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Abstract

This paper studies a competition model with search frictions that combines a general informa-
tion design problem with endogenous pricing. It includes a mix of savvy consumers with zero
search costs and inexperienced consumers with strictly positive search costs. The presence of
inexperienced consumers reduces equilibrium information provision, but this provision is non-
monotonic in the search cost. Very low and high search costs result in full disclosure while
intermediate search costs result in strategic information withholding tailored toward captur-
ing the inexperienced consumers. The flexible information provision has a spillover effect on
the equilibrium price and may allow firms to sustain a higher market price relative to the full
information benchmark.

JEL Classifications: D4, D21, D83, L13
Keywords: information design, price competition, consumer search

1 Introduction

Market competition is often multifaceted, with prices being just one dimension on which firms

compete. Another increasingly important dimension is targeted information provision that takes

various forms, such as advertisement, product reviews, samples, generous return policies, or trial

periods. Online retailers may provide detailed information about their products that includes

technical specifications, images, videos, customer reviews, and safety records. Software developers

may offer free or reduced trials of their products. Such business practices promote more informed

purchases by consumers, but from the perspective of the firms, they are carefully designed marketing

strategies to gain a competitive advantage over rivals.

This paper offers a general theoretical framework for studying firm competition in such a mul-

tifaceted environment. It utilizes a novel approach to Bayesian persuasion proposed by Dworczak

and Martini (2019) to build a tractable search model in which firms compete both in information

disclosure and pricing.

The model features two horizontally differentiated firms and a mix of inexperienced and savvy

consumers who search for the best product fit. Consumers are privately informed about their search

cost, with inexperienced consumers having a positive search cost and savvy consumers having no
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search cost. This framework is suitable for exploring the impact of both the search cost and the

consumers’ market sophistication, which is measured by the fraction of savvy consumers. Firms are

ex-ante symmetric, with each consumer’s valuation being independently and uniformly distributed.

Consumers choose their search order and intensity, while the firms decide on their pricing and

information disclosure strategies.

Following the Bayesian persuasion literature, the model imposes no structural restrictions on the

firms’ information disclosure. Given risk-neutral consumers, the firm’s disclosure strategy involves

selecting a posterior distribution of the consumer’s expected value that satisfies Bayes plausibility,

meaning that it is a mean-preserving contraction of the continuous prior distribution. In general,

greater disclosure leads to higher product differentiation, with full disclosure (where the posterior

is equal to the prior) and no disclosure (a mass point at the mean value) representing the maximum

and minimum product differentiation, respectively. Between these two extremes, the firm is free to

choose any Bayes-plausible distribution.

We characterize a symmetric perfect Bayesian equilibrium of the search game, in which the

firms choose their information disclosure and pricing strategy upon being visited, and the con-

sumers search optimally given their rational beliefs about the firms’ strategies. The equilibrium

characterization consists of two steps. First, we characterize a symmetric equilibrium of the infor-

mation disclosure game for an arbitrary and symmetric fixed price. Given this characterization, we

study the equilibrium of the pricing game.

The analysis reveals that the presence of inexperienced consumers has an overall adverse effect

on information disclosure. Since inexperienced consumers are more easily persuaded to discontinue

their search, the firms strategically tailor their information to maximize the likelihood that the in-

experienced consumer’s valuation of the product is higher than the expected return from continuing

the search. To accomplish this in a Bayes-plausible way, the firms truncate their disclosure- they

fully reveal very low-value realizations that encourage further search, and partially disclose higher

realizations to induce immediate purchase by inexperienced consumers. Intuitively, low values

trigger further search and call for maximum product differentiation, while higher values foreclose

competition for inexperienced consumers and reduce firms’ pressure to differentiate.

As the search cost or the fraction of inexperienced consumers increases, it becomes easier to

capture consumers. This suggests that information provision is decreasing in the search cost, but

we uncover an intriguing non-monotonicity. The relationship is indeed negative for low search

costs when the firms’ strategic information withholding significantly impacts the inexperienced

consumers’ search likelihood. However, for sufficiently high search costs, inexperienced consumers

stop searching and purchase from the first firm they visit. In response, the firms shift their focus

from capturing inexperienced consumers to attracting savvy consumers who always search both

firms. This increases the pressure to differentiate their products by providing more information.

As a result, information provision increases with the search cost.

Turning to the pricing decision, our analysis demonstrates how the endogeneity of the informa-

tion disclosure impacts the pricing game. Unlike existing models of search that treat information

as fixed, the present equilibrium derivation requires analyzing “double” deviations, in which a uni-
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lateral price deviation is accompanied by a corresponding deviation in the information revelation

strategy. We characterize the symmetric pure strategy equilibrium price that prevents such “dou-

ble” deviations. Similar to the equilibrium information disclosure, this candidate price also exhibits

non-monotonicity in the search cost. For small search costs, firm competition is intense, and lower

information provision is partially compensated by a lower price. As the search cost increases fur-

ther, competition is eventually mitigated, allowing firms to increase their prices. Interestingly, for

sufficiently high search costs, the equilibrium price exceeds the one obtained in the full information

benchmark commonly studied in the existing literature.

Related Literature: This paper contributes to the growing literature on strategic information

provision by firms. While the earlier papers on this topic focus on various types of advertising

and disclosure in monopoly settings (Lewis and Sappington, 1994; Che, 1996; Ottaviani and Prat,

2001; Anderson and Renault, 2006; Johnson and Myatt, 2006), the more recent works examine

competitive information disclosure (Ivanov, 2013; Board and Lu, 2018; Hwang et al., 2019; Au and

Kawai, 2020; Au and Whitmeyer, 2021; Armstrong and Zhou, 2022; Dogan and Hu, 2022; Zhou,

2022). We contribute to these recent works in multiple dimensions. First, a major novelty of the

model lies in the combination of a general information design problem and endogenous pricing. To

the best of our knowledge, this paper is the first to tackle this challenging problem in the context

of consumer search. Second, by allowing for both inexperienced and savvy consumers, our setting

combines features of models with no search frictions (e.g., Ivanov, 2013; Hwang et al., 2019; Au

and Kawai, 2020; Armstrong and Zhou, 2022 ) and models with costly search (e.g., Board and Lu,

2018; Au and Whitmeyer, 2021; Dogan and Hu, 2022; Zhou, 2022). This approach bridges the gap

between these two strands of the literature to gain insight into the impact of consumers’ market

sophistication on information provision, pricing, and welfare.

Among the frictionless models, Armstrong and Zhou (2022) consider a general information de-

sign problem but focus on characterizing the firm and consumer-optimal information structures set

by a third party, such as a platform. Among the papers that consider competitive information dis-

closure, Ivanov (2013) studies a class of rotation-ordered distributions, while Au and Kawai (2020)

and Hwang et al. (2019) take a more general approach by imposing no structural restriction on the

information disclosure. Similar to our setting, Hwang et al. (2019) endogenize both information

and pricing but abstract from search frictions, which are central in our model. In that respect,

this proposal generalizes their model to show how search frictions impact information disclosure,

with the special case of zero search cost (or no inexperienced consumers) coinciding with their

characterization.

Among the literature on consumer search, Zhou (2022) studies how improved information in

terms of exogenous increasing convex order affects search intensity, price competition, and con-

sumer welfare. Dogan and Hu (2022) study a general information design problem in a competitive

environment but focus on the consumer-optimal information structure. Our focus on equilibrium

information disclosure relates more closely to Board and Lu (2018) and Au and Whitmeyer (2021).

Similar to our setting, Board and Lu (2018) consider a search model in which firms choose their in-

formation provision before being visited, but assume that sellers offer homogenous products. They
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characterize the conditions under which full disclosure and “monopoly level” of information are

supported in equilibrium. We take a more comprehensive approach to information design by con-

sidering flexible partial disclosure strategies as well. In this respect, our environment is closer to Au

and Whitmeyer (2021) who also allow for partial disclosure but assume that firms commit to their

disclosure strategy prior to the consumers’ search decision. This commitment adds an attraction

motive to information disclosure that is absent in the current setting. Instead, the main focus of

this paper is on the interaction between the information and pricing decisions that is absent in the

existing search literature.

