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Abstract

We study the incentives from a two-sided platform to segment the market by providing personalized

search results. In our environment, a monopolistic platform matches sellers with buyers. Upon being

matched, each pair of buyer and seller negotiate prices. If they choose to transact, the platform receives a

commission fee proportional to the value of the transaction plus a flat fee per transaction. The platform

is assumed to have full information over customers’ and sellers’ outside options. We derive sufficient

conditions under which the platform’s optimal matching is suboptimal from the perspective of buyers

and sellers.

Keywords: Market Segmentation, Information Design, Two-sided markets

1 Introduction

With the proliferation of online marketplaces, such as Amazon and eBay, many expected that information

frictions in these markets would disappear in the long run, thus improving customers’ welfare. But theoretical

and empirical research have emerged suggesting that platforms may have incentives to obfuscate information

or segment the market in a way that could reduce customers’ welfare. In this article, we conduct a theoretical

analysis of a type of market distortion that has been overlooked by the literature, which occurs when the

platform steers customers towards certain products based on their willingness to pay. We show that, in an

environment in which the platform can discriminate search results, but cannot choose the prices of the goods

sold by third-party sellers through its platform, the platform may have incentives to match those with higher

willingness to pay to more expensive products in a way that will tend to generate more transactions than

the socially optimum. This occurs if part of the commission fee charged by the platform is proportional to

the product’s price, as it is common in many online marketplaces, such as in Amazon.com and eBay.com.1

We also present some conditions under which the platform is more likely to implement inefficient matches.

This research is motivated by growing concerns that e-commerce websites may be discriminating search

results based on users’ data. As an example, a study in 2012 found that the travel website Orbitz offered

consistently higher prices for hotels to Mac users, as opposed to Windows users (Mattioli (2012)). Other

studies, such as Hannak et al. (2014), have also found evidence that many e-commerce websites practice
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personalized search results as a function of customers’ cookies and browsing history. In 2000, it became

public that Amazon.com was conducting A/B testing experiments on the prices of DVDs. Such policy was

then quickly abandoned after many customers complained about the practice (Weiss (2000)).

Motivated by this empirical evidence, we build a theoretical framework in which a platform that inter-

mediates transactions dictates one-to-one matches between buyers and sellers in exchange for a commission

fee per sale, part of which is proportional to the final price chosen by the seller. We show that the plat-

form has incentives to maximize the number of transactions, which will tend to be greater than the number

of transactions that maximize buyers’ and sellers’ total surplus. The way the platform would create this

excessive number of transactions is by allocating sellers with high production costs to customers with high

willingness to pay, while allocating sellers with low production costs to customers with low willingness to

pay, so as to increase market prices and, therefore, the commissions paid to the platform, and maximize

the total number of transactions. For such a policy to be feasible, the platform must have information on

customers’ willingness to pay, as well as sellers’ cost structure or willingness to sell.

The intuition as to why a platform would want to implement such a policy can be best described with

the help of a simple example. Consider an economy with 5 sellers and 5 buyers. Each seller is willing to

sell only one unit of their product, and each buyer has unitary demand. Each seller sj ∈ {s1, s2, · · · , s5}
sells a product with quality qj ≥ 0, with a production cost of cj ≥ 0, where cj could also be interpreted as

the seller’s outside option, i.e., the price at which they can sell their product outside the platform. Each

buyer bi ∈ {b1, b2, · · · , b5} has an outside option ui ≥ 0. In figure 1 we order sellers’ net value, qj − cj , in

descending order, and buyers’ outside option, ui, in ascending order.
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Figure 1: A plot depicting the net value by each seller, and the outside option from each buyer.

From figure 2, we can see that the total surplus from this economy is maximized when buyers b1, b2, b3

(i.e., those with highest willingness to pay) transact with sellers s1, s2, s3 (those who generate most net

value), and the remaining buyers and sellers do not transact, so that only 3 transactions take place in the
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economy. In this case, the total surplus could be approximated by the blue region from the graph.
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Figure 2: The plot depicts an approximation of the total surplus obtained when agents are matched so as
to maximize the total number of transactions.

But the platform could, in principle, induce 5 transactions by matching each buyer bi ∈ {b1, b2, · · · , b5}
with seller s6−i. This matching is displayed in figure 2 by the curved arrows. Because in each match the net

value created by the seller surpasses the customer’s outside option, each match should yield a transaction,

thus generating a total surplus given by the blue area minus the deadweight loss given by the grey area in

the figure.

Assume now that the platform only collects a fixed fee per transaction that does not depend on the final

price negotiated between buyer and seller, and assume that all products have the same quality qj . In this

case, the platform would have incentives to maximize the total number of transactions. Zhao et al. (2011)

have shown that the number of transactions can be maximized by iteratively matching sellers with low costs

with buyers with low willingness to pay, until a new match generates no positive surplus. In other words,

they propose a matching criterion that prioritizes finding potential buyers to sellers with low production

costs (i.e., they prioritize finding matches to more efficient sellers). So after implementing their algorithm,

we have that if a seller with cost cj manages to sell its product, a seller with cost c′j < cj will also be able

to sell its product. It can be shown that the final allocation obtained after implementing this algorithm is

not necessarily Pareto efficient. So this result already illustrates how the platform may have incentives to

sacrifice efficiency in exchange for higher revenues.

But we show that, to maximize the total number of transactions, the platform could implement an

alternative and even more inefficient algorithm: it could prioritize securing feasible matches to sellers with

high costs, by iteratively matching them with buyers with high willingness to pay, until a new match yields

no transaction. This could lead to situations in which a seller with a high cost manages to sell its product,

but a seller with low cost (or low outside option) does not. Though the platform has no strict incentives to

adopt this more inefficient strategy in this scenario where commissions do not depend on the value of the
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transaction, things change when the platform also charges a commission fee that is proportional to the final

price paid by customers, as it is common in many e-commerce websites, such as Amazon.com or eBay.com.

We show that, in this case, the platform will have strict incentives to secure good matches to high cost

sellers so as to inflate market prices, which in turn increases the commissions received by the platform per

transaction. So in our example, if the commission fees are sufficiently small, it may be beneficial for the

platform to match each buyer bi ∈ {b1, b2, · · · , b5} with seller s6−i, so as to inflate market prices, and thus,

the commissions paid by sellers.

We also provide a definition of stability and derive conditions under which there is a matching that

maximizes buyers’ and sellers’ surplus and is more likely to be stable than any other matching (including

profit-maximizing ones). Stability is a desirable property in this market, as it partially captures the platform’s

concerns about its reputation. Indeed, if customers were systematically matched with “bad sellers” in the

sense that they are able to form better incentive-compatible matches on their own, they would probably be

less inclined to revisit the platform in the future.

Notice that in our environment price negotiations between buyers and sellers happen after the match is

determined by the platform. Though this would be more consistent with market structures in which some

transactions are made through auctions (e.g., eBay.com) or bargaining (e.g., Upwork.com or Zillow.com),

our results also apply to situations in which sellers first commit to a price, and then the platform determines

the matching, and sellers are not sophisticated enough to predict the effect of their prices on the match that

they get from the platform; or to situations in which, though sellers can predict the effect of prices on the

matching assignment, they are bound to charge a price (net of commission fees) less than or equal the price

they practice outside of the platform lest they suffer public criticism for practicing price discrimination, or

violate some price parity clause imposed by the platform. In the latter case, seller si would charge a price

equal to his outside option ci, i.e., equal to the price it can sell its product outside of the platform, plus the

commissions charged by the platform.

Also notice that the source of inefficiency from the model comes from the fact that the platform does

not internalize the costs of manufacturing more expensive products. Indeed, if the platform was the owner

and manufacturer of the products sold, prioritizing the sale of more expensive products would not be ideal,

as the platform would have to pay the cost of manufacturing those more expensive products. So we expect

our results to be more applicable to situations in which the platform is intermediating transactions from

third-party sellers, instead of manufacturing the products themselves.

Though the results derived in this article have been framed in terms of a platform that intermediates

transactions, it also applies to other two-sided markets, such as the one intermediated by real estate agencies.

