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Abstract

We examine the nature of contracts that optimally reward innovations in a risky
environment, where the innovator is privately informed about the quality of her inno-
vation and must engage an agent to develop it. We model the innovator as a principal
who has private but imperfect information about the quality of her project: the project
might be worth exploring or not, but even a project of high quality may fail. We char-
acterize the best equilibrium for the high type principal, which is either a separating
equilibrium or a pooling one. Due to the interaction between the signaling incentives
of the principal and dynamic moral hazard of the agent, the best equilibrium induces
an inefficiently early termination of the high quality project. The high type principal
is forced to share the surplus – with the agent in the separating equilibrium, or the low
type principal in the pooling equilibrium. A mediator, who offers a menu of contracts
and keeps the agent uncertain about which contract will be implemented, can increase
the payoff of the high type principal to approximate her full information surplus.
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1 Introduction
How should we design contracts in order to reward innovation, when poor ideas can mas-
querade as worthwhile ones? Consider an innovator who has a new idea, and has private
but imperfect information about the quality of the idea. Specifically, the idea may be worth
exploring, but even high quality ideas may result in failure, just as ideas that are of low
quality ex ante may sometimes be successful. The innovator needs to engage an agent to
explore the idea, and thus the agent’s moral hazard must also be confronted. Since the
agent becomes more pessimistic over time about the probability of success in the absence of
a breakthrough, moral hazard is dynamic. Moreover, the innovator also needs to convince
the agent that the idea’s quality is high and it is worth exploring. Our question is: what
are the contracts that provide maximal rewards for high quality innovations? If high quality
innovations are not rewarded properly, innovators would not invest in better ideas in the
first place. The question is particularly important in the knowledge economy, where eco-
nomic growth is driven by innovations. Furthermore, all the ingredients listed are important
considerations in knowledge industries: innovators have private information, but even the
best ones are not omniscient, and sometimes come up with unworkable ideas; the innovators
themselves may not be the best ones to undertake project development, and may have to
delegate the task to specialized bodies; only these specialized bodies know how intensively
they are working on the innovator’s project.

We study a model where a privately informed principal engages an agent to work on a project.
A senior professor may need to hire a research assistant to conduct lab experiments; a tech
firm may need to recruit user participants for usability tests of its new product in the early
experimental phase; a multi-level marketing company, such as Amway and Herbalife, relies
on salespeople to pay visits to potential customers. In the gig economy, similar situations
are prevalent when a firm enters a new industry but has informational advantage over inde-
pendent contractors or gig workers who need to learn the quality of the product/technology
or the market conditions; for instance, drivers work for a new delivery service. The phar-
maceutical industry is another example. Scientists in biotech firms have strong insights into
the fundamental mechanism of diseases, but other entities, such as Contract Research (or
Manufacturing) Organizations, are specialized in other research support services.1 When
they cooperate on a drug development project, the biotech firm not only needs to incentivize
those organizations to exert efforts towards exploring the project’s viability, but also to earn
their trust and convince them of the project’s quality. The problem is particularly severe
when high quality projects are relatively scarce, and cannot be distinguished from low qual-
ity projects.2 Moreover, without recognizing the complex situation, inexperienced workers
may also be vulnerable for employment scams; for example, when they work as salespeople
for insurance firms with hard-to-sell inferior products, but accept the arrangement to pay
“training fees” first and then get compensated with “contingent commissions.”

1The services may include biopharmaceutical and formulation development, commercialization, stability
studies, preclinical and clinical research, clinical trials management, and pharmacovigilance.

2This is very typical in research industries. Stevens and Burley (1997) estimate that there is only one
commercial success in 3,000 raw ideas of innovation across most industries. Klees and Joines (1996) re-
port that only one compound of drug development is approved for marketing among every 5,000 to 10,000
compounds that enter preclinical testing.
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This paper has two parts. In the first part, we combine a signaling game with an exponential
bandit model to study the dynamic agency problem. An innovator or a principal (she) is
endowed with a project. Neither she nor the hired agent (he) knows whether the project is
viable, i.e., whether it can succeed and generate profits. However, the principal is privately
aware of the project’s quality, i.e., how long the project, if it is viable, will take in expectation
to succeed.3 Only the high quality project is worth exploring. The principal can commit to a
long-term contract to incentivize the agent to exert private efforts. The contract also serves
as a signal of her project’s quality, or her type. When the agent works on the project, he
gradually learns about both the viability and the quality of the project. Thus, the principal
has two tasks at once: signaling her type and providing incentives for the agent to work. To
isolate the conflict between signaling and providing incentives, we assume both players are
risk neutral and have unlimited liability.

Our focus is on rewarding innovation. Thus, we characterize the best equilibrium contract
for the high type principal. The high type principal can never obtain her full information
surplus, i.e., the payoff she would obtain if she were known to be a high type. Depending
on the proportion of high quality projects in the population, the best equilibrium for her is
either a separating equilibrium or a pooling equilibrium.

When high quality projects are scarce, a separating equilibrium gives the best outcome to
the high type principal. With unlimited liability, the high type principal could sell her
project to the agent, leaving him to be the residual claimant that solves the moral hazard
problem. Indeed, selling the project would be optimal if the quality of the project were
publicly known. That is, the agent makes an upfront payment that equals the expected
surplus of the project, in exchange for the entire profit when the project succeeds. However,
when only the principal knows her type, such a contract does not do a good job separating
the two types. Both types value the upfront payment the same, and the low type principal
has incentives to exaggerate the quality of her project to sell it for a good price. To separate
from the low type principal and convince the agent of the project’s quality, the high type
principal will not charge the upfront payment but rather pay the agent some base wage
that is independent of the outcome, and at the same time share the profits with him as
bonus payments conditional on a successful project development. The base wage helps the
high type principal separate from the low type. The bonus payments are increasing over
time to encourage an increasingly pessimistic agent to continue working. Thus, the high
type principal shares a portion of the total surplus with the agent. Moreover, to separate
from the low type in the least costly way, the high type principal will terminate the project
inefficiently early. This is not only because the dynamic moral hazard problem, but also
because an early termination discourages the low type principal to mimic the high type
since the low type, knowing her chance of a success is low, is less concerned about sharing
profits and would prefer longer project development. Thus, both the inefficient termination
and sharing the surplus with the agent reduce the payoff of the high type principal.

On the other hand, when high quality projects are not rare, it is better for the high type
principal to pool with the low type to avoid signaling costs. In that case, the best equilibrium

3More specifically, the quality of a project is modeled as the success probability in one period when the
project is viable and when the agent exerts effort.
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for the high type principal is a pooling equilibrium, where both types charge the agent a
positive sign-up fee and then share the profits with him once the project succeeds. Thus,
instead of leaving rents to the agent, the high type principal “shares” rents with the low type
principal. Moreover, the equilibrium contract still features an inefficiently early termination,
compared to a project whose quality is ex ante unknown.

The above results show that the high quality project is operated inefficiently and the high
type principal cannot obtain her full information surplus. It provides a need for mediators
to facilitate the agency process. Online platforms, such as Science Exchange, Scientist and
Upwork, are such mediators. Science Exchange and Scientist help researchers outsource their
research to other scientific institutions around the world. Upwork is a global freelancing plat-
form that connects independent professionals. Those platforms facilitate matching between
relevant parties, smooth contract implementation, and provide guidance for partnerships.
Law firms specialized in contracts may also play a similar role as mediators.

In the second part of the paper, we analyze the mechanism design problem faced by a medi-
ator who seeks to maximize the reward for superior innovations, i.e., high quality projects.
The designer offers a menu consisting of two contracts, one for each type of principal. This
menu must satisfy incentive compatibility for the principal, which induces truthful revelation
by each type (it must also satisfy individual rationality). The agent observes the menu, and
infers that each of the contracts will be implemented with a probability corresponding to
his prior, and decides whether to accept or reject the menu. However, the agent is not told
which element is being implemented until it is essential for him to know. In other words, the
agent is confronted with an opaque contract, and remains uncertain about his exact rewards
for some time. This relaxes the agent’s individual rationality and incentive compatibility
constraints; they only need to be held on average. In addition, the opaqueness of the con-
tingent transfers allows the two types of principal to bet on a success, which provides an
additional device for the high type principal to separate herself. In this way, the mediator
designs a mechanism that improves the payoff of the high type principal. Moreover, the
inefficiency costs are minimal, since the mediator can recommend the low type project run-
ning for only one period. In the optimal mechanism for the high type principal with pure
recommendations, the high type principal obtains approximately all the surplus from her
innovation when the period length is small. Thus, the contract with the mediator allows
the innovator of a superior project to appropriate almost her entire contribution to social
surplus. Furthermore, an innovator who comes up with an inferior project is left with no
surplus, thus the menu simultaneously minimizes the rewards for wasteful innovations.

Such a mechanism resembles a widely used incentive contract in Chinese venture capital
market, called the Valuation Adjustment Mechanism (VAM) or the “Bet-on Agreement.” A
VAM specifies certain future performance conditions, which, upon reached, grant different
parties certain rights to adjust the originally agreed valuation and investment plan. Lin
(2020) argues that the VAM is designed to protect investors in a market with severe in-
formation asymmetry and immature legal environment. The optimal mechanism to reward
high quality projects in our setting also features a crucial condition that determines the
future project development and how profits are shared. That condition is the principal’s
private information about the project’s quality and will be revealed only during the project
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development.

The rest of the paper is organized as follows. Section 2 discusses the related literature. Sec-
tion 3 introduces the model. Section 4 discusses the efficient solution and other benchmarks.
Section 5 characterizes the best equilibrium for the high type principal in the signaling game.
Section 6 considers the third-party mechanism design problem. Section 7 concludes. The
Appendix provides proofs.

2 Related Literature
This paper examines the incentives for experimentation when the principal is informed.
First, it relates to a growing literature on incentives for experimentation. These papers, as
well as the current one, build on a two-armed bandit model of learning, as in Keller, Rady,
and Cripps (2005), and focus on how to provide incentives for agents to experiment through
contingent contracts. Most papers, such as Bergemann and Hege (1998, 2005), and Hörner
and Samuelson (2013), consider how to incentivize one party to experiment, who is subject
to the moral hazard problem. They typically consider a repeated interaction between the
principal and the agent, assume limited liability, and demonstrate an inefficiency result due
to the agency costs. Guo (2016) studies a dynamic relationship in which a principal delegates
experimentation to a biased agent who has private information about the prior belief that
the state is good. Thus, the incentive problem comes from the hidden information of an
informed but biased agent. Halac, Kartik, and Liu (2016) is a closely related paper. They
examine an agency problem subjected to both moral hazard and adverse selection in the
context of experimentation. They assume that the principal can commit to a long-term
contract, and no limited liability. The major difference is that, instead of considering the
private information on the side of the agent, our paper examines the case where the private
information is on the side of the principal. In the screening problem of Halac, Kartik, and Liu
(2016), the high type agent has an incentive to pretend to be the low type. In our signaling
problem, the low type principal has an incentive to pretend to be the high type. Therefore,
Halac, Kartik, and Liu (2016) show that the optimal contract has no distortion for the high
type agent, but requires the low type agent to terminate the project inefficiently early.4 By
contrast, we show that it is the high type project that is terminated inefficiently early in the
best equilibrium for the high type principal. Moreover, in that equilibrium, either there is no
distortion for the low type project, or it is distorted towards over-experimentation, depending
on the prior belief about the low type principal. Thus, the economic forces underlying the
analyses are very different in the two papers. Furthermore, we also allow for a mediator and
show that the approximate efficiency can be achieved, a result that has no counterpart in
Halac, Kartik, and Liu (2016).

Second, our paper relates to a relatively small literature on the informed principal problem
with moral hazard. Myerson (1983) first considers the informed principal problem from an
axiomatic point of view. Maskin and Tirole (1990, 1992) develop a noncooperative game
framework to analyze the informed principal problem with no moral hazard. According to
their categorization, our model is the “common value” informed principal problem, since the

4It is a typical result in screening problems that distortions occur at the bottom, but not at the top.
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agent cares directly about the type of principal. Beaudry (1994) is an early paper concerning
an informed principal problem with moral hazard. He characterizes a separating equilibrium
where the principal leaves rents to the agent. More recent papers, such as Silvers (2012),
Wagner, Mylovanov, and Tröger (2015), Bedard (2016), and Karle, Schumacher, and Staat
(2016) also consider the informed principal problem in the presence of moral hazard. In all
these papers, the moral hazard problem is static. Few papers examine this problem in a
dynamic setting.5 One exception is Kaya (2010). She studies a similar informed principal
problem with moral hazard when the principal and the agent interact repeatedly, but as-
sumes the principal and the agent start with symmetric uncertainty about the productivity
information. In each period, the principal has a choice to acquire that information without
costs, but would rather delay acquiring it in order to save the costs for signaling. However,
in our paper, the agent learns both the type of the principal and the viability of the project
during experimentation, which makes the incentive problem very different.6

Last, our paper is also related to the information design problem with moral hazard. Je-
hiel (2015) examines whether a principal with private signals prefers to commit to a non-
transparent information disclosure policy to overcome the agent’s moral hazard. He finds
that full transparency is generically suboptimal under some mild conditions. Our result in
the mechanism design part echoes his result – keeping the agent in the dark improves the
payoff of the high type principal. However, we focus on the signaling problem of the prin-
cipal after her private information is realized, while Jehiel (2015) assumes the principal can
commit to an information disclosure policy before the realization of the private information.
Ely and Szydlowski (2020) study a model where a principal is privately informed about the
duration of the required efforts for completing a project. The principal’s objective is to
induce the agent to work as much as possible, thus they find that the optimal information
disclosure policy is “moving the goalposts”: at the outset, the principal tries to make the
agent optimistic that the task is easy in order to induce him to start working, but persuades
him that the task is hard when the difficult goal is within reach. In their setting, there is no
signaling consideration, and the principal’s problem is to keep the agent from quitting.

3 The Model
Time is discrete and the horizon is infinite, with a small but positive period length ∆ > 0.
The per period discount factor is δ = e−ρ∆, where ρ ≥ 0. To get rid of the integer problem
and have a tractable solution, we will look at the case as ∆ → 0 for some results.7

5Fryer and Holden (2012) consider a two period informed principal problem with moral hazard. However,
they make a behavioral assumption that the agent only learns from a noisy signal, but not from the contract
proposed by the principal.