2 Setup

Consider a horizontally differentiated market with two competing firms and a unit mass of con-

sumers. All parties are risk-neutral, and it is common knowledge that a consumer’s valuation for

each product is an iid draw from U(0, 1). However, neither the firm nor the consumers know the

realization of these values. Consumers must engage in search to gather information about their

valuation for each firm’s product. They are heterogeneous and privately informed about their

search costs, with a fraction α ∈ [0, 1] being inexperienced consumers with a high search cost s > 0,

and a fraction 1 − α being savvy consumers with a zero search cost. The two extremes of α = 0

and α = 1 capture costless information acquisition as in Hwang et al. (2019), and symmetric and

strictly positive search cost as in Au and Whitmeyer (2021), respectively.

Similar to Au and Whitmeyer (2021), the model departs from the standard search literature by

allowing the two firms to engage in strategic information disclosure. Formally, each firm designs

a signal space Si and a corresponding joint distribution function Hi over [0, 1] × Si. Due to the

risk-neutrality, the consumer’s purchasing decision depends only on the posterior expected value

E[vi|si]. Thus, without loss of generality, we can formulate the firms’ information design problem as

choosing a posterior distribution Gi of the expected value subject to the standard Bayes plausibility

constraint.

The timing of the game is as follows. First, each consumer chooses the order of approaching the

two firms. Upon being visited, each firm chooses its information disclosure strategy Gi and price pi.

The consumer observes pi and draws a posterior realization vi from Gi. Then, she decides whether

to purchase the product from firm i at pi or continue the search by approaching the competing

firm. If both firms are visited, the consumer purchases the product with the highest net expected

value E[vi|si]− pi.

The analysis focuses on characterizing a symmetric Perfect Bayesian equilibrium, in which the

firms charge the same price and use the same information disclosure strategy. Section 3 analyzes the

information disclosure game for an arbitrary symmetric price p. Section 4 endogenizes the pricing

decision by considering unliateral “double deviations” from a symmetric price and the optimal

information disclosure characterized in Section 3.
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3 Equilibrium information disclosure

Suppose that the firms’ prices are fixed at p, and they compete only by choosing their information

disclosure strategy Gi. For simplicity, let vi denote the realized expected value drawn from Gi. To

derive the firm’s payoff as a function of vi, we first consider the consumers’ optimal search.

3.1 Consumers’ search decisions

The savvy consumers are better off visiting both sellers and purchasing the product with the highest

posterior expected valuation.1 In contrast, the inexperienced consumers have an optimal search

order and stopping rule characterized by Weitzman (1979). In particular, given firm j’s posterior

distribution Gj(v) with support [v, v], the reservation value rj of visiting firm j solves:∫ v

rj

(v − rj)dGj(v) = s. (1)

Weitzman shows that it is optimal to approach sellers in descending order of their reservation

value and discontinue the search whenever the maximum value uncovered so far is (weakly) higher

than the reservation value of the subsequent product in the queue. Note that the endogeneity of

Gj(v) implies that the reservation value rj is an equilibrium object. Moreover, in a symmetric

equilibrium with identical information disclosure strategies by the two firms, the reservation values

for the two products are identical, and thus, consumers are indifferent in the search order. Given

the consumers’ optimal search decision, we next turn to the firms’ information design problem.

3.2 Firms’ information disclosure

To derive the firm’s optimal posterior distribution, we first need to describe the firm’s expected

payoff as a function of the firm’s posterior expected valuation. This payoff depends both on the

competitor’s information disclosure strategy and the inexperienced consumers’ reservation values

for the two products, as described by the lemma below.

Lemma 1 Given an atomless information disclosure strategy by the competitor, Gj(v), and the

firms’ reservation values ri, rj described by eq. (1), firm i’s expected payoff is

ui(vi|Gj , ri, rj) =

{
Gj(vi) if vi < min{ri, rj}
α̃i + (1− α̃i)min{Gj(vi), 1} if vi ≥ min{ri, rj},

(2)

where α̃i is the firm’s belief of facing an inexperienced consumer. Letting γi denote the inexperienced

consumer’s likelihood of visiting firm i first when indifferent, this belief is formed using Bayes rule

as follows:

1Even a small amount of information disclosure would make the preference for visiting both sellers strict. While
there always exists no disclosure-no search equilibrium (see Footnote 4), the analysis focuses on the more interesting
equilibria that entail some disclosure and search.
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α̃i =


α if rj < ri

α(γi+(1−γi)Gj(ri))
α(γi+(1−γi)Gj(ri))+(1−α) if rj = ri

αGj(ri)
αGj(ri)+(1−α) if rj > ri.

(3)

To understand the payoff given by (2), note that if firm i reveals vi < min{ri, rj}, it will realize
a sale only if vj < vi independent of the search order- the savvy consumers compare all valuations,

but the inexperienced consumers compare both only if i is visited first or vj < ri. In either case,

a sale happens with probability Gj(vi).
2 For vi ≥ min{ri, rj}, firm i sells to the savvy consumers

with probability Gj(vi) as these consumers always compare both valuations. In contrast, firm i

captures the inexperienced consumers for sure since these consumers either have already visited j

(if rj ≥ ri) and discovered vj < ri or have chosen to visit i first (if ri ≥ rj) and would discontinue

the search since vi > rj .

The posterior belief of facing an inexperienced consumer α̃i, given by eq. (3), reflects the con-

sumers’ optimal search decisions. Given the firms’ ex-ante symmetry, we are particularly interested

in the symmetric case (i.e., ri = rj = r), in which the two firms employ identical information

disclosure strategies, and as a result, consumers are indifferent in the search order. From eqs. (2)

and (3), it is evident that the expected payoff of the firm is increasing in the probability of being

a first mover (i.e., γi) since this increases α̃i. Therefore, symmetric payoffs that provide the same

information disclosure incentives require that the consumers are randomizing equally in the order

of approach (i.e., γi =
1
2). In what follows, we characterize such an equilibrium.

3.2.1 Symmetric equilibrium dislosure

Given the prior distribution F (v) = v, a symmetric equilibrium of the persuasion game is a mean-

preserving contraction (MPC, henceforth) of F (v) that satisfies the following condition:

G∗(v) = argmax
Gi∈MPC(F )

∫ 1

0
ui(v|G∗, r∗, r∗)dGi(v), (4)

where r∗ satisfies eq. (1). To derive such an equilibrium, we employ the price theoretic approach

of Dworczak and Martini (2019). Theorem 1 of their paper outlines sufficient conditions for the

optimality of G∗(v). It involves constructing an auxiliary function ϕ(v) that is convex and weakly

greater than ui(v). Dworczak and Martini show that if 1) supp(G) ⊂ {v ∈ [0, 1] : u(v) = ϕ(v)}; 2)∫ 1
0 ϕ(v)dG(v) =

∫ 1
0 ϕ(v)dF (v); and 3) G(v) is a MPC of F (v), then G(v) is an optimal disclosure

strategy.

Given the above sufficient conditions, it is easy to see that if all consumers are savvy, i.e., α = 0,

full disclosure is an equilibrium of this game, as already established by Hwang et al. (2019). Given

full disclosure by the competitor, the firm’s expected payoff ui(v|F ) = v is linear in the posterior

realizations and thus ϕ(v) = v and G(v) = F (v) satisfy the sufficient conditions for optimality.