2 Related Literature

The theoretical literature on incentives of e-commerce platforms is filled with examples that show how

platforms may be willing to create information frictions that can potentially hurt customers, such as the

seminal work of Diamond (1971) and Anderson and Renault (1999). In their theoretical model, customers

sequentially search for a product through undirected search. So in each period, customers are randomly

matched with a product and decide whether to buy it at the advertised price or keep searching for a better

match. Like in our environment, they assume that prices of the final good are set by the third-party sellers,

so that the platform cannot directly control the final prices of the products in the market. They show that,

if there are infinitely many sellers operating in the platform selling the same homogeneous product, then, for
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any given search cost, no matter how small, there is an equilibrium in which all sellers choose the monopoly

price. This result, known as the Diamond Paradox, is arguably very puzzling, as one would expect that

competition in a market with many providers selling the same homogeneous product would drive prices

down to the perfectly competitive level.

An implication of this result is that, if part of the platform’s commissions are proportional to the price

of the product sold (as it is common in many two-sided platforms, such as Amazon, eBay and Airbnb),

then the platform may have incentives to foster search frictions to increase the final price charged by sellers.

This observation has led others to present specific mechanisms through which platforms can increase search

costs, such as the work of Eliaz and Spiegler (2011) and Casner (2020), who show that a platform may have

incentives to allow some low quality sellers to enter the market in order to obfuscate search, or the work of

Ellison (2005) and Ellison and Ellison (2009) who show that in a competitive environment firms may be able

to achieve higher profits when add-on prices (e.g., shipping fees, resort fees, etc.) are hidden. These results

illustrate how two-side platforms may sometimes be willing to add inefficiencies into their market to regain

some control over the prices chosen by third-party sellers. These studies assume, however, that the platform

is not in control over who gets matched with whom in the search process. In contrast, in our environment,

the platform is the one determining the matches, and it uses this ability as a tool to regain some control

over market prices.

In a different approach, Hagiu and Jullien (2011) studies a search model in which, instead of the search

results being random, the platform is the one dictating the order of the search results from each customer.

In their specification, customers are willing to buy more than one product, and products exhibit no substi-

tutability whatsoever. So contrary to Diamond (1971) and Anderson and Renault (1999), in their specifica-

tion, high search costs unambiguously hurt the platform, as it implies customers inspect fewer products and

therefore make fewer purchases on the intensive and extensive margins. In our environment, on the other

hand, products are perfect substitutes, so customers have unitary demand, in which case the platform may

have incentives to limit customers’ search ability to avoid competition between sellers, as competition causes

equilibrium prices to go down, which reduces the commissions paid to the platform. So in our environment

what motivates the platform to steer customers towards certain products is its desire to increase purchases

on the extensive margin (but not on the intensive margin) and also to affect equilibrium prices. Additionally,

our environment gives a fuller characterization as to how steering customers towards certain products affects

efficiency, whereas Hagiu and Jullien (2011) is more focused on studying the conditions under which the

platform may have incentives to steer customers towards less preferred products.

This article is also related to the literature on double auctions (i.e., where an auctioneer intermediates

transactions between buyers and sellers), such as the work of Deshmukh et al. (2002), Ausubel et al. (2017)

and Satterthwaite et al. (2022). But because the auctioneer is usually interested in implementing efficient

and/or incentive compatible mechanisms, this literature has usually proposed and studied auction formats

in which the sellers with lowest opportunity costs are the ones who end up transacting (assuming that the

products sold are homogeneous) as it is the case in the uniform and pay-as-bid auctions. Indeed, both the

uniform and pay-as-bid auctions are Pareto efficient when participants submit their true valuations, and the

auctioneer does not collect distortionary commission fees. Though neither mechanism is strategy-proof (e.g.,

see Ausubel et al. (2014) or Binmore and Swierzbinski (2000)), the uniform price auction is known to be

“almost” strategy-proof when the number of participants in the market is large, and each participant has a

small market share on their side of the market (Azevedo and Budish (2019)).

More in line with our approach, Zhao et al. (2011) assumes that the auctioneer already knows the
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valuations from buyers and sellers, so that it can abstract from incentive compatibility issues. They propose

the most efficient algorithm to match buyers with sellers among the ones that maximize the total number

of transactions in the economy. This algorithm is attractive if the auctioneer collects a fixed revenue per

transaction that does not depend on the final price at which the product is sold. This algorithm can generate

more transactions than the socially optimum. In our specification, on the other hand, we assume that the

platform (i.e., the auctioneer) also collects a fee per transaction that is proportional to the final price at

which the product is sold. So we predict that the matching mechanism used by the platform will be even

more inefficient than the one proposed by Zhao et al. (2011), as the platform will not only try to maximize

the total number of transactions, but it will also prioritize finding eligible buyers to sellers with a high

outside option (i.e., with high cost), so as to inflate the final prices paid by customers, and therefore, the

fees received by the platform.

Our environment is very similar to the one in Boerner and Quint (2022). Though they also provide suffi-

cient conditions under which the optimal policy maximizes surplus, those conditions only hold asymptotically

and in expectation, and they require the market to be unbalanced. Meanwhile, we prove results for small

markets that are valid for any realization of preferences, and the conditions that we derive that guarantee

that the platform’s optimal policy does not maximize buyers’ and sellers’ surplus is quite mild: we only

require that there are either more buyers than sellers (i.e., the market is unbalanced) or that the “demand

crosses supply” (see section 1 for details). Moreover, we show how to generalize the simulations conducted

in Boerner and Quint (2022) to allow for horizontal differentiation, by making use of the Hungarian method.

Zhou and Zou (2022) developed an environment with two sellers and a platform in charge of recommending

them to a continuum set of buyers. Different from our environment and the ones from Hagiu and Jullien

(2011) and Boerner and Quint (2022), they allow the platform’s recommendation to influence seller’s pricing

decisions. They show that, in some instances, the platform could be made better off if it was able to commit

to not use prices as a recommendation criterion. They only derive results, however, for a case in which

the market is comprised of only two firms, whereas our results apply to situations in which the market

has multiple firms. Moreover, while they rely on the assumption that the market has a continuum set of

customers, we follow the mechanism design approach by assuming that there is a discrete set of customers

and sellers, which not only is more realistic, but allows variants of the algorithms we present to be more

easily implemented in practical applications.

This article is also related to the literature on market segmentation, such as the work of Bergemann et al.

(2015), Haghpanah and Siegel (2019) and Yang (2022). This literature, however, usually assumes that the

seller segmenting the market is in control over the prices of each one of its products. In such an environment,

market segmentation usually has the effect of improving total welfare. As an example, for the extreme case

in which the seller practices perfect price discrimination by charging each customer their willingness to pay,

total surplus is maximized, though in this case customers earn zero surplus. In our environment, on the

other hand, the platform intermediating transactions between buyers and sellers cannot dictate the prices

charged by sellers. As a result, attempts by the platform to segment the market in its favor will generate

inefficiencies not predicted by the previous literature.

3 Model

A market is comprised of a set of n buyers, B ≡ {b1, b2, · · · , bn}, and a set of m sellers, S ≡ {s1, s2, · · · , sm}.
Buyers have a unitary demand for the products sold by the sellers, and each seller can only sell one unit of
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their product to a single customer. For each i ≤ n and each j ≤ m we denote qij ∈ R+ as how much buyer

bi ∈ B values the product from seller sj ∈ S. We denote cj ∈ R+ as the cost or the outside option from

seller sj of selling its product.

Without loss of generality, we order buyers and sellers in ascending order of their outside options and

costs, respectively. That is, unless specified otherwise, we assume that

u1 ≤ u2 ≤ · · · ≤ un (1)

and

c1 ≤ c2 ≤ · · · ≤ cm. (2)

A monopolistic platform is responsible for intermediating transactions between buyers and sellers. More

precisely, the platform will match customers to sellers through a matching function µ. In this environment

we will only allow for one-to-one matches, i.e., each seller can be matched with at most one customer and

vice versa, though, as we explain later, the intuition of our main results may be extended to many-to-one

matching environments. The matching function µ will map agents on one side of the market to agents on

the other side of the market, with the possible exception of an agent being matched with himself to account

for the possibility that the agent remains unmatched.