6Kaya (2010) uses “money burning,” i.e., a pure production-irrelevant cost, as a signaling device for the
principal after acquiring information. This money burning signaling device, together with the assumption
that the agent has limited liability, are essential to her results. See Kaya (2010) Footnote 15.

7Those results approximate the circumstance when ∆ is small. We do not use a continuous time model
to avoid technical difficulties, since stochastic integration with respect to general transfer scheme may not
be well-defined. We also use the following notational conventions. N and n are used for time periods when
we talk about the model with a fixed ∆ > 0; T and t are used for time when we examine the model in the
limit ∆ → 0. For a variable xn that has time subscript n, let xt be the limit of xn as ∆ → 0 and n∆ → t
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There are two risk neutral players, a principal P and an agent A. The principal (she) hires
the agent (he) to complete a project with uncertain viability. The agent, after accepting
the principal’s offer, chooses whether to exert efforts in every period before the game ends.
The agent has a flow cost c∆ > 0 when he exerts efforts in any period. The efforts are not
observable or verifiable by the principal.

The principal is privately informed about the quality of the project, θ ∈ Θ = {H, L}.
H represents a high quality project and L represents a low quality project. The quality is
persistent and is chosen by nature at the beginning. The private quality can also be regarded
as the type of the project/principal. The agent does not know the principal’s type, but has
a prior β0 ∈ (0, 1) on the H type, which is common knowledge.

A project of either type may be in one of the two states: a good state G, or a bad state B.
The state is also persistent and chosen by nature at the beginning. However, neither party
knows the state of the project. They have a common prior q0 ∈ (0, 1) on the G state, and
the distribution of states is independent of the distribution of types.

The following figures summarize the information structure when nature moves. P knows the
types, but not the states. A knows neither of them.

Nature

Nature
G B

H

Nature
G B

L

Figure 1: Principal’s Information

Nature

Nature
G B

H

Nature
G B

L

Figure 2: Agent’s Information

In the B state, a project, independent of its type and the agent’s efforts, never generates
any profits. In the G state, when the agent exerts efforts in one period, a θ ∈ Θ type project
can generate a lump-sum profit h > 0 to the principal in that period with a probability
λθ∆, where λH > λL > 0. It is a success of the project in a period when the profit arrives,
otherwise we call it a failure. A success of the project can be publicly observed and verified,8
and will end the game. Hence, the difference between the H and the L type projects is the
arrival rate of success conditional on the project is in the G state and the agent exerts efforts.
In addition, we will maintain the following assumption:

Assumption. q0λ
Hh > c ≥ q0λ

Lh.

Thus, given the cost and the benefit of the project, and the prior belief about the state, only

(when it exists).
8The public observability and verifiability of a success is an inconsequential assumption in the model.

If a success is only observed by the agent, the agent can choose to misreport a failure to the principal
when a success actually arrives. However, the agent has no incentive to hide a success from the principal
in any equilibrium contract in this paper. When a contract gives exact incentives for the agent to work if a
success is contractible, it also gives enough incentives for the agent to truthfully report the success if it is
not contractible. See Section 5.2.
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the H type project is worth experimenting on. If it were commonly known that the project’s
type was L, it would exit the market.

The timing of the game is the following. The principal first learns her private type, H or L,
and then proposes a take-it-or-leave-it long-term contract to the agent. The principal can
fully commit to her contract, which specifies the following:

• A termination date N ∈ IN0 of the project conditional on no success.9

• A lump-sum payment W ∈ IR from the principal to the agent at time zero.

• A contingent payment plan, two vectors b ∈ IRN and p ∈ IRN , both from the principal
to the agent. b is the bonus vector that determines the payment when the project
succeeds in any period; p is the penalty vector that determines the payment when the
project fails in any period. In other words, if the project succeeds in the n-th period,
where 1 ≤ n ≤ N , the payments to the agent are pk in the k-th period for 1 ≤ k < n,
and bn in the n-th period.

All payments can be either positive or negative. Thus, a contract is a quadruple C =
{N, W, b, p}.10 We call a contract a bonus contract if p = 0, and a penalty contract if b = 0.
If N = 0, the only payment is W . A contract is called a null contract if N = W = 0.

After the principal proposes a contract, the agent chooses whether to accept it. If he rejects
it, both parties obtain their reservation payoff zero and the game ends. If he accepts it, the
contract is implemented and the agent decides whether to exert efforts in each period, until
the project succeeds or the termination date is reached.

This is a signaling game as the informed player (the principal) moves first. We will consider
Perfect Bayesian Equilibria (PBE).

A contract specifies 2N + 1 transfers from the principal to the agent, however, some are
redundant. We can restrict attention to a smaller set of contracts, i.e., the set of bonus
contracts or the set of penalty contracts, without loss of generality.

The idea is similar to Halac, Kartik, and Liu (2016). Given a termination date N of a
contract, there are N + 1 possible outcomes, i.e., a success arrives after n-th experiment for
n ∈ {1, 2, · · · , N} and it never arrives. Both parties are risk neutral and only care about
the discounted transfers on any realized outcome. Thus, N + 1 transfers (contingent on the
N + 1 outcomes) are sufficient to characterize any payment plan. We say two contracts with
the same termination date are payoff equivalent if for any action plan of the agent, any type
of the principal, and any belief of the agent, both contracts deliver the same expected payoffs
to the principal and to the agent. It is easy to see that, for any contract, there exists a bonus
(or penalty) contract that is payoff equivalent to it,11 because, for any realized outcome,
bonuses (or penalties) together with the lump sum payment W can deliver any discounted
transfers that a general contract could.

9The principal, whatever type she is, never wants to experiment forever. Therefore, without loss, we do
not consider the option to run the project forever.

10Note that all terms depend on ∆, but we omit that to save notation.
11See Proposition 1 of Halac, Kartik, and Liu (2016).
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Different from Halac, Kartik, and Liu (2016), one more thing needs to be taken care of in
our signaling game. The agent may form different beliefs on payoff-equivalent contracts.
But the principal and the agent would feel indifferent to payoff-equivalent contracts as long
as the agent forms the same belief, which would induce the same action plan of the agent
and deliver the same expected payoffs to both parties. Hence, we shall have no reason to
think that the agent would regard different payoff-equivalent contracts as different signals.
Formally, we assume that the agent forms the same belief about the type of the principal
for any payoff-equivalent contracts. This is a restriction on the off-path beliefs.

From now on, without loss of generality, we can focus on bonus contracts or penalty contracts.
In this paper, we will restrict attention to bonus contracts, or contracts for simplicity. Thus,
a contract is a triple C = {N, W, b}.

4 Benchmarks

4.1 Efficient Solution
We first consider the efficient solution without the agency problem, where a social planner
seeks to maximize the total surplus, given he knows both the private type of the principal
and the hidden actions of the agent but not the state of the project.

The social planner solves an optimal stopping problem. The optimal strategy is to stop
the project whenever the posterior belief about the project’s state being G falls below some
cutoff belief. This strategy is also equivalent to specifying how long to experiment.12

Let V θ(N) be the expected discounted value of the θ ∈ Θ project when the social planner
experiments N times. It is given by

V θ(N) =
N∑

n=1
δnf θ

n−1(q0)
(
qθ

nλθh − c
)

∆, (1)

where f θ
m(q) = q(1 − λθ∆)m + 1 − q is the probability that a θ project, with a prior q being

in the G state, fails m times.
(
qθ

nλθh − c
)

∆ is the expected payoff for the n-th experiment
conditional on a success not having arrived yet. Here qθ

n is the posterior belief about the
state being G for a θ project before the start of the n-th experiment,13

qθ
n = q0(1 − λθ∆)n−1

q0(1 − λθ∆)n−1 + 1 − q0
.

Thus, the optimal policy for the social planner, with a θ project, is to conduct the project
as long as

qθ
nλθh ≥ c.

12More precisely, a strategy specifies how long to experiment without a success. Since a success ends the
game, we omit repeating “without a success.”

13After a project fails n − 1 previous experiments.
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Given the assumption q0λ
Lh ≤ c, the social planner will abort the L type project imme-

diately; the L type project is a lemon. Thus, the efficient termination date for the L type
project is zero. On the other hand, given the assumption q0λ

Hh > c, the efficient termination
date for the H type project, denoted by NH

∗ , is strictly positive. To get rid of the integer
problem of NH

∗ , it will be helpful to examine the limit of the experimenting time:

T H
∗ := lim

∆→0
NH

∗ ∆ = 1
λH

log l0
lH

,

where l0 = q0
1−q0

is the likelihood ratio of the prior belief that the state of the project is G,
and lH = c

λHh−c
is the likelihood ratio of the efficient cutoff posterior belief that the state of

the H project is G. We also denote V θ
0 (T ) := lim∆→0,N∆→T V θ(N).

The efficient solution is obtained assuming away both the private information of the principal
and the hidden actions of the agent. Next, we consider benchmarks where the incentive
problem is one-sided.

4.2 One-sided Incentive Problem
Our model has both private information on the side of the principal and hidden actions
on the side of the agent. Both are crucial, because the incentive problem would be trivial
without either of them.

No Private Information – Let us first consider the case where the project’s private type
is public information, while the agent’s actions are still private. Although the principal still
needs to incentivize the agent to experiment on the commonly unknown state of the project,
the incentive problem is trivial. The principal can sell the project to the agent as the agent
has no financial constraint. After the agent becomes the residual claimant of the project,
he will implement the efficient solution. Thus, the H type extracts all the surplus by selling
her project with a price at its expected value, and the L type exits the market.

Observable Efforts – Another simple case is where the agent’s efforts are publicly observ-
able and verifiable. Thus, the principal can contract directly on the efforts. Even though the
principal has private information on the type of the project, the incentive problem becomes
trivial. There exists a separating equilibrium in which both projects are implemented effi-
ciently and the H type principal extracts all the surplus of her project. In the equilibrium,
the H type proposes an “honest” contract that pays the agent for his efforts each period
until her efficient termination date if and only if he exerts efforts, while the L type exits the
market. The agent optimally accepts the “honest” contract and exerts efforts, and believes
contracts other than the “honest” contract are offered by the L type.

In the above two scenarios, both projects are implemented efficiently and all the surplus is
retained by the principal. We call such an outcome the full information benchmark (FIB).
In the presence of both private information on the side of the principal and hidden actions
on the side of the agent, the principal needs to signal her type and incentivize the agent to
work at the same time. We will show that the FIB can never be achieved.
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5 Equilibrium Characterization
In this section, we first show there is no equilibrium that achieves the FIB. Multiple equilibria
exist as a PBE does not restrict the off-equilibrium beliefs. Because a L type project is a
lemon, we examine how much a H type project can be rewarded in the equilibrium. That is,
we study the best equilibrium for the H type. We characterize the best equilibrium for the H
type principal, which is either a separating equilibrium or a pooling equilibrium, depending
on the prior belief about the H type principal.

5.1 The Impossibility of Achieving the FIB
If an equilibrium implements the FIB, it must be a separating equilibrium: the L type aborts
the project, while the H type incentivizes the agent to work until the efficient termination
date and extracts all the surplus. Moreover, the agent believes the principal’s type is H if
the H type contract is proposed, but the L type cannot benefit from proposing the H type
contract.

We first characterize all contracts that satisfy the agent’s binding individual rationality
(IR) constraint, and the agent’s incentive compatible (IC) constraints until the efficient
termination date NH

∗ , given the agent believes the principal’s type is H. Then we find the
worst one for the L type among that set of contracts, and show that the L type can still
obtain a strictly positive payoff from the worst contract. Thus, any contract that implements
the FIB must violate the IC constraint for the L type. Hence, the FIB cannot be achieved
in any equilibrium.

When the agent believes that the principal’s type is θ ∈ Θ, a contract C = {N, W, b} satisfies
the IC constraints for the agent to work from period one to N , if for all 1 ≤ n ≤ N ,

N∑
s=n

δs−nf θ
s−n(qθ

n)
(
qθ

sλθbs − c
)

∆ ≥
N∑

s=n+1
δs−nf θ

s−n−1(qθ
n)
(
qθ

s−1λ
θbs − c

)
∆. ICθ

A(N)

The above defines N inequality constraints. The left-hand side (LHS) is the agent’s expected
discounted payoff when he experiments from period n until the termination date N , after
failing n−1 previous experiments. It has the same structure as the social planner’s expected
discounted value in expression (1), except the agent’s value of a success in period s is bs,
instead of h. The right-hand side (RHS) is the agent’s expected discounted payoff when
he shirks in period n but experiments from then on until the termination date N , after
failing n − 1 previous experiments. Thus, ICθ

A(N) prevents a one-time profitable deviation
(shirking) of the agent in all histories when he never shirks before. If the agent deviates and
shirks in some past period, it is still optimal for him to work thereafter, since he is more
optimistic than he would be had he worked.

The moral hazard problem is dynamic. In the n-th period, the expected payoff of working
from the current period is

(
qθ

nλθbn − c
)

∆, while shirking gives a current payoff zero. The
continuation values of working and shirking also differ due to two effects. First, the learning
effect: (unexpected) shirking makes the agent more optimistic about the project than the
principal. The principal (not knowing the unexpected shirking of the agent) believes that

10



the probability of the state being G is qθ
n+1 < qθ

n, while the agent (correctly) believes that it
is still qθ

n. Second, the end-of-game effect: the game has f θ
1 (qθ

n) < 1 probability to continue
if the agent works, while it continues for sure if the agent shirks. Those two effects increase
the continuation value of shirking compared to working. Thus, the bonus must compensate
the agent for both his current period cost and his continuation value loss.

When the agent believes that the principal’s type is θ ∈ Θ, a contract C = {N, W, b} satisfies
the IR constraint for the agent, if

W θ
A = W +

N∑
n=1

δnf θ
n−1(q0)

(
qθ

nλθbn − c
)

∆ ≥ 0. IRθ
A(N)

Let S(N) denote the set of contracts that satisfy both ICH
A (N) and a binding IRH

A (N).
Hence, S(NH

∗ ) is the set of contracts that implement the FIB for the H type given that the
agent believes her type is H.