2We restrict attention to posterior distributions that have no mass points. In Section 3.2.1 we characterize such a
symmetric equilibrium. Moreover, it is easily argued that there is no symmetric equilibrium distribution that contains
an atom as long as there is a positive probability of both firms being visited. Such distribution would give rise to
strict deviation incentives to redistribute mass to higher valuations.
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Intuitively, given the linearity of the payoff function, the firm’s expected payoff is simply the

expected value of the posterior mean, which is the same for any MPC of the prior. Therefore, the

firm cannot do any better than full disclosure.34

The presence of inexperienced consumers (i.e., α > 0) creates an upward jump in the firm’s

payoff function given by eq. (2). As long as the posterior valuation exceeds the reserve value r,

the firm is able to fully capture the inexperienced consumers. Thus, full disclosure is no longer an

equilibrium as the firms have strict incentives to conceal low valuations in order to increase their

chance of capturing these consumers. We characterize a symmetric equilibrium in two steps. First,

we treat the reservation value r as fixed and derive a symmetric equilibrium disclosure strategy.

Then, we use this equilibrium characterization to derive the equilibrium reservation value. The

following proposition describes a symmetric equilibrium disclosure for a fixed reservation value r.

Proposition 1 Given α > 0 and r ∈ [0, 1], there exists a symmetric equilibrium in which con-

sumers randomize symmetrically in the order of search, and the firms employ the following infor-

mation disclosure strategy:

G∗(v) =

{
min{v, v∗} if v < r

min{v∗ + β∗(v − r), 1} if v ≥ r,
(5)

where v∗ = max{
√
1−α2+r2α2−(1−rα)

α , 0} and β∗ = min{ 1−v∗

1+v∗−2r ,
1

1−2r}. Savvy consumers search

both sellers. The inexperienced consumers search both if the first posterior realization v < r and

buy from the first visited seller otherwise. For r > α
2 , v

∗ > 0, and the inexperienced consumers

search with positive probability. For r ≤ α
2 , v

∗ = 0, and the inexperienced consumers purchase from

the first visited seller with prob. 1.

As the intuition suggests, the symmetric equilibrium described by Proposition 1 involves strate-

gic information withholding in favor of realizations above the reserve value r. More interestingly,

the posterior distribution is atomless at r. This is because a mass point at r generates strict incen-

tives to shift weight to higher posterior values in order to discretely increase the savvy consumers’

demand. Instead, the firms redistribute weight uniformly above r. Figure 1a) illustrates the equi-

librium G∗(v) for a sufficiently high reserve value (i.e., r > α
2 ). The corresponding equilibrium

payoff and the auxiliary function supporting this equilibrium are depicted in the right panel b). In

equilibrium, the firms sacrifice high-value realizations, i.e., v ∈ (r + 1−v∗

β∗ , 1] in order to increase

the posterior expected values corresponding to low realizations v ∈ (v∗, r). Since high-value real-

izations make the firm more competitive in the savvy market segment, there is a limit to the firm’s

3There is a subtle difference between Hwang et al.’s setting and the current setting with α = 0 in that the savvy
consumers in our model may choose not to search. This gives rise to an additional no disclosure equilibrium with
G∗(v) = 1v{v ≥ 1

2
} that is absent in Hwang et al. (2019). In this equilibrium, the consumers do not search despite

their zero search cost since they do not anticipate obtaining valuable information. Such trivial equilibrium exists for
any α. The current characterization is focused on the more interesting equilibria that involve search by the savvy
consumers and (partial) information disclosure by the firms.

4Hwang et. al.(2020) show that whenever the expected payoff is strictly convex, the firm has strict incentives to
fully disclose as the payoff increase from high posterior realizations more than offsets the payoff reduction from low
realizations.
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(a) Equilibrium posterior distribution G∗(v) (b) Payoff u(v) and auxiliary function ϕ(v)

Figure 1: Equilibrium disclosure for r > α
2

willingness to make such a trade-off. As a result, the firm gives up on concealing values below v∗

and instead fully discloses in this region. Such low realizations result in search by all consumers,

while high realizations induce inexperienced consumers to discontinue their search.

As the reserve value decreases, it becomes easier to capture inexperienced consumers since it

requires less information withholding to generate posterior beliefs above r. Thus, for r below α
2 ,

v∗ = 0 and the firms disclose only values above r, ensuring that the first visited firm captures all

inexperienced consumers. For r = 0, capturing inexperienced consumers becomes costless, and thus

the firms revert back to full disclosure.

Note that the equilibrium information disclosure is non-monotonic in the reserve value. For

r = 1, all consumers as savvy, and the firms’ competition drives them to full disclosure. For

r = 0, the inexperienced consumers never search, and the sole competition for the savvy consumers

also results in full disclosure. Intermediate values of r result in partial dislosure due to the firms’

strategic incentives to capture inexperienced consumers. This picture, however, is incomplete since

the reserve price itself is an equilibrium object. Thus, to fully understand the impact of the

inexperienced consumers on the market, we next turn to deriving the equilibrium reserve value r∗.

To obtain r∗, we apply G∗(v) to eq. (1). The following proposition characterizes the corresponding

equilibrium reserve value.

Proposition 2 Let s ≤ 1
2 .

5 Then, the unique reservation value r∗ that corresponds to the sym-

metric information equilibrium G∗(v) is

5For s > 1
2
, the value from search always falls short of the cost. This is because max{v− r, 0} is convex, and thus,

by Jensen’s inequality
∫ 1

r
(v − r)dG(v) ≤

∫ 1

r
(v − r)dF (v) for any G ∈ MPC(F ). Therefore, the highest search value

corresponds to full disclosure and
∫ 1

r
(v − r)dF (v) ≤ 1

2
.
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r∗ =

{
1−α2+sα2−

√
2s(1−α2)+s2α2

1−α2 for s ≤ 1−α
2

1
2 − s for s ≥ 1−α

2 ,
(6)

which is continuous and decreasing in s and α. For s < 1−α
2 , there is a positive probability of

search by inexperienced consumers. For s ≥ 1−α
2 , the inexperienced consumers purchase from the

first visited firm.

Proposition 2 reveals intuitive comparative statics of the equilibrium reserve value r∗. Higher

search cost s, and a higher share of inexperienced consumers α reduce the value of search. The

search cost has a direct effect on the value from search as described by eq. (1), while α has an

indirect effect via the firms’ disclosure strategy. Intuitively, higher α mitigates firm competition,

causing the firms to withhold more information. In fact, if all consumers are inexperienced (i.e.,

α = 1), eq. (6) reveals that r∗ = 1
2 − s and there is no active search in equilibrium. Instead, as also

pointed out by Au and Whitmeyer (2021), the consumers purchase from the first visited firm.

3.2.2 Information provision and consumer welfare

Propositions 1 and 2 show how search costs affect information provision by the competing firms.

They reveal that the presence of inexperienced consumers also affects the information available to

savvy consumers in the market. In this section, we study how information provision and consumer

surplus change with the search cost.

Following Ganuza and Penalva (2010), we say that G∗(v|s) is more informative than G∗(v|s′)
if the former is a MPC of the latter.6 The corresponding payoff of the zero search cost consumers

is simply CSS = EG∗ [max{vi, vj}] while the high search cost consumers realize a payoff of

CSI = Pr(max{vi, vj} < r)E[max{vi, vj}|max{vi, vj} < r] + Pr(max{vi, vj} ≥ r)r.

The following Proposition highlights the impact of the search cost s on the informativeness of

G∗(v) and the payoff of both types of consumers.

Proposition 3 The search cost s has a non-monotonic impact on the informativeness of G∗(v|s)
with G∗(v|0) = G∗(v|12) = v. In particular, higher s results in a less (more) informative G∗(v) for

s < 1−α
2 (s > 1−α

2 ). As a result,

(a) CSS is decreasing in s for s < 1−α
2 and increasing in s for s > 1−α

2 .

(b) CSI is decreasing in s for all s.

The proposition reveals a non-monotonic impact of the search cost on the informativeness of the

equilibrium disclosure. For low search costs (s < 1−α
2 ), information provision decreases with the

6This definition coincides with Ganuza and Penalva’s integral precision criterion constrained to distributions with
the same finite mean. It also closely related to Blackwell informativeness as described by Brooks et al. (2022).
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search cost due to a reduction in the reservation value of inexperienced consumers, making it easier

for firms to capture these consumers through information garbling. However, once s exceeds 1−α
2 ,

all inexperienced consumers are captured by the first visited firm. Then, firms focus on competing

for savvy consumers by increasing informativeness in order to enhance product differentiation. The

savvy consumers’ payoff is non-monotonic in the search cost because they always benefit from

more information, which is hampered by the presence of uninformed consumers in the market.

