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We study optimal monopoly pricing with evasive consumers. The monopolist uses consumer data to estimate

demand and menu pricing to optimally screen the residual uncertainty about consumers’ preferences. Third

degree price discrimination encourages data-conscious consumers to manipulate their observable attributes

(at a cost). This reduces the precision of demand estimation, sometimes rendering the consumer data useless.

We derive the monopolist’s gains from using data and characterize the optimal investigation strategy. We find

that randomly restricting monopolist’s access to consumer data may increase profit.

1 INTRODUCTION
Sellers’ use of consumer data for price discrimination is as old as the hills, but, recently, the amount

and variety of available data has rapidly multiplied. This would spell trouble for consumers, if not

for the fact that many of them are aware of these practices and have some control over their own

data. Moreover, with a few exceptions, consumers are not liable for falsifying or manipulating the

data that is harvested by sellers.

Thus, one of the key privacy-related questions is this: How the spoils of trade are divided between

data-hungry sellers and data-conscious consumers? We answer this question using a canonical

monopoly framework in which the seller has access to a full price-discrimination toolkit.

In our model, the seller’s optimal pricing is a combination of the two instruments that are

commonly used in practice: consumer profiling and menus. The seller employs consumer data to

organize consumers into specific categories that share common characteristics. We refer to these

categories as market segments. Because consumer data does not always perfectly explain variation

in preferences, the seller screens the remaining intrasegment heterogeneity using a variety of

vertically differentiated goods.

When the monopolist employs consumer data to segment the market, he solves a problem akin

to a regression of market demand on consumer attributes. The explained part of variation in this

regression represents the value of data for the monopolist. As such, the monopolist is interested in

maximizing the part of variation that is explained by the consumer data. However, the consumers

show the opposed interests. When some parts of the data become overly informative of the demand,

the consumers muddle them. This limits the sellers’ gains from segment-specific pricing. It is costly

for the consumers to manipulate their data, hence some explanatory power always remains.

Because the data is endogenous to pricing, the derived value of the data is not a function of prior

beliefs, but rather a function of the structure of the data and the cost of manipulation. We show that

the seller gains from using the data, but this gain is vanishing when the data becomes very rich—i.e.,

when it contains a large number of (conditionally) independent variables.
1
The data-driven gain in

profit comes at a cost of disproportionately large reduction in consumer surplus. In contrast with

the seller’s value of data, the consumer surplus loss may remain substantial when data becomes

rich.

The hide and seek nature of monopolist-consumer relation means that the seller would benefit

from limiting consumers’ understanding of how data affects prices. One way to achieve this is to

use a random, and therefore unpredictable, subset of variables that are contained in the original

data. We show that such a tactic would resolve the issue of vanishing value when the data is rich,

but implementing it would require commitment power that sellers may not possess.

1
In our context, we abstract away from the problems associated with finite samples. We assume that seller can sample data

from the continuum of consumers and the term “rich” refers to the number of variables, not observations.

This version: February 1, 2023.
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2 RELATED LITERATURE
The general problem of inference from muddled data is studied by Frankel and Kartik (2019, 2022)

(also, see earlier related work by Kartik, 2009). Ball (2022) studies scoring of strategic agents in which

the data for scoring is provided by an intermediary. The latter may serve as a valuable commitment

provider to the agency that develops the scoring rule. Ball (2022) shows that randomization by the

data intermediary inhibits data manipulation because the target of manipulation becomes more

difficult to identify. A distantly related result in the the context of information elicitation with

verification is obtained by Carroll and Egorov (2019).

Milli, Miller, Dragan, and Hardt (2019) study welfare costs associated with threshold binary

classifiers when subjects can manipulate classifiers inputs strategically at a cost. They show that the

pursuit to counter strategic manipulations via redesigning the classifier brings a disproportionately

high cost on the subjects. A similar problem is studied by Cunningham and Moreno De Barreda

(2022), Perez-Richet and Skreta (2022) and Hardt, Megiddo, Papadimitriou, and Wootters (2016).

Incentives to misreport data are not unique to classification problems. Eliaz and Spiegler (2022)

study incentives under regression estimators and Caner and Eliaz (2021) investigate the same

question with an addition of variable selection and regularization.

Deneckere and Severinov (2022) and Severinov and Tam (2018) study costlymisreporting in classic

asymmetric information frameworks of signaling and screening. (Liang and Madsen, forthcoming)

study the use of observables in provision of effort when subjects productivity is private but correlated

with these observables.

Hu, Immorlica, and Vaughan (2019) study strategic manipulation of data by multiple agents.

