and the supply for a charging station infrastructure. Demand for cars is

determined using the nested logit specification as in Berry (1994). On the supply side, we consider

the case of multi-product firms competing on prices over differentiated products (Berry, Levinsohn,

and Pakes, 1995; Petrin, 2002). Finally, I propose a model for charging station deployment inspired

by Springel (2017), Pavan et al. (2015) and Berry and Reiss (2007). I develop the model to fit

the specific economic and political context in Quebec, where local county-level government are

responsible for installing stations.

4.1 Demand

I consider individual i living in county m at time t. Each year, this consumer chooses to purchase

one of the j = 1, ..., J car makes available or purchase nothing at all, which is denoted as j = 0. In

making this choice, consumers considers the net price of a given make, but also its characteristics

such as horsepower, fuel efficiency or engine type. For all models with an electric engine, the

number of charging stations that are available locally also enters the demand specification as an

extra characteristic in the model. Since driving range impacts if and how often an electric vehicle

user charges on the go, preferences for charging stations are allowed to vary with driving range,
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defined as the total mileage traveled on a single charge. Finally, I classify car makes into g = 1, ..., G

market segments (i.e. subcompact, SUV, etc.) with the outside good being in a separate segment,

g = 0. Consumers first choose a market segment, then select a make within this market segment,

giving rise to the nested logit specification.12

Under this specification, preference of consumer i for make j in segment g are given by the following

linear equation,13

uijmt = δjmt + µjmt + ζigmt + (1− σ)εijmt,

δjmt = x′jtβ + α(pjt − τjt) + ξjmt,

µjmt = γjt ln(1 +Njmt)

where xjt is the set of observed characteristics of the product, pjt is the price, τjt is the rebate

associated with purchasing an electric vehicle, Njmt is the number of charging stations in the county

interacted with an electric engine dummy variable, and ξjmt represents unobserved characteristics

of make j. The δjmt represent the mean utilities of each product and µjmt are network effects.

Preference for charging stations, denoted γjt is allowed to depend on driving range, that is

γjt = γ1 + γ2 ·DrivingRangejt.

Following Berry (1994), the preference shock εijmt is assumed to be distributed as extreme-value

type I and the segment specific shock ζigmt, which can be viewed as a random coefficient on a

market segment dummy variable, has the unique distribution such that ζigmt + (1− σ)εijmt is also

distributed as extreme-value. The parameter σ ∈ (0, 1) governs the substitution within and across

market segments. Whenever σ approaches zero, the model collapses to the standard logit model,

and market segments are not a relevant dimension to explain substitution patterns. If on the

12While this approach does not solve completely the IIA problem associated with the logit assumption, whether or
not it produces rich enough substitution patterns is application specific. In the case of this study, I believe that this
approach is appropriate for two reasons: first, market segments are a strong driver of substitution in the car market;
and second, our results depend on the substitution towards or away from electric vehicles, which is driven strongly
by network effects that arise naturally in the model.

13The county m and year t subscripts have been omitted for simplicity.
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other hand σ approaches 1, then consumers view the products within a segment as being perfect

substitutes, and the choice of a model within the segment becomes deterministic.

Under these distributional assumptions, the market share of product j is given by

sjmt(δ, µ, σ) = sjmt|g(δ, µ, σ) · sgmt(δ, µ, σ) =
e(δjmt+µjmt)/(1−σ)

Dσ
gmt ·

∑
g′ D

(1−σ)
g′mt

,

Dgmt =
∑
k∈Jg

e(δkmt+µkmt)/(1−σ),

where Jg is the set of all products belonging to segment g. Normalizing δ0mt = µ0mt = 0 and

solving yields the following linear model to be estimated,

ln(sjmt)− ln(s0mt) = x′jtβ − α(pjt − τjt) + γjt ln(1 +Njmt) + σ ln(sjmt|g) + ξjmt,

where price, charging stations and the within-segment market shares all suffer from an endogeneity

issue and have to be instrumented for.

4.2 Supply

Whether or not firms are able to manipulate prices to capture part of the subsidy as profits is cru-

cial in determining the cost-effectiveness of reducing CO2 emissions using financial incentives. That

depends on firms’ technology (fixed or increasing marginal costs), market structure (single-product

vs multi-product firms), and the level of competition in this industry. I consider the market for

personal vehicles to be an oligopoly of f = 1, ..., F multi-product firms selling differentiated prod-

ucts and competing on prices. Furthermore, I restrict this study to the case where marginal costs

are constant as is common in the literature related to the car market (see for example Berry,

Levinsohn, and Pakes, 1995 or Petrin, 2002). More importantly, this assumption provides a useful

benchmark for studying pricing decision under oligopolistic competition: under perfect competi-

tion, consumers benefit from the full amount of the subsidy when marginal costs are constant.

Under these assumptions, each firm maximizes its profits in each period, given by the following
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expression,

Πft =
∑
j∈Jf

∑
m

(pjt − cjt) · qjmt
(
pt − τt, Nmt(pt − τt)

)
where Jf is the set of products offered by firm f . Note that the demand for a particular product

depends on the full price vector, the full vector of rebates and on the installed base of charging

stations in county m.

The optimal price vector satisfies the firms first-order condition,

p∗t − ct =

(∑
m

Ω(p∗t − τt)

)−1

·
∑
m

qmt(p
∗
t − τt, Nmt(p

∗
t − τt))

where Ωjk = −∂qjmt/∂pkt, if j and k are sold by the same firm, and zero otherwise.

4.3 Station entry

We consider the case of a local social planner or local government responsible for supplying charging

stations in county m. Define the benefits associated with station n to be

B(n) = Qev · b(n,y)

where Qev is the total stock of electric vehicles in the county, b(n,y) is the average per driver

benefit derived from station n, and y is a vector of county-level controls and demographics. B(n)

may represent profits generated from operating the network, a measure of social welfare, political

support from electric vehicle drivers, or even some measure of favorable public opinion towards

the governing political party. I impose two simple assumption on these benefits: (1) that they are

strictly decreasing in n, such that each additional station is less valuable than the previous one

for given Qev and y, and (2) that there exists a saturation point S, such that B(n) = 0, ∀n > S,

irrespective of Qev and y.14

14This saturation point can take different values for different markets, in particular it can be a function of the
number of households in a given region, i.e. S = S(L). The intuition for this restriction is simple: the total stock
of EV in each region has to be bounded above because population is finite and no individual cannot own an infinite
number of vehicles. It follows that demand for charging has to be bounded above and thus can always be satisfied
by a finite number of stations. The current saturation point is set to S = L/200 in each region.
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The stream of benefits associated with installing station n in period t can be written as

Vt(n) = −Ft +

∞∑
s=t

(
1

1 + r

)s−t
Bs(n)

where Ft is the unobserved fixed cost of installing a new station in period t. The social planner

chooses to install station n today if it is more beneficial than waiting, that is, station n enters

if

Vt(n) ≥
(

1

1 + r

)
Vt+1(n)

or

Bt(n) ≥ Ft −
(

1

1 + r

)
Ft+1

Consider the last station installed, N . It must be true that the local planner found it profitable

to install station N , but unprofitable to install station N + 1. Hence the equilibrium number of

charging stations available has to satisfy the following two conditions:

Vt(N) ≥
(

1

1 + r

)
Vt+1(N) (7)

and

Vt(N + 1) <

(
1

1 + r

)
Vt+1(N + 1). (8)

In what follows, I impose the following functional form assumption on the average benefit func-

tion,

b(n,y) = a0n
−a1 · eya2 .

Substituting into equation (7) and (8) and taking logs leads to the following inequality condition

which must be satisfied in equilibrium,

ln(Nmt)− λ1 ln(Qevmt)− y′mtλ2

ω
≤ ηmt <

ln(Nmt + 1)− λ1 ln(Qevmt)− y′mtλ2

ω
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where ηmt is unobserved to the econometrician and assumed to follow the standard normal distri-

bution (the full derivation is in the appendix). Given this distributional assumption, I construct

the following conditional log-likelihood

`(λ | ·) =
∑
m

∑
t

ln

[
Φ

(
ln(Nmt + 1)− λ1 ln(Qevmt)− y′mtλ2

ω

)
− Φ

(
ln(Nmt)− λ1 ln(Qevmt)− y′mtλ2

ω

)]
(9)

and I recover the paramters λ and ω using maximum likelihood estimation. A control function

approach is used to address the endogeneity of Qev in estimating the conditional log-likelihood in

(9), as sales of EV and station deployment occur simultaneously.

4.4 Identification

Demand: Identification of the effect of the rebate on green vehicles requires that I observe both

cross-sectional variation and variation over time in the policy. While there is some variation in the

subsidy across models, I do not observe geographic or time variation in the policy within model,

which means that I cannot identify separately the effect of the rebate from prices. This implies that

what matters to consumers is the net price of the vehicles they are considering, and not whether

price changes originate from car manufacturers or the policy maker. It is still possible to conduct

counterfactual analysis in this setup, but the elasticity to price and the elasticity to the rebate are

restricted to be the same in the model.

I also have to deal with several sources of endogeneity. First, prices depend not only on observed

product characteristics but also on unobserved characteristics (to the econometrician), leading to

the price endogeneity issue described in Berry, Levinsohn, and Pakes (1995). The nesting structure

of the demand equation implies that market shares, and in particular within-segment market shares

are also endogenous since they are determined jointly with unobserved car attributes (Gandhi and

Houde, 2019). Concretely, this means that an instrumental variable is needed both for prices and

for the within-segment market share in the demand model. Second, sales of electric vehicles and

the entry of charging stations occur simultaneously in the model, hence identifying the causal effect

of sales on the network or of the network on sales is impossible without instrumental variables.

Changing the structure of the model to break this simultaneity (for example, changing the timing
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of the station entry decision) is not enough to solve this endogeneity issue completely: taste for

green technologies is captured by the residuals in both the demand and the entry models, hence

they are correlated. This implies that both stations and sales of electric vehicles are endogenous in

both equations.