The worst contract Cwt = {NH
∗ , W wt, bwt} for the L type in the above set of contracts solves

the following Program I:

min
b,W

ΠL = −W +
NH

∗∑
n=1

δnfL
n−1(q0)qL

n λL (h − bn) ∆

s.t. ICH
A (NH

∗ ) and a binding IRH
A (NH

∗ ).

The L type’s expected payoff is determined by the payment transferred to the agent at time
zero and the kept share of profits once the project succeeds. Here qL

n λL(h − bn)∆ is her
expected payoff for the n-th experiment conditional on a success not having arrived.

Lemma 1. The worst contract for the L type in the set S(NH
∗ ) of contracts is the contract

in which the agent’s IC constraints bind in every period n = 1, 2, . . . , NH
∗ .

This result is important as it shows how to incentivize the agent to work and at the same
time make the L type’s mimicry least profitable. More importantly, as it will be shown later,
it greatly simplifies our search for the best equilibrium for the H type as the similar result
holds whenever the H type has a signaling concern.14

We now provide intuition for why all the IC constraints must bind. The set of contracts
that implement the FIB for the H type is large, because the principal has the discretion
to give more high-powered incentives than required, so that the agent’s IC constraints are
slack, and then extract the surplus so conferred via a larger sign-up fee, i.e., a lower value of
W . However, such a contract is more attractive for the L type. We now explain why.

14See Lemma 5 in the Appendix.

11



pdf

t

ηt = 0

ηt > 0 ηt < 0

H type
L type

Figure 3: The probability of success of the two type

Figure 3 shows the probability density functions of the success time. Let
ηn := fH

n−1(q0)qH
n λH − fL

n−1(q0)qL
n λL.

Thus, ηn∆ is the difference of success probabilities for the n-th experiment between the H
and L types. Although the H type is more likely to succeed than the L type conditional on
the state being G, the posterior beliefs about the state being G conditional on no success
decrease faster for the H type than for the L type – the H type learns faster. Thus, the two
curves cross once. The H type is more likely to succeed in the earlier periods (ηn > 0), but
the L type is more likely to succeed in the later periods (ηn < 0).

Suppose the agent believes the principal’s type is H, but her actual type is L. Thus, the
agent overvalues the bonus payments in the earlier periods (ηn > 0) as the success probability
is lower than what he believed, and is therefore willing to pay a higher sign-up fee than he
would pay had he known the principal’s type is actually L. Consequently, to minimize the
L type’s incentive to mimic the H type, bonus payments must be minimized in any such
period where the probability of success is greater for the H type than that for the L type.
Thus, the IC constraints must bind there.

Consider now any period where the probability of success is greater for the L type than that
for the H type. By the preceding argument, it would seem that the bonus payment in such
a period should be increased to reduce the L type’s incentive to mimic the H type. But this
is not true. Consider the period right after the crossing point. Raising the bonus in that
period makes the agent’s continuation value of shirking, in all previous periods, higher. To
incentivize the agent to work, the principal has to raise bonus payments in all previous periods
proportionally. It actually makes the L type better off, because the distribution of success
for the L type first-order stochastic dominates that for the H type, i.e., ϕn := ∑n

s=1 ηs∆ > 0
for any n ≥ 1. To minimize the L type’s mimicry incentive, the bonus payment must also be
minimized in the period right after the crossing point. The same logic continues. We show
that the bonus payments in any period must be minimized in the worst contract for the L
type. Thus, all IC constraints must bind.

Even in the worst contract for the L type, the bonus scheme is an increasing sharing plan that
leaves the L type a positive expected payoff during experimentation. Moreover, the agent
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is also willing to pay a positive sign-up fee, if he believes the principal’s type is H. Thus,
the L type obtains a strictly positive payoff from that worst contract, and has incentives to
mimic the H type. Hence, we conclude:

Proposition 1. There is no equilibrium that implements the FIB.

5.2 Separating Equilibrium
The FIB cannot be implemented in any equilibrium, since any contract that achieves the
FIB for the H type must violate the IC constraint for the L type. How can the H type
principal separate herself from the L type?

The simplest way is to increase the upfront payment W . The L type has a lower success
probability than the H type. Thus, an upfront payment W that makes the H type profitable
could be unprofitable for the L type. Consider the contract Cwt we found. Let ΠL(Cwt) be
the payoff of the L type from Cwt, when the agent believes her type is H. Now we introduce
a new contract, C1 = {NH

∗ , W 1, bwt}, with the same termination date and bonus payments,
but a higher upfront payment, where W 1 = W wt +ΠL(Cwt). Hence, the L type would obtain
a zero payoff from C1, even when the agent believes her type is H. But the H type can obtain
a strictly positive payoff from C1, when the agent believes her type is H. This is simply
because the total surplus is larger for the H type project, compared to the L type.

Thus, C1 can separate the H type from the L type. Furthermore, the H type and the L
type proposing C1 and the null contract respectively, can be supported in an equilibrium.
In fact, for any other contract, we can find some belief that prevents a profitable deviation
by either type. We have the following result:

Lemma 2. For any contract, if the agent believes the principal’s type is L, the principal,
whatever type she actually is, cannot obtain a strictly positive payoff.

Thus, a pessimistic belief that assigns probability one about the principal’s type being L for
any off-equilibrium path contract can support the above equilibrium.

The contract C1 simply uses the upfront payment to separate the two types. The H type
could design a more sophisticated contract to separate herself and improve her payoff. Now
we consider the best separating equilibrium for the H type, or BSEH, i.e., the equilibrium
that gives the H type the highest payoff among all separating equilibria.

Given the structure of a contract, the H type principal could use three potential devices to
separate herself. First, she could increase the upfront payment W as we have seen. Second,
she could reduce the experimentation by terminating it earlier. Since the L type learns
slower than the H type, the value of an additional experiment decreases more slowly for the
former than for the latter. Hence, an experiment could be more valuable to the L type than
to the H type in the later periods. Thus, shutting down the project earlier makes mimicry
less attractive. Third, she could delay the project, by having the agent not work in some
periods before terminating the project permanently. Those devices are all costly to the H
type; the question is how to use them in the least costly way.

Although it is not clear at first whether delaying the project temporarily permits separation,
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we show this is not the case. Delaying the project essentially increases the discount factor
between two consecutive experiments.15 Each discount factor affects discounted payoffs
linearly, if all other terms in the payoff functions are independent of the discount factor.
To make the agent follow the induced action plan, bonus payments have to be correlated
with future discount factors. However, allowing for the possibility to delay the project does
not change the fact that the least costly separation and pooling both require the agent’s IC
constraints bind. It, in turn, makes the current bonus payment linearly correlate with any
future discount factor. Thus, discounted payoffs are linear in each discount factor between
two consecutive experiments, given the agent’s IC constraints binding. Therefore, from the
H type’s point of view, it is optimal to either never delay the project, or delay it forever (i.e.,
terminating the project). Hence, the H type project will never be temporarily delayed in
the best equilibrium for the H type. From now on, we will not consider delaying the project
temporarily in the main body of the paper. More details can be found in the Appendix.

In the BSEH, the L type must obtain a zero payoff; let her propose the null contract in the
equilibrium. We also assume that the agent assigns probability one about the principal’s
type being L for any off-equilibrium path contract. Lemma 2 ensures both types of principal
will not deviate to those contracts. We shall not worry about the H type’s IR constraint and
her incentives to choose the L type’s equilibrium contract in the BSEH. The last constraint
for the principal is the L type’s incentives to deviate to the H type’s equilibrium contract.
Given the H type’s contract C = {N, W, b}, the L type’s IC constraint is

ΠL = −W +
N∑

n=1
δnfL

n−1(q0)qL
n λL (h − bn) ∆ ≤ 0. ICH

L (N)

The agent’s IR and IC constraints are the same as before. Hence, the H’s equilibrium
contract, Csep = {N sep, W sep, bsep}, in the BSEH solves the following Program II:

max
N,W,b

ΠH = − W +
N∑

n=1
δnfH

n−1(q0)qH
n λH(h − bn)∆

s.t. ICH
A (N), IRH

A (N), and ICH
L (N).

To solve this program, we drop the constraint IRH
A (N) and leave it to be verified. In the

relaxed program, ICH
L (N) must bind, which determines the upfront transfer W , otherwise

the H type can decrease W to obtain a higher payoff. For any given N , the agent’s IC
constraints in ICH

A (N) also bind in every period 1 ≤ n ≤ N due to the same reason as
in Lemma 1, which determines the bonus scheme b. The last thing is to determine the
termination date N . By taking the limit ∆ → 0, we have the following result:

Proposition 2. In the limit ∆ → 0, there is a unique equilibrium contract for the H type
Csep = {T sep, W sep, bsep} in the BSEH. It has the following features:

• Under experimentation: 0 < T sep < 1
2T H

∗ , where T sep satisfies

λHe−λHT sep − λLe−λLT sep =
(
λH − λL

)
e−λHT H

∗ e(λH−λL)T sep ;
15The discount factor between the (n − 1)-th and n-th experiments is δn = δk, where k ∈ IN ∪ {∞} is the

number of delaying periods. k = 1 means no delay, and k = ∞ means terminating the project.
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• A positive base wage: W sep > 0;

• A (weakly) increasing bonus plan: bsep
t is weakly increasing in t and bsep

t ∈ (0, h).

Rent Sharing – In such an equilibrium, the H type principal shares some surplus with the
agent. She obtains less than 1 − λL/λH of the total surplus and the agent obtains more
than λL/λH of that. The surplus is shared through both a positive base wage W sep before
experimentation, and an increasing bonus scheme in the period when the success arrives.
Although the principal has all the bargaining power and the agent has no financial constraint,
she leaves some rents to the agent in order to signal her type is H. This phenomenon is first
shown in Beaudry (1994). The L type has no rents and exits the market.

Role of Learning – An increasing bonus scheme means the principal gives a larger reward
to the agent if the success comes later. This is due to the decline of the posterior beliefs
about the viability of the project. A failed experiment drives the agent’s belief about the
viability of the project down, and greater incentives are needed in later periods.

The inefficiently early termination is the second source of the signaling costs. The payment
W must equal the L type’s expected share of the profits if the L type proposes the H type’s
contract. Thus, the H type’s payoff can be seen as the difference between her expected share
of the profits and that of the L type. Extending the experiment has two effects.

Consider payoffs only in the last period. The marginal net benefit for extending the experi-
ment is the difference between the H type’s expected share of her profits and that of the L
type in that period:

q0e
−ρT

(
λHe−λHT − λLe−λLT

)
(h − bT ) , (2)

where λθe−λθT is the probability of success in the last period T for the θ ∈ Θ type project
in the G state, and (h − bT ) is the share retained by the principal.

Consider payoffs in all other periods. Due to the dynamic moral hazard problem, the
marginal net cost for extending the experiment is the difference between the increased accu-
mulated bonuses that are given up by the H type and that by the L type:

q0e
−ρT

(
e−λLT − e−λHT

) (
λHbT − c

)
, (3)

where
(
e−λLT − e−λHT

)
is the probability difference of failures until the last period T between

the H and L type in the G state, and
(
λHbT − c

)
represents the increased bonuses.16

Equalizing the above two effects gives the equilibrium terminating date T sep. The inefficiency
comes from the combination of the private information and hidden actions on both sides.
Moreover, it is aggravated because of the dynamic moral hazard problem due to learning. If
the state of the project is known, extending the experiment does not increase the agent’s share
of the profits in previous periods; the principal does not need to give the agent compensation
more than one-time incentive costs. Hence, the effect represented by expression (3) is zero,
if there is no learning towards the state of the project. Thus, the inefficiency is solely

16The marginal increase of a bonus payment at time t by extending the experiment is
(
λHbT − c

)
with a

proper discounting, i.e., d
dT bt = e−ρ(T −t) (λHbT − c

)
.
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determined by expression (2), and it diminishes (i.e., the terminating date goes to be infinity)
as λL goes to zero. However, in our model, the state of the project is unknown; thus,
prolonging experimentation increases the bonus payments in all periods. Even when λL

goes to zero, expression (3) is strictly positive. In the limit case (λL = 0), the equilibrium
termination date T sep is determined by

q0e
−ρT e−λHT λH (h − bT ) = q0e

−ρT
(
1 − e−λHT

) (
λHbT − c

)
,

where λH(h− bT ) and (λHbT − c) are the expected payoffs for the principal and for the agent
in the G state, respectively. Therefore, for T = T sep

e−λHT = λHbT − c

λHh − c
= lH

lT
= e−λH(T H

∗ −T),

where lH = c
λHh−c

and lT = c
λHbT −c

are the likelihood ratio of the posterior beliefs that the
state of the H project is G at the efficient termination time T H

∗ and at the termination time
T , respectively. Hence, we have T sep = T H

∗ /2 when λL = 0.

We can show that the equilibrium termination date T sep is decreasing in λL, therefore the
H type project is only operated less than a half of the efficient time.

Limited Liability – Consider a different setting where the principal is publicly known
to be the H type, but the agent is protected by limited liability, i.e., W and b must be
positive. It is easy to show that the optimal contract in that case is the H type’s equilibrium
contract in the BSEH of our original model with λL = 0, which implies W sep = 0. Hence,
our model provides an alternative explanation why the agent often has limited liability, i.e.,
the principal cannot charge anything from the agent or sell the project to him. A standard
argument is that the agent may have some financial constraints. However, in our model
where the agent does not have any financial constraints, the principal is still willing not
to charge anything from him in order to separate herself from an inferior project. Thus,
without financial constraints, we still may observe the “limited liability” phenomenon in
equilibrium.

Unobservable Successes – We assume a success is publicly observable and verifiable. One
may think it is sometimes very costly for the principal to verify a success. If that cost is
prohibitively high, contracts can only depend on the agent’s report on a success. Thus, the
principal may face an additional problem: the agent may delay reporting a success to obtain
a higher payoff if the increase of bonus payments over time offsets the discounting cost.

However, the structure of the bonus payments in the equilibrium contract ensures that does
not happen. Actually, the agent has no incentive to hide a success from the principal, as long
as he is given the exact incentive to experiment when a success can be costlessly verified, as
in our model. In other words, given the binding IC constraints for the agent, the agent will
report a success truthfully when it arrives. Formally, Lemma 6 in the Appendix shows that
binding IC constraints for the agent implies, for any n before the termination date,

bn ≥ δbn+1.
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When δ < 1, the above inequality is strict. Since all the remaining results in this paper
feature no temporary suspension and binding IC constraints for the agent, the agent has no
incentive to delay reporting a success even when it cannot be observed by the principal.