In contrast, the inexperienced consumers’ payoff always decreases in the search cost because the

negative effect of a higher search cost outweighs the positive effect of greater information provision.

4 Endogenous pricing

So far, we have assumed that the firms are price takers and have control only over their information

disclosure strategy. In this section, we allow the firms to choose their prices in addition to their

information disclosure.

The consumers’ search and purchasing decisions generalize seamlessly from the symmetric price

model. In particular, given disclosure strategies Gi and prices pi, the consumers’ reserve value for

i’s product is given by ri − pi. Given symmetric strategies (G, p), each firm’s reserve value is r− p,

and the consumer’s sequencing and purchasing decisions coincide with the base model. The firm’s

payoff for a posterior realization v is simply ũi(v, p) = pui(v|G, r, r). Therefore, for any symmetric

price p, the equilibrium disclosure G∗ described in the previous section constitutes an equilibrium

of this extended game. Turning to the equilibrium price, p∗ must discourage unilateral deviations

to a different price pi. However, unlike a standard search model with fixed information disclosure,

we need to rule out not only simple price deviations but also “double” deviations, in which a price

deviation ∆ = pi − p∗ is accompanied by a deviation in the information revelation strategy. In

particular, given a strategy (p∗, G∗) by the competing firm, firm i’s deviation demand is:

ui(v,∆) =


max{0, v −∆} if v ≤ v∗ +∆

v∗ if v ∈ (v∗ +∆, r∗ +∆)

α̃∗ + (1− α̃∗)[v∗ + β∗(v − r∗ −∆)] if v ∈ [r∗ +∆,min{1 + v∗ − r +∆, 1}]
1 if v ≥ min{1 + v∗ − r +∆, 1},

(7)

where v∗ corresponds to the threshold given by Proposition 1 and r∗- the reservation value given

by Proposition 2. A price deviation ∆ results in a shift in the expected demand ui(v,∆), with price

increases resulting in a downward shift and price decreases- in an upward shift. Figure 2 illustrates

the impact of a small price increase (i.e., ∆ > 0) for v∗ = 0 (i.e., s ≥ 1−α
2 ). The higher price makes

the consumers less willing to purchase from the deviating firm for any value realization. This shifts

the demand down from the black to the red function, as depicted in Figure 2a). Figure 2b) includes

the auxiliary function ϕ(v,∆) corresponding to the optimal disclosure strategy under pi. Clearly,

the optimal disclosure region shifts to the right with supp(Gi) ⊂ [r∗+∆, 1−r∗+∆]. By Proposition

2, r∗ = 1
2 − s < 1

2 for s > 1−α
2 . Therefore, for small price deviations, v = 1

2 belongs to the optimal

disclosure region, implying that no disclosure, corresponding to putting all the mass on the prior
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(a) Demand impact of pi > p∗ (i.e., ∆ > 0) (b) Optimal disclosure region [r∗+∆, 1−r∗+∆]

Figure 2: Impact of a price increase for v∗ = 0

mean 1
2 , is an optimal strategy for the deviating firm. This results in an expected deviation payoff

of:

ũi(
1

2
, p∗,∆) = (p∗ +∆)

(
α̃∗ + (1− α̃∗)

1
2 − r∗ −∆

1− 2r∗

)
. (8)

No profitable price deviation ∆ > 0 exists if ũ(12 , p
∗,∆) is decreasing in ∆ for ∆ > 0. Given the

above expression, this requires that p∗ ≤ (1+α̃∗)(1−2r∗)
2(1−α̃∗) . Analogous analysis for a small downward

price deviation reveals that p∗ ≥ (1+α̃∗)(1−2r∗)
2(1−α̃∗) . Thus, p∗ = (1+α̃∗)(1−2r∗)

2(1−α̃∗) is the only possible pure-

strategy equilibrium price for s > 1−α
2 . The following proposition describes the pure-strategy

equilibrium price p∗ for the entire relevant region of the search cost.

Proposition 4 Let s ∈ [0, 12 ]. Then, given G∗(v) and r∗, the unique symmetric pure-strategy

equilibrium price is given by:

p∗(s) =

{
(1+α̃∗(1−v∗)2)
2(1+α̃∗(1−v∗)) if s < 1−α

2 ,
(1+α̃∗)(1−2r∗)

2(1−α̃∗) if s ≥ 1−α
2 ,

(9)

where v∗ and r∗ are characterized by Proposition 1 and 2, respectively, and α̃∗ = α(1+v∗)
α(1+v∗)+2(1−α) .

Moreover, p∗ is continous in s and

� for s ≤ 1−α
2 , p∗ is U-shaped in s with p∗(0) = p∗(1−α

2 ) = 1
2 .

� for s > 1−α
2 is strictly increasing in s with p∗(12) =

1
1−α .

To gain some preliminary insight, Figure 3 plots p∗ for α = 1
2 as a function of the search

cost. The figure also features the benchmark equilibrium price pfull info representing exogenous full

disclosure. While pfull info is always increasing in the search cost, p∗ features non-monotonicity due

11



Figure 3: Pure-strategy symmetric equilibrium price

to the strategic information disclosure. For very low values of the search cost, the equilibrium price

is decreasing in the search cost since the lower information provision in this region (see Proposition

3) and the high search propensity by the consumers lead to significant firm competition. A further

increase in the search cost mitigates competition since it decreases the likelihood of search by

inexperienced consumers. Thus, eventually, the price starts to increase with the search cost. At

s = 1
4 , inexperienced consumers under endogenous pricing stop searching and purchase from the

first visited firm, explaining the kink in p∗.

Comparing p∗ and pfull info reveals an interesting relationship between information disclosure

and pricing. For s = 0, the two prices coincide since the firms fully disclose in equilibrium and

all consumers engage in search. For low but positive values of the search cost, the firms offer a

lower equilibrium price compared to the full information benchmark to offset the lower information

provision in this region. The opposite is true for large search costs, where the equilibrium price

exceeds the full information benchmark. Having captured the inexperienced consumers via their

strategic information disclosure allows the firms to sustain a higher equilibrium price. Interestingly,

even though the firms fully disclose their value at s = 1
2 , p

∗ exceeds pfull info. This is likely driven

by the fact that price deviations are more profitable when the firms are able to strategically adjust

their information disclosure. Therefore, preventing such deviations requires a higher equilibrium

price.
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5 Appendix

Proof of Lemma 1.

Fix an equilibrium belief Gi(v), Gj(v), and the corresponding ri and rj satisfying eq. (1).

Suppose that when indifferent, consumers break indifference in favor of purchasing from the last

visited firm. The firm’s payoff is simply the expected sale probability given a posterior realization vi.

The savvy consumers always compare the two expected values and purchase from i with probability

Gj(vi). The sale probability to the inexperienced consumers depends on the relative values of ri

and rj . There are 3 cases to consider:

� ri > rj : then firm i is visited first. Since all consumers visit at least one firm, the probability

that the consumer is inexperienced conditional on visiting i is α̃i = α. If vi < rj , then all

consumers visit firm j and compare both valuations, resulting in an expected sale probability

of Gj(vi). If vi ≥ rj , the inexperienced consumers discontinue their search and purchase from

i, resulting in an expected sale probability of α+ (1− α)Gj(vi).

� ri < rj : then firm i is visited second. While the savvy consumers always visit i, the inex-

perienced ones visit i with probability Gj(ri), i.e., only if vj < ri. Thus, by Bayes’ rule, the

probability that the consumer is inexperienced conditional on visiting i is α̃i =
αGj(ri)

αGj(ri)+(1−α) .

If vi < ri, i realizes a sale only if vj < vi < ri, which would induce all consumers to visit.