I solve the various endogeneity issues described above using instrumental variable techniques. In

order to solve for the endogeneity of prices and market shares, I follow Gandhi and Houde (2019)

to construct instruments based on characteristic differences between each product j and their

competitors within the same marketing segment.15 The validity of using characteristics differences

instruments can be justified as follows: exogenous characteristics of competitors measure the degree

of isolation of product j along each characteristic (or the degree of competition product j is facing),

and thus are valid markup shifters. Berry, Levinsohn, and Pakes (1995) suggest taking the sum

of exogenous characteristics of competing products to construct instrument for both prices and

market shares in the demand equation, however Gandhi and Houde (2019) show that this can lead

to weak instruments and poor identification of the price coefficient and elasticities. To solve this

issue, they suggest using the symmetry of the demand model to construct basis functions based on

characteristic differences as instruments. Assuming product j belongs to segment g, I construct four

such differentiation instruments using this approach: the number of products available in segment

g, the sum of differences in power-to-weight ratio, size, and driving cost between product j and its

competitors within segment g.

To solve the endogeneity of the charging station network in the demand equation, I use the approach

proposed by Hausman (1996) and Nevo (2001), which uses the panel structure of the data to

construct instruments for local charging stations using stations in other regions. The idea is that

the installation of new stations depends on local consumption (i.e. the installed base of electric

vehicles in a given region) and a common cost component across regions that does not depend on

15To fix ideas, let djk = xj − xk be the difference between product j and k along some exogenous characteristic x.
Assuming product j belongs to group g, the Gandhi-Houde differentiation instrument then takes the following form:

zj =
∑
k∈Jg

djk,

that is, the sum of characteristic differences between model j and competitors within the same group.
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consumption once we account for region fixed effects. Stations in other regions are valid instruments

for local stations, as long as the correlation between stations in different regions comes only from

sharing a common cost and not from users charging over region lines, or from common shocks

that affect all markets together. This assumption cannot hold for markets that are geographically

close to each other: people travel between neighboring regions for work and other daily activities

and these commuting patterns could lead to a significant portion of charging within a region to

come from EV owners outside the region and vice-versa. To solve this issue, I impose a distance

threshold to select regions that I use as instruments using this method, such that it is unlikely that

a significant portion of the charging comes from car owners that live beyond that distance. I then

construct a first-order basis functions using combinations of stations in regions beyond the distance

threshold, specifically,

gjmt(Nmt) = θjt ·
∑

l 6=m 1(distl,m > K) · ln(1 +Nlt)∑
l 6=m 1(distl,m > K)

,

where

θjt = θ1 + θ2 ·DrivingRangejt

which gives me the required additional instruments to include in the demand estimation. Several

factors could break this instrumental variable strategy: large scale environmental advertisement

campaigns that raise awareness about environmental issues or large investment into charging sta-

tions from the provincial or federal governments that affects all regions together are examples. To

the best of my knowledge, there was no change in the policy environment over the period of interest

that would threaten identification.

Station entry: I address the issue of the endogeneity of the stock of electric vehicles in the

structural entry model. Since the entry model is highly non-linear, traditional two-stage least-

square estimation is not possible. I rely instead on a control function approach to deal with the

endogeneity issue.
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Rewrite the structural equation for station entry as

Nmt =

S−1∑
k=1

k · 1
(

ln(k)− λ1 ln(Qevmt)− y′mtλ2
ω

≤ ηmt <
ln(k + 1)− λ1 ln(Qevmt)− y′mtλ2

ω

)
(10)

+ S · 1
(

ln(S)− λ1 ln(Qevmt)− y′mtλ2
ω

≤ ηmt
)

(11)

Consider a set of valid instruments for Qev, denoted w = (w1,y), and define the control function

to be the linear projection of Qev on w,

Qevmt = w′mtΓ + νmt, (12)

where (η, ν) ⊥ w. Estimation of the parameters of (10) is done in two stages: first, obtain a

consistent estimate of ν̂mt by estimating equation (12), then add ν̂mt as an extra regressor in the

structural equation

Nmt =

S−1∑
k=1

k · 1
(

ln(k)− λ1 ln(Qevmt)− y′mtλ2 − ρν̂mt
ω

≤ ηmt <
ln(k + 1)− λ1 ln(Qevmt)− y′mtλ2 − ρν̂mt

ω

)

+ S · 1
(

ln(S)− λ1 ln(Qevmt)− y′mtλ2 + ρν̂mt
ω

≤ ηmt
)
.

The parameters of the model can then be estimated by maximizing the conditional log-likelihood16

`(λ | ·) =
∑
m

∑
t

ln

[
Φ

(
ln(Nmt + 1)− λ1 ln(Qevmt)− y′mtλ2 − ρν̂mt

ω

)
− Φ

(
ln(Nmt)− λ1 ln(Qevmt)− y′mtλ2 − ρν̂mt

ω

)]
.

I use gas station density,17 gas prices and the interaction between the two to instrument for the

total fleet of electric vehicles in a given region. Gas prices and gas station density measure the level

of competition in the fuel industry and influence the number of electric vehicle sales through the

substitution between fuel and electric. These instruments satisfy the exclusion restriction, since

charging stations and fuel stations do not compete directly with one another once sales of electric

16In the estimation stage, the saturation point is set to be S = L/200 in each county, well above network sizes at
any give point in time.

17Gas station density is calculated as the number of gas station in a given region divided by population, in 5,000.

28



vehicles are realized. Also, common shocks are unlikely to affect both markets together: electricity

prices are regulated by the provincial government and do not fluctuate with the price of gas such

that it is unlikely that shocks that affect the fuel market are also affecting charging station entry

decisions through higher electricity prices.

4.5 Elasticities and Network Effects

One important implication for introducing network effects is that they enrich substitution patterns

compared to the baseline logit or nested logit specifications. The intuition behind this is that

substitution towards electric vehicles depends on the elasticities that arise in the traditional demand

model, but also on changes in the network configuration that can occur when the total fleet of

electric vehicles increases in a given market. Vehicles that do not require charging are also affected

by network effects. While increases in the size of the network do not impact fuel vehicle utility

directly, they affect mean utilities of competing alternatives, therefore affecting the market shares

of all vehicles, including fuel vehicles.

Springel (2017) shows how to derive elasticities for discrete choice models with network effects when

demand has the more general random-coefficient specification. I follow the same methodology to

derive elasticities when demand has the nested logit formulation and station entry follows the

structural model defined above. Using chain rule, the derivative of the market share of car make j

with respect to the price of make k has the form

∂sj(p,N(p))

∂pk
=

∂sj
∂pk︸︷︷︸

Nested logit

+
∂sj
∂N
· ∂N
∂Qev

· ∂Q
ev

∂pk︸ ︷︷ ︸
Network effects

,

where the first term is the derivative that arises naturally in nested logit demand models and the

second term accounts for network effects. Assuming that product j belongs to segment g, we can

write each component as
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∂sj
∂pk

=



α
1−σ
(
1− σsj|g − (1− σ)sj

)
sj , if k = j

− α
1−σ
(
σsk|g + (1− σ)sk

)
sj , if k 6= j and k ∈ Jg

−αsksj , if k 6= j and k /∈ Jg

, (13)

∂sj
∂N

=
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1
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(
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∑
` s
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`

)
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1+N

(
σ
∑

`∈Jg s
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ev
`

)
sj , if j /∈ EV

, (14)

∂N

∂Qev
=

S∑
k=1

k ·
∫
∂Pr(N = k | Qev,y, ν)

∂Qev
dFν(ν), (15)

and

∂Qev

∂pk
=

L ·
∑

`
∂sev
`

∂pk

1− L · ∂N
∂Qev

∑
`
∂sev
`

∂N

, (16)

with sev
` = s` if product ` has an electric engine and zero otherwise. The expressions ∂sj/∂pk and

∂sj/∂N are straightforward and follow directly from the nested logit specification of the demand

side. The expression ∂N/∂Qev is achieved following Blundell and Powell (2004) by computing the

partial effect of a change in Qev on N . Finally, derivation of ∂Qev/∂pk requires a straightforward

application of the chain rule, and replacing the expressions in (13), (14) and (15). The full derivation

is in the appendix.

5 Estimation

I estimate both the demand for cars and entry of stations at the market-level, where each product is

a make-model-engine combination and each market is a county-year combination. Before I proceed

with the estimation, I manually remove counties with fewer than 15,000 inhabitants. These counties

include northern Quebec which is largely uninhabited, remote areas not easily accessible by road,
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and rural areas with very low population density. Most importantly, these regions exhibit very few

sales of vehicles, let alone electric ones, and usually do not have stations installed over the period

of study. In total, the analysis is conducted on 89 of the 99 regional county municipalities, and

covers around 98% of the population of Quebec.

Results from the estimation of the demand side are presented in Table 9. I include power-to-weight

ratio (a measure of acceleration), size (a proxy for security), driving cost18 (dollars per kilometer)

and a dummy variable for automatic/singlespeed transmission as observed characteristics. I also

include a large number of fixed effects: car make (34 different makes), market segment (subcompact,

compact, midsize, large/luxury, SUV, minivan, pickup, sport), engine-by-county (4 engine types ×

89 counties) and year fixed effects. The engine-by-county fixed effects are particularly important to

account for potential differences in taste for green technologies which could vary on average across

regions. Instruments for prices and market shares are constructed following Gandhi and Houde

(2019) using power-to-weight, size and driving cost as dimensions of differentiation. I also include

the number of competing products within segment as an additional mark-up shifter to instrument

for the within-group market share. Finally, charging station instruments include the average of (the

log of) stations located more than 300 km from the centroid of the county of interest. The choice

of a threshold is somewhat arbitrary, I produce a robustness analysis to the choice of threshold in

the appendix.