They highlight an externalize one subject imposes on others by manipulating their own record. In

our framework, a similar externality considerations are present.

The use of data by sellers is tightly related to consumer privacy. Bonatti and Cisternas (2020)

investigate how the seller can condition the current prices on the past choices of the consumers

via an aggregator that assigns a score to each consumer. Bhaskar and Roketskiy (2021) consider

unrestricted use of past purchases for the equilibrium optimal pricing.

Acknowledging that some degree of privacy is desirable, Eilat, Eliaz, and Mu (2021) suggest a

Bayesian measure of privacy protection and use this measure to derive optimal privacy-preserving

pricing. They show that an optimal privacy-preserving menu always contains a finite number of

alternatives.

We study markets where the seller uses data to segment the market and tailor prices to the

demand in each segment. In a different environment, Hidir and Vellodi (2021) show that it is

possible to find a segmentation that relies on consumer volunteering the private information on

their valuations.

We study the value that the seller attaches to consumer data. A related question is how to sell the

data to the monopolist and what is the resulting price. Bergemann and Bonatti (2015), Bergemann,

Bonatti, and Smolin (2018) and Segura-Rodriguez (2021) answer this question in a variety of settings.

3 THE MODEL
The market consists of a single seller and a mass of anonymous consumers indexed by 𝑖 ∈ 𝐶 . A
variety of goods can be produced and sold by the seller. Each type of good is characterized by a

quality parameter 𝑞 ∈ R+. A consumer 𝑖’s marginal willingness to pay for quality 𝜏 (𝑖) depends on
her private type. There are consumers with the low willingness to pay for quality 𝑡ℓ , and consumers

with a high one 𝑡ℎ > 𝑡ℓ . We denote the difference between the two by 𝑑 = 𝑡ℎ − 𝑡ℓ .
A market transaction between the seller and the consumer 𝑖 generates social surplus

𝑠 (𝑖, 𝑞) = 2𝜏 (𝑖)𝑞 − 𝑞2
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that depends on the quality of the good 𝑞 and the consumer’s type 𝑡 (𝑖). A transaction price 𝑝

determines how the surplus is split between the seller and the buyer:

𝑢 (𝑖, 𝑞, 𝑝) = 𝑠 (𝑖, 𝑞) − 𝑝
𝜋 (𝑖, 𝑞, 𝑝) = 𝑝,

where 𝑢 is the buyer’s payoff and 𝜋 is the seller’s profit from this transaction. Consumers’ outside

option is valued at zero.

Consumer 𝑖 is endowed with 𝐾 observable and manipulable attributes represented by vector

𝛼 (𝑖) ∈ 𝒜 = {0, 1}𝐾 .

The attributes can be secretly manipulated by the consumer at a cost. We assume that it costs 𝑐 to

change the entire vector and the cost is linear in the number of attributes that the consumer changes.

For example, a consumer with an attribute vector â = (0, 0, 1, 0, 1) can pay cost
2

5
𝑐 to change the

value of the second and fifth attributes. As a result, instead of the original â, this consumer would

display his new attribute vector a = (0, 1, 1, 0, 0). From now on, we use a “hat” (ˆ) to denote a value

of a variable before the consumers made changes to their attributes. All variables without hats are

ex post.

The consumer attributes may be correlated with the consumer type. By𝑚 : 2
𝐶 → R+ we will

denote the measure of consumers with type 𝐿. Similarly, 𝑛 : 2
𝐶 → R+ is the measure of consumers

with type 𝐻 . With some abuse of notation we denote sets of consumers by their characteristics: for

example,𝑚(a) =𝑚({𝑖 ∈ 𝐶 : 𝛼 (𝑖) = a}) is the mass of all consumers with type 𝐿 and the attribute

vector a.

3.1 Optimal menu pricing
Suppose the seller offers a profit-maximizing screening menu to a group of consumers 𝑆 ⊆ 𝐶 . Let
𝜋 (𝑖) be the profit that results from consumer 𝑖 purchasing her favorite item from this menu. By 𝜌 (𝑆)
we denote the total profit over all consumers 𝑖 ∈ 𝑆 , normalized by the number of the consumers

with the low willingness to pay:

𝜌 (𝑆) = 1

𝑚(𝑆)

∫
𝑆

𝜋 (𝑖)𝑑 [𝑛(𝑖) +𝑚(𝑖)],

As we know from Mussa and Rosen (1978), the profit-maximizing menu consists of two items. A

premium item (𝑝ℎ, 𝑞ℎ) is designed for consumers with high valuation for quality, and a basic item