Definition 1. A matching µ is a function mapping B ∪ S into itself, such that:

i) ∀b ∈ B, µ(b) ∈ S ∪ {b}.

ii) ∀s ∈ S, µ(s) ∈ B ∪ {s}.

iii) ∀b ∈ B and s ∈ S, s ∈ µ(b) if and only if µ(s) = b.

To simplify the exposition, we sometimes also use the notation sj : bi to indicate that seller sj is matched

to buyer bi. In other words, sj : bi is equivalent to writing µ(sj) = bi or µ(bi) = sj .

Once the matching is determined, matched agents can transact. Suppose that the platform receives a

fixed share ψ ∈ [0, 1] of the price paid by the customer for each realized purchase, plus a flat commission

fee τ ≥ 0 per transaction. Prices are determined ex-post, after the matches are formed, and after agents

learn about the commission fees ψ and τ charged by the platform. In practice, prices could be determined

after the matches take place if the products are being sold through an auction (e.g., through eBay), or if

buyers and sellers are allowed to bargain after they are matched with one another, as in Upwork.com or

Zillow.com. Though in principle one would expect an auction platform to match many potential buyers

to a single seller in order to maximize the auctioneer’s expected revenue, under the assumption of private

independent values, the final price paid by the winning bidder is usually only affected by a few bids. Under

the second price auction mechanism, for instance, agents have a weakly dominant strategy of bidding their

true valuation, and the price paid only depends on the second highest bid. In this case, if the platform knew

buyers’ valuations, it would be wasteful to match more than two bidders to a given seller, as the bids below

the second highest price would not affect the final price of the product, and those bidders could have actually

helped increase the final price from other auctions. So our one-to-one matching environment can still give

us some insight as to what could happen in platforms that intermediate some of the transactions through

auction mechanisms, such as eBay.com.

We assume that prices are determined through Nash Bargaining, where each buyer has bargaining power

α ∈ [0, 1] and each seller has bargaining power 1− α. More precisely, if ψ > 0 and seller sj is matched with
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a buyer bi such that (1− ψ)(qij − ui) ≥ cj + τ , then a transaction will occur, and the seller will set its price

at

p∗j (bi, ψ, τ) = (1− α)(qij − ui) + α
cj + τ

1− ψ
, (3)

generating a revenue of

ψp∗j (ψ, τ, bi) + τ = ψ

[
(1− α)(qij − ui) + α

cj + τ

1− ψ

]
+ τ

to the platform. If (1−ψ)(qij−ui) < cj +τ , then no transaction transpires from the match between seller sj

and buyer bi, so that the platform earns zero revenues from this match. If ψ = 1 and cj = τ = 0, the seller

is indifferent between not selling and selling its product at any price. To guarantee that the profit function

is upper semicontinuous, we will assume that in this case the seller will charge pj = max{qij − ui, 0}.2

Notice that, when α = 1, i.e., when buyers have all bargaining power, seller sj elicits the price (cj +

τ)/(1−ψ) regardless of his match. Because in this case the matching algorithm chosen by the platform does

not affect sellers’ pricing strategy, we could invert the timing of the model by assuming that sellers first elicit

a price, and then, based on those prices, the platform decides who gets matched with whom, which would be

more consistent with prominent e-commerce websites such as Amazon.com. In practice, this could happen

if, for instance, the platform imposes a price parity clause that prohibits each seller sj from charging a price,

net of commission fees, higher than the price cj at which he sells its products outside of the platform (i.e.,

it prohibits each seller sj from charging a price above (cj + τ)/(1− ψ)).

Taking the commission rates (ψ, τ) as given, we define, for each matching function µ,

FMµ ≡ {(sj , bi) ∈ S ×B;µ(sj) = bi and (1− ψ)(qij − ui) ≥ cj + τ},

i.e., FMµ represents all the matches associated with µ that generate transactions.

Once a matching is formed it generates a total surplus to buyers and sellers equal to

TS(µ) ≡
∑

(sj ,bi)∈FMµ

(qij − ψp∗j (ψ, τ, bi)− cj − ui − τ).

For a given pair of commissions (ψ, τ), we say a matching is constrained Pareto efficient (CPE) if it

maximizes TS(µ). As in our economy agents have quasilinear utility, this definition of efficiency is equivalent

to the notion that no seller or buyer can be made better off without making another buyer or seller worse

off. Notice that this definition does not include the surplus extracted by the platform, as our main interest

is in evaluating the platform’s optimal policy on consumers’ and sellers’ total surplus. Also notice that this

definition takes the fees as exogenous, so it also does not take into account the distortionary effects caused

by the fees (ψ, τ). The reason we use this second-best notion of Pareto efficiency is because, if ψ > 0 or

τ > 0, the final allocation would almost always be inefficient for any matching µ due to the distortionary

effects caused by the fees. So the only way to guarantee efficiency would be to completely eliminate the fees

charged by the platform, which is not a very practical solution. That being said, our results regarding which

matchings are CPE also apply to the case in which ψ = τ = 0, i.e., the case in which our definition of CPE

is equivalent to the (first-best) notion of Pareto efficiency.

2The hypothesis of upper semicontinuity of the objective function with respect to (ψ, τ) guarantees the existence of an
optimal (ψ, τ) for any given match µ (see proposition 6).
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Definition 2. (Constrained Pareto Efficiency) For a given (ψ, τ), we say a matching µ is Constrained

Pareto Efficient (CPE) if

TS(µ) ≥ TS(µ′)

for all possible alternative matchings µ′.

In the next section we characterize the platforms’ optimal matching µ in terms of efficiency and number

of transactions, taking its commission fees (ψ, τ) as given.

4 Optimal Matching with exogenous commissions

In this section we will consider the problem of finding the optimal matching taking the commission fees, ψ

and τ , as given, i.e., we will characterize the solution to the following problem:

max
µ

τ |Sµ|+ ψ
∑
sj∈Sµ

p∗j (µ(sj), ψ, τ), (4)

where

Sµ ≡ {sj ∈ S;µ(sj) = bi ∈ B ∧ (1− ψ)(qij − ui) ≥ cj + τ}

corresponds to the set of sellers who end up transacting given the fees ψ and τ and matching function µ,

and p∗j (µ(sj), ψ, τ) is the equilibrium price given by equation (3).

We first analyze the problem when all products have the same quality, i.e., when qij = q for all i ≤ n

and all j ≤ m. Then we discuss how to find the optimal matching when products are differentiated.

4.1 When products are homogeneous

In this section we will characterize Constrained Pareto Efficient (CPE) matchings and profit maximizing

matchings when all products have the same quality. We will show that, in this case, finding a CPE matching

is trivial: one only needs to ensure that the sellers and buyers transacting are the ones with lowest outside

options. A simple algorithm can be used to find the platform’s optimal matching for a given ψ ∈ [0, 1] and

τ ≥ 0. We show that this algorithm not only maximizes the profits of the platform, but also the number

of transactions that can be made, given the commissions (ψ, τ). We also present necessary and sufficient

conditions under which the matching obtained through this algorithm is not CPE.

Suppose that all products have the same quality, i.e., qij = q ∈ R+ for all i ≤ n and all j ≤ m. In this

case, Constrained Pareto Efficiency is achieved by ensuring that the customers with lowest outside options

and sellers with lowest costs transact. One way to achieve this is by implementing positive assortative

matching (PAM ), i.e., by having the customer with the lowest outside option being matched with the seller

with lowest cost, the customer with second lowest outside option being matched with the seller with second

lowest cost, and so on. But there are other matchings that are also CPE. In fact, if we initially apply PAM

and then apply any permutation to the assignment of those who transact under this matching, then the new

matching will be CPE.

Proposition 1. (Necessary and sufficient condition for µ to be CPE) Suppose that qij = q ∈ R+ for all

i ≤ n and all j ≤ m. A matching µ is Constrained Pareto Efficient (CPE) if and only if each seller sj such

that j ≤ min{n,m} and (1−ψ)(q− uj) ≥ cj + τ is matched to a buyer bi such that (1−ψ)(q− ui) ≥ ci + τ .
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Proof: Proof in the Appendix.