All of the estimated coefficients have the expected sign and are highly significant. The estimated

nesting parameter is 0.366, meaning that the nesting structure explains part of the substitution

patterns observed in the data (i.e. standard logit is rejected). This is expected in the car market,

where marketing segments are well defined and are a clear source of differentiation along which

consumers make choices (Verboven, 1996; Verboven, 2002). The parameter on price is -0.491 and

leads to an average own-price elasticities of -2.989. The average own-price elasticity is -3.638 for

electric vehicles. Two factors contribute to this difference. First, EVs are on average more expansive

18For fuel and hybrid vehicles, driving cost is computed by multiplying fuel consumed for traveling 100km by gas
price in that county and year. For battery electric vehicles, driving cost is measured as power required for traveling
100km, times an average charging cost of 0.15CAD per kWh. For plug-in hybrid, I compute a weighted average of
both measures based on the share of the total driving range that is achievable driving only on electric.
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Table 9: Demand estimation

VARIABLES Demand estimation

Price - Rebate -0.491***
(0.097)

Log of stations 0.357***
(0.055)

Log of stations × Driving range -0.029***
(0.006)

Power-to-weight 0.015***
(0.002)

Size 0.367***
(0.045)

Cost of driving -0.045***
(0.004)

Automatic 0.119***
(0.021)

σ 0.366***
(0.050)

Own-price elasticity
Mean -2.989
Std. dev. 1.432

Own-price elasticity (EV)
Mean -3.638
Std. dev. 2.291

# of inelastic demands 560

Observations 104,495
R-squared 0.506

Manufacturer FE YES
Market segment FE YES
Engine × County FE YES
Year FE YES

NOTE: Power-to-weight is the power-to-weight ratio, in W/kg; Length is
in m; Driving range is the maximum distance traveled on a single charge, in
100km; and Driving cost is in CAD/100km. The model includes manufacturer,
market segment, year and engine type × county fixed effects. Standard errors
are clustered at the model × county level. Significance level: * = 0.1, ** =
0.05, *** = 0.01.
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than fuel vehicles, and elasticity is still proportional to price in the nested logit model. Second,

network effects accentuate the difference since increasing the price of a particular EV will reduce

sales directly but also indirectly through a reduction in network size. Interestingly, our estimate of

-3.698 is close to the estimates in Muehlegger and D. S. Rapson (2018), which estimate an implied

elasticity for EV between -3.2 and -3.4 using a quasi-experimental setup in California. Finally, the

coefficients on the log of charging station (0.357) and the interaction with driving range (-0.029) are

consistent with the range anxiety assumption: consumers value charging stations positively when

considering an EV with a limited driving range, but that dependence diminishes as driving range

is increased.19

Results from the station entry model are presented in Table 10. I include several demographics in

the model that try to capture consumers’ taste for green technologies and home charging availability.

To proxy for taste for green technologies, I use the share of residents that have an undergraduate

degree and the share of conservative voters in the county. The idea behind these choice is that

more educated individuals are on average more aware of environmental issues which should correlate

positively with taste for green technology. Meanwhile, conservative voters tend to be less sensitive

to environmental outcomes compared say to purely economic concerns. I measure the potential for

home charging by the share of renters in each county, which should correlate directly since it may be

hard or impossible to install a charger at home if you are not a home-owner. Finally, I add the share

of resident that have their work location within the county of residence as an additional measure of

the aggregate preference for large networks. Because of the highly non-linear nature of the model

being estimated, I cannot include county fixed effects as these would not be identified with only

seven years of data and corrupt the estimation of other parameters in the model. To account for

regional differences, I instead include average income, average age and average household size for

each county, and dummies for large commuting areas that include several counties (i.e. Montreal,

Quebec city, Sherbrooke, Trois-Rivières and Gatineau commuting areas). The instruments I use in

the control function estimation include the number of gas stations per 5,000 inhabitants, gas prices,

19The overall effect of stations is positive, as driving range does not exceed 539km with currently available models.
As an example the overall effect of stations would be 0.595 for a vehicle with a 100km driving range and 0.323 for a
vehicle with a 500km driving range.
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Table 10: Station entry estimation

(1) (2)
VARIABLES Entry estimation Control function

Log of Qev 0.425*** –
(0.143)

Gas station density – -0.317**
(0.155)

Price of gas – -2.621**
(1.117)

Gas station density × Price of gas – 0.047
(0 .121)

Avg. income -0.128 0.232***
(0.148) (0.074)

Avg. age 2.576*** -0.022
(0.538) (0.015)

Share of graduates 8.959*** 7.509***
(0.513) (0.773)

Share of renters 3.753*** 4.758***
(0.561) (0.546)

Share commuters 0.561 -0.999
(0.498) (0.255)

Share conservatives -0.634 -0.001
(0.568) (0.225)

ρ -0.193* –
(0.103)

ω 0.799*** –
(0.065)

Marginal effect (∂N/∂Qev)
Mean 0.054 –
Std. dev. 0.047 –

F-statistic – 19.84
Prob. > F – 0.000

Observations 616 616
Log-likelihood -2.186 –

Commuting Areas FE YES YES
Year FE YES YES

NOTE: Log of Qev is the log of the cumulative installed base of electric vehicles. Standard errors in the
entry model are based on 200 bootstrap replications and are clustered at the county level. Significance
level: * = 0.1, ** = 0.05, *** = 0.01.
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and the interaction between the two, which reflect competition in the fuel market and should affect

sales of EV only through the substitution between fuel and electric. The null hypothesis that these

are jointly irrelevant is strongly rejected.

The coefficient on (the log of) the stock of EV is 0.425 and is significant at the 1% level. The

implied average partial effect of 0.054 which means that on average one extra station should be

installed for every 18.5 new EV sales. This result is driven by the large number of counties which

have very low station and EV stocks. The coefficient on the control function term is -0.193 and is

significant at 10%. The coefficients on average age, the share of graduates, and the share of renters

are all highly significants, however the parameter on average income is insignificant.

6 Counterfactual Analysis

6.1 Effect on sales, emissions, and station deployment

I use the structural model estimated above to reconstruct what would have happened if the program

Roulez Vert had never been adopted. To achieve this, I remove the subsidy, then solve the firms’

optimality condition and the station providers’ problem to determine the counterfactual prices,

market shares and station deployment.20 The main results are presented in Table 11. The program

led to 9,238 more sales of battery electric vehicles, 9,251 more sales of plug-in hybrids, and 896

sales of hybrids. Together, the additional sales of battery electric and plug-in hybrids account for

45% of all EV sales that occurred between 2012 and 2018. While the subsidies did a good job in

inducing additional battery electric, plug-in hybrids and to some extend hybrid vehicle sales, it fell

short in reducing the number of fuel vehicle sold in the period: only 43% of the additional battery

electric, plug-in hybrids and hybrids sold are replacing fuel vehicles. The remaining 57% results

from an expansion of total sales. Having such a large portion of sales coming from the outside

option seriously reduces the efficiency of subsidizing EVs. Consumers choosing not to purchase a

20The firms’ problem is solved for every market using Matlab’s built in non-linear solver. To solve for the optimal
number of stations, first notice that any structural model can be rewriten in the form N = E(N | Qev,y, λ) + v. We

recover an estimate for v as the solution to v̂ = N −E(N | Qev,y.λ̂), then use it to recover the counterfactual value

Ñ = E(N | Q̃ev,y, λ̂) + v̂ in each market. Estimation of the expectation requires a straightforward application of the
law of iterated expectations, i.e. E(N | Qev,y, λ) =

∑
k

∫
Pr(N = k | Qev,y, ν, λ)dF (ν).

35



Table 11: Effect of the subsidy

Outcome Subsidy No Subsidy Difference

Sales

Fuel 3,150,880 3,172,404 -8,327
Battery electric 17,435 8,197 9,238
Plug-in hybrid 23,597 14,346 9,251
Hybrid 49,800 48,903 896

TOTAL 3,241,712 3,230,654 11,058

CO2 emissions, in million tons

Fuel 166.07 166.51 -0.444
Battery Electric 0 0 0
Plug-in hybrid 0.43 0.29 0.146
Hybrid 1.58 1.56 0.024

TOTAL 168.08 167.36 -0.274

Charging stations network

2012 136 106 30
2013 238 177 61
2014 384 283 101
2015 665 452 213
2016 919 599 320
2017 1,450 1,062 388
2018 1,920 1,417 503

NOTE: CO2 emissions are calculated for a total lifetime mileage of 257,600 km.

vehicle do not add to the total stock of carbon from new cars, hence no gains can be realized by

inducing them to purchase an EV using subsidies.

I measure the total lifetime emissions of the current fleet of vehicles and contrast it with the

counterfactual fleet that would have occurred without the subsidy. Assuming that all vehicles can

drive a total of 257,000 km over their lifetime (20,000 km per year, for 12.88 years), I measure total

avoided carbon emissions to be in the order of 0.274 million metric tons. In calculating avoided

emissions, I consider the difference in lifetime emissions between the vehicles that were bought

under the policy and the vehicles that would have been bought without it. I ignore consumers’

previous vehicle since they are resold on the secondary market and continue producing emissions

until they reach the end of their useful life. It is also important to note that while mileage decisions

could matter in determining yearly levels of CO2 emissions, they do not affect litefime emissions so

long as they do not affect the total lifetime mileage achievable on a given vehicle. Finally, I estimate
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Table 12: Fuel efficiency and CO2 emissions of vehicles replaced

Market segment ∆Sales Avg. fuel consumption Avg. CO2 emissions
(in L/100km) (in g/km)

Subcompact -705 6.7 153.4
Compact -2,721 7.9 182.5
Midsize -305 8.4 194.0
Large/Luxury -2,460 9.7 224.7
Sport -15 10.1 233.8
SUV -1,727 10.2 234.9
Minivan -180 10.4 240.8
Pickup -214 12.2 283.7

TOTAL -8,327 9.5 218.5

that the subsidy was responsible for 503 of the 1920 charging stations available in Quebec.