The BSEH shows the maximal reward the H type can obtain in a separating equilibrium.
A robust feature of the BSEH is that it is the unique separating equilibrium that survives
the intuitive criterion of Cho and Kreps (1987). In fact, any equilibrium that gives a lower
payoff to the H type than the BSEH fails the intuitive criterion.

5.3 Pooling Equilibrium
In this section we examine pooling equilibria. A pooling equilibrium is an equilibrium in
which both types of principal propose the same equilibrium contract, and the agent holds
the prior belief β0 about the H type after the equilibrium contract is proposed.

We first consider the efficient solution when the type of the project is unknown at the ex
ante stage. We call it the mixed project. When the prior belief is β0, the value of the mixed
project with a termination date N is

V (N) := β0V
H(N) + (1 − β0)V L(N).

Let N∗ be the efficient termination date for the mixed project, which maximizes V (N). Let
T∗ be the limit of N∗∆ when ∆ → 0. When the prior β0 is too pessimistic, i.e., q0λ0h ≤ c,
where λ0 := β0λ

H +(1−β0)λL, the efficient termination date is zero. Any pooling equilibrium
is trivial and features no experiments or transfers. Otherwise, when the prior β0 is not too
small, i.e., q0λ0h > c, the efficient termination date for the mixed project is in between zero
and the efficient termination date for the H type. We will only consider the latter case.

One simple pooling equilibrium is that both types of principal sell the mixed project to
the agent, and extract all expected surplus of the mixed project. Lemma 2 ensures no one
will deviate to any off-equilibrium path contract, if the agent believes the deviator is the L
type. However, the H type can obtain a higher payoff in other pooling equilibria. Again, we
consider the best pooling equilibrium for the H type, or BPEH.

When both types of principal pool together, the agent updates his beliefs on both the type
and the state of the project during experimentation. Furthermore, even the type and the
state are independent at the outset, the posterior beliefs after some failures are correlated.
Let qn be the posterior belief about the project’s state being G, after n − 1 failures, and βn

be the posterior belief about the project’s type being H conditional on the state being G,
after n − 1 failures. The posterior belief about the project’s type being H conditional on the
state being B is the prior β0, no matter how many failures the project has. Hence,

qn =
q0

[
β0
(
1 − λH∆

)n−1
+ (1 − β0)

(
1 − λL∆

)n−1
]

q0
[
β0 (1 − λH∆)n−1 + (1 − β0) (1 − λL∆)n−1

]
+ 1 − q0

,

and

βn =
β0
(
1 − λH∆

)n−1

β0 (1 − λH∆)n−1 + (1 − β0) (1 − λL∆)n−1 .
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Let λn := βnλH + (1 − βn)λL be the expected arrival rate of success conditional on the state
being G, after n − 1 failures. It is easy to see that qn, βn and λn are strictly decreasing over
time. That is, both the posterior belief about the state being G and the posterior belief
about the type being H conditional on the state being G decline after a failure.

The learning process makes the agent’s IC constraints more complex. But they can be easily
transformed from the constraints in the separating equilibrium by using correct beliefs. Given
C = {N, W, b}, the agent’s IC constraints become, for 1 ≤ n ≤ N

N∑
s=n

δs−nfs−n(qn, βn) (qsλsbs − c) ∆ ≥
N∑

s=n+1
δs−nfs−n−1(qn, βn) (qs−1λs−1bs − c) ∆, ICA(N)

where fm(q, β) = q
[
β(1 − λH∆)m + (1 − β)(1 − λL∆)m

]
+ 1 − q is the probability of failing

m times for a project starting with a probability q being in state G, and a probability β
being type H conditional on being in state G.

The agent’s IR constraint becomes

WA = W +
N∑

n=1
δnfn−1(q0, β0)(qnλnbn − c) ≥ 0. IRA(N)

In the BPEH, the principal’s IC constraints are trivially satisfied on the equilibrium path.
Lemma 2 ensures no type has an incentive to deviate to any other contracts once we assume
the agent believes the principal who proposes other contracts is the L type. We shall not
worry about the IR constraint for the H type. The IR constraint for the L type is

ΠL = −W +
N∑

n=1
δnfL

n−1(q0)qL
n λL (h − bn) ∆ ≥ 0. IRL(N)

Thus, the equilibrium contract Cpl = {Npl, W pl, bpl} in the BPEH solves the following
Program III:

max
N,W,b

ΠH = − W +
N∑

n=1
δnfH

n−1(q0)qH
n λH(h − bn)∆

s.t. ICA(N), IRA(N), and IRL(N).

We solve the relaxed program without IRL(N) as it can be verified that it is slack. IRA(N)
must bind in the relaxed program, otherwise decreasing W gives both types a higher payoff.
This determines the time-zero transfer W . Given any N , we can show that the agent’s IC
constraints ICA(N) must bind for all n, which determines the bonus scheme b.17 Last, we
solve the program by finding the equilibrium termination time.

Proposition 3. Assume q0λ0h > c. In the limit ∆ → 0, there is a unique equilibrium
contract for the H type Cpl = {T pl, W pl, bpl} in the BPEH. It has the following features:

17The reason for binding IC constraints of the agent is similar to Lemma 1 and Proposition 2. Notice that
the agent obtaining no rents implies that the payoff of the H type principal equals the sum of the project’s
value and (1 − β0) portion of the payoff difference between the H and L type. Hence, given a fixed amount
of experimentation, the pooling contract in the BPEH must maximize the payoff difference.
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• Under experimentation: 0 < T pl < T∗;

• A sign-up fee: W pl < 0;

• A (weakly) increasing bonus plan: bpl
t is weakly increasing in t and bpl

t ∈ (0, h).

Moreover, the equilibrium payoff for the H type in the BPEH is strictly increasing in the
prior belief about the H type β0 and converges to V H

0 (T H
∗ ) as β0 → 1.

The above contract shares some common features with the H type’s equilibrium contract in
the BSEH. It gives the agent exact enough incentives to work, i.e., the IC constraints for the
agent always bind. The bonus payments are constant over time if there is no discounting (i.e.,
ρ = 0), and they are strictly increasing if ρ > 0. Furthermore, as in the BSEH, the increase
of bonus payments cannot offset the cost for discounting. Hence, even when a success is not
publicly observed, the agent has no incentive to delay reporting a success.

Pooling Costs – In the BSEH, the H type gives a positive base wage to the agent. By
contrast, in the BPEH, both types charge a sign-up fee from the agent. Thus, the agent
obtains no rents but the L type obtains positive rents from pooling. The agent does not
have financial constraints and is willing to pay the sign-up fee to exchange for some share of
profits once the project succeeds. The amount the H type principal extracts from the agent
cannot recover her FIB surplus. When the L type pools with the H type, the latter has to
compensate more costs to the agent, but only partially extracts the promised bonuses back
from the agent. Both the additional compensation costs and the non-recoverable bonuses
are proportional to the population of the L type, 1 − β0. Thus, the pooling costs diminish
as the prior about the H type goes to one.

Learning Viability and Quality – When both types pool together, the agent needs to learn
both the viability and the quality of the project. A failure means the agent is more pessimistic
about both the viability and the (conditional) quality18 – learning creates dynamic moral
hazard costs. However, learning the viability and the quality has different consequences.
If what needs to be learnt is the viability (0 < q0 < 1), it is very costly to extend the
experiment, since the posterior beliefs of success eventually goes to zero. However, if what
needs to be learnt is solely the quality (q0 = 1 and 0 < β0 < 1), the principal can always
incentivize the agent to work with bounded bonuses, i.e., bt ≤ c/λL for any t > 0. Formally,
let T be the termination date, then the limit of the marginal effect of extending experiment
for the last period bonus is

lim
T →∞

dbT

dT
=
∞ if q ∈ (0, 1),

0 if q = 1.

Under Experimentation19 – It is straightforward that the equilibrium termination time
18The conditional quality means the project’s quality conditional on it being viable. Note that the condi-

tional quality is what matters for the agent’s incentives, and the unconditional quality could be increasing
with one more failure after some point.

19The contract in the BPEH features under experimentation only for the H type principal, while the same
contract requires over experimentation for the L type principal.
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is less than the efficient termination time for the H type. In addition, it is also less than the
efficient termination time for the mixed project. We now provide some intuition.

Because the agent has no rents in the equilibrium, the surplus of the mixed project is shared
between the two types of principal. Thus, the equilibrium payoff of the H type is equal to the
sum of (1) the surplus of the mixed project, and (2) (1−β0) portion of the equilibrium payoff
difference between the H and L type. We now show that the marginal effect of extending
the mixed project at its efficient termination time T∗ is negative for the H type. Thus, she
benefits from terminating the project earlier than the efficient time T∗.

Consider the first part of the H type’s payoff – the surplus of the mixed project. By the
definition of the efficient termination time, extending the mixed project has zero marginal
effect on the total surplus. For the second part of the H type’s payoff, extending the project
at T∗ does not generate any marginal benefit for the principal, since the required bonus (for
incentivizing the agent to work) has to be equal to the profit of a success. However, due to
the dynamic moral hazard problem and the fact that the H type is more likely to succeed
before the termination date than the L type, the costs for sharing more bonuses with the
agent in all periods incurred by the H type is larger than that incurred by the L type. Thus,
extending the project does incur additional costs. Therefore, the marginal effect of extending
the project at T∗ is negative and the H type principal prefers to terminate the project earlier
than the efficient time for the mixed project.

5.4 The Best Equilibrium for the High Type
We have examined both the BSEH and the BPEH. In the BSEH, the equilibrium payoff for
the H type is independent of the prior belief β0 and is less than her FIB surplus. In the
BPEH, the equilibrium payoff for the H type is strictly increasing in β0 when her payoff
is strictly positive (i.e., when q0λ0h > c), and converges to her FIB surplus as β0 goes to
one. Obviously, there exists a cutoff prior belief about the H type, βc ∈ (0, 1), such that the
BSEH gives the H type a higher payoff than the BPEH does when β0 < βc, and the BPEH
gives the H type a higher payoff than the BSEH does when β0 > βc.

To find the best equilibrium for the H type, we still need to study other equilibria, such
as partial separating equilibria, where the principal may randomize over different contracts.
We categorize all equilibria into two classes: (1) the set of equilibria that give the L type a
strictly positive payoff, and (2) the set of equilibria that give the L type a zero payoff. We
now show that (1) among all equilibria that give the L type a strictly positive payoff, the
BPEH gives the H type the highest payoff, and (2) among all equilibria that give the L type
a zero payoff, the BSEH gives the H type the highest payoff. Thus, we can conclude that
the best equilibrium for the H type is either BSEH or BPEH, depending on β0.

First, consider the set of equilibria that give the L type a strictly positive payoff. This
means that no equilibrium path contract fully reveals the L type. In other words, the L
never chooses any contract by herself alone in the equilibrium, she always pools with the H
type. Moreover, there must be at least one contract proposed by the L type in the equilibrium
such that the agent’s belief about the principal being the H type does not exceed the prior
β0. Together with Proposition 3, we can show that:
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Lemma 3. For any equilibrium such that the L type obtains a strictly positive payoff, the
H type’s payoff cannot exceed her payoff in the BPEH.

Now consider the set of equilibria that give the L type a zero payoff. Fix any such equilibrium
E and any equilibrium contract C proposed by the H type in E. Suppose the agent forms
belief β ∈ [0, 1] about H type after C is proposed. Then C must satisfy the agent’s IC and
IR constraints, and the L type cannot obtain a strictly positive payoff by proposing the same
contract. We solve the best contract for the H type subjected to the above constraints and
show that the best outcome the H type can obtain is increasing in β. In addition, we come
back to our BSEH result when β = 1. Hence, we have the following result:

Lemma 4. For any equilibrium such that the L type obtains a zero payoff, the H type’s
payoff cannot exceed her payoff in the BSEH.

With the above two lemmas, we conclude:

Proposition 4. There exists a cutoff belief βc ∈ (0, 1),

• when β0 < βc, the BSEH gives the H type the highest payoff among all equilibria;

• when β0 > βc, the BPEH gives the H type the highest payoff among all equilibria.

Thus, in the best equilibrium for the H type, the termination time of the H type project is
inefficiently early, and she has to share rents with either the agent (in the BSEH) or with the
L type (in the BPEH). The equilibrium contract for the H type in the BSEH also maximizes
the payoff difference between the H and L type when the agent believes the contract proposer
is the H type. Lemma 7 in the Appendix shows that such a payoff difference is increasing
in the agent’s belief about the principal being the H type. Therefore, we conclude that
the BSEH is the equilibrium that maximizes the payoff difference between the two types of
principal. Hence, if we consider a pre-game where the principal can invest in the quality
of a project before the signaling game, namely exerting investment efforts to increase the
probability β0 of having a H type project, her investment decision and the prior β0 are
endogenously determined by the payoff difference between the two types in the equilibrium
of the signaling game. Thus, the BSEH permits the highest prior, as long as the investment
cost is increasing and convex in β0.

6 Introducing a Mediator
The above results illustrate the conflict between signaling and providing incentives to the
agent. We now consider the implication of allowing for a mediator who designs a mechanism
(i.e., a menu of contracts).

As in the rest of the paper, we assume the goal of the mediator is to maximize the payoff
of the H type principal. This is a natural benchmark that facilitates the comparison across
the signaling game and the mechanism design problem. The mediator needs to attract the
H type project, which generates the social surplus. Thus, it must provide her with a higher
payoff than she can obtain in the signaling game without the mediator. Moreover, if there
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are multiple profit-oriented mediators who compete in a Bertrand fashion, competition will
drive them to maximize the H type’s payoff in the equilibrium.

The basic role of the mediator is to communicate with both the principal and the agent,
and disclose information at a proper time. By exploring the fact that the two types of
principal have different beliefs about their projects, separation between them can be achieved
immediately, but this information can be concealed from the agent, at least temporarily. In
this way, the agent’s IR and IC constraints only need to be held in expectation, although
different principals offer different contracts.