Corollary 1. (PAM is CPE) Suppose that qij = q ∈ R+ for all i ≤ n and all j ≤ m. If µ(si) = bi for all

i ≤ min{n,m}, then µ is CPE.

It follows directly from proposition 1 that a CPE matching µ maximizes the number of transactions

subject to the constraint that every seller who transacts under µ must also be willing to transact with any

other buyer who transacts under µ.

Corollary 2. (CPE matchings maximize the number of transactions subject to a constraint) Suppose that

qij = q ∈ R+ for all i ≤ n and all j ≤ m. If a matching µ is CPE, then

µ ∈ arg max
µ′

|FMµ′ |

s.t. (1− ψ)(q − ui′) ≥ cj + τ and (1− ψ)(q − ui) ≥ cj′ + τ ∀(sj , bi), (sj′ , bi′) ∈ FMµ′

Proof: Proof in the Appendix.

In this environment we can easily find examples in which the platform has no incentives to implement a

CPE matching.

Example 1. (CPE matchings do not always maximize profits) For a given commission fee, ψ ∈ [0, 1] and

τ ≥ 0, the optimal match µ∗ chosen by the platform is not necessarily CPE.

Indeed, consider a market where the set of sellers is given by {s1, s2, s3, s4}, and the set of buyers is given

by {b1, b2, b3, b4}. Suppose that qij = 20 ∀i, j ≤ 4, and that sellers’ costs are given by

(c1, c2, c3, c4) = (2, 8, 14, 16),

while customers’ outside options are given by

(u1, u2, u3, u4) = (0, 3, 5, 7).

In a Pareto Efficient allocation, buyers b1, b2 and b3 should be each matched with one of the first three

sellers with highest net quality (i.e., with sellers s1, s2 and s3). But if the platform chooses (ψ, τ) = (1/2, 0),

then all of the Pareto efficient matchings would generate a total profit of 9.75 for the platform, whereas if

the platform implemented the matching

s1 : b4, s2 : b3, s3 : b2, s4 : b1

its profits would equal 12.25.

Intuitively, the reason why the platform may not want to implement a CPE matching can be explained

as follows. We can write the platform’s revenue for a match between a seller sj and a customer bi such that

(1− ψ)(q − ui) ≥ cj + τ , as

ψ(1− α)(q − cj − τ − ui) +
ψ(1− ψ + αψ)

1− ψ
(cj + τ) + τ. (5)

Though the first term from expression 5 is increasing in the total surplus created from the transaction

between seller sj and buyer bi, (q− cj − ui), the sum of the last two terms from this expression is increasing
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in the opportunity cost from selling, cj , and on τ . So the platform is not exclusively interested in maximizing

the creation of value, but also in maximizing the total number of transactions so as to collect more revenues

through τ , and also on facilitating the transaction of more expensive products, as that increases the final

price charged by the seller, and therefore the commissions collected through ψ.

So now we provide an algorithm for finding the profit-maximizing matching µ, taking the commission

fees (ψ, τ) as given. This algorithm is the same as the one presented in Boerner and Quint (2022) to find

the matching that maximizes the platforms’ profits: we start by matching the “worst seller” (the one with

highest cost) with the “best customer” (the one with lowest outside option) and keep doing this iteratively

with the agents who have not been matched yet.

Algorithm 1. For each B′ ⊆ B, each sj ∈ S and each ψ ∈ [0, 1] and τ ≥ 0 define

F (sj , B
′, ψ, τ) ≡ {bi ∈ B′; (1− ψ)(qij − ui) ≥ cj + τ},

i.e., F (sj , B
′, ψ, τ) is the set of “feasible buyers” in B′ for seller sj, or more precisely, it is the set of buyers

in B′ who, if matched with seller sj, would end up purchasing their product.

i) Initialize j = m and define Bj = B.

ii) Compute F (sj , Bj , ψ, τ). If F (sj , Bj , ψ, τ) 6= ∅, set µ(sj) equal to bi ∈ F (sj , Bj , ψ, τ) such that ui ≤ ul
for all ul ∈ F (sj , Bj , ψ, τ) (i.e., match this seller with the buyer with lowest outside option who has

not been matched yet) and define Bj−1 = Bj\{bi}, else set µ(sj) = sj (i.e., keep seller sj unmatched)

and define Bj−1 = Bj. Then proceed to the next step.

iii) If j > 1, redefine j = j − 1 and repeat step ii), else, stop the algorithm.

To some extent, algorithm 1 does the opposite of what PAM does. Indeed, while PAM attempts to

secure good matches to low-cost sellers, algorithm 1 attempts to secure good matches to high-costs sellers.

The platform has incentives to adopt such an algorithm for two reasons: 1) high-cost sellers charge higher

prices, so they generate more revenues to the platform in the event they transact (assuming ψ > 0); 2)

moreover, this procedure generates more transactions (and therefore more revenues), as it frees low-cost

sellers to transact with buyers who would otherwise not transact if matched with a high-cost seller.

Theorem 1. (Algorithm 1 maximizes profits and number of transactions) Suppose that qij = q ∈ R+ for all

i ≤ n and all j ≤ m. Then, given ψ ∈ [0, 1] and τ ≥ 0, the matching allocation obtained from algorithm 1:

i) Maximizes the number of transactions that can be generated in the economy, i.e., it maximizes |Sµ|.

ii) Maximizes the profits of the platform, i.e., it solves the maximization problem 4.

Proof: In the Appendix.

So we conclude that, if the products sold are homogeneous, the platform will implement algorithm 1,

which does not always yield a constrained Pareto efficient allocation (see example 1).

As a corollary to theorem 1, we can find a necessary and sufficient condition under which the platform’s

optimal matching obtained through algorithm 1 is not CPE. Suppose that all sellers have at least one “feasible

buyer”, i.e., for every seller sj there is at least one buyer ci such that (1−ψ)(q−cj) ≥ ui+τ . This hypothesis

is without loss of generality, as the platform would never have incentives to match sellers who do not have a

feasible counterpart with whom they would be willing to transact. So adding or removing those sellers from
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the model would not affect the platform’s optimal choices or profitability. Given this hypothesis, we have

that, a necessary and sufficient condition for the matching obtained through algorithm 1 to be constrained

Pareto inefficient is that there is at least one seller such that, there is a buyer with the same index as the

seller, and such a buyer is not willing to purchase from this seller; or there are more sellers than buyers. The

hypothesis that there is at least one seller who is not willing to transact with a buyer that shares the seller’s

index can be interpreted as requiring that the “demand crosses the supply curve”.

Corollary 3. (The platform’s optimal matching is not CPE iff “demand crosses supply” or there are more

sellers than buyers) For each seller sj ∈ S let

F (sj , ψ, τ) ≡ {bi ∈ B; (1− ψ)(qij − cj) ≥ ui + τ},

i.e., F (sj , ψ, τ) is the set of buyers, who, if matched with seller sj, would end up purchasing their product.

Without loss of generality, suppose that F (sj , ψ, τ) 6= ∅ for all sj ∈ S (i.e., all sellers have at least one

“feasible buyer”). Suppose that qij = q ∈ R+ for all i ≤ n and all j ≤ m. In addition, suppose that c1 < cm.

Then the matching obtained through algorithm 1 will not be CPE if and only if either one of the following

conditions hold:

I) (“Demand crosses supply”): There is at least one sj ∈ S, with j < |B| such that uj /∈ F (sj , ψ, τ), or

II) (There are more sellers than buyers): |S| ≥ |B|.

Proof: Case 1: Suppose that there is at least one seller sj ∈ S, such that j < |B| and uj /∈ F (sj , ψ, τ)

i.e., there is a buyer with the same index as seller sj , and this buyer would not willing to purchase from this

seller. From proposition 1, in a CPE matching, a seller sj′ with j′ > j should not transact. In particular,

seller sm will not transact under a CPE matching. But because F (sm, ψ, τ) 6= ∅, we have that seller sm

transacts under algorithm 1, so that the matching obtained through this algorithm is not CPE.

Case 2: Suppose that there are more sellers than buyers. Then, from proposition 1, seller s1 transacts

under a CPE matching, but sm does not. But because algorithm 1 starts by matching seller sm, the one

with lowest willingness to sell, and because F (sm, ψ, τ) 6= ∅, seller sm will transact under algorithm 1.