Thus, the expected probability of sale is Gj(vi). If vi ≥ ri, the firm sells for sure to the

inexperienced consumers since they must have observed vj < ri in order to visit i. Therefore,

the expected probability of sale is α̃i + (1− α̃i)Gj(vi).

� ri = rj = r: then the consumer is indifferent in the order of search. Letting γi denote

the probability that the consumer approaches i first, the probability that the consumer is

inexperienced conditional on visiting i is α̃i =
α(γi+(1−γi)Gj(r))

α(γi+(1−γi)Gj(r))+(1−α) . For vi < r, i realizes

a sale only if vj < vi irrespective of the search order. The savvy consumers compare both

values, while the inexperienced consumers compare both only if i is visited first or vj < r.

In either case, a sale happens only if vj < vi, corresponding to an expected payoff of Gj(vi).

For vi ≥ r, firm i always sells to the inexperienced consumers since they either had already

visited j and discovered vj < r or will search no further once they observe vi ≥ r. Therefore,

the expected probability of sale is α̃i + (1− α̃i)Gj(vi).

Combining all three regions, we obtain the expected payoff given by eq. (2) and the correspond-

ing posterior belief of facing an inexperienced consumer given by eq. (3).

Proof of Proposition 1. The proof follows by construction. In particular, we derive a cdf

G∗(v) that solves eq. (4) for an arbitrary r by ensuring that it satisfies the following optimality

conditions outlined by Dworczak and Martini (2019).

Theorem 1 (Dworczak and Martini)

Suppose that F is a distribution function with supp(F ) = [0, 1]. Consider the following pro-

gramming problem:
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max
G

∫ 1

0
u(x)dG(x)

subject to the constraint that G is an MPC of F . A MPC G is a solution to the problem if

there exists a convex function ϕ : [0, 1] → R such that (i) ϕ(v) ≥ u(v) for all v ∈ [0, 1], (ii)

supp(G) ⊂ {v ∈ [0, 1] : u(v) = ϕ(v)}, and (iii)
∫ 1
0 ϕ(v)dG(v) =

∫ 1
0 ϕ(v)dF (v).

Let v′ ∈ [0, r], and suppose that the equilibrium posterior distribution G(v) takes the following

form:

G(v) =


v for v ≤ v′

v′ for v ∈ (v′, r)

v′ + β(v − r) for v ∈ [r, r + 1−v′

β ]

1 for v ≥ r + 1−v′

β = v′′.

(10)

Let

W (z) =

∫ z

0
[F (v)−G(v)]dv.

Then, G(v) is a MPC of F (v) = v iffW (0) = W (1) = 0 andW (z) ≥ 0 for all z ∈ (0, 1). Substituting

for G(v) from eq. (10) obtains:

W (z) =


0 for z ∈ [0, v′]
(z−v′)2

2 for z ∈ (v′, r]
(z−v′)2−β(z−r)2

2 for z ∈ (r, v′′]
(v′′−v′)2−β(v′′−r)2+(z−v′′)(z+v′′−2)

2 for z ∈ (v′′, 1]

(11)

W (z) is a piece-wise continuous function with W (0) = 0 for z ∈ [0, v′]. Moreover, W (z) is non-

negative for z ∈ [0, r], strictly concave for z ∈ (r, v′′], and strictly decreasing in z for z > v′′. This

implies that 1) there is at most one z̃ > v′ such that W (z̃) = 0 and 2) W (z) > 0 for all z < z̃.

Therefore, W (1) = 0 is necessary and sufficient for G(v) to be MPC of F (v). Simplifying W (1),

we obtain:

W (1) =
(1− v′)(1− v′ − β(1 + v′ − 2r))

2β

From the above expression, W (1) = 0 if and only if:

β =
1− v′

1 + v′ − 2r
= β̃. (12)

Threfore, β = β̃ is necessary and sufficient for G(v) given by eq. (10) to be MPC of F (c). Let

G̃(v) denote the resulting distribution. The corresponding payoff u(v) is
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u(v) =


v if v ≤ v′

v′ if v ∈ (v′, r)

α̃+ (1− α̃)(v′ + β̃(v − r)) if v ∈ [r, 1− r + v′]

1 for v ≥ 1− r + v′ = v′′.

(13)

We next derive the unique v′ such that G̃(v) satisfies the sufficient conditions given by Theorem

1. By construction, supp(G̃) = [0, v′]∪ [r, v′′] and condition (ii) requires that the auxiliary function

ϕ(v) = u(v) in this region. Moreover, ϕ(v) must be affine for v ∈ [v′, 1] since G̃(v) is an MPC of

F (v) in this region and strict convexity of ϕ(v) implies
∫ 1
v′ ϕ(v)dG(v) <

∫ 1
v′ ϕ(v)dF (v), contradicting

condition (iii). Therefore, ϕ(v) must take the following form:

ϕ(v) =

{
v if v < v′

α̃+ (1− α̃)(v′ + β̃(v − r)) if v ≥ v′.
(14)

The above ϕ(v) is uniquely defined to satisfy Properties (ii)-(iii) of Theorem 1. It remains to

ensure that ϕ(v) is convex and ϕ(v) ≥ u(v) for all v ∈ [0, 1]. We consider two possibilities for v′,

namely v′ > 0 and v′ = 0.

For v′ > 0, ϕ(v) ≥ u(v) and the convexity of ϕ(v) requires

β̃ =
α̃(1− v′)

(1− α̃)(r − v′)
, (15)

and

β̃ ≥ 1

1− α̃
. (16)

Combining eqs. (12) and (15), we obtain:

r − v′ = α̃(1− r). (17)

Therefore, by eq. (15), β̃ = 1−v′

(1−α̃)(1−r) ≥
1

1−α̃ since r ≥ v′, establishing (16). Thus, ϕ(v) satisfies

the convexity requirement. By eq. (3), α̃ = α(1+v′)
α(1+v′)+2(1−α) since G̃(r) = G̃(v′) = v′. Substituting

for α̃ in eq. (17), we obtain:

v′ = r − α(1 + v′)

α(1 + v′) + 2(1− α)
(1− r) (18)

Notice that the left-hand side is increasing in v′ while the right-hand side is decreasing in v′.

The unique solution to eq. (18) is v∗ =
√
1−α2+r2α2−(1−rα)

α with corresponding β∗ = 1−v∗

1+v∗−2r that

satisfies eqs. (12) and (15). Note that v∗ > 0 iff r > α
2 .

For r ≤ α
2 , the only candidate solution is v′ = 0, corresponding to an affine ϕ(v). To ensure

that ϕ(v) ≥ u(v) ≥ 0, by eq. (14), β̃ ≤ α̃
(1−α̃)r . By eq. (12), β̃ = 1

1−2r and by eq. (3), α̃ = α
2−α .

Therefore, β ≤ α̃
(1−α̃)r =⇒ r ≤ α

2 . This confirms that v∗ = 0 and β∗ = 1
1−2r is the unique solution

for r ≤ α
2 .
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If follows that G(v), u(v), and ϕ(v) given by eqs. (10), (13), and (14), respectively, satisfy

Theorem 1 if and only if v′ = max{
√
1−α2+r2α2−(1−rα)

α , 0} = v∗ and β̃ = min{ 1−v∗

1+v∗−2r ,
1

1−2r} = β∗.

This completes the proof.

Proof of Proposition 2. We consider the two regions of r given by Proposition 1.

� r > α
2 . Then, v

′′(r∗, β∗) = r∗ + 1−v∗

β∗ and by eqs. (1) and (10), r∗ solves

∫ v′′(r∗,β∗)

r∗
(v − r∗)β∗dv =

β∗(v′′(r∗, β∗)− r∗)2

2
=

(1− v∗)2

2β∗ = s

Substituting for v∗ and β∗ from Proposition 1 and solving for r∗ obtains:

r∗ =
1− α2 + sα2 −

√
2s(1− α2) + s2α2

1− α2

Since the equilibrium information disclosure requires r∗ > α
2 =⇒ s < 1−α

2 , the above expres-

sion is the equilibrium reserve value for s < 1−α
2 .