I look next at the composition of the fuel vehicles that are being replaced by the policy and present

results in Table 12. I find that 3,731 of the 8,327 fuel vehicles replaced came from the subcompact,

compact and midsize segments, which have better fuel efficiency and produce fewer emissions than

the average vehicle, while the remaining 4,596 come the other marketing segments which are less

fuel efficient. Perhaps unsurprisingly, substitution occurs disproportionately from the large/luxury

car segment which represents only 6% of all car sales, but account for over 29.5% of all fuel cars

replaced. One explanation for this fact is that Tesla cars, which are among the most popular

EV, are close substitutes both in price and other characteristics to several models in the luxury

segment. Therefore, a lot of consumers are willing to substitute towards buying a Tesla when

financial incentives are offered. At the other end of the spectrum, sales of minivans and pickup

trucks are largely unaffected by the policy, as there exists no close substitutes for these vehicle

types among the electric vehicle offering.

Finally, I assess the importance of network effects. Figure 2 offers a decomposition of both the

direct and indirect effect of the subsidy on cumulative sales. Removing the subsidy leads to a

direct decrease in sales of EV by 15,980 keeping stations constant and a further decrease of 2,509 if

we allow for station operators to adjust supply. This implies that indirect network effects account

for 13.6% of the decrease in sales that would have occured if we removed the policy. In order to

provide a complete picture, I also compute several other counterfactuals in which I remove stations
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(a) Electric vehicle market (b) Charging station network

Figure 2: Impact of subsidy over time

altogether to disentangle further the effect of the network from the effect of the subsidy. Results

are presented in Table 13. These results highlight the importance of the network in increasing

the efficiency of the rebate program. Absent a charging station infrastructure, subsidies leads to

6,503 more sales of EV. With the current network configuration, the same rebate program increases

sales by 18,489, almost tripling the effect of the program on sales. This suggests that policymakers

should both provide financial support to buyers and incentivize new station installations to take

advantage the high level of synergy between the two markets.

t

Table 13: Counterfactuals

Counterfactuals ∆Sales ∆Sales EV ∆CO2 emissions
(in million tons)

With subsidy, with stations (data) 17,230 29,909 -0.444

No subsidy, stations fixed 7,906 13,929 -0.183

No subsidy, stations adjust† 6,172 11,420 -0.170

With subsidy, no stations 4,242 6,503 -0.098

No subsidy, no stations (baseline) 0 0 0
† Same as Table 11.
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Table 14: Incidence of the rebate for selected electric and plug-in hybrid

Make/Model Retail Marginal Mark-up ∆p ∆p/∆τ Passthrough
Price Cost (%) ($) (%) (%)

Chevrolet Bolt EV 43952 30419 30.8 249 3.1 96.9
Chevrolet Volt 42062 28031 33.5 240 2.9 97.1
Chrysler Pacifica 54725 38650 29.5 44 0.5 99.5
Ford C-Max 36740 23551 36.5 30 0.6 99.4
Ford Fusion 36878 23152 37.6 75 1.8 98.2
Kia Soul 36414 22597 38 3 0.0 100.0
Mitsubishi Outlander 42999 29349 31.7 220 5.5 94.5
Nissan Leaf 40245 27136 32.6 119 1.5 98.5
Tesla Model 3 45600 32393 29 271 3.4 96.6
Tesla Model S 106227 93416 12.4 118 2.1 97.9
Volkswagen e-Golf 36489 22789 37.6 -59 -0.7 100.7

NOTE: Marginal costs are implied by the market structure. All values are in 2018 CAD.

6.2 Incidence

I analyze car manufacturers’ response to the program and the effect it had on profits. An important

consideration in assessing the efficiency of rebate schemes is whether or not firms have sufficient

market power to increase prices and capture some of the rebate as profits. Results for a selection

of battery electric and plug-in hybrids are presented in Table 14. I find that that manufacturers

increase prices of EV by $126 on average when subsidies are available. These price increases are

relatively small in magnitude compared to the offered rebates. Interestingly, some manufacturers

find it optimal to decrease some prices slightly such that passthrough is more than 100% for a small

number of EVs. The Tesla 3, Chevrolet Bolt EV and Chevrolet Volt, three of the most popular

models of EV, exhibit the largest increases in price ranging from $240 to $271, which implies a

passthrough between 96.6% to 97.1%. Across all models, regions and years, I estimate passthrough

to be on average 98.1%. This is encouraging from the policymaker’s perspective: almost all of

the rebate lands in the pockets of consumers which helps generating more sales and reaching

governmental targets. I reestimate passthrough under different market structure to evaluate how

results are affected by the assumption I impose on the supply side. I evaluate three scenarios:

each product is produced by a single-product firm (i.e. each product competes against all other

products), multi-product firms (the baseline), and the case where a single firm produces all cars

(i.e. equivalent to full collusion or a multi-product monopolist). Results are presented in Table 15.

I find the average price increase to be of $124 for single-product and $126 for multi-product firms,

39



implying a passthrough of 98.2% and 98.1% respectively. The price response is more pronounced

in the perfect collusion scenario ($155 on average) but remains reasonably small compared to the

size of the offered rebate (passthrough is 97.3%). The high passthroughs are a direct consequence

of the large market expansion that can be linked directly to the rebate program. To see why, notice

that firms can capture surplus from the rebate program in two ways. First, they can raise prices to

increasing their profit per unit sold. Second, they can forgo raising prices and benefit from increased

sales. In this instance, the latter effect dominates the former. This happens because all EV are

all subsidized at the same time and are market complements (i.e. negative cross-price elasticities).

Raising prices in this setup harms sales both directly and indirectly since station providers install

fewer stations when fewer EV are being sold.

Table 15: Incidence of the rebate under alternative market structure

Market structure Implied ∆p ∆p/∆τ Passthrough
# of firms ($) (%) (%)

Single-product firms 297 124 1.8 98.2

Multi-product firms 16 126 1.9 98.1

Monopolist 1 155 2.7 97.3

NOTE: All statistics are sales weighted.

Next, I explore the effect of the program on firms profits and present results in Table 16. I find that

total industry profits increased by $149.6 million between 2012 and 2018. However, the program

had an asymmetric effect on car manufacturers profits, creating winners and losers. In general, firms

that offered several battery electric, plug-in hybrid and hybrid alternatives saw their profits increase,

while firms that focussed on fuel alternatives experienced a small decrease in profits. General Motors

(the producer of Chevrolet), Nissan-Renault and Tesla which sell the most popular models ripped

most of the benefits from the program, totalizing an increase in total profits of $154.2 million.

Surprisingly, BMW, Daimler (the producer of Mercedes-Benz) and Volkswagen figure amongst the

losers even though they offer several EV alternatives. The high level of substitutability between

BMW, Daimler and Tesla explains in large parts the decrease in profits experienced by BMW and

Daimler. In the case of Volkswagen, all of their battery electric and plug-in hybrid alternatives

were introduced after 2016. The decrease in profits incurred in the initial years of the sample was
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Table 16: Effect on firms profits

Firm # of Alternatives ∆Profits

Electric Plug-in Hybrid million $ %

Winners
Ford 1 2 4 12.29 0.27
General Motors 2 1 3 84.17 1.92
Hyundai-Kia 2 3 4 6.07 0.08
Nissan-Renault 2 1 3 44.13 1.02
Tesla 3 0 0 25.89 48.06
Toyota 0 1 9 8.08 0.16
Volvo 0 1 0 4.92 3.42

Losers
BMW 1 4 0 -2.70 -0.28
Daimler 1 1 0 -7.18 -0.25
FCA 0 1 0 -0.82 -0.03
Honda 0 0 4 -13.78 -0.29
Mazda 0 0 0 -5.92 -0.22
Subaru 0 0 1 -3.46 -0.22
SUZUKI 0 0 0 -0.03 -0.05
Tata Motors 0 0 0 -0.17 -0.18
Volkswagen 1 3 3 -1.89 -0.06

not compensated by the gains from 2017 and 2018.

6.3 Welfare

Results from a welfare analysis is presented in Table 17. Compensating variation is computed using

the difference in inclusive value between the data and the counterfactual. Using the same notation

as Durrmeyer and Samano (2016), the inclusive value from segment g can be written as

vg = (1− σ) · ln

∑
j∈Jg

e(δj+µj)/(1−σ)

 .

Compensating variation then takes the following form

CVi = − 1

α
· ln

(
1 +

∑
g

evg

)
+

1

α
· ln

(
1 +

∑
g

ev
CF
g

)

Consumer surplus increases by $261.4 million over the period. Since firms do not modify prices too

much when rebates are available, the program increases the utility of EVs and only affect marginally
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Table 17: Impact on profits, compensative variation and costs, 2012-2018

Year ∆Profits Compensating ∆Welfare Cost of
Variation Program

2012 5.38 9.75 15.13 11.70
2013 4.63 8.47 13.10 10.15
2014 11.17 19.84 31.01 23.57
2015 14.53 25.70 40.23 28.49
2016 24.28 42.02 66.30 46.36
2017 30.35 52.30 86.65 56.30
2018 59.27 103.3 162.60 111.00

TOTAL 149.61 261.43 411.04 287.58

NOTE: All values are in million 2018 CAD.

the utility of non-subsidized vehicles. It is easy to see that no consumer can be worse off in an

expected utility sense, leading to an automatic increase in consumer surplus. Total industry profits

also increase from the large expansion in sales. Interestingly, the combined gains in consumer and

producer surpluses more than offset the large cost associated with implementing this program.