Figure 3 presents instances in which the conditions from corollary 3 hold, whereas figure 4 presents

instances in which those conditions are not met. Intuitively, if the “supply curve crosses the demand”,

implementing CPE matchings such as PAM would result in sellers with high costs remaining unmatched

(because of proposition 1). But the platform could be made better off by giving away the customers who

were matched to low cost sellers to the unmatched sellers with high costs, as that would increase the prices

paid by these consumers, and therefore, the commissions received by the platform. Doing this replacement

would also free the low cost sellers to potentially form matches with buyers with high outside options, thus

increasing the number of transactions, and therefore, the fees collected by the platform. Similarly, in a

market with excess demand, most sellers will be able to transact regardless of how they are matched with

the “most desirable” buyers (i.e., the buyers with lowest outside options), so the platform is less likely to

have incentives to implement an inefficient match. But in a market with excess supply, the platform has to

choose carefully how to match sellers, as it can no longer get a transaction from all of them. In this case,

the platform will have incentives to prioritize matching the inefficient sellers first (i.e., the ones with higher

opportunity costs) in order to inflate equilibrium prices.

Notice that, when it comes to the transaction of digital goods, such as apps or movies from streaming

services, supply always exceeds demand, as each seller can sell virtually infinite units of its product. So
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(a) A case in which “demand crosses supply”.
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(b) A case with more sellers than buyers.

Figure 3: Instances in which the profit-maximizing matching obtained through algorithm 1 is not CPE.
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(a) A case with more buyers than sellers, and the “demand
does not cross the supply”.
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(b) A case in which there are as many buyers as sellers but
the “demand does not cross the supply”.

Figure 4: Instances in which the profit-maximizing matching obtained through algorithm 1 is CPE.

in these instances the platform is expected to implement a matching that is not CPE. This perhaps may

explain why streaming services such as Amazon Prime also recommend paid movies to its subscribers, as

illustrated in figure 5 below, even though customers usually prioritize free content.

4.2 When products are vertically differentiated

Throughout this section we assume that qij = qj ∈ R+ for all i ≤ n and all j ≤ m. Moreover, instead of

ordering sellers in ascending order of their cost, we order sellers in descending order of the difference between

their quality and cost, i.e., we assume that

q1 − c1 ≥ q2 − c2 ≥ · · · ≥ qm − cm.
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Figure 5: In this example, the streaming platform recommends paid products (the ones with yellow tag),
even though subscribers probably prioritize free content (the ones with a blue tag).

In this case, PAM would be defined as matching buyer b1 with seller s1, buyer b2 with seller s2, and so on.

With this definition, one can trivially extend the results from proposition 1 and corollaries 1 and 2, to the

case in which products are vertically differentiated. So under vertical differentiation, PAM maximizes the

surplus of buyers and sellers.

Proposition 2. (Necessary and sufficient condition for µ to be CPE) Suppose that qij = qj ∈ R+ for all

i ≤ n and all j ≤ m. A matching µ is Constrained Pareto Efficient (CPE) if and only if each seller sj such

that j ≤ min{n,m} and (1−ψ)(qj− cj) ≥ uj + τ is matched to a buyer bi such that (1−ψ)(qi− ci) ≥ ui+ τ .

Proof: Analogous to the proof of proposition 1.

Corollary 4. (PAM is CPE) Suppose that qij = qj ∈ R+ for all i ≤ n and all j ≤ m. If µ(si) = bi for all

i ≤ min{n,m}, then µ is CPE.

Corollary 5. (CPE matchings maximize the number of transactions subject to a constraint) Suppose that

qij = qj ∈ R+ for all i ≤ n and all j ≤ m. If a matching µ is CPE, then

µ ∈ arg max
µ′

|FMµ′ |

s.t. (1− ψ)(qj − ui′) ≥ cj + τ and (1− ψ)(qj − ui) ≥ cj′ + τ ∀(sj , bi), (sj′ , bi′) ∈ FMµ′

Proof: Analogous to the proof of corollary 2.

As shown in the previous section, CPE matchings (such as PAM ) are not necessarily profit maximizing.

But one can find instances in which the platform has incentives to implement a CPE matching. This happens

if τ = 0 and either: 1) all sellers have zero opportunity cost (i.e., if cj = 0 for all j ∈ {1, 2, · · · ,m}), or 2)

all sellers have the same opportunity cost (i.e., if cj = c ∈ R for all j ∈ {1, 2, · · · ,m}), and they have all the

bargaining power (i.e., α = 0). Indeed, in the former case, the revenue the platform gets from a transaction

between seller sj and buyer bi is given by

ψ(1− α)(qj − ui), (6)
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whereas in the latter case, this expression reduces to

ψ(qj − ui),

so that in both cases the platform’s revenues are proportional to the sum of value created form transactions.

Proposition 3. (Sufficient conditions for PAM to be profit-maximizing) Suppose that τ = 0, and suppose

that either cj = 0 for all j ∈ {1, 2, · · · ,m}, or α = 0 and cj = c ∈ R+ for all j ∈ {1, 2, · · · ,m}. Then, for

any given ψ ∈ [0, 1], PAM maximizes the profits of the platform.

Proof: Proof in the Appendix.

Intuitively, the first part of proposition 3 holds because, if costs are zero and τ = 0, the fee ψ charged

by the platform is non-distortionary (i.e., it does not affect agents’ decisions), in which case maximizing the

creation of value allows the platform to extract more surplus. In practice, we could have cj = 0 for all sellers

if costs are sunk and sellers have no other means of selling their products but through the platform (e.g.,

sellers trying to resell tickets for concerts or sport events that they can no longer attend to, and having no

other means of reselling their tickets).

Similarly, if all the sellers have the same opportunity cost, the ones with higher quality products are also

the ones who are capable of generating more revenues to the platform. So the platform must ensure those

sellers end up transacting in equilibrium (i.e., that the “most efficient” sellers end up transacting). Moreover,

τ = 0 and α = 0 removes the platform’s incentives to generate more transactions than the socially optimum,

as it causes profits to be proportional to the total surplus created from transactions.

For most practical applications, however, we do not expect the hypotheses from proposition 3 to hold,

so that PAM will usually not be profit-maximizing. Similarly, under vertical differentiation, algorithm 1 is

also not guaranteed to yield a profit-maximizing outcome (see example 1, from the appendix). If, however,

we were to assume that the sellers with less feasible matches (i.e., the sellers for which it is hardest to find a

buyer who would purchase their product) were also the ones who, in the event they transacted, they would

charge the highest prices (i.e., if the “more expensive” products were also the ones with less feasible buyers),

then algorithm 1 would yield a profit-maximizing outcome.

Proposition 4. (Sufficient conditions for algorithm 1 to maximize profits and number of transactions)

Suppose that qij = qj ∈ R+ for all i ≤ n and all j ≤ m. Also suppose that sellers with higher index have less

feasible matches:

(1− ψ)q1 − c1 ≥ (1− ψ)q2 − c2 ≥ · · · ≥ (1− ψ)qm − cm,

and charge higher prices in the event they transact:

(1− α)q1 + α
c1

1− ψ
≤ (1− α)q2 + α

c2
1− ψ

≤ · · · ≤ (1− α)qm + α
cm

1− ψ
.

Then, given ψ ∈ [0, 1) and τ ≥ 0, the matching allocation obtained from algorithm 1:

i) Maximizes the number of transactions that can be generated in the economy, i.e., it maximizes |Sµ|.

ii) Maximizes the profits of the platform, i.e., it solves the maximization problem 4.

Proof: The proof is analogous to the proof of theorem 1, as both proofs only rely on the fact that

pj(si, ψ, τ) ≥ pj′(si, ψ, τ) for all j ≥ j′ (i.e., sellers with higher index charge higher prices in the event they
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transact) and F (sj , B, ψ, τ) ⊆ F (sj′ , B, ψ, τ) for all j ≥ j′ (i.e., sellers with higher index have less feasible

matches).

Intuitively, proposition 4 holds because it makes sense to prioritize matching sellers who face lower

demand when they are also the ones who generate more revenues in the event they transact.