� r ∈ [0, α2 ]. Then, v
∗ = 0 and v′′(r∗, β∗) = 1− r∗. Therefore, by eqs. (1) and (10), r∗ solves

∫ 1−r∗

r
(v − r∗)

1

1− 2r∗
dv =

1

2
− r∗ = s =⇒ r∗ =

1

2
− s

Since the equilibrium information disclosure requires that 0 ≤ 1
2 − s ≤ α

2 =⇒ s ∈ [1−α
2 , 12 ],

the above expression is the equilibrium reserve value for s ∈ [1−α
2 , 12 ].

Proof of Proposition 3.

Let 0 < s1 < s2 <
1
2 . First, we show that G∗(v|s2) is a mean-preserving contraction of G∗(v|s1)

if s2 ≤ 1−α
2 and a mean-preserving spread if s1 ≥ 1−α

2 . Let

W ∗(z|s) =
∫ z

0
[F (v)−G∗(v|s)]dv, (19)

and

H(z) =

∫ z

0
[G∗(v|s2)−G∗(v|s1)]dv. (20)

By Bayes’ plausibility, W (0|s) = W (1|s) and W (z|s) ≥ 0 for all z and s. Since H(z) =

W ∗(z|s1) − W ∗(z|s2), H(0) = H(1) = 0. We want to show that H(z) ≤ 0 for s2 ≤ 1−α
2 and

H(z) ≥ 0 for s1 ≥ 1−α
2 .

Note that for s ≤ 1−α
2 , v∗(s) and r∗(s), and β∗(s) are strictly decreasing in s. Moreover, the

upper bound of the distribution G∗(v), v′′(s) = 1− (r∗−v∗) is strictly decreasing in s. This implies

that G∗(v|s2) ≤ G∗(v|s1) for v ≤ r∗(s2) and 1 = G∗(v|s2) > G∗(v|s1) for v ∈ [v′′(s2), v
′′(s1)).
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Clearly, H(z) ≤ 0 for z ≤ r∗(s2). Suppose that there exists ẑ ∈ (r∗(s2), 1) such that H(ẑ) > 0.

By eq. (20), this requires G∗(z|s2) > G∗(z|s1) for some z̄ ∈ (r∗(s2), ẑ). Note that G∗(r∗(s2)|s2) =
v∗(s2) < min{r∗(s2), v∗(s2)} = G∗(r∗(s2)|s1) and G∗(v′′(s2)|s2) = 1 > G∗(v′′(s2)|s1). Moreover,

G∗(z|s2) is affine for z ∈ (r∗(s2), v
′′(s2)) while G∗(z|s1) is convex. This implies that G∗(z|s2) and

G∗(z|s1) intersect exactly once in [r∗(s2), v
′′(s2)]. Thus, G∗(z|s2) > G∗(z|s1) for all z ≥ ẑ > z̄.

This, in turn, implies that H(z) > 0 for all z ∈ [ẑ, 1], contradicting H(1) = 0. Therefore, H(z) ≤ 0

for all z, establishing that G∗(v|s2) is a mean-preserving contraction of G∗(v|s1) if s2 ≤ 1−α
2 .

Analogously, for s > 1−α
2 , v∗ = 0, r∗(s) and β∗(s) are decreasing in s, while v′′(s) is increasing

in s. This implies that G∗(v|s2) ≥ G∗(v|s1) for v ≤ r∗(s1) and 1 = G∗(v|s1) > G∗(v|s2) for

v ∈ [v′′(s1), v
′′(s2)).Thus, H(z) ≥ 0 for z ≤ r∗(s1). Moreover, the linearity of G∗(z|s2) and the

convexity of G∗(z|s1) for z ∈ (r∗(s2), v
′′(s1)] implies that G∗(z|s2) and G∗(z|s1) intersect exactly

ones. Therefore, H(z̃) < 0 for some z̃ ∈ (r∗(s1), v
′′(s1)) implies that H(z) < 0 for all z ∈ (z̃, 1],

contradicting H(1) = 0. Therefore, H(z) ≥ 0 for all z, establishing that G∗(v|s2) is a mean-

preserving spread of G∗(v|s1) if s2 ≤ 1−α
2 .

To prove (a), let q(vi|s) =
∫ 1
0 max{vi, vj}dG(vj |s) and CSS(s) = EG∗ [max{vi, vj}] =

∫ 1
0 q(vi|s)dG∗(vi|s).

Note that q′(vi|s) = G∗(vi) and q′′(vi|s) = g∗(vi) ≥ 0.

Let G(v|s1) be a MPC of G(v|s2). To prove part (a), it suffices to show that CSS(s1) < CSS(s2).

The convexity of max{vi, vj} implies that q(vi|s1) < q(vi|s2) and the convexity of q(vi|s) implies

that
∫ 1
0 q(vi|s1)dG∗(vi|s1) <

∫ 1
0 q(vi|s1)dG∗(vi|s2). Combining the two inequalities, we obtain:

CSS(s1) =

∫ 1

0
q(vi|s1)dG∗(vi|s1) <

∫ 1

0
q(vi|s1)dG∗(vi|s2) <

∫ 1

0
q(vi|s2)dG∗(vi|s2) = CSS(s2).

This establishes (a) since higher s generates a MPC for s < 1−α
2 and a MPS for s > 1−α

2 .

For part (b), substituting for G∗(v) from Proposition 1 in the expression for CSI obtains:

CSI =

∫ v∗

0
2y2dy − (1− (v∗)2)r∗ =

2

3
(v∗)3 + r∗ − v∗r∗. (21)

Since r∗ is decreasing in s, it suffices to show that the above expression is increasing in r∗.

Taking a total derivative of eq. (21) with respect to r∗ obtains:

dCSI

dr∗
= 1− (v∗)2 − 2v∗(r∗ − v∗)

∂v∗

∂r∗
(22)

Recall that v∗ satisfies eq. (18). Solving for r∗ from the equation, we obtain r∗ = 2v∗+α+α(v∗)2

2(1+αv∗)

and r∗ − v∗ = α(1−(v∗)2)
2(1+αv∗) . Moreover, implicitly differentiating eq. (18) yields ∂v∗

∂r∗ = 2(1+αv∗)2

(1+αv∗)2+1−α2 .

Substituting for r∗ − v∗ and ∂v∗

∂r∗ in eq. (22) and simplifing obtains:

dCSI

dr∗
= (1− (v∗)2)

1− (αv∗)2 + 1− α2

(1 + αv∗)2 + 1− α2
> 0.

This proves that dCSI
ds∗ = dCSI

dr∗
dr∗

ds < 0, establishing part (b).

Proof of Proposition 4.
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Let G∆(v) denote the optimal disclosure given a price deviation ∆ = pi − p∗. Then, the corre-

sponding deviation demand is EG∆
[ui(v,∆)] where ui(v,∆) is given by eq. (7). The corresponding

deviation payoff is EG∆
[ũi(v,∆)] = (p∗ + ∆)EG∆

[ui(v,∆)]. Let ∆∗ = argmax
∆

EG∆
[ũi(v,∆)]. No

deviation from p∗ requires that 0 ∈ ∆∗. To find such p∗, we first derive the optimal disclosure

strategy G∆(v).

Consider the following convex auxiliary function ϕ(v,∆) that satisfies ϕ(v,∆) ≥ ui(v,∆):

ϕ(v,∆) =

{
max{0, vi −∆} for v < v̂ +∆,

α̃∗ + (1− α̃∗)[v∗ + β∗(v − r∗ −∆)] for v ≥ v̂ +∆,
(23)

where v̂ is set to ensure that continuity of ϕ(v,∆), i.e.,

v̂ =

{
r∗ − α̃∗

(1−α̃∗)β∗ if v∗ = 0,

v∗ if v∗ > 0.
(24)

Given ϕ(v,∆), we can derive the optimal information structure and the corresponding optimal

deviation payoff. We consider the case of v∗ = 0 (i.e., s < 1−α
2 ) and v∗ > 0 (i.e., s ≥ 1−α

2 )

separately.