Whether or not implementing this policy is worth it from the point of view of the policymaker

depends on several factors. First, it depends on whether or not the policymaker internalizes the

gains in consumer or producer surpluses which affects the total economic cost of the program. For

example, governments may internalize profits only for firms that have operations, pay taxes, and

generate employment locally. Second, it depends on how much emissions are avoided with the

program, and how much could have been avoided by spending the same funds on an alternative

policies. Finally, dynamic considerations which I cannot capture in this analysis are important. In

particular, charging station installations are more or less permanent, and a government could be

willing to spend a lot of public funds upfront to kick-start the market and reach station saturation

faster. I explore these issues in the next section.
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7 Cost-efficiency

7.1 Setup

To study cost-efficiency and optimal policy design from the social planer’s point of view requires

that we precise several concepts. First, we must define the policy variable to be considered and its

support. Then we need a precise formulation of the planner’s objective function to be optimized.

I begin by choosing an appropriate policy variable. Since the policy targets several vehicles over

several regions and time periods, optimizing over all possible (asymmetric) policies is unreasonable

from a computational point of view. Let τ0 be the current rebate scheme described in Section 2

and consider the following policy

τ = κ · τ0,

where κ ≥ 0 is a scalar policy shifter. In what follows, I consider the set of policies available to the

social planner to be the set

T = {τ ∈ RJ : τ = κ · τ0, κ ∈ R+}.

In other words, I restrict the set of policies available to the social planner to be proportional to the

current rebate scheme. This serves two goals. First, it lowers the computational burden associated

with studying the universe of possible rebate schemes. This includes for example different EVs

receiving different rebates, but also a given EV receiving different rebates over time or across regions.

This restriction also insure that the policy is fair and easy to understand from the point of view

of buyers. Governments typically would have strong incentives to preserve some sort of regional or

temporal fairness for electoral purposes when designing these sort of policies. Additionally, varying

the rebate at the model level can make it complicated for buyers to figure out the final price of all

EVs to be considered when choosing a vehicle.

Next, I define the government objective function. Let SCC be the social cost of carbon, or social

damage in dollars associated with producing one ton of carbon. Define E(τ) as the avoided carbon

emissions from policy τ and C(τ) be the total cost of implementing τ . I define the central planner’s
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problem as

κ∗ = argmax
κ

E(κ) · SCC − C(κ)

s.t. κ ≥ 0,

(17)

that is, I define the choice of policies in terms of κ instead of τ . Both are equivalent since by

definition

τ∗ = κ∗ · τ0,

however using κ simplifies both the interpretation and the computational parts of the problem.

The first-order condition associated with this problem is21

∂C(κ∗)

∂E(κ∗)︸ ︷︷ ︸
Marginal

Abatement
Cost

= SSC︸ ︷︷ ︸
Social

Cost of
Carbon

. (18)

I propose three different functional forms for the function C(τ). First, I consider the case where

the central planner cares only about the total spendings on the program, that is,

C1(τ) =
∑
j

∑
m

∑
t

qjmt(τ) · τj . (19)

To introduce flexibility in the planner’s problem, I also consider the case where the social planner

internalizes gains to consumer surplus, and the case where it internalizes gains to both consumer

and producer surplus. As an example, a social planner could consider consumers’ welfare when

designing the policy, but also profits if for example several large car manufacturers are active

locally, providing employment and paying taxes. In these two cases, the cost functions take the

21I consider only the set of interior solutions.
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following forms respectively22

C2(τ) = C1(τ)−
∑
i

∑
m

∑
t

CSimt(τ), (20)

C3(τ) = C1(τ)−
∑
i

∑
m

∑
t

CSimt(τ)−
∑
f

∑
m

∑
t

Πfmt(τ). (21)

7.2 Results

I present the estimated average emission abatement costs and marginal emission abatement costs

in Table 18. Average abatement costs are computed as the average ray cost per ton of carbon,

obtained by comparing current avoided emissions with the no subsidy counterfactual, that is

AACi(κ) =
Ci(κ)− Ci(0)

E(κ)− E(0)
.

Results are displayed for each of the cost measures. Additionally, I report the results per avoided

fuel vehicle sale. In this case, E(·) represents avoided sales of fuel vehicles rather than avoided

emissions.

The estimated average abatement cost is estimated to be $1,045 per metric ton of CO2, $95 taking

into account changes to consumer surplus, and -$450 if we consider the global impact on the

economy. Additionally, I compute the average cost of decreasing sales of fuel vehicles by one unit

to be $34,535, 3,140, and -$14,826 respectively for our three cost measures. These results can be

compared to recent studies. (Xing, Leard, and S. Li, 2021) estimates that reducing emissions using

a similar program in the United States to have and average cost between $581 and $662 (484-552

USD) per ton of CO2, less than half of my most conservative estimate. My methodology differs in

that I allow for both network effects and substitution from the outside option to enter the model.

Network effects improve carbon emission reductions per dollar spent, however substitution from

22Consumer surplus is defined as the inclusive value from the nested logit model times the number of consumers
in market mt, that is

CSimt(τ) = − 1

α
· ln

(
1 +

∑
g

evg(τ)

)
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Table 18: Emission abatement cost, evaluated at the current rebate

Cost Measure Total cost Cost per ton CO2 Cost per fuel vehicle
(million $) ($) ($)

Average abatement cost

C1: Cost of program only 287.6 1,049 34,535

C2: Cost of program and

compensating variation 26.2 95 3,140

C3: Cost of program,

compensating variation and profits -123.5 -450 -14,826

Marginal abatement cost

C1: Cost of program only – 1,257 43,908

C2: Cost of program and

compensating variation – 340 11,865

C3: Cost of program,

compensating variation and profits – -195 -6,797

Social cost of carbon

Mean – 45 –

95% Confidence Interval – 183 –

NOTES: Cost per fuel vehicle is the cost of reducing sales of fuel vehicles by 1 unit. Average abatement cost are calculated by taking
the total costs and dividing by either the total abated emissions or the total reduction in fuel fleet sales. Marginal abatement cost are
computed as the cost per ton of CO2 and per fuel vehicle of an incremental change in the rebate program, evaluated at the current
policy.

the outside option contributes to decreasing cost-efficiency. In this case, the latter effect dominates

the former which explains the higher cost estimates. Other works also estimate the cost of reducing

emission from the car sector. For example Huse and Lucinda (2014) study the effect of the Swedish

green car rebate and estimate the emission abatement cost to be between $131 and $158 (109-132

USD). Beresteanu and S. Li (2011) find that tax incentives on hybrids in the United States to have

reduced emission at a cost of $212 (177 USD) per ton. Finally, Knittel (2009) evaluate the cost of

reducing emissions from a hypothetical ‘cash for clunker’ program, and finds that abating emissions

in this way could cost up to $540 (450 USD) per ton.

Addressing the cost-efficiency of this program requires however that we consider instead the opti-

mality condition in equation (18). I compute counterfactual scenarios for several levels of κ, and
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Table 19: Optimal policy

Cost Measure Social Cost of Carbon

$45 $183

C1: Cost of program only $0 $0
(κ∗ = 0) (κ∗ = 0)

C2: Cost of program and $3,234 $5,404

compensating variation (κ∗ = 0.40) (κ∗ = 0.68)

C3: Cost of program, $11,628 $13,831

compensating variation and profits (κ∗ = 1.45) (κ∗ = 1.73)

NOTES: The current policy is τ = τ0, i.e. occurs at κ = 1.

define marginal abatement cost as

MACi(κ) =
∆Ci(κ)

∆E(κ)
=
Ci(κ+ h)− Ci(κ)

E(κ+ h)− E(κ)
.

I then compare the marginal abatement cost estimates to the social cost of carbon estimates from

Environment and Climate Change Canada.23 Both set of results are available in Table 18. My

results suggest that the central planner is over-investing on rebates when using the first two cost

measures, but underinvesting when taking the full impact on the economy into account.

In order to better understand what would constitute the optimal level of investment in the rebate

program, I reconstruct the marginal abatement costs curve for each of the cost measures. Results

are presented in Figure 3. I report two sets of marginal abatement cost curves, first in terms of

avoided CO2 emissions, then in terms of avoided fuel vehicle sales. I highlight several facts from

these figures. First, considering only the costs associated with the program, it is immediately

obvious from Figure 3a that no level of rebate is optimal, that is MAC1 > SCC, for κ > 0. In

this case, the optimal policy is κ∗ = 0, a corner solution. In contrast, when taking either consumer

surplus or both consumer and producer surpluses into account, Figure 3c and 3e suggests that an

optimal policy with κ∗ > 0 exists. I use a basic interpolation to recover the optimal levels of κ and

present the results in Table 19.

23Source: Environment and Climate Change Canada, Technical Update to Environment and Climate Change
Canada’s Social Cost of Greenhouse Gas Estimates 2016.
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(a) C1: Cost of program only (b) C1: Cost of program only

(c) C2: Cost of program and CS (d) C2: Cost of program and CS

(e) C3: Cost of program, CS and PS (f) C3: Cost of program, CS and PS

Figure 3: Marginal abatement cost curve
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7.3 Discussion

To provide more perspective on what these results mean, I consider the specific case of Quebec.

Since no car manufacturers are active in the province, we can hypothesize that the government of

Quebec would internalize costs associated with the program as well as consumer surplus, but not

profits. In this case, the optimal policy for the provincial government would lie between κ∗ = 0.40

and κ∗ = 0.68, which is equivalent to subsidizing EVs by up to $3,234–5,404. On the other hand,

several car manufacturers have active plants in Canada. It is credible to think that the Canadian

government would internalize the impact of the program on firms along consumer surplus and costs

in his assessment of the optimal policy. My results suggest in that case that subsidies should be

higher than the current policy, with maximal subsidies ranging from $11,628 to $13,831. These

misaligned incentives across different levels of government could explain why the government of

Quebec is over-investing in the program compared to the optimum.

Another possible explanation to over-investing is that subsidizing EV not only increases sales di-

rectly, but also future sales through a faster expansion of the charging station network. This means

that once the program expires and subsidies are phased out, network effects persist and generate

additional EV registrations at no additional cost to the policymaker. Large subsidies also sends a

clear signal to car manufacturers about the current and future demand for EV, and could lead them

to increasing investment into electric vehicle technology which contributes to developing cheaper

and better products. Because some of these investment are sunk and capacity is not easily adjusted

in the short run, the effect of the rebate on firms should also persist in time to some degree even

once the program is phased out.