Another instance in which algorithm 1 can be used to maximize the platform’s revenues is when the

platform only charges a flat fee τ > 0 and sets ψ = 0. Indeed, in this case, the platform’s sole objective is

to maximize the total number of transactions, and the maximization of total number of transactions can be

achieved if the platform prioritizes securing good matches to sellers who have less feasible buyers.

Proposition 5. (Algorithm 1 maximizes profits when ψ = 0) Suppose that qij = qj ∈ R+ for all i ≤ n and

all j ≤ m. Also suppose that sellers with higher index have less feasible matches:

q1 − c1 ≥ q2 − c2 ≥ · · · ≥ qm − cm.

Then, for a given τ > 0 and ψ = 0, the matching allocation obtained from algorithm 1 maximizes the number

of transactions that can be generated in the economy, i.e., it maximizes |Sµ|, which implies that it maximizes

the profits of the platform (i.e., it solves the maximization problem 4).

Proof: The proof is analogous to the first part of the proof of theorem 1, as both proofs only rely on

the fact that F (sj , B, ψ, τ) ⊆ F (sj′ , B, ψ, τ) for all j ≥ j′ (i.e., sellers with higher index have less feasible

matches).

In practice, however, the conditions for propositions 4 and 5 to hold are rather strong. Indeed, proposition

4 requires that more expensive products are also the ones with lower demand, a condition that does not

necessarily hold in practical applications. As to proposition 5, it requires that the platform only charges a

flat fee per transaction and sets ψ = 0, which is inconsistent with the commission pricing criteria adopted

in most two-sided markets. Moreover, both results do not apply to cases in which products are horizontally

differentiated. In the next section we show that, for any configuration of products’ quality and costs, the

platform can implement the Hungarian method, instead, to either find a CPE matching or a profit-maximizing

one.

4.3 When products are horizontally or vertically differentiated

When products are horizontally differentiated, it is no longer clear what Positive Assortative Matching

means, as now each seller sj has a vector of attributes (q1j , q2j , · · · , qnj), so that it is no longer clear how

they should be ordered. If we were to ignore those attributes and simply ordered sellers in ascending order

of their costs, i.e., if we were to assume that

c1 ≤ c2 ≤ · · · ≤ cm,

and defined PAM as matching buyer b1 with seller s1, buyer b2 with seller s2, and so on; then PAM would

not necessarily be CPE (see example 1, from the appendix). This is because, under product differentiation,

the sellers with lowest costs are not necessarily the “most efficient ones”, as they may also have an average

lower quality. Similarly, algorithm 1 is not guaranteed to generate a profit-maximizing outcome (see example

1 from the Appendix). But the platform can rely on the Hungarian method, instead, to find a CPE matching,

as well as a profit-maximizing matching. Through this method, we are able to simulate the differences in
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total revenue and total number of transactions obtained when the platform implements a CPE matching vs.

a profit-maximizing one. Details on how this algorithm works can be found in section C from the Appendix.

Our simulations indicate that CPE matchings can be much less profitable than the platform’s opti-

mum policy. Moreover, consistent with the theoretical results obtained for the case in which products are

homogeneous, profit-maximizing matchings usually generate more transactions than CPE ones.

In the following simulations, we assume that costs and outside options are iid, and follow a normal

distribution. More precisely, we assume that cj ∼ N(10, 1) and ui ∼ N(15, 1) for all j ≤ m and all i ≤ n.

Quality is proportional to costs, and we assume that

qij = ξij + βcj ,

where ξij ∼ N(0, 1) is an iid shock, and β ≥ 0 is a parameter measuring how quality correlates with

production costs. To implement the simulations using the Hungarian method, we used the R package

“RcppHungarian” (Silverman et al. (2022)).

(a) Difference in revenues between a
proft-maximizing and a CPE match-
ing

(b) Difference in number of transac-
tions between a proft-maximizing and
a CPE matching

(c) Difference in Buyer and Seller sur-
plus between a proft-maximizing and
a CPE matching

Figure 6: Plots depicting the average percentage difference in profits, number of transactions and surplus
between a profit-maximizing and a CPE matching for different levels of ψ and τ , assuming that β = 3 and
that n = m = 20. In total, 100, 000 simulations were conducted for each combination of ψ and τ from the
grid. The percentage differences were computed by taking the difference between the average of the variable
of interest from the profit maximizing matching and the one from the CPE matching, and dividing this
difference by the average obtained from the CPE matching.

Figure 6 depict the percentage difference between the average revenues, average number of transactions,

and average surplus from buyers and sellers when implementing a profit-maximizing matching vs. a CPE

one, when β = 3 and there are exactly 20 buyers and 20 sellers in the market. As the figure illustrate, those

differences can be quite significant.

5 Optimal commissions and optimal matching

In the previous sections we assumed the commission fees ψ and τ to be exogenous. But in reality one would

expect commissions to be set by the platform along with the matching function µ. In this case, the platform

would choose ψ, τ and µ to maximize

max
µ,ψ,τ

τ |Sµ,ψ,τ |+
∑

sj∈Sµ,ψ,τ

ψp∗j (µ(sj), ψ, τ), (7)
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where

Sµ,ψ,τ ≡ {sj ∈ S;µ(sj) = bi ∈ B ∧ (1− ψ)(qij − ui) ≥ cj + τ}

corresponds to the set of sellers who end up transacting given the fees (ψ, τ) and matching function µ, and

p∗j (µ(sj), ψ, τ) is the equilibrium price given by equation 3.

It can be shown that a maximum to this problem always exists. Indeed, for a given matching µ, we can

show that the platform’s objective function is upper semicontinuous in (ψ, τ) ∈ [0, 1] × R+. Moreover, we

can limit τ to be less than or equal to a constant τ , since, for τ sufficiently high, no transactions are made,

so the platform earns zero profits. Because, for a given µ, the objective function is upper semicontinuous,

and because we only consider (ψ, τ) defined on the compact set [0, 1]× [0, τ ], it then follows that the problem

has a maximum for a given µ, since every upper semicontinuous function defined on a compact set has a

maximum (Leininger (1984)). Because the set of possible matchings is finite, we conclude that a maximum

to problem 7 exists.

Proposition 6. There exists a pair of commission rates (ψ, τ) and a matching function µ that maximizes

the profits of the platform.

Proof: In the Appendix.

The next lemma states that, under an optimal matching, at least one agent must be exactly indifferent

between transacting and not transacting, otherwise, the platform would be able to increase its fees without

reducing the number of transactions. In order to state the lemma more formally, let µ∗ψ,τ be the a matching

that maximizes revenues for a given (ψ, τ). For a given matching µ, let

Mµ(ψ, τ) ≡ {(sj , bi) ∈ S ×B;µ(sj) = bi ∧ (1− ψ)(qij − ui) ≥ cj + τ},

i.e., Mµ(ψ, τ) represents all the matches associated with µ, excluding those in which agents do not transact.

When (ψ, τ) are known and exogenous, we sometimes write Mµ instead of Mµ(ψ, τ) to simplify the notation.

Lemma 1. If (µ∗ψ,τ , ψ, τ) is a solution to the platform’s objective function 7, we must have (1−ψ)(qij−ui) =

cj + τ for at least one (sj , bi) ∈Mµ∗ψ,τ
(ψ, τ).

Proof: If all agents who transact were strictly better off transacting as opposed to not transacting, the

platform would be able to marginally increase ψ or τ , thus increasing its revenues per transactions, without

reducing the number of transactions.

The next lemma states that, if products have homogenous quality and, for a pair of commission rates

(ψ, τ), a matching µ∗ maximizes profits, and, moreover, all transactions from this matching generate a

positive surplus to buyers and sellers, then, if we were to marginally increment τ , the matching µ∗ would

still be profit-maximizing.

Lemma 2. Suppose that qij = q for all i ≤ n and all j ≤ m. Let µ∗ψ,τ be the profit-maximizing matching

obtained through algorithm 1 when commissions are given by (ψ, τ). Suppose, in addition, that τ < (1 −
ψ)(q − ui)− cj for all (sj , bi) ∈Mµ∗ψ,τ

(ψ, τ). Then, for any τ ′ ≥ τ such that τ ′ ≤ min(sj ,bi)∈Mµ∗
ψ,τ

(ψ,τ)[(1−
ψ)(qij − ui)− cj ], we have that µ∗ψ,τ ′ = µ∗ψ,τ .