Science Exchange, an online platform that connects scientific researchers with experimental
service providers, is an example of a mediator. A researcher corresponds to the principal in
our model, while a service provider is the agent. The platform has its own system to verify
the qualification of service providers, so one shall not worry much about their abilities may
be private. The major concern for service providers and for the platform is that the quality
of ideas brought in by researchers is, by their nature, hard to evaluate. Moreover, moral
hazard on the part of service providers is likely to be important, given the uncertainties
associated with research processes. The role played by the platform is not only to reduce
search and transaction costs, but also to design contracts, protect intellectual properties and
confidentiality, and facilitate communications.20 Thus, researchers’ confidential information
can be concealed from service providers at the outset and will be disclosed to them only
when it is necessary.

We now formally examine the mediator’s mechanism design problem. A mechanism, M =
{CH , CL}, is an extensive form game containing a menu of two contracts. A contract, Cθ =
{N θ, W θ, bθ}, is a triple as before, where θ ∈ Θ, N θ ∈ IN0, W θ ∈ IR, and bθ ∈ IRNθ .

Given a mechanism M = {CH , CL}, the agent and the principal simultaneously make their
participation decisions, and the principal reports her type to the mediator. If at least one
party rejects the mechanism, both of them obtain their reservation payoff zero. If both
accept it and the principal reports θ, the mediator implements the contract Cθ:

• In any period n ≤ N θ (before success), the mediator recommends that the agent work.
If the project succeeds in that period, the principal transfers bθ

n to the agent and the
game ends; otherwise, there is no payment.

• In the period n = N θ + 1 (before success), the mediator recommends that the agent
not work and the game ends.

• The principal transfers W θ, which is independent of the outcome and is measured in
the time-zero discounted value, to the agent when the game ends.

The agent’s action set is the same as before. He chooses whether to follow the mediator’s
recommendations (i.e., whether to exert effort), which is unobservable to both the principal
and the mediator.

Before we go any further, we explain the space of mechanisms that we study. They are direct
20See https://www.scienceexchange.com/trust and other sites under the same domain for details.
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mechanisms with two restrictions. First, recommendations for delaying a project temporarily
are not considered, but this is without loss for the purpose of finding the optimal mechanism
for the H type principal. Second, random recommendations are not allowed, which is with
loss of generality. However, we show that, as the period length shrinks, the H type can obtain
a payoff that converges to her FIB surplus via pure recommendations. We will discuss later
how random recommendations improve the H type’s payoff for a fixed period length.

Now we consider constraints in this new environment. We say a mechanism M = {CH , CL}
is feasible, if both types of principal and the agent are willing to participate, both types of
principal are willing to report truthfully, and the agent is willing to follow recommendations.
In other words, a feasible mechanism satisfies the following IR and IC constraints.

The type θ ∈ Θ principal’s IR constraint is

Πθ = −W θ +
Nθ∑
n=1

δnf θ
n−1(q0)qθ

nλθ
(
h − bθ

n

)
∆ ≥ 0. IRθ(M)

Let βH
0 = β0 and βL

0 = 1 − β0. The agent’s IR constraint is

WA =
∑
θ∈Θ

βθ
0

−W θ +
Nθ∑
n=1

δnf θ
n−1(q0)

(
qθ

nλθbθ
n − c

)
∆
 ≥ 0. IRA(M)

The type θ ∈ Θ principal’s IC constraint (for not misreporting θ′ ∈ Θ\{θ}) is

−W θ +
Nθ∑
n=1

δnf θ
n−1(q0)qθ

nλθ
(
h − bθ

n

)
∆ ≥ −W θ′ +

Nθ′∑
n=1

δnf θ
n−1(q0)qθ

nλθ
(
h − bθ′

n

)
∆. ICθ′

θ (M)

The above constraints are straightforward extensions from the signaling game. The only
difference is that transfers now depend on the reported type.

The agent’s IC constraints are more involved, since signaling can take place at any time.
Suppose the H type experiments longer than the L type, i.e., NH ≥ NL.21 Because recom-
mendations for both types are the same until NL, the agent’s beliefs about the principal’s
type and about the project’s state evolve in the same way as in the pooling equilibrium.
However, if NH > NL and if the agent is recommended to work in the period NL + 1, his
posterior belief about the principal’s type being H jumps to one, but his posterior belief
about the project’s state of being G jumps down, since a failure from the H type is more
informative about the state being B than a failure from the L type. Specifically, the agent’s
IC constraints are νnχH

n + (1 − νn)χL
n ≥ 0, for 1 ≤ n ≤ NL ,

χH
n ≥ 0, for NL + 1 ≤ n ≤ NH if NH > NL,

ICA(M)

where νn = qnβn + (1 − qn)β0 is the posterior belief about the principal’s type being H
after n − 1 failures, and χθ

n is the payoff difference for the agent between always following
21When NH < NL, we can define the IC constraints for the agent in the same way, though it is irrelevant

for the optimal mechanism for the H type principal.
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recommendations, and shirking in period n but following all remaining recommendations
thereafter, conditional on the principal’s type being θ. That is,

χθ
n =

Nθ∑
s=n

δs−nf θ
s−n(qθ

n)
(
qθ

sλθbθ
s − c

)
∆ −

Nθ∑
s=n+1

δs−nf θ
s−n−1(qθ

n)
(
qθ

s−1λ
θbθ

s − c
)

∆.

Note that the equilibrium contracts in the signaling game remain feasible for the mediator.
Thus, the mediator can replicate the equilibrium outcomes of the signaling game. We now
show how the mediator can achieve a strictly higher payoff for the H type, compared to both
the BPEH and the BSEH, by relaxing only the IR constraint of the agent.

Consider feasible mechanisms in which the agent is recommended to not work at all if the
principal reports L, i.e., NL = 0. Thus, the agent learns the principal’s type before he starts
to work, but after he accepts the offer. The reason the mediator can achieve a strictly higher
payoff for the H type, compared to the BPEH, is (1) the total social surplus increases if the
mediator recommends the agent not work for the L type, and (2) it is cheaper to incentivize
the agent to work without the L type pooling during the experimentation. Comparing to
the BSEH, the mediator can also achieve a strictly higher payoff for the H type. Recall
that the H type leaves some rents to the agent in the BSEH. The mediator can lower the
independent transfers W in both contracts by the same amount, while keeping the agent’s
IR constraint satisfied in expectation before he learns the principal’s type. This does not
change the L type’s incentive, but increases both types’ payoffs. Thus, separation is less
costly when it occurs right after the acceptance of the offer. However, it is not hard to see
that the H type cannot obtain her FIB payoff by solely relaxing the agent’s IR constraint,
because instead the L type must be left with some rents to induce separation.22

The mediator can further improve the H type’s payoff by also relaxing the IC constraints
of the agent. This requires the mediator recommends the agent work on the L type project
for some time. Thus, separation takes place in the period when recommendations differ for
different types of principal.

In our quasi-linear environment, the total surplus generated in a feasible mechanism is shared
by both types of principal and the agent. Let Πθ be the payoff obtained by the θ type of
principal and WA be the payoff obtained by the agent. In a feasible mechanism, we have

β0V
H(NH) + (1 − β0)V L(NL) = β0ΠH + (1 − β0)ΠL + WA.

On the one hand, feasibility requires that both types of principal and the agent must obtain
a non-negative payoff. On the other hand, the value generated by the L type V L(NL) is
strictly decreasing in NL for NL ≥ 1, and the value generated by the H type V H(NH) is
maximized at NH = NH

∗ . Thus, for any NL ≥ 1, we have

ΠH = V H(NH) + 1 − β0

β0

(
V L(NL) − ΠL

)
− 1

β0
WA ≤ V H(NH

∗ ) + 1 − β0

β0
V L(1). (4)

22The first part of the proof of Proposition 5 solves the optimal mechanism for the H type when NL = 0.
In addition to leaving rents to the L type, it also features a termination date of the H type in between
its equilibrium termination date in the BSEH and its efficient termination date. Thus, there is no feasible
mechanism that implements the FIB.
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This means in any feasible mechanism with NL ≥ 1, the H type’s payoff has an upper bound,
which is strictly positive for a small ∆.

We now show there exists a feasible mechanism with NL ≥ 1 that achieves the upper bound.
Such a mechanism must (1) satisfy feasibility, (2) leave no rents to both the agent and the L
type, and (3) implement the H type project efficiently (NH = NH

∗ ) and the L type project
almost efficiently (NL = 1). The last condition determines the efficiency of both projects,
and therefore the time when recommendations differ for different reports of the principal.
Together with the second condition, they determine the independent transfers:

W L = δq0λ
L
(
h − bL

1

)
∆, (5)

W H = −
[
V H(NH

∗ ) + 1 − β0

β0
V L(1)

]
+

NH
∗∑

n=1
δnfH

n−1(q0)qH
n λH

(
h − bH

n

)
∆. (6)

Now we show how to use bonus payments to incentivize both the agent (to work) and the L
type principal (to report truthfully) at the same time.

The mediator reveals the principal’s report, which is her type if she reports truthfully, in the
second period by recommending differently. If the mediator recommends the agent work, he
will learn the principal’s type is H and his IC constraints from the second period to NH

∗ are
the same as in the separating equilibrium. However, in the first period, the agent’s belief
about the principal’s type being H is the prior β0, and his IC constraint is simplified to

q0
[
β0λ

HbH
1 + (1 − β0)λLbL

1

]
− c ≥ β0q0λ

H
NH

∗∑
s=2

δs−1
(
1 − λH∆

)s−2 (
λHbH

s − c
)

∆. (7)

The agent requires enough expected bonus payment to work in the first period. Thus, given
the bonus payment from the H type, the inequality (7) determines a lower bound for the
bonus payment bL

1 from the L type.

The L type’s IC constraint is −W H +∑NH
∗

n=1 δnfL
n−1(q0)qL

n λL
(
h − bH

n

)
∆ ≤ 0, i.e.,

V H(NH
∗ ) + 1 − β0

β0
V L(1) −

NH
∗∑

n=1
δnηn

(
h − bH

n

)
∆ ≤ 0. (8)

Because the H type is more likely to succeed in the first period than the L type (η1 > 0), the
inequality (8) determines an upper bound for the bonus payment bH

1 from the H type.

Thus, distinct bonus payments for the first experiment can be used to incentivize both the L
type principal and the agent. We can make bH

1 small to prevent the L type from mimicking
the H type, but keep bL

1 large so that the expected bonus payment is high enough for the
agent to work. This virtually resolves the conflicts between signaling and providing incentives
to the agent. When the period length is small, the inefficiency is negligible and the H type
principal can approximately obtain her FIB payoff. We have the following result:

Proposition 5. There exists a ∆̄ > 0, such that for any ∆ ∈ (0, ∆̄), there exists an optimal
mechanism for the H type, in which the H type obtains a payoff V H(NH

∗ ) + 1−β0
β0

V L(1). As
∆ → 0, the H type’s payoff converges to her FIB surplus.
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The optimal mechanism features a trial period, i.e., the first period. During the trial period,
the agent is always recommended to work, regardless of the principal’s report. Hence, the
agent does not know which project he is working on. The principal’s private type will be
revealed to the agent only after the trial period, i.e., he will be told to stop working for the
L project, but to keep working for the H project until the efficient termination time. From
the agent’s point of view, the failure in the trial period will trigger the principal’s option to
terminate the project, but only the L type will exercise her option. Such a design protects
the agent from wasteful projects, and thus protects the H type principal from skepticism.
In addition, the payment structure during the trial period is designed to elicit the private
information of the principal. Both types of principal believe that the chance to succeed
during the trial period for the H type is larger than that for the L type. Thus, the mediator
can use a mixture of base payments and bonus payments to explore such differential beliefs.
The contract designed for the H type contains a high base payment but a low bonus payment
for the success during the trial period, while the contract designed for the L type contains
a low base payment but a high bonus payment. Thus, the two contracts are two bets on
the event of the trial period success, which induce the principal to truthfully report her
type due to the differential beliefs about the event. Therefore, the average bonus payment
during the trial period – a high bonus from the L type and a low bonus from the H type
– provides an incentive for the agent to work, while the structure of the payments provides
an incentive for the principal to reveal her type. From the efficiency point of view, this
mechanism also induces efficient experimentation for the H type project. However, running
the L type project for the trial period is inefficient. But this trial period is short. It lasts
only one period, and it is negligible when the period length is small. Hence, the H type
principal can obtain a payoff close to her FIB surplus for a small period length, while the L
type principal and the agent are left with no rents.23

If random recommendations are allowed, the mediator can further improve the H type’s
payoff for a fixed ∆. Instead of recommending the agent work in the first period for both
projects, the mediator can recommend him work with a small probability µ ∈ (0, 1) for the L
type, while keep the recommendations for the H type unchanged. In this way, it reduces the
inefficiency loss as the L type project is less likely to be implemented. It also makes the agent
more willing to work upon receiving a recommendation of working as such a recommendation
is more likely come from the H type project. To induce separation, the mediator, of course,
has to increase the size of the bets for the success in the first period between the two types.
Note that the probability µ can be arbitrarily small, but it must be strictly positive. When
µ diminishes, the H type keeps virtually all the surplus of her innovation, while the L type
who has an inferior innovation is left with no rents. Therefore, for a fixed ∆, although the
FIB cannot be exactly implemented, it can be virtually implemented.

The reader may ask, can we achieve approximate efficiency without a mediator? Suppose
we consider a game where the principal can propose an arbitrary menu of contracts, with
the provision that the exact contract that is to be implemented will depend upon a private
message sent by the principal. Furthermore, the menu provides a disclosure date, at which

23The agent gains some rents from working for the H type, and loses some rents from working for the L
type, but breaks even on average.
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it will be revealed to the agent which contract has been chosen. Is there a PBE where both
types of principal propose the above mechanism? This is an appropriate generalization, to
our context, of the question that has been examined in the three-stage mechanism proposing
game of Maskin and Tirole (1992). The key problem here is ensuring that deviations, by
either type of principal to a different menu of contracts, are unprofitable. In our context,
the set of possible deviating contracts is extremely large and complex, and we have been
unable to show that every such deviation is unprofitable. More specifically, we need to show
that for any other menu, there exists a belief of the agent about the type of the principal
that prevents a profitable deviation by either type. Our Lemma 2 shows that a pessimistic
belief that assigns probability one about the principal’s type being L can prevent a profitable
deviation in the original signaling game, but such a simple belief does not work in the menu
proposing game.24 An explicit construction of beliefs that prevents profitable deviations
appears to be intractable. In this context, the paper by Wagner, Mylovanov, and Tröger
(2015) is relevant. They examine moral hazard in a static setting and show that when
the FIB is feasible, it is an equilibrium outcome. However, they do not study the case
where the FIB is not feasible. The key feature of the present model is that the FIB is not
feasible, although we can approximate it.25 Consequently, their results and methods cannot
be applied in our context.