(𝑝ℓ , 𝑞ℓ ) is for everyone else. The seller’s profit solves the following program:

𝜌 (𝑆) = max

𝑞ℎ≥𝑞ℓ ≥0

{
2𝑡ℓ𝑞ℓ − 𝑞2

ℓ − 2ℎ(𝑆)𝑞ℓ𝑑 + ℎ(𝑆)
[
2𝑡ℎ𝑞ℎ − 𝑞2

ℎ

]}
,

where

ℎ(𝑆) = 𝑛(𝑆)
𝑚(𝑆)

is a hazard ratio for the group 𝑆 . This ratio is a sufficient statistics of consumer heterogeneity and

it plays a key role in our analysis. The solution to the seller’s program is

𝑝ℓ = 𝑡ℓ max{0, 𝑡ℓ − ℎ(𝑆)𝑑}
𝑝ℎ = 𝑡2

ℎ
− 𝑑 max{0, 𝑡ℓ − ℎ(𝑆)𝑑}

𝑞ℎ = 𝑡ℎ

𝑞ℓ = max{0, 𝑡ℓ − ℎ(𝑆)𝑑}.
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When shopping from this menu, consumers with the low willingness to pay receive no surplus. A

consumer 𝑖 ∈ 𝑆 with the high willingness to pay receives a surplus

𝑢 (𝑖) = max{0, 2𝑑 (𝑡ℓ − ℎ(𝑆)𝑑)}.

The monopolist’s profit is

𝜌 (𝑆) = ℎ(𝑆) (𝑡ℓ + 𝑑)2 + [max{0, 𝑡ℓ − ℎ(𝑆)𝑑}]2.

Because we study the value of consumer data for the seller, we focus on markets that are

characterized by a high degree of consumer heterogeneity. Formally, this is reflected in the following

assumption:

Assumption 1.

¯ℎ ∈
[ 𝑐

2𝑑2
,
𝑡ℓ

𝑑
− 𝑐

2𝑑2

]
.

This assumption ensures that the seller’s profit-maximizing menus deliver variety in terms of

quality and prices.

3.2 Group pricing with data
Eliciting consumers’ valuations via a screening menu is costly. The seller has to reduce the price

difference between the premium and the basic items and distort the quality of a basic item. In this

sense, the third degree price discrimination is a more cost effective instrument than menu pricing.

The seller could use consumer data to to estimate consumers’ valuations and, thus, rely on menu

pricing only to elicit residual uncertainty that is not explained by the available data.

To get a better understanding of the third degree price discrimination component in sellers pricing

decision, let us consider an arbitrary market segmentation, which is, by definition, a partition of the

set of consumers: 𝒮 =

{
𝑆1, 𝑆2, ...

����⋃
𝑖

𝑆𝑖 = 𝐶;∀𝑖 ≠ 𝑗 : 𝑆𝑖 ∩ 𝑆 𝑗 = ∅
}
. If the seller’s profit-maximizing

menus serve both type of the consumers in every segment, the sellers’ total profit under market

segmentation 𝒮 is

𝜋𝒮 =
∑︁
𝑆 ∈𝒮

𝑚(𝑆)𝜌 (𝑆) = 𝜋∗ + 𝑑2

∑︁
𝑆 ∈𝒮

𝑚(𝑆) [ℎ(𝑆) − ¯ℎ]2,

where 𝜋∗ =𝑚(𝐶)𝜌 (𝐶) is the profit of the monopolist without market segmentation. The second

term of this expression represents the profit gain the seller could get by segmenting the market.

Perhaps not surprisingly, this term is proportional to the variance of the hazard ratio across different

market segments. This suggests that the seller would prefer the finest market segmentation he

could achieve given the available consumer data.

3.3 Data manipulation
By the nature of third-degree price discrimination, the consumers expect differences in prices

for the premium quality good across market segments. These differences motivate consumers to

perform arbitrage—they manipulate their attributes to “travel” to a segment with lower prices.

Note that consumers with low willingness to pay receive their reservation utility regardless of the

market segment they find themselves in. Therefore, they have no incentives to manipulate their

attributes.