Proof: In the Appendix.

If we assume that ψ is set exogenously and that qij = q for all i ≤ n and all j ≤ m, we can use theorem

1 and lemmas 1 and 2 to build an algorithm to find the optimal τ ≥ 0 and optimal matching µ∗ψ,τ . The

18



algorithm basically finds all the points in τ ≥ 0 such that, after implementing the matching µ∗ψ,τ , at least

one of the sellers who transacts under this matching is indifferent between transacting and not transacting,

as those points will be our only candidates for an optimum.

Algorithm 2. Let µ∗ψ,τ be the matching algorithm that maximizes the platform’s profits when the fees are

given by (ψ, τ). For a given ψ ∈ [0, 1), perform the following algorithm.

i) Initialize k = 0 and τ = 0.

ii) Compute µ∗ψ,τ . If Mµ∗ψ,τ
6= ∅, proceed to the next step, else, stop the algorithm.

iii) Set k = k + 1. Define

τk ≡ min
(sj ,bi)∈Mµ∗

ψ,τ

(1− ψ)(qij − ui)− cj

If τk > τ , redefine τ = τk, else (if τk = τ), redefine τ = τk + ε, where ε is arbitrarily small. Then,

repeat step ii).

If k = 0, then any ψ ∈ [0, 1] and any matching µ generates zero profits to the platform. If k > 0, choose the

commission

τ∗ = arg max
τ∈{τ1,τ2,··· ,τk}

π(µ∗ψ,τ , ψ, τ)

and the matching µ∗ψ,τ∗ .

Theorem 2. Suppose that qij = q for all i ≤ n and all j ≤ m. For a given ψ ∈ [0, 1), let τ∗ and

µ∗ψ,τ∗ be the flat fee and matching function, respectively, obtained after implementing algorithm 2. Define

Sµ(ψ, τ) = {sj ∈ S;µ(sj) = bi ∈ B ∧ (1− ψ)(q − ui) ≥ cj + τ}. Then,

(µ∗ψ,τ∗ , τ
∗) = arg max

µ,τ
τ |Sµ(ψ, τ)|+

∑
sj∈Sµ(ψ,τ)

ψp∗j (µ(sj), ψ, τ).

Proof: The proof follows immediately from theorem 1 and lemmas 1 and 2.

Though algorithm 2 does not simultaneously find the optimal ψ and optimal τ , one could create a grid

for ψ ∈ [0, 1), and then perform algorithm 2 for each ψ in the grid, and then select the ψ from the grid that

generates the maximum revenue for the platform.

Notice that algorithm 2 does not necessarily yield the optimum policy for the platform if products are

differentiated, as theorem 2 only applies to the case in which qij = q for all i ≤ n and all j ≤ m. As

an alternative, one could simply create a grid for both ψ and τ , and find the optimum match for each

combination of (ψ, τ) within the grid. The advantage of using algorithm 2, however, is that it makes it more

likely that a necessary condition for optimization is met: that at least one pair of buyer and seller is exactly

indifferent between transacting and not transacting. Moreover, through this method one does not need to

specify an upper bound for the values that τ can assume (notice that τ can be any positive number).

With these results we can use the Hungarian method to simulate the platform’s optimal matching and

fees (ψ, τ). We can then compare the platform’s revenues and number of transactions when implementing

the optimal policy, vs. the case in which it seeks to maximize revenues, subject to the constraint that the

matching must be CPE.
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Similar to the previous section, we assume that cj ∼ N(10, 1) and ui ∼ N(15, 1) for all j ≤ m and all

i ≤ n. Moreover,

qij = ξij + βcj ,

where ξij ∼ N(0, 1) and β ≥ 0. The parameter β captures the extend to which quality is correlated with

production costs.

Figure 7 shows the differences in revenues, number of transactions and sum of buyers’ and sellers’ surplus

obtained when the platform attempts to implement its optimum policy by following algorithm 2 vs. the

case in which it attempts to implement profit-maximizing commissions subject to the constraint that the

matching must be CPE, by also following algorithm 2 but with the difference that, at each step of the

algorithm, it implements a matching that maximizes the sum of customers’ and sellers’ surplus, not the

platform’s profits. The simulations suggest that those differences can be quite significant and they do not

disappear for arbitrarily high values of β. This happens because, as β increases, the platform also increases its

fees, until it reaches a point in which “demand crosses supply”, which, from corollary 3, would imply that the

platform has strict incentives to implement a profit-maximizing matching, as opposed to a CPE matching.

Though corollary 3 only applies to the case in which products have homogeneous quality, our simulations

indicate that the intuition of this result seems to extend to cases in which products are differentiated.
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Figure 7: Plots depicting simulated differences between a profit-maximizing and a CPE matching for different
levels of β, assuming that n = m = 20 (so there can be no more than 20 transactions in total). 10,000
simulations were used to compute the averages from each β in the grid.

6 Stability

In this section we analyze the performance of Positive Assortative Matching (PAM ) in terms of stability

when ψ = 0 and τ ≥ 0. Our notion of stability is similar to the one studied in benchmark models of

matching theory (e.g., Roth and Sotomayor (1989)), with the difference that in our case matched agents can

negotiate their division of surplus (such as in Kelso and Crawford (1982)), and they must pay a search cost

r ≥ 0 to form a blocking coalition. We show that, provided that ψ = 0, PAM is always stable in the sense

that no buyer is willing to pay the search cost r ≥ 0 to form a blocking coalition. Stability is a desirable

property in matching markets, as it implies agents have incentives to follow through the recommendations
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made by the matchmaker (Roth and Sotomayor (1990)), in our case, the platform. We show that, in our

environment, when agents do not have incentives to follow through those recommendations, the overall

number of transactions can diminish (see example 2). As the matching obtained through algorithm 1 is

not necessarily stable, the platform may have incentives to implement PAM (which is stable and CPE ) as

opposed to a (Constrained Pareto inefficient) matching obtained through algorithm 1. Because all matches

are stable if the search cost r is sufficiently high, this result indicates that the platform will have more

incentives to implement a CPE match if it believes agents can easily find matches better than the ones

recommended by the platform, e.g., by scrolling down the page of search results, or by doing a more refined

search.

Suppose that the platform charges commission fees (ψ, τ) and implements the matching µ. Suppose that,

after the platform implements this matching, each buyer bi ∈ B can pay a search cost r ≥ 0 to be matched

with a different seller in the market. If, during this second round, buyer bi chooses to pay θ to be matched

with a seller sj 6= µ(sj), seller sj will then choose whether to transact with its current match µ(sj), or

transact with buyer bi.

We could, in principle, also allow agents to pay an additional cost θ to form transactions outside the

platform, so as to avoid paying the platform’s commission τ . As a practical example, as we write this

in 2022, Airbnb.com does not pinpoint the precise location of advertised houses before booking, so as to

prevent customers from negotiating directly with the hosts without paying the platform its commissions.

But if buyers are willing to engage in a search cost to find those hosts independently, they may be able to get

a better deal as, in this case, agents do not have to share their surplus with the platform. The same occurs

in other platforms such as eBay, which explicitly prohibits sellers from offering or referencing their personal

contact information to prevent them from selling outside of the platform without paying their transaction

fees.3 Similarly, until recently Apple did not allow app developers selling digital products through the App

Store to direct users to external payment methods to circumvent Apple’s fees. But in 2021, after a lengthy

legal battle between Apple and Epic Games, a ruling from the Northern District of California has required

Apple lift those restrictions.4

But notice that even if platforms allowed buyers to perfectly pinpoint the identity of sellers, forming

matches on their own may be contractually costly and risky, which would also be captured by θ. As an

example, making a reservation through Airbnb is relatively straightforward, and both buyers and sellers are

given incentives to fulfill their contractual obligations through the platform’s rating system. If a customer

decides to form a match without the intermediation of Airbnb, both parties may have to spend extra

resources forming and agreeing to a binding contract, and they may also have to spend more on litigation

in the eventuality one of them does not fulfill their side of the bargain, whereas on Airbnb unsatisfied users

can simply leave a negative review in retaliation, or report the issue to Airbnb.