Finally, addressing the important question of the cost efficiency of this program requires that we

compare the estimates above with alternative policies aimed at lowering emissions. Gillingham and

Stock (2018) compile an up-to-date summary of marginal abatement costs obtained from various

economic studies. They document that policies targeted at the agricultural sector (i.e. reforestation,

soil and livestock management, agricultural emissions policies) tend to be very inexpensive ways of

reducing emissions, with a cost between $13 and $85 (11–71 USD) per ton of CO2. On the other
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hand, policies aimed a replacing coal energy production cost between $29 (for onshore wind power

or natural gas combined cycle) and $158 per ton (for solar thermal power). Their review also covers

policies aimed at the car market, such as gas taxes ($22–56 per ton of CO2) and emission standards

($58–372 per ton of CO2).

8 Conclusion

The Quebec electric car market presents a unique opportunity to study the impact of subsidizing

electric vehicle sales on key economic outcomes. Putting a price on carbon is crucial for policy-

makers who are trying to achieve better environmental outcomes at the lowest cost possible. My

findings suggest that while subsidizing EV does a good job at diffusing the technology, both in

terms of increased sales and inciting charging stations operators to expand local networks, the cost

of reducing emissions in this way remains prohibitive compared to the social cost of air pollution.

Several avenues are possible which could increase cost-effectiveness: tying rebate eligibility to in-

come, or imposing a ‘cash for clunker’ condition could contribute to improve targeting consumers

that would not have purchased an EV without subsidies while avoiding subsidizing consumers

substituting away from the outside option. Increasing the gas tax could also be considered as a

complementary policy to help targeting both drivers of fuel-inefficient vehicles and owners who use

their vehicle intensively (i.e. high mileage users).

While the model used in this analysis is static, several dynamic considerations may justify a policy-

maker to pay such a high price for emission abatement. First, this sends a clear signal to car man-

ufacturers about the future importance of this technology and could generate additional research

and development towards achieving better and cheaper EV. Second, because station installation is

nearly permanent, kick-starting this technology may generate future carbon emission savings at no

cost if the network reaches saturation faster and rebates are eventually phased out.

Future research could also explore several other avenues. For example, forecasting sales of EV

and station deployment could help predicting the optimal time for phasing out the policy, and

evaluating the long-run emissions abatement cost from subsidizing EV after subsidies have been
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phased out.
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Appendix

A. Details on the data

Car registration: The car registration data is constructed from 8 yearly datasets that are released

publicly by the Société d’Assurance Automobile du Québec (SAAQ), Quebec’s car registration

agency. Each dataset contains of the universe of all registered vehicle in Quebec in a given year,

starting in 2011 and up to 2018. I reconstruct new vehicle registrations in year t recursively, by

comparing the full fleet of vehicles in year t and t−1, and keeping only new entries. Because I intend

to use charging stations in a given year as an extra characteristic in the demand estimation, I cannot

simply use the model’s year as a proxy for registration year since they do not overlap perfectly:

model year t − 1, t and t + 1 can all be sold in year t. Table 20 depicts a breakdown of sales in

each registration year by model year to document this phenomenon. I remove vehicles that are

not owned by individuals (i.e. company vehicles, taxis, etc), exotic brands (Ferrari, Aston Martin,

etc) and also vehicles with a price tag above $150,000. These vehicles do not form a significant

share of the total car market, and they have zero market shares in the vast majority of markets.

The registration dataset includes the make, model and year of each individual car registration,

along with some car characteristics (including curb weight, original color, number of cylinders and

cylinder capacity) and some demographics of the owner (age, gender, county of residence).

Car characteristics: The car characteristics are scrapped from The Car Guide’s which publishes

on their website comprehensive information on all makes and models available in Quebec. This

Table 20: Registrations per year

Registration Model Year

Year 2011 2012 2013 2014 2015 2016 2017 2018 2019

2012 62,304 294,419 94,264 - - - - - -
2013 - 80,960 323,645 77,542 - - - - -
2014 - - 81,836 313,247 85,830 - - - -
2015 - - - 64,266 331,247 85,483 - - -
2016 - - - - 69,680 335,160 80,785 - -
2017 - - - - - 77,662 341,229 70,988 -
2018 - - - - - - 79,666 342,792 54,911
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website has been the go-to reference for information about the different car makes since the mid-90s

and has wide public recognition in the province. The car characteristics dataset includes pricing

and various characteristics such as the engine type, horsepower, size, fuel consumption and carbon

emissions, all recorded at the brand-model-year-specification level (i.e. Ford Focus 2017 S-Sedan).

Car registrations on the other hand are recorded at the brand-model-year level only (i.e. Ford

Focus 2017).

I define each product to be a brand-model-year-engine combination. To avoid any potential endo-

geneity issues arising from aggregating over specifications, I match each car registration to the base

specification within each model. Unfortunately, engine type is not recorded in the car registration

data, which poses a problem whenever a particular model is offered with several engine options. To

recover the engine type in these few cases, I first merge the registration dataset with the charac-

teristics dataset using the make, model, and model year, and pick the specification with the closest

weight which is observed in both dataset. Once the engine type is recovered, I assign characteris-

tics of the base model by engine type. In practice, engine types are well identified by curb weight

differences since battery components are typically heavy and increase the total weight considerably

(up to a few hundred kilograms) compared to the baseline internal combustion engines.

Charging station network: The data on charging stations was obtained from Le Circuit Éectrique,

the online platform operated by Hydro-Quebec. The dataset contains the exact geographic location

and address of all stations available on December 31st of 2018, as well as pricing, power, and the

type of installation. The data includes both stations that are connected directly to Le Circuit

Électrique as well as those connected to competing platforms. Entry dates which allow to recon-

struct the network over time are provided by Hydro-Quebec directly but include only stations that

are connected directly to their platform (about 75% of all stations) and not competing platforms.

In order to recover the installation year for the remaining stations, I use Wayback Machine, an

online archive of all past web contents, to access previous versions of the charging station dataset

and construct the closest possible installation date by comparing versions of the same dataset over

time.
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B. Robustness check

Next I want to address the issue of charging station instruments which are based on distance

thresholds. The idea behind this instrumental variable strategy is similar to Hausman (1996) and

Nevo (2001), in that we use charging station networks in other markets to construct instruments. In

Nevo (2001) for example, prices in other regions are combined to construct indices which are used

as instruments for price in ta given region. The idea behind this identificaiton strategy is that prices

are correlated across region lines through a common marginal cost component once we account for

fixed effects, but uncorrelated to local price shocks. The basic idea for this identification strategy is

used here to instrument for the size of local networks, but with a caveat. The identifying assumption

is that local networks are correlated across regions through a common installation and operation

cost when taking into account fixed effects, but uncorrelated to shock in other markets. Since local

authorities are responsible for developing their own local network independently of others, shocks

in one region is unlikely to affect station deployment in other regions, unless they are coordinated

together. One example could arise if for example the provincial government engaged in a widespread

advertising campaign that promoted green technologies everywhere at the same time. I did not

find evidence of such occurrences in the period of interest.

The biggest threat to this instrumental variable strategy lies in the fact that consumers travel

across region lines and charge in neighbouring regions while shopping, visiting friends, or working.

If a large share of the total demand for charging is due to these types of travel, then a shock to

consumer preferences for EV in one region could cause an increase in network sizes in neighbouring

regions, invalidating the instrumental variable strategy. In order to circumvent this issue, I impose

a distance threshold of 300 km on stations that I use as instruments in the basis function. The

claim I support is that while charging across region lines may be frequent for neighbouring regions,

it is a rare event for regions that are far away such that the fraction of charging in a given county

that comes from distant regions is trivial. Whenever this assumption is satisfied, then shocks to

preferences for EV in region that are sufficiently far away have no impact on a given local network

since only a negligible share of total charging comes from these users.
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Figure 4: Instruments for local network A

The choice of a threshold seems somewhat arbitrary. To document what happens when we in-

crease or decrease this threshold, I estimate the demand model without instruments, and then

using instruments constructed from using various thresholds, in 50 km increments. The results are

presented in Table 21. There are a few interesting findings. First, looking at column (2) which

includes all regions without any threshold, we see that the on the network both increase in magni-

tude, from 0.195 to 0.340 and from -0.005 to -0.025, hinting that the parameters are both biased

towards zero. As we increase the distance thresholds, the parameters increase slightly in absolute

value (although the change is not significant). The parameter values seem to stabilize beyond 200

km, which I take as evidence that using any distance threshold beyond that point is somewhat

equivalent. Interestingly, most EV have a driving ranges below 200 km, meaning that this distance

wouldn’t be achievable on a single charge say on the way to work or for other daily activities which

strengthens the idea that these types of travels are somewhat uncommon. To be on the safe side,

I select 300 km as my preferred threshold.
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Table 21: Robustness to distance threshold

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
VARIABLES No instr. Dist. 0 Dist. 50 Dist. 100 Dist. 150 Dist. 200 Dist. 250 Dist. 300 Dist. 350 Dist. 400 Dist. 450 Dist. 500

Price - Rebate -0.513*** -0.491*** -0.491*** -0.491*** -0.491*** -0.491*** -0.491*** -0.491*** -0.491*** -0.490*** -0.490*** -0.490***
(0.062) (0.060) (0.060) (0.060) (0.060) (0.059) (0.059) (0.059) (0.059) (0.059) (0.059) (0.059)

Log of stations 0.195*** 0.340*** 0.345*** 0.347*** 0.349*** 0.353*** 0.359*** 0.357*** 0.353*** 0.354*** 0.353*** 0.354***
(0.048) (0.054) (0.054) (0.055) (0.055) (0.055) (0.055) (0.055) (0.055) (0.055) (0.055) (0.055)