Focus on high valuation consumers and recall that the price for the high quality product is

increasing in hazard ratio:

𝑝ℎ = ℎ(𝑆)𝑑2 + 𝑡2

ℎ
− 𝑡ℓ𝑑.
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Therefore, a consumer’s gain from “traveling” from segment 𝑆1 to 𝑆2 is proportional to the difference

between the hazard ratios in these segmentsℎ(𝑆1)−ℎ(𝑆2). The cost on the other hand is proportional
to the share of attributes that needs changing𝐴(𝑆1, 𝑆2)/𝐾 . In equilibrium, the following no-arbitrage
condition must hold for any two segments 𝑆1 and 𝑆2:

|ℎ(𝑆1) − ℎ(𝑆2) | ≤
𝑐

2𝑑2

𝐴(𝑆1, 𝑆2)
𝐾

. (1)

To see that, recall that the hazard ratio is endogenous in the setup with manipulable data. Consider

high valuation consumers in segment 𝑆1 and assume that initially
ˆℎ(𝑆1) > ˆℎ(𝑆2). If the inequality

(1) holds for
ˆℎ, no consumer is tempted to manipulate their attributes. However, if it does not

hold, a number of consumers would travel from 𝑆1 to 𝑆2, thus reducing the gap between ℎ(𝑆1) and
ℎ(𝑆2). This number is determined in equilibrium. It is such that a marginal consumer is indifferent

between the two options and, therefore, (1) would hold as equality for ex post hazard ratios ℎ.

4 VALUE OF CONSUMER DATA
By segmenting the market according to 𝒮, the seller increases his profit by

𝑑2

∑︁
𝑆 ∈𝒮

𝑚(𝑆) [ℎ(𝑆) − ¯ℎ]2 .

We use this gain to define the value of information for the seller. For analytical purposes it is

convenient to represent it in terms of hazard ratios within market segments. However, these ratios

are not directly observable, which raises a question of how a third party could measure it using

market data. To answer it, it is sufficient to examine the prices in the optimal menu and the quantity

demanded by the consumers:

𝑑2

∑︁
𝑆 ∈𝒮

𝑚(𝑆) [ℎ(𝑆) − ¯ℎ]2 =
1

𝑑2

∑︁
𝑆 ∈𝒮

𝑚(𝑆)
𝑝ℎ (𝑆) −

1

𝑚̄

∑̃︁
𝑆 ∈𝒮

𝑚(𝑆)𝑝ℎ (𝑆)


2

,

where 𝑝ℎ (𝑆) is the price of the premium item in market segment 𝑆 and𝑚(𝑆) is the number of basic

items sold in the same segment.

Because consumers are anonymous, not every segmentation can be implemented by the seller.

The seller can either use observable attributes or random chance (or the combination of the two) to

allocate consumers to market segments.

Definition 2. Segmentation 𝒮 is feasible if there exists a function 𝐹 : 𝒜 ×𝒮 → R such that for
every market segment 𝑆 ∈ 𝒮 and every consumer 𝑖 ∈ 𝐶 : Pr{𝑖 ∈ 𝑆} = 𝐹 (𝛼 (𝑖), 𝑆).

Consider a segmentation that associates each possible value of attributes vector with a separate

market segment:

𝒮
∗ = {{𝑖 ∈ 𝐶 | 𝛼 (𝑖) = a} | a ∈ 𝒜}.

Clearly this segmentation is feasible. Moreover, the next proposition shows that it is profit-

maximizing among all feasible segmentations.

Proposition 3. For any feasible market segmentation 𝒮,∑︁
𝑆 ∈𝒮

𝑚(𝑆) [ℎ(𝑆) − ¯ℎ]2 ≤
∑︁
𝑆 ∈𝒮∗

𝑚(𝑆) [ℎ(𝑆) − ¯ℎ]2 .

Proof. The gain in profit is convex in hazard ratio and {ℎ(𝑆),𝑚(𝑆)}𝑆 ∈𝒮∗ weakly majorizes

{ℎ(𝑆),𝑚(𝑆)}𝑆 ∈𝒮. □
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This proposition shows that the seller uses segmentation 𝒮
∗
unless he can credibly promise to

the consumers to restrict the use of data for price discrimination. The latter would require some

commitment mechanism such as outsourcing data collection to an independent intermediary. We

consider this possibility in Section 4.2.

Seller’s gain from using data depends on the correlation between the consumer attributes and

preferences, which is represented by variance of hazard ratios across different segments of the

market. Thus, the gain can be small or even zero if the attributes are independent of the consumer

valuations.

On the other hand, no matter how informative the initial attributes are, the gain from using them

for price discrimination is bounded by consumers datamanipulation. The higher the informativeness

of the attributes, the higher the incentives of the consumers to manipulate them. The very question

that we study in this paper is how this tug of war between the seller and the manipulative consumers

limits the value of consumer data for the seller.

In pursuit of the maximal potential of the consumer data for price discrimination, we define its

value as the maximal gain the seller can obtain when consumers can manipulate their attributes.