So throughout this section we will assume that the cost of forming transactions outside the platform, θ,

is greater than τ , so that no agent has incentives to avoid paying the platforms’ commissions by transacting

outside of the platform. Buyers, however, may still have incentives to incur in a search cost r to seek

better matches, such as by scrolling down the page of search results. We obtain similar qualitative results

if transacting outside the platform was feasible and that was the only way agents could circumvent the

recommendations made by the platform. In fact, in this case, the negative effects of instability to the

platform would tend to be greater, as instability would result in the platform not being able to collect fees

3E.g., see https://pages.ebay.com/sponsored/intuit/articles/selling-fees.html
4E.g., see https://www.theverge.com/2021/12/8/22814147/epic-apple-app-store-injunction-paused
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from transactions that did not follow its recommendation (see section D from the appendix for a thorough

analysis).

We will also assume that sellers are ordered according to their “net quality” (qj − cj) as follows

q1 − c1 ≥ q2 − c2 ≥ · · · ≥ qm − cm,

and we define PAM as the matching that assigns each seller sj with the buyer with the same index, bj , for

all j ≤ min{m,n}.
We say a matching µ is stable if no buyer has incentives to search for a match different than the one

recommended by the platform.

Definition 3. (Stability) Given ψ = 0 and τ ≥ 0, and given the search cost r, a matching µ is stable if, for

every sj ∈ S there is a payoff wsj ∈ R and for every bi ∈ B there is a payoff wbi ∈ R such that:

i) (Individual rationality) wsj ≥ cj ∀sj ∈ S and wbi ≥ ui ∀bi ∈ B (i.e., agents’ payoffs are greater than

or equal to the their outside option). If µ(sj) = sj, then wsj = cj, and if µ(bi) = bi, then wbi = ui

(i.e., unmatched agents get their outside option).

ii) (Feasibility) If µ(sj) = bl ∈ B, then wbl + wsj ≤ qi − τ if wsj > cj or wbl > ui,

and there is no (sj , bi) ∈ S ×B and no (w̃sj , w̃bi) ∈ R2 such that:

I) (Feasibility) w̃sj + w̃bi ≤ qi − τ − r

II) (Blocking Coalition) w̃sj > wsj and w̃bi > wbi .

Clearly, if the search cost r is sufficiently high, every matching is stable. In this case, for a given τ ≥ 0, the

platform does not need to worry about implementing a matching that incentivizes agents to follow through

its recommendations.

Theorem 3. Suppose that the platform chooses ψ = 0 and τ ≥ 0.

i) PAM is stable.

ii) If

r ≥ max
j
{qj − cj} −min

i
{ui} − τ (8)

then any matching µ is stable.

Proof: In the Appendix.

Theorem 3 states that stability is more easily attained if PAM is implemented. Intuitively, theorem

3 is similar to a known result in benchmark matching models without transaction or search costs, and in

which agents’ payoffs from a match are pre-determined and non-negotiable. The result states that, when

both sides of the two-sided market have the same ordinal preferences over agents on the other side of the

market and those preferences are strict, PAM is the only stable matching allocation (e.g., see Gusfield and

Irving (1989)). But in or environment, it is not immediately clear which sellers are the ones most preferred

by buyers and vice versa, as agents must engage in a bargaining process after the match is completed. But

notice that, under the commission fee ψ = 0 and τ ≥ 0, sellers with the highest qj − cj are the ones who can

generate most surplus to be shared with buyers, so they can be interpreted as the “most preferred sellers”.

Similarly, buyers with lower ui are the ones who can generate most surplus to be shared with sellers, so they
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can be interpreted as the “most preferred buyers”. So following this intuition, in our model with search and

transaction costs, a stable matching is more likely to be achieved if the platform matches the “most desirable

seller” (i.e., the one with highest qj − cj) with the “most desirable buyer” (i.e., the one with lowest ui), the

“second most desirable seller” (i.e., the one with second highest qj − cj) with the “second most desirable

buyer” (i.e., the one with second lowest ui), and so on.

This result implies that policies aimed towards reducing r, such as prohibiting platforms from obfuscat-

ing search results (e.g., by prohibiting platforms from hiding shipping costs) can have a positive effect on

consumer and seller surplus, by giving the platform more incentives to implement PAM, a matching that is

CPE.

The next example illustrates how instability may reduce the overall profits of the platform.

Example 2. (To guarantee stability, the platform may have incentives to implement PAM)

Consider a market where the set of sellers is given by {s1, s2, s3, s4}, and the set of buyers is given by

{b1, b2, b3, b4}. Sellers’ quality and costs are given by

(q1, q2, q3, q4) = (20, 20, 20, 20) and (c1, c2, c3, c4) = (2, 8, 14, 16),

respectively. Customers’ outside option are given by

(u1, u2, u3, u4) = (0, 3, 5, 7).

If PAM is implemented, then

s1 : b1 s2 : b2, s3 : b3, s4 : b4

If the platform charges commission fees ψ = 0 and τ = 1, then this Pareto efficient match would generate

a total of 3 transactions, resulting in a total profit of 3× τ = 3 to the platform.

But if it implemented the match

s1 : b4, s2 : b3, s3 : b2, s4 : b1 (9)

then 4 transactions would take place, so the platform’s profits would equal to 4× τ = 4.

However, if the search cost is given by r = 1, it can be shown that the match (9) is unstable, as buyer

b1 would have incentives to form a blocking coalition with seller s1, and buyer b2 would have incentives to

form a blocking coalition with seller s3. Once these blocking coalitions are formed, buyers b3 and b4 remain

unmatched. If they decided to pay the search cost r = 1 to be matched with sellers s3 or s4, they would end

up with a payoff lower than their outside option, so they have no incentives to try to form a different match

through the platform. As a result, in the end only two transactions take place, generating a profit of 2×τ = 2

to the platform.

Meanwhile, PAM is stable (theorem 3). So the platform may be better off implementing PAM and getting

a payoff of 3 as opposed to implementing the matching (9) and getting a payoff of 2.

7 Discussion

We build a simple theoretical model that sheds some light into two-sided platforms’ incentives to steer

customers towards certain products based on their willingness to pay. We show that the platform will tend
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to have incentives to induce more transactions than the socially optimum. We also derive some conditions

under which the platform will have more incentives to adopt such a strategy. In particular, the higher the

search costs, the more incentives the platform has to generate this excessive number of transactions, as in

this case matchings that maximize the number of transactions will be more likely to be stable. This implies

that policies directed towards reducing search obfuscation (e.g., by prohibiting platforms from hiding add

on prices, such as shipping costs), can have a positive impact on sellers’ and customers’ surplus.

This work has some limitations that can be exploited by future research. Perhaps its biggest limitation is

that, like in Hagiu and Jullien (2011) and Boerner and Quint (2022), we do not characterize the equilibrium

when prices are (endogenously) set before the matchmaking takes place, a case that would be more consistent

with many prominent platforms, such as Amazon.com. However, finding an equilibrium when prices are

set before the matchmaking is probably challenging in such an environment with many buyers and many

sellers, and it also requires a high level of information and rationality from sellers. As those assumptions

on rationality are rather strong, in practice the platform may get a good approximation to what would

be its optimal policy by treating prices as exogenous. When prices are exogenous, one can make a simple

modification to algorithms 1 and 2 to derive the platform’s optimal policy. In this case, instead of steering

customers towards products with high costs, it will steer customers towards products with high posted prices.

While our environment is not dynamic, we partially capture the platform’s reputation concerns by pro-

viding conditions under which a matching is stable. Indeed, if a matching is not stable, customers and sellers

systematically receive “bad matches” in the sense that they are able to form better incentive-compatible

matches on their own. So one could argue that instability reduces the probability that someone revisits the

platform for future purchases. One limitation from our results on stability, however, is that we require that

the platform only charges a flat fee τ per transaction (i.e., set ψ = 0), which is arguably not very realistic.

Future research could potentially explore extensions to this result.
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