Log of stations × Driving range -0.005 -0.025*** -0.026*** -0.027*** -0.028*** -0.028*** -0.030*** -0.029*** -0.028*** -0.028*** -0.028*** -0.029***
(0.007) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006)

Power-to-weight 0.015*** 0.015*** 0.015*** 0.015*** 0.015*** 0.015*** 0.015*** 0.015*** 0.015*** 0.015*** 0.015*** 0.015***
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Size 0.382*** 0.368*** 0.368*** 0.368*** 0.368*** 0.368*** 0.368*** 0.367*** 0.368*** 0.367*** 0.367*** 0.367***
(0.047) (0.046) (0.046) (0.046) (0.046) (0.046) (0.046) (0.045) (0.045) (0.045) (0.045) (0.045)

Cost of driving -0.045*** -0.045*** -0.045*** -0.045*** -0.045*** -0.045*** -0.045*** -0.045*** -0.045*** -0.045*** -0.045*** -0.045***
(0.005) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

Automatic 0.124*** 0.119*** 0.119*** 0.119*** 0.119*** 0.119*** 0.119*** 0.119*** 0.119*** 0.119*** 0.119*** 0.119***
(0.022) (0.021) (0.021) (0.021) (0.021) (0.021) (0.021) (0.021) (0.021) (0.021) (0.021) (0.021)

σ 0.345*** 0.365*** 0.365*** 0.365*** 0.365*** 0.365*** 0.366*** 0.366*** 0.366*** 0.366*** 0.366*** 0.367***
(0.052) (0.050) (0.050) (0.050) (0.050) (0.050) (0.050) (0.050) (0.050) (0.050) (0.050) (0.049)

Observations 104,495 104,495 104,495 104,495 104,495 104,495 104,495 104,495 104,495 104,495 104,495 104,495
R-squared 0.474 0.505 0.505 0.505 0.504 0.504 0.505 0.506 0.505 0.507 0.507 0.507

Brand FE YES YES YES YES YES YES YES YES YES YES YES YES
Market segment FE YES YES YES YES YES YES YES YES YES YES YES YES
Engine type × County FE YES YES YES YES YES YES YES YES YES YES YES YES
Year FE YES YES YES YES YES YES YES YES YES YES YES YES

NOTE: This table highlights how the coefficients on Log of stations and Log of stations × Driving range change as we increase the distance threshold which was used to construct the basis
function which serves as instruments. Distance thresholds are in km from centroid to centroid for each region pair. Column (1) instruments for price and within-group share but not charging
stations. Column (2) uses all stations that are located outside of any given county without filtering for distance. Column (8) is the chosen specification.
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C. Derivation of the entry model

The stream benefits from installing station n in period t is given by

Vt(n) = −Ft +
∞∑
s=t

(
1

1 + r

)s−t
Bs(n) (22)

where Bt(n) is the total benefit derived from station n in period t and Ft is a fixed (and unobserved)

installation cost.24 The social planner chooses to install station n today if it is more profitable than

waiting one period, that is if

Vt(n) ≥
(

1

1 + r

)
Vt+1(n), (23)

−Ft +
∞∑
s=t

(
1

1 + r

)s−t
Bs(n) > −

(
1

1 + r

)
Ft+1 +

∞∑
s=t+1

(
1

1 + r

)s−t+1

Bs(n)

Bt(n) ≥ Ft −
(

1

1 + r

)
Ft+1. (24)

We impose the following functional form on the benefits function

Bt(n) = Qevt · n
−a1
t ey

′
ta2 . (25)

Replacing in (24) and taking logs yields

ln(nt)−
1

a1
ln(Qevt )− y′t

a2

a1
≤ 1

a1
ln

 1

Ft −
(

1
1+r

)
Ft+1


24The county subscript m is omitted for simplicity
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or

ln(nt)− λ1 ln(Qevt )− y′tλ2 ≤ ωηt, (26)

where ηt is assumed to be distributed as independent standard normal.

Consider the case where N is the chosen size of the network in equilibrium. It has to be that it

was profitable to install station N , but unprofitable to install station N + 1 which means that the

inequality in equation (26) must hold for N , but not for N + 1 Using the distributional assumption

on ηt, the probability that Nt is chosen in period t is

Pr

(
ln(Nt)− λ1 ln(Qevt )− y′tλ2

ω
≤ ηt <

ln(Nt + 1)− λ1 ln(Qevt )− y′tλ2

ω

)

or

Φ

(
ln(Nt + 1)− λ1 ln(Qevt )− y′tλ2

ω

)
− Φ

(
ln(Nt)− λ1 ln(Qevt )− y′tλ2

ω

)
. (27)

Using these probabilities, we can easily construct the conditional log-likelihood function

`(λ) =
∑
m

∑
t

ln

[
Φ

(
ln(Nmt + 1)− λ1 ln(Qevmt)− y′mtλ2

ω

)
− Φ

(
ln(Nmt)− λ1 ln(Qevmt)− y′mtλ2

ω

)]
.

(28)
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D. Derivation of the elasticities

In this section, I show how to reach a closed form solution for the elasticities that arise in this

model. Using chain rule, the partial derivative of sj with respect to pk is

∂sj(p,N(p))

∂pk
=

∂sj
∂pk︸︷︷︸

Nested logit

+
∂sj
∂N
· ∂N
∂Qev

· ∂Q
ev

∂pk︸ ︷︷ ︸
Network effects

, (29)

where the first term has the classical nested-logit form (see Berry, 1994) and the second term arise

from network externalities which affect both sales of electric and non-electric vehicles (see Springel,

2017). I derive each term in turn.

a) Recall that

sj(δ, µ, σ) = sj|g(δ, µ, σ) · sg(δ, µ, σ) =
e(δj+µj)/(1−σ)

Dσ
g ·
∑

g′ D
1−σ
g′

, (30)

Dg =
∑
k∈Jg

e(δk+µk)/(1−σ). (31)

Consider first the case where product j has an electric engine. The partial derivative of sj with

respect to N is then

∂sj
∂N

=
∂

∂N

(
e(δj+µj)/(1−σ)

Dσ
g ·
∑
g′ D

(1−σ)
g′

)
(32)

=
γj

1− σ
· 1

1 +N
· e(δj+µj)/(1−σ)

Dσ
g ·
∑
g′ D

(1−σ)
g′

(33)

− γj
1− σ

· 1

1 +N
·
e(δj+µj)/(1−σ) · σDσ−1

g

(∑
`∈Jg

1(` ∈ EV )e(δ`+µ`)/(1−σ)
)
·
∑
g′ D

1−σ
g′(

Dσ
g ·
∑
g′ D

1−σ
g′

)2 (34)

− γj
1− σ

· 1

1 +N
·
e(δj+µj)/(1−σ) ·Dσ

g · (1− σ)
∑
g′

(
D−σg′ ·

∑
`∈J ′

g
1(` ∈ EV )e(δ`+µ`)/(1−σ)

)
(
Dσ
g ·
∑
g′ D

1−σ
g′

)2 , (35)
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∂sj
∂N

=
γj

1− σ
· 1

1 +N
· sj

1− σ
∑
`∈Jg

·1(` ∈ EV ) e(δ`+µ`)/(1−σ)

Dg
− (1− σ)

∑
g′

∑
`∈Jg′

1(` ∈ EV )e(δ`+µ`)/(1−σ)

Dσ
g′ ·
∑
g′′ D

1−σ
g′′

 ,

(36)

=
γj

1− σ
· 1

1 +N
· sj

1− σ
∑
`∈Jg

1(` ∈ EV )s`|g − (1− σ)
∑
`

1(` ∈ EV )s`

 , (37)

=
γj

1− σ
· 1

1 +N

1− σ
∑
`∈Jg

sev`|g − (1− σ)
∑
`

sev`

 sj . (38)

where sevj = sj if j has an electric vehicle, 0 otherwise. Whenever model j is not an electric vehicle,

the term in (33) vanishes, such that the final result is

∂sj
∂N

=


γj

1−σ ·
1

1+N

(
1− σ

∑
`∈Jg s

ev
`|g − (1− σ)

∑
` s

ev
`

)
sj , if j ∈ EV

− γj
1−σ ·

1
1+N

(
σ
∑

`∈Jg s
ev
`|g + (1− σ)

∑
` s

ev
`

)
sj . if j /∈ EV

(39)

b) To compute the next term, ∂N/∂Qev, requires a bit more work. Since N is a step function, the

derivative of N is either zero or the function is not differentiable. We replace this derivative by

the marginal effect of a change in the fleet of electric vehicle, which we compute as the derivative

of the Average Structural Function (see Blundell and Powell, 2004). Rewrite the structural model

as

Nmt = H(Qevmt,ymt, ηmt), (40)

where the function H(Qev,y, η) can be written as
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H(Qev,y, η) =

S−1∑
k=1

k · 1
(

ln(k)− λ1 ln(Qev)− y′λ2

ω
≤ η < ln(k + 1)− λ1 ln(Qev)− y′λ2

ω

)
(41)

+ S · 1
(

ln(S)− λ1 ln(Qev)− y′λ2

ω
≤ η

)
(42)

and S is the saturation point of the network in a given market. Consider the average structural

function,

ASF =

∫
H(Qev,y, η)dF (η). (43)

Blundell and Powell (2004) show that in the case where a control function is used to correct for

the endogeneity of Qev, integration also has to be taken over the nuisance parameter ν. This

gives

ASF =

∫∫
H(Qev,y, ν, η)dF (ν)dF (η). (44)

Substituting (42) in (44) and solving yields

ASF =

S−1∑
k=1

k ·
∫∫

1

(
ln(k)− λ1 ln(Qev)− y′λ2 − ρν

ω
≤ η < ln(k + 1)− λ1 ln(Qev)− y′λ2 − ρν

ω

)
dF (ν)dF (η)

(45)

+ S ·
∫∫

1

(
ln(S)− λ1 ln(Qev)− y′λ2 − ρν

ω
≤ η

)
dF (ν)dF (η) (46)

=

S−1∑
k=1

k ·
∫
Pr

(
ln(k)− λ1 ln(Qev)− y′λ2 − ρν

ω
≤ η < ln(k + 1)− λ1 ln(Qev)− y′λ2 − ρν

ω

)
dF (ν)

(47)

+ S ·
∫
Pr

(
ln(S)− λ1 ln(Qev)− y′λ2 − ρν

ω
≤ η

)
dF (ν), (48)
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or

ASF =

S∑
k=1

k ·
∫
Pr(N = k | Qev,y, ν)dF (ν). (49)

Replacing the probabilities and simplifying yields

ASF = S −
S∑
k=1

∫
Φ

(
ln(k)− λ1 ln(Qev)− y′λ2 − ρν

ω

)
dF (ν). (50)

The effect of a marginal change of Qev on N is then

∂ASF

∂Qev
=

S∑
k=1

k ·
∫
∂Pr(N = k | Qevt ,yt, νt)

∂Qev
dF (ν), (51)

which is equal to

∂ASF

∂Qev
=

(
λ1

Qevw

)
·
S∑
k=1

∫
φ

(
ln(k)− λ1 ln(Qev)− y′λ2 − ρν

ω

)
dF (ν). (52)

The integral is taken over the estimated empirical distribution of ν,25 i.e.