Definition 4. The value of consumer data𝐷𝐾 is the largest gain the seller can obtain by segmenting
the market according to 𝒮∗ across all possible correlations between the attributes and valuations:

𝐷𝐾 = 𝑑2
max

ℎ:𝒜→R+

∑︁
a∈𝒜

𝑚(a) [ℎ(a) − ¯ℎ]2
(2)

𝑠 .𝑡 .
∑︁
a∈𝒜

𝑚(a) [ℎ(a) − ¯ℎ] = 0, (3)

∀a, b ∈ 𝒜 : |ℎ(a) − ℎ(b) | ≤ 𝑐

2𝑑2

∥a − b∥
𝐾

. (4)

The program that defines 𝐷𝐾 highlights the main intuition about the interaction of the data-

hungry seller and the data-cautious consumers. On the one hand, it is in the seller’s interest to

increase the share of preference variation explained by the observed attributes (see objective (2)).

On the other hand, if explanatory power of the attributes increases beyond a certain point, the

consumers erode it via attribute manipulation (see constraint (4)).

To characterize the program’s solution ℎ∗, we need to identify pairs of market segments which

are involved in consumer arbitrage. In mathematical terms, we look for program constraints that

bind at ℎ∗.2 It is convenient to think about the binding constraints as edges of a graph. In particular,

for a given ℎ, we define a constraints graph 𝐺 (ℎ) in the following way.

Definition 5. A graph𝐺 (ℎ) with the set of nodes𝒜 is called a constraints graph for ℎ if for every
pair of a, b ∈ 𝒜 the following statements are equivalent:

(1) a and b are connected,
(2) |ℎa − ℎb | = 𝑐

2𝑑2

∥a−b∥
𝐾

.

In this graph, every node is a market segment and edges represent arbitrage opportunities, or

equivalently, instances of consumers manipulating their attributes. The graph representation of

binding constraints allows us to find a simple necessary condition for optimality (2):

Proposition 6. For every solution ℎ∗ of the problem (2) the corresponding constraints graph𝐺 (ℎ∗)
is connected.

2
Note that the objective function is convex, therefore the solution will be on the boundary of the convex permissible set.
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Fig. 1. An example of a constraints graph.

Proof. By contradiction, let ℎ be a solution to the problem (2) for which 𝐺 (ℎ) is not connected.
We can partition the nodes of this graph into two sets 𝐴 and 𝐵 in such a way that there are no

edges between the two sets, and ℎ(𝐴) ≥ ℎ(𝐵).
The objective can be rewritten as∑︁

a∈𝒜
𝑚(a) [ℎ(a) − ¯ℎ]2 =

∑︁
a∈𝐴

𝑚(a) [ℎ(a) − ℎ(𝐴)]2 +
∑︁
a∈𝐵

𝑚(a) [ℎ(a) − ℎ(𝐵)]2 +
∑︁

𝑍 ∈{𝐴,𝐵 }
𝑚(𝑍 ) [ℎ(𝑍 ) − ¯ℎ]2 .

Because there are no edges in 𝐺 (ℎ) between 𝐴 and 𝐵, for any a ∈ 𝐴 and b ∈ 𝐵 : |ℎ(a) − ℎ(b) | <
𝑐

2𝑑2

∥a−b∥
𝐾

. Let

ℎ𝜖 (a) =
{
ℎ(a) + 𝜖

𝑚 (𝐴) , if a ∈ 𝐴
ℎ(a) − 𝜖

𝑚 (𝐵) , if a ∈ 𝐵.
Note that for small enough 𝜖 > 0, ℎ𝜖 satisfies all the constraints of the problem (2) and increases

the value of the objective compared to ℎ:∑︁
a∈𝒜

𝑚(a) [ℎ𝜖 (a)]2 −
∑︁
a∈𝒜

𝑚(a) [ℎ(a)]2 = 𝜖
(
2(ℎ(𝐴) − ℎ(𝐵)) + 𝜖

(
𝑚(𝐴)−1 +𝑚(𝐵)−1

) )
> 0,

hence ℎ cannot be a solution to (2). □

We can restate this result using the hazard ratios in different market segments:

Corollary 7. If ℎ∗ is a solution to the program (2), then

∀a, b ∈ 𝒜, ∃ 𝑗 ∈ {0, 1, 2, ...} : |ℎ∗ (a) − ℎ∗ (b) | = 𝑐

2𝑑2

𝑗

𝐾
.