7 Conclusion
We analyze a model where an informed principal engages an agent to explore the viability
of her project. The principal has private information about the quality of her project. Thus,
in addition to providing incentives to the agent to experiment on the project, the high type
principal has to convince the agent of her project’s quality. We examine the best outcome for
the high type principal both in a signaling game where the principal commits to a transparent
contract and in a third-party mechanism design problem.

In the signaling game, when the prior probability of a low quality project is large, the best
equilibrium for the high type principal is a separating equilibrium. The high type principal
separates himself from the low type by leaving rents to the agent, and also by terminating
the project inefficiently early. When the prior probability of a low quality project is small,
the best equilibrium for the high type is a pooling equilibrium, which also features an early
termination of the high quality project.

In neither equilibrium of the signaling game is the innovator with a superior project able to
capture her contribution to social surplus. This leads us to study the role of a mediator.
The mediator offers a menu of two contracts, but does not disclose the type of the principal
to the agent unless it is necessary to do so. We find that an opaque mechanism is able to
approximately implement the optimal outcome, in terms of both inducing efficient experi-
mentation and ensuring high rewards for the high type principal. It is necessary to induce
experimentation by the low type only for a single period, but as the period length becomes

24We can construct a menu such that the H type would find it profitable offering it to the agent if he
believed that she was the L type.

25Recall that the FIB requires an immediate termination of the L types project and a zero payoff for her.
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small, this is approximately efficient.

Appendices

A Temporary Delays of the Project
In this section, we formalize the idea of delaying the project temporarily. Lemma 5 will show
that it is never optimal for the H type to delay her project temporarily.

Given a contract C = {N, W, b} and the agent’s belief β0 about the principal being H, after
accepting the contract, the agent solves a dynamic decision problem. Suppose the agent’s
optimal action plan is to exert efforts only for periods in R ⊆ {1, 2, · · · , N}, then the contract
must satisfy the agent’s IC constraints for those periods, i.e., for all 1 ≤ n ≤ #R,26

#R∑
s=n

Πs
j=n+1δjfs−n(qn, βn)(qsλsbrs − c)∆ ≥

#R∑
s=n+1

Πs
j=n+1δjfs−n−1(qn, βn)(qs−1λs−1brs − c)∆,

where δj = δrj−rj−1 , rj is the j-th minimal item in R, and r0 = 0.

#R is the actual number of experiments. Everything remains the same in the IC constraints,
except for the discount factor of each experiment. Thus, we can represent contracts in a
different way: the principal has to incentivize the agent to work for every experiment, but
she is free to choose how long to suspend the project between two consecutive experiments,
or equivalently, choose the discount factors between consecutive experiments.

From the perspective of the induced actions, we define the following direct contracts. A direct
contract is a quadruple, C = {N, W, b, δ}, where N ∈ IN0 is the number of experiments, W is
the time-zero transfer from the principal to the agent, b ∈ IRN is the vector of bonus scheme
for a success that must incentivize the agent to work for all N experiments, and δ ∈ [0, δ]N is
the vector of discount factors between consecutive experiments, and for 1 ≤ n ≤ N , δn = δk

for some k ∈ IN∪{∞} so that 0 ≤ δn ≤ δ. The principal is free to choose any discount factors
and any number of experiments. But given the principal’s choice, the bonus payments must
satisfy the IC constraints for the agent for all N experiments.

With a direct contract C = {N, W, b, δ}, nothing changes except for discount factors. We
can easily rewrite the payoffs of all parties, and their IR and IC constraints by properly
adjusting their discount factors. For example, given the agent’s belief about the principal’s

26We use #R to denote the size of R. Other notations are from the section 5.3. The constraints are
the agent’s IC constraints when the agent believes that the H and L type pool with the prior belief β0.
The degenerate case β0 = 0 (or β0 = 1) means the agent believes the principal is the L (or H) type.
The bonus scheme also needs to satisfy the IC constraints that the agent does not work in the periods
n ∈ {1, 2, · · · , N}\R. We omit the requirement of bn for n ∈ {1, 2, · · · , N}\R, since they are payoff irrelevant
in the equilibrium as long as they are low enough to discourage the agent to experiment.
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type being H is β0, his IC constraints become, for 1 ≤ n ≤ N ,27

N∑
s=n

Πs
j=n+1δjfs−n(qn, βn)(qsλsbs − c)∆ ≥

N∑
s=n+1

Πs
j=n+1δjfs−n−1(qn, βn)(qs−1λs−1bs − c)∆.

Thus, we can use direct contracts to analyze the signaling game and the third-party mech-
anism design problem. However, Lemma 5 implies that delaying the H type project tem-
porarily never happens in the best equilibrium for the H type. As we will see later, this is
also true for the optimal mechanism for the H type.

B Three Useful Lemmas
We provide three useful lemmas for other proofs. Lemma 5 shows the IC constraints for the
agent always bind whenever there are signaling concerns and a temporary delay of the project
is never optimal for separation. Lemma 6 characterizes the recursive relations between two
consecutive bonuses when the IC constraints for the agent bind. Lemma 7 explores the limit
of the payoff difference between the two types of principal from the same contract when the
period length shrinks, and shows that it is monotonic in the belief about the type of principal
when the termination time is less than the efficient termination time for the H type.

B.1 Lemma 5
Lemma 5. Fix any N > 1, let b∗, δ∗ be a solution to the following program:

max
b,{0≤δn≤δ}N

n=1

N∑
n=1

Πn
j=1δj

[
fH

n−1(q0)qH
n λH∆ − fL

n−1(q0)qL
n λL∆

]
(h − bn)

s.t.
N∑

s=n

Πs
j=n+1δjfs−n(qn, βn) (qsλsbs − c) ∆ ≥

N∑
s=n+1

Πs
j=n+1δjfs−n−1(qn, βn) (qs−1λs−1bs − c) ∆

Let m∗ + 1 = min{n : δ∗
n = 0} or m∗ = N if {n : δ∗

n = 0} = ∅. For any n ≤ m∗, the above
constraints must bind. Moreover, b∗ and δ∗

n = δ for n ≤ m∗ also constitutes a solution.

The constraints are the agent’s IC constraints. The objective function is the payoff difference
between the H and L type when they propose the same contract. To find the best equilibrium
for the H type, the time-zero payment W is pinned down by either a binding IC constraint
for the L type as in the BSEH or a binding IR constraint for the agent as in the BPEH.
In other words, the H type has no reasons to leave rents to the agent other than prevent
the L type mimicking her. If the L type obtains a zero payoff, the objective function equals
the H type’s payoff. If the agent obtains a zero payoff, the objective function represents the
part of the H type’s payoff that involves the bonus payments. The lemma shows that for a
given termination date, the IC constraints for the agent must bind for all periods even when
arbitrary delay of the project is allowed. Moreover, it shows that a temporary delay of the

27To include the first and the last terms into the compact form, we use the convention that Πn
j=n+1δj = 1

for any n and δj , and
∑N

s=N+1 ωs = 0 for any N and ωs.
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project is never optimal for the H type. Furthermore, the result holds with respect to the
following transformation of the objective function: H 7−→ ξH + G(δ1, . . . , δn), where ξ > 0
and G(δ1, . . . , δn) is linear in every δn and is independent of every bn for 1 ≤ n ≤ N .

Proof. The result is trivial if m∗ = 1. Consider m∗ > 1. All terms after m∗ in the objective
function are zero, we can rewrite the program so that the last term is in the m∗ period.

Note that ηn := fH
n−1(q0)qH

n λH − fL
n−1(q0)qL

n λL, and ηn∆ is the difference of the probabilities
to succeed for the n-th experiment between the H and L type. It is easy to see that ηn ≥ 0
if n ≤ n∗ := ⌊ log λH−log λL

log(1−λL∆)−log(1−λH∆)⌋ + 1, and ηn < 0 if n > n∗.

Therefore, for 1 ≤ n ≤ n∗, it is optimal to set bn as small as possible. Since bn is bounded
from below, the IC constraints for 1 ≤ n ≤ n∗ must bind.

Given the binding constraints for 1 ≤ n ≤ n∗, consider n = n∗ + 1. Note that a change of
bn∗+1, call it yn∗+1, will change all the previous bonuses according to the binding constraints
from period one to period n∗.

We can show that the change of bn for 1 ≤ n ≤ n∗, call it yn, from yn∗+1 is

yn = Πn∗+1
j=n+1δj

[
λH −

(
λH − λL

) λL(1 − βn∗)
λn∗

]
∆yn∗+1.

Here ζn∗ := λH − (λH − λL)λL(1−βn∗ )
λn∗

is a positive constant. It equals λH if β0 = 1 and equals
λL if β0 = 0. When β0 ∈ (0, 1), it is in between λL and λH and converges to λL as n∗ → ∞.

Thus, the change of the objective function from yn∗+1 is

−
n∗+1∑
n=1

Πn
j=1δjηn∆yn = −

n∗∑
n=1

Πn∗+1
j=1 δjηn∆ζn∗∆yn∗+1 − Πn∗+1

j=1 δjηn∗+1∆yn∗+1,

= −Πn∗+1
j=1 δjyn∗+1

(
ζn∗∆

n∗∑
n=1

ηn∆ + ηn∗+1∆
)

. (9)

Note that the distribution on success for L type first-order stochastic dominates that for H
type; the H project is more likely to succeed. Formally, for any s ≥ 1

ϕs :=
s∑

n=1
ηn∆ = −

(
fH

s (q0) − fL
s (q0)

)
= q0

[
(1 − λL∆)s − (1 − λH∆)s

]
> 0.

Therefore, the terms in the parenthesis of equation (9) becomes

ζn∗∆q0
[
(1 − λL∆)n∗ − (1 − λH∆)n∗]+ q0

[
(1 − λH∆)n∗

λH∆ − (1 − λL∆)n∗
λL∆

]
,

which is larger than q0(λH − λL)∆(1 − λH∆)n∗
> 0 since ζn∗ ≥ λL.

Therefore, to maximize the objective function, bn∗+1 has to be as small as possible. Thus,
the IC constraints in period n∗ + 1 also binds.
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By induction, we obtain a necessary condition for the solution to the program: the IC
constraints to incentivize agent to work must bind in each period. In addition, it is easy to
see that those binding constraints imply that bn is a linear function of δn+1, δn+2, · · · , δN .

Thus, we can see that every discount factor enters the objective function linearly. Consider
the discount factor in n+1 period, δn+1. It will not affect any bs for s ≥ n+1, so δn+1 enters
into the terms linearly beyond period n + 1 as a discount factor. It will linearly affect every
bs for s ≤ n, but they are not discounted by δn+1. Therefore, the discount factor δn+1 enters
objective function linearly.

Thus, there exists an optimal discount factor that is a corner solution, i.e., δ∗
n ∈ {δ, 0} for

any 1 ≤ n ≤ m∗. Since m∗ + 1 = min{n : δ∗
n = 0}, we have δ∗

n = δ for all 1 ≤ n ≤ m∗.

B.2 Lemma 6
Lemma 6. Given the binding IC constraints for the agent when he has prior β0 about the
H type, i.e., for 1 ≤ n ≤ N ,

N∑
s=n

δs−nfs−n(qn, βn)(qsλsbs − c)∆ =
N∑

s=n+1
δs−nfs−n−1(qn, βn)(qs−1λs−1bs − c)∆.

Then qNλNbN − c = 0, and for 1 ≤ n ≤ N − 1,

qnλnbn − c = δ(qnλnbn+1 − c).

Proof. Immediately, the binding IC constraint for the last period N implies

qNλNbN − c = 0.

For the IC constraint in period N − 1, it gives us

qN−1λN−1bN−1 − c + δf1(qN−1, βN−1)(qNλNbN − c) = δ(qN−1λN−1bN − c).

Since the second term on the LHS is zero, it implies

qN−1λN−1bN−1 − c = δ(qN−1λN−1bN − c).

Suppose for all m + 1 ≤ n ≤ N − 1, we have qnλnbn − c = δ(qnλnbn+1 − c). Consider the IC
constraint in the period m,

N−1∑
s=m

δs−mfs−m(qm, βm)(qsλsbs − c)∆ =
N∑

s=m+1
δs−mfs−m−1(qm, βm)(qs−1λs−1bs − c)∆.

Note that the LHS has no terms in the period N since qNλNbN − c = 0. Relabeling the
terms on the LHS gives us

N∑
s=m+1

δs−m−1fs−m−1(qm, βm)(qs−1λs−1bs−1−c)∆ =
N∑

s=m+1
δs−mfs−m−1(qm, βm)(qs−1λs−1bs−c)∆.

Since qnλnbn − c = δ(qnλnbn+1 − c) for m + 1 ≤ n ≤ N − 1, it is clear that the recursive
relation remains valid for n = m, which concludes this lemma.
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The following observations will be useful for other proofs:

1. By iteration, for 1 ≤ n ≤ N

bn = δN−n c

qNλN

+ (1 − δ)
N−1∑
s=n

δs−n c

qsλs

;

2. For n < N , qnλnbn > c;

3. For n < N , δbn+1 ≤ bn ≤ bn+1, and both inequalities are strict when δ < 1.

B.3 Lemma 7
With a slight abuse of notation, we denote qt, λt, ηt, ϕt, f θ

t (q) and ft(q, β), where θ ∈ Θ, as
the limit of qn, λn, ηn, ϕn, f θ

n(q) and fn(q, β) when ∆ → 0 and n∆ → t.

Lemma 7. Let T = N∆. Define

Hβ0(N) :=
N∑

n=1
δnηn(h − bn)∆,

where bn = δN−n c
qN λN

+ (1 − δ)∑N−1
s=n δs−n c

qsλs
. Then

lim
∆→0

Hβ0(N) = Hβ0
0 (T ) := e−ρT

(
h − c

qT λT

)
ϕT + ρ

∫ T

0
e−ρt

(
h − c

qtλt

)
ϕt dt.