∫
∂Pr(N = k | Qev,y, ν)

∂Qev
dF (ν) =

1

R

R∑
r=1

∂Pr(N = k | Qev,y, ν̂r)
∂Qev

. (53)

c) Finally, we need to compute the partial derivative of Qev with respect to the price of model k,

pk. First, notice that Qevmt is the sum of the sales of electric vehicles in county m in all periods up

to t, that is

Qevmt =

t∑
s=1

qevms. (54)

25I use 500 draws from the empirical distribution of ν to compute the integrals.
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Because previous period sales are considered fixed from the perspective of period t, it has to be

that

∂Qevmt
∂pk

=
∂qevmt
∂pk

= L ·
∑
`

∂sev`mt(pt, Nmt(pt))

∂pk
, (55)

Using chain rule yields

∂Qev

∂pk
= L ·

∑
`

(
∂sev`
∂pk

+
∂sev`
∂N

· ∂N
∂Qev

· ∂Q
ev

∂pk

)
, (56)

∂Qev

∂pk

(
1− L · ∂N

∂Qev
·
∑
`

∂sev`
∂N

)
= L ·

∑
`

∂sev`
∂pk

, (57)

∂Qev

∂pk
=

L ·
∑

`
∂sev`
∂pk(

1− L · ∂N
∂Qev ·

∑
`
∂sev`
∂N

) . (58)
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E. Elasticities, and network supply curves

Demand elasticities: I report in Table 22 the average own- and cross-price elasticities in 2017

for a selection of battery electric and plug-in hybrid vehicles. In Panel A, I shut down network

effects and report the standard nested logit elasticities. I report the elasticities that take network

effects into account in Panel B, which I estimate using the formulae described in Appendix D. I ob-

serve a similar pattern to Springel (2017), namely that EV are substitutes (i.e. positive cross-price

elasticities) ignoring network effects, but act as complements (i.e. negative cross-price elasticities)

once network effects are taken into consideration. The reason behind this result is that increasing

the price of one EV induces a reduction in network size which in turn affects negatively the sales

of all other EVs. The fact the the sign flips in some cases is an indication that the network effect

is dominating the substitution effect for those EV pairs. These complementarities tend to increase

the efficiency of large scale EV subsidies as the effect of the rebate on one particular EV is ampli-

fied by the fact that all other EV are also receiving the same price reduction through network effects.

Table 22: Own- and cross-price elasticities, electric and plug-in hybrids, in 2017

PANEL A Bolt EV Volt Pacifica C-Max Fusion Soul Leaf Model S Prius e-Golf

Chevrolet Bolt EV -2.711 0.00148 0.00014 0.00017 0.00022 0.00020 0.00034 0.00018 0.00039 0.00020
Chevrolet Volt 0.00059 -2.388 0.00013 0.00016 0.00021 0.00019 0.00032 0.02311 0.00037 0.00019
Chrysler Pacifica 0.00102 0.00268 -3.897 0.00019 0.00027 0.00034 0.00045 0.00023 0.00058 0.00026
Ford C-Max 0.00049 0.00121 0.00009 -2.041 0.00016 0.00016 0.00394 0.00014 0.00496 0.00238
Ford Fusion 0.00053 0.00127 0.00011 0.00013 -2.124 0.00016 0.00026 0.00014 0.00032 0.00016
Kia Soul 0.00058 0.00132 0.00010 0.00013 0.00016 -2.165 0.00029 0.00014 0.00031 0.00016
Nissan Leaf 0.00059 0.00142 0.00011 0.00231 0.00018 0.00016 -2.320 0.00016 0.00592 0.00263
Tesla Model S 0.00249 0.67120 0.00046 0.00055 0.00071 0.00070 0.00127 -10.239 0.00144 0.00073
Toyota Prius 0.00058 0.00137 0.00012 0.00264 0.00020 0.00018 0.00516 0.00016 -2.462 0.00289
Volkswagen eGolf 0.00060 0.00142 0.00010 0.00184 0.00016 0.00017 0.00499 0.00015 0.00553 -2.212

PANEL B Bolt EV Volt Pacifica C-Max Fusion Soul Leaf Model S Prius e-Golf

Chevrolet Bolt EV -2.753 -0.08539 -0.00705 -0.01111 -0.01434 -0.01232 -0.02202 -0.01072 -0.02729 -0.01268
Chevrolet Volt -0.02453 -2.440 -0.00416 -0.00669 -0.00859 -0.00744 -0.01303 0.01660 -0.01690 -0.00798
Chrysler Pacifica -0.01633 -0.03645 -3.901 -0.00270 -0.00410 -0.00624 -0.00725 -0.00353 -0.01004 -0.00387
Ford C-Max -0.00907 -0.02079 -0.00139 -2.044 -0.00301 -0.00284 -0.00104 -0.00244 -0.00195 -0.00056
Ford Fusion -0.00800 -0.01691 -0.00146 -0.00206 -2.127 -0.00260 -0.00370 -0.00197 -0.00513 -0.00249
Kia Soul -0.04028 -0.07967 -0.00694 -0.00813 -0.01098 -2.178 -0.01699 -0.00893 -0.02003 -0.01170
Nissan Leaf -0.04161 -0.09470 -0.00732 -0.00752 -0.01276 -0.01092 -2.344 -0.01114 -0.02367 -0.00832
Tesla Model S -0.09946 0.46155 -0.01836 -0.02273 -0.02990 -0.03014 -0.04755 -10.269 -0.05335 -0.02374
Toyota Prius -0.00768 -0.01651 -0.00136 0.00043 -0.00242 -0.00221 0.00065 -0.00166 -2.468 0.00049
Volkswagen eGolf -0.03733 -0.08433 -0.00539 -0.00518 -0.01016 -0.01011 -0.01187 -0.00769 -0.01955 -2.225

Panel A - Elasticities without network effects.
Panel B - Elasticities with network effects.
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Charging station supply: I am also interested in the elasticity of supply of charging stations.

In particular, I want to emphasize that the entry model developed in this paper produces not only

flexible supply curves, but also flexible elasticities of supply that are not restricted to be fixed across

region, over time, or at different states of the EV market. Figure 5 depicts charging station supply

as a fonction of the fleet of EV for 12 of the 89 counties, in 2017. All of the supply curves are

monotonically increasing at a decreasing rate, a consequence of the estimated parameters of the

model. Moreover, they are all converging to a saturation point. This follows from the assumption

that such a saturation point exists, that is a point beyond which additional sales of EV do not

generate extra charging stations. This assumption can be easily relaxed, which would result in

the supply curves to become unbounded above. In practice, this assumption does not affect the

estimation stage or the computation of counterfactuals, since the saturation points are set to be

several orders of magnitude above observed network size in each market.

The supply curves are computed as follows. Recall that the structural model can be rewritten

as

Nmt = E(N |Qevmt,ymt, λ) + vmt. (59)

where E(N |Q,y, λ) is the average structural function defined above. Station supply can be recov-

ered for various levels of Qev by using the model estimates and computing

Nmt(Q
ev) = Smt −

Smt∑
k=1

∫
Φ

(
ln(k)− λ̂1 ln(Qev)− y′mtλ̂2 − ρ̂ν

ω

)
dF (ν) + v̂mt. (60)

where a consistent estimator of vmt can be estimated from v̂mt = Nmt −E(N | Qevmt,ymt, λ̂).

Elasticity of charging station supply: Figure 6 depicts the elasticity of supply of charging

stations as a function of the fleet of EV for the same selection of counties. Interestingly, the model

seems to reject the idea that the elasticity of supply of stations is fixed both across regions and

over time, but also at different states of the EV market. In particular, station operators seems

to be more reactive when the network and the fleet of EV are small, and become less and less
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reactive as the market develops. Our assumption about the existence of a saturation point forces

all elasticities to converge towards zero as Qev goes to infinity. Relaxing this assumption, we would

instead observe elasticities converging towards a fixed (and positive) elasticity that is different in

each market.

The elasticities of supply are computed as follows. Let εmt(Q
ev) be the elasticity of supply of

stations for a given level of Qev. Then using the derivative of the average structural function

defined above, we have that

εmt(Q
ev) =

∂Nmt(Q
ev)

∂Qev
· Qev

Nmt(Qev)
, (61)

=

(
λ1

Nmt(Qev)w

)
·
S∑
k=1

∫
φ

(
ln(k)− λ1 ln(Qev)− y′λ2 − ρν

ω

)
dF (ν). (62)
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Figure 5: Station supply curves, for selected counties, in 2017

Figure 6: Station elasticity curves, for selected counties, in 2017
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