4.1 More data?
We are now prepared to investigate how this value depends on the richness of the data. The

parameter that guides the richness of the data is the number of attributes 𝐾 . However, it is possible

to increase the number of attributes and add little or no new information, by making the attributes

correlatedwith each other. To rule this possibility out, we assume that the attributes are conditionally

independent. Note that in our setting, the attributes for consumers who have high willingness to

pay are endogenous, therefore we only impose the independent condition on the consumers with

low willingness to pay.
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Assumption 8. There exist marginal probabilities 𝜇𝑖 : {0, 1} → R+, 𝑖 = 1, ..., 𝐾, such that for any
a ∈ 𝒜 :

𝑚(a) = 𝑚̄
𝐾∏
𝑖=1

𝜇𝑖 (a𝑖 ).

Under this assumption, we can use the number of attributes 𝐾 as a measure of the richness

of consumer data because every attribute carries new information and, therefore, improves the

estimate of consumer demand.

It is important to clarify that we consider the richness of the data in terms of available variables

and not observations. In our setup, the seller perfectly understand the data generating process

for any collection of variables. In particular, he understands that different sets of predictors have

different predictive power (both exogenously and because of consumers manipulating them).

Because of independence, the solution for program (2) for a large 𝐾 can be constructed using

solutions for the analogous problem for a smaller 𝐾 . We can use induction on the number of

attributes to characterize the solution.

Proposition 9. If Assumption 8 holds, the value of information is

𝐷𝐾 =
1

𝐾
𝑚̄

[ 𝑐
2𝑑

]
2

𝐾∑
𝑗=1

𝜇 𝑗 (0)𝜇 𝑗 (1)

𝐾

Proof. Recall that objective for the problem (2) for 𝐾 + 1 attributes can be rewritten as∑︁
a∈𝒜

𝑚(a) [ℎ(a) − ¯ℎ]2 =
∑︁
a∈𝐴

𝑚(a) [ℎ(a) − ℎ(𝐴)]2

+
∑︁
a∈𝐵

𝑚(a) [ℎ(a) − ℎ(𝐵)]2

+
∑︁

𝑍 ∈{𝐴,𝐵 }
𝑚(𝑍 ) [ℎ(𝑍 ) − ¯ℎ]2, (5)

where 𝐴 = {a | a = (b, 0), b ∈ 𝒜𝐾 } and 𝐵 = 𝒜𝐾+1 \𝐴. Note that the first two components of this

sum are the values of the objective for the problem (2) for 𝐾 attributes. Since the solution to this

problem is known, we can attempt to maximize the third component of the sum and check if the

result violates any constraints of the original problem for 𝐾 + 1 attributes. In particular, we solve

for the contribution of the (𝐾 + 1)th attribute towards the overall objective

𝑉𝐾+1 = 𝑑
2

max

{ℎ (𝐴),ℎ (𝐵) }

∑︁
𝑍 ∈{𝐴,𝐵 }

𝑚(𝑍 ) [ℎ(𝑍 ) − ¯ℎ]2

𝑠 .𝑡 .
∑︁

𝑍 ∈{𝐴,𝐵 }
𝑚(𝑍 ) [ℎ(𝑍 ) − ¯ℎ] = 0

|ℎ(𝐴) − ℎ(𝐵) | ≤ 𝑐

2𝑑2

1

𝐾 + 1

,

The solution to this problem is

[ℎ(𝐴) − ¯ℎ] = 𝜇𝐾+1 (1)
(𝐾 + 1)

𝑐

2𝑑2
,

[ℎ(𝐵) − ¯ℎ] = −𝜇𝐾+1 (0)
(𝐾 + 1)

𝑐

2𝑑2
.
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and, therefore, the maximal contribution of the (𝐾 + 1)th attribute towards the overall objective is

𝑉𝐾+1 = 𝑚̄𝜇𝐾+1 (0)𝜇𝐾+1 (1)
[
𝑐

2𝑑

1

𝐾 + 1

]
2

Let 𝐷𝐾 (𝑐) be a value of information with 𝐾 attributes and cost of manipulation 𝑐 . Combining (5)

with expression for 𝑉𝐾+1 we get

𝐷𝐾+1 (𝑐) = 𝐷𝐾
(
𝐾

𝐾 + 1

𝑐

)
+ 𝑚̄𝜇𝐾+1 (0)𝜇𝐾+1 (1)

[
𝑐

2𝑑

1

𝐾 + 1

]
2

The solution to this equation is

𝐷𝐾 (𝑐) =
1

𝐾
𝑚̄

[ 𝑐
2𝑑

]
2

𝐾∑
𝑗=1

𝜇 𝑗 (0)𝜇 𝑗 (1)

𝐾

To establish if this value is feasible, we construct the solution ℎ∗
𝐾+1

from a solution to problem with

𝐾 attributes—i.e., ℎ∗
𝐾+1

. We show that ℎ∗
𝐾+1

also satisfies all relevant constraints.