� v∗ = 0 (i.e., s ≥ 1−α
2 )

In this case, v̂ ≤ 0 since r∗ ≤ α̃∗

(1−α̃∗)β∗ (see proof of Proposition 1). The optimal information

structure depends on ∆ as follows:

– ∆ ≤ min{−v̂, 12 − r∗}
By eq. (23), ϕ(v,∆) is affine since v̂+∆ ≤ 0. In this case, G∆(v|v∗ = 0) = 1(v ≥ 1

2), i.e.,

a mass point at 1
2 , is an optimal disclosure strategy. To see this, note that ∆ ≤ 1

2 − r∗

ensures that 1
2 ≥ r∗ +∆. Moreover, if ∆ ≥ r∗ − 1

2 ,
1
2 ∈ [r∗ +∆, 1− r∗ + v∗ +∆] and by

eqs. (7) and (23), ϕ(12 , pi) = u(12 , pi). Thus, G∆(v|v∗ = 0) = 1(v ≥ 1
2) and an auxiliary

function ϕ(v,∆) satisfies Theorem 1. For ∆ ≤ r∗ − 1
2 < 0, 1

2 > 1 − r∗ + ∆. Then,

G∆(v|v∗ = 0) = 1(v ≥ 1
2) and an auxiliary function ϕ̂(v,∆) = 1 satisfy Theorem 1.

– min{−v̂, 12 − r∗} < ∆ ≤ max{1− 2r∗ + v̂, 12 − r∗}
If −v̂ > 1

2 − r∗, then 1
2 − r∗ > 1− 2r∗+ v̂ and this region for ∆ is empty. If −v̂ < 1

2 − r∗,

then max{1− 2r∗ + v̂, 12 − r∗} = 1− 2r∗ + v̂. Then, for ∆ > min{−v̂, 12 − r∗}, ϕ(v,∆) is

piece-wise linear and ϕ(v,∆) = ui(v,∆) for v ∈ [0, v̂+∆]∪ [r∗+∆, 1−r∗+∆]. Note that

E[v|v > v̂+∆] = 1+v̂+∆
2 ∈ [r∗+∆, 1−r∗+∆) since 2r∗−1+ v̂ < −v̂ < ∆ ≤ 1−2r∗+ v̂.

Then, the following MPC of F (v) satisfies Theorem 1 and is an optimal disclosure

strategy:

G∆(v|v∗ = 0) =

{
min{v, v̂ +∆} if v < 1+v̂+∆

2

1 if v ≥ 1+v̂+∆
2 .

(25)

– ∆ > max{1− 2r∗ + v̂, 12 − r∗}
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Then, E[v|v > max{v̂+∆, 0}] = 1+max{v̂+∆,0}
2 < r∗+∆. Thus, putting a mass point on

1+max{v̂+∆,0}
2 is no longer optimal. Let’s define

ṽ = min{2[r∗ +∆− 1

2
], 1}, (26)

which solves E[v|v ≥ ṽ] = 1+ṽ
2 = min{r∗ + ∆, 1}. Clearly, ṽ > max{v̂ + ∆, 0}. Then,

let’s define the following auxiliary function:

ϕ̃(v,∆) =

{
0 for v ≤ ṽ

α̃∗

1−r∗−∆(v − ṽ) for v > ṽ.
(27)

Notice that ϕ̃(v,∆) = ui(v,∆) for v ∈ [0, ṽ]∪ (r∗+∆). Moreover, by eq. (24), α̃∗

1−r∗−∆ =
r∗−v̂

1−r∗−∆(1 − α̃∗)β∗ and by eqs. (7) and (27), ϕ̃(v,∆) ≥ ui(v,∆) for all v if and only

if r∗−v̂
1−r∗−∆ ≥ 1 =⇒ ∆ ≥ 1 − 2r∗ + v̂. Therefore, for ∆ ≥ max{1 − 2r∗ + v̂, 12 − r∗},

ϕ̃(v,∆) ≥ ui(v,∆) and the following MPC of F (v) satisfies Theorem 1:

G∆(v|v∗ = 0) =

{
min{v, ṽ} if v < min{r∗ +∆, 1}
1 if v ≥ min{r∗ +∆, 1}.

(28)

Given the characterized G∆(v|v∗ = 0) and the payoff ui(v,∆) from (7), the expected deviation

demand is:

EG∆
[ui(v,∆)] =


α̃∗ + (1− α̃∗)

1
2
−r∗−∆

1−2r∗ for ∆ ≤ min{−v̂, 12 − r∗}
1−α̃∗

1−2r∗
(1−v̂−∆)2

2 for ∆ ∈
(
min{−v̂, 12 − r∗},max{1

2 − r∗, 1− 2r∗ + v̂}
)

2α̃∗(max{1− r∗ −∆, 0}) for ∆ ≥ max{1
2 − r∗, 1− 2r∗ + v̂}

(29)

The above expression is continuous in ∆. Note that min{−v̂, 12−r∗} > 0 and EG∆
[ũi(v,∆)|∆ ≤

min{−v̂, 12−r∗}] is strictly concave in ∆ with a unique maximizer ∆̂ = 1−2r∗

2(1−α̃∗)

[
1+α̃∗

2 − 1−α̃
1−2r∗ p

∗
]
.

Thus, a necessary condition for ∆∗ = 0 is ∆̂ = 0 =⇒ p = (1+α̃∗)(1−2r∗)
2(1−α̃∗) = p∗.

It remains to establish that p∗ also prevents larger upward deviations of ∆ > min{−v̂, 12−r∗}.
The intermediate region in eq. (29) exists if and only if −v̂ < 1

2 − r∗. In this case,

∂EG∆
[ũi(v, pi)|∆ ∈ (−v̂, 1− 2r∗ + v̂)]

∂∆
=

1− α̃∗

1− 2r∗
(1− v̂ −∆)(1− v̂ − 2p∗ − 3∆)

sign
=

= (1− v̂ − 2p∗ − 3∆) ≤

≤ (1− 2p∗ + 2v̂) =

= −4
α̃∗ − (1 + α̃∗)r∗

1− α̃∗ ≤ 0 since r∗ ≤ α̃∗

1 + α̃∗ =
α

2
.

This establishes no profitable deviation to ∆ ∈ (min{−v̂, 12 − r∗},max{1
2 − r∗, 1− 2r∗ + v̂}].

Finally,
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∂EG∆
[ũi(v, pi)|∆ ≥ max{1

2 − r∗, 1− 2r∗ + v̂})]
∂∆

= 2α̃∗(−p∗ − 2∆ + 1− r∗) ≤

≤ 2α̃(r∗ − p∗) = 2α̃
4r∗ − (1 + α̃∗)

2(1− α̃∗)
≤

≤ −α̃∗ (1− α̃∗)

(1 + α̃∗)
< 0 since r∗ ≤ α̃∗

1 + α̃∗

Therefore, p∗ = (1+α̃∗)(1−2r∗)
2(1−α̃∗) is necessary and sufficient for ∈ argmax

∆
EG∆

[ũi(v,∆)] and is

the unique summetric equilibrium price for v∗ = 0.

� v∗ > 0 (i.e., s < 1−α
2 )

In this case, v̂ = v∗ > 0 and 1− 2r∗ + v∗ > 0. The optimal information structure depends on

∆ as follows:

– ∆ ≤ max{−v∗, r∗ − 1
2 − v∗}

In this case, G∆(v|v∗ > 0) = 1(v ≥ 1
2) is an optimal disclosure strategy. To see this

note, that ∆ ≤ max{−v∗, r∗ − 1
2 − v∗} < 1

2 − r∗ since 1 − 2r∗ + v∗ > 0. For r∗ > 1
2 ,

∆ ≤ r∗ − 1
2 − v∗ =⇒ 1

2 ≥ 1 − r∗ + v∗ + ∆. Then, G∆(v|v∗ > 0) = 1(v ≥ 1
2) and

an auxiliary function ϕ̂(v,∆) = 1 satisfy Theorem 1. If ∆ ∈ (r∗ − 1
2 − v∗,−v∗] ̸= ∅,

ϕ(v,∆) is affine and ϕ(12 , pi) = ui(
1
2 , pi) since 1

2 < 1 − r∗ + v∗ + ∆. Then, ϕ(v,∆) and

G∆(v|v∗ > 0) = 1(v ≥ 1
2) satisfy Theorem 1.