In addition, Hβ0
0 (T ) is strictly increasing in β0 ∈ [0, 1] for any T ∈ (0, T H

∗ ].

Proof. Note that

N∑
n=1

δnηnh∆ =
N∑

n=1
δnh(ϕn − ϕn−1) = δNhϕN + (1 − δ)

N−1∑
n=1

δnhϕn,

and by changing the order of summation we have

N∑
n=1

δnηnbn∆ = δN c

qNλN

ϕN + (1 − δ)
N∑

n=1

N−1∑
s=n

δsηn
c

qsλs

∆,

= δN c

qNλN

ϕN + (1 − δ)
N−1∑
s=1

δs c

qsλs

ϕs.

Therefore,

Hβ0(N) = δN

(
h − c

qNλN

)
ϕN + (1 − δ)

∆

N−1∑
n=1

δn

(
h − c

qnλn

)
ϕn∆.
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Let T = N∆, we have

lim
∆→0

δN

(
h − c

qNλN

)
ϕN = e−ρT

(
h − c

qT λT

)
ϕt and lim

∆→0

1 − δ

∆ = ρ.

In addition, we can show that for any t ∈ [0, T ],∣∣∣∣∣δn(h − c

qnλn

)ϕn − e−ρt(h − c

qtλt

)ϕt

∣∣∣∣∣ =
∆→0

O(∆),

where t = n∆. Thus,

lim
∆→0

N−1∑
n=1

∣∣∣∣∣δn(h − c

qnλn

)ϕn − e−ρt(h − c

qtλt

)ϕt

∣∣∣∣∣∆ = 0.

Thus, we have

lim
∆→0

N−1∑
n=1

δn

(
h − c

qnλn

)
ϕn∆ = lim

∆→0

N−1∑
n=1

e−ρt

(
h − c

qtλt

)
ϕt∆ =

∫ T

0
e−ρt

(
h − c

qtλt

)
ϕt dt,

where the last equality comes from Riemann integral. Therefore, lim∆→0 Hβ0(N) = Hβ0
0 (T ).

Moreover, we have
d

dβ0
Hβ0

0 (T ) = −
(

e−ρT
d c

qT λT

dβ0
ϕT + ρ

∫ T

0
e−ρt

d c
qtλt

dβ0
ϕt dt

)
.

Note that for all 0 ≤ t ≤ T H
∗ ,

dqtλt

dβ0
= fH

t (q0)fL
t (q0)

f 2
t (q0, β0)

(
qH

t λH − qL
t λL

)
> 0,

since qH
t λH ≥ c

h
≥ qL

t λL and at least one inequality is strict. Thus, for all 0 ≤ t ≤ T H
∗ ,

d
dβ0

(
c

qtλt

)
< 0. Therefore, d

dβ0
Hβ0

0 (T ) > 0 for T ∈ (0, T H
∗ ] as ϕt > 0 for t > 0.

Actually, we can show that when ∆ → 0, n∆ → t, and N∆ → T , bn converges to

bt = e−ρ(T −t) c

qT λT

+ ρ
∫ T

t
e−ρ(τ−t) c

qτ λτ

dτ,

and Hβ0
0 (T ) =

∫ T
0 e−ρtηt(h − bt) dt. The latter can be seen by differentiating the RHS,

d
dT

[∫ T

0
e−ρtηt (h − bt) dt

]
= e−ρT ηT (h−bT )−

∫ T

0
e−ρtηt

dbt

dT
dt = e−ρT d

dT

[(
h − c

qT λT

)
ϕT

]
,

and applying the fundamental theorem of calculus and integration by parts,∫ T

0
e−ρtηt(h − bt) dt =

∫ T

0
e−ρt d

(
h − c

qtλt

)
ϕt,

= e−ρT

(
h − c

qT λT

)
ϕT + ρ

∫ T

0
e−ρt

(
h − c

qtλt

)
ϕt dt.

Hence, Hβ0
0 (T ) =

∫ T
0 e−ρtηt(h − bt) dt. Moreover, we have

d
dT

Hβ0
0 (T ) = e−ρT

[
ηT h + ϕT c − cq0

(λH − λL)λ0e
−(λL+λH)T

qT λT (β0λHe−λHT + (1 − β0)λLe−λLT )

]
.
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C Proof of Lemma 1 and Proposition 1
Proof. The worst contract Cwt = (NH

∗ , W wt, bwt) for the L type solves Program I. Since
IRH

A (NH
∗ ) binds,

−W =
NH

∗∑
n=1

δnfH
n−1(q0)

(
qH

n λHbn − c
)

∆,

and the objective function in the Program I becomes

−
NH

∗∑
n=1

δnηn(h − bn)∆ + V H(NH
∗ ).

According to Lemma 5, the solution to Program I must have binding constraints in ICH
A (NH

∗ )
for any 1 ≤ n ≤ NH

∗ , which gives us Lemma 1.

Furthermore, from Lemma 6, qH
NH

∗
λHbNH

∗
− c = 0, and for 1 ≤ n < NH

∗ ,

qH
n λHbn − c = δ

(
qH

n λHbn+1 − c
)

.

Clearly, 0 < bn ≤ bNH
∗

≤ h, and qH
n λHbn − c > 0 for all n < NH

∗ . It means that the L type
can obtain positive payment from the agent before experimentation, i.e., −W wt ≥ 0, and
positive share of profits during experimentation, i.e., ∑NH

∗
n=1 δnfL

n−1(q0)qL
n λL(h − bn)∆ ≥ 0.

Additionally, at least one of the two payoffs is strictly positive. If −W wt = 0, then NH
∗ = 1.

Thus, bNH
∗

= c/q0λ
H < h and the share of profits during experimentation is strictly positive.

Therefore, by choosing the worst contract for the L type, the L type can obtain a strictly
positive payoff, which violates her IC constraint. This gives us Proposition 1.

D Proof of Lemma 2
Proof. The statement is obviously true for the L type since the maximal expected surplus
is zero for the L project. When the agent believes that the principal’s type is L, he either
rejects the contract that gives him a negative payoff, or accepts the contract that gives the
L type a negative payoff. In either case, the L type cannot obtain a strictly positive payoff.

Now we consider the H type. We will solve the best contract for the H type if the agent
believes that she is a L type but is still willing to accept the contract. The best contract
solves the following program:

max
N,W,b

ΠH = −W +
N∑

n=1
δnfH

n−1(q0)qH
n λH(h − bn)∆

s.t.
N∑

s=n

δs−nfL
s−n(qL

n )
(
qL

s λLbs − c
)

∆ ≥
N∑

s=n+1
δs−nfL

s−n−1(qL
n )
(
qL

s−1λ
Lbs − c

)
∆,

W +
N∑

n=1
δnfL

n−1(q0)
(
qL

n λLbn − c
)

∆ ≥ 0.
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The IR constraint for agent must bind, so the objective function becomes

ΠH =
N∑

n=1
δnηn(h − bn)∆ + V L(N).

According to Lemma 5 and 6, the IC constraints must bind, and

bn = δN−n c

qL
NλL

+ (1 − δ)
N−1∑
s=n

δs−n c

qL
s λL

.

We now show that reducing the number of experiments by one makes the H type better
off. Thus, the termination date of the best contract for the H type is zero and her maximal
profit is zero. Let bN

n be the bonus in period n, and ΠH(N) be the profit of the H type given
the termination date is N . We can show that for N ≥ 1

bN+1
n − bN

n = δN+1−n

(
c

qL
N+1λ

L
− c

qL
NλL

)
.

Moreover, because c
qL

N+1λL − c
qL

N λL ≥ 0, ϕN ≥ 0, and c
qL

N+1λL ≥ c
q0λL ≥ h, we have

ΠH(N)−ΠH(N+1) = δN+1
[(

c

qL
N+1λ

L
− c

qL
NλL

)
ϕN + fH

N (q0)qH
N+1λ

H

(
c

qL
N+1λ

L
− h

)
∆
]

≥ 0.

E Proof of Proposition 2
Proof. The H type’s equilibrium contract Csep = {N sep, W sep, bsep} in the BSEH solves
Program II. We now solve the relaxed program without the agent’s IR constraint.

First, ICH
L (N) must bind in the relaxed program, otherwise we can decrease W without

violating any other constraint and obtain a higher payoff. The binding ICH
L (N) determines

the time-zero payment W . Thus, the objective function becomes
N∑

n=1
δnηn(h − bn)∆.

From Lemma 5, all IC constraints must bind. Furthermore, Lemma 6 gives an explicit
characterization of the bonus scheme. In addition, Lemma 7 gives the limit form of the above
objective function. Let ΠH

sep(T ) be the limit of the H type’s payoff when her termination
time N∆ goes to T and ∆ goes to 0. Thus, we have28

ΠH
sep(T ) = V H

0 (T ) − V L
0 (T ) − c

λH − λL

λH

[
(1 − q0)

1 − e−(ρ+λL−λH)T

ρ + λL − λH
+ q0

1 − e−(ρ+λL)T

ρ + λL

]
.

28We assume that ρ + λL − λH ̸= 0 so that the denominator is not 0. However, when ρ + λL − λH = 0, we
can obtain the same results. The proofs in Section I of the Appendix also apply, where the term ρ+λL −λH

is in the denominator.
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Taking the derivative with respect to T , we have

d
dT

ΠH
sep(T ) = q0

λH

(
λHh − c

)
e−(ρ+λL)T

[
λHe(λL−λH)T −

(
λH − λL

) lH

l0
eλHT − λL

]
.

Note that
[
λHe(λL−λH)T −

(
λH − λL

)
lH

l0
eλHT − λL

]
is strictly decreasing in T . At T = 0, it is

q0
λH

(
λHh − c

) (
λH − λL

) (
1 − lH

l0

)
> 0, and it goes to negative infinity as T goes to infinity.

Thus, there exists a T sep such that

λHe−λHT sep −
(
λH − λL

) lH

l0
e(λH−λL)T sep − λLe−λLT sep = 0.

ΠH
sep(T ) is strictly increasing in T when T < T sep and is strictly decreasing in T when

T > T sep. Thus, it attains its maximum at T sep.

Moreover, because lH

l0
= e−λHT H

∗ , we have

λHe−λHT H
∗ −

(
λH − λL

) lH

l0
e(λH−λL)T H

∗ − λLe−λLT H
∗ = λH

(
e−λHT H

∗ − e−λLT H
∗
)

< 0.

Therefore, T sep < T H
∗ . There is always under experimentation. In addition, since T sep < T H

∗
and bsep

t is increasing, we have bsep
t ≤ bsep

T sep < h. Furthermore, W sep > 0 since all bsep
t < h.

In addition, we can show that T sep is decreasing in λL. When λL = 0, T sep = T H
∗ /2 and

W sep = 0. Therefore, T sep < T H
∗ /2 when λL > 0.

Last, we check the agent’s IR constraint. His payoff V H
0 (T sep) − ΠH

sep(T sep) equals

V L
0 (T sep) + c

λH − λL

λH

[
(1 − q0)

1 − e−(ρ+λL−λH)T sep

ρ + λL − λH
+ q0

1 − e−(ρ+λL)T sep

ρ + λL

]

= λL

λH
V H

0 (T sep) + c
λH − λL

λH
(1 − q0)

[
1 − e−(ρ+λL−λH)T sep

ρ + λL − λH
− 1 − e−ρT sep

ρ

]

+ λL

λH
q0
(
λHh − c

) [1 − e−(ρ+λL)T sep

ρ + λL
− 1 − e−(ρ+λH)T sep

ρ + λH

]
> 0.

All terms are strictly positive. The first term is strictly positive since 0 < T sep < T H
∗ . The

other two terms are strictly positive since 1−e−xt

x
is strictly decreasing in x when t > 0.

Therefore, the solution we find is the H type’s equilibrium contract in the BSEH. In such
an equilibrium, the agent obtains a payoff more than λL

λH V H
0 (T sep), and the H type principal

obtains a payoff less than
(
1 − λL

λH

)
V H

0 (T sep).

F Proof of Proposition 3
Proof. The equilibrium contract Cpl = {Npl, W pl, bpl} in the BPEH solves Program III. We
now solve the relaxed program without IRL(N). In the relaxed program, IRA(N) must bind,
otherwise decreasing W increases the objective function without violating any constraints.
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The binding IRA(N) determines the time-zero payment W . Taking it into the objective
function, the H type’s payoff becomes

(1 − β0)
N∑

n=1
δnηn(h − bn)∆ + V (N).

From Lemma 5, all IC constraints should bind. Furthermore, Lemma 6 gives an explicit
characterization of the bonus scheme. In addition, Lemma 7 gives the limit form of the first
part of the objective function. Let ΠH

pl(T ) denote the limit of the H type’s payoff when her
termination time N∆ goes to T and ∆ goes to 0. Then, we have

ΠH
pl(T ) = (1 − β0)Hβ0

0 (T ) + β0V
H

0 (T ) + (1 − β0)V L
0 (T ).

Therefore, taking the derivative with respect to T , d
dT

ΠH
pl(T ) equals

e−ρT

−(1 − β0)q0c

(
λH − λL

)
λ0e

−(λL+λH)T

qT λT

(
β0λHe−λHT + (1 − β0)λLe−λLT

) + q0
(
λHh − c

)
e−λHT − (1 − q0)c

 .

Thus, d
dT

ΠH
pl(T ) > 0 is equivalent to

q0
(
λHh − c

)
> (1 − β0)q0c

(
λH − λL

)
λ0

qT λT

(
β0λHe(λL−λH)T + (1 − β0)λL

) + (1 − q0)ceλHT .

Note that the RHS of above inequality is strictly increasing in T and goes to infinity as T
goes to infinity. In addition, at T = 0, the RHS equals

(1 − β0)q0
(
λH − λL

) c

q0λ0
+ (1 − q0)c < (1 − β0)q0

(
λH − λL

)
h + (1 − q0)c,

= c − q0λ0h + q0
(
λHh − c

)
< q0

(
λHh − c

)
,

where both inequities come from the fact that q0λ0h > c. Hence, there exists a T pl > 0,
such that d

dT
ΠH

pl(T )|T =T pl = 0. ΠH
pl(T ) is strictly increasing when T < T pl and is strictly

decreasing when T > T pl. T pl maximizes ΠH
pl(T ).