Using ℎ∗
𝐾
let us define

˜ℎ𝐾+1 (a) = ¯ℎ − 𝐾

𝐾 + 1

(
¯ℎ − ℎ∗𝐾 (a)

)
.

Note that for any 𝑎, 𝑏 ∈ 𝒜𝐾 and 𝑧 ∈ {0, 1} the following constraint is satisfied because ℎ∗ satisfied
all constraints in program (2):��� ˜ℎ𝐾+1 (a) − ˜ℎ𝐾+1 (b)

��� ≤ 𝑐

2𝑑2

∥(a, 𝑧) − (b, 𝑧)∥
𝐾 + 1

.

The value 𝐷𝐾+1 is achieved at

ℎ𝐾+1 (a) =
{

˜ℎ𝐾+1 (b) − 𝜇𝐾+1 (1)
𝐾+1

𝑐
2𝑑2
, if a = (b, 1)

˜ℎ𝐾+1 (b) + 𝜇𝐾+1 (0)
𝐾+1

𝑐
2𝑑2
, if a = (b, 0).

Note that the proposed solution ℎ𝐾+1
is obtained from ℎ𝐾 by applying the same transformation.

It has the following features:

(1) for any a, b ∈ 𝒜𝐾+1 this transformation ensures that the constraint |ℎ𝐾+1 (a) − ℎ𝐾+1 (b) | ≤
𝑐

2𝑑2

∥a−b∥
𝐾+1

is satisfied. In particular, if

(a) 𝑎𝐾+1 = 𝑏𝐾+1, this constraint is implied by the corresponding constraint for ℎ𝐾 ,

(b) 𝑎𝐾+1 ≠ 𝑏𝐾+1, this constraint is satisfied because
𝜇𝐾+1 (1)
𝐾+1

𝑐
2𝑑2

+ 𝜇𝐾+1 (0)
𝐾+1

𝑐
2𝑑2

= 𝑐
2𝑑2

1

𝐾+1
.

(2) it maximizes the objective because it maximizes all three components of the sum in (5).

□

Proposition 10. When the data becomes arbitrarily rich—i.e., when the number of consumer
attributes becomes large—the value of information becomes arbitrarily small:

lim

𝐾→∞
𝐷𝐾 = 0.

Proof. Because 𝜇𝐾 (1)𝜇𝐾 (0) ≤ 1

4
for any 𝐾 , we note that

0 ≤ lim

𝐾→∞
𝑚̄

[ 𝑐
2𝑑

]
2

𝐾∑
𝑗=1

𝜇 𝑗 (0)𝜇 𝑗 (1)

𝐾
≤ 𝑚̄

4

[ 𝑐
2𝑑

]
2

.

Thus, lim

𝐾→∞
𝐷𝐾 = 0. □
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This assumption is strong and can be relaxed. In particular, we can allow for some attributes not

only to be correlated, but to be identical to each other, as long as the proportion of these attributes

does not does not grow too large when we increase the number of attributes. At the same time,

independence allows for a very tractable closed-form characterization of the value of information.

What are the welfare implications of better data? First, let us set aside the direct welfare costs

associated with data manipulation and concentrate on the creation and division of surplus after
the consumers changed their attributes. When the seller segments the market using consumer data,

the total welfare is reduced by

Δ𝑊 = −𝑑2

∑︁
a∈𝒜

𝑚(a) [ℎ𝐾 (a) − ¯ℎ]2 = − 1

𝐾
𝑚̄

[ 𝑐
2𝑑

]
2

𝐾∑
𝑗=1

𝜇 𝑗 (0)𝜇 𝑗 (1)

𝐾
.

Therefore the consumer surplus is reduced by

Δ𝐶𝑆 = − 2

𝐾
𝑚̄

[ 𝑐
2𝑑

]
2

𝐾∑
𝑗=1

𝜇 𝑗 (0)𝜇 𝑗 (1)

𝐾
.

Just like the gain in the monopoly profit, these values become arbitrarily small when the number

of attributes becomes arbitrarily large.