– max{−v∗, r∗ − 1
2 − v∗} < ∆ ≤ 1− 2r∗ + v∗

Then, ϕ(v,∆) is piece-wise linear and ϕ(v,∆) = ui(v,∆) for v ∈ [0, v∗+∆]∪ [r∗+∆, 1−
r∗ + v∗ +∆]. Note that E[v|v > v∗ +∆] = 1+v∗+∆

2 ∈ [r∗ +∆, 1− r∗ + v∗ +∆). Then,

the following MPC of F (v) satisfies Theorem 1 and is an optimal disclosure strategy:

G∆(v|v∗ = 0) =

{
min{v, v∗ +∆} if v < 1+v∗+∆

2

1 if v ≥ 1+v∗+∆
2 .

(30)

– ∆ > 1− 2r∗ + v∗

Then, E[v|v > v∗ +∆] < r∗ +∆ and, thus, putting a mass point at 1+v∗+∆
2 is no longer

optimal. Let’s define the following auxiliary function:

ϕ̄(v,∆) =

{
max{v −∆, 0} for v ≤ ṽ

ṽ −∆+ γ(v − ṽ) for v > ṽ,
(31)

where ṽ > v∗ + ∆ is defined by eq. (26) and γ = α̃∗+(1−α̃∗)v∗−ṽ+∆
1−r∗−∆ . By construction,

ϕ̄(v,∆) is continuous and concides with ui(v,∆) for v ∈ [0, v∗ + ∆] ∪ (r∗ + ∆). Note

that ṽ > v∗ +∆ implies that ϕ(ṽ, pi) > ϕ̄(ṽ, pi) = ṽ −∆. Then, since both ϕ(v,∆) and

ϕ̄(v,∆) are affine for v ≥ ṽ and ϕ(r∗ +∆, pi) = ϕ̄(r∗ +∆, pi) = ui(v,∆), it follows that

ϕ̄(v,∆) is increasing faster than ϕ(v,∆) for v ≥ ṽ, i.e., γ > β∗(1 − α∗). This, in turn,
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implies that ϕ(v,∆) ≥ ui(v,∆) for all v. Then, ϕ̄(v,∆) and the following MPC of F (v)

satisfy Theorem 1:

G∆(v|v∗ > 0) =


min{v,∆} for v < ∆+ṽ

2

ṽ for v ∈ [∆+ṽ
2 ,min{r∗ +∆, 1})

1 for v ≥ min{r∗ +∆, 1}.
(32)

Given the characterized G∆(v|v∗ > 0) and the payoff ui(v,∆) from (7), the expected deviation

demand is:7

EG∆
[ui(v,∆)] =



1 for ∆ ≤ r∗ − 1
2 − v∗

v∗ + (1 + α̃∗)
(
1
2 − v∗ −∆

)
for ∆ ∈ (r∗ − 1

2 − v∗,−v∗]
(1−∆)2+α̃∗(1−v∗−∆)2

2 for ∆ ∈
(
max{−v∗, r∗ − 1

2 − v∗}, 1− 2r∗ + v∗
)

(2r∗+∆−1)2

2 + for ∆ ∈ (1− 2r∗ + v∗, 1− r∗]

+2(1− r∗ −∆) (v∗ + (1 + α̃∗)(r∗ − v∗))
(max{1−∆,0})2

2 for ∆ > 1− r∗.

(33)

The above expression is continuous in ∆ and 0 ∈
(
max{−v∗, r∗ − 1

2 − v∗}, 1− 2r∗ + v∗
)
.

Differentiating EG∆
[ũi(v,∆)|∆ ∈ (max{−v∗, r∗− 1

2 − v∗}, 1− 2r∗+ v∗)] obtains the following

expression:

(1 + α̃∗)(1−∆) + α̃∗v∗

2

[
(1−∆)2 + α̃∗(1− v∗ −∆)2

2[(1 + α̃∗)(1−∆) + α̃∗v∗]
− 2(p∗ +∆)

]
The first term is non-negative since ∆ < 1. It is also straighforward to verify that the first term

in the brackets is decreasing in ∆ for ∆ < 1− 2r∗+ v∗ =⇒ 1−∆ > 2r∗− v∗ > v∗. Therefore,

there is at most one critial point ∆̂ in this region that maximizes the expected deviation

payoff. Since no profitable deviation requires ∆̂ = 0, it follows that p∗ = (1+α̃∗(1−v∗)2)
2(1+α̃∗(1−v∗)) is a

necessary condition for preventing a profitable price deviation. It remains to establish that

p∗ prevents large price deviations by showing that EG∆
[ũi(v, pi)] is strictly increasing in ∆

for ∆ < 0 and strictly decreasing in ∆ for ∆ > 0.

From the discussion above, this clearly holds for ∆ ∈ (max{−v∗, r∗ − 1
2 − v∗}, 1− 2r∗ + v∗)].

For ∆ ≤ r∗ − 1
2 − v∗ < 0, E[ũi(v,∆)] = (p∗ + ∆) is strictly increasing in ∆. For ∆ ∈

(r∗ − 1
2 ,−v∗,−v∗] < 0,

∂EG∆
[ũi(v, pi)|∆ ∈ (r∗ − 1

2 ,−v∗,−v∗]

∂∆
= v∗ + (1 + α̃∗)

(
1

2
− v∗ − 2∆− p∗

)
≥

≥ (2 + α̃∗)v∗ + (1 + α̃∗)

(
1

2
− p∗

)
≥ 0 since p∗ ≤ 1

2
7The expected demand takes into account that for v∗ > 0, β∗ = 1+α̃∗

1−α̃∗ (by eqs. (15) and (17)) and α̃∗ + (1 −
α̃∗)[v∗ + β∗(v∗ − r∗)] = v∗, which follows by the continuity of ϕ(v) given by eq. (14).
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To establish the comparative statics with respect to s, note that r∗(0) = 1 and r∗(1−α
2 ) = α

2 ,

which by Proposition 1 leads to v∗(0) = 1 and v∗(1−α
2 ) = 0. Thus, by eq. (9) it follows immediately

that p∗(0) = p∗(1−α
2 ) = 1

2 . To show that p∗ is U − shaped in s for s < 1−α
2 , note that dp∗

ds = ∂p∗

∂v∗
dv∗

ds ,

where by Proposition 1 and 2, dv∗

ds = ∂v∗

∂r∗
∂r∗

∂s < 0. Therefore, dp∗

ds

sign
= −∂p∗

∂v∗ . Substituting for α̃∗ in

p∗ obtains:

p∗ =
2− α(v∗)2(1− v∗)

2[2 + αv∗(1− v∗)]
.

Differentiating p∗ with respect to v∗ obtains:

∂p∗

∂v∗
=

2[3(v∗)2 − 1]− α(v∗)2(1− v∗)2

2[[2 + αv∗(1− v∗)]2

Clearly, ∂p∗(v∗=1)
∂v∗ > 0 and ∂p∗(v∗=0)

∂v∗ < 0, implying that dp∗(0)
ds < 0 and

dp∗( 1−α
2

)

ds > 0. Moreover,
∂2p∗

∂2v∗ = −2α[3v∗(2−α)+α(1+3α(v∗)2+(v∗)3)]
[2+αv∗(1−v∗)]2 < 0, implying that p∗(s) is convex in s. Since p∗(0) =

p∗(1−α
2 ) = 1

2 , this establishes that p
∗(s) is U-shaped in s.

For s ≥ 1−α
2 , substituting for r∗ given by Proposition 2 obtains p∗(s) = s

(1−α) , which is strictly

increasing in s with p∗(12) =
1

1−α .
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