To show T pl < T∗, we show that d
dT

ΠH
pl(T )|T =T∗ < 0. Since qT∗λT∗h = c, we have

β0
l0
lH

e−λHT∗ + (1 − β0)
l0
lL

e−λLT∗ = 1.

Thus, d
dT

ΠH
pl(T )|T =T∗ is equal to

e−ρT (1 − β0)q0
(
e−λHT∗ − e−λLT∗

) β0
(
λH − λL

) (
λHh − c

)
e−λHT∗ + λL c

l0

β0λHe−λHT∗ + (1 − β0)λLe−λLT∗
< 0.

Furthermore, T pl < T∗ implies bT pl < h, because qT plλT plbT pl = qT∗λT∗h = c.
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It is easy to see that W pl < 0. Note that the agent’s expected payoff is zero, i.e.,

W pl +
∫ T pl

0
e−ρtft(q0, β0)(qtλtbt − c) dt = 0,

and qtλtbt − c > 0 for all t < T pl. Obviously, W pl < 0. This means the L type must obtain
a strictly positive payoff in the equilibrium, because her payoff before experimentation is
strictly positive (W pl < 0) and her payoff during the experimentation is also strictly positive
as bt < h for all t. Thus, the L type’s IR constraint is satisfied and the contract we solved
is indeed the best pooling equilibrium for the H type.

At last, we now show that d
dβ0

ΠH
pl(T pl) > 0. Note that

∂

∂β0
ΠH

pl(T ) = (1 − β0)
d

dβ0
Hβ0

0 (T ) + V H
0 (T ) − V L

0 (T ) − Hβ0
0 (T ).

From Lemma 7, for 0 < T ≤ T H
∗ , (1 − β0) d

dβ0
Hβ0

0 (T ) > 0, and

V H
0 (T ) − V L

0 (T ) − Hβ0
0 (T ) =

∫ T

0
e−ρt(ηtbt + ϕtc) dt,

= e−ρT c

qT λT

ϕT + ρ
∫ T

0
e−ρt c

qtλt

ϕt dt +
∫ T

0
e−ρtϕtc dt > 0.

Therefore, ∂
∂β0

ΠH
pl(T ) > 0 for T ∈ (0, T H

∗ ]. The Envelope Theorem implies d
dβ0

ΠH
pl(T pl) =

∂
∂β0

ΠH
pl(T pl) > 0 since 0 < T pl < T∗ < T H

∗ . Thus, T pl → T H
∗ and ΠH

pl(T pl) → V H
0 (T H

∗ ) as
β0 → 1.

G Proof of Lemma 3
Proof. Fix any equilibrium E that gives the L type a strictly positive payoff. Let CL and
CH be the sets of equilibrium contracts chosen by the L and H type, respectively. Then
CL ⊆ CH. In addition, the L (or H) type must obtain the same payoff by proposing any
C ∈ CL (or C ∈ CH).

For any contract C ∈ CL, let xC ∈ (0, 1] and yC ∈ (0, 1] be the probabilities that C is chosen
by the L and H type in the equilibrium, respectively.29 Then ∑C∈CL yC ≤ ∑

C∈CL xC = 1.

Thus, there are only two possible cases.

1. CL = CH, and xC = yC for all C ∈ CL = CH;

2. There is at least one contract C, such that xC > yC .

In the first case, for any C ∈ CL = CH, when the principal proposes the contract C, the
agent’s belief about the principal’s type is just the prior β0. In addition, given this belief

29For technical simplicity, we assume that every contract over which one principal randomizes, she chooses
that contract with a strictly positive probability.
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and the contract C, we know that the H’s payoff in such an equilibrium cannot exceed the
payoff she can obtain in the BPEH when the prior is β0, by definition.

In the second case, for the contract C such that xC > yC , the agent’s belief about the
principal’ type β is strictly below the prior β0 by Bayesian rule. Given such belief and
the contract C, the H type’s payoff cannot exceed the payoff she can obtain in the BPEH
when the prior is β, by definition. From Proposition 3, the H type’s payoff in the BPEH is
increasing in the prior. Thus, we can conclude that the H type’s payoff cannot exceed the
payoff she can obtain in the BPEH when the prior is β0.

H Proof of Lemma 4
Proof. For the equilibrium in which the L type obtains zero payoff, the best contract for the
H type Ĉ = {N̂ , Ŵ , b̂}, given the agent’s belief about the H type is β0, solves the following
program:

max
N,W,b

ΠH = −W +
N∑

n=1
δnfH

n−1(q0)qH
n λH(h − bn)∆

s.t. ICA(N) , IRA(N) , ICH
L (N).

As in the BPEH, when β0 is small ( c
q0λ0

≥ h), the optimal termination time is zero and the
payoff of the H type is zero. Now we consider the non-trivial case when c

q0λ0
< h.

We again drop the agent’s IR constraint, solve the relaxed program, and then verify it later.
However, for the purpose to prove this lemma, we do not have to. The reason is that the
solution to the relaxed program cannot be smaller than that to the original program, and
observe that the relaxed program is the same program solves the BSEH if β0 = 1. All we
need to show is the value function for this relaxed program is increasing in β0.

Consider the relaxed program without IRA(N). Clearly, ICH
L (N) must bind. Solving for

W , the objective function becomes
N∑

n=1
δnηn(h − bn)∆.

By Lemma 5 and 6, the agent’s IC constraints ICA(N) must bind. Let Π̂H(T ) denote the
H type’s payoff limit as N∆ goes to T and ∆ goes to zero. From Lemma 7,

Π̂H(T ) = e−ρT ϕT

(
h − c

qT λT

)
+ ρ

∫ T

0
e−ρtϕt

(
h − c

qtλt

)
dt.

For any T > T ∗, since qT λT h < qT∗λT∗h = c, we have

Π̂H(T ∗) − Π̂H(T ) = −e−ρT ϕT

(
h − c

qT λT

)
− ρ

∫ T

T ∗
e−ρtϕt

(
h − c

qtλt

)
dt > 0.

Hence, the principal never wants to extend the project beyond the efficient termination time
of the mixed project – we can focus on solutions in the compact set [0, T∗]. The objective
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function is continuous, so there exists a solution T̂ ∈ [0, T∗] to the relaxed program. We can
further show that T̂ ∈ (0, T∗) by showing d

dT
Π̂H(T )|T =0 > 0 and d

dT
Π̂H(T )|T =T∗ < 0.

Lemma 7 also shows ∂
∂β0

Π̂H(T ) > 0 for 0 < T ≤ T H
∗ . Thus, the Envelope Theorem implies

d
dβ0

Π̂H(T̂ ) = ∂
∂β0

Π̂H(T̂ ) > 0, because 0 < T̂ < T∗ ≤ T H
∗ .

Hence, the value function of the relaxed program is zero for c
q0λ0

≤ h, and is strictly increasing
in β0 for c

q0λ0
> h. Note that when β0 = 1, it is the equilibrium payoff for the H type in the

BSEH. Therefore, all equilibria that give the L type a zero payoff cannot give the H type a
higher payoff than the BSEH.

I Proof of Proposition 5
In this section, we solve the optimal mechanism for the H type when ∆ is small. First,
we restrict our attention to feasible mechanisms when NL = 0. Then, we focus on feasible
mechanisms when NL ≥ 1. Last, we compare them when ∆ is small.

Proof. (a) We now show that the H type’s payoff is strictly lower than her FIB payoff when
NL = 0. For this purpose, it is not necessary to characterize the optimal mechanism for the
H type when NL = 0, but we nevertheless solve it to illustrate how much the mediator can
help the H type by solely relaxing the IR constraint of the agent.

The optimal mechanism for the H type when NL = 0, M0 = {CH0, CL0}, solves the following
program:

max
M

ΠH(M) = −W H + q0

NH∑
n=1

δn
(
1 − λH∆

)n−1
λH

(
h − bH

n

)
∆

s.t. IRH(M) , IRL(M) , IRA(M) , ICL
H(M) , ICH

L (M) , ICA(M) , and NL = 0

The constraints IRH(M), IRL(M), and ICL
H(M) are all slack. We solve the relaxed program

without them. In the relaxed program, ICH
L (M) and IRA(M) must bind, otherwise we can

adjust W H and W L to increase the payoff of the H type.

From the binding ICH
L (M) and IRA(M), we can obtain W H and W L, which also pins down

ΠH =β0V
H(NH) + (1 − β0)

NH∑
n=1

δnηn

(
h − bH

n

)
∆,

ΠL =β0V
H(NH) − β0

NH∑
n=1

δnηn

(
h − bH

n

)
∆.

For any given NH , according to Lemma 5 and 6, the agent’s IC constraints in ICA(M) must
also bind, and we can obtain bH

n for 1 ≤ n ≤ NH .

Let Πθ
0(T ) denote the limit of the θ type’s payoff when ∆ goes to zero and the termination

time of the H type NH∆ goes to T , where the subscript 0 is reminiscent of the L type’s
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experimenting time. Thus, we have

ΠH
0 (T ) = V H

0 (T )−(1−β0)V L
0 (T )−(1−β0)c

λH − λL

λH

[
(1 − q0)

1 − e−(ρ+λL−λH)T

ρ + λL − λH
+ q0

1 − e−(ρ+λL)T

ρ + λL

]
,

ΠL
0 (T ) = β0V

L
0 (T ) + β0c

λH − λL

λH

[
(1 − q0)

1 − e−(ρ+λL−λH)T

ρ + λL − λH
+ q0

1 − e−(ρ+λL)T

ρ + λL

]
.

The last thing is to find the optimal termination time for the H type. Taking the derivative
with respect to T , we have

d
dT

ΠH
0 (T ) = (1 − β0)

q0

λH

(
λHh − c

)
e−(ρ+λL)T α(T ),

where α(T ) is strictly decreasing in T and is defined by

α(T ) := 1
1 − β0

λHe(λL−λH)T − β0

1 − β0
λH lH

l0
eλLT −

(
λH − λL

) lH

l0
eλHT − λL.

First, α(0) =
(

1
1−β0

λH − λL
) (

1 − lH

l0

)
> 0. Moreover, α(T ) converges to −λL as T → ∞.

Thus, ΠH
0 (T ) is quasi-concave in T , and α(T H0) = 0 determines the unique solution T H0 to

the relaxed program. We can also show that α(T sep) > 0 > α(T H
∗ ) so that T sep < T H0 < T H

∗ .

We now verify the constraints we have dropped from the original program. IRH(M) is
automatically satisfied. Now we check IRL(M). Note that

d
dT

ΠL
0 (T ) = β0q0

(
λHh − c

)
e−ρT

[
λL

λH
e−λLT

(
1 − lH

l0
eλHT

)
+ lH

l0

(
e(λH−λL)T − 1

)]
.

When T < T H
∗ , eλHT < eλHT H

∗ = l0
lH

, and thus 1− lH

l0
eλHT > 0. We also have e(λH−λL)T −1 > 0

for T > 0. Thus, d
dT

ΠL
0 (T ) > 0 for T ∈ [0, T H

∗ ], i.e., ΠL
0 (T ) is strictly increasing in T . Hence,

ΠL
0 (T H0) > ΠL

0 (0) = 0 and IRL(M) is slack.

Finally, we show ICL
H(M) is also slack. By deviating to CL0, the H type obtains ΠL

0 (T H0).
Because bH

t < h, we have

ΠL
0 (T H0) − ΠH

0 (T H0) = −
∫ T H0

0
e−ρtηt

(
h − bH

t

)
dt < 0.

Therefore, the solution to the relaxed program is the optimal mechanism for the H type
when NL = 0. Moreover, ΠL

0 (T H0) > 0 implies ΠH
0 (T H0) < V H

0 (T H0) < V H
0 (T H

∗ ). Hence,
the H type’s payoff is strictly less than her FIB payoff in the limit ∆ → 0.

(b) Now we consider the optimal mechanism for the H type when NL ≥ 1. The inequality (4)
shows, for a small ∆, the H type’s payoff has an upper bound V H(NH

∗ ) + 1−β0
β0

V L(1) when
NL ≥ 1. We show the following mechanism M1 is feasible and achieves this upper bound.

Recommendations – The mediator recommends the agent work until NH
∗ if the principal

reports H, but work once if the principal reports L.
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Bonus schemes – Let {bH
n }2≤n≤NH

∗
be the bonus transfers that satisfy the agent’s binding

IC constraints given the agent believes the principal’s type is H.30 For 2 ≤ n ≤ NH
∗ ,

bH
n = δNH

∗ −n c

qH
NH

∗
λH

+ (1 − δ)
NH

∗ −1∑
s=n

δs−n c

qH
s λH

.

Given {bH
n }2≤n≤NH

∗
, the inequality (8) determines an upper bound for bH

1 . We choose some bH
1

which is below the upper bound. Fix the chosen {bH
n }1≤n≤NH

∗
, the inequality (7) determines

a lower bound for bL
1 . We choose some bL

1 which is above both the lower bound and h.
Therefore, the above bonus scheme satisfies both the agent’s and the L type’s IC constraints.
Moreover, because bL

1 ≥ h, if the H type reports she is L, she will obtain a negative payoff:

−W L + δq0λ
H
(
h − bL

1

)
∆ = δq0

(
λH − λL

) (
h − bL

1

)
∆ ≤ 0.

Thus, the above bonus scheme also satisfies the IC constraint of the H type.

Independent transfers – Given the above bonus schemes, we choose W L and W H that
satisfy equation (5) and (6) to make the L type and the agent obtain a zero payoff. Last,
the H type’s IR constraint is automatically satisfied for a small ∆.

Therefore, M1 is feasible. In addition, the H type achieves her payoff upper bound V H(NH
∗ )+

1−β0
β0

V L(1) from M1, because all surplus is retained by the H type. When ∆ → 0, her payoff
converges to V H

0 (T H
∗ ), since lim∆→0 V L(1) = 0.

(c) We have shown that in the limit ∆ → 0, the H type’s payoff in M0 is strictly below
V H

0 (T H
∗ ), while her payoff in M1 converges to V H

0 (T H
∗ ). Therefore, when ∆ is small enough,

M1 is the optimal mechanism for the H type.
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