These calculations do not take into account the costs of data manipulations. It is natural to

assume that manipulating attributes carries no explicit value for the consumers and therefore it

reduces welfare. The reduction in welfare via this channel depends on how informative the data is

before consumers make changes. It is possible that the ex ante attributes are such that no consumer

wants to change them. To capture the range of welfare losses, consider the upper bound on the

total cost of manipulation: ∑︁
a∈𝒜

𝑚(a)ℎ𝐾 (a)
∥a − a𝑚 ∥

𝐾
𝑐,

where a𝑚 = arg max

a∈𝒜
ℎ𝑘 (a). To understand how this upper bound depends on the richness of the

data, consider a case in which 𝜇𝑖 (0) = 𝜇𝑖 (1) = 1/2 for all 𝑖 = 1, . . . , 𝐾 . In this case,

ℎ𝐾 (a) =
(
𝐾

2

−
𝐾∑︁
𝑖=1

𝑎𝑖

)
𝑐

2𝐾𝑑2
+ ¯ℎ,

and a𝑚 = (0, . . . , 0). For maximal losses we get
3∑︁

a∈𝒜
𝑚(a)ℎ𝐾 (a)

∥a − a𝑚 ∥
𝐾

𝑐 =
𝑚̄𝑐2

2𝐾𝑑2

[
𝐾∑︁
𝑘=1

(
𝐾

𝑘

)
𝑘

𝐾

(
𝐾

2

− 𝑘 + ¯ℎ
2𝐾𝑑2

𝑐

)]
=
𝑛𝑐

2

− 1

𝐾

𝑚̄𝑐2

8𝑑2

If we combine this cost with the expression for consumer surplus we obtained earlier, we get the

maximal reduction in consumer surplus:

Δ𝐶𝑆 = −𝑛𝑐
2

.

We can see from this expression that the presence of the data reduces the consumer surplus. In

contrast to the effect on the seller’s profit, the reduction in consumer surplus does not vanish when

the number of consumer attributes becomes large.

3
For binomial sums, see Boros and Moll (2004).
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4.2 Less data!
The reason why value of information vanishes when consumer attributes become numerous has

to do with increasing opportunities to manipulate the data. There are ways for the seller to limit

these opportunities. One possibility is to credibly promise the consumers to use a small fraction of

the available data. However, this would work only if the seller is secretive about which attributes

are used for pricing. In this section we consider an extreme example of such policy—i.e., the seller

committing to use only one attribute without disclosing to the consumers which one exactly.

Bound by the commitment, the seller will randomly choose the attribute for the purpose of

segmenting the market. If a particular attribute is not chosen in equilibrium, it becomes very

informative, due to the consumers not manipulating it, and, therefore, using it would be a profitable

deviation.

By 𝛾𝑖 denote the probability of the seller using attribute 𝑖 = 1, . . . , 𝐾 for market segmentation.

The no-arbitrage condition (4) in this case becomes

|ℎ(𝑎𝑖 = 0) − ℎ(𝑎𝑖 = 1) | ≤ 𝑐

2𝑑2

1

𝛾𝑖𝐾
,

and the gain from market segmentation is

𝑚̄

[ 𝑐
2𝑑

]
2 𝜇𝑖 (0)𝜇𝑖 (1)

𝛾2

𝑖
𝐾2

.

Because the firm chooses the attribute randomly, the gain must be the same for any two attributes.

We can find the probabilities 𝛾𝑖 from this condition:

𝛾𝑖 =

√︁
𝜇𝑖 (0)𝜇𝑖 (1)

𝐾∑
𝑗=1

√︁
𝜇 𝑗 (0)𝜇 𝑗 (1)

.

Proposition 11. If the seller commits to use only a single attribute for market segmentation without
disclosing which attribute exactly, the value of consumer data is

𝐷𝑟𝐾 = 𝑚̄


𝑐

2𝑑

𝐾∑
𝑗=1

√︁
𝜇 𝑗 (0)𝜇 𝑗 (1)

𝐾


2

.

If the seller adopts this data policy, the consumers’ expected return to data manipulation becomes

smaller. The reason is simple: when a consumer changes the value of attribute 𝑖 , with probability

1 − 𝛾𝑖 she does not gain anything because the seller does not use this attribute for pricing. This

implies that when the seller does use the attribute for pricing, it contains a great deal of information.

This is true for every attribute, and therefore, the value of data is larger compared to the case when

the seller uses all available attributes.

Note that 𝐷𝑟
𝐾
is larger than 𝐷𝐾 by a factor of

𝐾∑
𝑗=1

√︁
𝜇 𝑗 (0)𝜇 𝑗 (1) which increases linearly in 𝐾 if

𝜇 𝑗 (0)𝜇 𝑗 (1) does not converge to zero. This implies that 𝐷𝑟
𝐾
does not vanish when 𝐾 becomes large.
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